Datasets:
Tasks:
Text Retrieval
Sub-tasks:
document-retrieval
Languages:
English
Size:
1K<n<10K
ArXiv:
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TNE: Text-based NP Enrichment""" | |
import json | |
import datasets | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@article{tne, | |
author = {Elazar, Yanai and Basmov, Victoria and Goldberg, Yoav and Tsarfaty, Reut}, | |
title = "{Text-based NP Enrichment}", | |
journal = {Transactions of the Association for Computational Linguistics}, | |
year = {2022}, | |
} | |
""" | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
TNE is an NLU task, which focus on relations between noun phrases (NPs) that can be mediated via prepositions. | |
The dataset contains 5,497 documents, annotated exhaustively with all possible links between the NPs in each document. | |
""" | |
_HOMEPAGE = "https://yanaiela.github.io/TNE/" | |
_LICENSE = "MIT" | |
_VERSION = "v1.1" | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URL = "https://github.com/yanaiela/TNE/raw/main/data/" | |
_URLS = { | |
"train": _URL + f"train-{_VERSION}.jsonl.gz", | |
"dev": _URL + f"dev-{_VERSION}.jsonl.gz", | |
"test_unlabeled": _URL + f"test_unlabeled-{_VERSION}.jsonl.gz", | |
"ood_unlabeled": _URL + f"ood_unlabeled-{_VERSION}.jsonl.gz", | |
} | |
class TNEDataset(datasets.GeneratorBasedBuilder): | |
"""TNE: Text-based NP Enrichment""" | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"nps": [ | |
{ | |
"text": datasets.Value("string"), | |
"first_char": datasets.Value("int32"), | |
"last_char": datasets.Value("int32"), | |
"first_token": datasets.Value("int32"), | |
"last_token": datasets.Value("int32"), | |
"id": datasets.Value("string"), | |
} | |
], | |
"np_relations": [ | |
{ | |
"anchor": datasets.Value("string"), | |
"complement": datasets.Value("string"), | |
"preposition": datasets.features.ClassLabel( | |
names=[ | |
"about", | |
"for", | |
"with", | |
"from", | |
"among", | |
"by", | |
"on", | |
"at", | |
"during", | |
"of", | |
"member(s) of", | |
"in", | |
"after", | |
"under", | |
"to", | |
"into", | |
"before", | |
"near", | |
"outside", | |
"around", | |
"between", | |
"against", | |
"over", | |
"inside", | |
] | |
), | |
"complement_coref_cluster_id": datasets.Value("string"), | |
} | |
], | |
"coref": [ | |
{ | |
"id": datasets.Value("string"), | |
"members": datasets.Sequence(datasets.Value("string")), | |
"np_type": datasets.features.ClassLabel( | |
names=[ | |
"standard", | |
"time/date/measurement", | |
"idiomatic", | |
] | |
), | |
} | |
], | |
"metadata": { | |
"annotators": { | |
"coref_worker": datasets.Value("int32"), | |
"consolidator_worker": datasets.Value("int32"), | |
"np-relations_worker": datasets.Sequence(datasets.Value("int32")), | |
}, | |
"url": datasets.Value("string"), | |
"source": datasets.Value("string"), | |
}, | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
urls = _URLS | |
data_dir = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir["train"], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir["dev"], | |
"split": "dev", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": data_dir["test_unlabeled"], "split": "test_unlabeled"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split("test_ood"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": data_dir["ood_unlabeled"], "split": "ood_unlabeled"}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
with open(filepath, "r", encoding="utf-8") as f: | |
for key, row in enumerate(f): | |
data = json.loads(row) | |
ex_id = data["id"] | |
text = data["text"] | |
tokens = data["tokens"] | |
nps = data["nps"] | |
if split in ["test_unlabeled", "ood_unlabeled"]: | |
np_relations = [] | |
else: | |
np_relations = data["np_relations"] | |
coref = data["coref"] | |
metadata = data["metadata"] | |
yield key, { | |
"id": ex_id, | |
"text": text, | |
"tokens": tokens, | |
"nps": nps, | |
"np_relations": np_relations, | |
"coref": coref, | |
"metadata": metadata, | |
} | |