|
--- |
|
license: cc-by-nc-4.0 |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: string |
|
- name: label |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 17286021131 |
|
num_examples: 405055 |
|
download_size: 17266005314 |
|
dataset_size: 17286021131 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
|
|
|
|
### Install datasets package |
|
First, make sure you have the datasets library installed. If not, you can install it using: |
|
|
|
```bash |
|
pip install datasets |
|
``` |
|
|
|
### Load Dataset from Arrow File |
|
Download all arrow files to local_path. The follow is how to load arrow files and decode image: |
|
|
|
```python |
|
from datasets import load_from_disk |
|
from io import BytesIO |
|
import base64 |
|
from PIL import Image |
|
import mmengine |
|
|
|
|
|
# Path to your Arrow dataset directory |
|
arrow_dataset_path = 'path_to_your_arrow_dataset_directory' |
|
|
|
# Load the dataset |
|
dataset = load_from_disk(arrow_dataset_path) |
|
cat_tree = mmengine.load('v3det_2023_v1_category_tree.json') |
|
|
|
# Each dataset entry is composed of an image in the format of base64 string and its corresponding imagenet label id |
|
# Here is an example of how to decode image, and convert imagenet label id to v3det class name |
|
# You can download v3det_2023_v1_category_tree.json here: https://v3det.openxlab.org.cn/download |
|
image = Image.open(BytesIO(base64.b64decode(dataset[0]['image']))) |
|
cat_name = cat_tree['id2name'][dataset[0]['label']] |
|
``` |