dataset_info:
features:
- name: id
dtype: string
- name: question
dtype: string
- name: options
list: string
- name: answer
dtype: string
- name: task_plan
dtype: string
- name: image
dtype: image
splits:
- name: random_3d_how_many
num_bytes: 436215710
num_examples: 300
- name: random_3d_what
num_bytes: 434742201
num_examples: 300
- name: random_3d_where
num_bytes: 439317620
num_examples: 300
- name: random_3d_what_attribute
num_bytes: 444189904
num_examples: 300
- name: random_3d_where_attribute
num_bytes: 440677951
num_examples: 300
- name: random_3d_what_distance
num_bytes: 432425889
num_examples: 300
- name: random_3d_where_distance
num_bytes: 429200001
num_examples: 300
- name: random_3d_what_attribute_distance
num_bytes: 427282309
num_examples: 300
- name: random_3d_what_size
num_bytes: 442839308
num_examples: 300
- name: random_3d_where_size
num_bytes: 436236948
num_examples: 300
- name: random_3d_what_attribute_size
num_bytes: 438653169
num_examples: 300
- name: random_2d_how_many
num_bytes: 19675524
num_examples: 300
- name: random_2d_what
num_bytes: 20867143
num_examples: 300
- name: random_2d_where
num_bytes: 20328953
num_examples: 300
- name: random_2d_what_attribute
num_bytes: 20040624
num_examples: 300
- name: random_2d_where_attribute
num_bytes: 22044710
num_examples: 300
- name: random_sg_what_object
num_bytes: 13414061
num_examples: 300
- name: random_sg_what_attribute
num_bytes: 12339318
num_examples: 300
- name: random_sg_what_relation
num_bytes: 12630575
num_examples: 300
download_size: 4916677872
dataset_size: 4943121918
configs:
- config_name: default
data_files:
- split: random_3d_how_many
path: data/random_3d_how_many-*
- split: random_3d_what
path: data/random_3d_what-*
- split: random_3d_where
path: data/random_3d_where-*
- split: random_3d_what_attribute
path: data/random_3d_what_attribute-*
- split: random_3d_where_attribute
path: data/random_3d_where_attribute-*
- split: random_3d_what_distance
path: data/random_3d_what_distance-*
- split: random_3d_where_distance
path: data/random_3d_where_distance-*
- split: random_3d_what_attribute_distance
path: data/random_3d_what_attribute_distance-*
- split: random_3d_what_size
path: data/random_3d_what_size-*
- split: random_3d_where_size
path: data/random_3d_where_size-*
- split: random_3d_what_attribute_size
path: data/random_3d_what_attribute_size-*
- split: random_2d_how_many
path: data/random_2d_how_many-*
- split: random_2d_what
path: data/random_2d_what-*
- split: random_2d_where
path: data/random_2d_where-*
- split: random_2d_what_attribute
path: data/random_2d_what_attribute-*
- split: random_2d_where_attribute
path: data/random_2d_where_attribute-*
- split: random_sg_what_object
path: data/random_sg_what_object-*
- split: random_sg_what_attribute
path: data/random_sg_what_attribute-*
- split: random_sg_what_relation
path: data/random_sg_what_relation-*
Dataset Card for TaskMeAnything-v1-imageqa-random
TaskMeAnything-v1-imageqa-random dataset
π Website | π Paper | π€ Huggingface | π» Interface
If you like our project, please give us a star β on GitHub for latest update.
TaskMeAnything-v1-Random
TaskMeAnything-v1-imageqa-random is a dataset which using randomly sampled questions from TaskMeAnything-v1, including 5,700 ImageQA questions. The dataset contains 19 splits, while each splits contains 300 questions from a specific task generator in TaskMeAnything-v1. For each row of dataset, it includes: image, question, options, answer and its corresponding task plan.
Load TaskMeAnything-v1-Random ImageQA Dataset
import datasets
dataset_name = 'weikaih/TaskMeAnything-v1-imageqa-random'
dataset = datasets.load_dataset(dataset_name, split = TASK_GENERATOR_SPLIT)
where TASK_GENERATOR_SPLIT
is one of the task generators, eg, random_2d_how_many
.
Evaluation Results
Overall
Breakdown performance on each task types
Out-of-Scope Use
This dataset should not be used for training models.
Disclaimers
TaskMeAnything and its associated resources are provided for research and educational purposes only. The authors and contributors make no warranties regarding the accuracy or reliability of the data and software. Users are responsible for ensuring their use complies with applicable laws and regulations. The project is not liable for any damages or losses resulting from the use of these resources.
Contact
- Jieyu Zhang: jieyuz2@cs.washington.edu
Citation
BibTeX:
@article{zhang2024task,
title={Task Me Anything},
author={Zhang, Jieyu and Huang, Weikai and Ma, Zixian and Michel, Oscar and He, Dong and Gupta, Tanmay and Ma, Wei-Chiu and Farhadi, Ali and Kembhavi, Aniruddha and Krishna, Ranjay},
journal={arXiv preprint arXiv:2406.11775},
year={2024}
}