Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Javanese
Size:
100K - 1M
License:
Added citation information and link references
Browse files
README.md
CHANGED
@@ -59,7 +59,7 @@ task_ids:
|
|
59 |
|
60 |
### Dataset Summary
|
61 |
|
62 |
-
Large Movie Review Dataset translated to Javanese. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well. We translated the original IMDB Dataset to Javanese using the multi-lingual MarianMT Transformer model from `Helsinki-NLP/opus-mt-en-mul
|
63 |
|
64 |
### Supported Tasks and Leaderboards
|
65 |
|
@@ -79,8 +79,8 @@ An example of `javanese_imdb_train.csv` looks as follows.
|
|
79 |
|
80 |
| label | text |
|
81 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
82 |
-
| 1 | "Drama romantik sing
|
83 |
-
| 0 | "Pengalaman wong lanang sing
|
84 |
|
85 |
### Data Fields
|
86 |
|
@@ -149,4 +149,17 @@ An example of `javanese_imdb_train.csv` looks as follows.
|
|
149 |
|
150 |
### Citation Information
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
### Dataset Summary
|
61 |
|
62 |
+
Large Movie Review Dataset translated to Javanese. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well. We translated the [original IMDB Dataset](https://huggingface.co/datasets/imdb) to Javanese using the multi-lingual MarianMT Transformer model from [`Helsinki-NLP/opus-mt-en-mul`](https://huggingface.co/Helsinki-NLP/opus-mt-en-mul).
|
63 |
|
64 |
### Supported Tasks and Leaderboards
|
65 |
|
|
|
79 |
|
80 |
| label | text |
|
81 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
82 |
+
| 1 | "Drama romantik sing digawé karo direktur Martin Ritt kuwi ora dingertèni, nanging ana momen-momen sing marahi karisma lintang Jane Fonda lan Robert De Niro (kelompok sing luar biasa). Dhèwèké dadi randha sing ora isa mlaku, iso anu anyar lan anyar-inventor-- kowé isa nganggep isiné. Adapsi novel Pat Barker ""Union Street"" (yak titel sing apik!) arep dinggo-back-back it on bland, lan pendidikan film kuwi gampang, nanging isih nyenengké; a rosy-hued-inventor-fantasi. Ora ana sing ngganggu gambar sing sejati ding kok iso dinggo nggawe gambar sing paling nyeneng." |
|
83 |
+
| 0 | "Pengalaman wong lanang sing nduwé perasaan sing ora lumrah kanggo babi. Mulai nganggo tuladha sing luar biasa yaiku komedia. Wong orkestra termel digawé dadi wong gila, sing kasar merga nyanyian nyanyi. Sayangé, kuwi tetep absurd wektu WHOLE tanpa ceramah umum sing mung digawé. Malah, sing ana ing jaman kuwi kudu ditinggalké. Diyalog kryptik sing nggawé Shakespeare marah gampang kanggo kelas telu. Pak teknis kuwi luwih apik timbang kowe mikir nganggo cinematografi sing apik sing jenengé Vilmos Zsmond. Masa depan bintang Saly Kirkland lan Frederic Forrest isa ndelok." |
|
84 |
|
85 |
### Data Fields
|
86 |
|
|
|
149 |
|
150 |
### Citation Information
|
151 |
|
152 |
+
```
|
153 |
+
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
|
154 |
+
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
|
155 |
+
title = {Learning Word Vectors for Sentiment Analysis},
|
156 |
+
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
|
157 |
+
month = {June},
|
158 |
+
year = {2011},
|
159 |
+
address = {Portland, Oregon, USA},
|
160 |
+
publisher = {Association for Computational Linguistics},
|
161 |
+
pages = {142--150},
|
162 |
+
url = {http://www.aclweb.org/anthology/P11-1015}
|
163 |
+
}
|
164 |
+
|
165 |
+
```
|