license: cc
task_categories:
- text-classification
language:
- uk
size_categories:
- 100K<n<1M
The dataset is relevant to Ukrainian reviews in three different domains:
- Hotels.
- Reustarants.
- Products.
The dataset is comrpised of several .csv files, which one can found useful:
- processed_data.csv - the processed dataset itself.
- train_val_test_indices.csv - csv file with train/val/test indices. The split was stratified w.r.t dataset name (hotels, reustarants, products) and rating.
- bad_ids.csv - csv file with ids of bad samples marked using model filtering approach, only ids of those samples for which difference between actual and predicted rating is bigger than 2 points are maintained in this file.
The data is scrapped from Tripadvisor (https://www.tripadvisor.com/) and Rozetka (https://rozetka.com.ua/).
The dataset was initially used for extraction of key-phrases relevant to one of rating categories, based on trained machine learning model (future article link will be here).
Dataset is processed to include two additional columns: one with lemmatized tokens and another one with POS tags. Both lemmatization and POS tagging are done using pymorphy2 (https://pymorphy2.readthedocs.io/en/stable/) library.
The words are tokenized using a specific regex tokenizer to account for usage of apostroph.
Those reviews which weren't in Ukrainian were translated to it using Microsoft translator and re-checked manually afterwards.