code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: experimental.py # time: 2019-05-22 19:35 from typing import Dict, Any from tensorflow import keras import kashgari from kashgari.tasks.labeling.base_model import BaseLabelingModel from kashgari.layers import L from keras_self_attention import SeqSelfAttention class BLSTMAttentionModel(BaseLabelingModel): """Bidirectional LSTM Self Attention Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_blstm': { 'units': 64, 'return_sequences': True }, 'layer_self_attention': { 'attention_activation': 'sigmoid' }, 'layer_dropout': { 'rate': 0.5 }, 'layer_time_distributed': {}, 'layer_activation': { 'activation': 'softmax' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.LSTM(**config['layer_blstm']), name='layer_blstm') layer_self_attention = SeqSelfAttention(**config['layer_self_attention'], name='layer_self_attention') layer_dropout = L.Dropout(**config['layer_dropout'], name='layer_dropout') layer_time_distributed = L.TimeDistributed(L.Dense(output_dim, **config['layer_time_distributed']), name='layer_time_distributed') layer_activation = L.Activation(**config['layer_activation']) tensor = layer_blstm(embed_model.output) tensor = layer_self_attention(tensor) tensor = layer_dropout(tensor) tensor = layer_time_distributed(tensor) output_tensor = layer_activation(tensor) self.tf_model = keras.Model(embed_model.inputs, output_tensor) # Register custom layer kashgari.custom_objects['SeqSelfAttention'] = SeqSelfAttention if __name__ == "__main__": print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/tasks/labeling/experimental.py
experimental.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: models.py # time: 2019-05-20 11:13 import logging from typing import Dict, Any from tensorflow import keras from kashgari.tasks.labeling.base_model import BaseLabelingModel from kashgari.layers import L from kashgari.layers.crf import CRF from kashgari.utils import custom_objects custom_objects['CRF'] = CRF class BiLSTM_Model(BaseLabelingModel): """Bidirectional LSTM Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_blstm': { 'units': 128, 'return_sequences': True }, 'layer_dropout': { 'rate': 0.4 }, 'layer_time_distributed': {}, 'layer_activation': { 'activation': 'softmax' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.LSTM(**config['layer_blstm']), name='layer_blstm') layer_dropout = L.Dropout(**config['layer_dropout'], name='layer_dropout') layer_time_distributed = L.TimeDistributed(L.Dense(output_dim, **config['layer_time_distributed']), name='layer_time_distributed') layer_activation = L.Activation(**config['layer_activation']) tensor = layer_blstm(embed_model.output) tensor = layer_dropout(tensor) tensor = layer_time_distributed(tensor) output_tensor = layer_activation(tensor) self.tf_model = keras.Model(embed_model.inputs, output_tensor) class BiLSTM_CRF_Model(BaseLabelingModel): """Bidirectional LSTM CRF Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_blstm': { 'units': 128, 'return_sequences': True }, 'layer_dense': { 'units': 64, 'activation': 'tanh' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.LSTM(**config['layer_blstm']), name='layer_blstm') layer_dense = L.Dense(**config['layer_dense'], name='layer_dense') layer_crf_dense = L.Dense(output_dim, name='layer_crf_dense') layer_crf = CRF(output_dim, name='layer_crf') tensor = layer_blstm(embed_model.output) tensor = layer_dense(tensor) tensor = layer_crf_dense(tensor) output_tensor = layer_crf(tensor) self.layer_crf = layer_crf self.tf_model = keras.Model(embed_model.inputs, output_tensor) def compile_model(self, **kwargs): if kwargs.get('loss') is None: kwargs['loss'] = self.layer_crf.loss if kwargs.get('metrics') is None: kwargs['metrics'] = [self.layer_crf.viterbi_accuracy] super(BiLSTM_CRF_Model, self).compile_model(**kwargs) class BiGRU_Model(BaseLabelingModel): """Bidirectional GRU Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_bgru': { 'units': 128, 'return_sequences': True }, 'layer_dropout': { 'rate': 0.4 }, 'layer_time_distributed': {}, 'layer_activation': { 'activation': 'softmax' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.GRU(**config['layer_bgru']), name='layer_bgru') layer_dropout = L.Dropout(**config['layer_dropout'], name='layer_dropout') layer_time_distributed = L.TimeDistributed(L.Dense(output_dim, **config['layer_time_distributed']), name='layer_time_distributed') layer_activation = L.Activation(**config['layer_activation']) tensor = layer_blstm(embed_model.output) tensor = layer_dropout(tensor) tensor = layer_time_distributed(tensor) output_tensor = layer_activation(tensor) self.tf_model = keras.Model(embed_model.inputs, output_tensor) class BiGRU_CRF_Model(BaseLabelingModel): """Bidirectional GRU CRF Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_bgru': { 'units': 128, 'return_sequences': True }, 'layer_dense': { 'units': 64, 'activation': 'tanh' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.GRU(**config['layer_bgru']), name='layer_bgru') layer_dense = L.Dense(**config['layer_dense'], name='layer_dense') layer_crf_dense = L.Dense(output_dim, name='layer_crf_dense') layer_crf = CRF(output_dim, name='layer_crf') tensor = layer_blstm(embed_model.output) tensor = layer_dense(tensor) tensor = layer_crf_dense(tensor) output_tensor = layer_crf(tensor) self.layer_crf = layer_crf self.tf_model = keras.Model(embed_model.inputs, output_tensor) def compile_model(self, **kwargs): if kwargs.get('loss') is None: kwargs['loss'] = self.layer_crf.loss if kwargs.get('metrics') is None: kwargs['metrics'] = [self.layer_crf.viterbi_accuracy] super(BiGRU_CRF_Model, self).compile_model(**kwargs) class CNN_LSTM_Model(BaseLabelingModel): """CNN LSTM Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_conv': { 'filters': 32, 'kernel_size': 3, 'padding': 'same', 'activation': 'relu' }, 'layer_lstm': { 'units': 128, 'return_sequences': True }, 'layer_dropout': { 'rate': 0.4 }, 'layer_time_distributed': {}, 'layer_activation': { 'activation': 'softmax' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_conv = L.Conv1D(**config['layer_conv'], name='layer_conv') layer_lstm = L.LSTM(**config['layer_lstm'], name='layer_lstm') layer_dropout = L.Dropout(**config['layer_dropout'], name='layer_dropout') layer_time_distributed = L.TimeDistributed(L.Dense(output_dim, **config['layer_time_distributed']), name='layer_time_distributed') layer_activation = L.Activation(**config['layer_activation']) tensor = layer_conv(embed_model.output) tensor = layer_lstm(tensor) tensor = layer_dropout(tensor) tensor = layer_time_distributed(tensor) output_tensor = layer_activation(tensor) self.tf_model = keras.Model(embed_model.inputs, output_tensor) if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) from kashgari.corpus import ChineseDailyNerCorpus valid_x, valid_y = ChineseDailyNerCorpus.load_data('train') model = BiLSTM_CRF_Model() model.fit(valid_x, valid_y, epochs=50, batch_size=64) model.evaluate(valid_x, valid_y)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/tasks/labeling/models.py
models.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_classification_model.py # time: 2019-05-22 11:23 import random import logging import kashgari from typing import Dict, Any, Tuple, Optional, List from kashgari.tasks.base_model import BaseModel, BareEmbedding from kashgari.embeddings.base_embedding import Embedding from sklearn import metrics class BaseClassificationModel(BaseModel): __task__ = 'classification' def __init__(self, embedding: Optional[Embedding] = None, hyper_parameters: Optional[Dict[str, Dict[str, Any]]] = None): super(BaseClassificationModel, self).__init__(embedding, hyper_parameters) if hyper_parameters is None and \ self.embedding.processor.__getattribute__('multi_label') is True: last_layer_name = list(self.hyper_parameters.keys())[-1] self.hyper_parameters[last_layer_name]['activation'] = 'sigmoid' logging.warning("Activation Layer's activate function changed to sigmoid for" " multi-label classification question") @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: raise NotImplementedError def build_model_arc(self): raise NotImplementedError def compile_model(self, **kwargs): if kwargs.get('loss') is None and self.embedding.processor.multi_label: kwargs['loss'] = 'binary_crossentropy' super(BaseClassificationModel, self).compile_model(**kwargs) def predict(self, x_data, batch_size=32, multi_label_threshold: float = 0.5, debug_info=False, predict_kwargs: Dict = None): """ Generates output predictions for the input samples. Computation is done in batches. Args: x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs). batch_size: Integer. If unspecified, it will default to 32. multi_label_threshold: debug_info: Bool, Should print out the logging info. predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model`` Returns: array(s) of predictions. """ with kashgari.utils.custom_object_scope(): tensor = self.embedding.process_x_dataset(x_data) pred = self.tf_model.predict(tensor, batch_size=batch_size) if self.embedding.processor.multi_label: if debug_info: logging.info('raw output: {}'.format(pred)) pred[pred >= multi_label_threshold] = 1 pred[pred < multi_label_threshold] = 0 else: pred = pred.argmax(-1) res = self.embedding.reverse_numerize_label_sequences(pred) if debug_info: logging.info('input: {}'.format(tensor)) logging.info('output: {}'.format(pred)) logging.info('output argmax: {}'.format(pred.argmax(-1))) return res def predict_top_k_class(self, x_data, top_k=5, batch_size=32, debug_info=False, predict_kwargs: Dict = None) -> List[Dict]: """ Generates output predictions with confidence for the input samples. Computation is done in batches. Args: x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs). top_k: int batch_size: Integer. If unspecified, it will default to 32. debug_info: Bool, Should print out the logging info. predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model`` Returns: array(s) of predictions. single-label classification: [ { "label": "chat", "confidence": 0.5801531, "candidates": [ { "label": "cookbook", "confidence": 0.1886314 }, { "label": "video", "confidence": 0.13805099 }, { "label": "health", "confidence": 0.013852648 }, { "label": "translation", "confidence": 0.012913573 } ] } ] multi-label classification: [ { "candidates": [ { "confidence": 0.9959336, "label": "toxic" }, { "confidence": 0.9358089, "label": "obscene" }, { "confidence": 0.6882098, "label": "insult" }, { "confidence": 0.13540423, "label": "severe_toxic" }, { "confidence": 0.017219543, "label": "identity_hate" } ] } ] """ if predict_kwargs is None: predict_kwargs = {} with kashgari.utils.custom_object_scope(): tensor = self.embedding.process_x_dataset(x_data) pred = self.tf_model.predict(tensor, batch_size=batch_size, **predict_kwargs) new_results = [] for sample_prob in pred: sample_res = zip(self.label2idx.keys(), sample_prob) sample_res = sorted(sample_res, key=lambda k: k[1], reverse=True) data = {} for label, confidence in sample_res[:top_k]: if 'candidates' not in data: if self.embedding.processor.multi_label: data['candidates'] = [] else: data['label'] = label data['confidence'] = confidence data['candidates'] = [] continue data['candidates'].append({ 'label': label, 'confidence': confidence }) new_results.append(data) if debug_info: logging.info('input: {}'.format(tensor)) logging.info('output: {}'.format(pred)) logging.info('output argmax: {}'.format(pred.argmax(-1))) return new_results def evaluate(self, x_data, y_data, batch_size=None, digits=4, output_dict=False, debug_info=False) -> Optional[Tuple[float, float, Dict]]: y_pred = self.predict(x_data, batch_size=batch_size) if debug_info: for index in random.sample(list(range(len(x_data))), 5): logging.debug('------ sample {} ------'.format(index)) logging.debug('x : {}'.format(x_data[index])) logging.debug('y : {}'.format(y_data[index])) logging.debug('y_pred : {}'.format(y_pred[index])) if self.processor.multi_label: y_pred_b = self.processor.multi_label_binarizer.fit_transform(y_pred) y_true_b = self.processor.multi_label_binarizer.fit_transform(y_data) report = metrics.classification_report(y_pred_b, y_true_b, target_names=self.processor.multi_label_binarizer.classes_, output_dict=output_dict, digits=digits) else: report = metrics.classification_report(y_data, y_pred, output_dict=output_dict, digits=digits) if not output_dict: print(report) else: return report if __name__ == "__main__": print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/tasks/classification/base_model.py
base_model.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: models.py # time: 2019-05-22 11:26 import logging import tensorflow as tf from typing import Dict, Any from kashgari.layers import L, AttentionWeightedAverageLayer, KMaxPoolingLayer from kashgari.tasks.classification.base_model import BaseClassificationModel class BiLSTM_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'layer_bi_lstm': { 'units': 128, 'return_sequences': False }, 'layer_dense': { 'activation': 'softmax' } } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_bi_lstm = L.Bidirectional(L.LSTM(**config['layer_bi_lstm'])) layer_dense = L.Dense(output_dim, **config['layer_dense']) tensor = layer_bi_lstm(embed_model.output) output_tensor = layer_dense(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, output_tensor) class BiGRU_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'layer_bi_gru': { 'units': 128, 'return_sequences': False }, 'layer_dense': { 'activation': 'softmax' } } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_bi_gru = L.Bidirectional(L.GRU(**config['layer_bi_gru'])) layer_dense = L.Dense(output_dim, **config['layer_dense']) tensor = layer_bi_gru(embed_model.output) output_tensor = layer_dense(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, output_tensor) class CNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'conv1d_layer': { 'filters': 128, 'kernel_size': 5, 'activation': 'relu' }, 'max_pool_layer': {}, 'dense_layer': { 'units': 64, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model # build model structure in sequent way layers_seq = [] layers_seq.append(L.Conv1D(**config['conv1d_layer'])) layers_seq.append(L.GlobalMaxPooling1D(**config['max_pool_layer'])) layers_seq.append(L.Dense(**config['dense_layer'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) tensor = embed_model.output for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class CNN_LSTM_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'conv_layer': { 'filters': 32, 'kernel_size': 3, 'padding': 'same', 'activation': 'relu' }, 'max_pool_layer': { 'pool_size': 2 }, 'lstm_layer': { 'units': 100 }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_seq = [] layers_seq.append(L.Conv1D(**config['conv_layer'])) layers_seq.append(L.MaxPooling1D(**config['max_pool_layer'])) layers_seq.append(L.LSTM(**config['lstm_layer'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) tensor = embed_model.output for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class CNN_GRU_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'conv_layer': { 'filters': 32, 'kernel_size': 3, 'padding': 'same', 'activation': 'relu' }, 'max_pool_layer': { 'pool_size': 2 }, 'gru_layer': { 'units': 100 }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_seq = [] layers_seq.append(L.Conv1D(**config['conv_layer'])) layers_seq.append(L.MaxPooling1D(**config['max_pool_layer'])) layers_seq.append(L.GRU(**config['gru_layer'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) tensor = embed_model.output for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class AVCNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.25 }, 'conv_0': { 'filters': 300, 'kernel_size': 1, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_1': { 'filters': 300, 'kernel_size': 2, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_2': { 'filters': 300, 'kernel_size': 3, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_3': { 'filters': 300, 'kernel_size': 4, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, # --- 'attn_0': {}, 'avg_0': {}, 'maxpool_0': {}, # --- 'maxpool_1': {}, 'attn_1': {}, 'avg_1': {}, # --- 'maxpool_2': {}, 'attn_2': {}, 'avg_2': {}, # --- 'maxpool_3': {}, 'attn_3': {}, 'avg_3': {}, # --- 'v_col3': { # 'mode': 'concat', 'axis': 1 }, 'merged_tensor': { # 'mode': 'concat', 'axis': 1 }, 'dropout': { 'rate': 0.7 }, 'dense': { 'units': 144, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_embed_dropout = L.SpatialDropout1D(**config['spatial_dropout']) layers_conv = [L.Conv1D(**config[f'conv_{i}']) for i in range(4)] layers_sensor = [] layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(AttentionWeightedAverageLayer()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_view = L.Concatenate(**config['v_col3']) layer_allviews = L.Concatenate(**config['merged_tensor']) layers_seq = [] layers_seq.append(L.Dropout(**config['dropout'])) layers_seq.append(L.Dense(**config['dense'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) embed_tensor = layer_embed_dropout(embed_model.output) tensors_conv = [layer_conv(embed_tensor) for layer_conv in layers_conv] tensors_matrix_sensor = [] for tensor_conv in tensors_conv: tensor_sensors = [] tensor_sensors = [layer_sensor(tensor_conv) for layer_sensor in layers_sensor] # tensor_sensors.append(L.GlobalMaxPooling1D()(tensor_conv)) # tensor_sensors.append(AttentionWeightedAverageLayer()(tensor_conv)) # tensor_sensors.append(L.GlobalAveragePooling1D()(tensor_conv)) tensors_matrix_sensor.append(tensor_sensors) tensors_views = [layer_view(list(tensors)) for tensors in zip(*tensors_matrix_sensor)] tensor = layer_allviews(tensors_views) # tensors_v_cols = [L.concatenate(tensors, **config['v_col3']) for tensors # in zip(*tensors_matrix_sensor)] # tensor = L.concatenate(tensors_v_cols, **config['merged_tensor']) for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class KMax_CNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.2 }, 'conv_0': { 'filters': 180, 'kernel_size': 1, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_1': { 'filters': 180, 'kernel_size': 2, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_2': { 'filters': 180, 'kernel_size': 3, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_3': { 'filters': 180, 'kernel_size': 4, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'maxpool_i4': { 'k': 3 }, 'merged_tensor': { # 'mode': 'concat', 'axis': 1 }, 'dropout': { 'rate': 0.6 }, 'dense': { 'units': 144, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_embed_dropout = L.SpatialDropout1D(**config['spatial_dropout']) layers_conv = [L.Conv1D(**config[f'conv_{i}']) for i in range(4)] layers_sensor = [KMaxPoolingLayer(**config['maxpool_i4']), L.Flatten()] layer_concat = L.Concatenate(**config['merged_tensor']) layers_seq = [] layers_seq.append(L.Dropout(**config['dropout'])) layers_seq.append(L.Dense(**config['dense'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) embed_tensor = layer_embed_dropout(embed_model.output) tensors_conv = [layer_conv(embed_tensor) for layer_conv in layers_conv] tensors_sensor = [] for tensor_conv in tensors_conv: tensor_sensor = tensor_conv for layer_sensor in layers_sensor: tensor_sensor = layer_sensor(tensor_sensor) tensors_sensor.append(tensor_sensor) tensor = layer_concat(tensors_sensor) # tensor = L.concatenate(tensors_sensor, **config['merged_tensor']) for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class R_CNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.2 }, 'rnn_0': { 'units': 64, 'return_sequences': True }, 'conv_0': { 'filters': 128, 'kernel_size': 2, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu', 'strides': 1 }, 'maxpool': {}, 'attn': {}, 'average': {}, 'concat': { 'axis': 1 }, 'dropout': { 'rate': 0.5 }, 'dense': { 'units': 120, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_rcnn_seq = [] layers_rcnn_seq.append(L.SpatialDropout1D(**config['spatial_dropout'])) layers_rcnn_seq.append(L.Bidirectional(L.GRU(**config['rnn_0']))) layers_rcnn_seq.append(L.Conv1D(**config['conv_0'])) layers_sensor = [] layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(AttentionWeightedAverageLayer()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_concat = L.Concatenate(**config['concat']) layers_full_connect = [] layers_full_connect.append(L.Dropout(**config['dropout'])) layers_full_connect.append(L.Dense(**config['dense'])) layers_full_connect.append(L.Dense(output_dim, **config['activation_layer'])) tensor = embed_model.output for layer in layers_rcnn_seq: tensor = layer(tensor) tensors_sensor = [layer(tensor) for layer in layers_sensor] tensor_output = layer_concat(tensors_sensor) # tensor_output = L.concatenate(tensor_sensors, **config['concat']) for layer in layers_full_connect: tensor_output = layer(tensor_output) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output) class AVRNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.25 }, 'rnn_0': { 'units': 60, 'return_sequences': True }, 'rnn_1': { 'units': 60, 'return_sequences': True }, 'concat_rnn': { 'axis': 2 }, 'last': {}, 'maxpool': {}, 'attn': {}, 'average': {}, 'all_views': { 'axis': 1 }, 'dropout': { 'rate': 0.5 }, 'dense': { 'units': 144, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_rnn0 = [] layers_rnn0.append(L.SpatialDropout1D(**config['spatial_dropout'])) layers_rnn0.append(L.Bidirectional(L.GRU(**config['rnn_0']))) layer_bi_rnn1 = L.Bidirectional(L.GRU(**config['rnn_1'])) layer_concat = L.Concatenate(**config['concat_rnn']) layers_sensor = [] layers_sensor.append(L.Lambda(lambda t: t[:, -1], name='last')) layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(AttentionWeightedAverageLayer()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_allviews = L.Concatenate(**config['all_views']) layers_full_connect = [] layers_full_connect.append(L.Dropout(**config['dropout'])) layers_full_connect.append(L.Dense(**config['dense'])) layers_full_connect.append(L.Dense(output_dim, **config['activation_layer'])) tensor_rnn = embed_model.output for layer in layers_rnn0: tensor_rnn = layer(tensor_rnn) tensor_concat = layer_concat([tensor_rnn, layer_bi_rnn1(tensor_rnn)]) tensor_sensors = [layer(tensor_concat) for layer in layers_sensor] tensor_output = layer_allviews(tensor_sensors) for layer in layers_full_connect: tensor_output = layer(tensor_output) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output) class Dropout_BiGRU_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.15 }, 'rnn_0': { 'units': 64, 'return_sequences': True }, 'dropout_rnn': { 'rate': 0.35 }, 'rnn_1': { 'units': 64, 'return_sequences': True }, 'last': {}, 'maxpool': {}, 'average': {}, 'all_views': { 'axis': 1 }, 'dropout': { 'rate': 0.5 }, 'dense': { 'units': 72, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_rnn = [] layers_rnn.append(L.SpatialDropout1D(**config['spatial_dropout'])) layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_0']))) layers_rnn.append(L.Dropout(**config['dropout_rnn'])) layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_1']))) layers_sensor = [] layers_sensor.append(L.Lambda(lambda t: t[:, -1], name='last')) layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_allviews = L.Concatenate(**config['all_views']) layers_full_connect = [] layers_full_connect.append(L.Dropout(**config['dropout'])) layers_full_connect.append(L.Dense(**config['dense'])) layers_full_connect.append(L.Dense(output_dim, **config['activation_layer'])) tensor_rnn = embed_model.output for layer in layers_rnn: tensor_rnn = layer(tensor_rnn) tensor_sensors = [layer(tensor_rnn) for layer in layers_sensor] tensor_output = layer_allviews(tensor_sensors) for layer in layers_full_connect: tensor_output = layer(tensor_output) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output) class Dropout_AVRNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.25 }, 'rnn_0': { 'units': 56, 'return_sequences': True }, 'rnn_dropout': { 'rate': 0.3 }, 'rnn_1': { 'units': 56, 'return_sequences': True }, 'last': {}, 'maxpool': {}, 'attn': {}, 'average': {}, 'all_views': { 'axis': 1 }, 'dropout_0': { 'rate': 0.5 }, 'dense': { 'units': 128, 'activation': 'relu' }, 'dropout_1': { 'rate': 0.25 }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_rnn = [] layers_rnn.append(L.SpatialDropout1D(**config['spatial_dropout'])) layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_0']))) layers_rnn.append(L.SpatialDropout1D(**config['rnn_dropout'])) layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_1']))) layers_sensor = [] layers_sensor.append(L.Lambda(lambda t: t[:, -1], name='last')) layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(AttentionWeightedAverageLayer()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_allviews = L.Concatenate(**config['all_views']) layers_full_connect = [] layers_full_connect.append(L.Dropout(**config['dropout_0'])) layers_full_connect.append(L.Dense(**config['dense'])) layers_full_connect.append(L.Dropout(**config['dropout_1'])) layers_full_connect.append(L.Dense(output_dim, **config['activation_layer'])) tensor_rnn = embed_model.output for layer in layers_rnn: tensor_rnn = layer(tensor_rnn) tensor_sensors = [layer(tensor_rnn) for layer in layers_sensor] tensor_output = layer_allviews(tensor_sensors) for layer in layers_full_connect: tensor_output = layer(tensor_output) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output) if __name__ == "__main__": print(BiLSTM_Model.get_default_hyper_parameters()) logging.basicConfig(level=logging.DEBUG) from kashgari.corpus import SMP2018ECDTCorpus x, y = SMP2018ECDTCorpus.load_data() import kashgari from kashgari.processors.classification_processor import ClassificationProcessor from kashgari.embeddings import BareEmbedding processor = ClassificationProcessor(multi_label=False) embed = BareEmbedding(task=kashgari.CLASSIFICATION, sequence_length=30, processor=processor) m = BiLSTM_Model(embed) # m.build_model(x, y) m.fit(x, y, epochs=2) print(m.predict(x[:10])) # m.evaluate(x, y) print(m.predict_top_k_class(x[:10]))
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/tasks/classification/models.py
models.py
# author: Alex # contact: ialexwwang@gmail.com # version: 0.1 # license: Apache Licence # file: dpcnn_model.py # time: 2019-07-02 19:15 # Reference: # https://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf # https://github.com/Cheneng/DPCNN # https://github.com/miracleyoo/DPCNN-TextCNN-Pytorch-Inception # https://www.kaggle.com/michaelsnell/conv1d-dpcnn-in-keras from math import log2, floor from typing import Dict, Any import tensorflow as tf from kashgari.layers import L, KMaxPoolingLayer from kashgari.tasks.classification.base_model import BaseClassificationModel class DPCNN_Model(BaseClassificationModel): ''' This implementation of DPCNN requires a clear declared sequence length. So sequences input in should be padded or cut to a given length in advance. ''' @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: pool_type = 'max' filters = 250 activation = 'linear' return { 'region_embedding': { 'filters': filters, 'kernel_size': 3, 'strides': 1, 'padding': 'same', 'activation': activation, 'name': 'region_embedding', }, 'region_dropout': { 'rate': 0.2, }, 'conv_block': { 'filters': filters, 'kernel_size': 3, 'activation': activation, 'shortcut': True, }, 'resnet_block': { 'filters': filters, 'kernel_size': 3, 'activation': activation, 'shortcut': True, 'pool_type': pool_type, 'sorted': True, }, 'dense': { 'units': 256, 'activation': activation, }, 'dropout': { 'rate': 0.5, }, 'activation': { 'activation': 'softmax', } } def downsample(self, inputs, pool_type: str = 'max', sorted: bool = True, stage: int = 1): # noqa: A002 layers_pool = [] if pool_type == 'max': layers_pool.append( L.MaxPooling1D(pool_size=3, strides=2, padding='same', name=f'pool_{stage}')) elif pool_type == 'k_max': k = int(inputs.shape[1].value / 2) layers_pool.append( KMaxPoolingLayer(k=k, sorted=sorted, name=f'pool_{stage}')) elif pool_type == 'conv': layers_pool.append( L.Conv1D(filters=inputs.shape[-1].value, kernel_size=3, strides=2, padding='same', name=f'pool_{stage}')) layers_pool.append( L.BatchNormalization()) elif pool_type is None: layers_pool = [] else: raise ValueError(f'unsupported pooling type `{pool_type}`!') tensor_out = inputs for layer in layers_pool: tensor_out = layer(tensor_out) return tensor_out def conv_block(self, inputs, filters: int, kernel_size: int = 3, activation: str = 'linear', shortcut: bool = True): layers_conv_unit = [] layers_conv_unit.append( L.BatchNormalization()) layers_conv_unit.append( L.PReLU()) layers_conv_unit.append( L.Conv1D(filters=filters, kernel_size=kernel_size, strides=1, padding='same', activation=activation)) layers_conv_block = layers_conv_unit * 2 tensor_out = inputs for layer in layers_conv_block: tensor_out = layer(tensor_out) if shortcut: tensor_out = L.Add()([inputs, tensor_out]) return tensor_out def resnet_block(self, inputs, filters: int, kernel_size: int = 3, activation: str = 'linear', shortcut: bool = True, pool_type: str = 'max', sorted: bool = True, stage: int = 1): # noqa: A002 tensor_pool = self.downsample(inputs, pool_type=pool_type, sorted=sorted, stage=stage) tensor_out = self.conv_block(tensor_pool, filters=filters, kernel_size=kernel_size, activation=activation, shortcut=shortcut) return tensor_out def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_region = [ L.Conv1D(**config['region_embedding']), L.BatchNormalization(), L.PReLU(), L.Dropout(**config['region_dropout']) ] layers_main = [ L.GlobalMaxPooling1D(), L.Dense(**config['dense']), L.BatchNormalization(), L.PReLU(), L.Dropout(**config['dropout']), L.Dense(output_dim, **config['activation']) ] tensor_out = embed_model.output # build region tensors for layer in layers_region: tensor_out = layer(tensor_out) # build the base pyramid layer tensor_out = self.conv_block(tensor_out, **config['conv_block']) # build the above pyramid layers while `steps > 2` seq_len = tensor_out.shape[1].value if seq_len is None: raise ValueError('`sequence_length` should be explicitly assigned, but it is `None`.') for i in range(floor(log2(seq_len)) - 2): tensor_out = self.resnet_block(tensor_out, stage=i + 1, **config['resnet_block']) for layer in layers_main: tensor_out = layer(tensor_out) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_out)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/tasks/classification/dpcnn_model.py
dpcnn_model.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_model.py # time: 11:36 上午 from typing import Callable from typing import Dict, Any import numpy as np from sklearn import metrics from kashgari.tasks.base_model import BaseModel class BaseScoringModel(BaseModel): """Base Sequence Labeling Model""" __task__ = 'scoring' @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: raise NotImplementedError def compile_model(self, **kwargs): if kwargs.get('loss') is None: kwargs['loss'] = 'mse' if kwargs.get('optimizer') is None: kwargs['optimizer'] = 'rmsprop' if kwargs.get('metrics') is None: kwargs['metrics'] = ['mae'] super(BaseScoringModel, self).compile_model(**kwargs) def evaluate(self, x_data, y_data, batch_size=None, should_round: bool = False, round_func: Callable = None, digits=4, debug_info=False) -> Dict: """ Build a text report showing the main classification metrics. Args: x_data: y_data: batch_size: should_round: round_func: digits: debug_info: Returns: """ y_pred = self.predict(x_data, batch_size=batch_size) if should_round: if round_func is None: round_func = np.round print(self.processor.output_dim) if self.processor.output_dim != 1: raise ValueError('Evaluate with round function only accept 1D output') y_pred = [round_func(i) for i in y_pred] report = metrics.classification_report(y_data, y_pred, digits=digits) report_dic = metrics.classification_report(y_data, y_pred, output_dict=True, digits=digits) print(report) else: mean_squared_error = metrics.mean_squared_error(y_data, y_pred) r2_score = metrics.r2_score(y_data, y_pred) report_dic = { 'mean_squared_error': mean_squared_error, 'r2_score': r2_score } print(f"mean_squared_error : {mean_squared_error}\n" f"r2_score : {r2_score}") return report_dic if __name__ == "__main__": pass
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/tasks/scoring/base_model.py
base_model.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_embedding.py # time: 2019-05-20 17:40 import json import logging import pydoc from typing import Union, List, Optional, Dict import numpy as np from tensorflow import keras import kashgari from kashgari.processors import ClassificationProcessor, LabelingProcessor, ScoringProcessor from kashgari.processors.base_processor import BaseProcessor L = keras.layers class Embedding(object): """Base class for Embedding Model""" def info(self) -> Dict: return { 'processor': self.processor.info(), 'class_name': self.__class__.__name__, 'module': self.__class__.__module__, 'config': { 'sequence_length': self.sequence_length, 'embedding_size': self.embedding_size, 'task': self.task }, 'embed_model': json.loads(self.embed_model.to_json()), } @classmethod def _load_saved_instance(cls, config_dict: Dict, model_path: str, tf_model: keras.Model): processor_info = config_dict['processor'] processor_class = pydoc.locate(f"{processor_info['module']}.{processor_info['class_name']}") processor = processor_class(**processor_info['config']) instance = cls(processor=processor, from_saved_model=True, **config_dict['config']) embed_model_json_str = json.dumps(config_dict['embed_model']) instance.embed_model = keras.models.model_from_json(embed_model_json_str, custom_objects=kashgari.custom_objects) # Load Weights from model for layer in instance.embed_model.layers: layer.set_weights(tf_model.get_layer(layer.name).get_weights()) return instance def __init__(self, task: str = None, sequence_length: Union[int, str] = 'auto', embedding_size: int = 100, processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): self.task = task self.embedding_size = embedding_size if processor is None: if task == kashgari.CLASSIFICATION: self.processor = ClassificationProcessor() elif task == kashgari.LABELING: self.processor = LabelingProcessor() elif task == kashgari.SCORING: self.processor = ScoringProcessor() else: raise ValueError('Need to set the processor param, value: {labeling, classification, scoring}') else: self.processor = processor self.sequence_length: Union[int, str] = sequence_length self.embed_model: Optional[keras.Model] = None self._tokenizer = None @property def token_count(self) -> int: """ corpus token count """ return len(self.processor.token2idx) @property def sequence_length(self) -> Union[int, str]: """ model sequence length """ return self.processor.sequence_length @property def label2idx(self) -> Dict[str, int]: """ label to index dict """ return self.processor.label2idx @property def token2idx(self) -> Dict[str, int]: """ token to index dict """ return self.processor.token2idx @property def tokenizer(self): if self._tokenizer: return self._tokenizer else: raise ValueError('This embedding not support built-in tokenizer') @sequence_length.setter def sequence_length(self, val: Union[int, str]): if isinstance(val, str): if val == 'auto': logging.warning("Sequence length will auto set at 95% of sequence length") elif val == 'variable': val = None else: raise ValueError("sequence_length must be an int or 'auto' or 'variable'") self.processor.sequence_length = val def _build_model(self, **kwargs): raise NotImplementedError def analyze_corpus(self, x: List[List[str]], y: Union[List[List[str]], List[str]]): """ Prepare embedding layer and pre-processor for labeling task Args: x: y: Returns: """ self.processor.analyze_corpus(x, y) if self.sequence_length == 'auto': self.sequence_length = self.processor.dataset_info['RECOMMEND_LEN'] self._build_model() def embed_one(self, sentence: Union[List[str], List[int]]) -> np.array: """ Convert one sentence to vector Args: sentence: target sentence, list of str Returns: vectorized sentence """ return self.embed([sentence])[0] def embed(self, sentence_list: Union[List[List[str]], List[List[int]]], debug: bool = False) -> np.ndarray: """ batch embed sentences Args: sentence_list: Sentence list to embed debug: show debug info Returns: vectorized sentence list """ tensor_x = self.process_x_dataset(sentence_list) if debug: logging.debug(f'sentence tensor: {tensor_x}') embed_results = self.embed_model.predict(tensor_x) return embed_results def process_x_dataset(self, data: List[List[str]], subset: Optional[List[int]] = None) -> np.ndarray: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ return self.processor.process_x_dataset(data, self.sequence_length, subset) def process_y_dataset(self, data: List[List[str]], subset: Optional[List[int]] = None) -> np.ndarray: """ batch process labels data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ return self.processor.process_y_dataset(data, self.sequence_length, subset) def reverse_numerize_label_sequences(self, sequences, lengths=None): return self.processor.reverse_numerize_label_sequences(sequences, lengths=lengths) def __repr__(self): return f"<{self.__class__} seq_len: {self.sequence_length}>" def __str__(self): return self.__repr__() if __name__ == "__main__": print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/embeddings/base_embedding.py
base_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_embedding.py # time: 2019-05-26 17:40 import os os.environ['TF_KERAS'] = '1' import logging from typing import Union, Optional, Any, List, Tuple import numpy as np import kashgari import pathlib from tensorflow.python.keras.utils import get_file from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor import keras_gpt_2 as gpt2 class GPT2Embedding(Embedding): """Pre-trained BERT embedding""" def info(self): info = super(GPT2Embedding, self).info() info['config'] = { 'model_folder': self.model_folder, 'sequence_length': self.sequence_length } return info def __init__(self, model_folder: str, task: str = None, sequence_length: Union[Tuple[int, ...], str, int] = 'auto', processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Args: task: model_folder: sequence_length: processor: from_saved_model: """ super(GPT2Embedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=0, processor=processor, from_saved_model=from_saved_model) if isinstance(sequence_length, tuple): if len(sequence_length) > 2: raise ValueError('BERT only more 2') else: if not all([s == sequence_length[0] for s in sequence_length]): raise ValueError('BERT only receive all') if sequence_length == 'variable': self.sequence_length = None self.processor.token_pad = 'pad' self.processor.token_unk = 'unk' self.processor.token_bos = 'pad' self.processor.token_eos = 'pad' self.model_folder = model_folder if not from_saved_model: self._build_token2idx_from_gpt() self._build_model() def _build_token2idx_from_gpt(self): encoder_path = os.path.join(self.model_folder, 'encoder.json') vocab_path = os.path.join(self.model_folder, 'vocab.bpe') bpe: gpt2.BytePairEncoding = gpt2.get_bpe_from_files(encoder_path, vocab_path) token2idx = bpe.token_dict.copy() self.processor.token2idx = token2idx self.processor.idx2token = dict([(value, key) for key, value in token2idx.items()]) def _build_model(self, **kwargs): if self.embed_model is None and self.sequence_length != 'auto': config_path = os.path.join(self.model_folder, 'hparams.json') checkpoint_path = os.path.join(self.model_folder, 'model.ckpt') model = gpt2.load_trained_model_from_checkpoint(config_path, checkpoint_path, self.sequence_length) if not kashgari.config.disable_auto_summary: model.summary() self.embed_model = model # if self.token_count == 0: # logging.debug('need to build after build_word2idx') # elif self.embed_model is None: # seq_len = self.sequence_length # if isinstance(seq_len, tuple): # seq_len = seq_len[0] # if isinstance(seq_len, str): # return # config_path = os.path.join(self.bert_path, 'bert_config.json') # check_point_path = os.path.join(self.bert_path, 'bert_model.ckpt') # bert_model = keras_bert.load_trained_model_from_checkpoint(config_path, # check_point_path, # seq_len=seq_len) # # self._model = tf.keras.Model(bert_model.inputs, bert_model.output) # bert_seq_len = int(bert_model.output.shape[1]) # if bert_seq_len < seq_len: # logging.warning(f"Sequence length limit set to {bert_seq_len} by pre-trained model") # self.sequence_length = bert_seq_len # self.embedding_size = int(bert_model.output.shape[-1]) # num_layers = len(bert_model.layers) # bert_model.summary() # target_layer_idx = [num_layers - 1 + idx * 8 for idx in range(-3, 1)] # features_layers = [bert_model.get_layer(index=idx).output for idx in target_layer_idx] # embedding_layer = L.concatenate(features_layers) # output_features = NonMaskingLayer()(embedding_layer) # # self.embed_model = tf.keras.Model(bert_model.inputs, output_features) # logging.warning(f'seq_len: {self.sequence_length}') def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[Any]], List[Any]]): """ Prepare embedding layer and pre-processor for labeling task Args: x: y: Returns: """ if len(self.processor.token2idx) == 0: self._build_token2idx_from_gpt() super(GPT2Embedding, self).analyze_corpus(x, y) def embed(self, sentence_list: Union[Tuple[List[List[str]], ...], List[List[str]]], debug: bool = False) -> np.ndarray: """ batch embed sentences Args: sentence_list: Sentence list to embed debug: show debug log Returns: vectorized sentence list """ tensor_x = self.process_x_dataset(sentence_list) if debug: logging.debug(f'sentence tensor: {tensor_x}') embed_results = self.embed_model.predict(tensor_x) return embed_results def process_x_dataset(self, data: Union[Tuple[List[List[str]], ...], List[List[str]]], subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ x1 = None if isinstance(data, tuple): if len(data) == 2: x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset) x1 = self.processor.process_x_dataset(data[1], self.sequence_length, subset) else: x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset) else: x0 = self.processor.process_x_dataset(data, self.sequence_length, subset) if x1 is None: x1 = np.zeros(x0.shape, dtype=np.int32) return x0, x1 @classmethod def load_data(cls, model_name): """ Download pretrained GPT-2 models Args: model_name: {117M, 345M} Returns: GPT-2 model folder """ model_folder: pathlib.Path = pathlib.Path(os.path.join(kashgari.macros.DATA_PATH, 'datasets', f'gpt2-{model_name}')) model_folder.mkdir(exist_ok=True, parents=True) for filename in ['checkpoint', 'encoder.json', 'hparams.json', 'model.ckpt.data-00000-of-00001', 'model.ckpt.index', 'model.ckpt.meta', 'vocab.bpe']: url = "https://storage.googleapis.com/gpt-2/models/" + model_name + "/" + filename get_file(os.path.join(f'gpt2-{model_name}', filename), url, cache_dir=kashgari.macros.DATA_PATH) return str(model_folder) if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) # bert_model_path = os.path.join(utils.get_project_path(), 'tests/test-data/bert') model_folder = GPT2Embedding.load_data('117M') print(model_folder) b = GPT2Embedding(task=kashgari.CLASSIFICATION, model_folder=model_folder, sequence_length=12) # from kashgari.corpus import SMP2018ECDTCorpus # test_x, test_y = SMP2018ECDTCorpus.load_data('valid') # b.analyze_corpus(test_x, test_y) data1 = 'all work and no play makes'.split(' ') r = b.embed([data1], True) print(r) print(r.shape)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/embeddings/gpt_2_embedding.py
gpt_2_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: bert_embedding_v2.py # time: 10:03 上午 import os os.environ['TF_KERAS'] = '1' import json import codecs import logging from typing import Union, Optional from bert4keras.models import build_transformer_model import kashgari import tensorflow as tf from kashgari.embeddings.bert_embedding import BERTEmbedding from kashgari.layers import NonMaskingLayer from kashgari.processors.base_processor import BaseProcessor import keras_bert class BERTEmbeddingV2(BERTEmbedding): """Pre-trained BERT embedding""" def info(self): info = super(BERTEmbedding, self).info() info['config'] = { 'model_folder': self.model_folder, 'sequence_length': self.sequence_length } return info def __init__(self, vacab_path: str, config_path: str, checkpoint_path: str, bert_type: str = 'bert', task: str = None, sequence_length: Union[str, int] = 'auto', processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ """ self.model_folder = '' self.vacab_path = vacab_path self.config_path = config_path self.checkpoint_path = checkpoint_path super(BERTEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=0, processor=processor, from_saved_model=from_saved_model) self.bert_type = bert_type self.processor.token_pad = '[PAD]' self.processor.token_unk = '[UNK]' self.processor.token_bos = '[CLS]' self.processor.token_eos = '[SEP]' self.processor.add_bos_eos = True if not from_saved_model: self._build_token2idx_from_bert() self._build_model() def _build_token2idx_from_bert(self): token2idx = {} with codecs.open(self.vacab_path, 'r', 'utf8') as reader: for line in reader: token = line.strip() token2idx[token] = len(token2idx) self.bert_token2idx = token2idx self._tokenizer = keras_bert.Tokenizer(token2idx) self.processor.token2idx = self.bert_token2idx self.processor.idx2token = dict([(value, key) for key, value in token2idx.items()]) def _build_model(self, **kwargs): if self.embed_model is None: seq_len = self.sequence_length if isinstance(seq_len, tuple): seq_len = seq_len[0] if isinstance(seq_len, str): logging.warning(f"Model will be built when sequence length is determined") return config_path = self.config_path config = json.load(open(config_path)) if seq_len > config.get('max_position_embeddings'): seq_len = config.get('max_position_embeddings') logging.warning(f"Max seq length is {seq_len}") bert_model = build_transformer_model(config_path=self.config_path, checkpoint_path=self.checkpoint_path, model=self.bert_type, application='encoder', return_keras_model=True) self.embed_model = bert_model self.embedding_size = int(bert_model.output.shape[-1]) output_features = NonMaskingLayer()(bert_model.output) self.embed_model = tf.keras.Model(bert_model.inputs, output_features) if __name__ == "__main__": # BERT_PATH = '/Users/brikerman/Desktop/nlp/language_models/bert/chinese_L-12_H-768_A-12' model_folder = '/Users/brikerman/Desktop/nlp/language_models/albert_base' checkpoint_path = os.path.join(model_folder, 'model.ckpt-best') config_path = os.path.join(model_folder, 'albert_config.json') vacab_path = os.path.join(model_folder, 'vocab_chinese.txt') embed = BERTEmbeddingV2(vacab_path, config_path, checkpoint_path, bert_type='albert', task=kashgari.CLASSIFICATION, sequence_length=100) x = embed.embed_one(list('今天天气不错')) print(x)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/embeddings/bert_embedding_v2.py
bert_embedding_v2.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: stacked_embedding.py # time: 2019-05-23 09:18 import json import pydoc from typing import Union, Optional, Tuple, List, Dict import numpy as np import tensorflow as tf from tensorflow.python import keras import kashgari from kashgari.embeddings.base_embedding import Embedding from kashgari.layers import L from kashgari.processors.base_processor import BaseProcessor class StackedEmbedding(Embedding): """Embedding layer without pre-training, train embedding layer while training model""" @classmethod def _load_saved_instance(cls, config_dict: Dict, model_path: str, tf_model: keras.Model): embeddings = [] for embed_info in config_dict['embeddings']: embed_class = pydoc.locate(f"{embed_info['module']}.{embed_info['class_name']}") embedding: Embedding = embed_class._load_saved_instance(embed_info, model_path, tf_model) embeddings.append(embedding) instance = cls(embeddings=embeddings, from_saved_model=True) print('----') print(instance.embeddings) embed_model_json_str = json.dumps(config_dict['embed_model']) instance.embed_model = keras.models.model_from_json(embed_model_json_str, custom_objects=kashgari.custom_objects) # Load Weights from model for layer in instance.embed_model.layers: layer.set_weights(tf_model.get_layer(layer.name).get_weights()) return instance def info(self): info = super(StackedEmbedding, self).info() info['embeddings'] = [embed.info() for embed in self.embeddings] info['config'] = {} return info def __init__(self, embeddings: List[Embedding], processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Args: embeddings: processor: """ task = kashgari.CLASSIFICATION if all(isinstance(embed.sequence_length, int) for embed in embeddings): sequence_length = [embed.sequence_length for embed in embeddings] else: raise ValueError('Need to set sequence length for all embeddings while using stacked embedding') super(StackedEmbedding, self).__init__(task=task, sequence_length=sequence_length[0], embedding_size=100, processor=processor, from_saved_model=from_saved_model) self.embeddings = embeddings self.processor = embeddings[0].processor if not from_saved_model: self._build_model() def _build_model(self, **kwargs): if self.embed_model is None and all(embed.embed_model is not None for embed in self.embeddings): layer_concatenate = L.Concatenate(name='layer_concatenate') inputs = [] for embed in self.embeddings: inputs += embed.embed_model.inputs # inputs = [embed.embed_model.inputs for embed in self.embeddings] outputs = layer_concatenate([embed.embed_model.output for embed in self.embeddings]) self.embed_model = tf.keras.Model(inputs, outputs) def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[str]], List[str]]): for index in range(len(x)): self.embeddings[index].analyze_corpus(x[index], y) self._build_model() def process_x_dataset(self, data: Tuple[List[List[str]], ...], subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ result = [] for index, dataset in enumerate(data): x = self.embeddings[index].process_x_dataset(dataset, subset) if isinstance(x, tuple): result += list(x) else: result.append(x) return tuple(result) def process_y_dataset(self, data: List[List[str]], subset: Optional[List[int]] = None) -> np.ndarray: return self.embeddings[0].process_y_dataset(data, subset) if __name__ == "__main__": pass
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/embeddings/stacked_embedding.py
stacked_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_embedding.py # time: 2019-05-25 17:40 import os os.environ['TF_KERAS'] = '1' import codecs import logging from typing import Union, Optional, Any, List, Tuple import numpy as np import kashgari import tensorflow as tf from kashgari.layers import NonMaskingLayer from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor import keras_bert class BERTEmbedding(Embedding): """Pre-trained BERT embedding""" def info(self): info = super(BERTEmbedding, self).info() info['config'] = { 'model_folder': self.model_folder, 'sequence_length': self.sequence_length } return info def __init__(self, model_folder: str, layer_nums: int = 4, trainable: bool = False, task: str = None, sequence_length: Union[str, int] = 'auto', processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Args: task: model_folder: layer_nums: number of layers whose outputs will be concatenated into a single tensor, default `4`, output the last 4 hidden layers as the thesis suggested trainable: whether if the model is trainable, default `False` and set it to `True` for fine-tune this embedding layer during your training sequence_length: processor: from_saved_model: """ self.trainable = trainable # Do not need to train the whole bert model if just to use its feature output self.training = False self.layer_nums = layer_nums if isinstance(sequence_length, tuple): raise ValueError('BERT embedding only accept `int` type `sequence_length`') if sequence_length == 'variable': raise ValueError('BERT embedding only accept sequences in equal length') super(BERTEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=0, processor=processor, from_saved_model=from_saved_model) self.processor.token_pad = '[PAD]' self.processor.token_unk = '[UNK]' self.processor.token_bos = '[CLS]' self.processor.token_eos = '[SEP]' self.processor.add_bos_eos = True self.model_folder = model_folder if not from_saved_model: self._build_token2idx_from_bert() self._build_model() def _build_token2idx_from_bert(self): dict_path = os.path.join(self.model_folder, 'vocab.txt') token2idx = {} with codecs.open(dict_path, 'r', 'utf8') as reader: for line in reader: token = line.strip() token2idx[token] = len(token2idx) self.bert_token2idx = token2idx self._tokenizer = keras_bert.Tokenizer(token2idx) self.processor.token2idx = self.bert_token2idx self.processor.idx2token = dict([(value, key) for key, value in token2idx.items()]) def _build_model(self, **kwargs): if self.embed_model is None: seq_len = self.sequence_length if isinstance(seq_len, tuple): seq_len = seq_len[0] if isinstance(seq_len, str): logging.warning(f"Model will be built until sequence length is determined") return config_path = os.path.join(self.model_folder, 'bert_config.json') check_point_path = os.path.join(self.model_folder, 'bert_model.ckpt') bert_model = keras_bert.load_trained_model_from_checkpoint(config_path, check_point_path, seq_len=seq_len, output_layer_num=self.layer_nums, training=self.training, trainable=self.trainable) self._model = tf.keras.Model(bert_model.inputs, bert_model.output) bert_seq_len = int(bert_model.output.shape[1]) if bert_seq_len < seq_len: logging.warning(f"Sequence length limit set to {bert_seq_len} by pre-trained model") self.sequence_length = bert_seq_len self.embedding_size = int(bert_model.output.shape[-1]) output_features = NonMaskingLayer()(bert_model.output) self.embed_model = tf.keras.Model(bert_model.inputs, output_features) logging.warning(f'seq_len: {self.sequence_length}') def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[Any]], List[Any]]): """ Prepare embedding layer and pre-processor for labeling task Args: x: y: Returns: """ if len(self.processor.token2idx) == 0: self._build_token2idx_from_bert() super(BERTEmbedding, self).analyze_corpus(x, y) def embed(self, sentence_list: Union[Tuple[List[List[str]], ...], List[List[str]]], debug: bool = False) -> np.ndarray: """ batch embed sentences Args: sentence_list: Sentence list to embed debug: show debug log Returns: vectorized sentence list """ if self.embed_model is None: raise ValueError('need to build model for embed sentence') tensor_x = self.process_x_dataset(sentence_list) if debug: logging.debug(f'sentence tensor: {tensor_x}') embed_results = self.embed_model.predict(tensor_x) return embed_results def process_x_dataset(self, data: Union[Tuple[List[List[str]], ...], List[List[str]]], subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ x1 = None if isinstance(data, tuple): if len(data) == 2: x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset) x1 = self.processor.process_x_dataset(data[1], self.sequence_length, subset) else: x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset) else: x0 = self.processor.process_x_dataset(data, self.sequence_length, subset) if x1 is None: x1 = np.zeros(x0.shape, dtype=np.int32) return x0, x1 if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) # bert_model_path = os.path.join(utils.get_project_path(), 'tests/test-data/bert') b = BERTEmbedding(task=kashgari.CLASSIFICATION, model_folder='/Users/brikerman/.kashgari/embedding/bert/chinese_L-12_H-768_A-12', sequence_length=12) from kashgari.corpus import SMP2018ECDTCorpus test_x, test_y = SMP2018ECDTCorpus.load_data('valid') b.analyze_corpus(test_x, test_y) data1 = 'all work and no play makes'.split(' ') data2 = '你 好 啊'.split(' ') r = b.embed([data1], True) tokens = b.process_x_dataset([['语', '言', '模', '型']])[0] target_index = [101, 6427, 6241, 3563, 1798, 102] target_index = target_index + [0] * (12 - len(target_index)) assert list(tokens[0]) == list(target_index) print(tokens) print(r) print(r.shape)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/embeddings/bert_embedding.py
bert_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: w2v_embedding.py # time: 2019-05-20 17:32 import logging from typing import Union, Optional, Dict, Any, List, Tuple import numpy as np from gensim.models import KeyedVectors from tensorflow import keras from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor L = keras.layers class WordEmbedding(Embedding): """Pre-trained word2vec embedding""" def info(self): info = super(WordEmbedding, self).info() info['config'] = { 'w2v_path': self.w2v_path, 'w2v_kwargs': self.w2v_kwargs, 'sequence_length': self.sequence_length } return info def __init__(self, w2v_path: str, task: str = None, w2v_kwargs: Dict[str, Any] = None, sequence_length: Union[Tuple[int, ...], str, int] = 'auto', processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Args: task: w2v_path: word2vec file path w2v_kwargs: params pass to the ``load_word2vec_format()`` function of ``gensim.models.KeyedVectors`` - https://radimrehurek.com/gensim/models/keyedvectors.html#module-gensim.models.keyedvectors sequence_length: ``'auto'``, ``'variable'`` or integer. When using ``'auto'``, use the 95% of corpus length as sequence length. When using ``'variable'``, model input shape will set to None, which can handle various length of input, it will use the length of max sequence in every batch for sequence length. If using an integer, let's say ``50``, the input output sequence length will set to 50. processor: """ if w2v_kwargs is None: w2v_kwargs = {} self.w2v_path = w2v_path self.w2v_kwargs = w2v_kwargs self.w2v_model_loaded = False super(WordEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=0, processor=processor, from_saved_model=from_saved_model) if not from_saved_model: self._build_token2idx_from_w2v() if self.sequence_length != 'auto': self._build_model() def _build_token2idx_from_w2v(self): w2v = KeyedVectors.load_word2vec_format(self.w2v_path, **self.w2v_kwargs) token2idx = { self.processor.token_pad: 0, self.processor.token_unk: 1, self.processor.token_bos: 2, self.processor.token_eos: 3 } for token in w2v.index2word: token2idx[token] = len(token2idx) vector_matrix = np.zeros((len(token2idx), w2v.vector_size)) vector_matrix[1] = np.random.rand(w2v.vector_size) vector_matrix[4:] = w2v.vectors self.embedding_size = w2v.vector_size self.w2v_vector_matrix = vector_matrix self.w2v_token2idx = token2idx self.w2v_top_words = w2v.index2entity[:50] self.w2v_model_loaded = True self.processor.token2idx = self.w2v_token2idx self.processor.idx2token = dict([(value, key) for key, value in self.w2v_token2idx.items()]) logging.debug('------------------------------------------------') logging.debug('Loaded gensim word2vec model') logging.debug('model : {}'.format(self.w2v_path)) logging.debug('word count : {}'.format(len(self.w2v_vector_matrix))) logging.debug('Top 50 word : {}'.format(self.w2v_top_words)) logging.debug('------------------------------------------------') def _build_model(self, **kwargs): if self.token_count == 0: logging.debug('need to build after build_word2idx') else: input_tensor = L.Input(shape=(self.sequence_length,), name=f'input') layer_embedding = L.Embedding(self.token_count, self.embedding_size, weights=[self.w2v_vector_matrix], trainable=False, name=f'layer_embedding') embedded_tensor = layer_embedding(input_tensor) self.embed_model = keras.Model(input_tensor, embedded_tensor) def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[Any]], List[Any]]): """ Prepare embedding layer and pre-processor for labeling task Args: x: y: Returns: """ if not self.w2v_model_loaded: self._build_token2idx_from_w2v() super(WordEmbedding, self).analyze_corpus(x, y) if __name__ == "__main__": print('hello world')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/embeddings/word_embedding.py
word_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: bare_embedding.py # time: 2019-05-20 10:36 import logging from typing import Union, Optional from tensorflow import keras from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor L = keras.layers # Todo: A better name for this class class BareEmbedding(Embedding): """Embedding layer without pre-training, train embedding layer while training model""" def __init__(self, task: str = None, sequence_length: Union[int, str] = 'auto', embedding_size: int = 100, processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Init bare embedding (embedding without pre-training) Args: sequence_length: ``'auto'``, ``'variable'`` or integer. When using ``'auto'``, use the 95% of corpus length as sequence length. When using ``'variable'``, model input shape will set to None, which can handle various length of input, it will use the length of max sequence in every batch for sequence length. If using an integer, let's say ``50``, the input output sequence length will set to 50. embedding_size: Dimension of the dense embedding. """ super(BareEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=embedding_size, processor=processor, from_saved_model=from_saved_model) if not from_saved_model: self._build_model() def _build_model(self, **kwargs): if self.sequence_length == 0 or \ self.sequence_length == 'auto' or \ self.token_count == 0: logging.debug('need to build after build_word2idx') else: input_tensor = L.Input(shape=(self.sequence_length,), name=f'input') layer_embedding = L.Embedding(self.token_count, self.embedding_size, name=f'layer_embedding') embedded_tensor = layer_embedding(input_tensor) self.embed_model = keras.Model(input_tensor, embedded_tensor) if __name__ == "__main__": print('hello world')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/embeddings/bare_embedding.py
