Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
kavyamanohar commited on
Commit
afbf725
1 Parent(s): c6dcf22

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md CHANGED
@@ -16,4 +16,78 @@ configs:
16
  data_files:
17
  - split: train
18
  path: data/train-*
 
 
 
 
 
 
19
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  data_files:
17
  - split: train
18
  path: data/train-*
19
+ license: cc
20
+ language:
21
+ - ml
22
+ - en
23
+ size_categories:
24
+ - 1M<n<10M
25
  ---
26
+
27
+ ## English Malayalam Names
28
+
29
+ ### Dataset Description
30
+
31
+ This dataset has 27787044 person names both in English and Malayalam. The source for this dataset is various election roles published by Government.
32
+
33
+ Derived From: https://huggingface.co/datasets/santhosh/english-malayalam-names
34
+
35
+ - **Curated by:** Bajiyo Baiju
36
+ - **License:** CC-BY-SA-4.0
37
+
38
+
39
+ ## Uses
40
+
41
+ - English <-> Malayalam name transliteration tasks
42
+ - Named entity recognition
43
+ - Person name recognition
44
+
45
+ ## Dataset Curation
46
+
47
+ ```
48
+ # Assuming 'ml' is the column containing Malayalam names and 'en' is the English names column in your dataset
49
+ from datasets import load_dataset
50
+
51
+ data = load_dataset("santhosh/english-malayalam-names")
52
+
53
+ malayalam_names = data['ml'].tolist()
54
+ english_names = data['en'].tolist()
55
+
56
+ # Define a function to check if a name contains mostly English characters
57
+ def is_english_name(name):
58
+ english_char_count = sum(c.isalpha() and c.isascii() for c in name)
59
+ return english_char_count / len(name) > 0.5 # Adjust the threshold as needed
60
+
61
+ # Find and count names that are likely to be English in 'ml' column
62
+ english_names_ml_column = [name for name in malayalam_names if is_english_name(name)]
63
+ count_english_names_ml_column = len(english_names_ml_column)
64
+
65
+ # Find Malayalam words in the 'en' column
66
+ malayalam_words_en_column = [word for word in english_names if not any(c.isascii() for c in word)]
67
+ count_malayalam_words_en_column = len(malayalam_words_en_column)
68
+
69
+ # Print the results
70
+ print("Count of English-like Names in Malayalam Names Column:", count_english_names_ml_column)
71
+ #print("English-like Names in Malayalam Names Column:", english_names_ml_column)
72
+
73
+ print("\nCount of Malayalam Words in English Names Column:", count_malayalam_words_en_column)
74
+ print("Malayalam Words in English Names Column:", malayalam_words_en_column)
75
+
76
+ # Identify English-like names and remove them
77
+ english_names_mask = data['ml'].isin(english_names_ml_column)
78
+ data = data[~english_names_mask]
79
+
80
+ # Identify Malayalam words and remove them
81
+ malayalam_words_mask = data['en'].isin(malayalam_words_en_column)
82
+ data = data[~malayalam_words_mask]
83
+
84
+ # Remove empty rows
85
+ data = data[(data['ml'] != '') & (data['en'] != '')]
86
+
87
+ # Verify the changes
88
+ print("Updated 'ml' column after removing English-like Names:")
89
+ print(data['ml'])
90
+
91
+ print("\nUpdated 'en' column after removing Malayalam Words:")
92
+ print(data['en'])
93
+ ```