Datasets:

License:
MOCKS / MOCKS.py
j-krzywdziak's picture
Fix dataset script (#5)
a7e0145
raw
history blame
19.3 kB
# coding=utf-8
# Copyright 2023 The HuggingFace Datasets Authors.
#
# Licensed under the Creative Commons version 4.0 and Mozilla Public License version 2.0,
# (the "Licenses"); you may not use this file except in compliance with the Licenses.
# You may obtain a copies of the Licenses at
#
# https://creativecommons.org/licenses/by/4.0/
# and https://www.mozilla.org/en-US/MPL/2.0/
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the Licenses for the specific language governing permissions and
# limitations under the Licenses.
# Lint as: python3
import csv
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{pudo23_interspeech,
author={Mikołaj Pudo and Mateusz Wosik and Adam Cieślak and Justyna Krzywdziak and Bożena Łukasiak and Artur Janicki},
title={{MOCKS} 1.0: Multilingual Open Custom Keyword Spotting Testset},
year={2023},
booktitle={Proc. Interspeech 2023},
}
"""
_DESCRIPTION = """\
Multilingual Open Custom Keyword Spotting Testset (MOCKS) is a comprehensive
audio testset for evaluation and benchmarking Open-Vocabulary Keyword Spotting (OV-KWS) models.
"""
_BASE_URL = "https://huggingface.co/datasets/voiceintelligenceresearch/MOCKS/tree/main"
_DL_URLS = {
"de.MCV": {
"offline": "de/MCV/test/offline/data.tar.gz",
"online": "de/MCV/test/online/data.tar.gz",
"offline_transcription" : "de/MCV/test/data_offline_transcription.tsv",
"online_transcription" : "de/MCV/test/data_online_transcription.tsv",
},
"en.LS-clean": {
"offline": "en/LS-clean/test/offline/data.tar.gz",
"online": "en/LS-clean/test/online/data.tar.gz",
"offline_transcription" : "en/LS-clean/test/data_offline_transcription.tsv",
"online_transcription" : "en/LS-clean/test/data_online_transcription.tsv",
},
"en.LS-other": {
"offline": "en/LS-other/test/offline/data.tar.gz",
"online": "en/LS-other/test/online/data.tar.gz",
"offline_transcription" : "en/LS-other/test/data_offline_transcription.tsv",
"online_transcription" : "en/LS-other/test/data_online_transcription.tsv",
},
"en.MCV": {
"offline": "en/MCV/test/offline/data.tar.gz",
"online": "en/MCV/test/online/data.tar.gz",
"offline_transcription" : "en/MCV/test/data_offline_transcription.tsv",
"online_transcription" : "en/MCV/test/data_online_transcription.tsv",
},
"es.MCV": {
"offline": "es/MCV/test/offline/data.tar.gz",
"online": "es/MCV/test/online/data.tar.gz",
"offline_transcription" : "es/MCV/test/data_offline_transcription.tsv",
"online_transcription" : "es/MCV/test/data_online_transcription.tsv",
},
"fr.MCV": {
"offline": "fr/MCV/test/offline/data.tar.gz",
"online": "fr/MCV/test/online/data.tar.gz",
"offline_transcription": "fr/MCV/test/data_offline_transcription.tsv",
"online_transcription": "fr/MCV/test/data_online_transcription.tsv",
},
"it.MCV": {
"offline": "it/MCV/test/offline/data.tar.gz",
"online": "it/MCV/test/online/data.tar.gz",
"offline_transcription": "it/MCV/test/data_offline_transcription.tsv",
"online_transcription": "it/MCV/test/data_online_transcription.tsv",
},
"all": {
"de.MCV.offline": "de/MCV/test/offline/data.tar.gz",
"de.MCV.online": "de/MCV/test/online/data.tar.gz",
"en.LS-clean.offline": "en/LS-clean/test/offline/data.tar.gz",
"en.LS-clean.online": "en/LS-clean/test/online/data.tar.gz",
"en.LS-other.offline": "en/LS-other/test/offline/data.tar.gz",
"en.LS-other.online": "en/LS-other/test/online/data.tar.gz",
"en.MCV.offline": "en/MCV/test/offline/data.tar.gz",
"en.MCV.online": "en/MCV/test/online/data.tar.gz",
"es.MCV.offline": "es/MCV/test/offline/data.tar.gz",
"es.MCV.online": "es/MCV/test/online/data.tar.gz",
"fr.MCV.offline": "fr/MCV/test/offline/data.tar.gz",
"fr.MCV.online": "fr/MCV/test/online/data.tar.gz",
"it.MCVoffline": "it/MCV/test/offline/data.tar.gz",
"it.MCV.online": "it/MCV/test/online/data.tar.gz",
"de.MCV.offline_transcription": "de/MCV/test/data_offline_transcription.tsv",
"de.MCV.online_transcription": "de/MCV/test/data_online_transcription.tsv",
"en.LS-clean.offline_transcription": "en/LS-clean/test/data_offline_transcription.tsv",
"en.LS-clean.online_transcription": "en/LS-clean/test/data_online_transcription.tsv",