bare_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: numeric_feature_embedding.py # time: 2019-05-23 09:04 from typing import Union, Optional, Tuple, List import numpy as np from tensorflow import keras from tensorflow.python.keras.preprocessing.sequence import pad_sequences import kashgari from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor L = keras.layers # Todo: A better name for this class class NumericFeaturesEmbedding(Embedding): """Embedding layer without pre-training, train embedding layer while training model""" def info(self): info = super(NumericFeaturesEmbedding, self).info() info['config'] = { 'feature_count': self.feature_count, 'feature_name': self.feature_name, 'sequence_length': self.sequence_length, 'embedding_size': self.embedding_size } return info def __init__(self, feature_count: int, feature_name: str, sequence_length: Union[str, int] = 'auto', embedding_size: int = None, processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Init bare embedding (embedding without pre-training) Args: sequence_length: ``'auto'``, ``'variable'`` or integer. When using ``'auto'``, use the 95% of corpus length as sequence length. When using ``'variable'``, model input shape will set to None, which can handle various length of input, it will use the length of max sequence in every batch for sequence length. If using an integer, let's say ``50``, the input output sequence length will set to 50. embedding_size: Dimension of the dense embedding. """ # Dummy Type task = kashgari.CLASSIFICATION if embedding_size is None: embedding_size = feature_count * 8 super(NumericFeaturesEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=embedding_size, processor=processor, from_saved_model=from_saved_model) self.feature_count = feature_count self.feature_name = feature_name if not from_saved_model: self._build_model() def _build_model(self, **kwargs): input_tensor = L.Input(shape=(self.sequence_length,), name=f'input_{self.feature_name}') layer_embedding = L.Embedding(self.feature_count + 1, self.embedding_size, name=f'layer_embedding_{self.feature_name}') embedded_tensor = layer_embedding(input_tensor) self.embed_model = keras.Model(input_tensor, embedded_tensor) def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[str]], List[str]]): pass def process_x_dataset(self, data: List[List[str]], subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ if subset is not None: numerized_samples = kashgari.utils.get_list_subset(data, subset) else: numerized_samples = data return pad_sequences(numerized_samples, self.sequence_length, padding='post', truncating='post') if __name__ == "__main__": e = NumericFeaturesEmbedding(2, feature_name='is_bold', sequence_length=10) e.embed_model.summary() print(e.embed_one([1, 2])) print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/embeddings/numeric_feature_embedding.py
numeric_feature_embedding.py
# author: AlexWang # contact: ialexwwang@gmail.com # file: attention_weighted_average.py # time: 2019-06-25 16:35 import kashgari import tensorflow as tf from tensorflow.python import keras from tensorflow.python.keras import backend as K L = keras.layers InputSpec = L.InputSpec class KMaxPoolingLayer(L.Layer): ''' K-max pooling layer that extracts the k-highest activation from a sequence (2nd dimension). TensorFlow backend. # Arguments k: An int scale, indicate k max steps of features to pool. sorted: A bool, if output is sorted (default) or not. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. # Input shape - If `data_format='channels_last'`: 3D tensor with shape: `(batch_size, steps, features)` - If `data_format='channels_first'`: 3D tensor with shape: `(batch_size, features, steps)` # Output shape 3D tensor with shape: `(batch_size, top-k-steps, features)` ''' def __init__(self, k=1, sorted=True, data_format='channels_last', **kwargs): # noqa: A002 super(KMaxPoolingLayer, self).__init__(**kwargs) self.input_spec = InputSpec(ndim=3) self.k = k self.sorted = sorted if data_format.lower() in ['channels_first', 'channels_last']: self.data_format = data_format.lower() else: self.data_format = K.image_data_format() def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': return (input_shape[0], self.k, input_shape[1]) else: return (input_shape[0], self.k, input_shape[2]) def call(self, inputs): if self.data_format == 'channels_last': # swap last two dimensions since top_k will be applied along the last dimension shifted_input = tf.transpose(inputs, [0, 2, 1]) # extract top_k, returns two tensors [values, indices] top_k = tf.nn.top_k(shifted_input, k=self.k, sorted=self.sorted)[0] else: top_k = tf.nn.top_k(inputs, k=self.k, sorted=self.sorted)[0] # return flattened output return tf.transpose(top_k, [0, 2, 1]) def get_config(self): config = {'k': self.k, 'sorted': self.sorted, 'data_format': self.data_format} base_config = super(KMaxPoolingLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) KMaxPooling = KMaxPoolingLayer KMaxPoolLayer = KMaxPoolingLayer kashgari.custom_objects['KMaxPoolingLayer'] = KMaxPoolingLayer kashgari.custom_objects['KMaxPooling'] = KMaxPooling kashgari.custom_objects['KMaxPoolLayer'] = KMaxPoolLayer if __name__ == '__main__': print('Hello world, KMaxPoolLayer/KMaxPoolingLayer.')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/layers/kmax_pool_layer.py
kmax_pool_layer.py
# author: AlexWang # contact: ialexwwang@gmail.com # file: attention_weighted_average.py # time: 2019-06-24 19:35 from tensorflow.python import keras from tensorflow.python.keras import backend as K import kashgari L = keras.layers initializers = keras.initializers InputSpec = L.InputSpec class AttentionWeightedAverageLayer(L.Layer): ''' Computes a weighted average of the different channels across timesteps. Uses 1 parameter pr. channel to compute the attention value for a single timestep. ''' def __init__(self, return_attention=False, **kwargs): self.init = initializers.get('uniform') self.supports_masking = True self.return_attention = return_attention super(AttentionWeightedAverageLayer, self).__init__(**kwargs) def build(self, input_shape): self.input_spec = [InputSpec(ndim=3)] assert len(input_shape) == 3 self.W = self.add_weight(shape=(input_shape[2].value, 1), name='{}_w'.format(self.name), initializer=self.init, trainable=True ) # self.trainable_weights = [self.W] super(AttentionWeightedAverageLayer, self).build(input_shape) def call(self, x, mask=None): # computes a probability distribution over the timesteps # uses 'max trick' for numerical stability # reshape is done to avoid issue with Tensorflow # and 1-dimensional weights logits = K.dot(x, self.W) x_shape = K.shape(x) logits = K.reshape(logits, (x_shape[0], x_shape[1])) ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True)) # masked timesteps have zero weight if mask is not None: mask = K.cast(mask, K.floatx()) ai = ai * mask att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon()) weighted_input = x * K.expand_dims(att_weights) result = K.sum(weighted_input, axis=1) if self.return_attention: return [result, att_weights] return result def get_output_shape_for(self, input_shape): return self.compute_output_shape(input_shape) def compute_output_shape(self, input_shape): output_len = input_shape[2] if self.return_attention: return [(input_shape[0], output_len), (input_shape[0], input_shape[1])] return (input_shape[0], output_len) def compute_mask(self, inputs, input_mask=None): if isinstance(input_mask, list): return [None] * len(input_mask) else: return None def get_config(self): config = {'return_attention': self.return_attention, } base_config = super(AttentionWeightedAverageLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) AttentionWeightedAverage = AttentionWeightedAverageLayer AttWgtAvgLayer = AttentionWeightedAverageLayer kashgari.custom_objects['AttentionWeightedAverageLayer'] = AttentionWeightedAverageLayer kashgari.custom_objects['AttentionWeightedAverage'] = AttentionWeightedAverage kashgari.custom_objects['AttWgtAvgLayer'] = AttWgtAvgLayer if __name__ == '__main__': print('Hello world, AttentionWeightedAverageLayer/AttWgtAvgLayer.')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/layers/att_wgt_avg_layer.py
att_wgt_avg_layer.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: crf.py # time: 2019-06-28 14:33 import tensorflow as tf class CRF(tf.keras.layers.Layer): """ Conditional Random Field layer (tf.keras) `CRF` can be used as the last layer in a network (as a classifier). Input shape (features) must be equal to the number of classes the CRF can predict (a linear layer is recommended). Note: the loss and accuracy functions of networks using `CRF` must use the provided loss and accuracy functions (denoted as loss and viterbi_accuracy) as the classification of sequences are used with the layers internal weights. Args: output_dim (int): the number of labels to tag each temporal input. Input shape: nD tensor with shape `(batch_size, sentence length, num_classes)`. Output shape: nD tensor with shape: `(batch_size, sentence length, num_classes)`. """ def __init__(self, output_dim, mode='reg', supports_masking=False, transitions=None, **kwargs): self.transitions = None super(CRF, self).__init__(**kwargs) self.output_dim = int(output_dim) self.mode = mode if self.mode == 'pad': self.input_spec = [tf.keras.layers.InputSpec(min_ndim=3), tf.keras.layers.InputSpec(min_ndim=2)] elif self.mode == 'reg': self.input_spec = tf.keras.layers.InputSpec(min_ndim=3) else: raise ValueError self.supports_masking = supports_masking self.sequence_lengths = None def get_config(self): config = { 'output_dim': self.output_dim, 'mode': self.mode, 'supports_masking': self.supports_masking, 'transitions': tf.keras.backend.eval(self.transitions) } base_config = super(CRF, self).get_config() return dict(list(base_config.items()) + list(config.items())) def build(self, input_shape): if self.mode == 'pad': assert len(input_shape) == 2 assert len(input_shape[0]) == 3 assert len(input_shape[1]) == 2 f_shape = tf.TensorShape(input_shape[0]) input_spec = [tf.keras.layers.InputSpec(min_ndim=3, axes={-1: f_shape[-1]}), tf.keras.layers.InputSpec(min_ndim=2, axes={-1: 1}, dtype=tf.int32)] else: assert len(input_shape) == 3 f_shape = tf.TensorShape(input_shape) input_spec = tf.keras.layers.InputSpec(min_ndim=3, axes={-1: f_shape[-1]}) if f_shape[-1] is None: raise ValueError('The last dimension of the inputs to `CRF` should be defined. Found `None`.') if f_shape[-1] != self.output_dim: raise ValueError('The last dimension of the input shape must be equal to output shape. ' 'Use a linear layer if needed.') self.input_spec = input_spec self.transitions = self.add_weight(name='transitions', shape=[self.output_dim, self.output_dim], initializer='glorot_uniform', trainable=True) self.built = True def call(self, inputs, **kwargs): if self.mode == 'pad': sequences = tf.convert_to_tensor(inputs[0], dtype=self.dtype) self.sequence_lengths = tf.keras.backend.flatten(inputs[-1]) else: sequences = tf.convert_to_tensor(inputs, dtype=self.dtype) shape = tf.shape(inputs) self.sequence_lengths = tf.ones(shape[0], dtype=tf.int32) * (shape[1]) viterbi_sequence, _ = tf.contrib.crf.crf_decode(sequences, self.transitions, self.sequence_lengths) output = tf.keras.backend.one_hot(viterbi_sequence, self.output_dim) return tf.keras.backend.in_train_phase(sequences, output) def loss(self, y_true, y_pred): y_pred = tf.convert_to_tensor(y_pred, dtype=self.dtype) log_likelihood, self.transitions = tf.contrib.crf.crf_log_likelihood(y_pred, tf.cast(tf.keras.backend.argmax(y_true), dtype=tf.int32), self.sequence_lengths, transition_params=self.transitions) return tf.reduce_mean(-log_likelihood) def compute_output_shape(self, input_shape): if self.mode == 'pad': data_shape = input_shape[0] else: data_shape = input_shape tf.TensorShape(data_shape).assert_has_rank(3) return data_shape[:2] + (self.output_dim,) @property def viterbi_accuracy(self): def accuracy(y_true, y_pred): shape = tf.shape(y_pred) sequence_lengths = tf.ones(shape[0], dtype=tf.int32) * (shape[1]) viterbi_sequence, _ = tf.contrib.crf.crf_decode(y_pred, self.transitions, sequence_lengths) output = tf.keras.backend.one_hot(viterbi_sequence, self.output_dim) return tf.keras.metrics.categorical_accuracy(y_true, output) accuracy.func_name = 'viterbi_accuracy' return accuracy
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/layers/crf.py
crf.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: scoring_processor.py # time: 11:10 上午 from typing import List, Optional import numpy as np import kashgari from kashgari import utils from kashgari.processors.base_processor import BaseProcessor def is_numeric(obj): attrs = ['__add__', '__sub__', '__mul__', '__truediv__', '__pow__'] return all(hasattr(obj, attr) for attr in attrs) class ScoringProcessor(BaseProcessor): """ Corpus Pre Processor class """ def __init__(self, output_dim=None, **kwargs): super(ScoringProcessor, self).__init__(**kwargs) self.output_dim = output_dim def info(self): info = super(ScoringProcessor, self).info() info['task'] = kashgari.SCORING return info def _build_label_dict(self, label_list: List[List[float]]): """ Build label2idx dict for sequence labeling task Args: label_list: corpus label list """ if self.output_dim is None: label_sample = label_list[0] if isinstance(label_sample, np.ndarray) and len(label_sample.shape) == 1: self.output_dim = label_sample.shape[0] elif is_numeric(label_sample): self.output_dim = 1 elif isinstance(label_sample, list): self.output_dim = len(label_sample) else: raise ValueError('Scoring Label Sample must be a float, float array or 1D numpy array') # np_labels = np.array(label_list) # if np_labels.max() > 1 or np_labels.min() < 0: # raise ValueError('Scoring Label Sample must be in range[0,1]') def process_y_dataset(self, data: List[List[str]], max_len: Optional[int] = None, subset: Optional[List[int]] = None) -> np.ndarray: if subset is not None: target = utils.get_list_subset(data, subset) else: target = data[:] y = np.array(target) return y def numerize_token_sequences(self, sequences: List[List[str]]): result = [] for seq in sequences: if self.add_bos_eos: seq = [self.token_bos] + seq + [self.token_eos] unk_index = self.token2idx[self.token_unk] result.append([self.token2idx.get(token, unk_index) for token in seq]) return result def numerize_label_sequences(self, sequences: List[List[str]]) -> List[List[int]]: return sequences def reverse_numerize_label_sequences(self, sequences, lengths=None): return sequences if __name__ == "__main__": from kashgari.corpus import SMP2018ECDTCorpus x, y = SMP2018ECDTCorpus.load_data() x = x[:3] y = [0.2, 0.3, 0.2] p = ScoringProcessor() p.analyze_corpus(x, y) print(p.process_y_dataset(y))
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/processors/scoring_processor.py
scoring_processor.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_processor.py # time: 2019-05-21 11:27 import collections import logging import operator from typing import List, Optional, Union, Dict, Any import numpy as np from tensorflow.python.keras.preprocessing.sequence import pad_sequences from kashgari import utils class BaseProcessor(object): """ Corpus Pre Processor class """ def __init__(self, **kwargs): self.token2idx: Dict[str, int] = kwargs.get('token2idx', {}) self.idx2token: Dict[int, str] = dict([(v, k) for (k, v) in self.token2idx.items()]) self.token2count: Dict = {} self.label2idx: Dict[str, int] = kwargs.get('label2idx', {}) self.idx2label: Dict[int, str] = dict([(v, k) for (k, v) in self.label2idx.items()]) self.token_pad: str = kwargs.get('token_pad', '<PAD>') self.token_unk: str = kwargs.get('token_unk', '<UNK>') self.token_bos: str = kwargs.get('token_bos', '<BOS>') self.token_eos: str = kwargs.get('token_eos', '<EOS>') self.dataset_info: Dict[str, Any] = kwargs.get('dataset_info', {}) self.add_bos_eos: bool = kwargs.get('add_bos_eos', False) self.sequence_length = kwargs.get('sequence_length', None) self.min_count = kwargs.get('min_count', 3) def info(self): return { 'class_name': self.__class__.__name__, 'config': { 'label2idx': self.label2idx, 'token2idx': self.token2idx, 'token_pad': self.token_pad, 'token_unk': self.token_unk, 'token_bos': self.token_bos, 'token_eos': self.token_eos, 'dataset_info': self.dataset_info, 'add_bos_eos': self.add_bos_eos, 'sequence_length': self.sequence_length }, 'module': self.__class__.__module__, } def analyze_corpus(self, corpus: Union[List[List[str]]], labels: Union[List[List[str]], List[str]], force: bool = False): rec_len = sorted([len(seq) for seq in corpus])[int(0.95 * len(corpus))] self.dataset_info['RECOMMEND_LEN'] = rec_len if len(self.token2idx) == 0 or force: self._build_token_dict(corpus, self.min_count) if len(self.label2idx) == 0 or force: self._build_label_dict(labels) def _build_token_dict(self, corpus: List[List[str]], min_count: int = 3): """ Build token index dictionary using corpus Args: corpus: List of tokenized sentences, like ``[['I', 'love', 'tf'], ...]`` min_count: """ token2idx = { self.token_pad: 0, self.token_unk: 1, self.token_bos: 2, self.token_eos: 3 } token2count = {} for sentence in corpus: for token in sentence: count = token2count.get(token, 0) token2count[token] = count + 1 self.token2count = token2count # 按照词频降序排序 sorted_token2count = sorted(token2count.items(), key=operator.itemgetter(1), reverse=True) token2count = collections.OrderedDict(sorted_token2count) for token, token_count in token2count.items(): if token not in token2idx and token_count >= min_count: token2idx[token] = len(token2idx) self.token2idx = token2idx self.idx2token = dict([(value, key) for key, value in self.token2idx.items()]) logging.debug(f"build token2idx dict finished, contains {len(self.token2idx)} tokens.") self.dataset_info['token_count'] = len(self.token2idx) def _build_label_dict(self, corpus: Union[List[List[str]], List[str]]): raise NotImplementedError def process_x_dataset(self, data: List[List[str]], max_len: Optional[int] = None, subset: Optional[List[int]] = None) -> np.ndarray: if max_len is None: max_len = self.sequence_length if subset is not None: target = utils.get_list_subset(data, subset) else: target = data numerized_samples = self.numerize_token_sequences(target) return pad_sequences(numerized_samples, max_len, padding='post', truncating='post') def process_y_dataset(self, data: Union[List[List[str]], List[str]], max_len: Optional[int], subset: Optional[List[int]] = None) -> np.ndarray: raise NotImplementedError def numerize_token_sequences(self, sequences: List[List[str]]): raise NotImplementedError def numerize_label_sequences(self, sequences: List[List[str]]) -> List[List[int]]: raise NotImplementedError def reverse_numerize_label_sequences(self, sequence, **kwargs): raise NotImplementedError def __repr__(self): return f"<{self.__class__}>" def __str__(self): return self.__repr__() if __name__ == "__main__": print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/processors/base_processor.py
base_processor.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # version: 1.0 # license: Apache Licence # file: corpus.py # time: 2019-05-17 11:28 import collections import logging import operator from typing import List, Dict, Optional import numpy as np from tensorflow.python.keras.preprocessing.sequence import pad_sequences from tensorflow.python.keras.utils import to_categorical import kashgari from kashgari import utils from kashgari.processors.base_processor import BaseProcessor class LabelingProcessor(BaseProcessor): """ Corpus Pre Processor class """ def info(self): info = super(LabelingProcessor, self).info() info['task'] = kashgari.LABELING return info def _build_label_dict(self, label_list: List[List[str]]): """ Build label2idx dict for sequence labeling task Args: label_list: corpus label list """ label2idx: Dict[str: int] = { self.token_pad: 0 } token2count = {} for sequence in label_list: for label in sequence: count = token2count.get(label, 0) token2count[label] = count + 1 sorted_token2count = sorted(token2count.items(), key=operator.itemgetter(1), reverse=True) token2count = collections.OrderedDict(sorted_token2count) for token in token2count.keys(): if token not in label2idx: label2idx[token] = len(label2idx) self.label2idx = label2idx self.idx2label = dict([(value, key) for key, value in self.label2idx.items()]) logging.debug(f"build label2idx dict finished, contains {len(self.label2idx)} labels.") def process_y_dataset(self, data: List[List[str]], max_len: Optional[int] = None, subset: Optional[List[int]] = None) -> np.ndarray: if subset is not None: target = utils.get_list_subset(data, subset) else: target = data[:] numerized_samples = self.numerize_label_sequences(target) padded_seq = pad_sequences( numerized_samples, max_len, padding='post', truncating='post') return to_categorical(padded_seq, len(self.label2idx)) def numerize_token_sequences(self, sequences: List[List[str]]): result = [] for seq in sequences: if self.add_bos_eos: seq = [self.token_bos] + seq + [self.token_eos] unk_index = self.token2idx[self.token_unk] result.append([self.token2idx.get(token, unk_index) for token in seq]) return result def numerize_label_sequences(self, sequences: List[List[str]]) -> List[List[int]]: result = [] for seq in sequences: if self.add_bos_eos: seq = [self.token_pad] + seq + [self.token_pad] result.append([self.label2idx[label] for label in seq]) return result def reverse_numerize_label_sequences(self, sequences, lengths=None): result = [] for index, seq in enumerate(sequences): labels = [] if self.add_bos_eos: seq = seq[1:] for idx in seq: labels.append(self.idx2label[idx]) if lengths is not None: labels = labels[:lengths[index]] result.append(labels) return result if __name__ == "__main__": from kashgari.corpus import ChineseDailyNerCorpus x, y = ChineseDailyNerCorpus.load_data() p = LabelingProcessor() p.analyze_corpus(x, y) r = p.process_x_dataset(x, subset=[10, 12, 20]) print(r)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/processors/labeling_processor.py
labeling_processor.py
from typing import List, Optional import numpy as np from tensorflow.python.keras.utils import to_categorical import kashgari from kashgari import utils from kashgari.processors.base_processor import BaseProcessor from sklearn.preprocessing import MultiLabelBinarizer class ClassificationProcessor(BaseProcessor): """ Corpus Pre Processor class """ def __init__(self, multi_label=False, **kwargs): super(ClassificationProcessor, self).__init__(**kwargs) self.multi_label = multi_label if self.label2idx: self.multi_label_binarizer: MultiLabelBinarizer = MultiLabelBinarizer(classes=list(self.label2idx.keys())) self.multi_label_binarizer.fit([]) else: self.multi_label_binarizer: MultiLabelBinarizer = None def info(self): info = super(ClassificationProcessor, self).info() info['task'] = kashgari.CLASSIFICATION info['config']['multi_label'] = self.multi_label return info def _build_label_dict(self, labels: List[str]): if self.multi_label: label_set = set() for i in labels: label_set = label_set.union(list(i)) else: label_set = set(labels) self.label2idx = {} for idx, label in enumerate(sorted(label_set)): self.label2idx[label] = len(self.label2idx) self.idx2label = dict([(value, key) for key, value in self.label2idx.items()]) self.dataset_info['label_count'] = len(self.label2idx) self.multi_label_binarizer = MultiLabelBinarizer(classes=list(self.label2idx.keys())) def process_y_dataset(self, data: List[str], max_len: Optional[int] = None, subset: Optional[List[int]] = None) -> np.ndarray: if subset is not None: target = utils.get_list_subset(data, subset) else: target = data if self.multi_label: return self.multi_label_binarizer.fit_transform(target) else: numerized_samples = self.numerize_label_sequences(target) return to_categorical(numerized_samples, len(self.label2idx)) def numerize_token_sequences(self, sequences: List[List[str]]): result = [] for seq in sequences: if self.add_bos_eos: seq = [self.token_bos] + seq + [self.token_eos] unk_index = self.token2idx[self.token_unk] result.append([self.token2idx.get(token, unk_index) for token in seq]) return result def numerize_label_sequences(self, sequences: List[str]) -> List[int]: """ Convert label sequence to label-index sequence ``['O', 'O', 'B-ORG'] -> [0, 0, 2]`` Args: sequences: label sequence, list of str Returns: label-index sequence, list of int """ return [self.label2idx[label] for label in sequences] def reverse_numerize_label_sequences(self, sequences, **kwargs): if self.multi_label: return self.multi_label_binarizer.inverse_transform(sequences) else: return [self.idx2label[label] for label in sequences] if __name__ == "__main__": from kashgari.corpus import SMP2018ECDTCorpus x, y = SMP2018ECDTCorpus.load_data() p = ClassificationProcessor() p.analyze_corpus(x, y)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/processors/classification_processor.py
classification_processor.py
import math import jieba import jieba.posseg as psg from gensim import corpora, models from jieba import analyse import functools # 停用词表加载方法 def get_stopword_list(): # 停用词表存储路径,每一行为一个词,按行读取进行加载 # 进行编码转换确保匹配准确率 stop_word_path = 'D:\pysoftNLP_resources\extraction\stopword\stopword.txt' stopword_list = [sw.replace('\n', '') for sw in open(stop_word_path,encoding='utf-8').readlines()] return stopword_list # 分词方法,调用结巴接口 def seg_to_list(sentence, pos=False): if not pos: # 不进行词性标注的分词方法 seg_list = jieba.cut(sentence) else: # 进行词性标注的分词方法 seg_list = psg.cut(sentence) return seg_list # 去除干扰词 def word_filter(seg_list, pos=False): stopword_list = get_stopword_list() filter_list = [] # 根据POS参数选择是否词性过滤 ## 不进行词性过滤,则将词性都标记为n,表示全部保留 for seg in seg_list: if not pos: word = seg flag = 'n' else: word = seg.word flag = seg.flag if not flag.startswith('n'): continue # 过滤停用词表中的词,以及长度为<2的词 if not word in stopword_list and len(word) > 1: filter_list.append(word) return filter_list # 数据加载,pos为是否词性标注的参数,corpus_path为数据集路径 def load_data(pos=False, corpus_path='D:\pysoftNLP_resources\extraction\stopword\corpus.txt'): # 调用上面方式对数据集进行处理,处理后的每条数据仅保留非干扰词 doc_list = [] for line in open(corpus_path, 'r',encoding='utf-8'): content = line.strip() seg_list = seg_to_list(content, pos) filter_list = word_filter(seg_list, pos) doc_list.append(filter_list) return doc_list # idf值统计方法 def train_idf(doc_list): idf_dic = {} # 总文档数 tt_count = len(doc_list) # 每个词出现的文档数 for doc in doc_list: for word in set(doc): idf_dic[word] = idf_dic.get(word, 0.0) + 1.0 # 按公式转换为idf值,分母加1进行平滑处理 for k, v in idf_dic.items(): idf_dic[k] = math.log(tt_count / (1.0 + v)) # 对于没有在字典中的词,默认其仅在一个文档出现,得到默认idf值 default_idf = math.log(tt_count / (1.0)) return idf_dic, default_idf # 排序函数,用于topK关键词的按值排序 def cmp(e1, e2): import numpy as np res = np.sign(e1[1] - e2[1]) if res != 0: return res else: a = e1[0] + e2[0] b = e2[0] + e1[0] if a > b: return 1 elif a == b: return 0 else: return -1 # TF-IDF类 class TfIdf(object): # 四个参数分别是:训练好的idf字典,默认idf值,处理后的待提取文本,关键词数量 def __init__(self, idf_dic, default_idf, word_list, keyword_num): self.word_list = word_list self.idf_dic, self.default_idf = idf_dic, default_idf self.tf_dic = self.get_tf_dic() self.keyword_num = keyword_num # 统计tf值 def get_tf_dic(self): tf_dic = {} for word in self.word_list: tf_dic[word] = tf_dic.get(word, 0.0) + 1.0 tt_count = len(self.word_list) for k, v in tf_dic.items(): tf_dic[k] = float(v) / tt_count return tf_dic # 按公式计算tf-idf def get_tfidf(self): tfidf_dic = {} for word in self.word_list: idf = self.idf_dic.get(word, self.default_idf) tf = self.tf_dic.get(word, 0) tfidf = tf * idf tfidf_dic[word] = tfidf tfidf_dic.items() # 根据tf-idf排序,去排名前keyword_num的词作为关键词 for k, v in sorted(tfidf_dic.items(), key=functools.cmp_to_key(cmp), reverse=True)[:self.keyword_num]: print(k + ",", end='') print() #主题模型 class TopicModel(object): # 三个传入参数:处理后的数据集,关键词数量,具体模型(LSI、LDA),主题数量 def __init__(self, doc_list, keyword_num, model='LSI', num_topics=4): # 使用gensim的接口,将文本转为向量化表示 # 先构建词空间 self.dictionary = corpora.Dictionary(doc_list) # 使用BOW模型向量化 corpus = [self.dictionary.doc2bow(doc) for doc in doc_list] # 对每个词,根据tf-idf进行加权,得到加权后的向量表示 self.tfidf_model = models.TfidfModel(corpus) self.corpus_tfidf = self.tfidf_model[corpus] self.keyword_num = keyword_num self.num_topics = num_topics # 选择加载的模型 if model == 'LSI': self.model = self.train_lsi() else: self.model = self.train_lda() # 得到数据集的主题-词分布 word_dic = self.word_dictionary(doc_list) self.wordtopic_dic = self.get_wordtopic(word_dic) def train_lsi(self): lsi = models.LsiModel(self.corpus_tfidf, id2word=self.dictionary, num_topics=self.num_topics) return lsi def train_lda(self): lda = models.LdaModel(self.corpus_tfidf, id2word=self.dictionary, num_topics=self.num_topics) return lda def get_wordtopic(self, word_dic): wordtopic_dic = {} for word in word_dic: single_list = [word] wordcorpus = self.tfidf_model[self.dictionary.doc2bow(single_list)] wordtopic = self.model[wordcorpus] wordtopic_dic[word] = wordtopic return wordtopic_dic # 计算词的分布和文档的分布的相似度,取相似度最高的keyword_num个词作为关键词 def get_simword(self, word_list): sentcorpus = self.tfidf_model[self.dictionary.doc2bow(word_list)] senttopic = self.model[sentcorpus] # 余弦相似度计算 def calsim(l1, l2): a, b, c = 0.0, 0.0, 0.0 for t1, t2 in zip(l1, l2): x1 = t1[1] x2 = t2[1] a += x1 * x1 b += x1 * x1 c += x2 * x2 sim = a / math.sqrt(b * c) if not (b * c) == 0.0 else 0.0 return sim # 计算输入文本和每个词的主题分布相似度 sim_dic = {} for k, v in self.wordtopic_dic.items(): if k not in word_list: continue sim = calsim(v, senttopic) sim_dic[k] = sim for k, v in sorted(sim_dic.items(), key=functools.cmp_to_key(cmp), reverse=True)[:self.keyword_num]: print(k + ", ", end='') print() # 词空间构建方法和向量化方法,在没有gensim接口时的一般处理方法 def word_dictionary(self, doc_list): dictionary = [] for doc in doc_list: dictionary.extend(doc) dictionary = list(set(dictionary)) return dictionary def doc2bowvec(self, word_list): vec_list = [1 if word in word_list else 0 for word in self.dictionary] return vec_list def tfidf_extract(word_list, pos=False, keyword_num=10): doc_list = load_data(pos) idf_dic, default_idf = train_idf(doc_list) tfidf_model = TfIdf(idf_dic, default_idf, word_list, keyword_num) tfidf_model.get_tfidf() def textrank_extract(text, pos = False, keyword_num=10): textrank = analyse.textrank keywords = textrank(text, keyword_num) # 输出抽取出的关键词 for keyword in keywords: print(keyword + ",", end='') print() def topic_extract(word_list, model, pos=False, keyword_num=10): doc_list = load_data(pos) topic_model = TopicModel(doc_list, keyword_num, model=model) topic_model.get_simword(word_list) if __name__ == '__main__': text = '6月19日,《2012年度“中国爱心城市”公益活动新闻发布会》在京举行。' + \ '中华社会救助基金会理事长许嘉璐到会讲话。基金会高级顾问朱发忠,全国老龄' + \ '办副主任朱勇,民政部社会救助司助理巡视员周萍,中华社会救助基金会副理事长耿志远,' + \ '重庆市民政局巡视员谭明政。晋江市人大常委会主任陈健倩,以及10余个省、市、自治区民政局' + \ '领导及四十多家媒体参加了发布会。中华社会救助基金会秘书长时正新介绍本年度“中国爱心城' + \ '市”公益活动将以“爱心城市宣传、孤老关爱救助项目及第二届中国爱心城市大会”为主要内容,重庆市' + \ '、呼和浩特市、长沙市、太原市、蚌埠市、南昌市、汕头市、沧州市、晋江市及遵化市将会积极参加' + \ '这一公益活动。中国雅虎副总编张银生和凤凰网城市频道总监赵耀分别以各自媒体优势介绍了活动' + \ '的宣传方案。会上,中华社会救助基金会与“第二届中国爱心城市大会”承办方晋江市签约,许嘉璐理' + \ '事长接受晋江市参与“百万孤老关爱行动”向国家重点扶贫地区捐赠的价值400万元的款物。晋江市人大' + \ '常委会主任陈健倩介绍了大会的筹备情况。' print(text) pos = True seg_list = seg_to_list(text, pos) filter_list = word_filter(seg_list, pos) print('TF-IDF模型结果:') tfidf_extract(filter_list,pos=False,keyword_num=5) print('TextRank模型结果:') textrank_extract(text) print('LSI模型结果:') topic_extract(filter_list, 'LSI', pos) print('LDA模型结果:') topic_extract(filter_list, 'LDA', pos)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/extraction/keyword.py
keyword.py
import requests import json #from bs4 import BeautifulSoup import execjs #必须,需要先用pip 安装,用来执行js脚本 class Py4Js(): def __init__(self): self.ctx = execjs.compile(""" function TL(a) { var k = ""; var b = 406644; var b1 = 3293161072; var jd = "."; var $b = "+-a^+6"; var Zb = "+-3^+b+-f"; for (var e = [], f = 0, g = 0; g < a.length; g++) { var m = a.charCodeAt(g); 128 > m ? e[f++] = m : (2048 > m ? e[f++] = m >> 6 | 192 : (55296 == (m & 64512) && g + 1 < a.length && 56320 == (a.charCodeAt(g + 1) & 64512) ? (m = 65536 + ((m & 1023) << 10) + (a.charCodeAt(++g) & 1023), e[f++] = m >> 18 | 240, e[f++] = m >> 12 & 63 | 128) : e[f++] = m >> 12 | 224, e[f++] = m >> 6 & 63 | 128), e[f++] = m & 63 | 128) } a = b; for (f = 0; f < e.length; f++) a += e[f], a = RL(a, $b); a = RL(a, Zb); a ^= b1 || 0; 0 > a && (a = (a & 2147483647) + 2147483648); a %= 1E6; return a.toString() + jd + (a ^ b) }; function RL(a, b) { var t = "a"; var Yb = "+"; for (var c = 0; c < b.length - 2; c += 3) { var d = b.charAt(c + 2), d = d >= t ? d.charCodeAt(0) - 87 : Number(d), d = b.charAt(c + 1) == Yb ? a >>> d: a << d; a = b.charAt(c) == Yb ? a + d & 4294967295 : a ^ d } return a } """) def getTk(self,text): return self.ctx.call("TL",text) #英转中 def buildUrl_e2c(text,tk): baseUrl='https://translate.google.cn/translate_a/single' baseUrl+='?client=webapp&' baseUrl+='sl=en&' baseUrl+='tl=zh-CN&' baseUrl+='hl=en&' baseUrl+='dt=at&' baseUrl+='dt=bd&' baseUrl+='dt=ex&' baseUrl+='dt=ld&' baseUrl+='dt=md&' baseUrl+='dt=qca&' baseUrl+='dt=rw&' baseUrl+='dt=rm&' baseUrl+='dt=ss&' baseUrl+='dt=t&' baseUrl+='ie=UTF-8&' baseUrl+='oe=UTF-8&' baseUrl+='otf=1&' baseUrl+='pc=1&' baseUrl+='ssel=0&' baseUrl+='tsel=0&' baseUrl+='kc=2&' baseUrl+='tk='+str(tk)+'&' baseUrl+='q='+text return baseUrl #中转英 def buildUrl_c2e(text,tk): baseUrl='https://translate.google.cn/translate_a/single' baseUrl+='?client=webapp&' baseUrl+='sl=zh-CN&' baseUrl+='tl=en&' baseUrl+='hl=zh-CN&' baseUrl+='dt=at&' baseUrl+='dt=bd&' baseUrl+='dt=ex&' baseUrl+='dt=ld&' baseUrl+='dt=md&' baseUrl+='dt=qca&' baseUrl+='dt=rw&' baseUrl+='dt=rm&' baseUrl+='dt=ss&' baseUrl+='dt=t&' baseUrl+='ie=UTF-8&' baseUrl+='oe=UTF-8&' baseUrl+='otf=1&' baseUrl+='pc=1&' baseUrl+='ssel=0&' baseUrl+='tsel=0&' baseUrl+='kc=2&' baseUrl+='tk='+str(tk)+'&' baseUrl+='q='+text return baseUrl def translate(js, text, type): header={ 'authority':'translate.google.cn', 'method':'GET', 'path':'', 'scheme':'https', 'accept':'*/*', 'accept-encoding':'gzip, deflate, br', 'accept-language':'zh-CN,zh;q=0.9', 'cookie':'', 'user-agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.108 Safari/537.36', 'x-client-data':'CIa2yQEIpbbJAQjBtskBCPqcygEIqZ3KAQioo8oBGJGjygE=' } if type == 'e2c' : url = buildUrl_e2c(text,js.getTk(text)) elif type == 'c2e' : url = buildUrl_c2e(text, js.getTk(text)) res='' try: r=requests.get(url) result=json.loads(r.text) if result[7]!=None and len(result[7])!=0: # 如果我们文本输错,提示你是不是要找xxx的话,那么重新把xxx正确的翻译之后返回 try: correctText=result[7][0].replace('<b><i>',' ').replace('</i></b>','') print(correctText) if type == 'e2c' : correctUrl = buildUrl_e2c(correctText,js.getTk(correctText)) elif type == 'c2e' : correctUrl = buildUrl_c2e(correctText, js.getTk(correctText)) correctR=requests.get(correctUrl) newResult=json.loads(correctR.text) res=newResult[0][0][0] except Exception as e: print(e) #res=result[0][0][0] res='' else: res=result[0][0][0] except Exception as e: res='' print(url) print("翻译"+text+"失败") print("错误信息:") print(e) finally: return res if __name__ == '__main__': js=Py4Js() res=translate(js, '你好啊', 'c2e') print("中文转英文:", res) res=translate(js, 'hello', 'e2c') print("英文转中文:", res)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/enhancement/translate.py
translate.py
import random from random import shuffle from pyhanlp import * from pysoftNLP.enhancement.ciLin import CilinSimilarity # 使用基于信息内容的算法来计算词语相似度 基于哈工大同义词词林扩展版计算语义相似度 random.seed(1) #stop words list stop_words = set() def stopword_init(): basis = 'D:\pysoftNLP_resources\enhancement' stopwords_file = '哈工大停用词表.txt' model_path = os.path.join(basis, stopwords_file) with open(model_path, 'r',encoding='utf-8') as f: for line in f.readlines(): stop_words.add(line.strip()) stopwords_file = '百度停用词表.txt' model_path = os.path.join(basis, stopwords_file) with open(model_path, 'r',encoding='utf-8') as f: for line in f.readlines(): stop_words.add(line.strip()) #stopwords_file = '中文停用词表.txt' #with open(stopwords_file, 'r',encoding='utf-8') as f: # for line in f.readlines(): # stop_words.add(line.strip()) print("已经初始化停用词表词个数: ", len(stop_words)) stopword_init() synonym_handler = CilinSimilarity() #pyhanlp进行分词 def get_segment(line): HanLP.Config.ShowTermNature = False StandardTokenizer = JClass("com.hankcs.hanlp.tokenizer.StandardTokenizer") segment_list = StandardTokenizer.segment(line) terms_list = [] for terms in segment_list : terms_list.append(str(terms)) #print(terms_list) return terms_list ######################################################################## # Synonym substitution 同义词替换 # Replace n words in the sentence with synonyms from wordnet (用wordnet中的同义词替换句子中的n个单词) ######################################################################## def synonym_replacement(words, n): new_words = words.copy() random_word_list = list(set([word for word in words if word not in stop_words])) #将单词不在停用词的词语形成列表 random.shuffle(random_word_list) num_replaced = 0 for random_word in random_word_list: synonyms = get_synonyms(random_word) if len(synonyms) >= 1: synonym = random.choice(list(synonyms)) #随机选择一个词语 new_words = [synonym if word == random_word else word for word in new_words] print("replaced", random_word, "with", synonym) num_replaced += 1 if num_replaced >= n: #only replace up to n words break #this is stupid but we need it, trust me sentence = ' '.join(new_words) #print(sentence,'111111111111111111111111111') new_words = sentence.split(' ') #print('222222222222222222222222222',new_words) return new_words def get_synonyms(word): synonyms = set() if word not in synonym_handler.vocab: print(word, '未被词林收录!') else: codes = synonym_handler.word_code[word] for code in codes: key = synonym_handler.code_word[code] synonyms.update(key) if word in synonyms: synonyms.remove(word) return list(synonyms) ######################################################################## # Random deletion(随机删除) # Randomly delete words from the sentence with probability p (用概率p随机删除句子中的单词) ######################################################################## def random_deletion(words, p): #obviously, if there's only one word, don't delete it (显然,如果只有一个词,就不要删除它) if len(words) == 1: return words #randomly delete words with probability p new_words = [] for word in words: r = random.uniform(0, 1) if r > p: new_words.append(word) #if you end up deleting all words, just return a random word if len(new_words) == 0: rand_int = random.randint(0, len(words)-1) return [words[rand_int]] return new_words ######################################################################## # Random swap (随机交换) # Randomly swap two words in the sentence n times (在句子中随机交换两个单词n次) ######################################################################## def random_swap(words, n): new_words = words.copy() for _ in range(n): new_words = swap_word(new_words) return new_words def swap_word(new_words): random_idx_1 = random.randint(0, len(new_words)-1) random_idx_2 = random_idx_1 counter = 0 while random_idx_2 == random_idx_1: random_idx_2 = random.randint(0, len(new_words)-1) counter += 1 if counter > 3: return new_words new_words[random_idx_1], new_words[random_idx_2] = new_words[random_idx_2], new_words[random_idx_1] return new_words ######################################################################## # Random insertion(随机插入) # Randomly insert n words into the sentence ######################################################################## def random_insertion(words, n): new_words = words.copy() for _ in range(n): add_word(new_words) return new_words def add_word(new_words): synonyms = [] counter = 0 while len(synonyms) < 1: random_word = new_words[random.randint(0, len(new_words)-1)] synonyms = get_synonyms(random_word) counter += 1 if counter >= 10: return random_synonym = synonyms[0] random_idx = random.randint(0, len(new_words)-1) new_words.insert(random_idx, random_synonym) ######################################################################## # main data augmentation function ######################################################################## def eda(sentence, alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, p_rd=0.1, num_aug=9): words = get_segment(sentence) # 分词 num_words = len(words) augmented_sentences = [] num_new_per_technique = int(num_aug/4)+1 #使用几种技术(目前是四种,所以除以4) n_sr = max(1, int(alpha_sr*num_words)) #几种技术中替换的单词数 n_ri = max(1, int(alpha_ri*num_words)) n_rs = max(1, int(alpha_rs*num_words)) #sr(随机交换) for _ in range(num_new_per_technique): a_words = synonym_replacement(words, n_sr) # augmented_sentences.append(''.join(a_words)) #ri(随机插入) for _ in range(num_new_per_technique): a_words = random_insertion(words, n_ri) augmented_sentences.append(''.join(a_words)) #rs for _ in range(num_new_per_technique): a_words = random_swap(words, n_rs) augmented_sentences.append(''.join(a_words)) #rd for _ in range(num_new_per_technique): a_words = random_deletion(words, p_rd) augmented_sentences.append(''.join(a_words)) augmented_sentences = [get_segment(sentence) for sentence in augmented_sentences] shuffle(augmented_sentences) #trim so that we have the desired number of augmented sentences (修剪以获得所需数量的增广句子) if num_aug >= 1: augmented_sentences = augmented_sentences[:num_aug] else: keep_prob = num_aug / len(augmented_sentences) augmented_sentences = [s for s in augmented_sentences if random.uniform(0, 1) < keep_prob] augmented_sentences = [''.join(sentence) for sentence in augmented_sentences] #append the original sentence augmented_sentences.append(sentence) return list(set(augmented_sentences))
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/enhancement/eda.py
eda.py
#import math import os class CilinSimilarity(object): """ 基于哈工大同义词词林扩展版计算语义相似度 """ def __init__(self): """ 'code_word' 以编码为key,单词list为value的dict,一个编码有多个单词 'word_code' 以单词为key,编码为value的dict,一个单词可能有多个编码 'vocab' 所有不重复的单词,便于统计词汇总数。 'mydict' 每个大中小类编码对应的下位节点数量。 """ self.code_word = {} self.word_code = {} self.vocab = set() #定义一个词典集合 file_in = 'D:\pysoftNLP_resources\enhancement' cilin = os.path.join(file_in,'New_cilin.txt') self.file = cilin # self.mydict = {} self.read_cilin() def read_cilin(self): """ 读入同义词词林,编码为key,词群为value,保存在self.code_word 单词为key,编码群为value,保存在self.word_code 所有单词保存在self.vocab """ head = set() with open(self.file, 'r', encoding='gbk') as f: for line in f.readlines(): res = line.split() code = res[0] # 词义编码 words = res[1:] # 同组的多个词 self.vocab.update(words) # 一组词更新到词汇表中 self.code_word[code] = words # 字典,目前键是词义编码,值是一组单词。 for w in words: if w in self.word_code.keys(): # 最终目的:键是单词本身,值是词义编码。 self.word_code[w].append(code) # 如果单词已经在,就把当前编码增加到字典中 else: self.word_code[w] = [code] # 反之,则在字典中添加该项。 # 第一次遍历,得到大中小类的代码。 if len(code) < 6: continue fathers = [code[:1], code[:2], code[:4], code[:5], code[:7]] head.update(fathers) fatherlist = sorted(list(head)) ''' with open(self.file, 'r', encoding='gbk') as f: # 第二次遍历:得到大中小类的数量。更新到字典mydict里面。 for ele in fatherlist: self.mydict[ele] = 0 for line in f.readlines(): res = line.split() code = res[0] # 词义编码 words = res[1:] # 同组的多个词 if len(code) > 5 and code[:5] in self.mydict.keys(): self.mydict[code[:7]] += len(words) self.mydict[code[:5]] += len(words) if len(code) > 4 and code[:4] in self.mydict.keys(): self.mydict[code[:4]] += len(words) if len(code) > 2 and code[:2] in self.mydict.keys(): self.mydict[code[:2]] += len(words) if len(code) > 1 and code[:1] in self.mydict.keys(): self.mydict[code[:1]] += len(words) def get_common_str(self, c1, c2): """ 获取两个字符的公共部分,注意有些层是2位数字 """ res = '' for i, j in zip(c1, c2): if i == j: res += i else: break if 3 == len(res) or 6 == len(res): res = res[:-1] return res def Info_Content(self, concept): if concept == '': return 0 total =0 for ele in self.mydict.keys(): if len(ele)==1: total += self.mydict[ele] FenMu = math.log(total,2) #print('总结点数',total,FenMu) hypo = 1 if concept in self.mydict.keys(): hypo += self.mydict[concept] info = math.log(hypo, 2) / FenMu # print(concept, '下位节点数:', hypo,'信息内容:',1-info) return 1 - info def sim_by_IC(self, c1, c2): # 找到公共字符串 LCS = self.get_common_str(c1, c2) distance = self.Info_Content(LCS) - (self.Info_Content(c1) + self.Info_Content(c2)) / 2 return distance + 1 def sim2018(self, w1, w2): """ 按照论文彭琦, 朱新华, 陈意山,等. 基于信息内容的词林词语相似度计算[J]. 计算机应用研究, 2018(2):400-404.计算相似度 """ for word in [w1, w2]: if word not in self.vocab: print(word, '未被词林词林收录!') return 0 # 如果有一个词不在词林中,则相似度为0 # 获取两个词的编码列表 code1 = self.word_code[w1] code2 = self.word_code[w2] simlist = [] for c1 in code1: # 选取相似度最大值 for c2 in code2: cur_sim = self.sim_by_IC(c1, c2) simlist.append(cur_sim) aver = sum(simlist) / len(simlist) # print(sorted(simlist,reverse=True)) if len(simlist) < 2: return simlist[0] if max(simlist) > 0.7: return max(simlist) elif aver > 0.2: return (sum(simlist) - max(simlist)) / (len(simlist) - 1) else: return min(simlist) '''
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/enhancement/ciLin.py
ciLin.py
from urllib import request, error import sys import zipfile import tarfile import socket socket.setdefaulttimeout(15) def progressbar(cur): percent = '{:.2%}'.format(cur) sys.stdout.write('\r') sys.stdout.write('[%-100s] %s' % ('=' * int(cur*100), percent)) sys.stdout.flush() # print(cur) def schedule(blocknum,blocksize,totalsize): ''' blocknum:当前已经下载的块 blocksize:每次传输的块大小 totalsize:网页文件总大小 ''' percent = 0 if totalsize == 0: percent = 0 elif totalsize == -1 and blocknum==0: print('响应失败,正在重新连接……') download() elif totalsize == -1 and blocknum != 0: #已经下载了,当前传输的为0, 可以忽略 pass else: percent = blocknum * blocksize / totalsize progressbar(percent) if percent > 1.0: percent = 1.0 progressbar(percent) # print('\n'+'download : %.2f%%' %(percent)) def download(url,path): try: filename,headers = request.urlretrieve(url, path, schedule) # print("headers",headers) except error.HTTPError as e: print(e) print(url + ' download failed!' + '\r\n') print('请手动下载:%s' %url) except error.URLError as e: print(url + ' download failed!' + '\r\n') print('请手动下载:%s' %url) print(e) except Exception as e: print(e) print('请手动下载:%s' %url) else: print('\r\n' + url + ' download successfully!') print('文件的名字:',filename) return filename def unzip_file(zip_src): r = zipfile.is_zipfile(zip_src) dst_dir = str(zip_src).split('.')[0] if r: fz = zipfile.ZipFile(zip_src, 'r') for file in fz.namelist(): fz.extract(file, dst_dir) fz.close()# 关闭文件,必须有,释放内存 else: print('This is not zip') def unzip(path): zip_file = zipfile.ZipFile(path) dst_dir = str(path).split('.')[0] zip_list = zip_file.namelist() # 得到压缩包里所有文件 for f in zip_list: zip_file.extract(f,dst_dir) # 循环解压文件到指定目录 zip_file.close() # 关闭文件,必须有,释放内存 def untar(path = 'D:\pysoftNLP_resources\data.zip'): tar = tarfile.open(path) tar.extractall() tar.close() def download_decompress(url,path): filename = download(url, path) try: if str(filename).split('.')[-1] == 'zip': print('开始解压zip文件,请等待……') # unzip() unzip_file(filename) print('解压完成,可以使用') except Exception as e: print(e) print('解压失败,请手动解压') try: if str(filename).split('.')[-1] == 'gz': print('开始解压tar.gz文件,请等待……') untar() print('解压完成,可以使用') except Exception as e: print(e) print('解压失败,请手动解压') # if __name__ == '__main__': # print('开始下载:https://codeload.github.com/chengtingting980903/zzsnML/tar.gz/1.0.0') # download_decompress() # print('开始下载:https://github.com/xiaokai01/download_test/releases/download/0.0.1/863_classify_hy_1024_9.zip') # download_decompress(url='https://github.com/chengtingting980903/zzsnML/releases/download/1.0.0/data.zip', path='data.zip') # download_decompress(url= 'https://github.com/xiaokai01/download_test/releases/download/0.0.1/863_classify_hy_1024_9.zip', path= 'D:\pysoftNLP_resources\data.zip')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/utils/down_resources.py
down_resources.py
from pathlib import Path import os from pysoftNLP.utils import down_resources import zipfile def down(url,my_file, zip_file): if not os.path.exists(my_file): if not zipfile.is_zipfile(zip_file): print('开始下载:', url) down_resources.download_decompress(url, zip_file) else: print("已有下载包!开始解压!") down_resources.unzip_file(zip_file) else: print("yes") #下载预训练文件 def download_resource(): path = 'D:\pysoftNLP_resources' if not os.path.exists(path): os.mkdir(path) #预训练的资源 pre_training_file_file = Path("D:\pysoftNLP_resources\pre_training_file") pre_training_file_zip_file = "D:\pysoftNLP_resources\pre_training_file.zip" pre_training_file_url = 'https://github.com/xiaokai01/pysoftNLP/releases/download/0.0.4/pre_training_file.zip' down(pre_training_file_url,pre_training_file_file,pre_training_file_zip_file) # 分类模型资源 classification_file = Path("D:\pysoftNLP_resources\classification") classification_zip_file = "D:\pysoftNLP_resources\classification.zip" classification_url = 'https://github.com/xiaokai01/pysoftNLP/releases/download/0.0.4/classification.zip' down(classification_url, classification_file, classification_zip_file) # 数据增强模型资源 enhancement_file = Path("D:\pysoftNLP_resources\enhancement") enhancement_zip_file = "D:\pysoftNLP_resources\enhancement.zip" enhancement_url = 'https://github.com/xiaokai01/pysoftNLP/releases/download/0.0.4/enhancement.zip' down(enhancement_url, enhancement_file, enhancement_zip_file) # 关键字抽取模型资源 extraction_file = Path("D:\pysoftNLP_resources\extraction") extraction_zip_file = "D:\pysoftNLP_resources\extraction.zip" extraction_url = 'https://github.com/xiaokai01/pysoftNLP/releases/download/0.0.4/extraction.zip' down(extraction_url, extraction_file, extraction_zip_file) # 命名实体识别模型资源 entity_recognition_file = Path("D:\pysoftNLP_resources\entity_recognition") entity_recognition_zip_file = "D:\pysoftNLP_resources\entity_recognition.zip" entity_recognition_url = 'https://github.com/xiaokai01/pysoftNLP/releases/download/0.0.4/entity_recognition.zip' down(entity_recognition_url, entity_recognition_file, entity_recognition_zip_file)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/utils/down.py
down.py
import pandas as pd import numpy as np # from pysoftNLP.classification.load_data import train_df, test_df from keras.utils import to_categorical from keras.models import Model from keras.optimizers import Adam from keras.layers import Input, BatchNormalization, Dense,Dropout,SeparableConv1D,Embedding,LSTM from pysoftNLP.bert.extract_feature import BertVector import time import os #读取文件 def read_data(train_data,test_data): file_in = 'D:\pysoftNLP_resources\classification\data' train_data = os.path.join(file_in,train_data) test_data = os.path.join(file_in,test_data) train_df = pd.read_csv(train_data) train_df.columns = ['id', 'label', 'text'] test_df = pd.read_csv(test_data) test_df.columns = ['id', 'label', 'text'] return train_df, test_df train_data = 'x_tr_863.csv' test_data = 'x_te_863.csv' train_df, test_df = read_data(train_data,test_data) args = {'encode': 'bert', 'sentence_length': 50, 'num_classes': 9, 'batch_size': 128, 'epochs': 100} def train(train_df,test_df,args): out_path = 'D:\pysoftNLP_resources\classification\models' print('encoding开始!') star_encod_time = time.time() bert_model = BertVector(pooling_strategy="REDUCE_MEAN", max_seq_len=args['sentence_length']) # bert词向量 f = lambda text: bert_model.encode([text])["encodes"][0] train_df['x'] = train_df['text'].apply(f) test_df['x'] = test_df['text'].apply(f) end_encod_time = time.time() print("encoding时间:%s" % (end_encod_time - star_encod_time)) x_train = np.array([vec for vec in train_df['x']]) x_test = np.array([vec for vec in test_df['x']]) y_train = np.array([vec for vec in train_df['label']]) y_test = np.array([vec for vec in test_df['label']]) print('x_train: ', x_train.shape) y_train = to_categorical(y_train, args['num_classes']) y_test = to_categorical(y_test, args['num_classes']) x_in = Input(shape=(768,)) x_out = Dense(1024, activation="relu")(x_in) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(512, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(256, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(128, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(64, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(32, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(16, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dense(args.num_classes, activation="softmax")(x_out) model = Model(inputs=x_in, outputs=x_out) print(model.summary()) model.compile(loss='categorical_crossentropy', # categorical_crossentropy optimizer=Adam(), # adam metrics=['accuracy']) # 模型训练以及评估 model.fit(x_train, y_train, batch_size=args['batch_size'], epochs=args['epochs']) wenj = '863_classify_768' + '_' + str(args['sentence_length']) + '_' + str(args['num_classes']) + '_' + str(args['batch_size']) + '_' + str(args['epochs']) + '.h5' out_path = os.path.join(out_path, wenj) model.save(out_path) t3 = time.time() print("训练时间:%s" % (t3 - end_encod_time)) print(model.evaluate(x_test, y_test)) t4 = time.time() print('模型验证时长:', t4 - t3) train(train_df,test_df,args)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/classification/bert_dnn.py
bert_dnn.py
import os import tensorflow as tf # # 如果使用GPU训练 # os.environ["CUDA_VISIBLE_DEVICES"] = "0" # config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.2 # 程序最多只能占用指定gpu50%的显存 # sess = tf.Session(config = config) import pandas as pd import numpy as np from pysoftNLP.classification.load_data import train_df, test_df from keras.utils import to_categorical from keras.models import Model from keras.optimizers import Adam,SGD from keras.layers import Input, BatchNormalization, Dense,Dropout,SeparableConv1D,Embedding,LSTM from pysoftNLP.bert.extract_feature import BertVector # from keras.layers.recurrent import LSTM,GRU from sklearn.naive_bayes import MultinomialNB #读取文件 def read_data(train_data, test_data): train_df = pd.read_csv(train_data) train_df.columns = ['id', 'label', 'text'] test_df = pd.read_csv(test_data) test_df.columns = ['id', 'label', 'text'] return train_df,test_df # train_data, test_data # train_df,test_df = read_data(train_data, test_data) import time # 读取文件并进行转换 t1 =time.time() bert_model = BertVector(pooling_strategy="REDUCE_MEAN", max_seq_len=80) print('begin encoding') f = lambda text: bert_model.encode([text])["encodes"][0] train_df['x'] = train_df['text'].apply(f) test_df['x'] = test_df['text'].apply(f) print('end encoding') t2 =time.time() print("encoding时间:%s"%(t2-t1)) x_train = np.array([vec for vec in train_df['x']]) x_test = np.array([vec for vec in test_df['x']]) y_train = np.array([vec for vec in train_df['label']]) y_test = np.array([vec for vec in test_df['label']]) print('x_train: ', x_train.shape) # Convert class vectors to binary class matrices. num_classes = 9 y_train = to_categorical(y_train, num_classes) y_test = to_categorical(y_test, num_classes) print(type(x_train),type(y_train),) # 创建模型 x_in = Input(shape=(1024, )) x_out = Dense(1024, activation="relu")(x_in) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(512, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(256, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(128, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(64, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(32, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(16, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dense(num_classes, activation="softmax")(x_out) model = Model(inputs=x_in, outputs=x_out) print(model.summary()) model.compile(loss='categorical_crossentropy',#categorical_crossentropy optimizer=Adam(), #adam metrics=['accuracy']) # 模型训练以及评估 model.fit(x_train, y_train, batch_size=128, epochs=500) model.save('863_classify_hy_1024_9.h5') t3 =time.time() print("训练时间:%s"%(t3-t2)) print(model.evaluate(x_test, y_test)) t4 = time.time() print(t4-t3) # class logger(object): # def __init__(self,filename): # self.terminal = sys.stdout # self.log = open(filename,"a") # def write(self,message): # self.terminal.write(message) # self.log.write(message) # def flush(self): # pass # sys.stdout = logger("a.log") # sys.stderr =logger("A.log") # # clf = MultinomialNB() # clf.fit(x_train,y_train) # # y_pre = clf.predict(x_test) # from sklearn.model_selection import cross_val_score # cvs = cross_val_score(clf,x_test,y_test,scoring="accuracy",cv=10) # print(cvs) # print(cvs.mean())
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/classification/model_train.py
model_train.py
import pandas as pd import numpy as np from pysoftnlp.classification.load_data import train_df, test_df from keras.utils import to_categorical from keras.models import Model from keras.optimizers import Adam,SGD from keras.layers import Input, BatchNormalization, Dense,Dropout,SeparableConv1D,Embedding,LSTM from bert.extract_feature import BertVector import time import argparse import os #读取文件 def read_data(train_data, test_data): train_df = pd.read_csv(train_data) train_df.columns = ['id', 'label', 'text'] test_df = pd.read_csv(test_data) test_df.columns = ['id', 'label', 'text'] args = {'encode':'bert','sentence_length':50,'num_classes':9,'batch_size':128,'epochs':100} out_path = 'C:/Users/Administrator/Desktop' def train(args,out_path): print('encoding开始!') star_encod_time = time.time() bert_model = BertVector(pooling_strategy="REDUCE_MEAN", max_seq_len=args.sentence_length) # bert词向量 f = lambda text: bert_model.encode([text])["encodes"][0] train_df['x'] = train_df['text'].apply(f) test_df['x'] = test_df['text'].apply(f) end_encod_time = time.time() print("encoding时间:%s" % (end_encod_time - star_encod_time)) x_train = np.array([vec for vec in train_df['x']]) x_test = np.array([vec for vec in test_df['x']]) y_train = np.array([vec for vec in train_df['label']]) y_test = np.array([vec for vec in test_df['label']]) print('x_train: ', x_train.shape) y_train = to_categorical(y_train, args.num_classes) y_test = to_categorical(y_test, args.num_classes) x_in = Input(shape=(768,)) x_out = Dense(1024, activation="relu")(x_in) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(512, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(256, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(128, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(64, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(32, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dropout(0.2)(x_out) x_out = Dense(16, activation="relu")(x_out) x_out = BatchNormalization()(x_out) x_out = Dense(args.num_classes, activation="softmax")(x_out) model = Model(inputs=x_in, outputs=x_out) print(model.summary()) model.compile(loss='categorical_crossentropy', # categorical_crossentropy optimizer=Adam(), # adam metrics=['accuracy']) # 模型训练以及评估 model.fit(x_train, y_train, batch_size=args.batch_size, epochs=args.epochs) wenj = '863_classify_768' + '_' + str(args['sentence_length']) + '_' + str(args['num_classes']) + '_' + str(args['batch_size']) + '_' + str(args['epochs']) + '.h5' out_path = os.path.join(out_path, wenj) model.save(out_path) t3 = time.time() print("训练时间:%s" % (t3 - end_encod_time)) print(model.evaluate(x_test, y_test)) t4 = time.time() print('模型验证时长:', t4 - t3) # if __name__ == '__main__': # parser = argparse.ArgumentParser() # parser.add_argument('--status', choices=['train', 'test'], help='update algorithm', default='test') # parser.add_argument('--encode', choices=['bert','robert','word2vec','fasttxt'], help='词向量模型', default='bert') # parser.add_argument('--sentence_length',help='句子长度', default=50,type=int) # parser.add_argument('--num_classes', help='类别', type=int)#是几分类 # parser.add_argument('--batch_size', help='类别', type=int,default=128) # 是几分类 # parser.add_argument('--epochs', help='类别', type=int, default=100) # 是几分类 # args = parser.parse_args() # print(args.status) # if args.status == 'train': # if args.encode == 'bert': # print('encoding开始!') # star_encod_time = time.time() # bert_model = BertVector(pooling_strategy="REDUCE_MEAN", max_seq_len = args.sentence_length) #bert词向量 # f = lambda text: bert_model.encode([text])["encodes"][0] # train_df['x'] = train_df['text'].apply(f) # test_df['x'] = test_df['text'].apply(f) # end_encod_time = time.time() # print("encoding时间:%s" % (end_encod_time - star_encod_time)) # x_train = np.array([vec for vec in train_df['x']]) # x_test = np.array([vec for vec in test_df['x']]) # y_train = np.array([vec for vec in train_df['label']]) # y_test = np.array([vec for vec in test_df['label']]) # print('x_train: ', x_train.shape) # # y_train = to_categorical(y_train, args.num_classes) # y_test = to_categorical(y_test, args.num_classes) # # x_in = Input(shape=(768,)) # x_out = Dense(1024, activation="relu")(x_in) # x_out = BatchNormalization()(x_out) # x_out = Dropout(0.2)(x_out) # x_out = Dense(512, activation="relu")(x_out) # x_out = BatchNormalization()(x_out) # x_out = Dropout(0.2)(x_out) # x_out = Dense(256, activation="relu")(x_out) # x_out = BatchNormalization()(x_out) # x_out = Dropout(0.2)(x_out) # x_out = Dense(128, activation="relu")(x_out) # x_out = BatchNormalization()(x_out) # x_out = Dropout(0.2)(x_out) # x_out = Dense(64, activation="relu")(x_out) # x_out = BatchNormalization()(x_out) # x_out = Dropout(0.2)(x_out) # x_out = Dense(32, activation="relu")(x_out) # x_out = BatchNormalization()(x_out) # x_out = Dropout(0.2)(x_out) # x_out = Dense(16, activation="relu")(x_out) # x_out = BatchNormalization()(x_out) # x_out = Dense(args.num_classes, activation="softmax")(x_out) # model = Model(inputs=x_in, outputs=x_out) # print(model.summary()) # # model.compile(loss='categorical_crossentropy', # categorical_crossentropy # optimizer=Adam(), # adam # metrics=['accuracy']) # # # 模型训练以及评估 # model.fit(x_train, y_train, batch_size=args.batch_size, epochs=args.epochs) # model.save('863_classify_hy_1024_9.h5') # # t3 = time.time() # print("训练时间:%s" % (t3 - end_encod_time)) # print(model.evaluate(x_test, y_test)) # t4 = time.time() # print('模型验证时长:',t4 - t3)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/classification/mian.py
mian.py
