# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import datasets _LICENSE = "MIT License" # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _DATA_URL = ( "https://raw.githubusercontent.com/yilunzhao/RobuT/main/robut_data.zip" ) class KnowledgeMath(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name="main", ) ] DEFAULT_CONFIG_NAME = ( "main" # It's not mandatory to have a default configuration. Just use one if it make sense. ) def _info(self): features = datasets.Features( { "question_id": datasets.Value("string"), "question": datasets.Value("string"), "tables": datasets.features.Sequence(datasets.Value("string")), "topic": datasets.Value("string"), "ground_truth": datasets.Value("float64"), "python_solution": datasets.Value("string"), } ) return datasets.DatasetInfo( features=features, homepage=_HOMEPAGE, ) def _split_generators(self, dl_manager): validation_path = datasets.DownloadManager.download("https://huggingface.co/datasets/yale-nlp/KnowledgeMath/raw/main/validation.json") test_path = datasets.DownloadManager.download("https://huggingface.co/datasets/yale-nlp/KnowledgeMath/raw/main/test.json") return [ datasets.SplitGenerator( name="validation", # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": validation_path }, ), datasets.SplitGenerator( name="test", # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": test_path }, ) ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath): # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. qa_data = json.load(open(filepath)) for idx, example in enumerate(qa_data): yield idx, { "question_id": example["question_id"], "question": example["question"], "tables": example["tables"], "topic": example["topic"], "ground_truth": example["ground_truth"], "python_solution": example["python_solution"], }