"en.LS-other.offline_transcription": "en/LS-other/test/data_offline_transcription.tsv",
"en.LS-other.online_transcription": "en/LS-other/test/data_online_transcription.tsv",
"en.MCV.offline_transcription": "en/MCV/test/data_offline_transcription.tsv",
"en.MCVonline_transcription": "en/MCV/test/data_online_transcription.tsv",
"es.MCV.offline_transcription": "es/MCV/test/data_offline_transcription.tsv",
"es.MCV.online_transcription": "es/MCV/test/data_online_transcription.tsv",
"fr.MCV.offline_transcription": "fr/MCV/test/data_offline_transcription.tsv",
"fr.MCV.online_transcription": "fr/MCV/test/data_online_transcription.tsv",
"it.MCV.offline_transcription": "it/MCV/test/data_offline_transcription.tsv",
"it.MCV.online_transcription": "it/MCV/test/data_online_transcription.tsv",
}
}
class Mocks(datasets.GeneratorBasedBuilder):
"""Mocks Dataset."""
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="de.MCV", description="German Mozilla Common Voice."),
datasets.BuilderConfig(name="en.LS-clean", description="English LibriSpeech 'Clean'."),
datasets.BuilderConfig(name="en.LS-other", description="English LibriSpeech 'Other'."),
datasets.BuilderConfig(name="en.MCV", description="English Mozilla Common Voice."),
datasets.BuilderConfig(name="es.MCV", description="Spanish Mozilla Common Voice."),
datasets.BuilderConfig(name="fr.MCV", description="French Mozilla Common Voice."),
datasets.BuilderConfig(name="it.MCV", description="Italian Mozilla Common Voice."),
datasets.BuilderConfig(name="all", description="All test set."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"audio_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"transcription": datasets.Value("string"),
}
),
homepage=_BASE_URL,
citation=_CITATION
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(_DL_URLS[self.config.name])
if self.config.name == "de.MCV":
offline_split = [
datasets.SplitGenerator(
name="offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["offline"]),
"transcription": archive_path["offline_transcription"],
"s_type": "offline"
}
)
]
online_split = [
datasets.SplitGenerator(
name="online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["online"]),
"transcription": archive_path["online_transcription"],
"s_type": "online"
}
)
]
elif self.config.name == "en.LS-clean":
offline_split = [
datasets.SplitGenerator(
name="offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["offline"]),
"transcription": archive_path["offline_transcription"],
"s_type": "offline"
}
)
]
online_split = [
datasets.SplitGenerator(
name="online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["online"]),
"transcription": archive_path["online_transcription"],
"s_type": "online"
}
)
]
elif self.config.name == "en.LS-other":
offline_split = [
datasets.SplitGenerator(
name="offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["offline"]),
"transcription": archive_path["offline_transcription"],
"s_type": "offline"
}
)
]
online_split = [
datasets.SplitGenerator(
name="online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["online"]),
"transcription": archive_path["online_transcription"],
"s_type": "online"
}
)
]
elif self.config.name == "en.MCV":
offline_split = [
datasets.SplitGenerator(
name="offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["offline"]),
"transcription": archive_path["offline_transcription"],
"s_type": "offline"
}
)
]
online_split = [
datasets.SplitGenerator(
name="online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["online"]),
"transcription": archive_path["online_transcription"],
"s_type": "online"
}
)
]
elif self.config.name == "es.MCV":
offline_split = [
datasets.SplitGenerator(
name="offline",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("offline"),
"audio_files": dl_manager.iter_archive(archive_path["offline"]),
"transcription": archive_path["offline_transcription"],
"s_type": "offline"
}
)
]
online_split = [
datasets.SplitGenerator(
name="online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["online"]),
"transcription": archive_path["online_transcription"],
"s_type": "online"
}
)
]
elif self.config.name == "fr.MCV":
offline_split = [
datasets.SplitGenerator(
name="offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["offline"]),