import pandas as pd import numpy as np from pysoftNLP.bert.extract_feature import BertVector from keras.models import load_model load_model = load_model("visit_classify.h5") # 预测语句 texts = ['在访问限制中,用户可以选择禁用iPhone的功能,包括Siri、iTunes购买功能、安装/删除应用等,甚至还可以让iPhone变成一台功能手机。以下是访问限制具体可以实现的一些功能', 'IT之家4月23日消息 近日,谷歌在其官方论坛发布消息表示,他们为Android Auto添加了一项新功能:可以访问完整联系人列表。用户现在可以通过在Auto的电话拨号界面中打开左上角的菜单访问完整的联系人列表。值得注意的是,这一功能仅支持在车辆停止时使用。', '要通过telnet 访问路由器,需要先通过console 口对路由器进行基本配置,例如:IP地址、密码等。', 'IT之家3月26日消息 近日反盗版的国际咨询公司MUSO发布了2017年的年度报告,其中的数据显示,去年盗版资源网站访问量达到了3000亿次,比前一年(2016年)提高了1.6%。美国是访问盗版站点次数最多的国家,共有279亿次访问;其后分别是俄罗斯、印度和巴西,中国位列第18。', '应葡萄牙议会邀请,全国人大常委会副委员长吉炳轩率团于12月14日至16日访问葡萄牙,会见副议长费利佩、社会党副总书记卡内罗。', '2月26日至3月2日,应香港特区政府“内地贵宾访港计划”邀请,省委常委、常务副省长陈向群赴港考察访问,重点围绕“香港所长、湖南所需”,与特区政府相关部门和机构深入交流,推动湖南与香港交流合作取得新进展。', '目前A站已经恢复了访问,可以直接登录,网页加载正常,视频已经可以正常播放。', '难民署特使安吉丽娜·朱莉6月8日结束了对哥伦比亚和委内瑞拉边境地区的难民营地为期两天的访问,她对哥伦比亚人民展现的人道主义和勇气表示赞扬。', '据《南德意志报》报道,德国总理默克尔计划明年1月就前往安卡拉,和土耳其总统埃尔多安进行会谈。', '自9月14日至18日,由越共中央政治局委员、中央书记处书记、中央经济部部长阮文平率领工作代表团对希腊进行工作访问。', 'Win7电脑提示无线适配器或访问点有问题怎么办?很多用户在使用无线网连接上网时,发现无线网显示已连接,但旁边却出现了一个黄色感叹号,无法进行网络操作,通过诊断提示电脑无线适配器或访问点有问题,且处于未修复状态,这该怎么办呢?下面小编就和大家分享下Win7电脑提示无线适配器或访问点有问题的解决方法。', '2019年10月13日至14日,外交部副部长马朝旭访问智利,会见智利外长里韦拉,同智利总统外事顾问萨拉斯举行会谈,就智利举办亚太经合组织(APEC)第二十七次领导人非正式会议等深入交换意见。', '未开发所有安全组之前访问,FTP可以链接上,但是打开会很慢,需要1-2分钟才能链接上', 'win7系统电脑的用户,在连接WIFI网络网上时,有时候会遇到突然上不了网,查看连接的WIFI出现“有限的访问权限”的文字提示。', '联合国秘书长潘基文8日访问了日本福岛县,与当地灾民交流并访问了一所高中。', '国务院总理温家宝当地时间23日下午乘专机抵达布宜诺斯艾利斯,开始对阿根廷进行正式访问。', '正在中国访问的巴巴多斯总理斯图尔特15日在陕西西安参观访问。', '据外媒报道,当地时间10日,美国白宫发声明称,美国总统特朗普将于2月底访问印度,与印度总理莫迪进行战略对话。', '2月28日,唐山曹妃甸蓝色海洋科技有限公司董事长赵力军等一行5人到黄海水产研究所交流访问。黄海水产研究所副所长辛福言及相关部门负责人、专家等参加了会议。', '2018年7月2日,莫斯科孔子文化促进会会长姜彦彬,常务副会长陈国建,在中国著名留俄油画大师牟克教授的陪同下,访问了莫斯科国立苏里科夫美术学院,受到第一副校长伊戈尔·戈尔巴秋克先生接待。' ] labels = [] bert_model = BertVector(pooling_strategy="REDUCE_MEAN", max_seq_len=100) # 对上述句子进行预测 for text in texts: # 将句子转换成向量 vec = bert_model.encode([text])["encodes"][0] x_train = np.array([vec]) # 模型预测 predicted = load_model.predict(x_train) y = np.argmax(predicted[0]) label = 'Y' if y else 'N' labels.append(label) for text,label in zip(texts, labels): print('%s\t%s'%(label, text)) df = pd.DataFrame({'句子':texts, "是否属于出访类事件": labels}) df.to_excel('./result.xlsx', index=False)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/classification/model_predict.py
model_predict.py
from pysoftNLP.bert.graph import import_tf from pysoftNLP.bert import modeling from pysoftNLP.bert import tokenization from pysoftNLP.bert.graph import optimize_graph from pysoftNLP.bert import args from queue import Queue from threading import Thread tf = import_tf(0, True) class InputExample(object): def __init__(self, unique_id, text_a, text_b): self.unique_id = unique_id self.text_a = text_a self.text_b = text_b class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids): self.unique_id = unique_id self.tokens = tokens self.input_ids = input_ids self.input_mask = input_mask self.input_type_ids = input_type_ids class BertVector: def __init__(self, batch_size=32, pooling_strategy="REDUCE_MEAN", max_seq_len=40): """ init BertVector :param batch_size: Depending on your memory default is 32 """ self.max_seq_length = max_seq_len self.layer_indexes = args.layer_indexes self.gpu_memory_fraction = 1 if pooling_strategy == "NONE": pooling_strategy = args.PoolingStrategy.NONE elif pooling_strategy == "REDUCE_MAX": pooling_strategy = args.PoolingStrategy.REDUCE_MAX elif pooling_strategy == "REDUCE_MEAN": pooling_strategy = args.PoolingStrategy.REDUCE_MEAN elif pooling_strategy == "REDUCE_MEAN_MAX": pooling_strategy = args.PoolingStrategy.REDUCE_MEAN_MAX self.graph_path = optimize_graph(pooling_strategy=pooling_strategy, max_seq_len=self.max_seq_length) self.tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True) self.batch_size = batch_size self.estimator = self.get_estimator() self.input_queue = Queue(maxsize=1) self.output_queue = Queue(maxsize=1) self.predict_thread = Thread(target=self.predict_from_queue, daemon=True) self.predict_thread.start() def get_estimator(self): from tensorflow.python.estimator.estimator import Estimator from tensorflow.python.estimator.run_config import RunConfig from tensorflow.python.estimator.model_fn import EstimatorSpec def model_fn(features, labels, mode, params): with tf.gfile.GFile(self.graph_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) input_names = ['input_ids', 'input_mask', 'input_type_ids'] output = tf.import_graph_def(graph_def, input_map={k + ':0': features[k] for k in input_names}, return_elements=['final_encodes:0']) return EstimatorSpec(mode=mode, predictions={ 'encodes': output[0] }) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory_fraction config.log_device_placement = False config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 return Estimator(model_fn=model_fn, config=RunConfig(session_config=config), params={'batch_size': self.batch_size}) def predict_from_queue(self): prediction = self.estimator.predict(input_fn=self.queue_predict_input_fn, yield_single_examples=False) for i in prediction: self.output_queue.put(i) def encode(self, sentence): self.input_queue.put(sentence) prediction = self.output_queue.get() return prediction def queue_predict_input_fn(self): return (tf.data.Dataset.from_generator( self.generate_from_queue, output_types={'unique_ids': tf.int32, 'input_ids': tf.int32, 'input_mask': tf.int32, 'input_type_ids': tf.int32}, output_shapes={ 'unique_ids': (1,), 'input_ids': (None, self.max_seq_length), 'input_mask': (None, self.max_seq_length), 'input_type_ids': (None, self.max_seq_length)})) def generate_from_queue(self): while True: features = list(self.convert_examples_to_features(seq_length=self.max_seq_length, tokenizer=self.tokenizer)) yield { 'unique_ids': [f.unique_id for f in features], 'input_ids': [f.input_ids for f in features], 'input_mask': [f.input_mask for f in features], 'input_type_ids': [f.input_type_ids for f in features] } def input_fn_builder(self, features, seq_length): """Creates an `input_fn` closure to be passed to Estimator.""" all_unique_ids = [] all_input_ids = [] all_input_mask = [] all_input_type_ids = [] for feature in features: all_unique_ids.append(feature.unique_id) all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_input_type_ids.append(feature.input_type_ids) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "unique_ids": tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "input_type_ids": tf.constant( all_input_type_ids, shape=[num_examples, seq_length], dtype=tf.int32), }) d = d.batch(batch_size=batch_size, drop_remainder=False) return d return input_fn def model_fn_builder(self, bert_config, init_checkpoint, layer_indexes): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] input_type_ids = features["input_type_ids"] jit_scope = tf.contrib.compiler.jit.experimental_jit_scope with jit_scope(): model = modeling.BertModel( config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, token_type_ids=input_type_ids) if mode != tf.estimator.ModeKeys.PREDICT: raise ValueError("Only PREDICT modes are supported: %s" % (mode)) tvars = tf.trainable_variables() (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) all_layers = model.get_all_encoder_layers() predictions = { "unique_id": unique_ids, } for (i, layer_index) in enumerate(layer_indexes): predictions["layer_output_%d" % i] = all_layers[layer_index] from tensorflow.python.estimator.model_fn import EstimatorSpec output_spec = EstimatorSpec(mode=mode, predictions=predictions) return output_spec return model_fn def convert_examples_to_features(self, seq_length, tokenizer): """Loads a data file into a list of `InputBatch`s.""" features = [] input_masks = [] examples = self._to_example(self.input_queue.get()) for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) # if the sentences's length is more than seq_length, only use sentence's left part if len(tokens_a) > seq_length - 2: tokens_a = tokens_a[0:(seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] input_type_ids = [] tokens.append("[CLS]") input_type_ids.append(0) for token in tokens_a: tokens.append(token) input_type_ids.append(0) tokens.append("[SEP]") input_type_ids.append(0) # Where "input_ids" are tokens's index in vocabulary input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) input_masks.append(input_mask) # Zero-pad up to the sequence length. while len(input_ids) < seq_length: input_ids.append(0) input_mask.append(0) input_type_ids.append(0) assert len(input_ids) == seq_length assert len(input_mask) == seq_length assert len(input_type_ids) == seq_length if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("unique_id: %s" % (example.unique_id)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info( "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids])) yield InputFeatures( unique_id=example.unique_id, tokens=tokens, input_ids=input_ids, input_mask=input_mask, input_type_ids=input_type_ids) def _truncate_seq_pair(self, tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() @staticmethod def _to_example(sentences): import re """ sentences to InputExample :param sentences: list of strings :return: list of InputExample """ unique_id = 0 for ss in sentences: line = tokenization.convert_to_unicode(ss) if not line: continue line = line.strip() text_a = None text_b = None m = re.match(r"^(.*) \|\|\| (.*)$", line) if m is None: text_a = line else: text_a = m.group(1) text_b = m.group(2) yield InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b) unique_id += 1 if __name__ == "__main__": import time bert = BertVector() while True: question = input('question: ') start = time.time() vectors = bert.encode([question]) print(str(vectors)) #print(f'predict time:----------{time.time() - start}')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/bert/extract_feature.py
extract_feature.py
"""Functions and classes related to optimization (weight updates).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import tensorflow as tf def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu): """Creates an optimizer training op.""" global_step = tf.train.get_or_create_global_step() learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32) # Implements linear decay of the learning rate. learning_rate = tf.train.polynomial_decay( learning_rate, global_step, num_train_steps, end_learning_rate=0.0, power=1.0, cycle=False) # Implements linear warmup. I.e., if global_step < num_warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. if num_warmup_steps: global_steps_int = tf.cast(global_step, tf.int32) warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32) global_steps_float = tf.cast(global_steps_int, tf.float32) warmup_steps_float = tf.cast(warmup_steps_int, tf.float32) warmup_percent_done = global_steps_float / warmup_steps_float warmup_learning_rate = init_lr * warmup_percent_done is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32) learning_rate = ( (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate) # It is recommended that you use this optimizer for fine tuning, since this # is how the model was trained (note that the Adam m/v variables are NOT # loaded from init_checkpoint.) optimizer = AdamWeightDecayOptimizer( learning_rate=learning_rate, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) if use_tpu: optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) tvars = tf.trainable_variables() grads = tf.gradients(loss, tvars) # This is how the model was pre-trained. (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0) train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=global_step) new_global_step = global_step + 1 train_op = tf.group(train_op, [global_step.assign(new_global_step)]) return train_op class AdamWeightDecayOptimizer(tf.train.Optimizer): """A basic Adam optimizer that includes "correct" L2 weight decay.""" def __init__(self, learning_rate, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=None, name="AdamWeightDecayOptimizer"): """Constructs a AdamWeightDecayOptimizer.""" super(AdamWeightDecayOptimizer, self).__init__(False, name) self.learning_rate = learning_rate self.weight_decay_rate = weight_decay_rate self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.exclude_from_weight_decay = exclude_from_weight_decay def apply_gradients(self, grads_and_vars, global_step=None, name=None): """See base class.""" assignments = [] for (grad, param) in grads_and_vars: if grad is None or param is None: continue param_name = self._get_variable_name(param.name) m = tf.get_variable( name=param_name + "/adam_m", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) v = tf.get_variable( name=param_name + "/adam_v", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) # Standard Adam update. next_m = ( tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad)) next_v = ( tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2, tf.square(grad))) update = next_m / (tf.sqrt(next_v) + self.epsilon) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want ot decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if self._do_use_weight_decay(param_name): update += self.weight_decay_rate * param update_with_lr = self.learning_rate * update next_param = param - update_with_lr assignments.extend( [param.assign(next_param), m.assign(next_m), v.assign(next_v)]) return tf.group(*assignments, name=name) def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def _get_variable_name(self, param_name): """Get the variable name from the tensor name.""" m = re.match("^(.*):\\d+$", param_name) if m is not None: param_name = m.group(1) return param_name
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/bert/optimization.py
optimization.py
"""Tokenization classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import unicodedata import six import tensorflow as tf def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def printable_text(text): """Returns text encoded in a way suitable for print or `tf.logging`.""" # These functions want `str` for both Python2 and Python3, but in one case # it's a Unicode string and in the other it's a byte string. if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text elif isinstance(text, unicode): return text.encode("utf-8") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() index = 0 with tf.gfile.GFile(vocab_file, "r") as reader: while True: token = convert_to_unicode(reader.readline()) if not token: break token = token.strip() vocab[token] = index index += 1 return vocab def convert_by_vocab(vocab, items): """Converts a sequence of [tokens|ids] using the vocab.""" output = [] for item in items: output.append(vocab[item]) return output def convert_tokens_to_ids(vocab, tokens): return convert_by_vocab(vocab, tokens) def convert_ids_to_tokens(inv_vocab, ids): return convert_by_vocab(inv_vocab, ids) def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class FullTokenizer(object): """Runs end-to-end tokenziation.""" def __init__(self, vocab_file, do_lower_case=True): self.vocab = load_vocab(vocab_file) self.inv_vocab = {v: k for k, v in self.vocab.items()} self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) def tokenize(self, text): split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) return split_tokens def convert_tokens_to_ids(self, tokens): return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): return convert_by_vocab(self.inv_vocab, ids) class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case def tokenize(self, text): """Tokenizes a piece of text.""" text = convert_to_unicode(text) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenziation.""" def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer. Returns: A list of wordpiece tokens. """ text = convert_to_unicode(text) output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/bert/tokenization.py
tokenization.py
"""The main BERT model and related functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import json import math import re import six import tensorflow as tf class BertConfig(object): """Configuration for `BertModel`.""" def __init__(self, vocab_size, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02): """Constructs BertConfig. Args: vocab_size: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. hidden_dropout_prob: The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The stdev of the truncated_normal_initializer for initializing all weight matrices. """ self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size=None) for (key, value) in six.iteritems(json_object): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with tf.gfile.GFile(json_file, "r") as reader: text = reader.read() return cls.from_dict(json.loads(text)) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class BertModel(object): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Example usage: ```python # Already been converted into WordPiece token ids input_ids = tf.constant([[31, 51, 99], [15, 5, 0]]) input_mask = tf.constant([[1, 1, 1], [1, 1, 0]]) token_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]]) config = modeling.BertConfig(vocab_size=32000, hidden_size=512, num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) model = modeling.BertModel(config=config, is_training=True, input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids) label_embeddings = tf.get_variable(...) pooled_output = model.get_pooled_output() logits = tf.matmul(pooled_output, label_embeddings) ... ``` """ def __init__(self, config, is_training, input_ids, input_mask=None, token_type_ids=None, use_one_hot_embeddings=True, scope=None): """Constructor for BertModel. Args: config: `BertConfig` instance. is_training: bool. rue for training model, false for eval model. Controls whether dropout will be applied. input_ids: int32 Tensor of shape [batch_size, seq_length]. input_mask: (optional) int32 Tensor of shape [batch_size, seq_length]. token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length]. use_one_hot_embeddings: (optional) bool. Whether to use one-hot word embeddings or tf.embedding_lookup() for the word embeddings. On the TPU, it is must faster if this is True, on the CPU or GPU, it is faster if this is False. scope: (optional) variable scope. Defaults to "bert". Raises: ValueError: The config is invalid or one of the input tensor shapes is invalid. """ config = copy.deepcopy(config) if not is_training: config.hidden_dropout_prob = 0.0 config.attention_probs_dropout_prob = 0.0 input_shape = get_shape_list(input_ids, expected_rank=2) batch_size = input_shape[0] seq_length = input_shape[1] if input_mask is None: input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32) if token_type_ids is None: token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32) with tf.variable_scope(scope, default_name="bert"): with tf.variable_scope("embeddings"): # Perform embedding lookup on the word ids. (self.embedding_output, self.embedding_table) = embedding_lookup( input_ids=input_ids, vocab_size=config.vocab_size, embedding_size=config.hidden_size, initializer_range=config.initializer_range, word_embedding_name="word_embeddings", use_one_hot_embeddings=use_one_hot_embeddings) # Add positional embeddings and token type embeddings, then layer # normalize and perform dropout. self.embedding_output = embedding_postprocessor( input_tensor=self.embedding_output, use_token_type=True, token_type_ids=token_type_ids, token_type_vocab_size=config.type_vocab_size, token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=config.initializer_range, max_position_embeddings=config.max_position_embeddings, dropout_prob=config.hidden_dropout_prob) with tf.variable_scope("encoder"): # This converts a 2D mask of shape [batch_size, seq_length] to a 3D # mask of shape [batch_size, seq_length, seq_length] which is used # for the attention scores. attention_mask = create_attention_mask_from_input_mask( input_ids, input_mask) # Run the stacked transformer. # `sequence_output` shape = [batch_size, seq_length, hidden_size]. self.all_encoder_layers = transformer_model( input_tensor=self.embedding_output, attention_mask=attention_mask, hidden_size=config.hidden_size, num_hidden_layers=config.num_hidden_layers, num_attention_heads=config.num_attention_heads, intermediate_size=config.intermediate_size, intermediate_act_fn=get_activation(config.hidden_act), hidden_dropout_prob=config.hidden_dropout_prob, attention_probs_dropout_prob=config.attention_probs_dropout_prob, initializer_range=config.initializer_range, do_return_all_layers=True) self.sequence_output = self.all_encoder_layers[-1] # The "pooler" converts the encoded sequence tensor of shape # [batch_size, seq_length, hidden_size] to a tensor of shape # [batch_size, hidden_size]. This is necessary for segment-level # (or segment-pair-level) classification tasks where we need a fixed # dimensional representation of the segment. with tf.variable_scope("pooler"): # We "pool" the model by simply taking the hidden state corresponding # to the first token. We assume that this has been pre-trained first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1) self.pooled_output = tf.layers.dense( first_token_tensor, config.hidden_size, activation=tf.tanh, kernel_initializer=create_initializer(config.initializer_range)) def get_pooled_output(self): return self.pooled_output def get_sequence_output(self): """Gets final hidden layer of encoder. Returns: float Tensor of shape [batch_size, seq_length, hidden_size] corresponding to the final hidden of the transformer encoder. """ return self.sequence_output def get_all_encoder_layers(self): return self.all_encoder_layers def get_embedding_output(self): """Gets output of the embedding lookup (i.e., input to the transformer). Returns: float Tensor of shape [batch_size, seq_length, hidden_size] corresponding to the output of the embedding layer, after summing the word embeddings with the positional embeddings and the token type embeddings, then performing layer normalization. This is the input to the transformer. """ return self.embedding_output def get_embedding_table(self): return self.embedding_table def gelu(input_tensor): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: input_tensor: float Tensor to perform activation. Returns: `input_tensor` with the GELU activation applied. """ cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0))) return input_tensor * cdf def get_activation(activation_string): """Maps a string to a Python function, e.g., "relu" => `tf.nn.relu`. Args: activation_string: String name of the activation function. Returns: A Python function corresponding to the activation function. If `activation_string` is None, empty, or "linear", this will return None. If `activation_string` is not a string, it will return `activation_string`. Raises: ValueError: The `activation_string` does not correspond to a known activation. """ # We assume that anything that"s not a string is already an activation # function, so we just return it. if not isinstance(activation_string, six.string_types): return activation_string if not activation_string: return None act = activation_string.lower() if act == "linear": return None elif act == "relu": return tf.nn.relu elif act == "gelu": return gelu elif act == "tanh": return tf.tanh else: raise ValueError("Unsupported activation: %s" % act) def get_assignment_map_from_checkpoint(tvars, init_checkpoint): """Compute the union of the current variables and checkpoint variables.""" assignment_map = {} initialized_variable_names = {} name_to_variable = collections.OrderedDict() for var in tvars: name = var.name m = re.match("^(.*):\\d+$", name) if m is not None: name = m.group(1) name_to_variable[name] = var init_vars = tf.train.list_variables(init_checkpoint) assignment_map = collections.OrderedDict() for x in init_vars: (name, var) = (x[0], x[1]) if name not in name_to_variable: continue assignment_map[name] = name initialized_variable_names[name] = 1 initialized_variable_names[name + ":0"] = 1 return (assignment_map, initialized_variable_names) def dropout(input_tensor, dropout_prob): """Perform dropout. Args: input_tensor: float Tensor. dropout_prob: Python float. The probability of dropping out a value (NOT of *keeping* a dimension as in `tf.nn.dropout`). Returns: A version of `input_tensor` with dropout applied. """ if dropout_prob is None or dropout_prob == 0.0: return input_tensor output = tf.nn.dropout(input_tensor, 1.0 - dropout_prob) return output def layer_norm(input_tensor, name=None): """Run layer normalization on the last dimension of the tensor.""" return tf.contrib.layers.layer_norm( inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name) def layer_norm_and_dropout(input_tensor, dropout_prob, name=None): """Runs layer normalization followed by dropout.""" output_tensor = layer_norm(input_tensor, name) output_tensor = dropout(output_tensor, dropout_prob) return output_tensor def create_initializer(initializer_range=0.02): """Creates a `truncated_normal_initializer` with the given range.""" return tf.truncated_normal_initializer(stddev=initializer_range) def embedding_lookup(input_ids, vocab_size, embedding_size=128, initializer_range=0.02, word_embedding_name="word_embeddings", use_one_hot_embeddings=False): """Looks up words embeddings for id tensor. Args: input_ids: int32 Tensor of shape [batch_size, seq_length] containing word ids. vocab_size: int. Size of the embedding vocabulary. embedding_size: int. Width of the word embeddings. initializer_range: float. Embedding initialization range. word_embedding_name: string. Name of the embedding table. use_one_hot_embeddings: bool. If True, use one-hot method for word embeddings. If False, use `tf.nn.embedding_lookup()`. One hot is better for TPUs. Returns: float Tensor of shape [batch_size, seq_length, embedding_size]. """ # This function assumes that the input is of shape [batch_size, seq_length, # num_inputs]. # # If the input is a 2D tensor of shape [batch_size, seq_length], we # reshape to [batch_size, seq_length, 1]. if input_ids.shape.ndims == 2: input_ids = tf.expand_dims(input_ids, axis=[-1]) embedding_table = tf.get_variable( name=word_embedding_name, shape=[vocab_size, embedding_size], initializer=create_initializer(initializer_range)) if use_one_hot_embeddings: flat_input_ids = tf.reshape(input_ids, [-1]) one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size) output = tf.matmul(one_hot_input_ids, embedding_table) else: output = tf.nn.embedding_lookup(embedding_table, input_ids) input_shape = get_shape_list(input_ids) output = tf.reshape(output, input_shape[0:-1] + [input_shape[-1] * embedding_size]) return (output, embedding_table) def embedding_postprocessor(input_tensor, use_token_type=False, token_type_ids=None, token_type_vocab_size=16, token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=0.02, max_position_embeddings=512, dropout_prob=0.1): """Performs various post-processing on a word embedding tensor. Args: input_tensor: float Tensor of shape [batch_size, seq_length, embedding_size]. use_token_type: bool. Whether to add embeddings for `token_type_ids`. token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length]. Must be specified if `use_token_type` is True. token_type_vocab_size: int. The vocabulary size of `token_type_ids`. token_type_embedding_name: string. The name of the embedding table variable for token type ids. use_position_embeddings: bool. Whether to add position embeddings for the position of each token in the sequence. position_embedding_name: string. The name of the embedding table variable for positional embeddings. initializer_range: float. Range of the weight initialization. max_position_embeddings: int. Maximum sequence length that might ever be used with this model. This can be longer than the sequence length of input_tensor, but cannot be shorter. dropout_prob: float. Dropout probability applied to the final output tensor. Returns: float tensor with same shape as `input_tensor`. Raises: ValueError: One of the tensor shapes or input values is invalid. """ input_shape = get_shape_list(input_tensor, expected_rank=3) batch_size = input_shape[0] seq_length = input_shape[1] width = input_shape[2] output = input_tensor if use_token_type: if token_type_ids is None: raise ValueError("`token_type_ids` must be specified if" "`use_token_type` is True.") token_type_table = tf.get_variable( name=token_type_embedding_name, shape=[token_type_vocab_size, width], initializer=create_initializer(initializer_range)) # This vocab will be small so we always do one-hot here, since it is always # faster for a small vocabulary. flat_token_type_ids = tf.reshape(token_type_ids, [-1]) one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size) token_type_embeddings = tf.matmul(one_hot_ids, token_type_table) token_type_embeddings = tf.reshape(token_type_embeddings, [batch_size, seq_length, width]) output += token_type_embeddings if use_position_embeddings: assert_op = tf.assert_less_equal(seq_length, max_position_embeddings) with tf.control_dependencies([assert_op]): full_position_embeddings = tf.get_variable( name=position_embedding_name, shape=[max_position_embeddings, width], initializer=create_initializer(initializer_range)) # Since the position embedding table is a learned variable, we create it # using a (long) sequence length `max_position_embeddings`. The actual # sequence length might be shorter than this, for faster training of # tasks that do not have long sequences. # # So `full_position_embeddings` is effectively an embedding table # for position [0, 1, 2, ..., max_position_embeddings-1], and the current # sequence has positions [0, 1, 2, ... seq_length-1], so we can just # perform a slice. position_embeddings = tf.slice(full_position_embeddings, [0, 0], [seq_length, -1]) num_dims = len(output.shape.as_list()) # Only the last two dimensions are relevant (`seq_length` and `width`), so # we broadcast among the first dimensions, which is typically just # the batch size. position_broadcast_shape = [] for _ in range(num_dims - 2): position_broadcast_shape.append(1) position_broadcast_shape.extend([seq_length, width]) position_embeddings = tf.reshape(position_embeddings, position_broadcast_shape) output += position_embeddings output = layer_norm_and_dropout(output, dropout_prob) return output def create_attention_mask_from_input_mask(from_tensor, to_mask): """Create 3D attention mask from a 2D tensor mask. Args: from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...]. to_mask: int32 Tensor of shape [batch_size, to_seq_length]. Returns: float Tensor of shape [batch_size, from_seq_length, to_seq_length]. """ from_shape = get_shape_list(from_tensor, expected_rank=[2, 3]) batch_size = from_shape[0] from_seq_length = from_shape[1] to_shape = get_shape_list(to_mask, expected_rank=2) to_seq_length = to_shape[1] to_mask = tf.cast( tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32) # We don't assume that `from_tensor` is a mask (although it could be). We # don't actually care if we attend *from* padding tokens (only *to* padding) # tokens so we create a tensor of all ones. # # `broadcast_ones` = [batch_size, from_seq_length, 1] broadcast_ones = tf.ones( shape=[batch_size, from_seq_length, 1], dtype=tf.float32) # Here we broadcast along two dimensions to create the mask. mask = broadcast_ones * to_mask return mask def attention_layer(from_tensor, to_tensor, attention_mask=None, num_attention_heads=1, size_per_head=512, query_act=None, key_act=None, value_act=None, attention_probs_dropout_prob=0.0, initializer_range=0.02, do_return_2d_tensor=False, batch_size=None, from_seq_length=None, to_seq_length=None): """Performs multi-headed attention from `from_tensor` to `to_tensor`. This is an implementation of multi-headed attention based on "Attention is all you Need". If `from_tensor` and `to_tensor` are the same, then this is self-attention. Each timestep in `from_tensor` attends to the corresponding sequence in `to_tensor`, and returns a fixed-with vector. This function first projects `from_tensor` into a "query" tensor and `to_tensor` into "key" and "value" tensors. These are (effectively) a list of tensors of length `num_attention_heads`, where each tensor is of shape [batch_size, seq_length, size_per_head]. Then, the query and key tensors are dot-producted and scaled. These are softmaxed to obtain attention probabilities. The value tensors are then interpolated by these probabilities, then concatenated back to a single tensor and returned. In practice, the multi-headed attention are done with transposes and reshapes rather than actual separate tensors. Args: from_tensor: float Tensor of shape [batch_size, from_seq_length, from_width]. to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width]. attention_mask: (optional) int32 Tensor of shape [batch_size, from_seq_length, to_seq_length]. The values should be 1 or 0. The attention scores will effectively be set to -infinity for any positions in the mask that are 0, and will be unchanged for positions that are 1. num_attention_heads: int. Number of attention heads. size_per_head: int. Size of each attention head. query_act: (optional) Activation function for the query transform. key_act: (optional) Activation function for the key transform. value_act: (optional) Activation function for the value transform. attention_probs_dropout_prob: (optional) float. Dropout probability of the attention probabilities. initializer_range: float. Range of the weight initializer. do_return_2d_tensor: bool. If True, the output will be of shape [batch_size * from_seq_length, num_attention_heads * size_per_head]. If False, the output will be of shape [batch_size, from_seq_length, num_attention_heads * size_per_head]. batch_size: (Optional) int. If the input is 2D, this might be the batch size of the 3D version of the `from_tensor` and `to_tensor`. from_seq_length: (Optional) If the input is 2D, this might be the seq length of the 3D version of the `from_tensor`. to_seq_length: (Optional) If the input is 2D, this might be the seq length of the 3D version of the `to_tensor`. Returns: float Tensor of shape [batch_size, from_seq_length, num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is true, this will be of shape [batch_size * from_seq_length, num_attention_heads * size_per_head]). Raises: ValueError: Any of the arguments or tensor shapes are invalid. """ def transpose_for_scores(input_tensor, batch_size, num_attention_heads, seq_length, width): output_tensor = tf.reshape( input_tensor, [batch_size, seq_length, num_attention_heads, width]) output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3]) return output_tensor from_shape = get_shape_list(from_tensor, expected_rank=[2, 3]) to_shape = get_shape_list(to_tensor, expected_rank=[2, 3]) if len(from_shape) != len(to_shape): raise ValueError( "The rank of `from_tensor` must match the rank of `to_tensor`.") if len(from_shape) == 3: batch_size = from_shape[0] from_seq_length = from_shape[1] to_seq_length = to_shape[1] elif len(from_shape) == 2: if (batch_size is None or from_seq_length is None or to_seq_length is None): raise ValueError( "When passing in rank 2 tensors to attention_layer, the values " "for `batch_size`, `from_seq_length`, and `to_seq_length` " "must all be specified.") # Scalar dimensions referenced here: # B = batch size (number of sequences) # F = `from_tensor` sequence length # T = `to_tensor` sequence length # N = `num_attention_heads` # H = `size_per_head` from_tensor_2d = reshape_to_matrix(from_tensor) to_tensor_2d = reshape_to_matrix(to_tensor) # `query_layer` = [B*F, N*H] query_layer = tf.layers.dense( from_tensor_2d, num_attention_heads * size_per_head, activation=query_act, name="query", kernel_initializer=create_initializer(initializer_range)) # `key_layer` = [B*T, N*H] key_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=key_act, name="key", kernel_initializer=create_initializer(initializer_range)) # `value_layer` = [B*T, N*H] value_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=value_act, name="value", kernel_initializer=create_initializer(initializer_range)) # `query_layer` = [B, N, F, H] query_layer = transpose_for_scores(query_layer, batch_size, num_attention_heads, from_seq_length, size_per_head) # `key_layer` = [B, N, T, H] key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads, to_seq_length, size_per_head) # Take the dot product between "query" and "key" to get the raw # attention scores. # `attention_scores` = [B, N, F, T] attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = tf.multiply(attention_scores, 1.0 / math.sqrt(float(size_per_head))) if attention_mask is not None: # `attention_mask` = [B, 1, F, T] attention_mask = tf.expand_dims(attention_mask, axis=[1]) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0 # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_scores += adder # Normalize the attention scores to probabilities. # `attention_probs` = [B, N, F, T] attention_probs = tf.nn.softmax(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = dropout(attention_probs, attention_probs_dropout_prob) # `value_layer` = [B, T, N, H] value_layer = tf.reshape( value_layer, [batch_size, to_seq_length, num_attention_heads, size_per_head]) # `value_layer` = [B, N, T, H] value_layer = tf.transpose(value_layer, [0, 2, 1, 3]) # `context_layer` = [B, N, F, H] context_layer = tf.matmul(attention_probs, value_layer) # `context_layer` = [B, F, N, H] context_layer = tf.transpose(context_layer, [0, 2, 1, 3]) if do_return_2d_tensor: # `context_layer` = [B*F, N*V] context_layer = tf.reshape( context_layer, [batch_size * from_seq_length, num_attention_heads * size_per_head]) else: # `context_layer` = [B, F, N*V] context_layer = tf.reshape( context_layer, [batch_size, from_seq_length, num_attention_heads * size_per_head]) return context_layer def transformer_model(input_tensor, attention_mask=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, intermediate_act_fn=gelu, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, do_return_all_layers=False): """Multi-headed, multi-layer Transformer from "Attention is All You Need". This is almost an exact implementation of the original Transformer encoder. See the original paper: https://arxiv.org/abs/1706.03762 Also see: https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py Args: input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size]. attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length, seq_length], with 1 for positions that can be attended to and 0 in positions that should not be. hidden_size: int. Hidden size of the Transformer. num_hidden_layers: int. Number of layers (blocks) in the Transformer. num_attention_heads: int. Number of attention heads in the Transformer. intermediate_size: int. The size of the "intermediate" (a.k.a., feed forward) layer. intermediate_act_fn: function. The non-linear activation function to apply to the output of the intermediate/feed-forward layer. hidden_dropout_prob: float. Dropout probability for the hidden layers. attention_probs_dropout_prob: float. Dropout probability of the attention probabilities. initializer_range: float. Range of the initializer (stddev of truncated normal). do_return_all_layers: Whether to also return all layers or just the final layer. Returns: float Tensor of shape [batch_size, seq_length, hidden_size], the final hidden layer of the Transformer. Raises: ValueError: A Tensor shape or parameter is invalid. """ if hidden_size % num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (hidden_size, num_attention_heads)) attention_head_size = int(hidden_size / num_attention_heads) input_shape = get_shape_list(input_tensor, expected_rank=3) batch_size = input_shape[0] seq_length = input_shape[1] input_width = input_shape[2] # The Transformer performs sum residuals on all layers so the input needs # to be the same as the hidden size. if input_width != hidden_size: raise ValueError("The width of the input tensor (%d) != hidden size (%d)" % (input_width, hidden_size)) # We keep the representation as a 2D tensor to avoid re-shaping it back and # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on # the GPU/CPU but may not be free on the TPU, so we want to minimize them to # help the optimizer. prev_output = reshape_to_matrix(input_tensor) all_layer_outputs = [] for layer_idx in range(num_hidden_layers): with tf.variable_scope("layer_%d" % layer_idx): layer_input = prev_output with tf.variable_scope("attention"): attention_heads = [] with tf.variable_scope("self"): attention_head = attention_layer( from_tensor=layer_input, to_tensor=layer_input, attention_mask=attention_mask, num_attention_heads=num_attention_heads, size_per_head=attention_head_size, attention_probs_dropout_prob=attention_probs_dropout_prob, initializer_range=initializer_range, do_return_2d_tensor=True, batch_size=batch_size, from_seq_length=seq_length, to_seq_length=seq_length) attention_heads.append(attention_head) attention_output = None if len(attention_heads) == 1: attention_output = attention_heads[0] else: # In the case where we have other sequences, we just concatenate # them to the self-attention head before the projection. attention_output = tf.concat(attention_heads, axis=-1) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. with tf.variable_scope("output"): attention_output = tf.layers.dense( attention_output, hidden_size, kernel_initializer=create_initializer(initializer_range)) attention_output = dropout(attention_output, hidden_dropout_prob) attention_output = layer_norm(attention_output + layer_input) # The activation is only applied to the "intermediate" hidden layer. with tf.variable_scope("intermediate"): intermediate_output = tf.layers.dense( attention_output, intermediate_size, activation=intermediate_act_fn, kernel_initializer=create_initializer(initializer_range)) # Down-project back to `hidden_size` then add the residual. with tf.variable_scope("output"): layer_output = tf.layers.dense( intermediate_output, hidden_size, kernel_initializer=create_initializer(initializer_range)) layer_output = dropout(layer_output, hidden_dropout_prob) layer_output = layer_norm(layer_output + attention_output) prev_output = layer_output all_layer_outputs.append(layer_output) if do_return_all_layers: final_outputs = [] for layer_output in all_layer_outputs: final_output = reshape_from_matrix(layer_output, input_shape) final_outputs.append(final_output) return final_outputs else: final_output = reshape_from_matrix(prev_output, input_shape) return final_output def get_shape_list(tensor, expected_rank=None, name=None): """Returns a list of the shape of tensor, preferring static dimensions. Args: tensor: A tf.Tensor object to find the shape of. expected_rank: (optional) int. The expected rank of `tensor`. If this is specified and the `tensor` has a different rank, and exception will be thrown. name: Optional name of the tensor for the error message. Returns: A list of dimensions of the shape of tensor. All static dimensions will be returned as python integers, and dynamic dimensions will be returned as tf.Tensor scalars. """ if name is None: name = tensor.name if expected_rank is not None: assert_rank(tensor, expected_rank, name) shape = tensor.shape.as_list() non_static_indexes = [] for (index, dim) in enumerate(shape): if dim is None: non_static_indexes.append(index) if not non_static_indexes: return shape dyn_shape = tf.shape(tensor) for index in non_static_indexes: shape[index] = dyn_shape[index] return shape def reshape_to_matrix(input_tensor): """Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix).""" ndims = input_tensor.shape.ndims if ndims < 2: raise ValueError("Input tensor must have at least rank 2. Shape = %s" % (input_tensor.shape)) if ndims == 2: return input_tensor width = input_tensor.shape[-1] output_tensor = tf.reshape(input_tensor, [-1, width]) return output_tensor def reshape_from_matrix(output_tensor, orig_shape_list): """Reshapes a rank 2 tensor back to its original rank >= 2 tensor.""" if len(orig_shape_list) == 2: return output_tensor output_shape = get_shape_list(output_tensor) orig_dims = orig_shape_list[0:-1] width = output_shape[-1] return tf.reshape(output_tensor, orig_dims + [width]) def assert_rank(tensor, expected_rank, name=None): """Raises an exception if the tensor rank is not of the expected rank. Args: tensor: A tf.Tensor to check the rank of. expected_rank: Python integer or list of integers, expected rank. name: Optional name of the tensor for the error message. Raises: ValueError: If the expected shape doesn't match the actual shape. """ if name is None: name = tensor.name expected_rank_dict = {} if isinstance(expected_rank, six.integer_types): expected_rank_dict[expected_rank] = True else: for x in expected_rank: expected_rank_dict[x] = True actual_rank = tensor.shape.ndims if actual_rank not in expected_rank_dict: scope_name = tf.get_variable_scope().name raise ValueError( "For the tensor `%s` in scope `%s`, the actual rank " "`%d` (shape = %s) is not equal to the expected rank `%s`" % (name, scope_name, actual_rank, str(tensor.shape), str(expected_rank)))
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/bert/modeling.py
modeling.py
import os import tempfile import random import json import logging from termcolor import colored from pysoftNLP.bert import modeling from pysoftNLP.bert import args from pysoftNLP.bert.args import PoolingStrategy import contextlib def import_tf(device_id=-1, verbose=False): #os.environ['CUDA_VISIBLE_DEVICES'] = '-1' if device_id < 0 else str(device_id) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0' if verbose else '3' import tensorflow as tf tf.logging.set_verbosity(tf.logging.DEBUG if verbose else tf.logging.ERROR) return tf def set_logger(context, verbose=False): logger = logging.getLogger(context) logger.setLevel(logging.DEBUG if verbose else logging.INFO) formatter = logging.Formatter( '%(levelname)-.1s:' + context + ':[%(filename).5s:%(funcName).3s:%(lineno)3d]:%(message)s', datefmt= '%m-%d %H:%M:%S') console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG if verbose else logging.INFO) console_handler.setFormatter(formatter) logger.handlers = [] logger.addHandler(console_handler) return logger def optimize_graph(logger=None, verbose=False, pooling_strategy=PoolingStrategy.REDUCE_MEAN, max_seq_len=40): if not logger: logger = set_logger(colored('BERT_VEC', 'yellow'), verbose) try: # we don't need GPU for optimizing the graph tf = import_tf(device_id=0, verbose=verbose) from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference # allow_soft_placement:自动选择运行设备 config = tf.ConfigProto(allow_soft_placement=True) config_fp = args.config_name init_checkpoint = args.ckpt_name logger.info('model config: %s' % config_fp) # 加载bert配置文件 with tf.gfile.GFile(config_fp, 'r') as f: bert_config = modeling.BertConfig.from_dict(json.load(f)) logger.info('build graph...') # input placeholders, not sure if they are friendly to XLA input_ids = tf.placeholder(tf.int32, (None, max_seq_len), 'input_ids') input_mask = tf.placeholder(tf.int32, (None, max_seq_len), 'input_mask') input_type_ids = tf.placeholder(tf.int32, (None, max_seq_len), 'input_type_ids') # xla加速 jit_scope = tf.contrib.compiler.jit.experimental_jit_scope if args.xla else contextlib.suppress with jit_scope(): input_tensors = [input_ids, input_mask, input_type_ids] model = modeling.BertModel( config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, token_type_ids=input_type_ids, use_one_hot_embeddings=False) # 获取所有要训练的变量 tvars = tf.trainable_variables() (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.train.init_from_checkpoint(init_checkpoint, assignment_map) minus_mask = lambda x, m: x - tf.expand_dims(1.0 - m, axis=-1) * 1e30 mul_mask = lambda x, m: x * tf.expand_dims(m, axis=-1) masked_reduce_max = lambda x, m: tf.reduce_max(minus_mask(x, m), axis=1) masked_reduce_mean = lambda x, m: tf.reduce_sum(mul_mask(x, m), axis=1) / ( tf.reduce_sum(m, axis=1, keepdims=True) + 1e-10) # 共享卷积核 with tf.variable_scope("pooling"): # 如果只有一层,就只取对应那一层的weight if len(args.layer_indexes) == 1: encoder_layer = model.all_encoder_layers[args.layer_indexes[0]] else: # 否则遍历需要取的层,把所有层的weight取出来并拼接起来shape:768*层数 all_layers = [model.all_encoder_layers[l] for l in args.layer_indexes] encoder_layer = tf.concat(all_layers, -1) input_mask = tf.cast(input_mask, tf.float32) # 以下代码是句向量的生成方法,可以理解为做了一个卷积的操作,但是没有把结果相加, 卷积核是input_mask if pooling_strategy == PoolingStrategy.REDUCE_MEAN: pooled = masked_reduce_mean(encoder_layer, input_mask) elif pooling_strategy == PoolingStrategy.REDUCE_MAX: pooled = masked_reduce_max(encoder_layer, input_mask) elif pooling_strategy == PoolingStrategy.REDUCE_MEAN_MAX: pooled = tf.concat([masked_reduce_mean(encoder_layer, input_mask), masked_reduce_max(encoder_layer, input_mask)], axis=1) elif pooling_strategy == PoolingStrategy.FIRST_TOKEN or \ pooling_strategy == PoolingStrategy.CLS_TOKEN: pooled = tf.squeeze(encoder_layer[:, 0:1, :], axis=1) elif pooling_strategy == PoolingStrategy.LAST_TOKEN or \ pooling_strategy == PoolingStrategy.SEP_TOKEN: seq_len = tf.cast(tf.reduce_sum(input_mask, axis=1), tf.int32) rng = tf.range(0, tf.shape(seq_len)[0]) indexes = tf.stack([rng, seq_len - 1], 1) pooled = tf.gather_nd(encoder_layer, indexes) elif pooling_strategy == PoolingStrategy.NONE: pooled = mul_mask(encoder_layer, input_mask) else: raise NotImplementedError() pooled = tf.identity(pooled, 'final_encodes') output_tensors = [pooled] tmp_g = tf.get_default_graph().as_graph_def() with tf.Session(config=config) as sess: logger.info('load parameters from checkpoint...') sess.run(tf.global_variables_initializer()) logger.info('freeze...') tmp_g = tf.graph_util.convert_variables_to_constants(sess, tmp_g, [n.name[:-2] for n in output_tensors]) dtypes = [n.dtype for n in input_tensors] logger.info('optimize...') tmp_g = optimize_for_inference( tmp_g, [n.name[:-2] for n in input_tensors], [n.name[:-2] for n in output_tensors], [dtype.as_datatype_enum for dtype in dtypes], False) #tmp_file = tempfile.NamedTemporaryFile('w', delete=True).name #r = random.randint(1, 1000) #tmp_file = "./tmp_graph"+str(r) tmp_file = "./tmp_graph11" logger.info('write graph to a tmp file: %s' % tmp_file) with tf.gfile.GFile(tmp_file, 'wb') as f: f.write(tmp_g.SerializeToString()) return tmp_file except Exception as e: logger.error('fail to optimize the graph!') logger.error(e)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/bert/graph.py
graph.py
import os import logging import pandas as pd from kashgari import macros as k from typing import Tuple, List from tensorflow.python.keras.utils import get_file from kashgari import utils CORPUS_PATH = os.path.join(k.DATA_PATH, 'corpus') class DataReader(object): @staticmethod def read_conll_format_file(file_path: str, text_index: int = 0, label_index: int = 1) -> Tuple[List[List[str]], List[List[str]]]: """ Read conll format data_file Args: file_path: path of target file text_index: index of text data, default 0 label_index: index of label data, default 1 Returns: """ x_data, y_data = [], [] with open(file_path, 'r', encoding='utf-8') as f: lines = f.read().splitlines() x, y = [], [] for line in lines: rows = line.split(' ') if len(rows) == 1: x_data.append(x) y_data.append(y) x = [] y = [] else: x.append(rows[text_index]) y.append(rows[label_index]) return x_data, y_data class ChineseDailyNerCorpus(object): """ Chinese Daily New New Corpus https://github.com/zjy-ucas/ChineseNER/ """ # __corpus_name__ = 'china-people-daily-ner-corpus' __corpus_name__ ='D:\pysoftNLP_resources\ner\china-people-daily-ner-corpus' __zip_file__name = 'http://s3.bmio.net/kashgari/china-people-daily-ner-corpus.tar.gz' @classmethod def load_data(cls, subset_name: str = 'train', shuffle: bool = True) -> Tuple[List[List[str]], List[List[str]]]: """ Load dataset as sequence labeling format, char level tokenized features: ``[['海', '钓', '比', '赛', '地', '点', '在', '厦', '门', ...], ...]`` labels: ``[['O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', ...], ...]`` Sample:: train_x, train_y = ChineseDailyNerCorpus.load_data('train') test_x, test_y = ChineseDailyNerCorpus.load_data('test') Args: subset_name: {train, test, valid} shuffle: should shuffle or not, default True. Returns: dataset_features and dataset labels """ corpus_path = get_file(cls.__corpus_name__, cls.__zip_file__name, cache_dir=k.DATA_PATH, untar=True) corpus_path = 'D:\pysoftNLP_resources\entity_recognition\china-people-daily-ner-corpus' print(corpus_path) if subset_name == 'train': file_path = os.path.join(corpus_path, 'example.train') elif subset_name == 'test': file_path = os.path.join(corpus_path, 'example.test') else: file_path = os.path.join(corpus_path, 'example.dev') x_data, y_data = DataReader.read_conll_format_file(file_path) if shuffle: x_data, y_data = utils.unison_shuffled_copies(x_data, y_data) logging.debug(f"loaded {len(x_data)} samples from {file_path}. Sample:\n" f"x[0]: {x_data[0]}\n" f"y[0]: {y_data[0]}") return x_data, y_data class CONLL2003ENCorpus(object): __corpus_name__ = 'conll2003_en' __zip_file__name = 'http://s3.bmio.net/kashgari/conll2003_en.tar.gz' @classmethod def load_data(cls, subset_name: str = 'train', task_name: str = 'ner', shuffle: bool = True) -> Tuple[List[List[str]], List[List[str]]]: """ """ corpus_path = get_file(cls.__corpus_name__, cls.__zip_file__name, cache_dir=k.DATA_PATH, untar=True) if subset_name not in {'train', 'test', 'valid'}: raise ValueError() file_path = os.path.join(corpus_path, f'{subset_name}.txt') if task_name not in {'pos', 'chunking', 'ner'}: raise ValueError() data_index = ['pos', 'chunking', 'ner'].index(task_name) + 1 x_data, y_data = DataReader.read_conll_format_file(file_path, label_index=data_index) if shuffle: x_data, y_data = utils.unison_shuffled_copies(x_data, y_data) logging.debug(f"loaded {len(x_data)} samples from {file_path}. Sample:\n" f"x[0]: {x_data[0]}\n" f"y[0]: {y_data[0]}") return x_data, y_data class SMP2018ECDTCorpus(object): """ https://worksheets.codalab.org/worksheets/0x27203f932f8341b79841d50ce0fd684f/ This dataset is released by the Evaluation of Chinese Human-Computer Dialogue Technology (SMP2018-ECDT) task 1 and is provided by the iFLYTEK Corporation, which is a Chinese human-computer dialogue dataset. sample:: label query 0 weather 今天东莞天气如何 1 map 从观音桥到重庆市图书馆怎么走 2 cookbook 鸭蛋怎么腌? 3 health 怎么治疗牛皮癣 4 chat 唠什么 """ __corpus_name__ = 'SMP2018ECDTCorpus' __zip_file__name = 'http://s3.bmio.net/kashgari/SMP2018ECDTCorpus.tar.gz' @classmethod def load_data(cls, subset_name: str = 'train', shuffle: bool = True, cutter: str = 'char') -> Tuple[List[List[str]], List[str]]: """ Load dataset as sequence classification format, char level tokenized features: ``[['听', '新', '闻', '。'], ['电', '视', '台', '在', '播', '什', '么'], ...]`` labels: ``['news', 'epg', ...]`` Samples:: train_x, train_y = SMP2018ECDTCorpus.load_data('train') test_x, test_y = SMP2018ECDTCorpus.load_data('test') Args: subset_name: {train, test, valid} shuffle: should shuffle or not, default True. cutter: sentence cutter, {char, jieba} Returns: dataset_features and dataset labels """ corpus_path = get_file(cls.__corpus_name__, cls.__zip_file__name, cache_dir=k.DATA_PATH, untar=True) if cutter not in ['char', 'jieba', 'none']: raise ValueError('cutter error, please use one onf the {char, jieba}') df_path = os.path.join(corpus_path, f'{subset_name}.csv') df = pd.read_csv(df_path) if cutter == 'jieba': try: import jieba except ModuleNotFoundError: raise ModuleNotFoundError( "please install jieba, `$ pip install jieba`") x_data = [list(jieba.cut(item)) for item in df['query'].to_list()] elif 'char': x_data = [list(item) for item in df['query'].to_list()] y_data = df['label'].to_list() if shuffle: x_data, y_data = utils.unison_shuffled_copies(x_data, y_data) logging.debug(f"loaded {len(x_data)} samples from {df_path}. Sample:\n" f"x[0]: {x_data[0]}\n" f"y[0]: {y_data[0]}") return x_data, y_data if __name__ == "__main__": a, b = CONLL2003ENCorpus.load_data() print(a[:2]) print(b[:2]) print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/corpus.py
corpus.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: callbacks.py # time: 2019-05-22 15:00 from sklearn import metrics from kashgari import macros from tensorflow.python import keras from kashgari.tasks.base_model import BaseModel from seqeval import metrics as seq_metrics class EvalCallBack(keras.callbacks.Callback): def __init__(self, kash_model: BaseModel, valid_x, valid_y, step=5, batch_size=256, average='weighted'): """ Evaluate callback, calculate precision, recall and f1 Args: kash_model: the kashgari model to evaluate valid_x: feature data valid_y: label data step: step, default 5 batch_size: batch size, default 256 """ super(EvalCallBack, self).__init__() self.kash_model = kash_model self.valid_x = valid_x self.valid_y = valid_y self.step = step self.batch_size = batch_size self.average = average self.logs = [] def on_epoch_end(self, epoch, logs=None): if (epoch + 1) % self.step == 0: y_pred = self.kash_model.predict(self.valid_x, batch_size=self.batch_size) if self.kash_model.task == macros.TaskType.LABELING: y_true = [seq[:len(y_pred[index])] for index, seq in enumerate(self.valid_y)] precision = seq_metrics.precision_score(y_true, y_pred) recall = seq_metrics.recall_score(y_true, y_pred) f1 = seq_metrics.f1_score(y_true, y_pred) else: y_true = self.valid_y precision = metrics.precision_score(y_true, y_pred, average=self.average) recall = metrics.recall_score(y_true, y_pred, average=self.average) f1 = metrics.f1_score(y_true, y_pred, average=self.average) self.logs.append({ 'precision': precision, 'recall': recall, 'f1': f1 }) print(f"\nepoch: {epoch} precision: {precision:.6f}, recall: {recall:.6f}, f1: {f1:.6f}") if __name__ == "__main__": print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/callbacks.py
callbacks.py
import json import os import pathlib import pydoc import random import time from typing import List, Optional, Dict, Union import tensorflow as tf from tensorflow.python import keras, saved_model from kashgari import custom_objects from kashgari.embeddings.base_embedding import Embedding from kashgari.layers.crf import CRF from kashgari.processors.base_processor import BaseProcessor from kashgari.tasks.base_model import BaseModel from kashgari.tasks.classification.base_model import BaseClassificationModel from kashgari.tasks.labeling.base_model import BaseLabelingModel def unison_shuffled_copies(a, b): assert len(a) == len(b) c = list(zip(a, b)) random.shuffle(c) a, b = zip(*c) return list(a), list(b) def get_list_subset(target: List, index_list: List[int]) -> List: return [target[i] for i in index_list if i < len(target)] def custom_object_scope(): return tf.keras.utils.custom_object_scope(custom_objects) def load_model(model_path: str, load_weights: bool = True) -> Union[BaseClassificationModel, BaseLabelingModel]: """ Load saved model from saved model from `model.save` function Args: model_path: model folder path load_weights: only load model structure and vocabulary when set to False, default True. Returns: """ with open(os.path.join(model_path, 'model_info.json'), 'r') as f: model_info = json.load(f) model_class = pydoc.locate(f"{model_info['module']}.{model_info['class_name']}") model_json_str = json.dumps(model_info['tf_model']) model = model_class() model.tf_model = tf.keras.models.model_from_json(model_json_str, custom_objects) if load_weights: model.tf_model.load_weights(os.path.join(model_path, 'model_weights.h5')) embed_info = model_info['embedding'] embed_class = pydoc.locate(f"{embed_info['module']}.{embed_info['class_name']}") embedding: Embedding = embed_class._load_saved_instance(embed_info, model_path, model.tf_model) model.embedding = embedding if type(model.tf_model.layers[-1]) == CRF: model.layer_crf = model.tf_model.layers[-1] return model def load_processor(model_path: str) -> BaseProcessor: """ Load processor from model When we using tf-serving, we need to use model's processor to pre-process data Args: model_path: Returns: """ with open(os.path.join(model_path, 'model_info.json'), 'r') as f: model_info = json.load(f) processor_info = model_info['embedding']['processor'] processor_class = pydoc.locate(f"{processor_info['module']}.{processor_info['class_name']}") processor: BaseProcessor = processor_class(**processor_info['config']) return processor def convert_to_saved_model(model: BaseModel, model_path: str, version: str = None, inputs: Optional[Dict] = None, outputs: Optional[Dict] = None): """ Export model for tensorflow serving Args: model: Target model model_path: The path to which the SavedModel will be stored. version: The model version code, default timestamp inputs: dict mapping string input names to tensors. These are added to the SignatureDef as the inputs. outputs: dict mapping string output names to tensors. These are added to the SignatureDef as the outputs. """ pathlib.Path(model_path).mkdir(exist_ok=True, parents=True) if version is None: version = round(time.time()) export_path = os.path.join(model_path, str(version)) if inputs is None: inputs = {i.name: i for i in model.tf_model.inputs} if outputs is None: outputs = {o.name: o for o in model.tf_model.outputs} sess = keras.backend.get_session() saved_model.simple_save(session=sess, export_dir=export_path, inputs=inputs, outputs=outputs) with open(os.path.join(export_path, 'model_info.json'), 'w') as f: f.write(json.dumps(model.info(), indent=2, ensure_ascii=True)) f.close() if __name__ == "__main__": path = '/Users/brikerman/Desktop/python/Kashgari/tests/classification/saved_models/' \ 'kashgari.tasks.classification.models/BiLSTM_Model' p = load_processor(path) print(p.process_x_dataset([list('语言模型')])) print(p.label2idx) print(p.token2idx)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/utils.py
