metadata
license: cc-by-sa-4.0
DS-CodeBridge
A robust benchmark comprising 800 carefully curated bidirectionally translatable tasks across three important stages of data science workflows: Data Querying, Data Manipulation, and Data Mining.
Download the Dataset
from datasets import load_dataset
# Load the dl200 split in streaming mode
dl200_dataset = load_dataset(
"xia01ongLi/DS-CodeBridge",
split="dl200",
streaming=True # Enable streaming mode
)
# Get the first example
first_example = next(iter(dl200_dataset))
print("First example:", first_example)
from datasets import load_dataset
# Load the dq300 split in streaming mode
dq300_dataset = load_dataset(
"xia01ongLi/DS-CodeBridge",
split="dq300",
streaming=True # Enable streaming mode
)
# Get the first example
first_example = next(iter(dq300_dataset))
print("First example:", first_example)
from datasets import load_dataset
# Load the ds300 split in streaming mode
ds300_dataset = load_dataset(
"xia01ongLi/DS-CodeBridge",
split="ds300",
streaming=True # Enable streaming mode
)
# Get the first example
first_example = next(iter(ds300_dataset))
print("First example:", first_example)
DQ Database setup
Postgresql Setup
- Download and install the postgresql from the official website: https://www.postgresql.org/download/
- Download the pgAdmin4 from the official website: https://www.pgadmin.org/download/ (Recommended to monitor the database)
- In pgADmin4/terminal create a new database you prefer
- Construct the database by run the following command (You can find PostgreSQL version database in the data folder):
psql -U USERNAME -d DB_NAME -f postgresql_db.sql
Pandas DB Setup
- Donwload the Pandas version database from the data folder