ten_species / README.md
yairschiff's picture
Create README.md
770904a verified
|
raw
history blame
2.69 kB
---
license: apache-2.0
---
## Overview
This dataset consists of reference genomes for 10 species:
| Species | Assembly Accession |
|--------------------------|-----------------------------------------------------|
| *Arabidopsis thaliana* | `GCF_000001735.4_TAIR10.1` |
| *Caenorhabditis elegans* | `GCF_000002985.6_WBcel235` |
| *Danio rerio* | `GCF_000002035.6_GRCz11` |
| *Drosophila melanogaster*| `GCF_000001215.4_Release_6_plus_ISO1_MT` |
| *Felis catus* | `GCF_018350175.1_F.catus_Fca126_mat1.0` |
| *Gallus gallus* | `GCF_016699485.2_bGalGal1.mat.broiler.GRCg7b` |
| *Gorilla gorilla* | `GCF_029281585.2_NHGRI_mGorGor1-v2.0_pri` |
| *Homo sapiens* | `GCF_000001405.40_GRCh38.p14` |
| *Mus musculus* | `GCF_000001635.27_GRCm39` |
| *Salmo trutta* | `GCF_901001165.1_fSalTru1.1` |
Each item in the dataset contains the following fields:
```
"sequence": datasets.Value("string"),
"species_label": datasets.ClassLabel() # See below
"description": datasets.Value("string"),
"start_pos": datasets.Value("int32"),
"end_pos": datasets.Value("int32"),
"fasta_url": datasets.Value("string")
```
The class labels are as follows:
| Class | Label |
|-----------------------------|-------|
| `'Homo_sapiens'` | 0 |
| `'Mus_musculus'` | 1 |
| `'Drosophila_melanogaster'` | 2 |
| `'Danio_rerio'` | 3 |
| `'Caenorhabditis_elegans'` | 4 |
| `'Gallus_gallus'` | 5 |
| `'Gorilla_gorilla'` | 6 |
| `'Felis_catus'` | 7 |
| `'Salmo_trutta'` | 8 |
| `'Arabidopsis_thaliana'` | 9 |
## Usage
To use this dataset, set the `chunk_length` (length of each sequence, in base-pairs) and the `overlap` (amount each sequence overlaps, in base-pairs).
The dataset only contains a `train` split.
We recommend randomly splitting the dataset to create validation/test sets.
See below for example usage:
```python
import datasets
max_length = 32_768
overlap = 0
dataset = datasets.load_dataset(
'yairschiff/ten_species',
split='train', # original dataset only has `train` split
chunk_length=max_length,
overlap=overlap,
trust_remote_code=True
)
self.dataset = dataset.train_test_split(
test_size=0.05, seed=42)[split]
```
## Acknowledgments
Code for dataset processing is derived from https://huggingface.co/datasets/InstaDeepAI/multi_species_genomes.