utils.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: bert_tokenizer.py # time: 11:33 上午 # flake8: noqa: E127 import codecs import os import unicodedata from kashgari.tokenizer.base_tokenizer import Tokenizer TOKEN_PAD = '' # Token for padding TOKEN_UNK = '[UNK]' # Token for unknown words TOKEN_CLS = '[CLS]' # Token for classification TOKEN_SEP = '[SEP]' # Token for separation TOKEN_MASK = '[MASK]' # Token for masking class BertTokenizer(Tokenizer): """ Bert Like Tokenizer, ref: https://github.com/CyberZHG/keras-bert/blob/master/keras_bert/tokenizer.py """ def __init__(self, token_dict=None, token_cls=TOKEN_CLS, token_sep=TOKEN_SEP, token_unk=TOKEN_UNK, pad_index=0, cased=False): """Initialize tokenizer. :param token_dict: A dict maps tokens to indices. :param token_cls: The token represents classification. :param token_sep: The token represents separator. :param token_unk: The token represents unknown token. :param pad_index: The index to pad. :param cased: Whether to keep the case. """ self._token_dict = token_dict if self._token_dict: self._token_dict_inv = {v: k for k, v in token_dict.items()} else: self._token_dict_inv = {} self._token_cls = token_cls self._token_sep = token_sep self._token_unk = token_unk self._pad_index = pad_index self._cased = cased @classmethod def load_from_model(cls, model_path: str): dict_path = os.path.join(model_path, 'vocab.txt') token2idx = {} with codecs.open(dict_path, 'r', 'utf8') as reader: for line in reader: token = line.strip() token2idx[token] = len(token2idx) return BertTokenizer(token_dict=token2idx) @classmethod def load_from_vacab_file(cls, vacab_path: str): token2idx = {} with codecs.open(vacab_path, 'r', 'utf8') as reader: for line in reader: token = line.strip() token2idx[token] = len(token2idx) return BertTokenizer(token_dict=token2idx) def tokenize(self, first): """Split text to tokens. :param first: First text. :param second: Second text. :return: A list of strings. """ tokens = self._tokenize(first) return tokens def _tokenize(self, text): if not self._cased: text = unicodedata.normalize('NFD', text) text = ''.join([ch for ch in text if unicodedata.category(ch) != 'Mn']) text = text.lower() spaced = '' for ch in text: if self._is_punctuation(ch) or self._is_cjk_character(ch): spaced += ' ' + ch + ' ' elif self._is_space(ch): spaced += ' ' elif ord(ch) == 0 or ord(ch) == 0xfffd or self._is_control(ch): continue else: spaced += ch if self._token_dict: tokens = [] for word in spaced.strip().split(): tokens += self._word_piece_tokenize(word) return tokens else: return spaced.strip().split() def _word_piece_tokenize(self, word): if word in self._token_dict: return [word] tokens = [] start, stop = 0, 0 while start < len(word): stop = len(word) while stop > start: sub = word[start:stop] if start > 0: sub = '##' + sub if sub in self._token_dict: break stop -= 1 if start == stop: stop += 1 tokens.append(sub) start = stop return tokens @staticmethod def _is_punctuation(ch): # noqa: E127 code = ord(ch) return 33 <= code <= 47 or \ 58 <= code <= 64 or \ 91 <= code <= 96 or \ 123 <= code <= 126 or \ unicodedata.category(ch).startswith('P') @staticmethod def _is_cjk_character(ch): code = ord(ch) return 0x4E00 <= code <= 0x9FFF or \ 0x3400 <= code <= 0x4DBF or \ 0x20000 <= code <= 0x2A6DF or \ 0x2A700 <= code <= 0x2B73F or \ 0x2B740 <= code <= 0x2B81F or \ 0x2B820 <= code <= 0x2CEAF or \ 0xF900 <= code <= 0xFAFF or \ 0x2F800 <= code <= 0x2FA1F @staticmethod def _is_space(ch): return ch == ' ' or ch == '\n' or ch == '\r' or ch == '\t' or unicodedata.category(ch) == 'Zs' @staticmethod def _is_control(ch): return unicodedata.category(ch) in ('Cc', 'Cf')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/tokenizer/bert_tokenizer.py
bert_tokenizer.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_model.py # time: 2019-05-22 11:21 import os import json import logging import warnings import pathlib from typing import Dict, Any, List, Optional, Union, Tuple import numpy as np import tensorflow as tf from tensorflow import keras import kashgari from kashgari import utils from kashgari.embeddings import BareEmbedding from kashgari.embeddings.base_embedding import Embedding L = keras.layers class BaseModel(object): """Base Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: raise NotImplementedError def info(self): model_json_str = self.tf_model.to_json() return { 'config': { 'hyper_parameters': self.hyper_parameters, }, 'tf_model': json.loads(model_json_str), 'embedding': self.embedding.info(), 'class_name': self.__class__.__name__, 'module': self.__class__.__module__, 'tf_version': tf.__version__, 'kashgari_version': kashgari.__version__ } @property def task(self): return self.embedding.task @property def token2idx(self) -> Dict[str, int]: return self.embedding.token2idx @property def label2idx(self) -> Dict[str, int]: return self.embedding.label2idx @property def pre_processor(self): warnings.warn("The 'pre_processor' property is deprecated, " "use 'processor' instead", DeprecationWarning, 2) """Deprecated. Use `self.processor` instead.""" return self.embedding.processor @property def processor(self): return self.embedding.processor def __init__(self, embedding: Optional[Embedding] = None, hyper_parameters: Optional[Dict[str, Dict[str, Any]]] = None): """ Args: embedding: model embedding hyper_parameters: a dict of hyper_parameters. Examples: You could change customize hyper_parameters like this:: # get default hyper_parameters hyper_parameters = BLSTMModel.get_default_hyper_parameters() # change lstm hidden unit to 12 hyper_parameters['layer_blstm']['units'] = 12 # init new model with customized hyper_parameters labeling_model = BLSTMModel(hyper_parameters=hyper_parameters) labeling_model.fit(x, y) """ if embedding is None: self.embedding = BareEmbedding(task=self.__task__) else: self.embedding = embedding self.tf_model: keras.Model = None self.hyper_parameters = self.get_default_hyper_parameters() self.model_info = {} if hyper_parameters: self.hyper_parameters.update(hyper_parameters) def build_model(self, x_train: Union[Tuple[List[List[str]], ...], List[List[str]]], y_train: Union[List[List[str]], List[str]], x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None, y_validate: Union[List[List[str]], List[str]] = None): """ Build model with corpus Args: x_train: Array of train feature data (if the model has a single input), or tuple of train feature data array (if the model has multiple inputs) y_train: Array of train label data x_validate: Array of validation feature data (if the model has a single input), or tuple of validation feature data array (if the model has multiple inputs) y_validate: Array of validation label data Returns: """ if x_validate is not None and not isinstance(x_validate, tuple): self.embedding.analyze_corpus(x_train + x_validate, y_train + y_validate) else: self.embedding.analyze_corpus(x_train, y_train) if self.tf_model is None: self.build_model_arc() self.compile_model() def build_multi_gpu_model(self, gpus: int, x_train: Union[Tuple[List[List[str]], ...], List[List[str]]], y_train: Union[List[List[str]], List[str]], cpu_merge: bool = True, cpu_relocation: bool = False, x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None, y_validate: Union[List[List[str]], List[str]] = None): """ Build multi-GPU model with corpus Args: gpus: Integer >= 2, number of on GPUs on which to create model replicas. cpu_merge: A boolean value to identify whether to force merging model weights under the scope of the CPU or not. cpu_relocation: A boolean value to identify whether to create the model's weights under the scope of the CPU. If the model is not defined under any preceding device scope, you can still rescue it by activating this option. x_train: Array of train feature data (if the model has a single input), or tuple of train feature data array (if the model has multiple inputs) y_train: Array of train label data x_validate: Array of validation feature data (if the model has a single input), or tuple of validation feature data array (if the model has multiple inputs) y_validate: Array of validation label data Returns: """ if x_validate is not None and not isinstance(x_validate, tuple): self.embedding.analyze_corpus(x_train + x_validate, y_train + y_validate) else: self.embedding.analyze_corpus(x_train, y_train) if self.tf_model is None: with utils.custom_object_scope(): self.build_model_arc() self.tf_model = tf.keras.utils.multi_gpu_model(self.tf_model, gpus, cpu_merge=cpu_merge, cpu_relocation=cpu_relocation) self.compile_model() def build_tpu_model(self, strategy: tf.contrib.distribute.TPUStrategy, x_train: Union[Tuple[List[List[str]], ...], List[List[str]]], y_train: Union[List[List[str]], List[str]], x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None, y_validate: Union[List[List[str]], List[str]] = None): """ Build TPU model with corpus Args: strategy: `TPUDistributionStrategy`. The strategy to use for replicating model across multiple TPU cores. x_train: Array of train feature data (if the model has a single input), or tuple of train feature data array (if the model has multiple inputs) y_train: Array of train label data x_validate: Array of validation feature data (if the model has a single input), or tuple of validation feature data array (if the model has multiple inputs) y_validate: Array of validation label data Returns: """ if x_validate is not None and not isinstance(x_validate, tuple): self.embedding.analyze_corpus(x_train + x_validate, y_train + y_validate) else: self.embedding.analyze_corpus(x_train, y_train) if self.tf_model is None: with utils.custom_object_scope(): self.build_model_arc() self.tf_model = tf.contrib.tpu.keras_to_tpu_model(self.tf_model, strategy=strategy) self.compile_model(optimizer=tf.train.AdamOptimizer()) def get_data_generator(self, x_data, y_data, batch_size: int = 64, shuffle: bool = True): """ data generator for fit_generator Args: x_data: Array of feature data (if the model has a single input), or tuple of feature data array (if the model has multiple inputs) y_data: Array of label data batch_size: Number of samples per gradient update, default to 64. shuffle: Returns: data generator """ index_list = np.arange(len(x_data)) page_count = len(x_data) // batch_size + 1 while True: if shuffle: np.random.shuffle(index_list) for page in range(page_count): start_index = page * batch_size end_index = start_index + batch_size target_index = index_list[start_index: end_index] if len(target_index) == 0: target_index = index_list[0: batch_size] x_tensor = self.embedding.process_x_dataset(x_data, target_index) y_tensor = self.embedding.process_y_dataset(y_data, target_index) yield (x_tensor, y_tensor) def fit(self, x_train: Union[Tuple[List[List[str]], ...], List[List[str]]], y_train: Union[List[List[str]], List[str]], x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None, y_validate: Union[List[List[str]], List[str]] = None, batch_size: int = 64, epochs: int = 5, callbacks: List[keras.callbacks.Callback] = None, fit_kwargs: Dict = None, shuffle: bool = True): """ Trains the model for a given number of epochs with fit_generator (iterations on a dataset). Args: x_train: Array of train feature data (if the model has a single input), or tuple of train feature data array (if the model has multiple inputs) y_train: Array of train label data x_validate: Array of validation feature data (if the model has a single input), or tuple of validation feature data array (if the model has multiple inputs) y_validate: Array of validation label data batch_size: Number of samples per gradient update, default to 64. epochs: Integer. Number of epochs to train the model. default 5. callbacks: fit_kwargs: fit_kwargs: additional arguments passed to ``fit_generator()`` function from ``tensorflow.keras.Model`` - https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#fit_generator shuffle: Returns: """ self.build_model(x_train, y_train, x_validate, y_validate) train_generator = self.get_data_generator(x_train, y_train, batch_size, shuffle) if fit_kwargs is None: fit_kwargs = {} validation_generator = None validation_steps = None if x_validate: validation_generator = self.get_data_generator(x_validate, y_validate, batch_size, shuffle) if isinstance(x_validate, tuple): validation_steps = len(x_validate[0]) // batch_size + 1 else: validation_steps = len(x_validate) // batch_size + 1 if isinstance(x_train, tuple): steps_per_epoch = len(x_train[0]) // batch_size + 1 else: steps_per_epoch = len(x_train) // batch_size + 1 with utils.custom_object_scope(): return self.tf_model.fit_generator(train_generator, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=validation_generator, validation_steps=validation_steps, callbacks=callbacks, **fit_kwargs) def fit_without_generator(self, x_train: Union[Tuple[List[List[str]], ...], List[List[str]]], y_train: Union[List[List[str]], List[str]], x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None, y_validate: Union[List[List[str]], List[str]] = None, batch_size: int = 64, epochs: int = 5, callbacks: List[keras.callbacks.Callback] = None, fit_kwargs: Dict = None): """ Trains the model for a given number of epochs (iterations on a dataset). Args: x_train: Array of train feature data (if the model has a single input), or tuple of train feature data array (if the model has multiple inputs) y_train: Array of train label data x_validate: Array of validation feature data (if the model has a single input), or tuple of validation feature data array (if the model has multiple inputs) y_validate: Array of validation label data batch_size: Number of samples per gradient update, default to 64. epochs: Integer. Number of epochs to train the model. default 5. callbacks: fit_kwargs: fit_kwargs: additional arguments passed to ``fit_generator()`` function from ``tensorflow.keras.Model`` - https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#fit_generator Returns: """ self.build_model(x_train, y_train, x_validate, y_validate) tensor_x = self.embedding.process_x_dataset(x_train) tensor_y = self.embedding.process_y_dataset(y_train) validation_data = None if x_validate is not None: tensor_valid_x = self.embedding.process_x_dataset(x_validate) tensor_valid_y = self.embedding.process_y_dataset(y_validate) validation_data = (tensor_valid_x, tensor_valid_y) if fit_kwargs is None: fit_kwargs = {} if callbacks and 'callbacks' not in fit_kwargs: fit_kwargs['callbacks'] = callbacks with utils.custom_object_scope(): return self.tf_model.fit(tensor_x, tensor_y, validation_data=validation_data, epochs=epochs, batch_size=batch_size, **fit_kwargs) def compile_model(self, **kwargs): """Configures the model for training. Using ``compile()`` function of ``tf.keras.Model`` - https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#compile Args: **kwargs: arguments passed to ``compile()`` function of ``tf.keras.Model`` Defaults: - loss: ``categorical_crossentropy`` - optimizer: ``adam`` - metrics: ``['accuracy']`` """ if kwargs.get('loss') is None: kwargs['loss'] = 'categorical_crossentropy' if kwargs.get('optimizer') is None: kwargs['optimizer'] = 'adam' if kwargs.get('metrics') is None: kwargs['metrics'] = ['accuracy'] self.tf_model.compile(**kwargs) if not kashgari.config.disable_auto_summary: self.tf_model.summary() def predict(self, x_data, batch_size=32, debug_info=False, predict_kwargs: Dict = None): """ Generates output predictions for the input samples. Computation is done in batches. Args: x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs). batch_size: Integer. If unspecified, it will default to 32. debug_info: Bool, Should print out the logging info. predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model`` Returns: array(s) of predictions. """ if predict_kwargs is None: predict_kwargs = {} with utils.custom_object_scope(): if isinstance(x_data, tuple): lengths = [len(sen) for sen in x_data[0]] else: lengths = [len(sen) for sen in x_data] tensor = self.embedding.process_x_dataset(x_data) pred = self.tf_model.predict(tensor, batch_size=batch_size, **predict_kwargs) if self.task == 'scoring': t_pred = pred else: t_pred = pred.argmax(-1) res = self.embedding.reverse_numerize_label_sequences(t_pred, lengths) if debug_info: print('input: {}'.format(tensor)) print('output: {}'.format(pred)) print('output argmax: {}'.format(t_pred)) return res def evaluate(self, x_data, y_data, batch_size=None, digits=4, debug_info=False) -> Tuple[float, float, Dict]: """ Evaluate model Args: x_data: y_data: batch_size: digits: debug_info: Returns: """ raise NotImplementedError def build_model_arc(self): raise NotImplementedError def save(self, model_path: str): """ Save model Args: model_path: Returns: """ pathlib.Path(model_path).mkdir(exist_ok=True, parents=True) with open(os.path.join(model_path, 'model_info.json'), 'w') as f: f.write(json.dumps(self.info(), indent=2, ensure_ascii=True)) f.close() self.tf_model.save_weights(os.path.join(model_path, 'model_weights.h5')) logging.info('model saved to {}'.format(os.path.abspath(model_path))) if __name__ == "__main__": from kashgari.tasks.labeling import CNN_LSTM_Model from kashgari.corpus import ChineseDailyNerCorpus train_x, train_y = ChineseDailyNerCorpus.load_data('valid') model = CNN_LSTM_Model() model.build_model(train_x[:100], train_y[:100]) r = model.predict_entities(train_x[:5]) model.save('./res') import pprint pprint.pprint(r) model.evaluate(train_x[:20], train_y[:20]) print("Hello world") print(model.predict(train_x[:20]))
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/tasks/base_model.py
base_model.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_model.py # time: 2019-05-20 13:07 from typing import Dict, Any, Tuple import random import logging from seqeval.metrics import classification_report from seqeval.metrics.sequence_labeling import get_entities from kashgari.tasks.base_model import BaseModel class BaseLabelingModel(BaseModel): """Base Sequence Labeling Model""" __task__ = 'labeling' @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: raise NotImplementedError def predict_entities(self, x_data, batch_size=None, join_chunk=' ', debug_info=False, predict_kwargs: Dict = None): """Gets entities from sequence. Args: x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs). batch_size: Integer. If unspecified, it will default to 32. join_chunk: str or False, debug_info: Bool, Should print out the logging info. predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model`` Returns: list: list of entity. """ if isinstance(x_data, tuple): text_seq = x_data[0] else: text_seq = x_data res = self.predict(x_data, batch_size, debug_info, predict_kwargs) new_res = [get_entities(seq) for seq in res] final_res = [] for index, seq in enumerate(new_res): seq_data = [] for entity in seq: if join_chunk is False: value = text_seq[index][entity[1]:entity[2] + 1], else: value = join_chunk.join(text_seq[index][entity[1]:entity[2] + 1]) seq_data.append({ "entity": entity[0], "start": entity[1], "end": entity[2], "value": value, }) final_res.append({ 'text': join_chunk.join(text_seq[index]), 'text_raw': text_seq[index], 'labels': seq_data }) return final_res def evaluate(self, x_data, y_data, batch_size=None, digits=4, debug_info=False) -> Tuple[float, float, Dict]: """ Build a text report showing the main classification metrics. Args: x_data: y_data: batch_size: digits: debug_info: Returns: """ y_pred = self.predict(x_data, batch_size=batch_size) y_true = [seq[:len(y_pred[index])] for index, seq in enumerate(y_data)] new_y_pred = [] for x in y_pred: new_y_pred.append([str(i) for i in x]) new_y_true = [] for x in y_true: new_y_true.append([str(i) for i in x]) if debug_info: for index in random.sample(list(range(len(x_data))), 5): logging.debug('------ sample {} ------'.format(index)) logging.debug('x : {}'.format(x_data[index])) logging.debug('y_true : {}'.format(y_true[index])) logging.debug('y_pred : {}'.format(y_pred[index])) report = classification_report(y_true, y_pred, digits=digits) print(classification_report(y_true, y_pred, digits=digits)) return report def build_model_arc(self): raise NotImplementedError if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) from kashgari.tasks.labeling import BiLSTM_Model from kashgari.corpus import ChineseDailyNerCorpus from kashgari.utils import load_model train_x, train_y = ChineseDailyNerCorpus.load_data('train', shuffle=False) valid_x, valid_y = ChineseDailyNerCorpus.load_data('valid') train_x, train_y = train_x[:5120], train_y[:5120] model = load_model('/Users/brikerman/Desktop/blstm_model') # model.build_model(train_x[:100], train_y[:100]) # model.fit(train_x[:1000], train_y[:1000], epochs=10) # model.evaluate(train_x[:20], train_y[:20]) print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/tasks/labeling/base_model.py
base_model.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: experimental.py # time: 2019-05-22 19:35 from typing import Dict, Any from tensorflow import keras import kashgari from kashgari.tasks.labeling.base_model import BaseLabelingModel from kashgari.layers import L from keras_self_attention import SeqSelfAttention class BLSTMAttentionModel(BaseLabelingModel): """Bidirectional LSTM Self Attention Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_blstm': { 'units': 64, 'return_sequences': True }, 'layer_self_attention': { 'attention_activation': 'sigmoid' }, 'layer_dropout': { 'rate': 0.5 }, 'layer_time_distributed': {}, 'layer_activation': { 'activation': 'softmax' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.LSTM(**config['layer_blstm']), name='layer_blstm') layer_self_attention = SeqSelfAttention(**config['layer_self_attention'], name='layer_self_attention') layer_dropout = L.Dropout(**config['layer_dropout'], name='layer_dropout') layer_time_distributed = L.TimeDistributed(L.Dense(output_dim, **config['layer_time_distributed']), name='layer_time_distributed') layer_activation = L.Activation(**config['layer_activation']) tensor = layer_blstm(embed_model.output) tensor = layer_self_attention(tensor) tensor = layer_dropout(tensor) tensor = layer_time_distributed(tensor) output_tensor = layer_activation(tensor) self.tf_model = keras.Model(embed_model.inputs, output_tensor) # Register custom layer kashgari.custom_objects['SeqSelfAttention'] = SeqSelfAttention if __name__ == "__main__": print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/tasks/labeling/experimental.py
experimental.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: models.py # time: 2019-05-20 11:13 import logging from typing import Dict, Any from tensorflow import keras from kashgari.tasks.labeling.base_model import BaseLabelingModel from kashgari.layers import L from kashgari.layers.crf import CRF from kashgari.utils import custom_objects custom_objects['CRF'] = CRF class BiLSTM_Model(BaseLabelingModel): """Bidirectional LSTM Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_blstm': { 'units': 128, 'return_sequences': True }, 'layer_dropout': { 'rate': 0.4 }, 'layer_time_distributed': {}, 'layer_activation': { 'activation': 'softmax' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.LSTM(**config['layer_blstm']), name='layer_blstm') layer_dropout = L.Dropout(**config['layer_dropout'], name='layer_dropout') layer_time_distributed = L.TimeDistributed(L.Dense(output_dim, **config['layer_time_distributed']), name='layer_time_distributed') layer_activation = L.Activation(**config['layer_activation']) tensor = layer_blstm(embed_model.output) tensor = layer_dropout(tensor) tensor = layer_time_distributed(tensor) output_tensor = layer_activation(tensor) self.tf_model = keras.Model(embed_model.inputs, output_tensor) class BiLSTM_CRF_Model(BaseLabelingModel): """Bidirectional LSTM CRF Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_blstm': { 'units': 128, 'return_sequences': True }, 'layer_dense': { 'units': 64, 'activation': 'tanh' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.LSTM(**config['layer_blstm']), name='layer_blstm') layer_dense = L.Dense(**config['layer_dense'], name='layer_dense') layer_crf_dense = L.Dense(output_dim, name='layer_crf_dense') layer_crf = CRF(output_dim, name='layer_crf') tensor = layer_blstm(embed_model.output) tensor = layer_dense(tensor) tensor = layer_crf_dense(tensor) output_tensor = layer_crf(tensor) self.layer_crf = layer_crf self.tf_model = keras.Model(embed_model.inputs, output_tensor) def compile_model(self, **kwargs): if kwargs.get('loss') is None: kwargs['loss'] = self.layer_crf.loss if kwargs.get('metrics') is None: kwargs['metrics'] = [self.layer_crf.viterbi_accuracy] super(BiLSTM_CRF_Model, self).compile_model(**kwargs) class BiGRU_Model(BaseLabelingModel): """Bidirectional GRU Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_bgru': { 'units': 128, 'return_sequences': True }, 'layer_dropout': { 'rate': 0.4 }, 'layer_time_distributed': {}, 'layer_activation': { 'activation': 'softmax' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.GRU(**config['layer_bgru']), name='layer_bgru') layer_dropout = L.Dropout(**config['layer_dropout'], name='layer_dropout') layer_time_distributed = L.TimeDistributed(L.Dense(output_dim, **config['layer_time_distributed']), name='layer_time_distributed') layer_activation = L.Activation(**config['layer_activation']) tensor = layer_blstm(embed_model.output) tensor = layer_dropout(tensor) tensor = layer_time_distributed(tensor) output_tensor = layer_activation(tensor) self.tf_model = keras.Model(embed_model.inputs, output_tensor) class BiGRU_CRF_Model(BaseLabelingModel): """Bidirectional GRU CRF Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_bgru': { 'units': 128, 'return_sequences': True }, 'layer_dense': { 'units': 64, 'activation': 'tanh' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_blstm = L.Bidirectional(L.GRU(**config['layer_bgru']), name='layer_bgru') layer_dense = L.Dense(**config['layer_dense'], name='layer_dense') layer_crf_dense = L.Dense(output_dim, name='layer_crf_dense') layer_crf = CRF(output_dim, name='layer_crf') tensor = layer_blstm(embed_model.output) tensor = layer_dense(tensor) tensor = layer_crf_dense(tensor) output_tensor = layer_crf(tensor) self.layer_crf = layer_crf self.tf_model = keras.Model(embed_model.inputs, output_tensor) def compile_model(self, **kwargs): if kwargs.get('loss') is None: kwargs['loss'] = self.layer_crf.loss if kwargs.get('metrics') is None: kwargs['metrics'] = [self.layer_crf.viterbi_accuracy] super(BiGRU_CRF_Model, self).compile_model(**kwargs) class CNN_LSTM_Model(BaseLabelingModel): """CNN LSTM Sequence Labeling Model""" @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ Get hyper parameters of model Returns: hyper parameters dict """ return { 'layer_conv': { 'filters': 32, 'kernel_size': 3, 'padding': 'same', 'activation': 'relu' }, 'layer_lstm': { 'units': 128, 'return_sequences': True }, 'layer_dropout': { 'rate': 0.4 }, 'layer_time_distributed': {}, 'layer_activation': { 'activation': 'softmax' } } def build_model_arc(self): """ build model architectural """ output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_conv = L.Conv1D(**config['layer_conv'], name='layer_conv') layer_lstm = L.LSTM(**config['layer_lstm'], name='layer_lstm') layer_dropout = L.Dropout(**config['layer_dropout'], name='layer_dropout') layer_time_distributed = L.TimeDistributed(L.Dense(output_dim, **config['layer_time_distributed']), name='layer_time_distributed') layer_activation = L.Activation(**config['layer_activation']) tensor = layer_conv(embed_model.output) tensor = layer_lstm(tensor) tensor = layer_dropout(tensor) tensor = layer_time_distributed(tensor) output_tensor = layer_activation(tensor) self.tf_model = keras.Model(embed_model.inputs, output_tensor) if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) from kashgari.corpus import ChineseDailyNerCorpus valid_x, valid_y = ChineseDailyNerCorpus.load_data('train') model = BiLSTM_CRF_Model() model.fit(valid_x, valid_y, epochs=50, batch_size=64) model.evaluate(valid_x, valid_y)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/tasks/labeling/models.py
models.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_classification_model.py # time: 2019-05-22 11:23 import random import logging import kashgari from typing import Dict, Any, Tuple, Optional, List from kashgari.tasks.base_model import BaseModel, BareEmbedding from kashgari.embeddings.base_embedding import Embedding from sklearn import metrics class BaseClassificationModel(BaseModel): __task__ = 'classification' def __init__(self, embedding: Optional[Embedding] = None, hyper_parameters: Optional[Dict[str, Dict[str, Any]]] = None): super(BaseClassificationModel, self).__init__(embedding, hyper_parameters) if hyper_parameters is None and \ self.embedding.processor.__getattribute__('multi_label') is True: last_layer_name = list(self.hyper_parameters.keys())[-1] self.hyper_parameters[last_layer_name]['activation'] = 'sigmoid' logging.warning("Activation Layer's activate function changed to sigmoid for" " multi-label classification question") @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: raise NotImplementedError def build_model_arc(self): raise NotImplementedError def compile_model(self, **kwargs): if kwargs.get('loss') is None and self.embedding.processor.multi_label: kwargs['loss'] = 'binary_crossentropy' super(BaseClassificationModel, self).compile_model(**kwargs) def predict(self, x_data, batch_size=32, multi_label_threshold: float = 0.5, debug_info=False, predict_kwargs: Dict = None): """ Generates output predictions for the input samples. Computation is done in batches. Args: x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs). batch_size: Integer. If unspecified, it will default to 32. multi_label_threshold: debug_info: Bool, Should print out the logging info. predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model`` Returns: array(s) of predictions. """ with kashgari.utils.custom_object_scope(): tensor = self.embedding.process_x_dataset(x_data) pred = self.tf_model.predict(tensor, batch_size=batch_size) if self.embedding.processor.multi_label: if debug_info: logging.info('raw output: {}'.format(pred)) pred[pred >= multi_label_threshold] = 1 pred[pred < multi_label_threshold] = 0 else: pred = pred.argmax(-1) res = self.embedding.reverse_numerize_label_sequences(pred) if debug_info: logging.info('input: {}'.format(tensor)) logging.info('output: {}'.format(pred)) logging.info('output argmax: {}'.format(pred.argmax(-1))) return res def predict_top_k_class(self, x_data, top_k=5, batch_size=32, debug_info=False, predict_kwargs: Dict = None) -> List[Dict]: """ Generates output predictions with confidence for the input samples. Computation is done in batches. Args: x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs). top_k: int batch_size: Integer. If unspecified, it will default to 32. debug_info: Bool, Should print out the logging info. predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model`` Returns: array(s) of predictions. single-label classification: [ { "label": "chat", "confidence": 0.5801531, "candidates": [ { "label": "cookbook", "confidence": 0.1886314 }, { "label": "video", "confidence": 0.13805099 }, { "label": "health", "confidence": 0.013852648 }, { "label": "translation", "confidence": 0.012913573 } ] } ] multi-label classification: [ { "candidates": [ { "confidence": 0.9959336, "label": "toxic" }, { "confidence": 0.9358089, "label": "obscene" }, { "confidence": 0.6882098, "label": "insult" }, { "confidence": 0.13540423, "label": "severe_toxic" }, { "confidence": 0.017219543, "label": "identity_hate" } ] } ] """ if predict_kwargs is None: predict_kwargs = {} with kashgari.utils.custom_object_scope(): tensor = self.embedding.process_x_dataset(x_data) pred = self.tf_model.predict(tensor, batch_size=batch_size, **predict_kwargs) new_results = [] for sample_prob in pred: sample_res = zip(self.label2idx.keys(), sample_prob) sample_res = sorted(sample_res, key=lambda k: k[1], reverse=True) data = {} for label, confidence in sample_res[:top_k]: if 'candidates' not in data: if self.embedding.processor.multi_label: data['candidates'] = [] else: data['label'] = label data['confidence'] = confidence data['candidates'] = [] continue data['candidates'].append({ 'label': label, 'confidence': confidence }) new_results.append(data) if debug_info: logging.info('input: {}'.format(tensor)) logging.info('output: {}'.format(pred)) logging.info('output argmax: {}'.format(pred.argmax(-1))) return new_results def evaluate(self, x_data, y_data, batch_size=None, digits=4, output_dict=False, debug_info=False) -> Optional[Tuple[float, float, Dict]]: y_pred = self.predict(x_data, batch_size=batch_size) if debug_info: for index in random.sample(list(range(len(x_data))), 5): logging.debug('------ sample {} ------'.format(index)) logging.debug('x : {}'.format(x_data[index])) logging.debug('y : {}'.format(y_data[index])) logging.debug('y_pred : {}'.format(y_pred[index])) if self.processor.multi_label: y_pred_b = self.processor.multi_label_binarizer.fit_transform(y_pred) y_true_b = self.processor.multi_label_binarizer.fit_transform(y_data) report = metrics.classification_report(y_pred_b, y_true_b, target_names=self.processor.multi_label_binarizer.classes_, output_dict=output_dict, digits=digits) else: report = metrics.classification_report(y_data, y_pred, output_dict=output_dict, digits=digits) if not output_dict: print(report) else: return report if __name__ == "__main__": print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/tasks/classification/base_model.py
base_model.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: models.py # time: 2019-05-22 11:26 import logging import tensorflow as tf from typing import Dict, Any from kashgari.layers import L, AttentionWeightedAverageLayer, KMaxPoolingLayer from kashgari.tasks.classification.base_model import BaseClassificationModel class BiLSTM_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'layer_bi_lstm': { 'units': 128, 'return_sequences': False }, 'layer_dense': { 'activation': 'softmax' } } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_bi_lstm = L.Bidirectional(L.LSTM(**config['layer_bi_lstm'])) layer_dense = L.Dense(output_dim, **config['layer_dense']) tensor = layer_bi_lstm(embed_model.output) output_tensor = layer_dense(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, output_tensor) class BiGRU_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'layer_bi_gru': { 'units': 128, 'return_sequences': False }, 'layer_dense': { 'activation': 'softmax' } } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_bi_gru = L.Bidirectional(L.GRU(**config['layer_bi_gru'])) layer_dense = L.Dense(output_dim, **config['layer_dense']) tensor = layer_bi_gru(embed_model.output) output_tensor = layer_dense(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, output_tensor) class CNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'conv1d_layer': { 'filters': 128, 'kernel_size': 5, 'activation': 'relu' }, 'max_pool_layer': {}, 'dense_layer': { 'units': 64, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model # build model structure in sequent way layers_seq = [] layers_seq.append(L.Conv1D(**config['conv1d_layer'])) layers_seq.append(L.GlobalMaxPooling1D(**config['max_pool_layer'])) layers_seq.append(L.Dense(**config['dense_layer'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) tensor = embed_model.output for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class CNN_LSTM_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'conv_layer': { 'filters': 32, 'kernel_size': 3, 'padding': 'same', 'activation': 'relu' }, 'max_pool_layer': { 'pool_size': 2 }, 'lstm_layer': { 'units': 100 }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_seq = [] layers_seq.append(L.Conv1D(**config['conv_layer'])) layers_seq.append(L.MaxPooling1D(**config['max_pool_layer'])) layers_seq.append(L.LSTM(**config['lstm_layer'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) tensor = embed_model.output for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class CNN_GRU_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'conv_layer': { 'filters': 32, 'kernel_size': 3, 'padding': 'same', 'activation': 'relu' }, 'max_pool_layer': { 'pool_size': 2 }, 'gru_layer': { 'units': 100 }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_seq = [] layers_seq.append(L.Conv1D(**config['conv_layer'])) layers_seq.append(L.MaxPooling1D(**config['max_pool_layer'])) layers_seq.append(L.GRU(**config['gru_layer'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) tensor = embed_model.output for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class AVCNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.25 }, 'conv_0': { 'filters': 300, 'kernel_size': 1, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_1': { 'filters': 300, 'kernel_size': 2, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_2': { 'filters': 300, 'kernel_size': 3, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_3': { 'filters': 300, 'kernel_size': 4, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, # --- 'attn_0': {}, 'avg_0': {}, 'maxpool_0': {}, # --- 'maxpool_1': {}, 'attn_1': {}, 'avg_1': {}, # --- 'maxpool_2': {}, 'attn_2': {}, 'avg_2': {}, # --- 'maxpool_3': {}, 'attn_3': {}, 'avg_3': {}, # --- 'v_col3': { # 'mode': 'concat', 'axis': 1 }, 'merged_tensor': { # 'mode': 'concat', 'axis': 1 }, 'dropout': { 'rate': 0.7 }, 'dense': { 'units': 144, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_embed_dropout = L.SpatialDropout1D(**config['spatial_dropout']) layers_conv = [L.Conv1D(**config[f'conv_{i}']) for i in range(4)] layers_sensor = [] layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(AttentionWeightedAverageLayer()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_view = L.Concatenate(**config['v_col3']) layer_allviews = L.Concatenate(**config['merged_tensor']) layers_seq = [] layers_seq.append(L.Dropout(**config['dropout'])) layers_seq.append(L.Dense(**config['dense'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) embed_tensor = layer_embed_dropout(embed_model.output) tensors_conv = [layer_conv(embed_tensor) for layer_conv in layers_conv] tensors_matrix_sensor = [] for tensor_conv in tensors_conv: tensor_sensors = [] tensor_sensors = [layer_sensor(tensor_conv) for layer_sensor in layers_sensor] # tensor_sensors.append(L.GlobalMaxPooling1D()(tensor_conv)) # tensor_sensors.append(AttentionWeightedAverageLayer()(tensor_conv)) # tensor_sensors.append(L.GlobalAveragePooling1D()(tensor_conv)) tensors_matrix_sensor.append(tensor_sensors) tensors_views = [layer_view(list(tensors)) for tensors in zip(*tensors_matrix_sensor)] tensor = layer_allviews(tensors_views) # tensors_v_cols = [L.concatenate(tensors, **config['v_col3']) for tensors # in zip(*tensors_matrix_sensor)] # tensor = L.concatenate(tensors_v_cols, **config['merged_tensor']) for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class KMax_CNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.2 }, 'conv_0': { 'filters': 180, 'kernel_size': 1, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_1': { 'filters': 180, 'kernel_size': 2, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_2': { 'filters': 180, 'kernel_size': 3, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'conv_3': { 'filters': 180, 'kernel_size': 4, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu' }, 'maxpool_i4': { 'k': 3 }, 'merged_tensor': { # 'mode': 'concat', 'axis': 1 }, 'dropout': { 'rate': 0.6 }, 'dense': { 'units': 144, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layer_embed_dropout = L.SpatialDropout1D(**config['spatial_dropout']) layers_conv = [L.Conv1D(**config[f'conv_{i}']) for i in range(4)] layers_sensor = [KMaxPoolingLayer(**config['maxpool_i4']), L.Flatten()] layer_concat = L.Concatenate(**config['merged_tensor']) layers_seq = [] layers_seq.append(L.Dropout(**config['dropout'])) layers_seq.append(L.Dense(**config['dense'])) layers_seq.append(L.Dense(output_dim, **config['activation_layer'])) embed_tensor = layer_embed_dropout(embed_model.output) tensors_conv = [layer_conv(embed_tensor) for layer_conv in layers_conv] tensors_sensor = [] for tensor_conv in tensors_conv: tensor_sensor = tensor_conv for layer_sensor in layers_sensor: tensor_sensor = layer_sensor(tensor_sensor) tensors_sensor.append(tensor_sensor) tensor = layer_concat(tensors_sensor) # tensor = L.concatenate(tensors_sensor, **config['merged_tensor']) for layer in layers_seq: tensor = layer(tensor) self.tf_model = tf.keras.Model(embed_model.inputs, tensor) class R_CNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.2 }, 'rnn_0': { 'units': 64, 'return_sequences': True }, 'conv_0': { 'filters': 128, 'kernel_size': 2, 'kernel_initializer': 'normal', 'padding': 'valid', 'activation': 'relu', 'strides': 1 }, 'maxpool': {}, 'attn': {}, 'average': {}, 'concat': { 'axis': 1 }, 'dropout': { 'rate': 0.5 }, 'dense': { 'units': 120, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_rcnn_seq = [] layers_rcnn_seq.append(L.SpatialDropout1D(**config['spatial_dropout'])) layers_rcnn_seq.append(L.Bidirectional(L.GRU(**config['rnn_0']))) layers_rcnn_seq.append(L.Conv1D(**config['conv_0'])) layers_sensor = [] layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(AttentionWeightedAverageLayer()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_concat = L.Concatenate(**config['concat']) layers_full_connect = [] layers_full_connect.append(L.Dropout(**config['dropout'])) layers_full_connect.append(L.Dense(**config['dense'])) layers_full_connect.append(L.Dense(output_dim, **config['activation_layer'])) tensor = embed_model.output for layer in layers_rcnn_seq: tensor = layer(tensor) tensors_sensor = [layer(tensor) for layer in layers_sensor] tensor_output = layer_concat(tensors_sensor) # tensor_output = L.concatenate(tensor_sensors, **config['concat']) for layer in layers_full_connect: tensor_output = layer(tensor_output) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output) class AVRNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.25 }, 'rnn_0': { 'units': 60, 'return_sequences': True }, 'rnn_1': { 'units': 60, 'return_sequences': True }, 'concat_rnn': { 'axis': 2 }, 'last': {}, 'maxpool': {}, 'attn': {}, 'average': {}, 'all_views': { 'axis': 1 }, 'dropout': { 'rate': 0.5 }, 'dense': { 'units': 144, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_rnn0 = [] layers_rnn0.append(L.SpatialDropout1D(**config['spatial_dropout'])) layers_rnn0.append(L.Bidirectional(L.GRU(**config['rnn_0']))) layer_bi_rnn1 = L.Bidirectional(L.GRU(**config['rnn_1'])) layer_concat = L.Concatenate(**config['concat_rnn']) layers_sensor = [] layers_sensor.append(L.Lambda(lambda t: t[:, -1], name='last')) layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(AttentionWeightedAverageLayer()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_allviews = L.Concatenate(**config['all_views']) layers_full_connect = [] layers_full_connect.append(L.Dropout(**config['dropout'])) layers_full_connect.append(L.Dense(**config['dense'])) layers_full_connect.append(L.Dense(output_dim, **config['activation_layer'])) tensor_rnn = embed_model.output for layer in layers_rnn0: tensor_rnn = layer(tensor_rnn) tensor_concat = layer_concat([tensor_rnn, layer_bi_rnn1(tensor_rnn)]) tensor_sensors = [layer(tensor_concat) for layer in layers_sensor] tensor_output = layer_allviews(tensor_sensors) for layer in layers_full_connect: tensor_output = layer(tensor_output) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output) class Dropout_BiGRU_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.15 }, 'rnn_0': { 'units': 64, 'return_sequences': True }, 'dropout_rnn': { 'rate': 0.35 }, 'rnn_1': { 'units': 64, 'return_sequences': True }, 'last': {}, 'maxpool': {}, 'average': {}, 'all_views': { 'axis': 1 }, 'dropout': { 'rate': 0.5 }, 'dense': { 'units': 72, 'activation': 'relu' }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_rnn = [] layers_rnn.append(L.SpatialDropout1D(**config['spatial_dropout'])) layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_0']))) layers_rnn.append(L.Dropout(**config['dropout_rnn'])) layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_1']))) layers_sensor = [] layers_sensor.append(L.Lambda(lambda t: t[:, -1], name='last')) layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_allviews = L.Concatenate(**config['all_views']) layers_full_connect = [] layers_full_connect.append(L.Dropout(**config['dropout'])) layers_full_connect.append(L.Dense(**config['dense'])) layers_full_connect.append(L.Dense(output_dim, **config['activation_layer'])) tensor_rnn = embed_model.output for layer in layers_rnn: tensor_rnn = layer(tensor_rnn) tensor_sensors = [layer(tensor_rnn) for layer in layers_sensor] tensor_output = layer_allviews(tensor_sensors) for layer in layers_full_connect: tensor_output = layer(tensor_output) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output) class Dropout_AVRNN_Model(BaseClassificationModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'spatial_dropout': { 'rate': 0.25 }, 'rnn_0': { 'units': 56, 'return_sequences': True }, 'rnn_dropout': { 'rate': 0.3 }, 'rnn_1': { 'units': 56, 'return_sequences': True }, 'last': {}, 'maxpool': {}, 'attn': {}, 'average': {}, 'all_views': { 'axis': 1 }, 'dropout_0': { 'rate': 0.5 }, 'dense': { 'units': 128, 'activation': 'relu' }, 'dropout_1': { 'rate': 0.25 }, 'activation_layer': { 'activation': 'softmax' }, } def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_rnn = [] layers_rnn.append(L.SpatialDropout1D(**config['spatial_dropout'])) layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_0']))) layers_rnn.append(L.SpatialDropout1D(**config['rnn_dropout'])) layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_1']))) layers_sensor = [] layers_sensor.append(L.Lambda(lambda t: t[:, -1], name='last')) layers_sensor.append(L.GlobalMaxPooling1D()) layers_sensor.append(AttentionWeightedAverageLayer()) layers_sensor.append(L.GlobalAveragePooling1D()) layer_allviews = L.Concatenate(**config['all_views']) layers_full_connect = [] layers_full_connect.append(L.Dropout(**config['dropout_0'])) layers_full_connect.append(L.Dense(**config['dense'])) layers_full_connect.append(L.Dropout(**config['dropout_1'])) layers_full_connect.append(L.Dense(output_dim, **config['activation_layer'])) tensor_rnn = embed_model.output for layer in layers_rnn: tensor_rnn = layer(tensor_rnn) tensor_sensors = [layer(tensor_rnn) for layer in layers_sensor] tensor_output = layer_allviews(tensor_sensors) for layer in layers_full_connect: tensor_output = layer(tensor_output) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output) if __name__ == "__main__": print(BiLSTM_Model.get_default_hyper_parameters()) logging.basicConfig(level=logging.DEBUG) from kashgari.corpus import SMP2018ECDTCorpus x, y = SMP2018ECDTCorpus.load_data() import kashgari from kashgari.processors.classification_processor import ClassificationProcessor from kashgari.embeddings import BareEmbedding processor = ClassificationProcessor(multi_label=False) embed = BareEmbedding(task=kashgari.CLASSIFICATION, sequence_length=30, processor=processor) m = BiLSTM_Model(embed) # m.build_model(x, y) m.fit(x, y, epochs=2) print(m.predict(x[:10])) # m.evaluate(x, y) print(m.predict_top_k_class(x[:10]))
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/tasks/classification/models.py
models.py
# author: Alex # contact: ialexwwang@gmail.com # version: 0.1 # license: Apache Licence # file: dpcnn_model.py # time: 2019-07-02 19:15 # Reference: # https://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf # https://github.com/Cheneng/DPCNN # https://github.com/miracleyoo/DPCNN-TextCNN-Pytorch-Inception # https://www.kaggle.com/michaelsnell/conv1d-dpcnn-in-keras from math import log2, floor from typing import Dict, Any import tensorflow as tf from kashgari.layers import L, KMaxPoolingLayer from kashgari.tasks.classification.base_model import BaseClassificationModel class DPCNN_Model(BaseClassificationModel): ''' This implementation of DPCNN requires a clear declared sequence length. So sequences input in should be padded or cut to a given length in advance. ''' @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: pool_type = 'max' filters = 250 activation = 'linear' return { 'region_embedding': { 'filters': filters, 'kernel_size': 3, 'strides': 1, 'padding': 'same', 'activation': activation, 'name': 'region_embedding', }, 'region_dropout': { 'rate': 0.2, }, 'conv_block': { 'filters': filters, 'kernel_size': 3, 'activation': activation, 'shortcut': True, }, 'resnet_block': { 'filters': filters, 'kernel_size': 3, 'activation': activation, 'shortcut': True, 'pool_type': pool_type, 'sorted': True, }, 'dense': { 'units': 256, 'activation': activation, }, 'dropout': { 'rate': 0.5, }, 'activation': { 'activation': 'softmax', } } def downsample(self, inputs, pool_type: str = 'max', sorted: bool = True, stage: int = 1): # noqa: A002 layers_pool = [] if pool_type == 'max': layers_pool.append( L.MaxPooling1D(pool_size=3, strides=2, padding='same', name=f'pool_{stage}')) elif pool_type == 'k_max': k = int(inputs.shape[1].value / 2) layers_pool.append( KMaxPoolingLayer(k=k, sorted=sorted, name=f'pool_{stage}')) elif pool_type == 'conv': layers_pool.append( L.Conv1D(filters=inputs.shape[-1].value, kernel_size=3, strides=2, padding='same', name=f'pool_{stage}')) layers_pool.append( L.BatchNormalization()) elif pool_type is None: layers_pool = [] else: raise ValueError(f'unsupported pooling type `{pool_type}`!') tensor_out = inputs for layer in layers_pool: tensor_out = layer(tensor_out) return tensor_out def conv_block(self, inputs, filters: int, kernel_size: int = 3, activation: str = 'linear', shortcut: bool = True): layers_conv_unit = [] layers_conv_unit.append( L.BatchNormalization()) layers_conv_unit.append( L.PReLU()) layers_conv_unit.append( L.Conv1D(filters=filters, kernel_size=kernel_size, strides=1, padding='same', activation=activation)) layers_conv_block = layers_conv_unit * 2 tensor_out = inputs for layer in layers_conv_block: tensor_out = layer(tensor_out) if shortcut: tensor_out = L.Add()([inputs, tensor_out]) return tensor_out def resnet_block(self, inputs, filters: int, kernel_size: int = 3, activation: str = 'linear', shortcut: bool = True, pool_type: str = 'max', sorted: bool = True, stage: int = 1): # noqa: A002 tensor_pool = self.downsample(inputs, pool_type=pool_type, sorted=sorted, stage=stage) tensor_out = self.conv_block(tensor_pool, filters=filters, kernel_size=kernel_size, activation=activation, shortcut=shortcut) return tensor_out def build_model_arc(self): output_dim = len(self.processor.label2idx) config = self.hyper_parameters embed_model = self.embedding.embed_model layers_region = [ L.Conv1D(**config['region_embedding']), L.BatchNormalization(), L.PReLU(), L.Dropout(**config['region_dropout']) ] layers_main = [ L.GlobalMaxPooling1D(), L.Dense(**config['dense']), L.BatchNormalization(), L.PReLU(), L.Dropout(**config['dropout']), L.Dense(output_dim, **config['activation']) ] tensor_out = embed_model.output # build region tensors for layer in layers_region: tensor_out = layer(tensor_out) # build the base pyramid layer tensor_out = self.conv_block(tensor_out, **config['conv_block']) # build the above pyramid layers while `steps > 2` seq_len = tensor_out.shape[1].value if seq_len is None: raise ValueError('`sequence_length` should be explicitly assigned, but it is `None`.') for i in range(floor(log2(seq_len)) - 2): tensor_out = self.resnet_block(tensor_out, stage=i + 1, **config['resnet_block']) for layer in layers_main: tensor_out = layer(tensor_out) self.tf_model = tf.keras.Model(embed_model.inputs, tensor_out)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/tasks/classification/dpcnn_model.py
dpcnn_model.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_model.py # time: 11:36 上午 from typing import Callable from typing import Dict, Any import numpy as np from sklearn import metrics from kashgari.tasks.base_model import BaseModel class BaseScoringModel(BaseModel): """Base Sequence Labeling Model""" __task__ = 'scoring' @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: raise NotImplementedError def compile_model(self, **kwargs): if kwargs.get('loss') is None: kwargs['loss'] = 'mse' if kwargs.get('optimizer') is None: kwargs['optimizer'] = 'rmsprop' if kwargs.get('metrics') is None: kwargs['metrics'] = ['mae'] super(BaseScoringModel, self).compile_model(**kwargs) def evaluate(self, x_data, y_data, batch_size=None, should_round: bool = False, round_func: Callable = None, digits=4, debug_info=False) -> Dict: """ Build a text report showing the main classification metrics. Args: x_data: y_data: batch_size: should_round: round_func: digits: debug_info: Returns: """ y_pred = self.predict(x_data, batch_size=batch_size) if should_round: if round_func is None: round_func = np.round print(self.processor.output_dim) if self.processor.output_dim != 1: raise ValueError('Evaluate with round function only accept 1D output') y_pred = [round_func(i) for i in y_pred] report = metrics.classification_report(y_data, y_pred, digits=digits) report_dic = metrics.classification_report(y_data, y_pred, output_dict=True, digits=digits) print(report) else: mean_squared_error = metrics.mean_squared_error(y_data, y_pred) r2_score = metrics.r2_score(y_data, y_pred) report_dic = { 'mean_squared_error': mean_squared_error, 'r2_score': r2_score } print(f"mean_squared_error : {mean_squared_error}\n" f"r2_score : {r2_score}") return report_dic if __name__ == "__main__": pass
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/tasks/scoring/base_model.py
base_model.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_embedding.py # time: 2019-05-20 17:40 import json import logging import pydoc from typing import Union, List, Optional, Dict import numpy as np from tensorflow import keras import kashgari from kashgari.processors import ClassificationProcessor, LabelingProcessor, ScoringProcessor from kashgari.processors.base_processor import BaseProcessor L = keras.layers class Embedding(object): """Base class for Embedding Model""" def info(self) -> Dict: return { 'processor': self.processor.info(), 'class_name': self.__class__.__name__, 'module': self.__class__.__module__, 'config': { 'sequence_length': self.sequence_length, 'embedding_size': self.embedding_size, 'task': self.task }, 'embed_model': json.loads(self.embed_model.to_json()), } @classmethod def _load_saved_instance(cls, config_dict: Dict, model_path: str, tf_model: keras.Model): processor_info = config_dict['processor'] processor_class = pydoc.locate(f"{processor_info['module']}.{processor_info['class_name']}") processor = processor_class(**processor_info['config']) instance = cls(processor=processor, from_saved_model=True, **config_dict['config']) embed_model_json_str = json.dumps(config_dict['embed_model']) instance.embed_model = keras.models.model_from_json(embed_model_json_str, custom_objects=kashgari.custom_objects) # Load Weights from model for layer in instance.embed_model.layers: layer.set_weights(tf_model.get_layer(layer.name).get_weights()) return instance def __init__(self, task: str = None, sequence_length: Union[int, str] = 'auto', embedding_size: int = 100, processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): self.task = task self.embedding_size = embedding_size if processor is None: if task == kashgari.CLASSIFICATION: self.processor = ClassificationProcessor() elif task == kashgari.LABELING: self.processor = LabelingProcessor() elif task == kashgari.SCORING: self.processor = ScoringProcessor() else: raise ValueError('Need to set the processor param, value: {labeling, classification, scoring}') else: self.processor = processor self.sequence_length: Union[int, str] = sequence_length self.embed_model: Optional[keras.Model] = None self._tokenizer = None @property def token_count(self) -> int: """ corpus token count """ return len(self.processor.token2idx) @property def sequence_length(self) -> Union[int, str]: """ model sequence length """ return self.processor.sequence_length @property def label2idx(self) -> Dict[str, int]: """ label to index dict """ return self.processor.label2idx @property def token2idx(self) -> Dict[str, int]: """ token to index dict """ return self.processor.token2idx @property def tokenizer(self): if self._tokenizer: return self._tokenizer else: raise ValueError('This embedding not support built-in tokenizer') @sequence_length.setter def sequence_length(self, val: Union[int, str]): if isinstance(val, str): if val == 'auto': logging.warning("Sequence length will auto set at 95% of sequence length") elif val == 'variable': val = None else: raise ValueError("sequence_length must be an int or 'auto' or 'variable'") self.processor.sequence_length = val def _build_model(self, **kwargs): raise NotImplementedError def analyze_corpus(self, x: List[List[str]], y: Union[List[List[str]], List[str]]): """ Prepare embedding layer and pre-processor for labeling task Args: x: y: Returns: """ self.processor.analyze_corpus(x, y) if self.sequence_length == 'auto': self.sequence_length = self.processor.dataset_info['RECOMMEND_LEN'] self._build_model() def embed_one(self, sentence: Union[List[str], List[int]]) -> np.array: """ Convert one sentence to vector Args: sentence: target sentence, list of str Returns: vectorized sentence """ return self.embed([sentence])[0] def embed(self, sentence_list: Union[List[List[str]], List[List[int]]], debug: bool = False) -> np.ndarray: """ batch embed sentences Args: sentence_list: Sentence list to embed debug: show debug info Returns: vectorized sentence list """ tensor_x = self.process_x_dataset(sentence_list) if debug: logging.debug(f'sentence tensor: {tensor_x}') embed_results = self.embed_model.predict(tensor_x) return embed_results def process_x_dataset(self, data: List[List[str]], subset: Optional[List[int]] = None) -> np.ndarray: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ return self.processor.process_x_dataset(data, self.sequence_length, subset) def process_y_dataset(self, data: List[List[str]], subset: Optional[List[int]] = None) -> np.ndarray: """ batch process labels data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ return self.processor.process_y_dataset(data, self.sequence_length, subset) def reverse_numerize_label_sequences(self, sequences, lengths=None): return self.processor.reverse_numerize_label_sequences(sequences, lengths=lengths) def __repr__(self): return f"<{self.__class__} seq_len: {self.sequence_length}>" def __str__(self): return self.__repr__() if __name__ == "__main__": print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/embeddings/base_embedding.py
base_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_embedding.py # time: 2019-05-26 17:40 import os os.environ['TF_KERAS'] = '1' import logging from typing import Union, Optional, Any, List, Tuple import numpy as np import kashgari import pathlib from tensorflow.python.keras.utils import get_file from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor import keras_gpt_2 as gpt2 class GPT2Embedding(Embedding): """Pre-trained BERT embedding""" def info(self): info = super(GPT2Embedding, self).info() info['config'] = { 'model_folder': self.model_folder, 'sequence_length': self.sequence_length } return info def __init__(self, model_folder: str, task: str = None, sequence_length: Union[Tuple[int, ...], str, int] = 'auto', processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Args: task: model_folder: sequence_length: processor: from_saved_model: """ super(GPT2Embedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=0, processor=processor, from_saved_model=from_saved_model) if isinstance(sequence_length, tuple): if len(sequence_length) > 2: raise ValueError('BERT only more 2') else: if not all([s == sequence_length[0] for s in sequence_length]): raise ValueError('BERT only receive all') if sequence_length == 'variable': self.sequence_length = None self.processor.token_pad = 'pad' self.processor.token_unk = 'unk' self.processor.token_bos = 'pad' self.processor.token_eos = 'pad' self.model_folder = model_folder if not from_saved_model: self._build_token2idx_from_gpt() self._build_model() def _build_token2idx_from_gpt(self): encoder_path = os.path.join(self.model_folder, 'encoder.json') vocab_path = os.path.join(self.model_folder, 'vocab.bpe') bpe: gpt2.BytePairEncoding = gpt2.get_bpe_from_files(encoder_path, vocab_path) token2idx = bpe.token_dict.copy() self.processor.token2idx = token2idx self.processor.idx2token = dict([(value, key) for key, value in token2idx.items()]) def _build_model(self, **kwargs): if self.embed_model is None and self.sequence_length != 'auto': config_path = os.path.join(self.model_folder, 'hparams.json') checkpoint_path = os.path.join(self.model_folder, 'model.ckpt') model = gpt2.load_trained_model_from_checkpoint(config_path, checkpoint_path, self.sequence_length) if not kashgari.config.disable_auto_summary: model.summary() self.embed_model = model # if self.token_count == 0: # logging.debug('need to build after build_word2idx') # elif self.embed_model is None: # seq_len = self.sequence_length # if isinstance(seq_len, tuple): # seq_len = seq_len[0] # if isinstance(seq_len, str): # return # config_path = os.path.join(self.bert_path, 'bert_config.json') # check_point_path = os.path.join(self.bert_path, 'bert_model.ckpt') # bert_model = keras_bert.load_trained_model_from_checkpoint(config_path, # check_point_path, # seq_len=seq_len) # # self._model = tf.keras.Model(bert_model.inputs, bert_model.output) # bert_seq_len = int(bert_model.output.shape[1]) # if bert_seq_len < seq_len: # logging.warning(f"Sequence length limit set to {bert_seq_len} by pre-trained model") # self.sequence_length = bert_seq_len # self.embedding_size = int(bert_model.output.shape[-1]) # num_layers = len(bert_model.layers) # bert_model.summary() # target_layer_idx = [num_layers - 1 + idx * 8 for idx in range(-3, 1)] # features_layers = [bert_model.get_layer(index=idx).output for idx in target_layer_idx] # embedding_layer = L.concatenate(features_layers) # output_features = NonMaskingLayer()(embedding_layer) # # self.embed_model = tf.keras.Model(bert_model.inputs, output_features) # logging.warning(f'seq_len: {self.sequence_length}') def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[Any]], List[Any]]): """ Prepare embedding layer and pre-processor for labeling task Args: x: y: Returns: """ if len(self.processor.token2idx) == 0: self._build_token2idx_from_gpt() super(GPT2Embedding, self).analyze_corpus(x, y) def embed(self, sentence_list: Union[Tuple[List[List[str]], ...], List[List[str]]], debug: bool = False) -> np.ndarray: """ batch embed sentences Args: sentence_list: Sentence list to embed debug: show debug log Returns: vectorized sentence list """ tensor_x = self.process_x_dataset(sentence_list) if debug: logging.debug(f'sentence tensor: {tensor_x}') embed_results = self.embed_model.predict(tensor_x) return embed_results def process_x_dataset(self, data: Union[Tuple[List[List[str]], ...], List[List[str]]], subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ x1 = None if isinstance(data, tuple): if len(data) == 2: x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset) x1 = self.processor.process_x_dataset(data[1], self.sequence_length, subset) else: x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset) else: x0 = self.processor.process_x_dataset(data, self.sequence_length, subset) if x1 is None: x1 = np.zeros(x0.shape, dtype=np.int32) return x0, x1 @classmethod def load_data(cls, model_name): """ Download pretrained GPT-2 models Args: model_name: {117M, 345M} Returns: GPT-2 model folder """ model_folder: pathlib.Path = pathlib.Path(os.path.join(kashgari.macros.DATA_PATH, 'datasets', f'gpt2-{model_name}')) model_folder.mkdir(exist_ok=True, parents=True) for filename in ['checkpoint', 'encoder.json', 'hparams.json', 'model.ckpt.data-00000-of-00001', 'model.ckpt.index', 'model.ckpt.meta', 'vocab.bpe']: url = "https://storage.googleapis.com/gpt-2/models/" + model_name + "/" + filename get_file(os.path.join(f'gpt2-{model_name}', filename), url, cache_dir=kashgari.macros.DATA_PATH) return str(model_folder) if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) # bert_model_path = os.path.join(utils.get_project_path(), 'tests/test-data/bert') model_folder = GPT2Embedding.load_data('117M') print(model_folder) b = GPT2Embedding(task=kashgari.CLASSIFICATION, model_folder=model_folder, sequence_length=12) # from kashgari.corpus import SMP2018ECDTCorpus # test_x, test_y = SMP2018ECDTCorpus.load_data('valid') # b.analyze_corpus(test_x, test_y) data1 = 'all work and no play makes'.split(' ') r = b.embed([data1], True) print(r) print(r.shape)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/embeddings/gpt_2_embedding.py
