Datasets:
license: mit
task_categories:
- text-retrieval
- text-to-image
language:
- en
tags:
- cultural heritage
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
dataset_info:
features:
- name: uuid
dtype: string
- name: split
dtype: string
- name: object_type
dtype: string
- name: query_text
dtype: string
- name: target_text
dtype: string
- name: image
dtype: image
splits:
- name: train
num_bytes: 1774962844
num_examples: 34808
- name: validation
num_bytes: 228803339
num_examples: 4350
- name: test
num_bytes: 235916523
num_examples: 4350
download_size: 2163250820
dataset_size: 2239682706
REEVLAUATE Image-Text Pair Dataset
Overview
This is an image-text pair dataset constructed for the Knowledge-Enhanced Multimodal Retrieval System, built upon the REEVLAUATE KG ArtKB. The dataset is designed for training and evaluating the CLIP model for the retrieval system.
Data Source
The ArtKB knowledge base combines data from two primary sources:
- Wikidata
- Pilot Museums
Dataset Structure
The dataset is organized into three splits:
- Train: Training set
- Validation: Validation set
- Test: Test set
Each split contains:
- Images: Visual content stored in subdirectories (
000/,001/, ...,999/) - Texts: Text descriptions paired with images, stored in corresponding subdirectories
- metadata.parquet: A Parquet file containing structured data for all samples in the split
Data Format
Directory Structure
hf_reevaluate_upload/
βββ train/
β βββ images/
β β βββ 000/
β β βββ 001/
β β βββ ...
β βββ texts/
β β βββ 000/
β β βββ 001/
β β βββ ...
β βββ metadata.parquet
βββ validation/
β βββ images/
β βββ texts/
β βββ metadata.parquet
βββ test/
βββ images/
βββ texts/
βββ metadata.parquet
Parquet Schema
Each sample in the Parquet files contains the following columns:
| Column | Type | Description |
|---|---|---|
image |
string | Relative path to the image file |
uuid |
string | Unique identifier for the artwork |
query_text |
string | User query-like text |
target_text |
list[string] | Description text corresponding to the specific image including visual content and metadata information |
Text Generation Methods
1. Metadata Portion
The metadata descriptions are constructed by combining multiple metadata fields from the ArtKB knowledge base using different templates. Each template produces a different textual representation of the same metadata information. This results in 5 distinct variants that capture the same facts in different phrasings.
Example fields used:
- Creator/Artist name
- Creation date
- Materials and techniques
- Dimensions
- Current location/Museum
- Object type and classification
- ...
2. Content Portion
The content descriptions are generated automatically using the Salesforce/BLIP2-OPT-2.7B vision-language model. These descriptions capture visual characteristics of the artwork observed directly from the image, such as composition, colors, subjects, and visual elements.
Model: Salesforce/blip2-opt-2.7b
3. Description Texts
The description text descriptions are created by concatenating content portion with metadata protion:
[Content Portion] + [Metadata Portion]
Usage
The dataset can be loaded and used with the Hugging Face datasets library:
from datasets import load_dataset
from IPython.display import display
from PIL import Image
import io
ds = load_dataset("xuemduan/reevaluate-image-text-pairs")
sample = ds["train"][0]
print(sample["uuid"])
print(sample["object_type"])
print(sample["query_text"])
print(sample["target_text"])
display(sample["image"])
Citation
If you use this dataset in your research, please cite this dataset.
Contact
For questions or issues related to this dataset, please email xuemin.duan@kuleuven.be