Datasets:
Formats:
parquet
Sub-tasks:
image-captioning
Size:
100K - 1M
ArXiv:
Tags:
text-image-retrieval
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""""WIT (Wikipedia-based Image Text Dataset) dataset (Wikimedia version).""" | |
import base64 | |
import gzip | |
import json | |
import datasets | |
from .corrected_examples import CORRECTED_EXAMPLES | |
_CITATION = """\ | |
@article{srinivasan2021wit, | |
title={WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning}, | |
author={Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc}, | |
journal={arXiv preprint arXiv:2103.01913}, | |
year={2021} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset. | |
It contains more than six million images from Wikipedia articles in 100+ languages, which correspond to almost all captioned images in Google's version of the WIT dataset. | |
Images are provided at a 300-px resolution, a size that is suitable for most of the learning frameworks used to classify and analyze images. | |
This version of the WIT dataset was released by Wikimedia Research team. | |
""" | |
_LICENSE = "CC BY-SA 4.0 international license" | |
_HOMEPAGE = "https://techblog.wikimedia.org/2021/09/09/the-wikipedia-image-caption-matching-challenge-and-a-huge-release-of-image-data-for-research/" | |
_BASE_URL = "https://storage.googleapis.com/huggingface-nlp/datasets/wit/" | |
_URLS = [_BASE_URL + f"part-{'%05d' % i}-48a6f07e-bb86-4735-aac7-883349f41a28-c000.json.gz" for i in range(400)] | |
class Wit(datasets.GeneratorBasedBuilder): | |
"""Builder for WIT dataset (Wikimedia version).""" | |
DEFAULT_WRITER_BATCH_SIZE = 1000 | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"image_url": datasets.Value("string"), | |
"embedding": datasets.Sequence(datasets.Value("float64"), length=2048), | |
"metadata_url": datasets.Value("string"), | |
"original_height": datasets.Value("int32"), | |
"original_width": datasets.Value("int32"), | |
"mime_type": datasets.Value("string"), | |
"caption_attribution_description": datasets.Value("string"), | |
"wit_features": datasets.Sequence( | |
{ | |
"language": datasets.Value("string"), | |
"page_url": datasets.Value("string"), | |
"attribution_passes_lang_id": datasets.Value("bool"), | |
"caption_alt_text_description": datasets.Value("string"), | |
"caption_reference_description": datasets.Value("string"), | |
"caption_title_and_reference_description": datasets.Value("string"), | |
"context_page_description": datasets.Value("string"), | |
"context_section_description": datasets.Value("string"), | |
"hierarchical_section_title": datasets.Value("string"), | |
"is_main_image": datasets.Value("bool"), | |
"page_changed_recently": datasets.Value("bool"), | |
"page_title": datasets.Value("string"), | |
"section_title": datasets.Value("string"), | |
} | |
), | |
} | |
), | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
downloaded_files = dl_manager.download(_URLS) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_files": downloaded_files}), | |
] | |
def _generate_examples(self, data_files): | |
"""Yields examples.""" | |
wit_feature_names = self.info.features["wit_features"].feature.keys() | |
idx = 0 | |
for data_file_idx, data_file in enumerate(data_files): | |
with gzip.open(open(data_file, "rb"), mode="rt", encoding="utf-8") as f: | |
for row_idx, row in enumerate(f): | |
example = json.loads(row) | |
ex_wit_features_non_empty = [] | |
for feature in example["wit_features"]: | |
# If a feature is missing from feature dict, add it as None | |
for wit_feature_name in wit_feature_names: | |
if wit_feature_name not in feature: | |
feature[wit_feature_name] = None | |
# Here we take redundant values from wit_features and add them to example to avoid unnecessary duplication | |
extra_wit_feature_keys = [k for k in feature.keys() if k not in wit_feature_names] | |
for extra_wit_feature_key in extra_wit_feature_keys: | |
extra_wit_feature_value = feature.pop(extra_wit_feature_key) | |
if isinstance(extra_wit_feature_value, list): | |
extra_wit_feature_value = extra_wit_feature_value[0] | |
example[extra_wit_feature_key] = extra_wit_feature_value | |
# Remove empty wit features | |
if any(v is not None for v in feature.values()): | |
ex_wit_features_non_empty.append(feature) | |
example["wit_features"] = ex_wit_features_non_empty | |
# Check example now for missing keys, adding None to avoid failures | |
missing_keys = [k for k in self.info.features.keys() if k not in example] | |
for missing_key in missing_keys: | |
example[missing_key] = None | |
# Decode base64 encoded image bytes | |
b64_image_bytes = example.pop("b64_bytes") | |
example["image"] = ( | |
{"path": None, "bytes": base64.b64decode(b64_image_bytes)} | |
if b64_image_bytes is not None | |
else None | |
) | |
corrections = CORRECTED_EXAMPLES.get((data_file_idx, row_idx)) | |
if corrections is not None: | |
assert example["metadata_url"] == corrections["metadata_url"] | |
example.update(corrections) | |
yield idx, example | |
idx += 1 | |