gpt_2_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: bert_embedding_v2.py # time: 10:03 上午 import os os.environ['TF_KERAS'] = '1' import json import codecs import logging from typing import Union, Optional from bert4keras.models import build_transformer_model import kashgari import tensorflow as tf from kashgari.embeddings.bert_embedding import BERTEmbedding from kashgari.layers import NonMaskingLayer from kashgari.processors.base_processor import BaseProcessor import keras_bert class BERTEmbeddingV2(BERTEmbedding): """Pre-trained BERT embedding""" def info(self): info = super(BERTEmbedding, self).info() info['config'] = { 'model_folder': self.model_folder, 'sequence_length': self.sequence_length } return info def __init__(self, vacab_path: str, config_path: str, checkpoint_path: str, bert_type: str = 'bert', task: str = None, sequence_length: Union[str, int] = 'auto', processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ """ self.model_folder = '' self.vacab_path = vacab_path self.config_path = config_path self.checkpoint_path = checkpoint_path super(BERTEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=0, processor=processor, from_saved_model=from_saved_model) self.bert_type = bert_type self.processor.token_pad = '[PAD]' self.processor.token_unk = '[UNK]' self.processor.token_bos = '[CLS]' self.processor.token_eos = '[SEP]' self.processor.add_bos_eos = True if not from_saved_model: self._build_token2idx_from_bert() self._build_model() def _build_token2idx_from_bert(self): token2idx = {} with codecs.open(self.vacab_path, 'r', 'utf8') as reader: for line in reader: token = line.strip() token2idx[token] = len(token2idx) self.bert_token2idx = token2idx self._tokenizer = keras_bert.Tokenizer(token2idx) self.processor.token2idx = self.bert_token2idx self.processor.idx2token = dict([(value, key) for key, value in token2idx.items()]) def _build_model(self, **kwargs): if self.embed_model is None: seq_len = self.sequence_length if isinstance(seq_len, tuple): seq_len = seq_len[0] if isinstance(seq_len, str): logging.warning(f"Model will be built when sequence length is determined") return config_path = self.config_path config = json.load(open(config_path)) if seq_len > config.get('max_position_embeddings'): seq_len = config.get('max_position_embeddings') logging.warning(f"Max seq length is {seq_len}") bert_model = build_transformer_model(config_path=self.config_path, checkpoint_path=self.checkpoint_path, model=self.bert_type, application='encoder', return_keras_model=True) self.embed_model = bert_model self.embedding_size = int(bert_model.output.shape[-1]) output_features = NonMaskingLayer()(bert_model.output) self.embed_model = tf.keras.Model(bert_model.inputs, output_features) if __name__ == "__main__": # BERT_PATH = '/Users/brikerman/Desktop/nlp/language_models/bert/chinese_L-12_H-768_A-12' model_folder = '/Users/brikerman/Desktop/nlp/language_models/albert_base' checkpoint_path = os.path.join(model_folder, 'model.ckpt-best') config_path = os.path.join(model_folder, 'albert_config.json') vacab_path = os.path.join(model_folder, 'vocab_chinese.txt') embed = BERTEmbeddingV2(vacab_path, config_path, checkpoint_path, bert_type='albert', task=kashgari.CLASSIFICATION, sequence_length=100) x = embed.embed_one(list('今天天气不错')) print(x)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/embeddings/bert_embedding_v2.py
bert_embedding_v2.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: stacked_embedding.py # time: 2019-05-23 09:18 import json import pydoc from typing import Union, Optional, Tuple, List, Dict import numpy as np import tensorflow as tf from tensorflow.python import keras import kashgari from kashgari.embeddings.base_embedding import Embedding from kashgari.layers import L from kashgari.processors.base_processor import BaseProcessor class StackedEmbedding(Embedding): """Embedding layer without pre-training, train embedding layer while training model""" @classmethod def _load_saved_instance(cls, config_dict: Dict, model_path: str, tf_model: keras.Model): embeddings = [] for embed_info in config_dict['embeddings']: embed_class = pydoc.locate(f"{embed_info['module']}.{embed_info['class_name']}") embedding: Embedding = embed_class._load_saved_instance(embed_info, model_path, tf_model) embeddings.append(embedding) instance = cls(embeddings=embeddings, from_saved_model=True) print('----') print(instance.embeddings) embed_model_json_str = json.dumps(config_dict['embed_model']) instance.embed_model = keras.models.model_from_json(embed_model_json_str, custom_objects=kashgari.custom_objects) # Load Weights from model for layer in instance.embed_model.layers: layer.set_weights(tf_model.get_layer(layer.name).get_weights()) return instance def info(self): info = super(StackedEmbedding, self).info() info['embeddings'] = [embed.info() for embed in self.embeddings] info['config'] = {} return info def __init__(self, embeddings: List[Embedding], processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Args: embeddings: processor: """ task = kashgari.CLASSIFICATION if all(isinstance(embed.sequence_length, int) for embed in embeddings): sequence_length = [embed.sequence_length for embed in embeddings] else: raise ValueError('Need to set sequence length for all embeddings while using stacked embedding') super(StackedEmbedding, self).__init__(task=task, sequence_length=sequence_length[0], embedding_size=100, processor=processor, from_saved_model=from_saved_model) self.embeddings = embeddings self.processor = embeddings[0].processor if not from_saved_model: self._build_model() def _build_model(self, **kwargs): if self.embed_model is None and all(embed.embed_model is not None for embed in self.embeddings): layer_concatenate = L.Concatenate(name='layer_concatenate') inputs = [] for embed in self.embeddings: inputs += embed.embed_model.inputs # inputs = [embed.embed_model.inputs for embed in self.embeddings] outputs = layer_concatenate([embed.embed_model.output for embed in self.embeddings]) self.embed_model = tf.keras.Model(inputs, outputs) def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[str]], List[str]]): for index in range(len(x)): self.embeddings[index].analyze_corpus(x[index], y) self._build_model() def process_x_dataset(self, data: Tuple[List[List[str]], ...], subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ result = [] for index, dataset in enumerate(data): x = self.embeddings[index].process_x_dataset(dataset, subset) if isinstance(x, tuple): result += list(x) else: result.append(x) return tuple(result) def process_y_dataset(self, data: List[List[str]], subset: Optional[List[int]] = None) -> np.ndarray: return self.embeddings[0].process_y_dataset(data, subset) if __name__ == "__main__": pass
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/embeddings/stacked_embedding.py
stacked_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_embedding.py # time: 2019-05-25 17:40 import os os.environ['TF_KERAS'] = '1' import codecs import logging from typing import Union, Optional, Any, List, Tuple import numpy as np import kashgari import tensorflow as tf from kashgari.layers import NonMaskingLayer from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor import keras_bert class BERTEmbedding(Embedding): """Pre-trained BERT embedding""" def info(self): info = super(BERTEmbedding, self).info() info['config'] = { 'model_folder': self.model_folder, 'sequence_length': self.sequence_length } return info def __init__(self, model_folder: str, layer_nums: int = 4, trainable: bool = False, task: str = None, sequence_length: Union[str, int] = 'auto', processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Args: task: model_folder: layer_nums: number of layers whose outputs will be concatenated into a single tensor, default `4`, output the last 4 hidden layers as the thesis suggested trainable: whether if the model is trainable, default `False` and set it to `True` for fine-tune this embedding layer during your training sequence_length: processor: from_saved_model: """ self.trainable = trainable # Do not need to train the whole bert model if just to use its feature output self.training = False self.layer_nums = layer_nums if isinstance(sequence_length, tuple): raise ValueError('BERT embedding only accept `int` type `sequence_length`') if sequence_length == 'variable': raise ValueError('BERT embedding only accept sequences in equal length') super(BERTEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=0, processor=processor, from_saved_model=from_saved_model) self.processor.token_pad = '[PAD]' self.processor.token_unk = '[UNK]' self.processor.token_bos = '[CLS]' self.processor.token_eos = '[SEP]' self.processor.add_bos_eos = True self.model_folder = model_folder if not from_saved_model: self._build_token2idx_from_bert() self._build_model() def _build_token2idx_from_bert(self): dict_path = os.path.join(self.model_folder, 'vocab.txt') token2idx = {} with codecs.open(dict_path, 'r', 'utf8') as reader: for line in reader: token = line.strip() token2idx[token] = len(token2idx) self.bert_token2idx = token2idx self._tokenizer = keras_bert.Tokenizer(token2idx) self.processor.token2idx = self.bert_token2idx self.processor.idx2token = dict([(value, key) for key, value in token2idx.items()]) def _build_model(self, **kwargs): if self.embed_model is None: seq_len = self.sequence_length if isinstance(seq_len, tuple): seq_len = seq_len[0] if isinstance(seq_len, str): logging.warning(f"Model will be built until sequence length is determined") return config_path = os.path.join(self.model_folder, 'bert_config.json') check_point_path = os.path.join(self.model_folder, 'bert_model.ckpt') bert_model = keras_bert.load_trained_model_from_checkpoint(config_path, check_point_path, seq_len=seq_len, output_layer_num=self.layer_nums, training=self.training, trainable=self.trainable) self._model = tf.keras.Model(bert_model.inputs, bert_model.output) bert_seq_len = int(bert_model.output.shape[1]) if bert_seq_len < seq_len: logging.warning(f"Sequence length limit set to {bert_seq_len} by pre-trained model") self.sequence_length = bert_seq_len self.embedding_size = int(bert_model.output.shape[-1]) output_features = NonMaskingLayer()(bert_model.output) self.embed_model = tf.keras.Model(bert_model.inputs, output_features) logging.warning(f'seq_len: {self.sequence_length}') def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[Any]], List[Any]]): """ Prepare embedding layer and pre-processor for labeling task Args: x: y: Returns: """ if len(self.processor.token2idx) == 0: self._build_token2idx_from_bert() super(BERTEmbedding, self).analyze_corpus(x, y) def embed(self, sentence_list: Union[Tuple[List[List[str]], ...], List[List[str]]], debug: bool = False) -> np.ndarray: """ batch embed sentences Args: sentence_list: Sentence list to embed debug: show debug log Returns: vectorized sentence list """ if self.embed_model is None: raise ValueError('need to build model for embed sentence') tensor_x = self.process_x_dataset(sentence_list) if debug: logging.debug(f'sentence tensor: {tensor_x}') embed_results = self.embed_model.predict(tensor_x) return embed_results def process_x_dataset(self, data: Union[Tuple[List[List[str]], ...], List[List[str]]], subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ x1 = None if isinstance(data, tuple): if len(data) == 2: x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset) x1 = self.processor.process_x_dataset(data[1], self.sequence_length, subset) else: x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset) else: x0 = self.processor.process_x_dataset(data, self.sequence_length, subset) if x1 is None: x1 = np.zeros(x0.shape, dtype=np.int32) return x0, x1 if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) # bert_model_path = os.path.join(utils.get_project_path(), 'tests/test-data/bert') b = BERTEmbedding(task=kashgari.CLASSIFICATION, model_folder='/Users/brikerman/.kashgari/embedding/bert/chinese_L-12_H-768_A-12', sequence_length=12) from kashgari.corpus import SMP2018ECDTCorpus test_x, test_y = SMP2018ECDTCorpus.load_data('valid') b.analyze_corpus(test_x, test_y) data1 = 'all work and no play makes'.split(' ') data2 = '你 好 啊'.split(' ') r = b.embed([data1], True) tokens = b.process_x_dataset([['语', '言', '模', '型']])[0] target_index = [101, 6427, 6241, 3563, 1798, 102] target_index = target_index + [0] * (12 - len(target_index)) assert list(tokens[0]) == list(target_index) print(tokens) print(r) print(r.shape)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/embeddings/bert_embedding.py
bert_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: w2v_embedding.py # time: 2019-05-20 17:32 import logging from typing import Union, Optional, Dict, Any, List, Tuple import numpy as np from gensim.models import KeyedVectors from tensorflow import keras from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor L = keras.layers class WordEmbedding(Embedding): """Pre-trained word2vec embedding""" def info(self): info = super(WordEmbedding, self).info() info['config'] = { 'w2v_path': self.w2v_path, 'w2v_kwargs': self.w2v_kwargs, 'sequence_length': self.sequence_length } return info def __init__(self, w2v_path: str, task: str = None, w2v_kwargs: Dict[str, Any] = None, sequence_length: Union[Tuple[int, ...], str, int] = 'auto', processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Args: task: w2v_path: word2vec file path w2v_kwargs: params pass to the ``load_word2vec_format()`` function of ``gensim.models.KeyedVectors`` - https://radimrehurek.com/gensim/models/keyedvectors.html#module-gensim.models.keyedvectors sequence_length: ``'auto'``, ``'variable'`` or integer. When using ``'auto'``, use the 95% of corpus length as sequence length. When using ``'variable'``, model input shape will set to None, which can handle various length of input, it will use the length of max sequence in every batch for sequence length. If using an integer, let's say ``50``, the input output sequence length will set to 50. processor: """ if w2v_kwargs is None: w2v_kwargs = {} self.w2v_path = w2v_path self.w2v_kwargs = w2v_kwargs self.w2v_model_loaded = False super(WordEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=0, processor=processor, from_saved_model=from_saved_model) if not from_saved_model: self._build_token2idx_from_w2v() if self.sequence_length != 'auto': self._build_model() def _build_token2idx_from_w2v(self): w2v = KeyedVectors.load_word2vec_format(self.w2v_path, **self.w2v_kwargs) token2idx = { self.processor.token_pad: 0, self.processor.token_unk: 1, self.processor.token_bos: 2, self.processor.token_eos: 3 } for token in w2v.index2word: token2idx[token] = len(token2idx) vector_matrix = np.zeros((len(token2idx), w2v.vector_size)) vector_matrix[1] = np.random.rand(w2v.vector_size) vector_matrix[4:] = w2v.vectors self.embedding_size = w2v.vector_size self.w2v_vector_matrix = vector_matrix self.w2v_token2idx = token2idx self.w2v_top_words = w2v.index2entity[:50] self.w2v_model_loaded = True self.processor.token2idx = self.w2v_token2idx self.processor.idx2token = dict([(value, key) for key, value in self.w2v_token2idx.items()]) logging.debug('------------------------------------------------') logging.debug('Loaded gensim word2vec model') logging.debug('model : {}'.format(self.w2v_path)) logging.debug('word count : {}'.format(len(self.w2v_vector_matrix))) logging.debug('Top 50 word : {}'.format(self.w2v_top_words)) logging.debug('------------------------------------------------') def _build_model(self, **kwargs): if self.token_count == 0: logging.debug('need to build after build_word2idx') else: input_tensor = L.Input(shape=(self.sequence_length,), name=f'input') layer_embedding = L.Embedding(self.token_count, self.embedding_size, weights=[self.w2v_vector_matrix], trainable=False, name=f'layer_embedding') embedded_tensor = layer_embedding(input_tensor) self.embed_model = keras.Model(input_tensor, embedded_tensor) def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[Any]], List[Any]]): """ Prepare embedding layer and pre-processor for labeling task Args: x: y: Returns: """ if not self.w2v_model_loaded: self._build_token2idx_from_w2v() super(WordEmbedding, self).analyze_corpus(x, y) if __name__ == "__main__": print('hello world')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/embeddings/word_embedding.py
word_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: bare_embedding.py # time: 2019-05-20 10:36 import logging from typing import Union, Optional from tensorflow import keras from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor L = keras.layers # Todo: A better name for this class class BareEmbedding(Embedding): """Embedding layer without pre-training, train embedding layer while training model""" def __init__(self, task: str = None, sequence_length: Union[int, str] = 'auto', embedding_size: int = 100, processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Init bare embedding (embedding without pre-training) Args: sequence_length: ``'auto'``, ``'variable'`` or integer. When using ``'auto'``, use the 95% of corpus length as sequence length. When using ``'variable'``, model input shape will set to None, which can handle various length of input, it will use the length of max sequence in every batch for sequence length. If using an integer, let's say ``50``, the input output sequence length will set to 50. embedding_size: Dimension of the dense embedding. """ super(BareEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=embedding_size, processor=processor, from_saved_model=from_saved_model) if not from_saved_model: self._build_model() def _build_model(self, **kwargs): if self.sequence_length == 0 or \ self.sequence_length == 'auto' or \ self.token_count == 0: logging.debug('need to build after build_word2idx') else: input_tensor = L.Input(shape=(self.sequence_length,), name=f'input') layer_embedding = L.Embedding(self.token_count, self.embedding_size, name=f'layer_embedding') embedded_tensor = layer_embedding(input_tensor) self.embed_model = keras.Model(input_tensor, embedded_tensor) if __name__ == "__main__": print('hello world')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/embeddings/bare_embedding.py
bare_embedding.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: numeric_feature_embedding.py # time: 2019-05-23 09:04 from typing import Union, Optional, Tuple, List import numpy as np from tensorflow import keras from tensorflow.python.keras.preprocessing.sequence import pad_sequences import kashgari from kashgari.embeddings.base_embedding import Embedding from kashgari.processors.base_processor import BaseProcessor L = keras.layers # Todo: A better name for this class class NumericFeaturesEmbedding(Embedding): """Embedding layer without pre-training, train embedding layer while training model""" def info(self): info = super(NumericFeaturesEmbedding, self).info() info['config'] = { 'feature_count': self.feature_count, 'feature_name': self.feature_name, 'sequence_length': self.sequence_length, 'embedding_size': self.embedding_size } return info def __init__(self, feature_count: int, feature_name: str, sequence_length: Union[str, int] = 'auto', embedding_size: int = None, processor: Optional[BaseProcessor] = None, from_saved_model: bool = False): """ Init bare embedding (embedding without pre-training) Args: sequence_length: ``'auto'``, ``'variable'`` or integer. When using ``'auto'``, use the 95% of corpus length as sequence length. When using ``'variable'``, model input shape will set to None, which can handle various length of input, it will use the length of max sequence in every batch for sequence length. If using an integer, let's say ``50``, the input output sequence length will set to 50. embedding_size: Dimension of the dense embedding. """ # Dummy Type task = kashgari.CLASSIFICATION if embedding_size is None: embedding_size = feature_count * 8 super(NumericFeaturesEmbedding, self).__init__(task=task, sequence_length=sequence_length, embedding_size=embedding_size, processor=processor, from_saved_model=from_saved_model) self.feature_count = feature_count self.feature_name = feature_name if not from_saved_model: self._build_model() def _build_model(self, **kwargs): input_tensor = L.Input(shape=(self.sequence_length,), name=f'input_{self.feature_name}') layer_embedding = L.Embedding(self.feature_count + 1, self.embedding_size, name=f'layer_embedding_{self.feature_name}') embedded_tensor = layer_embedding(input_tensor) self.embed_model = keras.Model(input_tensor, embedded_tensor) def analyze_corpus(self, x: Union[Tuple[List[List[str]], ...], List[List[str]]], y: Union[List[List[str]], List[str]]): pass def process_x_dataset(self, data: List[List[str]], subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]: """ batch process feature data while training Args: data: target dataset subset: subset index list Returns: vectorized feature tensor """ if subset is not None: numerized_samples = kashgari.utils.get_list_subset(data, subset) else: numerized_samples = data return pad_sequences(numerized_samples, self.sequence_length, padding='post', truncating='post') if __name__ == "__main__": e = NumericFeaturesEmbedding(2, feature_name='is_bold', sequence_length=10) e.embed_model.summary() print(e.embed_one([1, 2])) print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/embeddings/numeric_feature_embedding.py
numeric_feature_embedding.py
# author: AlexWang # contact: ialexwwang@gmail.com # file: attention_weighted_average.py # time: 2019-06-25 16:35 import kashgari import tensorflow as tf from tensorflow.python import keras from tensorflow.python.keras import backend as K L = keras.layers InputSpec = L.InputSpec class KMaxPoolingLayer(L.Layer): ''' K-max pooling layer that extracts the k-highest activation from a sequence (2nd dimension). TensorFlow backend. # Arguments k: An int scale, indicate k max steps of features to pool. sorted: A bool, if output is sorted (default) or not. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. # Input shape - If `data_format='channels_last'`: 3D tensor with shape: `(batch_size, steps, features)` - If `data_format='channels_first'`: 3D tensor with shape: `(batch_size, features, steps)` # Output shape 3D tensor with shape: `(batch_size, top-k-steps, features)` ''' def __init__(self, k=1, sorted=True, data_format='channels_last', **kwargs): # noqa: A002 super(KMaxPoolingLayer, self).__init__(**kwargs) self.input_spec = InputSpec(ndim=3) self.k = k self.sorted = sorted if data_format.lower() in ['channels_first', 'channels_last']: self.data_format = data_format.lower() else: self.data_format = K.image_data_format() def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': return (input_shape[0], self.k, input_shape[1]) else: return (input_shape[0], self.k, input_shape[2]) def call(self, inputs): if self.data_format == 'channels_last': # swap last two dimensions since top_k will be applied along the last dimension shifted_input = tf.transpose(inputs, [0, 2, 1]) # extract top_k, returns two tensors [values, indices] top_k = tf.nn.top_k(shifted_input, k=self.k, sorted=self.sorted)[0] else: top_k = tf.nn.top_k(inputs, k=self.k, sorted=self.sorted)[0] # return flattened output return tf.transpose(top_k, [0, 2, 1]) def get_config(self): config = {'k': self.k, 'sorted': self.sorted, 'data_format': self.data_format} base_config = super(KMaxPoolingLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) KMaxPooling = KMaxPoolingLayer KMaxPoolLayer = KMaxPoolingLayer kashgari.custom_objects['KMaxPoolingLayer'] = KMaxPoolingLayer kashgari.custom_objects['KMaxPooling'] = KMaxPooling kashgari.custom_objects['KMaxPoolLayer'] = KMaxPoolLayer if __name__ == '__main__': print('Hello world, KMaxPoolLayer/KMaxPoolingLayer.')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/layers/kmax_pool_layer.py
kmax_pool_layer.py
# author: AlexWang # contact: ialexwwang@gmail.com # file: attention_weighted_average.py # time: 2019-06-24 19:35 from tensorflow.python import keras from tensorflow.python.keras import backend as K import kashgari L = keras.layers initializers = keras.initializers InputSpec = L.InputSpec class AttentionWeightedAverageLayer(L.Layer): ''' Computes a weighted average of the different channels across timesteps. Uses 1 parameter pr. channel to compute the attention value for a single timestep. ''' def __init__(self, return_attention=False, **kwargs): self.init = initializers.get('uniform') self.supports_masking = True self.return_attention = return_attention super(AttentionWeightedAverageLayer, self).__init__(**kwargs) def build(self, input_shape): self.input_spec = [InputSpec(ndim=3)] assert len(input_shape) == 3 self.W = self.add_weight(shape=(input_shape[2].value, 1), name='{}_w'.format(self.name), initializer=self.init, trainable=True ) # self.trainable_weights = [self.W] super(AttentionWeightedAverageLayer, self).build(input_shape) def call(self, x, mask=None): # computes a probability distribution over the timesteps # uses 'max trick' for numerical stability # reshape is done to avoid issue with Tensorflow # and 1-dimensional weights logits = K.dot(x, self.W) x_shape = K.shape(x) logits = K.reshape(logits, (x_shape[0], x_shape[1])) ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True)) # masked timesteps have zero weight if mask is not None: mask = K.cast(mask, K.floatx()) ai = ai * mask att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon()) weighted_input = x * K.expand_dims(att_weights) result = K.sum(weighted_input, axis=1) if self.return_attention: return [result, att_weights] return result def get_output_shape_for(self, input_shape): return self.compute_output_shape(input_shape) def compute_output_shape(self, input_shape): output_len = input_shape[2] if self.return_attention: return [(input_shape[0], output_len), (input_shape[0], input_shape[1])] return (input_shape[0], output_len) def compute_mask(self, inputs, input_mask=None): if isinstance(input_mask, list): return [None] * len(input_mask) else: return None def get_config(self): config = {'return_attention': self.return_attention, } base_config = super(AttentionWeightedAverageLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) AttentionWeightedAverage = AttentionWeightedAverageLayer AttWgtAvgLayer = AttentionWeightedAverageLayer kashgari.custom_objects['AttentionWeightedAverageLayer'] = AttentionWeightedAverageLayer kashgari.custom_objects['AttentionWeightedAverage'] = AttentionWeightedAverage kashgari.custom_objects['AttWgtAvgLayer'] = AttWgtAvgLayer if __name__ == '__main__': print('Hello world, AttentionWeightedAverageLayer/AttWgtAvgLayer.')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/layers/att_wgt_avg_layer.py
att_wgt_avg_layer.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: crf.py # time: 2019-06-28 14:33 import tensorflow as tf class CRF(tf.keras.layers.Layer): """ Conditional Random Field layer (tf.keras) `CRF` can be used as the last layer in a network (as a classifier). Input shape (features) must be equal to the number of classes the CRF can predict (a linear layer is recommended). Note: the loss and accuracy functions of networks using `CRF` must use the provided loss and accuracy functions (denoted as loss and viterbi_accuracy) as the classification of sequences are used with the layers internal weights. Args: output_dim (int): the number of labels to tag each temporal input. Input shape: nD tensor with shape `(batch_size, sentence length, num_classes)`. Output shape: nD tensor with shape: `(batch_size, sentence length, num_classes)`. """ def __init__(self, output_dim, mode='reg', supports_masking=False, transitions=None, **kwargs): self.transitions = None super(CRF, self).__init__(**kwargs) self.output_dim = int(output_dim) self.mode = mode if self.mode == 'pad': self.input_spec = [tf.keras.layers.InputSpec(min_ndim=3), tf.keras.layers.InputSpec(min_ndim=2)] elif self.mode == 'reg': self.input_spec = tf.keras.layers.InputSpec(min_ndim=3) else: raise ValueError self.supports_masking = supports_masking self.sequence_lengths = None def get_config(self): config = { 'output_dim': self.output_dim, 'mode': self.mode, 'supports_masking': self.supports_masking, 'transitions': tf.keras.backend.eval(self.transitions) } base_config = super(CRF, self).get_config() return dict(list(base_config.items()) + list(config.items())) def build(self, input_shape): if self.mode == 'pad': assert len(input_shape) == 2 assert len(input_shape[0]) == 3 assert len(input_shape[1]) == 2 f_shape = tf.TensorShape(input_shape[0]) input_spec = [tf.keras.layers.InputSpec(min_ndim=3, axes={-1: f_shape[-1]}), tf.keras.layers.InputSpec(min_ndim=2, axes={-1: 1}, dtype=tf.int32)] else: assert len(input_shape) == 3 f_shape = tf.TensorShape(input_shape) input_spec = tf.keras.layers.InputSpec(min_ndim=3, axes={-1: f_shape[-1]}) if f_shape[-1] is None: raise ValueError('The last dimension of the inputs to `CRF` should be defined. Found `None`.') if f_shape[-1] != self.output_dim: raise ValueError('The last dimension of the input shape must be equal to output shape. ' 'Use a linear layer if needed.') self.input_spec = input_spec self.transitions = self.add_weight(name='transitions', shape=[self.output_dim, self.output_dim], initializer='glorot_uniform', trainable=True) self.built = True def call(self, inputs, **kwargs): if self.mode == 'pad': sequences = tf.convert_to_tensor(inputs[0], dtype=self.dtype) self.sequence_lengths = tf.keras.backend.flatten(inputs[-1]) else: sequences = tf.convert_to_tensor(inputs, dtype=self.dtype) shape = tf.shape(inputs) self.sequence_lengths = tf.ones(shape[0], dtype=tf.int32) * (shape[1]) viterbi_sequence, _ = tf.contrib.crf.crf_decode(sequences, self.transitions, self.sequence_lengths) output = tf.keras.backend.one_hot(viterbi_sequence, self.output_dim) return tf.keras.backend.in_train_phase(sequences, output) def loss(self, y_true, y_pred): y_pred = tf.convert_to_tensor(y_pred, dtype=self.dtype) log_likelihood, self.transitions = tf.contrib.crf.crf_log_likelihood(y_pred, tf.cast(tf.keras.backend.argmax(y_true), dtype=tf.int32), self.sequence_lengths, transition_params=self.transitions) return tf.reduce_mean(-log_likelihood) def compute_output_shape(self, input_shape): if self.mode == 'pad': data_shape = input_shape[0] else: data_shape = input_shape tf.TensorShape(data_shape).assert_has_rank(3) return data_shape[:2] + (self.output_dim,) @property def viterbi_accuracy(self): def accuracy(y_true, y_pred): shape = tf.shape(y_pred) sequence_lengths = tf.ones(shape[0], dtype=tf.int32) * (shape[1]) viterbi_sequence, _ = tf.contrib.crf.crf_decode(y_pred, self.transitions, sequence_lengths) output = tf.keras.backend.one_hot(viterbi_sequence, self.output_dim) return tf.keras.metrics.categorical_accuracy(y_true, output) accuracy.func_name = 'viterbi_accuracy' return accuracy
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/layers/crf.py
crf.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: scoring_processor.py # time: 11:10 上午 from typing import List, Optional import numpy as np import kashgari from kashgari import utils from kashgari.processors.base_processor import BaseProcessor def is_numeric(obj): attrs = ['__add__', '__sub__', '__mul__', '__truediv__', '__pow__'] return all(hasattr(obj, attr) for attr in attrs) class ScoringProcessor(BaseProcessor): """ Corpus Pre Processor class """ def __init__(self, output_dim=None, **kwargs): super(ScoringProcessor, self).__init__(**kwargs) self.output_dim = output_dim def info(self): info = super(ScoringProcessor, self).info() info['task'] = kashgari.SCORING return info def _build_label_dict(self, label_list: List[List[float]]): """ Build label2idx dict for sequence labeling task Args: label_list: corpus label list """ if self.output_dim is None: label_sample = label_list[0] if isinstance(label_sample, np.ndarray) and len(label_sample.shape) == 1: self.output_dim = label_sample.shape[0] elif is_numeric(label_sample): self.output_dim = 1 elif isinstance(label_sample, list): self.output_dim = len(label_sample) else: raise ValueError('Scoring Label Sample must be a float, float array or 1D numpy array') # np_labels = np.array(label_list) # if np_labels.max() > 1 or np_labels.min() < 0: # raise ValueError('Scoring Label Sample must be in range[0,1]') def process_y_dataset(self, data: List[List[str]], max_len: Optional[int] = None, subset: Optional[List[int]] = None) -> np.ndarray: if subset is not None: target = utils.get_list_subset(data, subset) else: target = data[:] y = np.array(target) return y def numerize_token_sequences(self, sequences: List[List[str]]): result = [] for seq in sequences: if self.add_bos_eos: seq = [self.token_bos] + seq + [self.token_eos] unk_index = self.token2idx[self.token_unk] result.append([self.token2idx.get(token, unk_index) for token in seq]) return result def numerize_label_sequences(self, sequences: List[List[str]]) -> List[List[int]]: return sequences def reverse_numerize_label_sequences(self, sequences, lengths=None): return sequences if __name__ == "__main__": from kashgari.corpus import SMP2018ECDTCorpus x, y = SMP2018ECDTCorpus.load_data() x = x[:3] y = [0.2, 0.3, 0.2] p = ScoringProcessor() p.analyze_corpus(x, y) print(p.process_y_dataset(y))
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/processors/scoring_processor.py
scoring_processor.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # file: base_processor.py # time: 2019-05-21 11:27 import collections import logging import operator from typing import List, Optional, Union, Dict, Any import numpy as np from tensorflow.python.keras.preprocessing.sequence import pad_sequences from kashgari import utils class BaseProcessor(object): """ Corpus Pre Processor class """ def __init__(self, **kwargs): self.token2idx: Dict[str, int] = kwargs.get('token2idx', {}) self.idx2token: Dict[int, str] = dict([(v, k) for (k, v) in self.token2idx.items()]) self.token2count: Dict = {} self.label2idx: Dict[str, int] = kwargs.get('label2idx', {}) self.idx2label: Dict[int, str] = dict([(v, k) for (k, v) in self.label2idx.items()]) self.token_pad: str = kwargs.get('token_pad', '<PAD>') self.token_unk: str = kwargs.get('token_unk', '<UNK>') self.token_bos: str = kwargs.get('token_bos', '<BOS>') self.token_eos: str = kwargs.get('token_eos', '<EOS>') self.dataset_info: Dict[str, Any] = kwargs.get('dataset_info', {}) self.add_bos_eos: bool = kwargs.get('add_bos_eos', False) self.sequence_length = kwargs.get('sequence_length', None) self.min_count = kwargs.get('min_count', 3) def info(self): return { 'class_name': self.__class__.__name__, 'config': { 'label2idx': self.label2idx, 'token2idx': self.token2idx, 'token_pad': self.token_pad, 'token_unk': self.token_unk, 'token_bos': self.token_bos, 'token_eos': self.token_eos, 'dataset_info': self.dataset_info, 'add_bos_eos': self.add_bos_eos, 'sequence_length': self.sequence_length }, 'module': self.__class__.__module__, } def analyze_corpus(self, corpus: Union[List[List[str]]], labels: Union[List[List[str]], List[str]], force: bool = False): rec_len = sorted([len(seq) for seq in corpus])[int(0.95 * len(corpus))] self.dataset_info['RECOMMEND_LEN'] = rec_len if len(self.token2idx) == 0 or force: self._build_token_dict(corpus, self.min_count) if len(self.label2idx) == 0 or force: self._build_label_dict(labels) def _build_token_dict(self, corpus: List[List[str]], min_count: int = 3): """ Build token index dictionary using corpus Args: corpus: List of tokenized sentences, like ``[['I', 'love', 'tf'], ...]`` min_count: """ token2idx = { self.token_pad: 0, self.token_unk: 1, self.token_bos: 2, self.token_eos: 3 } token2count = {} for sentence in corpus: for token in sentence: count = token2count.get(token, 0) token2count[token] = count + 1 self.token2count = token2count # 按照词频降序排序 sorted_token2count = sorted(token2count.items(), key=operator.itemgetter(1), reverse=True) token2count = collections.OrderedDict(sorted_token2count) for token, token_count in token2count.items(): if token not in token2idx and token_count >= min_count: token2idx[token] = len(token2idx) self.token2idx = token2idx self.idx2token = dict([(value, key) for key, value in self.token2idx.items()]) logging.debug(f"build token2idx dict finished, contains {len(self.token2idx)} tokens.") self.dataset_info['token_count'] = len(self.token2idx) def _build_label_dict(self, corpus: Union[List[List[str]], List[str]]): raise NotImplementedError def process_x_dataset(self, data: List[List[str]], max_len: Optional[int] = None, subset: Optional[List[int]] = None) -> np.ndarray: if max_len is None: max_len = self.sequence_length if subset is not None: target = utils.get_list_subset(data, subset) else: target = data numerized_samples = self.numerize_token_sequences(target) return pad_sequences(numerized_samples, max_len, padding='post', truncating='post') def process_y_dataset(self, data: Union[List[List[str]], List[str]], max_len: Optional[int], subset: Optional[List[int]] = None) -> np.ndarray: raise NotImplementedError def numerize_token_sequences(self, sequences: List[List[str]]): raise NotImplementedError def numerize_label_sequences(self, sequences: List[List[str]]) -> List[List[int]]: raise NotImplementedError def reverse_numerize_label_sequences(self, sequence, **kwargs): raise NotImplementedError def __repr__(self): return f"<{self.__class__}>" def __str__(self): return self.__repr__() if __name__ == "__main__": print("Hello world")
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/processors/base_processor.py
base_processor.py
# author: BrikerMan # contact: eliyar917@gmail.com # blog: https://eliyar.biz # version: 1.0 # license: Apache Licence # file: corpus.py # time: 2019-05-17 11:28 import collections import logging import operator from typing import List, Dict, Optional import numpy as np from tensorflow.python.keras.preprocessing.sequence import pad_sequences from tensorflow.python.keras.utils import to_categorical import kashgari from kashgari import utils from kashgari.processors.base_processor import BaseProcessor class LabelingProcessor(BaseProcessor): """ Corpus Pre Processor class """ def info(self): info = super(LabelingProcessor, self).info() info['task'] = kashgari.LABELING return info def _build_label_dict(self, label_list: List[List[str]]): """ Build label2idx dict for sequence labeling task Args: label_list: corpus label list """ label2idx: Dict[str: int] = { self.token_pad: 0 } token2count = {} for sequence in label_list: for label in sequence: count = token2count.get(label, 0) token2count[label] = count + 1 sorted_token2count = sorted(token2count.items(), key=operator.itemgetter(1), reverse=True) token2count = collections.OrderedDict(sorted_token2count) for token in token2count.keys(): if token not in label2idx: label2idx[token] = len(label2idx) self.label2idx = label2idx self.idx2label = dict([(value, key) for key, value in self.label2idx.items()]) logging.debug(f"build label2idx dict finished, contains {len(self.label2idx)} labels.") def process_y_dataset(self, data: List[List[str]], max_len: Optional[int] = None, subset: Optional[List[int]] = None) -> np.ndarray: if subset is not None: target = utils.get_list_subset(data, subset) else: target = data[:] numerized_samples = self.numerize_label_sequences(target) padded_seq = pad_sequences( numerized_samples, max_len, padding='post', truncating='post') return to_categorical(padded_seq, len(self.label2idx)) def numerize_token_sequences(self, sequences: List[List[str]]): result = [] for seq in sequences: if self.add_bos_eos: seq = [self.token_bos] + seq + [self.token_eos] unk_index = self.token2idx[self.token_unk] result.append([self.token2idx.get(token, unk_index) for token in seq]) return result def numerize_label_sequences(self, sequences: List[List[str]]) -> List[List[int]]: result = [] for seq in sequences: if self.add_bos_eos: seq = [self.token_pad] + seq + [self.token_pad] result.append([self.label2idx[label] for label in seq]) return result def reverse_numerize_label_sequences(self, sequences, lengths=None): result = [] for index, seq in enumerate(sequences): labels = [] if self.add_bos_eos: seq = seq[1:] for idx in seq: labels.append(self.idx2label[idx]) if lengths is not None: labels = labels[:lengths[index]] result.append(labels) return result if __name__ == "__main__": from kashgari.corpus import ChineseDailyNerCorpus x, y = ChineseDailyNerCorpus.load_data() p = LabelingProcessor() p.analyze_corpus(x, y) r = p.process_x_dataset(x, subset=[10, 12, 20]) print(r)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/processors/labeling_processor.py
labeling_processor.py
from typing import List, Optional import numpy as np from tensorflow.python.keras.utils import to_categorical import kashgari from kashgari import utils from kashgari.processors.base_processor import BaseProcessor from sklearn.preprocessing import MultiLabelBinarizer class ClassificationProcessor(BaseProcessor): """ Corpus Pre Processor class """ def __init__(self, multi_label=False, **kwargs): super(ClassificationProcessor, self).__init__(**kwargs) self.multi_label = multi_label if self.label2idx: self.multi_label_binarizer: MultiLabelBinarizer = MultiLabelBinarizer(classes=list(self.label2idx.keys())) self.multi_label_binarizer.fit([]) else: self.multi_label_binarizer: MultiLabelBinarizer = None def info(self): info = super(ClassificationProcessor, self).info() info['task'] = kashgari.CLASSIFICATION info['config']['multi_label'] = self.multi_label return info def _build_label_dict(self, labels: List[str]): if self.multi_label: label_set = set() for i in labels: label_set = label_set.union(list(i)) else: label_set = set(labels) self.label2idx = {} for idx, label in enumerate(sorted(label_set)): self.label2idx[label] = len(self.label2idx) self.idx2label = dict([(value, key) for key, value in self.label2idx.items()]) self.dataset_info['label_count'] = len(self.label2idx) self.multi_label_binarizer = MultiLabelBinarizer(classes=list(self.label2idx.keys())) def process_y_dataset(self, data: List[str], max_len: Optional[int] = None, subset: Optional[List[int]] = None) -> np.ndarray: if subset is not None: target = utils.get_list_subset(data, subset) else: target = data if self.multi_label: return self.multi_label_binarizer.fit_transform(target) else: numerized_samples = self.numerize_label_sequences(target) return to_categorical(numerized_samples, len(self.label2idx)) def numerize_token_sequences(self, sequences: List[List[str]]): result = [] for seq in sequences: if self.add_bos_eos: seq = [self.token_bos] + seq + [self.token_eos] unk_index = self.token2idx[self.token_unk] result.append([self.token2idx.get(token, unk_index) for token in seq]) return result def numerize_label_sequences(self, sequences: List[str]) -> List[int]: """ Convert label sequence to label-index sequence ``['O', 'O', 'B-ORG'] -> [0, 0, 2]`` Args: sequences: label sequence, list of str Returns: label-index sequence, list of int """ return [self.label2idx[label] for label in sequences] def reverse_numerize_label_sequences(self, sequences, **kwargs): if self.multi_label: return self.multi_label_binarizer.inverse_transform(sequences) else: return [self.idx2label[label] for label in sequences] if __name__ == "__main__": from kashgari.corpus import SMP2018ECDTCorpus x, y = SMP2018ECDTCorpus.load_data() p = ClassificationProcessor() p.analyze_corpus(x, y)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/kashgari/processors/classification_processor.py
classification_processor.py
from bert.graph import import_tf from bert import modeling from bert import tokenization from bert.graph import optimize_graph from bert import args from queue import Queue from threading import Thread tf = import_tf(0, True) class InputExample(object): def __init__(self, unique_id, text_a, text_b): self.unique_id = unique_id self.text_a = text_a self.text_b = text_b class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids): self.unique_id = unique_id self.tokens = tokens self.input_ids = input_ids self.input_mask = input_mask self.input_type_ids = input_type_ids class BertVector: def __init__(self, batch_size=32, pooling_strategy="REDUCE_MEAN", max_seq_len=40): """ init BertVector :param batch_size: Depending on your memory default is 32 """ self.max_seq_length = max_seq_len self.layer_indexes = args.layer_indexes self.gpu_memory_fraction = 1 if pooling_strategy == "NONE": pooling_strategy = args.PoolingStrategy.NONE elif pooling_strategy == "REDUCE_MAX": pooling_strategy = args.PoolingStrategy.REDUCE_MAX elif pooling_strategy == "REDUCE_MEAN": pooling_strategy = args.PoolingStrategy.REDUCE_MEAN elif pooling_strategy == "REDUCE_MEAN_MAX": pooling_strategy = args.PoolingStrategy.REDUCE_MEAN_MAX self.graph_path = optimize_graph(pooling_strategy=pooling_strategy, max_seq_len=self.max_seq_length) self.tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True) self.batch_size = batch_size self.estimator = self.get_estimator() self.input_queue = Queue(maxsize=1) self.output_queue = Queue(maxsize=1) self.predict_thread = Thread(target=self.predict_from_queue, daemon=True) self.predict_thread.start() def get_estimator(self): from tensorflow.python.estimator.estimator import Estimator from tensorflow.python.estimator.run_config import RunConfig from tensorflow.python.estimator.model_fn import EstimatorSpec def model_fn(features, labels, mode, params): with tf.gfile.GFile(self.graph_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) input_names = ['input_ids', 'input_mask', 'input_type_ids'] output = tf.import_graph_def(graph_def, input_map={k + ':0': features[k] for k in input_names}, return_elements=['final_encodes:0']) return EstimatorSpec(mode=mode, predictions={ 'encodes': output[0] }) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory_fraction config.log_device_placement = False config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 return Estimator(model_fn=model_fn, config=RunConfig(session_config=config), params={'batch_size': self.batch_size}) def predict_from_queue(self): prediction = self.estimator.predict(input_fn=self.queue_predict_input_fn, yield_single_examples=False) for i in prediction: self.output_queue.put(i) def encode(self, sentence): self.input_queue.put(sentence) prediction = self.output_queue.get() return prediction def queue_predict_input_fn(self): return (tf.data.Dataset.from_generator( self.generate_from_queue, output_types={'unique_ids': tf.int32, 'input_ids': tf.int32, 'input_mask': tf.int32, 'input_type_ids': tf.int32}, output_shapes={ 'unique_ids': (1,), 'input_ids': (None, self.max_seq_length), 'input_mask': (None, self.max_seq_length), 'input_type_ids': (None, self.max_seq_length)})) def generate_from_queue(self): while True: features = list(self.convert_examples_to_features(seq_length=self.max_seq_length, tokenizer=self.tokenizer)) yield { 'unique_ids': [f.unique_id for f in features], 'input_ids': [f.input_ids for f in features], 'input_mask': [f.input_mask for f in features], 'input_type_ids': [f.input_type_ids for f in features] } def input_fn_builder(self, features, seq_length): """Creates an `input_fn` closure to be passed to Estimator.""" all_unique_ids = [] all_input_ids = [] all_input_mask = [] all_input_type_ids = [] for feature in features: all_unique_ids.append(feature.unique_id) all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_input_type_ids.append(feature.input_type_ids) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "unique_ids": tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "input_type_ids": tf.constant( all_input_type_ids, shape=[num_examples, seq_length], dtype=tf.int32), }) d = d.batch(batch_size=batch_size, drop_remainder=False) return d return input_fn def model_fn_builder(self, bert_config, init_checkpoint, layer_indexes): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] input_type_ids = features["input_type_ids"] jit_scope = tf.contrib.compiler.jit.experimental_jit_scope with jit_scope(): model = modeling.BertModel( config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, token_type_ids=input_type_ids) if mode != tf.estimator.ModeKeys.PREDICT: raise ValueError("Only PREDICT modes are supported: %s" % (mode)) tvars = tf.trainable_variables() (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) all_layers = model.get_all_encoder_layers() predictions = { "unique_id": unique_ids, } for (i, layer_index) in enumerate(layer_indexes): predictions["layer_output_%d" % i] = all_layers[layer_index] from tensorflow.python.estimator.model_fn import EstimatorSpec output_spec = EstimatorSpec(mode=mode, predictions=predictions) return output_spec return model_fn def convert_examples_to_features(self, seq_length, tokenizer): """Loads a data file into a list of `InputBatch`s.""" features = [] input_masks = [] examples = self._to_example(self.input_queue.get()) for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) # if the sentences's length is more than seq_length, only use sentence's left part if len(tokens_a) > seq_length - 2: tokens_a = tokens_a[0:(seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] input_type_ids = [] tokens.append("[CLS]") input_type_ids.append(0) for token in tokens_a: tokens.append(token) input_type_ids.append(0) tokens.append("[SEP]") input_type_ids.append(0) # Where "input_ids" are tokens's index in vocabulary input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) input_masks.append(input_mask) # Zero-pad up to the sequence length. while len(input_ids) < seq_length: input_ids.append(0) input_mask.append(0) input_type_ids.append(0) assert len(input_ids) == seq_length assert len(input_mask) == seq_length assert len(input_type_ids) == seq_length if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("unique_id: %s" % (example.unique_id)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info( "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids])) yield InputFeatures( unique_id=example.unique_id, tokens=tokens, input_ids=input_ids, input_mask=input_mask, input_type_ids=input_type_ids) def _truncate_seq_pair(self, tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() @staticmethod def _to_example(sentences): import re """ sentences to InputExample :param sentences: list of strings :return: list of InputExample """ unique_id = 0 for ss in sentences: line = tokenization.convert_to_unicode(ss) if not line: continue line = line.strip() text_a = None text_b = None m = re.match(r"^(.*) \|\|\| (.*)$", line) if m is None: text_a = line else: text_a = m.group(1) text_b = m.group(2) yield InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b) unique_id += 1 if __name__ == "__main__": import time bert = BertVector() while True: question = input('question: ') start = time.time() vectors = bert.encode([question]) print(str(vectors)) #print(f'predict time:----------{time.time() - start}')
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/bert/extract_feature.py
extract_feature.py
"""Functions and classes related to optimization (weight updates).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import tensorflow as tf def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu): """Creates an optimizer training op.""" global_step = tf.train.get_or_create_global_step() learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32) # Implements linear decay of the learning rate. learning_rate = tf.train.polynomial_decay( learning_rate, global_step, num_train_steps, end_learning_rate=0.0, power=1.0, cycle=False) # Implements linear warmup. I.e., if global_step < num_warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. if num_warmup_steps: global_steps_int = tf.cast(global_step, tf.int32) warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32) global_steps_float = tf.cast(global_steps_int, tf.float32) warmup_steps_float = tf.cast(warmup_steps_int, tf.float32) warmup_percent_done = global_steps_float / warmup_steps_float warmup_learning_rate = init_lr * warmup_percent_done is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32) learning_rate = ( (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate) # It is recommended that you use this optimizer for fine tuning, since this # is how the model was trained (note that the Adam m/v variables are NOT # loaded from init_checkpoint.) optimizer = AdamWeightDecayOptimizer( learning_rate=learning_rate, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) if use_tpu: optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) tvars = tf.trainable_variables() grads = tf.gradients(loss, tvars) # This is how the model was pre-trained. (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0) train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=global_step) new_global_step = global_step + 1 train_op = tf.group(train_op, [global_step.assign(new_global_step)]) return train_op class AdamWeightDecayOptimizer(tf.train.Optimizer): """A basic Adam optimizer that includes "correct" L2 weight decay.""" def __init__(self, learning_rate, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=None, name="AdamWeightDecayOptimizer"): """Constructs a AdamWeightDecayOptimizer.""" super(AdamWeightDecayOptimizer, self).__init__(False, name) self.learning_rate = learning_rate self.weight_decay_rate = weight_decay_rate self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.exclude_from_weight_decay = exclude_from_weight_decay def apply_gradients(self, grads_and_vars, global_step=None, name=None): """See base class.""" assignments = [] for (grad, param) in grads_and_vars: if grad is None or param is None: continue param_name = self._get_variable_name(param.name) m = tf.get_variable( name=param_name + "/adam_m", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) v = tf.get_variable( name=param_name + "/adam_v", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) # Standard Adam update. next_m = ( tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad)) next_v = ( tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2, tf.square(grad))) update = next_m / (tf.sqrt(next_v) + self.epsilon) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want ot decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if self._do_use_weight_decay(param_name): update += self.weight_decay_rate * param update_with_lr = self.learning_rate * update next_param = param - update_with_lr assignments.extend( [param.assign(next_param), m.assign(next_m), v.assign(next_v)]) return tf.group(*assignments, name=name) def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def _get_variable_name(self, param_name): """Get the variable name from the tensor name.""" m = re.match("^(.*):\\d+$", param_name) if m is not None: param_name = m.group(1) return param_name
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/bert/optimization.py
optimization.py
"""Tokenization classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import unicodedata import six import tensorflow as tf def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def printable_text(text): """Returns text encoded in a way suitable for print or `tf.logging`.""" # These functions want `str` for both Python2 and Python3, but in one case # it's a Unicode string and in the other it's a byte string. if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text elif isinstance(text, unicode): return text.encode("utf-8") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() index = 0 with tf.gfile.GFile(vocab_file, "r") as reader: while True: token = convert_to_unicode(reader.readline()) if not token: break token = token.strip() vocab[token] = index index += 1 return vocab def convert_by_vocab(vocab, items): """Converts a sequence of [tokens|ids] using the vocab.""" output = [] for item in items: output.append(vocab[item]) return output def convert_tokens_to_ids(vocab, tokens): return convert_by_vocab(vocab, tokens) def convert_ids_to_tokens(inv_vocab, ids): return convert_by_vocab(inv_vocab, ids) def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class FullTokenizer(object): """Runs end-to-end tokenziation.""" def __init__(self, vocab_file, do_lower_case=True): self.vocab = load_vocab(vocab_file) self.inv_vocab = {v: k for k, v in self.vocab.items()} self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) def tokenize(self, text): split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) return split_tokens def convert_tokens_to_ids(self, tokens): return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): return convert_by_vocab(self.inv_vocab, ids) class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case def tokenize(self, text): """Tokenizes a piece of text.""" text = convert_to_unicode(text) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenziation.""" def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer. Returns: A list of wordpiece tokens. """ text = convert_to_unicode(text) output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/bert/tokenization.py
tokenization.py