"transcription": archive_path["offline_transcription"],
"s_type": "offline"
}
)
]
online_split = [
datasets.SplitGenerator(
name="online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["online"]),
"transcription": archive_path["online_transcription"],
"s_type": "online"
}
)
]
elif self.config.name == "it.MCV":
offline_split = [
datasets.SplitGenerator(
name="offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["offline"]),
"transcription": archive_path["offline_transcription"],
"s_type": "offline"
}
)
]
online_split = [
datasets.SplitGenerator(
name="online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["online"]),
"transcription": archive_path["online_transcription"],
"s_type": "online"
}
)
]
elif self.config.name == "all":
offline_split = [
datasets.SplitGenerator(
name="de.MCV.offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["de.MCV.offline"]),
"transcription": archive_path["de.MCV.offline_transcription"],
"s_type": "offline"
}
),
datasets.SplitGenerator(
name="en.LS-clean.offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["en.LS-clean.offline"]),
"transcription": archive_path["en.LS-clean.offline_transcription"],
"s_type": "offline"
}
),
datasets.SplitGenerator(
name="en.LS-other.offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["en.LS-other.offline"]),
"transcription": archive_path["en.LS-other.offline_transcription"],
"s_type": "offline"
}
),
datasets.SplitGenerator(
name="en.MCV.offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["en.MCV.offline"]),
"transcription": archive_path["en.MCV.offline_transcription"],
"s_type": "offline"
}
),
datasets.SplitGenerator(
name="es.MCV.offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["es.MCV.offline"]),
"transcription": archive_path["es.MCV.offline_transcription"],
"s_type": "offline"
}
),
datasets.SplitGenerator(
name="fr.MCV.offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["fr.MCV.offline"]),
"transcription": archive_path["fr.MCV.offline_transcription"],
"s_type": "offline"
}
),
datasets.SplitGenerator(
name="it.MCV.offline",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["it.MCV.offline"]),
"transcription": archive_path["it.MCV.offline_transcription"],
"s_type": "offline"
}
)
]
online_split = [
datasets.SplitGenerator(
name="de.MCV.online",
gen_kwargs={
"transcription": archive_path["de.MCV.offline_transconline"],
"s_type": "online"
}
),
datasets.SplitGenerator(
name="en.LS-clean.online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["en.LS-clean.online"]),
"transcription": archive_path["en.LS-clean.online_transcription"],
"s_type": "online"
}
),
datasets.SplitGenerator(
name="en.LS-other.online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["en.LS-other.online"]),
"transcription": archive_path["en.LS-other.online_transcription"],
"s_type": "online"
}
),
datasets.SplitGenerator(
name="en.MCV.online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["en.MCV.online"]),
"transcription": archive_path["en.MCV.online_transcription"],
"s_type": "online"
}
),
datasets.SplitGenerator(
name="es.MCV.online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["es.MCV.online"]),
"transcription": archive_path["es.MCV.online_transcription"],
"s_type": "online"
}
),
datasets.SplitGenerator(
name="fr.MCV.online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["fr.MCV.online"]),
"transcription": archive_path["fr.MCV.online_transcription"],
"s_type": "online"
}
),
datasets.SplitGenerator(
name="it.MCV.online",
gen_kwargs={
"audio_files": dl_manager.iter_archive(archive_path["it.MCV.online"]),
"transcription": archive_path["it.MCV.online_transcription"],
"s_type": "online"
}
)
]
return online_split + offline_split
def _generate_examples(self, audio_files, transcription, s_type):
"""Lorem ipsum."""
metadata = {}
with open(transcription, encoding="utf-8") as f:
f = csv.reader(f, delimiter="\t")
for row in f:
audio_id = row[0].split("/")[-1]
keyword_transcription = row[1]
metadata[audio_id] = {"audio_id": audio_id, "transcription": keyword_transcription}
id_ = 0
for path, f in audio_files:
_, audio_name = os.path.split(path)
if audio_name in metadata:
audio = {"bytes": f.read()}
yield id_, {**metadata[audio_name], "audio": audio}
id_ +=1