"""The main BERT model and related functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import json import math import re import six import tensorflow as tf class BertConfig(object): """Configuration for `BertModel`.""" def __init__(self, vocab_size, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02): """Constructs BertConfig. Args: vocab_size: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. hidden_dropout_prob: The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The stdev of the truncated_normal_initializer for initializing all weight matrices. """ self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size=None) for (key, value) in six.iteritems(json_object): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with tf.gfile.GFile(json_file, "r") as reader: text = reader.read() return cls.from_dict(json.loads(text)) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class BertModel(object): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Example usage: ```python # Already been converted into WordPiece token ids input_ids = tf.constant([[31, 51, 99], [15, 5, 0]]) input_mask = tf.constant([[1, 1, 1], [1, 1, 0]]) token_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]]) config = modeling.BertConfig(vocab_size=32000, hidden_size=512, num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) model = modeling.BertModel(config=config, is_training=True, input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids) label_embeddings = tf.get_variable(...) pooled_output = model.get_pooled_output() logits = tf.matmul(pooled_output, label_embeddings) ... ``` """ def __init__(self, config, is_training, input_ids, input_mask=None, token_type_ids=None, use_one_hot_embeddings=True, scope=None): """Constructor for BertModel. Args: config: `BertConfig` instance. is_training: bool. rue for training model, false for eval model. Controls whether dropout will be applied. input_ids: int32 Tensor of shape [batch_size, seq_length]. input_mask: (optional) int32 Tensor of shape [batch_size, seq_length]. token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length]. use_one_hot_embeddings: (optional) bool. Whether to use one-hot word embeddings or tf.embedding_lookup() for the word embeddings. On the TPU, it is must faster if this is True, on the CPU or GPU, it is faster if this is False. scope: (optional) variable scope. Defaults to "bert". Raises: ValueError: The config is invalid or one of the input tensor shapes is invalid. """ config = copy.deepcopy(config) if not is_training: config.hidden_dropout_prob = 0.0 config.attention_probs_dropout_prob = 0.0 input_shape = get_shape_list(input_ids, expected_rank=2) batch_size = input_shape[0] seq_length = input_shape[1] if input_mask is None: input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32) if token_type_ids is None: token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32) with tf.variable_scope(scope, default_name="bert"): with tf.variable_scope("embeddings"): # Perform embedding lookup on the word ids. (self.embedding_output, self.embedding_table) = embedding_lookup( input_ids=input_ids, vocab_size=config.vocab_size, embedding_size=config.hidden_size, initializer_range=config.initializer_range, word_embedding_name="word_embeddings", use_one_hot_embeddings=use_one_hot_embeddings) # Add positional embeddings and token type embeddings, then layer # normalize and perform dropout. self.embedding_output = embedding_postprocessor( input_tensor=self.embedding_output, use_token_type=True, token_type_ids=token_type_ids, token_type_vocab_size=config.type_vocab_size, token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=config.initializer_range, max_position_embeddings=config.max_position_embeddings, dropout_prob=config.hidden_dropout_prob) with tf.variable_scope("encoder"): # This converts a 2D mask of shape [batch_size, seq_length] to a 3D # mask of shape [batch_size, seq_length, seq_length] which is used # for the attention scores. attention_mask = create_attention_mask_from_input_mask( input_ids, input_mask) # Run the stacked transformer. # `sequence_output` shape = [batch_size, seq_length, hidden_size]. self.all_encoder_layers = transformer_model( input_tensor=self.embedding_output, attention_mask=attention_mask, hidden_size=config.hidden_size, num_hidden_layers=config.num_hidden_layers, num_attention_heads=config.num_attention_heads, intermediate_size=config.intermediate_size, intermediate_act_fn=get_activation(config.hidden_act), hidden_dropout_prob=config.hidden_dropout_prob, attention_probs_dropout_prob=config.attention_probs_dropout_prob, initializer_range=config.initializer_range, do_return_all_layers=True) self.sequence_output = self.all_encoder_layers[-1] # The "pooler" converts the encoded sequence tensor of shape # [batch_size, seq_length, hidden_size] to a tensor of shape # [batch_size, hidden_size]. This is necessary for segment-level # (or segment-pair-level) classification tasks where we need a fixed # dimensional representation of the segment. with tf.variable_scope("pooler"): # We "pool" the model by simply taking the hidden state corresponding # to the first token. We assume that this has been pre-trained first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1) self.pooled_output = tf.layers.dense( first_token_tensor, config.hidden_size, activation=tf.tanh, kernel_initializer=create_initializer(config.initializer_range)) def get_pooled_output(self): return self.pooled_output def get_sequence_output(self): """Gets final hidden layer of encoder. Returns: float Tensor of shape [batch_size, seq_length, hidden_size] corresponding to the final hidden of the transformer encoder. """ return self.sequence_output def get_all_encoder_layers(self): return self.all_encoder_layers def get_embedding_output(self): """Gets output of the embedding lookup (i.e., input to the transformer). Returns: float Tensor of shape [batch_size, seq_length, hidden_size] corresponding to the output of the embedding layer, after summing the word embeddings with the positional embeddings and the token type embeddings, then performing layer normalization. This is the input to the transformer. """ return self.embedding_output def get_embedding_table(self): return self.embedding_table def gelu(input_tensor): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: input_tensor: float Tensor to perform activation. Returns: `input_tensor` with the GELU activation applied. """ cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0))) return input_tensor * cdf def get_activation(activation_string): """Maps a string to a Python function, e.g., "relu" => `tf.nn.relu`. Args: activation_string: String name of the activation function. Returns: A Python function corresponding to the activation function. If `activation_string` is None, empty, or "linear", this will return None. If `activation_string` is not a string, it will return `activation_string`. Raises: ValueError: The `activation_string` does not correspond to a known activation. """ # We assume that anything that"s not a string is already an activation # function, so we just return it. if not isinstance(activation_string, six.string_types): return activation_string if not activation_string: return None act = activation_string.lower() if act == "linear": return None elif act == "relu": return tf.nn.relu elif act == "gelu": return gelu elif act == "tanh": return tf.tanh else: raise ValueError("Unsupported activation: %s" % act) def get_assignment_map_from_checkpoint(tvars, init_checkpoint): """Compute the union of the current variables and checkpoint variables.""" assignment_map = {} initialized_variable_names = {} name_to_variable = collections.OrderedDict() for var in tvars: name = var.name m = re.match("^(.*):\\d+$", name) if m is not None: name = m.group(1) name_to_variable[name] = var init_vars = tf.train.list_variables(init_checkpoint) assignment_map = collections.OrderedDict() for x in init_vars: (name, var) = (x[0], x[1]) if name not in name_to_variable: continue assignment_map[name] = name initialized_variable_names[name] = 1 initialized_variable_names[name + ":0"] = 1 return (assignment_map, initialized_variable_names) def dropout(input_tensor, dropout_prob): """Perform dropout. Args: input_tensor: float Tensor. dropout_prob: Python float. The probability of dropping out a value (NOT of *keeping* a dimension as in `tf.nn.dropout`). Returns: A version of `input_tensor` with dropout applied. """ if dropout_prob is None or dropout_prob == 0.0: return input_tensor output = tf.nn.dropout(input_tensor, 1.0 - dropout_prob) return output def layer_norm(input_tensor, name=None): """Run layer normalization on the last dimension of the tensor.""" return tf.contrib.layers.layer_norm( inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name) def layer_norm_and_dropout(input_tensor, dropout_prob, name=None): """Runs layer normalization followed by dropout.""" output_tensor = layer_norm(input_tensor, name) output_tensor = dropout(output_tensor, dropout_prob) return output_tensor def create_initializer(initializer_range=0.02): """Creates a `truncated_normal_initializer` with the given range.""" return tf.truncated_normal_initializer(stddev=initializer_range) def embedding_lookup(input_ids, vocab_size, embedding_size=128, initializer_range=0.02, word_embedding_name="word_embeddings", use_one_hot_embeddings=False): """Looks up words embeddings for id tensor. Args: input_ids: int32 Tensor of shape [batch_size, seq_length] containing word ids. vocab_size: int. Size of the embedding vocabulary. embedding_size: int. Width of the word embeddings. initializer_range: float. Embedding initialization range. word_embedding_name: string. Name of the embedding table. use_one_hot_embeddings: bool. If True, use one-hot method for word embeddings. If False, use `tf.nn.embedding_lookup()`. One hot is better for TPUs. Returns: float Tensor of shape [batch_size, seq_length, embedding_size]. """ # This function assumes that the input is of shape [batch_size, seq_length, # num_inputs]. # # If the input is a 2D tensor of shape [batch_size, seq_length], we # reshape to [batch_size, seq_length, 1]. if input_ids.shape.ndims == 2: input_ids = tf.expand_dims(input_ids, axis=[-1]) embedding_table = tf.get_variable( name=word_embedding_name, shape=[vocab_size, embedding_size], initializer=create_initializer(initializer_range)) if use_one_hot_embeddings: flat_input_ids = tf.reshape(input_ids, [-1]) one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size) output = tf.matmul(one_hot_input_ids, embedding_table) else: output = tf.nn.embedding_lookup(embedding_table, input_ids) input_shape = get_shape_list(input_ids) output = tf.reshape(output, input_shape[0:-1] + [input_shape[-1] * embedding_size]) return (output, embedding_table) def embedding_postprocessor(input_tensor, use_token_type=False, token_type_ids=None, token_type_vocab_size=16, token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=0.02, max_position_embeddings=512, dropout_prob=0.1): """Performs various post-processing on a word embedding tensor. Args: input_tensor: float Tensor of shape [batch_size, seq_length, embedding_size]. use_token_type: bool. Whether to add embeddings for `token_type_ids`. token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length]. Must be specified if `use_token_type` is True. token_type_vocab_size: int. The vocabulary size of `token_type_ids`. token_type_embedding_name: string. The name of the embedding table variable for token type ids. use_position_embeddings: bool. Whether to add position embeddings for the position of each token in the sequence. position_embedding_name: string. The name of the embedding table variable for positional embeddings. initializer_range: float. Range of the weight initialization. max_position_embeddings: int. Maximum sequence length that might ever be used with this model. This can be longer than the sequence length of input_tensor, but cannot be shorter. dropout_prob: float. Dropout probability applied to the final output tensor. Returns: float tensor with same shape as `input_tensor`. Raises: ValueError: One of the tensor shapes or input values is invalid. """ input_shape = get_shape_list(input_tensor, expected_rank=3) batch_size = input_shape[0] seq_length = input_shape[1] width = input_shape[2] output = input_tensor if use_token_type: if token_type_ids is None: raise ValueError("`token_type_ids` must be specified if" "`use_token_type` is True.") token_type_table = tf.get_variable( name=token_type_embedding_name, shape=[token_type_vocab_size, width], initializer=create_initializer(initializer_range)) # This vocab will be small so we always do one-hot here, since it is always # faster for a small vocabulary. flat_token_type_ids = tf.reshape(token_type_ids, [-1]) one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size) token_type_embeddings = tf.matmul(one_hot_ids, token_type_table) token_type_embeddings = tf.reshape(token_type_embeddings, [batch_size, seq_length, width]) output += token_type_embeddings if use_position_embeddings: assert_op = tf.assert_less_equal(seq_length, max_position_embeddings) with tf.control_dependencies([assert_op]): full_position_embeddings = tf.get_variable( name=position_embedding_name, shape=[max_position_embeddings, width], initializer=create_initializer(initializer_range)) # Since the position embedding table is a learned variable, we create it # using a (long) sequence length `max_position_embeddings`. The actual # sequence length might be shorter than this, for faster training of # tasks that do not have long sequences. # # So `full_position_embeddings` is effectively an embedding table # for position [0, 1, 2, ..., max_position_embeddings-1], and the current # sequence has positions [0, 1, 2, ... seq_length-1], so we can just # perform a slice. position_embeddings = tf.slice(full_position_embeddings, [0, 0], [seq_length, -1]) num_dims = len(output.shape.as_list()) # Only the last two dimensions are relevant (`seq_length` and `width`), so # we broadcast among the first dimensions, which is typically just # the batch size. position_broadcast_shape = [] for _ in range(num_dims - 2): position_broadcast_shape.append(1) position_broadcast_shape.extend([seq_length, width]) position_embeddings = tf.reshape(position_embeddings, position_broadcast_shape) output += position_embeddings output = layer_norm_and_dropout(output, dropout_prob) return output def create_attention_mask_from_input_mask(from_tensor, to_mask): """Create 3D attention mask from a 2D tensor mask. Args: from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...]. to_mask: int32 Tensor of shape [batch_size, to_seq_length]. Returns: float Tensor of shape [batch_size, from_seq_length, to_seq_length]. """ from_shape = get_shape_list(from_tensor, expected_rank=[2, 3]) batch_size = from_shape[0] from_seq_length = from_shape[1] to_shape = get_shape_list(to_mask, expected_rank=2) to_seq_length = to_shape[1] to_mask = tf.cast( tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32) # We don't assume that `from_tensor` is a mask (although it could be). We # don't actually care if we attend *from* padding tokens (only *to* padding) # tokens so we create a tensor of all ones. # # `broadcast_ones` = [batch_size, from_seq_length, 1] broadcast_ones = tf.ones( shape=[batch_size, from_seq_length, 1], dtype=tf.float32) # Here we broadcast along two dimensions to create the mask. mask = broadcast_ones * to_mask return mask def attention_layer(from_tensor, to_tensor, attention_mask=None, num_attention_heads=1, size_per_head=512, query_act=None, key_act=None, value_act=None, attention_probs_dropout_prob=0.0, initializer_range=0.02, do_return_2d_tensor=False, batch_size=None, from_seq_length=None, to_seq_length=None): """Performs multi-headed attention from `from_tensor` to `to_tensor`. This is an implementation of multi-headed attention based on "Attention is all you Need". If `from_tensor` and `to_tensor` are the same, then this is self-attention. Each timestep in `from_tensor` attends to the corresponding sequence in `to_tensor`, and returns a fixed-with vector. This function first projects `from_tensor` into a "query" tensor and `to_tensor` into "key" and "value" tensors. These are (effectively) a list of tensors of length `num_attention_heads`, where each tensor is of shape [batch_size, seq_length, size_per_head]. Then, the query and key tensors are dot-producted and scaled. These are softmaxed to obtain attention probabilities. The value tensors are then interpolated by these probabilities, then concatenated back to a single tensor and returned. In practice, the multi-headed attention are done with transposes and reshapes rather than actual separate tensors. Args: from_tensor: float Tensor of shape [batch_size, from_seq_length, from_width]. to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width]. attention_mask: (optional) int32 Tensor of shape [batch_size, from_seq_length, to_seq_length]. The values should be 1 or 0. The attention scores will effectively be set to -infinity for any positions in the mask that are 0, and will be unchanged for positions that are 1. num_attention_heads: int. Number of attention heads. size_per_head: int. Size of each attention head. query_act: (optional) Activation function for the query transform. key_act: (optional) Activation function for the key transform. value_act: (optional) Activation function for the value transform. attention_probs_dropout_prob: (optional) float. Dropout probability of the attention probabilities. initializer_range: float. Range of the weight initializer. do_return_2d_tensor: bool. If True, the output will be of shape [batch_size * from_seq_length, num_attention_heads * size_per_head]. If False, the output will be of shape [batch_size, from_seq_length, num_attention_heads * size_per_head]. batch_size: (Optional) int. If the input is 2D, this might be the batch size of the 3D version of the `from_tensor` and `to_tensor`. from_seq_length: (Optional) If the input is 2D, this might be the seq length of the 3D version of the `from_tensor`. to_seq_length: (Optional) If the input is 2D, this might be the seq length of the 3D version of the `to_tensor`. Returns: float Tensor of shape [batch_size, from_seq_length, num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is true, this will be of shape [batch_size * from_seq_length, num_attention_heads * size_per_head]). Raises: ValueError: Any of the arguments or tensor shapes are invalid. """ def transpose_for_scores(input_tensor, batch_size, num_attention_heads, seq_length, width): output_tensor = tf.reshape( input_tensor, [batch_size, seq_length, num_attention_heads, width]) output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3]) return output_tensor from_shape = get_shape_list(from_tensor, expected_rank=[2, 3]) to_shape = get_shape_list(to_tensor, expected_rank=[2, 3]) if len(from_shape) != len(to_shape): raise ValueError( "The rank of `from_tensor` must match the rank of `to_tensor`.") if len(from_shape) == 3: batch_size = from_shape[0] from_seq_length = from_shape[1] to_seq_length = to_shape[1] elif len(from_shape) == 2: if (batch_size is None or from_seq_length is None or to_seq_length is None): raise ValueError( "When passing in rank 2 tensors to attention_layer, the values " "for `batch_size`, `from_seq_length`, and `to_seq_length` " "must all be specified.") # Scalar dimensions referenced here: # B = batch size (number of sequences) # F = `from_tensor` sequence length # T = `to_tensor` sequence length # N = `num_attention_heads` # H = `size_per_head` from_tensor_2d = reshape_to_matrix(from_tensor) to_tensor_2d = reshape_to_matrix(to_tensor) # `query_layer` = [B*F, N*H] query_layer = tf.layers.dense( from_tensor_2d, num_attention_heads * size_per_head, activation=query_act, name="query", kernel_initializer=create_initializer(initializer_range)) # `key_layer` = [B*T, N*H] key_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=key_act, name="key", kernel_initializer=create_initializer(initializer_range)) # `value_layer` = [B*T, N*H] value_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=value_act, name="value", kernel_initializer=create_initializer(initializer_range)) # `query_layer` = [B, N, F, H] query_layer = transpose_for_scores(query_layer, batch_size, num_attention_heads, from_seq_length, size_per_head) # `key_layer` = [B, N, T, H] key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads, to_seq_length, size_per_head) # Take the dot product between "query" and "key" to get the raw # attention scores. # `attention_scores` = [B, N, F, T] attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = tf.multiply(attention_scores, 1.0 / math.sqrt(float(size_per_head))) if attention_mask is not None: # `attention_mask` = [B, 1, F, T] attention_mask = tf.expand_dims(attention_mask, axis=[1]) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0 # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_scores += adder # Normalize the attention scores to probabilities. # `attention_probs` = [B, N, F, T] attention_probs = tf.nn.softmax(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = dropout(attention_probs, attention_probs_dropout_prob) # `value_layer` = [B, T, N, H] value_layer = tf.reshape( value_layer, [batch_size, to_seq_length, num_attention_heads, size_per_head]) # `value_layer` = [B, N, T, H] value_layer = tf.transpose(value_layer, [0, 2, 1, 3]) # `context_layer` = [B, N, F, H] context_layer = tf.matmul(attention_probs, value_layer) # `context_layer` = [B, F, N, H] context_layer = tf.transpose(context_layer, [0, 2, 1, 3]) if do_return_2d_tensor: # `context_layer` = [B*F, N*V] context_layer = tf.reshape( context_layer, [batch_size * from_seq_length, num_attention_heads * size_per_head]) else: # `context_layer` = [B, F, N*V] context_layer = tf.reshape( context_layer, [batch_size, from_seq_length, num_attention_heads * size_per_head]) return context_layer def transformer_model(input_tensor, attention_mask=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, intermediate_act_fn=gelu, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, do_return_all_layers=False): """Multi-headed, multi-layer Transformer from "Attention is All You Need". This is almost an exact implementation of the original Transformer encoder. See the original paper: https://arxiv.org/abs/1706.03762 Also see: https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py Args: input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size]. attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length, seq_length], with 1 for positions that can be attended to and 0 in positions that should not be. hidden_size: int. Hidden size of the Transformer. num_hidden_layers: int. Number of layers (blocks) in the Transformer. num_attention_heads: int. Number of attention heads in the Transformer. intermediate_size: int. The size of the "intermediate" (a.k.a., feed forward) layer. intermediate_act_fn: function. The non-linear activation function to apply to the output of the intermediate/feed-forward layer. hidden_dropout_prob: float. Dropout probability for the hidden layers. attention_probs_dropout_prob: float. Dropout probability of the attention probabilities. initializer_range: float. Range of the initializer (stddev of truncated normal). do_return_all_layers: Whether to also return all layers or just the final layer. Returns: float Tensor of shape [batch_size, seq_length, hidden_size], the final hidden layer of the Transformer. Raises: ValueError: A Tensor shape or parameter is invalid. """ if hidden_size % num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (hidden_size, num_attention_heads)) attention_head_size = int(hidden_size / num_attention_heads) input_shape = get_shape_list(input_tensor, expected_rank=3) batch_size = input_shape[0] seq_length = input_shape[1] input_width = input_shape[2] # The Transformer performs sum residuals on all layers so the input needs # to be the same as the hidden size. if input_width != hidden_size: raise ValueError("The width of the input tensor (%d) != hidden size (%d)" % (input_width, hidden_size)) # We keep the representation as a 2D tensor to avoid re-shaping it back and # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on # the GPU/CPU but may not be free on the TPU, so we want to minimize them to # help the optimizer. prev_output = reshape_to_matrix(input_tensor) all_layer_outputs = [] for layer_idx in range(num_hidden_layers): with tf.variable_scope("layer_%d" % layer_idx): layer_input = prev_output with tf.variable_scope("attention"): attention_heads = [] with tf.variable_scope("self"): attention_head = attention_layer( from_tensor=layer_input, to_tensor=layer_input, attention_mask=attention_mask, num_attention_heads=num_attention_heads, size_per_head=attention_head_size, attention_probs_dropout_prob=attention_probs_dropout_prob, initializer_range=initializer_range, do_return_2d_tensor=True, batch_size=batch_size, from_seq_length=seq_length, to_seq_length=seq_length) attention_heads.append(attention_head) attention_output = None if len(attention_heads) == 1: attention_output = attention_heads[0] else: # In the case where we have other sequences, we just concatenate # them to the self-attention head before the projection. attention_output = tf.concat(attention_heads, axis=-1) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. with tf.variable_scope("output"): attention_output = tf.layers.dense( attention_output, hidden_size, kernel_initializer=create_initializer(initializer_range)) attention_output = dropout(attention_output, hidden_dropout_prob) attention_output = layer_norm(attention_output + layer_input) # The activation is only applied to the "intermediate" hidden layer. with tf.variable_scope("intermediate"): intermediate_output = tf.layers.dense( attention_output, intermediate_size, activation=intermediate_act_fn, kernel_initializer=create_initializer(initializer_range)) # Down-project back to `hidden_size` then add the residual. with tf.variable_scope("output"): layer_output = tf.layers.dense( intermediate_output, hidden_size, kernel_initializer=create_initializer(initializer_range)) layer_output = dropout(layer_output, hidden_dropout_prob) layer_output = layer_norm(layer_output + attention_output) prev_output = layer_output all_layer_outputs.append(layer_output) if do_return_all_layers: final_outputs = [] for layer_output in all_layer_outputs: final_output = reshape_from_matrix(layer_output, input_shape) final_outputs.append(final_output) return final_outputs else: final_output = reshape_from_matrix(prev_output, input_shape) return final_output def get_shape_list(tensor, expected_rank=None, name=None): """Returns a list of the shape of tensor, preferring static dimensions. Args: tensor: A tf.Tensor object to find the shape of. expected_rank: (optional) int. The expected rank of `tensor`. If this is specified and the `tensor` has a different rank, and exception will be thrown. name: Optional name of the tensor for the error message. Returns: A list of dimensions of the shape of tensor. All static dimensions will be returned as python integers, and dynamic dimensions will be returned as tf.Tensor scalars. """ if name is None: name = tensor.name if expected_rank is not None: assert_rank(tensor, expected_rank, name) shape = tensor.shape.as_list() non_static_indexes = [] for (index, dim) in enumerate(shape): if dim is None: non_static_indexes.append(index) if not non_static_indexes: return shape dyn_shape = tf.shape(tensor) for index in non_static_indexes: shape[index] = dyn_shape[index] return shape def reshape_to_matrix(input_tensor): """Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix).""" ndims = input_tensor.shape.ndims if ndims < 2: raise ValueError("Input tensor must have at least rank 2. Shape = %s" % (input_tensor.shape)) if ndims == 2: return input_tensor width = input_tensor.shape[-1] output_tensor = tf.reshape(input_tensor, [-1, width]) return output_tensor def reshape_from_matrix(output_tensor, orig_shape_list): """Reshapes a rank 2 tensor back to its original rank >= 2 tensor.""" if len(orig_shape_list) == 2: return output_tensor output_shape = get_shape_list(output_tensor) orig_dims = orig_shape_list[0:-1] width = output_shape[-1] return tf.reshape(output_tensor, orig_dims + [width]) def assert_rank(tensor, expected_rank, name=None): """Raises an exception if the tensor rank is not of the expected rank. Args: tensor: A tf.Tensor to check the rank of. expected_rank: Python integer or list of integers, expected rank. name: Optional name of the tensor for the error message. Raises: ValueError: If the expected shape doesn't match the actual shape. """ if name is None: name = tensor.name expected_rank_dict = {} if isinstance(expected_rank, six.integer_types): expected_rank_dict[expected_rank] = True else: for x in expected_rank: expected_rank_dict[x] = True actual_rank = tensor.shape.ndims if actual_rank not in expected_rank_dict: scope_name = tf.get_variable_scope().name raise ValueError( "For the tensor `%s` in scope `%s`, the actual rank " "`%d` (shape = %s) is not equal to the expected rank `%s`" % (name, scope_name, actual_rank, str(tensor.shape), str(expected_rank)))
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/bert/modeling.py
modeling.py
import os import tempfile import random import json import logging from termcolor import colored from bert import modeling from bert import args from bert.args import PoolingStrategy import contextlib def import_tf(device_id=-1, verbose=False): #os.environ['CUDA_VISIBLE_DEVICES'] = '-1' if device_id < 0 else str(device_id) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0' if verbose else '3' import tensorflow as tf tf.logging.set_verbosity(tf.logging.DEBUG if verbose else tf.logging.ERROR) return tf def set_logger(context, verbose=False): logger = logging.getLogger(context) logger.setLevel(logging.DEBUG if verbose else logging.INFO) formatter = logging.Formatter( '%(levelname)-.1s:' + context + ':[%(filename).5s:%(funcName).3s:%(lineno)3d]:%(message)s', datefmt= '%m-%d %H:%M:%S') console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG if verbose else logging.INFO) console_handler.setFormatter(formatter) logger.handlers = [] logger.addHandler(console_handler) return logger def optimize_graph(logger=None, verbose=False, pooling_strategy=PoolingStrategy.REDUCE_MEAN, max_seq_len=40): if not logger: logger = set_logger(colored('BERT_VEC', 'yellow'), verbose) try: # we don't need GPU for optimizing the graph tf = import_tf(device_id=0, verbose=verbose) from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference # allow_soft_placement:自动选择运行设备 config = tf.ConfigProto(allow_soft_placement=True) config_fp = args.config_name init_checkpoint = args.ckpt_name logger.info('model config: %s' % config_fp) # 加载bert配置文件 with tf.gfile.GFile(config_fp, 'r') as f: bert_config = modeling.BertConfig.from_dict(json.load(f)) logger.info('build graph...') # input placeholders, not sure if they are friendly to XLA input_ids = tf.placeholder(tf.int32, (None, max_seq_len), 'input_ids') input_mask = tf.placeholder(tf.int32, (None, max_seq_len), 'input_mask') input_type_ids = tf.placeholder(tf.int32, (None, max_seq_len), 'input_type_ids') # xla加速 jit_scope = tf.contrib.compiler.jit.experimental_jit_scope if args.xla else contextlib.suppress with jit_scope(): input_tensors = [input_ids, input_mask, input_type_ids] model = modeling.BertModel( config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, token_type_ids=input_type_ids, use_one_hot_embeddings=False) # 获取所有要训练的变量 tvars = tf.trainable_variables() (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.train.init_from_checkpoint(init_checkpoint, assignment_map) minus_mask = lambda x, m: x - tf.expand_dims(1.0 - m, axis=-1) * 1e30 mul_mask = lambda x, m: x * tf.expand_dims(m, axis=-1) masked_reduce_max = lambda x, m: tf.reduce_max(minus_mask(x, m), axis=1) masked_reduce_mean = lambda x, m: tf.reduce_sum(mul_mask(x, m), axis=1) / ( tf.reduce_sum(m, axis=1, keepdims=True) + 1e-10) # 共享卷积核 with tf.variable_scope("pooling"): # 如果只有一层,就只取对应那一层的weight if len(args.layer_indexes) == 1: encoder_layer = model.all_encoder_layers[args.layer_indexes[0]] else: # 否则遍历需要取的层,把所有层的weight取出来并拼接起来shape:768*层数 all_layers = [model.all_encoder_layers[l] for l in args.layer_indexes] encoder_layer = tf.concat(all_layers, -1) input_mask = tf.cast(input_mask, tf.float32) # 以下代码是句向量的生成方法,可以理解为做了一个卷积的操作,但是没有把结果相加, 卷积核是input_mask if pooling_strategy == PoolingStrategy.REDUCE_MEAN: pooled = masked_reduce_mean(encoder_layer, input_mask) elif pooling_strategy == PoolingStrategy.REDUCE_MAX: pooled = masked_reduce_max(encoder_layer, input_mask) elif pooling_strategy == PoolingStrategy.REDUCE_MEAN_MAX: pooled = tf.concat([masked_reduce_mean(encoder_layer, input_mask), masked_reduce_max(encoder_layer, input_mask)], axis=1) elif pooling_strategy == PoolingStrategy.FIRST_TOKEN or \ pooling_strategy == PoolingStrategy.CLS_TOKEN: pooled = tf.squeeze(encoder_layer[:, 0:1, :], axis=1) elif pooling_strategy == PoolingStrategy.LAST_TOKEN or \ pooling_strategy == PoolingStrategy.SEP_TOKEN: seq_len = tf.cast(tf.reduce_sum(input_mask, axis=1), tf.int32) rng = tf.range(0, tf.shape(seq_len)[0]) indexes = tf.stack([rng, seq_len - 1], 1) pooled = tf.gather_nd(encoder_layer, indexes) elif pooling_strategy == PoolingStrategy.NONE: pooled = mul_mask(encoder_layer, input_mask) else: raise NotImplementedError() pooled = tf.identity(pooled, 'final_encodes') output_tensors = [pooled] tmp_g = tf.get_default_graph().as_graph_def() with tf.Session(config=config) as sess: logger.info('load parameters from checkpoint...') sess.run(tf.global_variables_initializer()) logger.info('freeze...') tmp_g = tf.graph_util.convert_variables_to_constants(sess, tmp_g, [n.name[:-2] for n in output_tensors]) dtypes = [n.dtype for n in input_tensors] logger.info('optimize...') tmp_g = optimize_for_inference( tmp_g, [n.name[:-2] for n in input_tensors], [n.name[:-2] for n in output_tensors], [dtype.as_datatype_enum for dtype in dtypes], False) #tmp_file = tempfile.NamedTemporaryFile('w', delete=True).name #r = random.randint(1, 1000) #tmp_file = "./tmp_graph"+str(r) tmp_file = "./tmp_graph11" logger.info('write graph to a tmp file: %s' % tmp_file) with tf.gfile.GFile(tmp_file, 'wb') as f: f.write(tmp_g.SerializeToString()) return tmp_file except Exception as e: logger.error('fail to optimize the graph!') logger.error(e)
125softNLP
/125softNLP-0.0.1-py3-none-any.whl/bert/graph.py
graph.py
# configclasses ![PyPI](https://img.shields.io/pypi/v/12factor-configclasses) [![codecov](https://codecov.io/gh/headsrooms/configclasses/branch/master/graph/badge.svg?token=U0bxsmAUoe)](https://codecov.io/gh/headsrooms/configclasses) <a href="https://codeclimate.com/github/kingoodie/configclasses/maintainability"><img src="https://api.codeclimate.com/v1/badges/9094f65f5caef64fb993/maintainability" /></a> [![Downloads](https://pepy.tech/badge/12factor-configclasses/month)](https://pepy.tech/project/12factor-configclasses) Like dataclasses but for config. Specify your config with a class and load it with your env vars or env files. ```python import httpx from configclasses import configclass class UserAPIClient(httpx.AsyncClient): def __init__(self, config: ClientConfig, *args, **kwargs): self.config = config super().__init__(*args, **kwargs) async def get_users(self, headers: Optional[Headers] = None) -> Dict[str, Any]: response = await self.get(f"{self.path}/users", auth=headers) response.raise_for_status() return response.json() @configclass class ClientConfig: host: str port: int config = ClientConfig.from_path(".env") async with UserAPIClient(config) as client: users = await client.get_users(auth_headers) ``` ## Features - Fill your configclasses with existent env vars. - Define default values in case these variables have no value at all. - Load your config files in env vars following [12factor apps](https://12factor.net) recommendations. - Support for _.env_, _yaml_, _toml_, _ini_ and _json_. - Convert your env vars with specified type in configclass: `int`, `float`, `str` or `bool`. - Use nested configclasses to more complex configurations. - Specify a prefix with `@configclass(prefix="<PREFIX>")` to append this prefix to your configclass' attribute names. - Config groups (__TODO__): https://cli.dev/docs/tutorial/config_groups/ ## Requirements Python 3.8+ ## Installation Depending on your chosen config file format you can install: - .env -> ```pip install 12factor-configclasses[dotenv]``` - .yaml -> ```pip install 12factor-configclasses[yaml]``` - .toml -> ```pip install 12factor-configclasses[toml]``` - .ini -> ```pip install 12factor-configclasses``` - .json -> ```pip install 12factor-configclasses``` Or install all supported formats with: pip install 12factor-configclasses[full] ## Usage There are three ways to use it: - Loading an .env file: ```.env # .env HOST=0.0.0.0 PORT=8000 DB_URL=sqlite://:memory: GENERATE_SCHEMAS=True DEBUG=True HTTPS_ONLY=False GZIP=True SENTRY=False ``` ```python #config.py from configclasses import configclass @configclass class DB: user: str password: str url: str @configclass class AppConfig: host: str port: int db: DB generate_schemas: bool debug: bool https_only: bool gzip: bool sentry: bool ``` ```python # app.py from api.config import AppConfig app_config = AppConfig.from_path(".env") app = Starlette(debug=app_config.debug) if app_config.https_only: app.add_middleware( HTTPSRedirectMiddleware) if app_config.gzip: app.add_middleware(GZipMiddleware) if app_config.sentry: app.add_middleware(SentryAsgiMiddleware) ... register_tortoise( app, db_url=app_config.db.url, modules={"models": ["api.models"]}, generate_schemas=app_config.generate_schemas, ) if __name__ == "__main__": uvicorn.run(app, host=app_config.host, port=app_config.port) ``` - Loading predefined environmental variables: The same than before, but instead of: app_config = AppConfig.from_path(".env") You will do: app_config = AppConfig.from_environ() - Loading a file from a string: ```python test_env = """HOST=0.0.0.0 PORT=8000 DB_URL=sqlite://:memory: GENERATE_SCHEMAS=True DEBUG=True HTTPS_ONLY=False GZIP=True SENTRY=False""" app_config = AppConfig.from_string(test_env, ".env") ```
12factor-configclasses
/12factor-configclasses-1.0.0.tar.gz/12factor-configclasses-1.0.0/README.md
README.md
from configclasses.dumpers import dump_env, dump_toml, dump_yaml, dump_ini, dump_json from configclasses.exceptions import ConfigFilePathDoesNotExist, NonSupportedExtension from configclasses.helpers import fill_init_dict, supported_extensions from configclasses.loaders import ( load_env, load_toml, load_yaml, load_ini, load_json, ) from dataclasses import _process_class, fields from os import PathLike from pathlib import Path from typing import Dict, Optional def configclass( cls=None, /, *, prefix: Optional[str] = None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, ): """Same behaviour that dataclass with additional classmethods as dataclass initializers: from_environ and from_path""" def wrap(cls): return _post_process_class( _process_class( cls, init, repr, eq, order, unsafe_hash, frozen, match_args, kw_only, slots, ), prefix, ) # See if we're being called as @configclass or @configclass(). if cls is None: # We're called with parens. return wrap # We're called as @dataclass without parens. return wrap(cls) def _post_process_class(the_class, the_prefix: Optional[str]): def from_environ( cls, defaults: Dict[str, str] = None, parent_field_name: Optional[str] = None ): fields_tuple = [ (field.name, field.type, field.default) for field in fields(cls) ] init_dict = fill_init_dict( fields_tuple, defaults, parent_field_name, the_prefix ) return cls(**init_dict) def from_path(cls, config_path: str, defaults: Dict[str, str] = None): path_to_env(Path(config_path)) return cls.from_environ(defaults) def from_string(cls, string: str, extension: str, defaults: Dict[str, str] = None): load_file(string=string, extension=extension) return cls.from_environ(defaults) the_class.from_environ = classmethod(from_environ) the_class.from_path = classmethod(from_path) the_class.from_string = classmethod(from_string) return the_class def path_to_env(path: Path): """Given a path it loads into os.environ all config files found in this path.""" if not path.exists(): raise ConfigFilePathDoesNotExist( f"Config file path '{str(path)}' does not exist" ) if path.is_file(): load_file(path) else: load_path(path) def file_to_env( extension: str, path: Optional[Path] = None, string: Optional[str] = None ): if extension == ".env": load_env(path, string) elif extension == ".toml": load_toml(path, string) elif extension in (".yaml", ".yml"): load_yaml(path, string) elif extension in (".ini", ".cfg"): load_ini(path, string) elif extension == ".json": load_json(path, string) def load_path(path: Path): for x in path.iterdir(): path_to_env(x) def load_file( path: Optional[Path] = None, string: Optional[str] = None, extension: Optional[str] = None, ): extension = path.suffix or path.name if path else extension if extension in supported_extensions: file_to_env(extension, path, string) else: raise NonSupportedExtension(f"Extension '{extension}' not supported") def dump( obj, path: Optional[PathLike] = None, extension: Optional[str] = None, ): path = Path(path) if path else None extension = path.suffix or path.name if path else extension if extension in supported_extensions: if extension == ".env": dump_env(obj, path) elif extension == ".toml": dump_toml(obj, path) elif extension in (".yaml", ".yml"): dump_yaml(obj, path) elif extension in (".ini", ".cfg"): dump_ini(obj, path) elif extension == ".json": dump_json(obj, path) else: raise NonSupportedExtension(f"Extension '{extension}' not supported")
12factor-configclasses
/12factor-configclasses-1.0.0.tar.gz/12factor-configclasses-1.0.0/configclasses/configclasses.py
configclasses.py
import configparser import os from io import StringIO from json import loads from pathlib import Path from typing import Dict, Optional from configclasses.exceptions import DependencyNotInstalled from configclasses.helpers import normalize_field_name def load_env(path: Optional[Path] = None, string: Optional[str] = None): try: from dotenv import load_dotenv except ImportError: raise DependencyNotInstalled("You must install 'python-dotenv'") if path: load_dotenv(dotenv_path=path) else: load_dotenv(stream=StringIO(string)) def load_dict(dict: Dict[str, str]): for k, v in dict.items(): if isinstance(v, Dict): inner_dict = { f"{k}_{inner_key}": inner_value for inner_key, inner_value in v.items() } load_dict(inner_dict) continue os.environ[normalize_field_name(k)] = str(v) def load_toml(path: Optional[Path] = None, string: Optional[str] = None): try: from tomlkit import parse except ImportError: raise DependencyNotInstalled("You must install 'tomlkit'") if path: with path.open("r") as config_file: cfg = parse(config_file.read()) else: cfg = parse(string) load_dict(cfg) def load_yaml(path: Optional[Path] = None, string: Optional[str] = None): try: from yaml import full_load except ImportError: raise DependencyNotInstalled("You must install pyyaml") if path: with path.open("r") as config_file: cfg = full_load(config_file.read()) else: cfg = full_load(string) load_dict(cfg) def load_ini(path: Optional[Path] = None, string: Optional[str] = None): cfg = configparser.ConfigParser() cfg.read(path) if path else cfg.read_string(string) load_dict(cfg.__dict__["_sections"]) def load_json(path: Optional[Path] = None, string: Optional[str] = None): if path: with path.open("r") as config_file: cfg = loads(config_file.read()) else: cfg = loads(string) load_dict(cfg)
12factor-configclasses
/12factor-configclasses-1.0.0.tar.gz/12factor-configclasses-1.0.0/configclasses/loaders.py
loaders.py
import os from dataclasses import is_dataclass from typing import Any, Dict, List, Tuple, Optional supported_extensions = (".env", ".toml", ".yaml", ".yml", ".ini", ".cfg", ".json") converter_types = (int, float) def get_field_value_from_environ(field_name: Any): return os.environ.get(str.upper(field_name)) or os.environ.get(field_name) def get_default_value(field_name: Any, defaults: Dict[str, str]) -> Optional[str]: if defaults: return defaults.get(str.upper(field_name)) or defaults.get(field_name) def fill_init_dict( class_fields: List[Tuple[Any, Any, Any]], defaults, parent_field_name, prefix ): init_dict = {} for class_field_name, class_field_type, class_field_default in class_fields: origin_field_name = get_origin_field_name( class_field_name, parent_field_name, prefix ) if is_dataclass(class_field_type): init_dict[class_field_name] = class_field_type.from_environ( defaults, origin_field_name ) elif field_value := get_field_value_from_environ( origin_field_name ) or get_default_value(origin_field_name, defaults): fill_with_environ_or_provided_defaults( class_field_name, class_field_type, field_value, init_dict ) else: init_dict[class_field_name] = class_field_default return init_dict def fill_with_environ_or_provided_defaults( class_field_name, class_field_type, field_value, init_dict ): if class_field_type in converter_types: init_dict[class_field_name] = class_field_type(field_value) elif class_field_type == bool: init_dict[class_field_name] = field_value in ("True", "true") else: init_dict[class_field_name] = field_value def get_origin_field_name(class_field_name, parent_field_name, prefix): if not prefix and not parent_field_name: origin_field_name = class_field_name elif parent_field_name: origin_field_name = f"{parent_field_name}_{class_field_name}" elif prefix: origin_field_name = f"{prefix}_{class_field_name}" else: origin_field_name = f"{prefix}_{parent_field_name}_{class_field_name}" return origin_field_name def normalize_field_name(field_name: str): return str.lower(str(field_name))
12factor-configclasses
/12factor-configclasses-1.0.0.tar.gz/12factor-configclasses-1.0.0/configclasses/helpers.py
helpers.py
import datetime import logging import os from typing import Dict, Tuple, Union, Any, TypeVar, Type import hvac from django.apps.config import AppConfig from django.db.backends.base.base import BaseDatabaseWrapper from requests.exceptions import RequestException _log = logging.getLogger(__name__) class VaultCredentialProviderException(Exception): pass class VaultAuthentication: """ The basic interface expected by `VaultCredentialProvider`. Most implementations will want to go with `BaseVaultAuthenticator`. """ def authenticated_client(self, *args: Any, **kwargs: Any) -> hvac.Client: """ :param args: must be passed on to `hvac.Client` :param kwargs: must be passed on to `hvac.Client` :return: A `hvac.Client` instance which is authenticated with Vault """ raise NotImplementedError("Subclasses of VaultAuthentication must implement authenticated_client") # TypeVar for the factory methods in BaseVaultAuthenticator T = TypeVar('T', bound='BaseVaultAuthenticator') class BaseVaultAuthenticator(VaultAuthentication): """ Use one of the factory methods (`app_id`, `token`, `ssl_client_cert`) to create an instance. """ def __init__(self) -> None: self.credentials = None # type: Union[str, Tuple[str, str]] self.authtype = None # type: str self.authmount = None # type: str self.unwrap_response = False super().__init__() @classmethod def app_id(cls: Type[T], app_id: str, user_id: str) -> T: i = cls() i.credentials = (app_id, user_id) i.authtype = "app-id" return i @classmethod def approle(cls: Type[T], role_id: str, secret_id: str=None, mountpoint: str="approle") -> T: i = cls() i.credentials = (role_id, secret_id) i.authmount = mountpoint i.authtype = "approle" return i @classmethod def ssl_client_cert(cls: Type[T], certfile: str, keyfile: str) -> T: if not os.path.isfile(certfile) or not os.access(certfile, os.R_OK): raise VaultCredentialProviderException("File not found or not readable: %s" % certfile) if not os.path.isfile(keyfile) or not os.access(keyfile, os.R_OK): raise VaultCredentialProviderException("File not found or not readable: %s" % keyfile) i = cls() i.credentials = (certfile, keyfile) i.authtype = "ssl" return i @classmethod def token(cls: Type[T], token: str, authtype: str = "token") -> T: """ This method can be used to effect many authentication adapters, like token authenticaation and GitHub """ i = cls() i.credentials = token i.authtype = authtype return i @classmethod def username_and_password(cls: Type[T], username: str, password: str, authtype: str = "ldap") -> T: """ This method can be used for many authentication adapters, like okta, ldap, etc. """ i = cls() i.credentials = (username, password) i.authtype = authtype return i @classmethod def role_and_jwt(cls: Type[T], role: str, jwt: str, authtype: str = "jwt") -> T: """ This method can be used to effect many authentication adapters, like Kubernetes, Azure, GCP, and JWT/OIDC """ i = cls() i.credentials = (role, jwt) i.authtype = authtype return i def authenticated_client(self, *args: Any, **kwargs: Any) -> hvac.Client: if self.authtype == "token": cl = hvac.Client(token=self.credentials, *args, **kwargs) elif self.authtype == "app-id": cl = hvac.Client(*args, **kwargs) cl.auth_app_id(*self.credentials) elif self.authtype == "ssl": cl = hvac.Client(cert=self.credentials, *args, **kwargs) cl.auth.tls.login() else: cl = hvac.Client(*args, **kwargs) try: auth_adapter = getattr(cl.auth, self.authtype) except AttributeError: raise VaultCredentialProviderException("unknown auth method %s" % self.authtype) auth_adapter.login(*self.credentials, mount_point=self.authmount) if not cl.is_authenticated(): raise VaultCredentialProviderException("Unable to authenticate Vault client using provided credentials " "(type=%s)" % self.authtype) return cl class VaultAuth12Factor(BaseVaultAuthenticator): """ This class configures a Vault client instance from environment variables. The environment variables supported are: ============================ ========================= ================================== Environment Variable Vault auth backend Direct configuration static method ============================ ========================= ================================== VAULT_TOKEN Token authentication token(str) VAULT_APPID, VAULT_USERID App-id authenticaion app_id(str, str) VAULT_ROLEID, VAULT_SECRETID Approle authentication approle(str, str, str, bool) VAULT_SSLCERT, VAULT_SSLKEY SSL Client authentication ssl_client_cert(str, str) ============================ ========================= ================================== It can also be configured directly by calling one of the direct configuration methods. """ def __init__(self) -> None: super().__init__() @staticmethod def has_envconfig() -> bool: """ (static) :return: True if enough information is available in the environment to authenticate to Vault """ if (os.getenv("VAULT_TOKEN", None) or (os.getenv("VAULT_APPID", None) and os.getenv("VAULT_USERID", None)) or (os.getenv("VAULT_SSLCERT", None) and os.getenv("VAULT_SSLKEY", None)) or (os.getenv("VAULT_ROLEID", None) and os.getenv("VAULT_SECRETID", None))): return True return False @staticmethod def fromenv() -> 'VaultAuth12Factor': """ :return: Load configuration from the environment and return a configured instance """ i = None # type: VaultAuth12Factor if os.getenv("VAULT_TOKEN", None): i = VaultAuth12Factor.token(os.getenv("VAULT_TOKEN")) elif os.getenv("VAULT_APPID", None) and os.getenv("VAULT_USERID", None): i = VaultAuth12Factor.app_id(os.getenv("VAULT_APPID"), os.getenv("VAULT_USERID")) elif os.getenv("VAULT_ROLEID", None) and os.getenv("VAULT_SECRETID", None): i = VaultAuth12Factor.approle(os.getenv("VAULT_ROLEID"), os.getenv("VAULT_SECRETID")) elif os.getenv("VAULT_SSLCERT", None) and os.getenv("VAULT_SSLKEY", None): i = VaultAuth12Factor.ssl_client_cert(os.getenv("VAULT_SSLCERT"), os.getenv("VAULT_SSLKEY")) if i: e = os.getenv("VAULT_UNWRAP", "False") if e.lower() in ["true", "1", "yes"]: i.unwrap_response = True return i raise VaultCredentialProviderException("Unable to configure Vault authentication from the environment") class VaultCredentialProvider: """ The `VaultCredentialProvider` uses credentials from a `VaultAuthentication` implementation to connect to Vault and read credentials from `secretpath`. It then provides `username` and `password` as properties while managing the lease and renewing the credentials as needed. This class also optionally enforces connection security through `pin_cacert`. You can use this in a Django `settings.DATABASES` `dict` like this: .. code-block:: python VAULT = VaultAuth12Factor.fromenv() CREDS = VaultCredentialProvider("https://vault.local:8200/", VAULT, os.getenv("VAULT_DATABASE_PATH", "db-mydatabase/creds/fullaccess"), os.getenv("VAULT_CA", None), True, DEBUG) DATABASES = { 'default': DjangoAutoRefreshDBCredentialsDict(CREDS, { 'ENGINE': 'django.db.backends.postgresql', 'NAME': os.getenv("DATABASE_NAME", "mydatabase"), 'USER': CREDS.username, 'PASSWORD': CREDS.password, 'HOST': '127.0.0.1', 'PORT': '5432', 'SET_ROLE': os.getenv("DATABASE_PARENTROLE", "mydatabaseowner") # requires django-postgresql-setrole }), } """ def __init__(self, vaulturl: str, vaultauth: VaultAuthentication, secretpath: str, pin_cacert: str=None, ssl_verify: bool=False, debug_output: bool=False) -> None: self.vaulturl = vaulturl self._vaultauth = vaultauth self.secretpath = secretpath self.pin_cacert = pin_cacert self.ssl_verify = ssl_verify self.debug_output = debug_output self._cache = None # type: Dict[str, str] self._leasetime = None # type: datetime.datetime self._updatetime = None # type: datetime.datetime self._lease_id = None # type: str def _now(self) -> datetime.datetime: return datetime.datetime.now() def _refresh(self) -> None: vcl = self._vaultauth.authenticated_client( url=self.vaulturl, verify=self.pin_cacert if self.pin_cacert else self.ssl_verify ) try: result = vcl.read(self.secretpath) except RequestException as e: raise VaultCredentialProviderException( "Unable to read credentials from path '%s' with request error: %s" % (self.secretpath, str(e)) ) from e if "data" not in result or "username" not in result["data"] or "password" not in result["data"]: raise VaultCredentialProviderException( "Read dict from Vault path %s did not match expected structure (data->{username, password}): %s" % (self.secretpath, str(result)) ) self._cache = result["data"] self._lease_id = result["lease_id"] self._leasetime = self._now() self._updatetime = self._leasetime + datetime.timedelta(seconds=int(result["lease_duration"])) _log.debug("Loaded new Vault DB credentials from %s:\nlease_id=%s\nleasetime=%s\nduration=%s\n" "username=%s\npassword=%s", self.secretpath, self._lease_id, str(self._leasetime), result["lease_duration"], self._cache["username"], self._cache["password"] if self.debug_output else "Password withheld, debug output is disabled") def _get_or_update(self, key: str) -> str: if self._cache is None or (self._updatetime - self._now()).total_seconds() < 10: # if we have less than 10 seconds in a lease ot no lease at all, we get new credentials _log.info("Vault DB credential lease has expired, refreshing for %s" % key) self._refresh() _log.info("refresh done (%s, %s)" % (self._lease_id, str(self._updatetime))) return self._cache[key] @property def username(self) -> str: return self._get_or_update("username") @property def password(self) -> str: return self._get_or_update("password") class DjangoAutoRefreshDBCredentialsDict(dict): def __init__(self, provider: VaultCredentialProvider, *args: Any, **kwargs: Any) -> None: self._provider = provider super().__init__(*args, **kwargs) def refresh_credentials(self) -> None: self["USER"] = self._provider.username self["PASSWORD"] = self._provider.password def __str__(self) -> str: return "DjangoAutoRefreshDBCredentialsDict(%s)" % super().__str__() def __repr__(self) -> str: return "DjangoAutoRefreshDBCredentialsDict(%s)" % super().__repr__() def refresh_credentials_hook(sender: type, *, dbwrapper: BaseDatabaseWrapper, **kwargs: Any) -> None: # settings_dict will be the dictionary from the database connection # so this supports multiple databases in settings.py if isinstance(dbwrapper.settings_dict, DjangoAutoRefreshDBCredentialsDict): dbwrapper.settings_dict.refresh_credentials() class DjangoIntegration(AppConfig): name = "vault12factor" def ready(self) -> None: from django_dbconn_retry import pre_reconnect pre_reconnect.connect(refresh_credentials_hook)
12factor-vault
/12factor_vault-0.1.23-py3-none-any.whl/vault12factor/apps.py
apps.py
import requests import requests_cache from py1337x import parser class py1337x(): def __init__(self, proxy=None, cookie=None, cache=None, cacheTime=86400, backend='sqlite'): self.baseUrl = f'https://www.{proxy}' if proxy else 'https://www.1377x.to' self.headers = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:88.0) Gecko/20100101 Firefox/88.0', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'accept-language': 'en-US,en;q=0.5', 'upgrade-insecure-requests': '1', 'te': 'trailers' } if cookie: self.headers['cookie'] = f'cf_clearance={cookie}' self.requests = requests_cache.CachedSession(cache, expire_after=cacheTime, backend=backend) if cache else requests #: Searching torrents def search(self, query, page=1, category=None, sortBy=None, order='desc'): query = '+'.join(query.split()) category = category.upper() if category and category.lower() in ['xxx', 'tv'] else category.capitalize() if category else None url = f"{self.baseUrl}/{'sort-' if sortBy else ''}{'category-' if category else ''}search/{query}/{category+'/' if category else ''}{sortBy.lower()+'/' if sortBy else ''}{order.lower()+'/' if sortBy else ''}{page}/" response = self.requests.get(url, headers=self.headers) return parser.torrentParser(response, baseUrl=self.baseUrl, page=page) #: Trending torrents def trending(self, category=None, week=False): url = f"{self.baseUrl}/trending{'-week' if week and not category else ''}{'/w/'+category.lower()+'/' if week and category else '/d/'+category.lower()+'/' if not week and category else ''}" response = self.requests.get(url, headers=self.headers) return parser.torrentParser(response, baseUrl=self.baseUrl) #: Top 100 torrents def top(self, category=None): category = 'applications' if category and category.lower() == 'apps' else 'television' if category and category.lower() == 'tv' else category.lower() if category else None url = f"{self.baseUrl}/top-100{'-'+category if category else ''}" response = self.requests.get(url, headers=self.headers) return parser.torrentParser(response, baseUrl=self.baseUrl) #: Popular torrents def popular(self, category, week=False): url = f"{self.baseUrl}/popular-{category.lower()}{'-week' if week else ''}" response = self.requests.get(url, headers=self.headers) return parser.torrentParser(response, baseUrl=self.baseUrl) #: Browse torrents by category type def browse(self, category, page=1): category = category.upper() if category.lower() in ['xxx', 'tv'] else category.capitalize() url = f'{self.baseUrl}/cat/{category}/{page}/' response = self.requests.get(url, headers=self.headers) return parser.torrentParser(response, baseUrl=self.baseUrl, page=page) #: Info of torrent def info(self, link=None, torrentId=None): if not link and not torrentId: raise TypeError('Missing 1 required positional argument: link or torrentId') elif link and torrentId: raise TypeError('Got an unexpected argument: Pass either link or torrentId') link = f'{self.baseUrl}/torrent/{torrentId}/h9/' if torrentId else link response = self.requests.get(link, headers=self.headers) return parser.infoParser(response, baseUrl=self.baseUrl)
1337x
/1337x-1.2.4-py3-none-any.whl/py1337x/py1337x.py
py1337x.py
from bs4 import BeautifulSoup def torrentParser(response, baseUrl, page=1): soup = BeautifulSoup(response.content, 'html.parser') torrentList = soup.select('a[href*="/torrent/"]') seedersList = soup.select('td.coll-2') leechersList = soup.select('td.coll-3') sizeList = soup.select('td.coll-4') timeList = soup.select('td.coll-date') uploaderList = soup.select('td.coll-5') lastPage = soup.find('div', {'class': 'pagination'}) if not lastPage: pageCount = page else: try: pageCount = int(lastPage.findAll('a')[-1]['href'].split('/')[-2]) except Exception: pageCount = page results = { 'items': [], 'currentPage': page or 1, 'itemCount': len(torrentList), 'pageCount': pageCount } if torrentList: for count, torrent in enumerate(torrentList): name = torrent.getText().strip() torrentId = torrent['href'].split('/')[2] link = baseUrl+torrent['href'] seeders = seedersList[count].getText() leechers = leechersList[count].getText() size = sizeList[count].contents[0] time = timeList[count].getText() uploader = uploaderList[count].getText().strip() uploaderLink = baseUrl+'/'+uploader+'/' results['items'].append({ 'name': name, 'torrentId': torrentId, 'link': link, 'seeders': seeders, 'leechers': leechers, 'size': size, 'time': time, 'uploader': uploader, 'uploaderLink': uploaderLink }) return results def infoParser(response, baseUrl): soup = BeautifulSoup(response.content, 'html.parser') name = soup.find('div', {'class': 'box-info-heading clearfix'}) name = name.text.strip() if name else None shortName = soup.find('div', {'class': 'torrent-detail-info'}) shortName = shortName.find('h3').getText().strip() if shortName else None description = soup.find('div', {'class': 'torrent-detail-info'}) description = description.find('p').getText().strip() if description else None genre = soup.find('div', {'class': 'torrent-category clearfix'}) genre = [i.text.strip() for i in genre.find_all('span')] if genre else None thumbnail = soup.find('div', {'class': 'torrent-image'}) thumbnail = thumbnail.find('img')['src'] if thumbnail else None if thumbnail and not thumbnail.startswith('http'): if thumbnail.startswith('//'): thumbnail = 'https:'+thumbnail else: thumbnail = baseUrl+thumbnail magnetLink = soup.select('a[href^="magnet"]') magnetLink = magnetLink[0]['href'] if magnetLink else None infoHash = soup.find('div', {'class': 'infohash-box'}) infoHash = infoHash.find('span').getText() if infoHash else None images = soup.find('div', {'class': 'tab-pane active'}) images = [i['src'] for i in images.find_all('img')] if images else None descriptionList = soup.find_all('ul', {'class': 'list'}) if len(descriptionList) > 2: firstList = descriptionList[1].find_all('li') secondList = descriptionList[2].find_all('li') category = firstList[0].find('span').getText() species = firstList[1].find('span').getText() language = firstList[2].find('span').getText() size = firstList[3].find('span').getText() uploader = firstList[4].find('span').getText().strip() uploaderLink = baseUrl+'/'+uploader+'/' downloads = secondList[0].find('span').getText() lastChecked = secondList[1].find('span').getText() uploadDate = secondList[2].find('span').getText() seeders = secondList[3].find('span').getText() leechers = secondList[4].find('span').getText() else: category = species = language = size = uploader = uploaderLink = downloads = lastChecked = uploadDate = seeders = leechers = None return { 'name': name, 'shortName': shortName, 'description': description, 'category': category, 'type': species, 'genre': genre, 'language': language, 'size': size, 'thumbnail': thumbnail, 'images': images if images else None, 'uploader': uploader, 'uploaderLink': uploaderLink, 'downloads': downloads, 'lastChecked': lastChecked, 'uploadDate': uploadDate, 'seeders': seeders, 'leechers': leechers, 'magnetLink': magnetLink, 'infoHash': infoHash.strip() if infoHash else None }
1337x
/1337x-1.2.4-py3-none-any.whl/py1337x/parser.py
parser.py
153957 theme ============ `View demo album here <https://153957.github.io/153957-theme/>`_ Photo gallery template ---------------------- Web photo gallery templates adapted to my personal preferences. Usage ----- This section describes how to install an use this theme. Installation ~~~~~~~~~~~~ Install the ``153597-theme`` package:: $ pip install 153957-theme Configure ~~~~~~~~~ In ``sigal.conf.py`` configuration for an album the ``theme`` setting should be a path to a theme directory. However, since this theme is provided as a Python package its location might be harder to get. Two options are available for configuration: The theme can be configured as a plugin or you can get the path by importing the package. By setting is as plugin the theme is automatically set. Set ``theme`` to an empty string and add the theme and menu plugins:: theme = '' plugins = ['153957_theme.theme', '153957_theme.full_menu', …] The alternative:: from 153957_theme import theme theme = theme.get_path() plugins = ['153957_theme.full_menu', …] Sources ------- Based on `sigal <https://sigal.saimon.org/>`_ version of Galleria theme, which is distributed under the MIT License. Theme based on `Galleria Classic <https://github.com/GalleriaJS/galleria/>`_, which is distributed under the MIT License.
153957-theme
/153957-theme-2.tar.gz/153957-theme-2/README.rst
README.rst
!function(u){if("undefined"!=typeof window){var n=!0,o=10,i="",r=0,a="",t=null,c="",s=!1,d={resize:1,click:1},l=128,f=!0,m=1,h="bodyOffset",g=h,p=!0,v="",y={},w=32,b=null,T=!1,E=!1,O="[iFrameSizer]",S=O.length,M="",I={max:1,min:1,bodyScroll:1,documentElementScroll:1},N="child",A=!0,C=window.parent,z="*",k=0,R=!1,e=null,x=16,L=1,F="scroll",P=F,D=window,j=function(){ae("onMessage function not defined")},q=function(){},H=function(){},W={height:function(){return ae("Custom height calculation function not defined"),document.documentElement.offsetHeight},width:function(){return ae("Custom width calculation function not defined"),document.body.scrollWidth}},B={},J=!1;try{var U=Object.create({},{passive:{get:function(){J=!0}}});window.addEventListener("test",te,U),window.removeEventListener("test",te,U)}catch(e){}var V,X,Y,K,Q,G,Z=Date.now||function(){return(new Date).getTime()},$={bodyOffset:function(){return document.body.offsetHeight+ve("marginTop")+ve("marginBottom")},offset:function(){return $.bodyOffset()},bodyScroll:function(){return document.body.scrollHeight},custom:function(){return W.height()},documentElementOffset:function(){return document.documentElement.offsetHeight},documentElementScroll:function(){return document.documentElement.scrollHeight},max:function(){return Math.max.apply(null,we($))},min:function(){return Math.min.apply(null,we($))},grow:function(){return $.max()},lowestElement:function(){return Math.max($.bodyOffset()||$.documentElementOffset(),ye("bottom",Te()))},taggedElement:function(){return be("bottom","data-iframe-height")}},_={bodyScroll:function(){return document.body.scrollWidth},bodyOffset:function(){return document.body.offsetWidth},custom:function(){return W.width()},documentElementScroll:function(){return document.documentElement.scrollWidth},documentElementOffset:function(){return document.documentElement.offsetWidth},scroll:function(){return Math.max(_.bodyScroll(),_.documentElementScroll())},max:function(){return Math.max.apply(null,we(_))},min:function(){return Math.min.apply(null,we(_))},rightMostElement:function(){return ye("right",Te())},taggedElement:function(){return be("right","data-iframe-width")}},ee=(V=Ee,Q=null,G=0,function(){var e=Z(),t=x-(e-(G=G||e));return X=this,Y=arguments,t<=0||x<t?(Q&&(clearTimeout(Q),Q=null),G=e,K=V.apply(X,Y),Q||(X=Y=null)):Q=Q||setTimeout(Oe,t),K});ne(window,"message",function(t){var n={init:function(){v=t.data,C=t.source,ue(),f=!1,setTimeout(function(){p=!1},l)},reset:function(){p?re("Page reset ignored by init"):(re("Page size reset by host page"),Ie("resetPage"))},resize:function(){Se("resizeParent","Parent window requested size check")},moveToAnchor:function(){y.findTarget(i())},inPageLink:function(){this.moveToAnchor()},pageInfo:function(){var e=i();re("PageInfoFromParent called from parent: "+e),H(JSON.parse(e)),re(" --")},message:function(){var e=i();re("onMessage called from parent: "+e),j(JSON.parse(e)),re(" --")}};function o(){return t.data.split("]")[1].split(":")[0]}function i(){return t.data.substr(t.data.indexOf(":")+1)}function r(){return t.data.split(":")[2]in{true:1,false:1}}function e(){var e=o();e in n?n[e]():("undefined"==typeof module||!module.exports)&&"iFrameResize"in window||"jQuery"in window&&"iFrameResize"in window.jQuery.prototype||r()||ae("Unexpected message ("+t.data+")")}O===(""+t.data).substr(0,S)&&(!1===f?e():r()?n.init():re('Ignored message of type "'+o()+'". Received before initialization.'))}),ne(window,"readystatechange",Ce),Ce()}function te(){}function ne(e,t,n,o){e.addEventListener(t,n,!!J&&(o||{}))}function oe(e){return e.charAt(0).toUpperCase()+e.slice(1)}function ie(e){return O+"["+M+"] "+e}function re(e){T&&"object"==typeof window.console&&console.log(ie(e))}function ae(e){"object"==typeof window.console&&console.warn(ie(e))}function ue(){!function(){function e(e){return"true"===e}var t=v.substr(S).split(":");M=t[0],r=u!==t[1]?Number(t[1]):r,s=u!==t[2]?e(t[2]):s,T=u!==t[3]?e(t[3]):T,w=u!==t[4]?Number(t[4]):w,n=u!==t[6]?e(t[6]):n,a=t[7],g=u!==t[8]?t[8]:g,i=t[9],c=t[10],k=u!==t[11]?Number(t[11]):k,y.enable=u!==t[12]&&e(t[12]),N=u!==t[13]?t[13]:N,P=u!==t[14]?t[14]:P,E=u!==t[15]?Boolean(t[15]):E}(),re("Initialising iFrame ("+window.location.href+")"),function(){function e(e,t){return"function"==typeof e&&(re("Setup custom "+t+"CalcMethod"),W[t]=e,e="custom"),e}"iFrameResizer"in window&&Object===window.iFrameResizer.constructor&&(function(){var e=window.iFrameResizer;re("Reading data from page: "+JSON.stringify(e)),Object.keys(e).forEach(ce,e),j="onMessage"in e?e.onMessage:j,q="onReady"in e?e.onReady:q,z="targetOrigin"in e?e.targetOrigin:z,g="heightCalculationMethod"in e?e.heightCalculationMethod:g,P="widthCalculationMethod"in e?e.widthCalculationMethod:P}(),g=e(g,"height"),P=e(P,"width"));re("TargetOrigin for parent set to: "+z)}(),function(){u===a&&(a=r+"px");se("margin",function(e,t){-1!==t.indexOf("-")&&(ae("Negative CSS value ignored for "+e),t="");return t}("margin",a))}(),se("background",i),se("padding",c),function(){var e=document.createElement("div");e.style.clear="both",e.style.display="block",e.style.height="0",document.body.appendChild(e)}(),me(),he(),document.documentElement.style.height="",document.body.style.height="",re('HTML & body height set to "auto"'),re("Enable public methods"),D.parentIFrame={autoResize:function(e){return!0===e&&!1===n?(n=!0,ge()):!1===e&&!0===n&&(n=!1,le("remove"),null!==t&&t.disconnect(),clearInterval(b)),Ae(0,0,"autoResize",JSON.stringify(n)),n},close:function(){Ae(0,0,"close")},getId:function(){return M},getPageInfo:function(e){"function"==typeof e?(H=e,Ae(0,0,"pageInfo")):(H=function(){},Ae(0,0,"pageInfoStop"))},moveToAnchor:function(e){y.findTarget(e)},reset:function(){Ne("parentIFrame.reset")},scrollTo:function(e,t){Ae(t,e,"scrollTo")},scrollToOffset:function(e,t){Ae(t,e,"scrollToOffset")},sendMessage:function(e,t){Ae(0,0,"message",JSON.stringify(e),t)},setHeightCalculationMethod:function(e){g=e,me()},setWidthCalculationMethod:function(e){P=e,he()},setTargetOrigin:function(e){re("Set targetOrigin: "+e),z=e},size:function(e,t){Se("size","parentIFrame.size("+((e||"")+(t?","+t:""))+")",e,t)}},function(){if(!0!==E)return;function n(e){Ae(0,0,e.type,e.screenY+":"+e.screenX)}function e(e,t){re("Add event listener: "+t),ne(window.document,e,n)}e("mouseenter","Mouse Enter"),e("mouseleave","Mouse Leave")}(),ge(),y=function(){function r(e){var t=e.getBoundingClientRect(),n={x:window.pageXOffset!==u?window.pageXOffset:document.documentElement.scrollLeft,y:window.pageYOffset!==u?window.pageYOffset:document.documentElement.scrollTop};return{x:parseInt(t.left,10)+parseInt(n.x,10),y:parseInt(t.top,10)+parseInt(n.y,10)}}function n(e){var t,n=e.split("#")[1]||e,o=decodeURIComponent(n),i=document.getElementById(o)||document.getElementsByName(o)[0];u!==i?(t=r(i),re("Moving to in page link (#"+n+") at x: "+t.x+" y: "+t.y),Ae(t.y,t.x,"scrollToOffset")):(re("In page link (#"+n+") not found in iFrame, so sending to parent"),Ae(0,0,"inPageLink","#"+n))}function e(){var e=window.location.hash,t=window.location.href;""!==e&&"#"!==e&&n(t)}function t(){Array.prototype.forEach.call(document.querySelectorAll('a[href^="#"]'),function(e){"#"!==e.getAttribute("href")&&ne(e,"click",function(e){e.preventDefault(),n(this.getAttribute("href"))})})}y.enable?Array.prototype.forEach&&document.querySelectorAll?(re("Setting up location.hash handlers"),t(),ne(window,"hashchange",e),setTimeout(e,l)):ae("In page linking not fully supported in this browser! (See README.md for IE8 workaround)"):re("In page linking not enabled");return{findTarget:n}}(),Se("init","Init message from host page"),q()}function ce(e){var t=e.split("Callback");if(2===t.length){var n="on"+t[0].charAt(0).toUpperCase()+t[0].slice(1);this[n]=this[e],delete this[e],ae("Deprecated: '"+e+"' has been renamed '"+n+"'. The old method will be removed in the next major version.")}}function se(e,t){u!==t&&""!==t&&"null"!==t&&re("Body "+e+' set to "'+(document.body.style[e]=t)+'"')}function de(n){var e={add:function(e){function t(){Se(n.eventName,n.eventType)}B[e]=t,ne(window,e,t,{passive:!0})},remove:function(e){var t=B[e];delete B[e],function(e,t,n){e.removeEventListener(t,n,!1)}(window,e,t)}};n.eventNames&&Array.prototype.map?(n.eventName=n.eventNames[0],n.eventNames.map(e[n.method])):e[n.method](n.eventName),re(oe(n.method)+" event listener: "+n.eventType)}function le(e){de({method:e,eventType:"Animation Start",eventNames:["animationstart","webkitAnimationStart"]}),de({method:e,eventType:"Animation Iteration",eventNames:["animationiteration","webkitAnimationIteration"]}),de({method:e,eventType:"Animation End",eventNames:["animationend","webkitAnimationEnd"]}),de({method:e,eventType:"Input",eventName:"input"}),de({method:e,eventType:"Mouse Up",eventName:"mouseup"}),de({method:e,eventType:"Mouse Down",eventName:"mousedown"}),de({method:e,eventType:"Orientation Change",eventName:"orientationchange"}),de({method:e,eventType:"Print",eventName:["afterprint","beforeprint"]}),de({method:e,eventType:"Ready State Change",eventName:"readystatechange"}),de({method:e,eventType:"Touch Start",eventName:"touchstart"}),de({method:e,eventType:"Touch End",eventName:"touchend"}),de({method:e,eventType:"Touch Cancel",eventName:"touchcancel"}),de({method:e,eventType:"Transition Start",eventNames:["transitionstart","webkitTransitionStart","MSTransitionStart","oTransitionStart","otransitionstart"]}),de({method:e,eventType:"Transition Iteration",eventNames:["transitioniteration","webkitTransitionIteration","MSTransitionIteration","oTransitionIteration","otransitioniteration"]}),de({method:e,eventType:"Transition End",eventNames:["transitionend","webkitTransitionEnd","MSTransitionEnd","oTransitionEnd","otransitionend"]}),"child"===N&&de({method:e,eventType:"IFrame Resized",eventName:"resize"})}function fe(e,t,n,o){return t!==e&&(e in n||(ae(e+" is not a valid option for "+o+"CalculationMethod."),e=t),re(o+' calculation method set to "'+e+'"')),e}function me(){g=fe(g,h,$,"height")}function he(){P=fe(P,F,_,"width")}function ge(){!0===n?(le("add"),function(){var e=w<0;window.MutationObserver||window.WebKitMutationObserver?e?pe():t=function(){function t(e){function t(e){!1===e.complete&&(re("Attach listeners to "+e.src),e.addEventListener("load",i,!1),e.addEventListener("error",r,!1),u.push(e))}"attributes"===e.type&&"src"===e.attributeName?t(e.target):"childList"===e.type&&Array.prototype.forEach.call(e.target.querySelectorAll("img"),t)}function o(e){re("Remove listeners from "+e.src),e.removeEventListener("load",i,!1),e.removeEventListener("error",r,!1),function(e){u.splice(u.indexOf(e),1)}(e)}function n(e,t,n){o(e.target),Se(t,n+": "+e.target.src)}function i(e){n(e,"imageLoad","Image loaded")}function r(e){n(e,"imageLoadFailed","Image load failed")}function a(e){Se("mutationObserver","mutationObserver: "+e[0].target+" "+e[0].type),e.forEach(t)}var u=[],c=window.MutationObserver||window.WebKitMutationObserver,s=function(){var e=document.querySelector("body");return s=new c(a),re("Create body MutationObserver"),s.observe(e,{attributes:!0,attributeOldValue:!1,characterData:!0,characterDataOldValue:!1,childList:!0,subtree:!0}),s}();return{disconnect:function(){"disconnect"in s&&(re("Disconnect body MutationObserver"),s.disconnect(),u.forEach(o))}}}():(re("MutationObserver not supported in this browser!"),pe())}()):re("Auto Resize disabled")}function pe(){0!==w&&(re("setInterval: "+w+"ms"),b=setInterval(function(){Se("interval","setInterval: "+w)},Math.abs(w)))}function ve(e,t){var n=0;return t=t||document.body,n=null!==(n=document.defaultView.getComputedStyle(t,null))?n[e]:0,parseInt(n,o)}function ye(e,t){for(var n=t.length,o=0,i=0,r=oe(e),a=Z(),u=0;u<n;u++)i<(o=t[u].getBoundingClientRect()[e]+ve("margin"+r,t[u]))&&(i=o);return a=Z()-a,re("Parsed "+n+" HTML elements"),re("Element position calculated in "+a+"ms"),function(e){x/2<e&&re("Event throttle increased to "+(x=2*e)+"ms")}(a),i}function we(e){return[e.bodyOffset(),e.bodyScroll(),e.documentElementOffset(),e.documentElementScroll()]}function be(e,t){var n=document.querySelectorAll("["+t+"]");return 0===n.length&&(ae("No tagged elements ("+t+") found on page"),document.querySelectorAll("body *")),ye(e,n)}function Te(){return document.querySelectorAll("body *")}function Ee(e,t,n,o){var i,r;function a(e,t){return!(Math.abs(e-t)<=k)}i=u!==n?n:$[g](),r=u!==o?o:_[P](),a(m,i)||s&&a(L,r)||"init"===e?(Me(),Ae(m=i,L=r,e)):e in{init:1,interval:1,size:1}||!(g in I||s&&P in I)?e in{interval:1}||re("No change in size detected"):Ne(t)}function Oe(){G=Z(),Q=null,K=V.apply(X,Y),Q||(X=Y=null)}function Se(e,t,n,o){R&&e in d?re("Trigger event cancelled: "+e):(e in{reset:1,resetPage:1,init:1}||re("Trigger event: "+t),"init"===e?Ee(e,t,n,o):ee(e,t,n,o))}function Me(){R||(R=!0,re("Trigger event lock on")),clearTimeout(e),e=setTimeout(function(){R=!1,re("Trigger event lock off"),re("--")},l)}function Ie(e){m=$[g](),L=_[P](),Ae(m,L,e)}function Ne(e){var t=g;g=h,re("Reset trigger event: "+e),Me(),Ie("reset"),g=t}function Ae(e,t,n,o,i){var r;!0===A&&(u===i?i=z:re("Message targetOrigin: "+i),re("Sending message to host page ("+(r=M+":"+(e+":"+t)+":"+n+(u!==o?":"+o:""))+")"),C.postMessage(O+r,i))}function Ce(){"loading"!==document.readyState&&window.parent.postMessage("[iFrameResizerChild]Ready","*")}}();
153957-theme
/153957-theme-2.tar.gz/153957-theme-2/153957_theme/static/js/iframeResizer.contentWindow.min.js
iframeResizer.contentWindow.min.js
!function(a,b,c,d){var e=b.document,f=a(e),g=a(b),h=Array.prototype,i=1.56,j=!0,k=3e4,l=!1,m=navigator.userAgent.toLowerCase(),n=b.location.hash.replace(/#\//,""),o="file:"==b.location.protocol?"http:":b.location.protocol,p=Math,q=function(){},r=function(){return!1},s=function(){var a=3,b=e.createElement("div"),c=b.getElementsByTagName("i");do b.innerHTML="<!--[if gt IE "+ ++a+"]><i></i><![endif]-->";while(c[0]);return a>4?a:e.documentMode||d}(),t=function(){return{html:e.documentElement,body:e.body,head:e.getElementsByTagName("head")[0],title:e.title}},u=b.parent!==b.self,v="data ready thumbnail loadstart loadfinish image play pause progress fullscreen_enter fullscreen_exit idle_enter idle_exit rescale lightbox_open lightbox_close lightbox_image",w=function(){var b=[];return a.each(v.split(" "),function(a,c){b.push(c),/_/.test(c)&&b.push(c.replace(/_/g,""))}),b}(),x=function(b){var c;return"object"!=typeof b?b:(a.each(b,function(d,e){/^[a-z]+_/.test(d)&&(c="",a.each(d.split("_"),function(a,b){c+=a>0?b.substr(0,1).toUpperCase()+b.substr(1):b}),b[c]=e,delete b[d])}),b)},y=function(b){return a.inArray(b,w)>-1?c[b.toUpperCase()]:b},z={youtube:{reg:/https?:\/\/(?:[a-zA_Z]{2,3}.)?(?:youtube\.com\/watch\?)((?:[\w\d\-\_\=]+&amp;(?:amp;)?)*v(?:&lt;[A-Z]+&gt;)?=([0-9a-zA-Z\-\_]+))/i,embed:function(){return o+"//www.youtube.com/embed/"+this.id},get_thumb:function(a){return o+"//img.youtube.com/vi/"+this.id+"/default.jpg"},get_image:function(a){return o+"//img.youtube.com/vi/"+this.id+"/hqdefault.jpg"}},vimeo:{reg:/https?:\/\/(?:www\.)?(vimeo\.com)\/(?:hd#)?([0-9]+)/i,embed:function(){return o+"//player.vimeo.com/video/"+this.id},getUrl:function(){return o+"//vimeo.com/api/v2/video/"+this.id+".json?callback=?"},get_thumb:function(a){return a[0].thumbnail_medium},get_image:function(a){return a[0].thumbnail_large}},dailymotion:{reg:/https?:\/\/(?:www\.)?(dailymotion\.com)\/video\/([^_]+)/,embed:function(){return o+"//www.dailymotion.com/embed/video/"+this.id},getUrl:function(){return"https://api.dailymotion.com/video/"+this.id+"?fields=thumbnail_240_url,thumbnail_720_url&callback=?"},get_thumb:function(a){return a.thumbnail_240_url},get_image:function(a){return a.thumbnail_720_url}},_inst:[]},A=function(c,d){for(var e=0;e<z._inst.length;e++)if(z._inst[e].id===d&&z._inst[e].type==c)return z._inst[e];this.type=c,this.id=d,this.readys=[],z._inst.push(this);var f=this;a.extend(this,z[c]),_videoThumbs=function(b){f.data=b,a.each(f.readys,function(a,b){b(f.data)}),f.readys=[]},this.hasOwnProperty("getUrl")?a.getJSON(this.getUrl(),_videoThumbs):b.setTimeout(_videoThumbs,400),this.getMedia=function(a,b,c){c=c||q;var d=this,e=function(c){b(d["get_"+a](c))};try{d.data?e(d.data):d.readys.push(e)}catch(a){c()}}},B=function(a){var b;for(var c in z)if(b=a&&z[c].reg&&a.match(z[c].reg),b&&b.length)return{id:b[2],provider:c};return!1},C={support:function(){var a=t().html;return!u&&(a.requestFullscreen||a.msRequestFullscreen||a.mozRequestFullScreen||a.webkitRequestFullScreen)}(),callback:q,enter:function(a,b,c){this.instance=a,this.callback=b||q,c=c||t().html,c.requestFullscreen?c.requestFullscreen():c.msRequestFullscreen?c.msRequestFullscreen():c.mozRequestFullScreen?c.mozRequestFullScreen():c.webkitRequestFullScreen&&c.webkitRequestFullScreen()},exit:function(a){this.callback=a||q,e.exitFullscreen?e.exitFullscreen():e.msExitFullscreen?e.msExitFullscreen():e.mozCancelFullScreen?e.mozCancelFullScreen():e.webkitCancelFullScreen&&e.webkitCancelFullScreen()},instance:null,listen:function(){if(this.support){var a=function(){if(C.instance){var a=C.instance._fullscreen;e.fullscreen||e.mozFullScreen||e.webkitIsFullScreen||e.msFullscreenElement&&null!==e.msFullscreenElement?a._enter(C.callback):a._exit(C.callback)}};e.addEventListener("fullscreenchange",a,!1),e.addEventListener("MSFullscreenChange",a,!1),e.addEventListener("mozfullscreenchange",a,!1),e.addEventListener("webkitfullscreenchange",a,!1)}}},D=[],E=[],F=!1,G=!1,H=[],I=[],J=function(b){I.push(b),a.each(H,function(a,c){c._options.theme!=b.name&&(c._initialized||c._options.theme)||(c.theme=b,c._init.call(c))})},K=function(){return{clearTimer:function(b){a.each(c.get(),function(){this.clearTimer(b)})},addTimer:function(b){a.each(c.get(),function(){this.addTimer(b)})},array:function(a){return h.slice.call(a,0)},create:function(a,b){b=b||"div";var c=e.createElement(b);return c.className=a,c},removeFromArray:function(b,c){return a.each(b,function(a,d){if(d==c)return b.splice(a,1),!1}),b},getScriptPath:function(b){b=b||a("script:last").attr("src");var c=b.split("/");return 1==c.length?"":(c.pop(),c.join("/")+"/")},animate:function(){var d,f,g,h,i,j,k,l=function(a){var c,d="transition WebkitTransition MozTransition OTransition".split(" ");if(b.opera)return!1;for(c=0;d[c];c++)if("undefined"!=typeof a[d[c]])return d[c];return!1}((e.body||e.documentElement).style),m={MozTransition:"transitionend",OTransition:"oTransitionEnd",WebkitTransition:"webkitTransitionEnd",transition:"transitionend"}[l],n={_default:[.25,.1,.25,1],galleria:[.645,.045,.355,1],galleriaIn:[.55,.085,.68,.53],galleriaOut:[.25,.46,.45,.94],ease:[.25,0,.25,1],linear:[.25,.25,.75,.75],"ease-in":[.42,0,1,1],"ease-out":[0,0,.58,1],"ease-in-out":[.42,0,.58,1]},o=function(b,c,d){var e={};d=d||"transition",a.each("webkit moz ms o".split(" "),function(){e["-"+this+"-"+d]=c}),b.css(e)},p=function(a){o(a,"none","transition"),c.WEBKIT&&c.TOUCH&&(o(a,"translate3d(0,0,0)","transform"),a.data("revert")&&(a.css(a.data("revert")),a.data("revert",null)))};return function(e,r,s){return s=a.extend({duration:400,complete:q,stop:!1},s),e=a(e),s.duration?l?(s.stop&&(e.off(m),p(e)),d=!1,a.each(r,function(a,b){k=e.css(a),K.parseValue(k)!=K.parseValue(b)&&(d=!0),e.css(a,k)}),d?(f=[],g=s.easing in n?n[s.easing]:n._default,h=" "+s.duration+"ms cubic-bezier("+g.join(",")+")",void b.setTimeout(function(b,d,e,g){return function(){b.one(d,function(a){return function(){p(a),s.complete.call(a[0])}}(b)),c.WEBKIT&&c.TOUCH&&(i={},j=[0,0,0],a.each(["left","top"],function(a,c){c in e&&(j[a]=K.parseValue(e[c])-K.parseValue(b.css(c))+"px",i[c]=e[c],delete e[c])}),(j[0]||j[1])&&(b.data("revert",i),f.push("-webkit-transform"+g),o(b,"translate3d("+j.join(",")+")","transform"))),a.each(e,function(a,b){f.push(a+g)}),o(b,f.join(",")),b.css(e)}}(e,m,r,h),2)):void b.setTimeout(function(){s.complete.call(e[0])},s.duration)):void e.animate(r,s):(e.css(r),void s.complete.call(e[0]))}}(),removeAlpha:function(a){if(a instanceof jQuery&&(a=a[0]),s<9&&a){var b=a.style,c=a.currentStyle,d=c&&c.filter||b.filter||"";/alpha/.test(d)&&(b.filter=d.replace(/alpha\([^)]*\)/i,""))}},forceStyles:function(b,c){b=a(b),b.attr("style")&&b.data("styles",b.attr("style")).removeAttr("style"),b.css(c)},revertStyles:function(){a.each(K.array(arguments),function(b,c){c=a(c),c.removeAttr("style"),c.attr("style",""),c.data("styles")&&c.attr("style",c.data("styles")).data("styles",null)})},moveOut:function(a){K.forceStyles(a,{position:"absolute",left:-1e4})},moveIn:function(){K.revertStyles.apply(K,K.array(arguments))},hide:function(b,c,d){d=d||q;var e=a(b);b=e[0],e.data("opacity")||e.data("opacity",e.css("opacity"));var f={opacity:0};if(c){var g=s<9&&b?function(){K.removeAlpha(b),b.style.visibility="hidden",d.call(b)}:d;K.animate(b,f,{duration:c,complete:g,stop:!0})}else s<9&&b?(K.removeAlpha(b),b.style.visibility="hidden"):e.css(f)},show:function(b,c,d){d=d||q;var e=a(b);b=e[0];var f=parseFloat(e.data("opacity"))||1,g={opacity:f};if(c){s<9&&(e.css("opacity",0),b.style.visibility="visible");var h=s<9&&b?function(){1==g.opacity&&K.removeAlpha(b),d.call(b)}:d;K.animate(b,g,{duration:c,complete:h,stop:!0})}else s<9&&1==g.opacity&&b?(K.removeAlpha(b),b.style.visibility="visible"):e.css(g)},wait:function(d){c._waiters=c._waiters||[],d=a.extend({until:r,success:q,error:function(){c.raise("Could not complete wait function.")},timeout:3e3},d);var e,f,g,h=K.timestamp(),i=function(){return f=K.timestamp(),e=f-h,K.removeFromArray(c._waiters,g),d.until(e)?(d.success(),!1):"number"==typeof d.timeout&&f>=h+d.timeout?(d.error(),!1):void c._waiters.push(g=b.setTimeout(i,10))};c._waiters.push(g=b.setTimeout(i,10))},toggleQuality:function(a,b){7!==s&&8!==s||!a||"IMG"!=a.nodeName.toUpperCase()||("undefined"==typeof b&&(b="nearest-neighbor"===a.style.msInterpolationMode),a.style.msInterpolationMode=b?"bicubic":"nearest-neighbor")},insertStyleTag:function(b,c){if(!c||!a("#"+c).length){var d=e.createElement("style");if(c&&(d.id=c),t().head.appendChild(d),d.styleSheet)d.styleSheet.cssText=b;else{var f=e.createTextNode(b);d.appendChild(f)}}},loadScript:function(b,c){var d=!1,e=a("<script>").attr({src:b,async:!0}).get(0);e.onload=e.onreadystatechange=function(){d||this.readyState&&"loaded"!==this.readyState&&"complete"!==this.readyState||(d=!0,e.onload=e.onreadystatechange=null,"function"==typeof c&&c.call(this,this))},t().head.appendChild(e)},parseValue:function(a){if("number"==typeof a)return a;if("string"==typeof a){var b=a.match(/\-?\d|\./g);return b&&b.constructor===Array?1*b.join(""):0}return 0},timestamp:function(){return(new Date).getTime()},loadCSS:function(b,f,g){var h,i;if(a("link[rel=stylesheet]").each(function(){if(new RegExp(b).test(this.href))return h=this,!1}),"function"==typeof f&&(g=f,f=d),g=g||q,h)return g.call(h,h),h;if(i=e.styleSheets.length,a("#"+f).length)a("#"+f).attr("href",b),i--;else{h=a("<link>").attr({rel:"stylesheet",href:b,id:f}).get(0);var j=a('link[rel="stylesheet"], style');if(j.length?j.get(0).parentNode.insertBefore(h,j[0]):t().head.appendChild(h),s&&i>=31)return void c.raise("You have reached the browser stylesheet limit (31)",!0)}if("function"==typeof g){var k=a("<s>").attr("id","galleria-loader").hide().appendTo(t().body);K.wait({until:function(){return k.height()>0},success:function(){k.remove(),g.call(h,h)},error:function(){k.remove(),c.raise("Theme CSS could not load after 20 sec. "+(c.QUIRK?"Your browser is in Quirks Mode, please add a correct doctype.":"Please download the latest theme at http://galleria.io/customer/."),!0)},timeout:5e3})}return h}}}(),L=function(b){var c=".galleria-videoicon{width:60px;height:60px;position:absolute;top:50%;left:50%;z-index:1;margin:-30px 0 0 -30px;cursor:pointer;background:#000;background:rgba(0,0,0,.8);border-radius:3px;-webkit-transition:all 150ms}.galleria-videoicon i{width:0px;height:0px;border-style:solid;border-width:10px 0 10px 16px;display:block;border-color:transparent transparent transparent #ffffff;margin:20px 0 0 22px}.galleria-image:hover .galleria-videoicon{background:#000}";return K.insertStyleTag(c,"galleria-videoicon"),a(K.create("galleria-videoicon")).html("<i></i>").appendTo(b).click(function(){a(this).siblings("img").mouseup()})},M=function(){var b=function(b,c,d,e){var f=this.getOptions("easing"),g=this.getStageWidth(),h={left:g*(b.rewind?-1:1)},i={left:0};d?(h.opacity=0,i.opacity=1):h.opacity=1,a(b.next).css(h),K.animate(b.next,i,{duration:b.speed,complete:function(a){return function(){c(),a.css({left:0})}}(a(b.next).add(b.prev)),queue:!1,easing:f}),e&&(b.rewind=!b.rewind),b.prev&&(h={left:0},i={left:g*(b.rewind?1:-1)},d&&(h.opacity=1,i.opacity=0),a(b.prev).css(h),K.animate(b.prev,i,{duration:b.speed,queue:!1,easing:f,complete:function(){a(this).css("opacity",0)}}))};return{active:!1,init:function(a,b,c){M.effects.hasOwnProperty(a)&&M.effects[a].call(this,b,c)},effects:{fade:function(b,c){a(b.next).css({opacity:0,left:0}),K.animate(b.next,{opacity:1},{duration:b.speed,complete:c}),b.prev&&(a(b.prev).css("opacity",1).show(),K.animate(b.prev,{opacity:0},{duration:b.speed}))},flash:function(b,c){a(b.next).css({opacity:0,left:0}),b.prev?K.animate(b.prev,{opacity:0},{duration:b.speed/2,complete:function(){K.animate(b.next,{opacity:1},{duration:b.speed,complete:c})}}):K.animate(b.next,{opacity:1},{duration:b.speed,complete:c})},pulse:function(b,c){b.prev&&a(b.prev).hide(),a(b.next).css({opacity:0,left:0}).show(),K.animate(b.next,{opacity:1},{duration:b.speed,complete:c})},slide:function(a,c){b.apply(this,K.array(arguments))},fadeslide:function(a,c){b.apply(this,K.array(arguments).concat([!0]))},doorslide:function(a,c){b.apply(this,K.array(arguments).concat([!1,!0]))}}}}();C.listen(),a.event.special["click:fast"]={propagate:!0,add:function(c){var d=function(a){if(a.touches&&a.touches.length){var b=a.touches[0];return{x:b.pageX,y:b.pageY}}},e={touched:!1,touchdown:!1,coords:{x:0,y:0},evObj:{}};a(this).data({clickstate:e,timer:0}).on("touchstart.fast",function(c){b.clearTimeout(a(this).data("timer")),a(this).data("clickstate",{touched:!0,touchdown:!0,coords:d(c.originalEvent),evObj:c})}).on("touchmove.fast",function(b){var c=d(b.originalEvent),e=a(this).data("clickstate"),f=Math.max(Math.abs(e.coords.x-c.x),Math.abs(e.coords.y-c.y));f>6&&a(this).data("clickstate",a.extend(e,{touchdown:!1}))}).on("touchend.fast",function(d){var f=a(this),g=f.data("clickstate");g.touchdown&&c.handler.call(this,d),f.data("timer",b.setTimeout(function(){f.data("clickstate",e)},400))}).on("click.fast",function(b){var d=a(this).data("clickstate");return!d.touched&&(a(this).data("clickstate",e),void c.handler.call(this,b))})},remove:function(){a(this).off("touchstart.fast touchmove.fast touchend.fast click.fast")}},g.on("orientationchange",function(){a(this).resize()}),c=function(){var h=this;this._options={},this._playing=!1,this._playtime=5e3,this._active=null,this._queue={length:0},this._data=[],this._dom={},this._thumbnails=[],this._layers=[],this._initialized=!1,this._firstrun=!1,this._stageWidth=0,this._stageHeight=0,this._target=d,this._binds=[],this._id=parseInt(1e4*p.random(),10);var i="container stage images image-nav image-nav-left image-nav-right info info-text info-title info-description thumbnails thumbnails-list thumbnails-container thumb-nav-left thumb-nav-right loader counter tooltip",j="current total";a.each(i.split(" "),function(a,b){h._dom[b]=K.create("galleria-"+b)}),a.each(j.split(" "),function(a,b){h._dom[b]=K.create("galleria-"+b,"span")});var k=this._keyboard={keys:{UP:38,DOWN:40,LEFT:37,RIGHT:39,RETURN:13,ESCAPE:27,BACKSPACE:8,SPACE:32},map:{},bound:!1,press:function(a){var b=a.keyCode||a.which;b in k.map&&"function"==typeof k.map[b]&&k.map[b].call(h,a)},attach:function(a){var b,c;for(b in a)a.hasOwnProperty(b)&&(c=b.toUpperCase(),c in k.keys?k.map[k.keys[c]]=a[b]:k.map[c]=a[b]);k.bound||(k.bound=!0,f.on("keydown",k.press))},detach:function(){k.bound=!1,k.map={},f.off("keydown",k.press)}},l=this._controls={0:d,1:d,active:0,swap:function(){l.active=l.active?0:1},getActive:function(){return h._options.swipe?l.slides[h._active]:l[l.active]},getNext:function(){return h._options.swipe?l.slides[h.getNext(h._active)]:l[1-l.active]},slides:[],frames:[],layers:[]},n=this._carousel={next:h.$("thumb-nav-right"),prev:h.$("thumb-nav-left"),width:0,current:0,max:0,hooks:[],update:function(){var b=0,c=0,d=[0];a.each(h._thumbnails,function(e,f){if(f.ready){b+=f.outerWidth||a(f.container).outerWidth(!0);var g=a(f.container).width();b+=g-p.floor(g),d[e+1]=b,c=p.max(c,f.outerHeight||a(f.container).outerHeight(!0))}}),h.$("thumbnails").css({width:b,height:c}),n.max=b,n.hooks=d,n.width=h.$("thumbnails-list").width(),n.setClasses(),h.$("thumbnails-container").toggleClass("galleria-carousel",b>n.width),n.width=h.$("thumbnails-list").width()},bindControls:function(){var a;n.next.on("click:fast",function(b){if(b.preventDefault(),"auto"===h._options.carouselSteps){for(a=n.current;a<n.hooks.length;a++)if(n.hooks[a]-n.hooks[n.current]>n.width){n.set(a-2);break}}else n.set(n.current+h._options.carouselSteps)}),n.prev.on("click:fast",function(b){if(b.preventDefault(),"auto"===h._options.carouselSteps)for(a=n.current;a>=0;a--){if(n.hooks[n.current]-n.hooks[a]>n.width){n.set(a+2);break}if(0===a){n.set(0);break}}else n.set(n.current-h._options.carouselSteps)})},set:function(a){for(a=p.max(a,0);n.hooks[a-1]+n.width>=n.max&&a>=0;)a--;n.current=a,n.animate()},getLast:function(a){return(a||n.current)-1},follow:function(a){if(0===a||a===n.hooks.length-2)return void n.set(a);for(var b=n.current;n.hooks[b]-n.hooks[n.current]<n.width&&b<=n.hooks.length;)b++;a-1<n.current?n.set(a-1):a+2>b&&n.set(a-b+n.current+2)},setClasses:function(){n.prev.toggleClass("disabled",!n.current),n.next.toggleClass("disabled",n.hooks[n.current]+n.width>=n.max)},animate:function(b){n.setClasses();var c=n.hooks[n.current]*-1;isNaN(c)||(h.$("thumbnails").css("left",function(){return a(this).css("left")}),K.animate(h.get("thumbnails"),{left:c},{duration:h._options.carouselSpeed,easing:h._options.easing,queue:!1}))}},o=this._tooltip={initialized:!1,open:!1,timer:"tooltip"+h._id,swapTimer:"swap"+h._id,init:function(){o.initialized=!0;var a=".galleria-tooltip{padding:3px 8px;max-width:50%;background:#ffe;color:#000;z-index:3;position:absolute;font-size:11px;line-height:1.3;opacity:0;box-shadow:0 0 2px rgba(0,0,0,.4);-moz-box-shadow:0 0 2px rgba(0,0,0,.4);-webkit-box-shadow:0 0 2px rgba(0,0,0,.4);}";K.insertStyleTag(a,"galleria-tooltip"),h.$("tooltip").css({opacity:.8,visibility:"visible",display:"none"})},move:function(a){var b=h.getMousePosition(a).x,c=h.getMousePosition(a).y,d=h.$("tooltip"),e=b,f=c,g=d.outerHeight(!0)+1,i=d.outerWidth(!0),j=g+15,k=h.$("container").width()-i-2,l=h.$("container").height()-g-2;isNaN(e)||isNaN(f)||(e+=10,f-=g+8,e=p.max(0,p.min(k,e)),f=p.max(0,p.min(l,f)),c<j&&(f=j),d.css({left:e,top:f}))},bind:function(b,d){if(!c.TOUCH){o.initialized||o.init();var e=function(){h.$("container").off("mousemove",o.move),h.clearTimer(o.timer),h.$("tooltip").stop().animate({opacity:0},200,function(){h.$("tooltip").hide(),h.addTimer(o.swapTimer,function(){o.open=!1},1e3)})},f=function(b,c){o.define(b,c),a(b).hover(function(){h.clearTimer(o.swapTimer),h.$("container").off("mousemove",o.move).on("mousemove",o.move).trigger("mousemove"),o.show(b),h.addTimer(o.timer,function(){h.$("tooltip").stop().show().animate({opacity:1}),o.open=!0},o.open?0:500)},e).click(e)};"string"==typeof d?f(b in h._dom?h.get(b):b,d):a.each(b,function(a,b){f(h.get(a),b)})}},show:function(c){c=a(c in h._dom?h.get(c):c);var d=c.data("tt"),e=function(a){b.setTimeout(function(a){return function(){o.move(a)}}(a),10),c.off("mouseup",e)};d="function"==typeof d?d():d,d&&(h.$("tooltip").html(d.replace(/\s/,"&#160;")),c.on("mouseup",e))},define:function(b,c){if("function"!=typeof c){var d=c;c=function(){return d}}b=a(b in h._dom?h.get(b):b).data("tt",c),o.show(b)}},q=this._fullscreen={scrolled:0,crop:d,active:!1,prev:a(),beforeEnter:function(a){a()},beforeExit:function(a){a()},keymap:h._keyboard.map,parseCallback:function(b,c){return M.active?function(){"function"==typeof b&&b.call(h);var d=h._controls.getActive(),e=h._controls.getNext();h._scaleImage(e),h._scaleImage(d),c&&h._options.trueFullscreen&&a(d.container).add(e.container).trigger("transitionend")}:b},enter:function(a){q.beforeEnter(function(){a=q.parseCallback(a,!0),h._options.trueFullscreen&&C.support?(q.active=!0,K.forceStyles(h.get("container"),{width:"100%",height:"100%"}),h.rescale(),c.MAC?c.SAFARI&&/version\/[1-5]/.test(m)?(h.$("stage").css("opacity",0),b.setTimeout(function(){q.scale(),h.$("stage").css("opacity",1)},4)):(h.$("container").css("opacity",0).addClass("fullscreen"),b.setTimeout(function(){q.scale(),h.$("container").css("opacity",1)},50)):h.$("container").addClass("fullscreen"),g.resize(q.scale),C.enter(h,a,h.get("container"))):(q.scrolled=g.scrollTop(),c.TOUCH||b.scrollTo(0,0),q._enter(a))})},_enter:function(f){q.active=!0,u&&(q.iframe=function(){var d,f=e.referrer,g=e.createElement("a"),h=b.location;return g.href=f,g.protocol!=h.protocol||g.hostname!=h.hostname||g.port!=h.port?(c.raise("Parent fullscreen not available. Iframe protocol, domains and ports must match."),!1):(q.pd=b.parent.document,a(q.pd).find("iframe").each(function(){var a=this.contentDocument||this.contentWindow.document;if(a===e)return d=this,!1}),d)}()),K.hide(h.getActiveImage()),u&&q.iframe&&(q.iframe.scrolled=a(b.parent).scrollTop(),b.parent.scrollTo(0,0));var i=h.getData(),j=h._options,k=!h._options.trueFullscreen||!C.support,l={height:"100%",overflow:"hidden",margin:0,padding:0};if(k&&(h.$("container").addClass("fullscreen"),q.prev=h.$("container").prev(),q.prev.length||(q.parent=h.$("container").parent()),h.$("container").appendTo("body"),K.forceStyles(h.get("container"),{position:c.TOUCH?"absolute":"fixed",top:0,left:0,width:"100%",height:"100%",zIndex:1e4}),K.forceStyles(t().html,l),K.forceStyles(t().body,l)),u&&q.iframe&&(K.forceStyles(q.pd.documentElement,l),K.forceStyles(q.pd.body,l),K.forceStyles(q.iframe,a.extend(l,{width:"100%",height:"100%",top:0,left:0,position:"fixed",zIndex:1e4,border:"none"}))),q.keymap=a.extend({},h._keyboard.map),h.attachKeyboard({escape:h.exitFullscreen,right:h.next,left:h.prev}),q.crop=j.imageCrop,j.fullscreenCrop!=d&&(j.imageCrop=j.fullscreenCrop),i&&i.big&&i.image!==i.big){var m=new c.Picture,n=m.isCached(i.big),o=h.getIndex(),p=h._thumbnails[o];h.trigger({type:c.LOADSTART,cached:n,rewind:!1,index:o,imageTarget:h.getActiveImage(),thumbTarget:p,galleriaData:i}),m.load(i.big,function(b){h._scaleImage(b,{complete:function(b){h.trigger({type:c.LOADFINISH,cached:n,index:o,rewind:!1,imageTarget:b.image,thumbTarget:p});var d=h._controls.getActive().image;d&&a(d).width(b.image.width).height(b.image.height).attr("style",a(b.image).attr("style")).attr("src",b.image.src)}})});var r=h.getNext(o),s=new c.Picture,v=h.getData(r);s.preload(h.isFullscreen()&&v.big?v.big:v.image)}h.rescale(function(){h.addTimer(!1,function(){k&&K.show(h.getActiveImage()),"function"==typeof f&&f.call(h),h.rescale()},100),h.trigger(c.FULLSCREEN_ENTER)}),k?g.resize(q.scale):K.show(h.getActiveImage())},scale:function(){h.rescale()},exit:function(a){q.beforeExit(function(){a=q.parseCallback(a),h._options.trueFullscreen&&C.support?C.exit(a):q._exit(a)})},_exit:function(a){q.active=!1;var d=!h._options.trueFullscreen||!C.support,e=h.$("container").removeClass("fullscreen");if(q.parent?q.parent.prepend(e):e.insertAfter(q.prev),d){K.hide(h.getActiveImage()),K.revertStyles(h.get("container"),t().html,t().body),c.TOUCH||b.scrollTo(0,q.scrolled);var f=h._controls.frames[h._controls.active];f&&f.image&&(f.image.src=f.image.src)}u&&q.iframe&&(K.revertStyles(q.pd.documentElement,q.pd.body,q.iframe),q.iframe.scrolled&&b.parent.scrollTo(0,q.iframe.scrolled)),h.detachKeyboard(),h.attachKeyboard(q.keymap),h._options.imageCrop=q.crop;var i=h.getData().big,j=h._controls.getActive().image;!h.getData().iframe&&j&&i&&i==j.src&&b.setTimeout(function(a){return function(){j.src=a}}(h.getData().image),1),h.rescale(function(){h.addTimer(!1,function(){d&&K.show(h.getActiveImage()),"function"==typeof a&&a.call(h),g.trigger("resize")},50),h.trigger(c.FULLSCREEN_EXIT)}),g.off("resize",q.scale)}},r=this._idle={trunk:[],bound:!1,active:!1,add:function(b,d,e,f){if(b&&!c.TOUCH){r.bound||r.addEvent(),b=a(b),"boolean"==typeof e&&(f=e,e={}),e=e||{};var g,h={};for(g in d)d.hasOwnProperty(g)&&(h[g]=b.css(g));b.data("idle",{from:a.extend(h,e),to:d,complete:!0,busy:!1}),f?b.css(d):r.addTimer(),r.trunk.push(b)}},remove:function(b){b=a(b),a.each(r.trunk,function(a,c){c&&c.length&&!c.not(b).length&&(b.css(b.data("idle").from),r.trunk.splice(a,1))}),r.trunk.length||(r.removeEvent(),h.clearTimer(r.timer))},addEvent:function(){r.bound=!0,h.$("container").on("mousemove click",r.showAll),"hover"==h._options.idleMode&&h.$("container").on("mouseleave",r.hide)},removeEvent:function(){r.bound=!1,h.$("container").on("mousemove click",r.showAll),"hover"==h._options.idleMode&&h.$("container").off("mouseleave",r.hide)},addTimer:function(){"hover"!=h._options.idleMode&&h.addTimer("idle",function(){r.hide()},h._options.idleTime)},hide:function(){if(h._options.idleMode&&h.getIndex()!==!1){h.trigger(c.IDLE_ENTER);var b=r.trunk.length;a.each(r.trunk,function(a,c){var d=c.data("idle");d&&(c.data("idle").complete=!1,K.animate(c,d.to,{duration:h._options.idleSpeed,complete:function(){a==b-1&&(r.active=!1)}}))})}},showAll:function(){h.clearTimer("idle"),a.each(r.trunk,function(a,b){r.show(b)})},show:function(b){var d=b.data("idle");r.active&&(d.busy||d.complete)||(d.busy=!0,h.trigger(c.IDLE_EXIT),h.clearTimer("idle"),K.animate(b,d.from,{duration:h._options.idleSpeed/2,complete:function(){r.active=!0,a(b).data("idle").busy=!1,a(b).data("idle").complete=!0}})),r.addTimer()}},v=this._lightbox={width:0,height:0,initialized:!1,active:null,image:null,elems:{},keymap:!1,init:function(){if(!v.initialized){v.initialized=!0;var b="overlay box content shadow title info close prevholder prev nextholder next counter image",d={},e=h._options,f="",g="position:absolute;",i="lightbox-",j={overlay:"position:fixed;display:none;opacity:"+e.overlayOpacity+";filter:alpha(opacity="+100*e.overlayOpacity+");top:0;left:0;width:100%;height:100%;background:"+e.overlayBackground+";z-index:99990",box:"position:fixed;display:none;width:400px;height:400px;top:50%;left:50%;margin-top:-200px;margin-left:-200px;z-index:99991",shadow:g+"background:#000;width:100%;height:100%;",content:g+"background-color:#fff;top:10px;left:10px;right:10px;bottom:10px;overflow:hidden",info:g+"bottom:10px;left:10px;right:10px;color:#444;font:11px/13px arial,sans-serif;height:13px",close:g+"top:10px;right:10px;height:20px;width:20px;background:#fff;text-align:center;cursor:pointer;color:#444;font:16px/22px arial,sans-serif;z-index:99999",image:g+"top:10px;left:10px;right:10px;bottom:30px;overflow:hidden;display:block;",prevholder:g+"width:50%;top:0;bottom:40px;cursor:pointer;",nextholder:g+"width:50%;top:0;bottom:40px;right:-1px;cursor:pointer;",prev:g+"top:50%;margin-top:-20px;height:40px;width:30px;background:#fff;left:20px;display:none;text-align:center;color:#000;font:bold 16px/36px arial,sans-serif",next:g+"top:50%;margin-top:-20px;height:40px;width:30px;background:#fff;right:20px;left:auto;display:none;font:bold 16px/36px arial,sans-serif;text-align:center;color:#000",title:"float:left",counter:"float:right;margin-left:8px;"},k=function(b){return b.hover(function(){a(this).css("color","#bbb")},function(){a(this).css("color","#444")})},l={},m="";m=s>7?s<9?"background:#000;filter:alpha(opacity=0);":"background:rgba(0,0,0,0);":"z-index:99999",j.nextholder+=m,j.prevholder+=m,a.each(j,function(a,b){f+=".galleria-"+i+a+"{"+b+"}"}),f+=".galleria-"+i+"box.iframe .galleria-"+i+"prevholder,.galleria-"+i+"box.iframe .galleria-"+i+"nextholder{width:100px;height:100px;top:50%;margin-top:-70px}",K.insertStyleTag(f,"galleria-lightbox"),a.each(b.split(" "),function(a,b){h.addElement("lightbox-"+b),d[b]=v.elems[b]=h.get("lightbox-"+b)}),v.image=new c.Picture,a.each({box:"shadow content close prevholder nextholder",info:"title counter",content:"info image",prevholder:"prev",nextholder:"next"},function(b,c){var d=[];a.each(c.split(" "),function(a,b){d.push(i+b)}),l[i+b]=d}),h.append(l),a(d.image).append(v.image.container),a(t().body).append(d.overlay,d.box),k(a(d.close).on("click:fast",v.hide).html("&#215;")),a.each(["Prev","Next"],function(b,e){var f=a(d[e.toLowerCase()]).html(/v/.test(e)?"&#8249;&#160;":"&#160;&#8250;"),g=a(d[e.toLowerCase()+"holder"]);return g.on("click:fast",function(){v["show"+e]()}),s<8||c.TOUCH?void f.show():void g.hover(function(){f.show()},function(a){f.stop().fadeOut(200)})}),a(d.overlay).on("click:fast",v.hide),c.IPAD&&(h._options.lightboxTransitionSpeed=0)}},rescale:function(b){var d=p.min(g.width()-40,v.width),e=p.min(g.height()-60,v.height),f=p.min(d/v.width,e/v.height),i=p.round(v.width*f)+40,j=p.round(v.height*f)+60,k={width:i,height:j,"margin-top":p.ceil(j/2)*-1,"margin-left":p.ceil(i/2)*-1};b?a(v.elems.box).css(k):a(v.elems.box).animate(k,{duration:h._options.lightboxTransitionSpeed,easing:h._options.easing,complete:function(){var b=v.image,d=h._options.lightboxFadeSpeed;h.trigger({type:c.LIGHTBOX_IMAGE,imageTarget:b.image}),a(b.container).show(),a(b.image).animate({opacity:1},d),K.show(v.elems.info,d)}})},hide:function(){v.image.image=null,g.off("resize",v.rescale),a(v.elems.box).hide().find("iframe").remove(),K.hide(v.elems.info),h.detachKeyboard(),h.attachKeyboard(v.keymap),v.keymap=!1,K.hide(v.elems.overlay,200,function(){a(this).hide().css("opacity",h._options.overlayOpacity),h.trigger(c.LIGHTBOX_CLOSE)})},showNext:function(){v.show(h.getNext(v.active))},showPrev:function(){v.show(h.getPrev(v.active))},show:function(d){v.active=d="number"==typeof d?d:h.getIndex()||0,v.initialized||v.init(),h.trigger(c.LIGHTBOX_OPEN),v.keymap||(v.keymap=a.extend({},h._keyboard.map),h.attachKeyboard({escape:v.hide,right:v.showNext,left:v.showPrev})),g.off("resize",v.rescale);var e,f,i,j=h.getData(d),k=h.getDataLength(),l=h.getNext(d);K.hide(v.elems.info);try{for(i=h._options.preload;i>0;i--)f=new c.Picture,e=h.getData(l),f.preload(e.big?e.big:e.image),l=h.getNext(l)}catch(a){}v.image.isIframe=j.iframe&&!j.image,a(v.elems.box).toggleClass("iframe",v.image.isIframe),a(v.image.container).find(".galleria-videoicon").remove(),v.image.load(j.big||j.image||j.iframe,function(c){if(c.isIframe){var e=a(b).width(),f=a(b).height();if(c.video&&h._options.maxVideoSize){var i=p.min(h._options.maxVideoSize/e,h._options.maxVideoSize/f);i<1&&(e*=i,f*=i)}v.width=e,v.height=f}else v.width=c.original.width,v.height=c.original.height;if(a(c.image).css({width:c.isIframe?"100%":"100.1%",height:c.isIframe?"100%":"100.1%",top:0,bottom:0,zIndex:99998,opacity:0,visibility:"visible"}).parent().height("100%"),v.elems.title.innerHTML=j.title||"",v.elems.counter.innerHTML=d+1+" / "+k,g.resize(v.rescale),v.rescale(),j.image&&j.iframe){if(a(v.elems.box).addClass("iframe"),j.video){var l=L(c.container).hide();b.setTimeout(function(){l.fadeIn(200)},200)}a(c.image).css("cursor","pointer").mouseup(function(b,c){return function(d){a(v.image.container).find(".galleria-videoicon").remove(),d.preventDefault(),c.isIframe=!0,c.load(b.iframe+(b.video?"&autoplay=1":""),{width:"100%",height:s<8?a(v.image.container).height():"100%"})}}(j,c))}}),a(v.elems.overlay).show().css("visibility","visible"),a(v.elems.box).show()}},w=this._timer={trunk:{},add:function(a,c,d,e){if(a=a||(new Date).getTime(),e=e||!1,this.clear(a),e){var f=c;c=function(){f(),w.add(a,c,d)}}this.trunk[a]=b.setTimeout(c,d)},clear:function(a){var c,d=function(a){b.clearTimeout(this.trunk[a]),delete this.trunk[a]};if(a&&a in this.trunk)d.call(this,a);else if("undefined"==typeof a)for(c in this.trunk)this.trunk.hasOwnProperty(c)&&d.call(this,c)}};return this},c.prototype={constructor:c,init:function(b,e){if(e=x(e),this._original={target:b,options:e,data:null},this._target=this._dom.target=b.nodeName?b:a(b).get(0),this._original.html=this._target.innerHTML,E.push(this),!this._target)return void c.raise("Target not found",!0);if(this._options={autoplay:!1,carousel:!0,carouselFollow:!0,carouselSpeed:400,carouselSteps:"auto",clicknext:!1,dailymotion:{foreground:"%23EEEEEE",highlight:"%235BCEC5",background:"%23222222",logo:0,hideInfos:1},dataConfig:function(a){return{}},dataSelector:"img",dataSort:!1,dataSource:this._target,debug:d,dummy:d,easing:"galleria",extend:function(a){},fullscreenCrop:d,fullscreenDoubleTap:!0,fullscreenTransition:d,height:0,idleMode:!0,idleTime:3e3,idleSpeed:200,imageCrop:!1,imageMargin:0,imagePan:!1,imagePanSmoothness:12,imagePosition:"50%",imageTimeout:d,initialTransition:d,keepSource:!1,layerFollow:!0,lightbox:!1,lightboxFadeSpeed:200,lightboxTransitionSpeed:200,linkSourceImages:!0,maxScaleRatio:d,maxVideoSize:d,minScaleRatio:d,overlayOpacity:.85,overlayBackground:"#0b0b0b",pauseOnInteraction:!0,popupLinks:!1,preload:2,queue:!0,responsive:!0,show:0,showInfo:!0,showCounter:!0,showImagenav:!0,swipe:"auto",theme:null,thumbCrop:!0,thumbEventType:"click:fast",thumbMargin:0,thumbQuality:"auto",thumbDisplayOrder:!0,thumbPosition:"50%",thumbnails:!0,touchTransition:d,transition:"fade",transitionInitial:d,transitionSpeed:400,trueFullscreen:!0,useCanvas:!1,variation:"",videoPoster:!0,vimeo:{title:0,byline:0,portrait:0,color:"aaaaaa"},wait:5e3,width:"auto",youtube:{modestbranding:1,autohide:1,color:"white",hd:1,rel:0,showinfo:0}},this._options.initialTransition=this._options.initialTransition||this._options.transitionInitial, e&&(e.debug===!1&&(j=!1),"number"==typeof e.imageTimeout&&(k=e.imageTimeout),"string"==typeof e.dummy&&(l=e.dummy),"string"==typeof e.theme&&(this._options.theme=e.theme)),a(this._target).children().hide(),c.QUIRK&&c.raise("Your page is in Quirks mode, Galleria may not render correctly. Please validate your HTML and add a correct doctype."),I.length)if(this._options.theme){for(var f=0;f<I.length;f++)if(this._options.theme===I[f].name){this.theme=I[f];break}}else this.theme=I[0];return"object"==typeof this.theme?this._init():H.push(this),this},_init:function(){var f=this,h=this._options;if(this._initialized)return c.raise("Init failed: Gallery instance already initialized."),this;if(this._initialized=!0,!this.theme)return c.raise("Init failed: No theme found.",!0),this;if(a.extend(!0,h,this.theme.defaults,this._original.options,c.configure.options),h.swipe=function(a){return"enforced"==a||a!==!1&&"disabled"!=a&&!!c.TOUCH}(h.swipe),h.swipe&&(h.clicknext=!1,h.imagePan=!1),function(a){return"getContext"in a?void(G=G||{elem:a,context:a.getContext("2d"),cache:{},length:0}):void(a=null)}(e.createElement("canvas")),this.bind(c.DATA,function(){b.screen&&b.screen.width&&Array.prototype.forEach&&this._data.forEach(function(a){var c="devicePixelRatio"in b?b.devicePixelRatio:1,d=p.max(b.screen.width,b.screen.height);d*c<1024&&(a.big=a.image)}),this._original.data=this._data,this.get("total").innerHTML=this.getDataLength();var a=this.$("container");f._options.height<2&&(f._userRatio=f._ratio=f._options.height);var d={width:0,height:0},e=function(){return f.$("stage").height()};K.wait({until:function(){return d=f._getWH(),a.width(d.width).height(d.height),e()&&d.width&&d.height>50},success:function(){f._width=d.width,f._height=d.height,f._ratio=f._ratio||d.height/d.width,c.WEBKIT?b.setTimeout(function(){f._run()},1):f._run()},error:function(){e()?c.raise("Could not extract sufficient width/height of the gallery container. Traced measures: width:"+d.width+"px, height: "+d.height+"px.",!0):c.raise("Could not extract a stage height from the CSS. Traced height: "+e()+"px.",!0)},timeout:"number"==typeof this._options.wait&&this._options.wait})}),this.append({"info-text":["info-title","info-description"],info:["info-text"],"image-nav":["image-nav-right","image-nav-left"],stage:["images","loader","counter","image-nav"],"thumbnails-list":["thumbnails"],"thumbnails-container":["thumb-nav-left","thumbnails-list","thumb-nav-right"],container:["stage","thumbnails-container","info","tooltip"]}),K.hide(this.$("counter").append(this.get("current"),e.createTextNode(" / "),this.get("total"))),this.setCounter("&#8211;"),K.hide(f.get("tooltip")),this.$("container").addClass([c.TOUCH?"touch":"notouch",this._options.variation,"galleria-theme-"+this.theme.name].join(" ")),this._options.swipe||a.each(new Array(2),function(b){var d=new c.Picture;a(d.container).css({position:"absolute",top:0,left:0}).prepend(f._layers[b]=a(K.create("galleria-layer")).css({position:"absolute",top:0,left:0,right:0,bottom:0,zIndex:2})[0]),f.$("images").append(d.container),f._controls[b]=d;var e=new c.Picture;e.isIframe=!0,a(e.container).attr("class","galleria-frame").css({position:"absolute",top:0,left:0,zIndex:4,background:"#000",display:"none"}).appendTo(d.container),f._controls.frames[b]=e}),this.$("images").css({position:"relative",top:0,left:0,width:"100%",height:"100%"}),h.swipe&&(this.$("images").css({position:"absolute",top:0,left:0,width:0,height:"100%"}),this.finger=new c.Finger(this.get("stage"),{onchange:function(a){f.pause().show(a)},oncomplete:function(b){var c=p.max(0,p.min(parseInt(b,10),f.getDataLength()-1)),d=f.getData(c);a(f._thumbnails[c].container).addClass("active").siblings(".active").removeClass("active"),d&&(f.$("images").find(".galleria-frame").css("opacity",0).hide().find("iframe").remove(),f._options.carousel&&f._options.carouselFollow&&f._carousel.follow(c))}}),this.bind(c.RESCALE,function(){this.finger.setup()}),this.$("stage").on("click",function(c){var e=f.getData();if(e){if(e.iframe){f.isPlaying()&&f.pause();var g=f._controls.frames[f._active],h=f._stageWidth,i=f._stageHeight;if(a(g.container).find("iframe").length)return;return a(g.container).css({width:h,height:i,opacity:0}).show().animate({opacity:1},200),void b.setTimeout(function(){g.load(e.iframe+(e.video?"&autoplay=1":""),{width:h,height:i},function(a){f.$("container").addClass("videoplay"),a.scale({width:f._stageWidth,height:f._stageHeight,iframelimit:e.video?f._options.maxVideoSize:d})})},100)}if(e.link)if(f._options.popupLinks){b.open(e.link,"_blank")}else b.location.href=e.link;else;}}),this.bind(c.IMAGE,function(b){f.setCounter(b.index),f.setInfo(b.index);var c=this.getNext(),d=this.getPrev(),e=[d,c];e.push(this.getNext(c),this.getPrev(d),f._controls.slides.length-1);var g=[];a.each(e,function(b,c){a.inArray(c,g)==-1&&g.push(c)}),a.each(g,function(b,c){var d=f.getData(c),e=f._controls.slides[c],g=f.isFullscreen()&&d.big?d.big:d.image||d.iframe;d.iframe&&!d.image&&(e.isIframe=!0),e.ready||f._controls.slides[c].load(g,function(b){b.isIframe||a(b.image).css("visibility","hidden"),f._scaleImage(b,{complete:function(b){b.isIframe||a(b.image).css({opacity:0,visibility:"visible"}).animate({opacity:1},200)}})})})})),this.$("thumbnails, thumbnails-list").css({overflow:"hidden",position:"relative"}),this.$("image-nav-right, image-nav-left").on("click:fast",function(a){h.pauseOnInteraction&&f.pause();var b=/right/.test(this.className)?"next":"prev";f[b]()}).on("click",function(a){a.preventDefault(),(h.clicknext||h.swipe)&&a.stopPropagation()}),a.each(["info","counter","image-nav"],function(a,b){h["show"+b.substr(0,1).toUpperCase()+b.substr(1).replace(/-/,"")]===!1&&K.moveOut(f.get(b.toLowerCase()))}),this.load(),h.keepSource||s||(this._target.innerHTML=""),this.get("errors")&&this.appendChild("target","errors"),this.appendChild("target","container"),h.carousel){var i=0,j=h.show;this.bind(c.THUMBNAIL,function(){this.updateCarousel(),++i==this.getDataLength()&&"number"==typeof j&&j>0&&this._carousel.follow(j)})}return h.responsive&&g.on("resize",function(){f.isFullscreen()||f.resize()}),h.fullscreenDoubleTap&&this.$("stage").on("touchstart",function(){var a,b,c,d,e,g,h=function(a){return a.originalEvent.touches?a.originalEvent.touches[0]:a};return f.$("stage").on("touchmove",function(){a=0}),function(i){if(!/(-left|-right)/.test(i.target.className)){if(g=K.timestamp(),b=h(i).pageX,c=h(i).pageY,i.originalEvent.touches.length<2&&g-a<300&&b-d<20&&c-e<20)return f.toggleFullscreen(),void i.preventDefault();a=g,d=b,e=c}}}()),a.each(c.on.binds,function(b,c){a.inArray(c.hash,f._binds)==-1&&f.bind(c.type,c.callback)}),this},addTimer:function(){return this._timer.add.apply(this._timer,K.array(arguments)),this},clearTimer:function(){return this._timer.clear.apply(this._timer,K.array(arguments)),this},_getWH:function(){var b,c=this.$("container"),d=this.$("target"),e=this,f={};return a.each(["width","height"],function(a,g){e._options[g]&&"number"==typeof e._options[g]?f[g]=e._options[g]:(b=[K.parseValue(c.css(g)),K.parseValue(d.css(g)),c[g](),d[g]()],e["_"+g]||b.splice(b.length,K.parseValue(c.css("min-"+g)),K.parseValue(d.css("min-"+g))),f[g]=p.max.apply(p,b))}),e._userRatio&&(f.height=f.width*e._userRatio),f},_createThumbnails:function(d){this.get("total").innerHTML=this.getDataLength();var f,g,h,i,j=this,k=this._options,l=d?this._data.length-d.length:0,m=l,n=[],o=0,p=s<8?"http://upload.wikimedia.org/wikipedia/commons/c/c0/Blank.gif":"%3D%3D",q=function(){var a=j.$("thumbnails").find(".active");return!!a.length&&a.find("img").attr("src")}(),r="string"==typeof k.thumbnails?k.thumbnails.toLowerCase():null,t=function(a){return e.defaultView&&e.defaultView.getComputedStyle?e.defaultView.getComputedStyle(g.container,null)[a]:i.css(a)},u=function(b,d,e){return function(){a(e).append(b),j.trigger({type:c.THUMBNAIL,thumbTarget:b,index:d,galleriaData:j.getData(d)})}},v=function(b){k.pauseOnInteraction&&j.pause();var c=a(b.currentTarget).data("index");j.getIndex()!==c&&j.show(c),b.preventDefault()},w=function(b,d){a(b.container).css("visibility","visible"),j.trigger({type:c.THUMBNAIL,thumbTarget:b.image,index:b.data.order,galleriaData:j.getData(b.data.order)}),"function"==typeof d&&d.call(j,b)},x=function(b,c){b.scale({width:b.data.width,height:b.data.height,crop:k.thumbCrop,margin:k.thumbMargin,canvas:k.useCanvas,position:k.thumbPosition,complete:function(b){var d,e,f=["left","top"],g=["Width","Height"];j.getData(b.index);a.each(g,function(c,g){d=g.toLowerCase(),k.thumbCrop===!0&&k.thumbCrop!==d||(e={},e[d]=b[d],a(b.container).css(e),e={},e[f[c]]=0,a(b.image).css(e)),b["outer"+g]=a(b.container)["outer"+g](!0)}),K.toggleQuality(b.image,k.thumbQuality===!0||"auto"===k.thumbQuality&&b.original.width<3*b.width),k.thumbDisplayOrder&&!b.lazy?a.each(n,function(a,b){if(a===o&&b.ready&&!b.displayed)return o++,b.displayed=!0,void w(b,c)}):w(b,c)}})};for(d||(this._thumbnails=[],this.$("thumbnails").empty());this._data[l];l++)h=this._data[l],f=h.thumb||h.image,k.thumbnails!==!0&&"lazy"!=r||!h.thumb&&!h.image?h.iframe&&null!==r||"empty"===r||"numbers"===r?(g={container:K.create("galleria-image"),image:K.create("img","span"),ready:!0,data:{order:l}},"numbers"===r&&a(g.image).text(l+1),h.iframe&&a(g.image).addClass("iframe"),this.$("thumbnails").append(g.container),b.setTimeout(u(g.image,l,g.container),50+20*l)):g={container:null,image:null}:(g=new c.Picture(l),g.index=l,g.displayed=!1,g.lazy=!1,g.video=!1,this.$("thumbnails").append(g.container),i=a(g.container),i.css("visibility","hidden"),g.data={width:K.parseValue(t("width")),height:K.parseValue(t("height")),order:l,src:f},k.thumbCrop!==!0?i.css({width:"auto",height:"auto"}):i.css({width:g.data.width,height:g.data.height}),"lazy"==r?(i.addClass("lazy"),g.lazy=!0,g.load(p,{height:g.data.height,width:g.data.width})):g.load(f,x),"all"===k.preload&&g.preload(h.image)),a(g.container).add(k.keepSource&&k.linkSourceImages?h.original:null).data("index",l).on(k.thumbEventType,v).data("thumbload",x),q===f&&a(g.container).addClass("active"),this._thumbnails.push(g);return n=this._thumbnails.slice(m),this},lazyLoad:function(b,c){var d=b.constructor==Array?b:[b],e=this,f=0;return a.each(d,function(b,g){if(!(g>e._thumbnails.length-1)){var h=e._thumbnails[g],i=h.data,j=function(){++f==d.length&&"function"==typeof c&&c.call(e)},k=a(h.container).data("thumbload");h.video?k.call(e,h,j):h.load(i.src,function(a){k.call(e,a,j)})}}),this},lazyLoadChunks:function(a,c){var d=this.getDataLength(),e=0,f=0,g=[],h=[],i=this;for(c=c||0;e<d;e++)h.push(e),++f!=a&&e!=d-1||(g.push(h),f=0,h=[]);var j=function(a){var d=g.shift();d&&b.setTimeout(function(){i.lazyLoad(d,function(){j(!0)})},c&&a?c:0)};return j(!1),this},_run:function(){var e=this;e._createThumbnails(),K.wait({timeout:1e4,until:function(){return c.OPERA&&e.$("stage").css("display","inline-block"),e._stageWidth=e.$("stage").width(),e._stageHeight=e.$("stage").height(),e._stageWidth&&e._stageHeight>50},success:function(){if(D.push(e),e._options.swipe){var f=e.$("images").width(e.getDataLength()*e._stageWidth);a.each(new Array(e.getDataLength()),function(b){var d=new c.Picture,g=e.getData(b);a(d.container).css({position:"absolute",top:0,left:e._stageWidth*b}).prepend(e._layers[b]=a(K.create("galleria-layer")).css({position:"absolute",top:0,left:0,right:0,bottom:0,zIndex:2})[0]).appendTo(f),g.video&&L(d.container),e._controls.slides.push(d);var h=new c.Picture;h.isIframe=!0,a(h.container).attr("class","galleria-frame").css({position:"absolute",top:0,left:0,zIndex:4,background:"#000",display:"none"}).appendTo(d.container),e._controls.frames.push(h)}),e.finger.setup()}return K.show(e.get("counter")),e._options.carousel&&e._carousel.bindControls(),e._options.autoplay&&(e.pause(),"number"==typeof e._options.autoplay&&(e._playtime=e._options.autoplay),e._playing=!0),e._firstrun?(e._options.autoplay&&e.trigger(c.PLAY),void("number"==typeof e._options.show&&e.show(e._options.show))):(e._firstrun=!0,c.History&&c.History.change(function(a){isNaN(a)?b.history.go(-1):e.show(a,d,!0)}),e.trigger(c.READY),e.theme.init.call(e,e._options),a.each(c.ready.callbacks,function(a,b){"function"==typeof b&&b.call(e,e._options)}),e._options.extend.call(e,e._options),/^[0-9]{1,4}$/.test(n)&&c.History?e.show(n,d,!0):e._data[e._options.show]&&e.show(e._options.show),void(e._options.autoplay&&e.trigger(c.PLAY)))},error:function(){c.raise("Stage width or height is too small to show the gallery. Traced measures: width:"+e._stageWidth+"px, height: "+e._stageHeight+"px.",!0)}})},load:function(b,d,e){var f=this,g=this._options;return this._data=[],this._thumbnails=[],this.$("thumbnails").empty(),"function"==typeof d&&(e=d,d=null),b=b||g.dataSource,d=d||g.dataSelector,e=e||g.dataConfig,a.isPlainObject(b)&&(b=[b]),a.isArray(b)?this.validate(b)?this._data=b:c.raise("Load failed: JSON Array not valid."):(d+=",.video,.iframe",a(b).find(d).each(function(b,c){c=a(c);var d={},g=c.parent(),h=g.attr("href"),i=g.attr("rel");h&&("IMG"==c[0].nodeName||c.hasClass("video"))&&B(h)?d.video=h:h&&c.hasClass("iframe")?d.iframe=h:d.image=d.big=h,i&&(d.big=i),a.each("big title description link layer image".split(" "),function(a,b){c.data(b)&&(d[b]=c.data(b).toString())}),d.big||(d.big=d.image),f._data.push(a.extend({title:c.attr("title")||"",thumb:c.attr("src"),image:c.attr("src"),big:c.attr("src"),description:c.attr("alt")||"",link:c.attr("longdesc"),original:c.get(0)},d,e(c)))})),"function"==typeof g.dataSort?h.sort.call(this._data,g.dataSort):"random"==g.dataSort&&this._data.sort(function(){return p.round(p.random())-.5}),this.getDataLength()&&this._parseData(function(){this.trigger(c.DATA)}),this},_parseData:function(b){var c,e=this,f=!1,g=function(){var c=!0;a.each(e._data,function(a,b){if(b.loading)return c=!1,!1}),c&&!f&&(f=!0,b.call(e))};return a.each(this._data,function(b,f){if(c=e._data[b],"thumb"in f==!1&&(c.thumb=f.image),f.big||(c.big=f.image),"video"in f){var h=B(f.video);h&&(c.iframe=new A(h.provider,h.id).embed()+function(){if("object"==typeof e._options[h.provider]){var b="?",c=[];return a.each(e._options[h.provider],function(a,b){c.push(a+"="+b)}),"youtube"==h.provider&&(c=["wmode=opaque"].concat(c)),b+c.join("&")}return""}(),c.thumb&&c.image||a.each(["thumb","image"],function(a,b){if("image"==b&&!e._options.videoPoster)return void(c.image=d);var f=new A(h.provider,h.id);c[b]||(c.loading=!0,f.getMedia(b,function(a,b){return function(c){a[b]=c,"image"!=b||a.big||(a.big=a.image),delete a.loading,g()}}(c,b)))}))}}),g(),this},destroy:function(){return this.$("target").data("galleria",null),this.$("container").off("galleria"),this.get("target").innerHTML=this._original.html,this.clearTimer(),K.removeFromArray(E,this),K.removeFromArray(D,this),c._waiters.length&&a.each(c._waiters,function(a,c){c&&b.clearTimeout(c)}),this},splice:function(){var a=this,c=K.array(arguments);return b.setTimeout(function(){h.splice.apply(a._data,c),a._parseData(function(){a._createThumbnails()})},2),a},push:function(){var a=this,c=K.array(arguments);return 1==c.length&&c[0].constructor==Array&&(c=c[0]),b.setTimeout(function(){h.push.apply(a._data,c),a._parseData(function(){a._createThumbnails(c)})},2),a},_getActive:function(){return this._controls.getActive()},validate:function(a){return!0},bind:function(a,b){return a=y(a),this.$("container").on(a,this.proxy(b)),this},unbind:function(a){return a=y(a),this.$("container").off(a),this},trigger:function(b){return b="object"==typeof b?a.extend(b,{scope:this}):{type:y(b),scope:this},this.$("container").trigger(b),this},addIdleState:function(a,b,c,d){return this._idle.add.apply(this._idle,K.array(arguments)),this},removeIdleState:function(a){return this._idle.remove.apply(this._idle,K.array(arguments)),this},enterIdleMode:function(){return this._idle.hide(),this},exitIdleMode:function(){return this._idle.showAll(),this},enterFullscreen:function(a){return this._fullscreen.enter.apply(this,K.array(arguments)),this},exitFullscreen:function(a){return this._fullscreen.exit.apply(this,K.array(arguments)),this},toggleFullscreen:function(a){return this._fullscreen[this.isFullscreen()?"exit":"enter"].apply(this,K.array(arguments)),this},bindTooltip:function(a,b){return this._tooltip.bind.apply(this._tooltip,K.array(arguments)),this},defineTooltip:function(a,b){return this._tooltip.define.apply(this._tooltip,K.array(arguments)),this},refreshTooltip:function(a){return this._tooltip.show.apply(this._tooltip,K.array(arguments)),this},openLightbox:function(){return this._lightbox.show.apply(this._lightbox,K.array(arguments)),this},closeLightbox:function(){return this._lightbox.hide.apply(this._lightbox,K.array(arguments)),this},hasVariation:function(b){return a.inArray(b,this._options.variation.split(/\s+/))>-1},getActiveImage:function(){var a=this._getActive();return a?a.image:d},getActiveThumb:function(){return this._thumbnails[this._active].image||d},getMousePosition:function(a){return{x:a.pageX-this.$("container").offset().left,y:a.pageY-this.$("container").offset().top}},addPan:function(b){if(this._options.imageCrop!==!1){b=a(b||this.getActiveImage());var c=this,d=b.width()/2,e=b.height()/2,f=parseInt(b.css("left"),10),g=parseInt(b.css("top"),10),h=f||0,i=g||0,j=0,k=0,l=!1,m=K.timestamp(),n=0,o=0,q=function(a,c,d){if(a>0&&(o=p.round(p.max(a*-1,p.min(0,c))),n!==o))if(n=o,8===s)b.parent()["scroll"+d](o*-1);else{var e={};e[d.toLowerCase()]=o,b.css(e)}},r=function(a){K.timestamp()-m<50||(l=!0,d=c.getMousePosition(a).x,e=c.getMousePosition(a).y)},t=function(a){l&&(j=b.width()-c._stageWidth,k=b.height()-c._stageHeight,f=d/c._stageWidth*j*-1,g=e/c._stageHeight*k*-1,h+=(f-h)/c._options.imagePanSmoothness,i+=(g-i)/c._options.imagePanSmoothness,q(k,i,"Top"),q(j,h,"Left"))};return 8===s&&(b.parent().scrollTop(i*-1).scrollLeft(h*-1),b.css({top:0,left:0})),this.$("stage").off("mousemove",r).on("mousemove",r),this.addTimer("pan"+c._id,t,50,!0),this}},proxy:function(a,b){return"function"!=typeof a?q:(b=b||this,function(){return a.apply(b,K.array(arguments))})},getThemeName:function(){return this.theme.name},removePan:function(){return this.$("stage").off("mousemove"),this.clearTimer("pan"+this._id),this},addElement:function(b){var c=this._dom;return a.each(K.array(arguments),function(a,b){c[b]=K.create("galleria-"+b)}),this},attachKeyboard:function(a){return this._keyboard.attach.apply(this._keyboard,K.array(arguments)),this},detachKeyboard:function(){return this._keyboard.detach.apply(this._keyboard,K.array(arguments)),this},appendChild:function(a,b){return this.$(a).append(this.get(b)||b),this},prependChild:function(a,b){return this.$(a).prepend(this.get(b)||b),this},remove:function(a){return this.$(K.array(arguments).join(",")).remove(),this},append:function(a){var b,c;for(b in a)if(a.hasOwnProperty(b))if(a[b].constructor===Array)for(c=0;a[b][c];c++)this.appendChild(b,a[b][c]);else this.appendChild(b,a[b]);return this},_scaleImage:function(b,c){if(b=b||this._controls.getActive()){var d,e=function(b){a(b.container).children(":first").css({top:p.max(0,K.parseValue(b.image.style.top)),left:p.max(0,K.parseValue(b.image.style.left)),width:K.parseValue(b.image.width),height:K.parseValue(b.image.height)})};return c=a.extend({width:this._stageWidth,height:this._stageHeight,crop:this._options.imageCrop,max:this._options.maxScaleRatio,min:this._options.minScaleRatio,margin:this._options.imageMargin,position:this._options.imagePosition,iframelimit:this._options.maxVideoSize},c),this._options.layerFollow&&this._options.imageCrop!==!0?"function"==typeof c.complete?(d=c.complete,c.complete=function(){d.call(b,b),e(b)}):c.complete=e:a(b.container).children(":first").css({top:0,left:0}),b.scale(c),this}},updateCarousel:function(){return this._carousel.update(),this},resize:function(b,c){"function"==typeof b&&(c=b,b=d),b=a.extend({width:0,height:0},b);var e=this,f=this.$("container");return a.each(b,function(a,c){c||(f[a]("auto"),b[a]=e._getWH()[a])}),a.each(b,function(a,b){f[a](b)}),this.rescale(c)},rescale:function(b,e,f){var g=this;"function"==typeof b&&(f=b,b=d);var h=function(){g._stageWidth=b||g.$("stage").width(),g._stageHeight=e||g.$("stage").height(),g._options.swipe?(a.each(g._controls.slides,function(b,c){g._scaleImage(c),a(c.container).css("left",g._stageWidth*b)}),g.$("images").css("width",g._stageWidth*g.getDataLength())):g._scaleImage(),g._options.carousel&&g.updateCarousel();var d=g._controls.frames[g._controls.active];d&&g._controls.frames[g._controls.active].scale({width:g._stageWidth,height:g._stageHeight,iframelimit:g._options.maxVideoSize}),g.trigger(c.RESCALE),"function"==typeof f&&f.call(g)};return h.call(g),this},refreshImage:function(){return this._scaleImage(),this._options.imagePan&&this.addPan(),this},_preload:function(){if(this._options.preload){var a,b,d,e=this.getNext();try{for(b=this._options.preload;b>0;b--)a=new c.Picture,d=this.getData(e),a.preload(this.isFullscreen()&&d.big?d.big:d.image),e=this.getNext(e)}catch(a){}}},show:function(d,e,f){var g=this._options.swipe;if(g||!(this._queue.length>3||d===!1||!this._options.queue&&this._queue.stalled)){if(d=p.max(0,p.min(parseInt(d,10),this.getDataLength()-1)),e="undefined"!=typeof e?!!e:d<this.getIndex(),f=f||!1,!f&&c.History)return void c.History.set(d.toString());if(this.finger&&d!==this._active&&(this.finger.to=-(d*this.finger.width),this.finger.index=d),this._active=d,g){var i=this.getData(d),j=this;if(!i)return;var k=this.isFullscreen()&&i.big?i.big:i.image||i.iframe,l=this._controls.slides[d],m=l.isCached(k),n=this._thumbnails[d],o={cached:m,index:d,rewind:e,imageTarget:l.image,thumbTarget:n.image,galleriaData:i};this.trigger(a.extend(o,{type:c.LOADSTART})),j.$("container").removeClass("videoplay");var q=function(){j._layers[d].innerHTML=j.getData().layer||"",j.trigger(a.extend(o,{type:c.LOADFINISH})),j._playCheck()};j._preload(),b.setTimeout(function(){l.ready&&a(l.image).attr("src")==k?(j.trigger(a.extend(o,{type:c.IMAGE})),q()):(i.iframe&&!i.image&&(l.isIframe=!0),l.load(k,function(b){o.imageTarget=b.image,j._scaleImage(b,q).trigger(a.extend(o,{type:c.IMAGE})),q()}))},100)}else h.push.call(this._queue,{index:d,rewind:e}),this._queue.stalled||this._show();return this}},_show:function(){var e=this,f=this._queue[0],g=this.getData(f.index);if(g){var i=this.isFullscreen()&&g.big?g.big:g.image||g.iframe,j=this._controls.getActive(),k=this._controls.getNext(),l=k.isCached(i),m=this._thumbnails[f.index],n=function(){a(k.image).trigger("mouseup")};e.$("container").toggleClass("iframe",!!g.isIframe).removeClass("videoplay");var o=function(f,g,i,j,k){return function(){var l;M.active=!1,K.toggleQuality(g.image,e._options.imageQuality),e._layers[e._controls.active].innerHTML="",a(i.container).css({zIndex:0,opacity:0}).show(),a(i.container).find("iframe, .galleria-videoicon").remove(),a(e._controls.frames[e._controls.active].container).hide(),a(g.container).css({zIndex:1,left:0,top:0}).show(),e._controls.swap(),e._options.imagePan&&e.addPan(g.image),(f.iframe&&f.image||f.link||e._options.lightbox||e._options.clicknext)&&a(g.image).css({cursor:"pointer"}).on("mouseup",function(g){if(!("number"==typeof g.which&&g.which>1)){if(f.iframe){e.isPlaying()&&e.pause();var h=e._controls.frames[e._controls.active],i=e._stageWidth,j=e._stageHeight;return a(h.container).css({width:i,height:j,opacity:0}).show().animate({opacity:1},200),void b.setTimeout(function(){h.load(f.iframe+(f.video?"&autoplay=1":""),{width:i,height:j},function(a){e.$("container").addClass("videoplay"),a.scale({width:e._stageWidth,height:e._stageHeight,iframelimit:f.video?e._options.maxVideoSize:d})})},100)}return e._options.clicknext&&!c.TOUCH?(e._options.pauseOnInteraction&&e.pause(),void e.next()):f.link?void(e._options.popupLinks?l=b.open(f.link,"_blank"):b.location.href=f.link):void(e._options.lightbox&&e.openLightbox())}}),e._playCheck(),e.trigger({type:c.IMAGE,index:j.index,imageTarget:g.image,thumbTarget:k.image,galleriaData:f}),h.shift.call(e._queue),e._queue.stalled=!1,e._queue.length&&e._show()}}(g,k,j,f,m);this._options.carousel&&this._options.carouselFollow&&this._carousel.follow(f.index),e._preload(),K.show(k.container),k.isIframe=g.iframe&&!g.image,a(e._thumbnails[f.index].container).addClass("active").siblings(".active").removeClass("active"),e.trigger({type:c.LOADSTART,cached:l,index:f.index,rewind:f.rewind,imageTarget:k.image,thumbTarget:m.image,galleriaData:g}),e._queue.stalled=!0,k.load(i,function(b){var h=a(e._layers[1-e._controls.active]).html(g.layer||"").hide();e._scaleImage(b,{complete:function(b){"image"in j&&K.toggleQuality(j.image,!1),K.toggleQuality(b.image,!1),e.removePan(),e.setInfo(f.index),e.setCounter(f.index),g.layer&&(h.show(),(g.iframe&&g.image||g.link||e._options.lightbox||e._options.clicknext)&&h.css("cursor","pointer").off("mouseup").mouseup(n)),g.video&&g.image&&L(b.container);var i=e._options.transition;if(a.each({initial:null===j.image,touch:c.TOUCH,fullscreen:e.isFullscreen()},function(a,b){if(b&&e._options[a+"Transition"]!==d)return i=e._options[a+"Transition"],!1}),i in M.effects==!1)o();else{var k={prev:j.container,next:b.container,rewind:f.rewind,speed:e._options.transitionSpeed||400};M.active=!0,M.init.call(e,i,k,o)}e.trigger({type:c.LOADFINISH,cached:l,index:f.index,rewind:f.rewind,imageTarget:b.image,thumbTarget:e._thumbnails[f.index].image,galleriaData:e.getData(f.index)})}})})}},getNext:function(a){return a="number"==typeof a?a:this.getIndex(),a===this.getDataLength()-1?0:a+1},getPrev:function(a){return a="number"==typeof a?a:this.getIndex(),0===a?this.getDataLength()-1:a-1},next:function(){return this.getDataLength()>1&&this.show(this.getNext(),!1),this},prev:function(){return this.getDataLength()>1&&this.show(this.getPrev(),!0),this},get:function(a){return a in this._dom?this._dom[a]:null},getData:function(a){return a in this._data?this._data[a]:this._data[this._active]},getDataLength:function(){return this._data.length},getIndex:function(){return"number"==typeof this._active&&this._active},getStageHeight:function(){return this._stageHeight},getStageWidth:function(){return this._stageWidth},getOptions:function(a){return"undefined"==typeof a?this._options:this._options[a]},setOptions:function(b,c){return"object"==typeof b?a.extend(this._options,b):this._options[b]=c,this},play:function(a){return this._playing=!0,this._playtime=a||this._playtime,this._playCheck(),this.trigger(c.PLAY),this},pause:function(){return this._playing=!1,this.trigger(c.PAUSE),this},playToggle:function(a){return this._playing?this.pause():this.play(a)},isPlaying:function(){return this._playing},isFullscreen:function(){return this._fullscreen.active},_playCheck:function(){var a=this,b=0,d=20,e=K.timestamp(),f="play"+this._id;if(this._playing){this.clearTimer(f);var g=function(){return b=K.timestamp()-e,b>=a._playtime&&a._playing?(a.clearTimer(f),void a.next()):void(a._playing&&(a.trigger({type:c.PROGRESS,percent:p.ceil(b/a._playtime*100),seconds:p.floor(b/1e3),milliseconds:b}),a.addTimer(f,g,d)))};a.addTimer(f,g,d)}},setPlaytime:function(a){return this._playtime=a,this},setIndex:function(a){return this._active=a,this},setCounter:function(a){if("number"==typeof a?a++:"undefined"==typeof a&&(a=this.getIndex()+1),this.get("current").innerHTML=a,s){var b=this.$("counter"),c=b.css("opacity");1===parseInt(c,10)?K.removeAlpha(b[0]):this.$("counter").css("opacity",c)}return this},setInfo:function(b){var c=this,d=this.getData(b);return a.each(["title","description"],function(a,b){var e=c.$("info-"+b);d[b]?e[d[b].length?"show":"hide"]().html(d[b]):e.empty().hide()}),this},hasInfo:function(a){var b,c="title description".split(" ");for(b=0;c[b];b++)if(this.getData(a)[c[b]])return!0;return!1},jQuery:function(b){var c=this,d=[];a.each(b.split(","),function(b,e){e=a.trim(e),c.get(e)&&d.push(e)});var e=a(c.get(d.shift()));return a.each(d,function(a,b){e=e.add(c.get(b))}),e},$:function(a){return this.jQuery.apply(this,K.array(arguments))}},a.each(w,function(a,b){var d=/_/.test(b)?b.replace(/_/g,""):b;c[b.toUpperCase()]="galleria."+d}),a.extend(c,{IE9:9===s,IE8:8===s,IE7:7===s,IE6:6===s,IE:s,WEBKIT:/webkit/.test(m),CHROME:/chrome/.test(m),SAFARI:/safari/.test(m)&&!/chrome/.test(m),QUIRK:s&&e.compatMode&&"BackCompat"===e.compatMode,MAC:/mac/.test(navigator.platform.toLowerCase()),OPERA:!!b.opera,IPHONE:/iphone/.test(m),IPAD:/ipad/.test(m),ANDROID:/android/.test(m),TOUCH:"ontouchstart"in e}),c.addTheme=function(d){d.name||c.raise("No theme name specified"),(!d.version||parseInt(10*c.version)>parseInt(10*d.version))&&c.raise("This version of Galleria requires "+d.name+" theme version "+parseInt(10*c.version)/10+" or later",!0),"object"!=typeof d.defaults?d.defaults={}:d.defaults=x(d.defaults);var e,f,g=!1;return"string"==typeof d.css?(a("link").each(function(a,b){if(e=new RegExp(d.css),e.test(b.href))return g=!0,J(d),!1}),g||a(function(){var h=0,i=function(){a("script").each(function(a,c){e=new RegExp("galleria\\."+d.name.toLowerCase()+"\\."),f=new RegExp("galleria\\.io\\/theme\\/"+d.name.toLowerCase()+"\\/(\\d*\\.*)?(\\d*\\.*)?(\\d*\\/)?js"),(e.test(c.src)||f.test(c.src))&&(g=c.src.replace(/[^\/]*$/,"")+d.css,b.setTimeout(function(){K.loadCSS(g,"galleria-theme-"+d.name,function(){J(d)})},1))}),g||(h++>5?c.raise("No theme CSS loaded"):b.setTimeout(i,500))};i()})):J(d),d},c.loadTheme=function(d,e){if(!a("script").filter(function(){return a(this).attr("src")==d}).length){var f,g=!1;return a(b).on("load",function(){g||(f=b.setTimeout(function(){g||c.raise("Galleria had problems loading theme at "+d+". Please check theme path or load manually.",!0)},2e4))}),K.loadScript(d,function(){g=!0,b.clearTimeout(f)}),c}},c.get=function(a){return E[a]?E[a]:"number"!=typeof a?E:void c.raise("Gallery index "+a+" not found")},c.configure=function(b,d){var e={};return"string"==typeof b&&d?(e[b]=d,b=e):a.extend(e,b),c.configure.options=e,a.each(c.get(),function(a,b){b.setOptions(e)}),c},c.configure.options={},c.on=function(b,d){if(b){d=d||q;var e=b+d.toString().replace(/\s/g,"")+K.timestamp();return a.each(c.get(),function(a,c){c._binds.push(e),c.bind(b,d)}),c.on.binds.push({type:b,callback:d,hash:e}),c}},c.on.binds=[],c.run=function(b,d){return a.isFunction(d)&&(d={extend:d}),a(b||"#galleria").galleria(d),c},c.addTransition=function(a,b){return M.effects[a]=b,c},c.utils=K,c.log=function(){var c=K.array(arguments);if(!("console"in b&&"log"in b.console))return b.alert(c.join("<br>"));try{return b.console.log.apply(b.console,c)}catch(d){a.each(c,function(){b.console.log(this)})}},c.ready=function(b){return"function"!=typeof b?c:(a.each(D,function(a,c){b.call(c,c._options)}),c.ready.callbacks.push(b),c)},c.ready.callbacks=[],c.raise=function(b,c){var d=c?"Fatal error":"Error",e={color:"#fff",position:"absolute",top:0,left:0,zIndex:1e5},f=function(b){var f='<div style="padding:4px;margin:0 0 2px;background:#'+(c?"811":"222")+';">'+(c?"<strong>"+d+": </strong>":"")+b+"</div>";a.each(E,function(){var a=this.$("errors"),b=this.$("target");a.length||(b.css("position","relative"),a=this.addElement("errors").appendChild("target","errors").$("errors").css(e)),a.append(f)}),E.length||a("<div>").css(a.extend(e,{position:"fixed"})).append(f).appendTo(t().body)};if(j){if(f(b),c)throw new Error(d+": "+b)}else if(c){if(F)return;F=!0,c=!1,f("Gallery could not load.")}},c.version=i,c.getLoadedThemes=function(){return a.map(I,function(a){return a.name})},c.requires=function(a,b){return b=b||"You need to upgrade Galleria to version "+a+" to use one or more components.",c.version<a&&c.raise(b,!0),c},c.Picture=function(b){this.id=b||null,this.image=null,this.container=K.create("galleria-image"),a(this.container).css({overflow:"hidden",position:"relative"}),this.original={width:0,height:0},this.ready=!1,this.isIframe=!1},c.Picture.prototype={cache:{},show:function(){K.show(this.image)},hide:function(){K.moveOut(this.image)},clear:function(){this.image=null},isCached:function(a){return!!this.cache[a]; },preload:function(b){a(new Image).on("load",function(a,b){return function(){b[a]=a}}(b,this.cache)).attr("src",b)},load:function(d,e,f){if("function"==typeof e&&(f=e,e=null),this.isIframe){var g="if"+(new Date).getTime(),h=this.image=a("<iframe>",{src:d,frameborder:0,id:g,allowfullscreen:!0,css:{visibility:"hidden"}})[0];return e&&a(h).css(e),a(this.container).find("iframe,img").remove(),this.container.appendChild(this.image),a("#"+g).on("load",function(c,d){return function(){b.setTimeout(function(){a(c.image).css("visibility","visible"),"function"==typeof d&&d.call(c,c)},10)}}(this,f)),this.container}this.image=new Image,c.IE8&&a(this.image).css("filter","inherit"),c.IE||c.CHROME||c.SAFARI||a(this.image).css("image-rendering","optimizequality");var i=!1,j=!1,k=a(this.container),m=a(this.image),n=function(){i?l?a(this).attr("src",l):c.raise("Image not found: "+d):(i=!0,b.setTimeout(function(a,b){return function(){a.attr("src",b+(b.indexOf("?")>-1?"&":"?")+K.timestamp())}}(a(this),d),50))},o=function(d,f,g){return function(){var h=function(){a(this).off("load"),d.original=e||{height:this.height,width:this.width},c.HAS3D&&(this.style.MozTransform=this.style.webkitTransform="translate3d(0,0,0)"),k.append(this),d.cache[g]=g,"function"==typeof f&&b.setTimeout(function(){f.call(d,d)},1)};this.width&&this.height?h.call(this):!function(b){K.wait({until:function(){return b.width&&b.height},success:function(){h.call(b)},error:function(){j?c.raise("Could not extract width/height from image: "+b.src+". Traced measures: width:"+b.width+"px, height: "+b.height+"px."):(a(new Image).on("load",o).attr("src",b.src),j=!0)},timeout:100})}(this)}}(this,f,d);return k.find("iframe,img").remove(),m.css("display","block"),K.hide(this.image),a.each("minWidth minHeight maxWidth maxHeight".split(" "),function(a,b){m.css(b,/min/.test(b)?"0":"none")}),m.on("load",o).on("error",n).attr("src",d),this.container},scale:function(b){var e=this;if(b=a.extend({width:0,height:0,min:d,max:d,margin:0,complete:q,position:"center",crop:!1,canvas:!1,iframelimit:d},b),this.isIframe){var f,g,h=b.width,i=b.height;if(b.iframelimit){var j=p.min(b.iframelimit/h,b.iframelimit/i);j<1?(f=h*j,g=i*j,a(this.image).css({top:i/2-g/2,left:h/2-f/2,position:"absolute"})):a(this.image).css({top:0,left:0})}a(this.image).width(f||h).height(g||i).removeAttr("width").removeAttr("height"),a(this.container).width(h).height(i),b.complete.call(e,e);try{this.image.contentWindow&&a(this.image.contentWindow).trigger("resize")}catch(a){}return this.container}if(!this.image)return this.container;var k,l,m,n=a(e.container);return K.wait({until:function(){return k=b.width||n.width()||K.parseValue(n.css("width")),l=b.height||n.height()||K.parseValue(n.css("height")),k&&l},success:function(){var c=(k-2*b.margin)/e.original.width,d=(l-2*b.margin)/e.original.height,f=p.min(c,d),g=p.max(c,d),h={true:g,width:c,height:d,false:f,landscape:e.original.width>e.original.height?g:f,portrait:e.original.width<e.original.height?g:f},i=h[b.crop.toString()],j="";b.max&&(i=p.min(b.max,i)),b.min&&(i=p.max(b.min,i)),a.each(["width","height"],function(b,c){a(e.image)[c](e[c]=e.image[c]=p.round(e.original[c]*i))}),a(e.container).width(k).height(l),b.canvas&&G&&(G.elem.width=e.width,G.elem.height=e.height,j=e.image.src+":"+e.width+"x"+e.height,e.image.src=G.cache[j]||function(a){G.context.drawImage(e.image,0,0,e.original.width*i,e.original.height*i);try{return m=G.elem.toDataURL(),G.length+=m.length,G.cache[a]=m,m}catch(a){return e.image.src}}(j));var n={},o={},q=function(b,c,d){var f=0;if(/\%/.test(b)){var g=parseInt(b,10)/100,h=e.image[c]||a(e.image)[c]();f=p.ceil(h*-1*g+d*g)}else f=K.parseValue(b);return f},r={top:{top:0},left:{left:0},right:{left:"100%"},bottom:{top:"100%"}};a.each(b.position.toLowerCase().split(" "),function(a,b){"center"===b&&(b="50%"),n[a?"top":"left"]=b}),a.each(n,function(b,c){r.hasOwnProperty(c)&&a.extend(o,r[c])}),n=n.top?a.extend(n,o):o,n=a.extend({top:"50%",left:"50%"},n),a(e.image).css({position:"absolute",top:q(n.top,"height",l),left:q(n.left,"width",k)}),e.show(),e.ready=!0,b.complete.call(e,e)},error:function(){c.raise("Could not scale image: "+e.image.src)},timeout:1e3}),this}},a.extend(a.easing,{galleria:function(a,b,c,d,e){return(b/=e/2)<1?d/2*b*b*b+c:d/2*((b-=2)*b*b+2)+c},galleriaIn:function(a,b,c,d,e){return d*(b/=e)*b+c},galleriaOut:function(a,b,c,d,e){return-d*(b/=e)*(b-2)+c}}),c.Finger=function(){var d=(p.abs,c.HAS3D=function(){var b,c,d=e.createElement("p"),f=["webkit","O","ms","Moz",""],g=0,h="transform";for(t().html.insertBefore(d,null);f[g];g++)c=f[g]?f[g]+"Transform":h,void 0!==d.style[c]&&(d.style[c]="translate3d(1px,1px,1px)",b=a(d).css(f[g]?"-"+f[g].toLowerCase()+"-"+h:h));return t().html.removeChild(d),void 0!==b&&b.length>0&&"none"!==b}()),g=function(){var a="RequestAnimationFrame";return b.requestAnimationFrame||b["webkit"+a]||b["moz"+a]||b["o"+a]||b["ms"+a]||function(a){b.setTimeout(a,1e3/60)}}(),h=function(c,e){if(this.config={start:0,duration:500,onchange:function(){},oncomplete:function(){},easing:function(a,b,c,d,e){return-d*((b=b/e-1)*b*b*b-1)+c}},this.easeout=function(a,b,c,d,e){return d*((b=b/e-1)*b*b*b*b+1)+c},c.children.length){var f=this;a.extend(this.config,e),this.elem=c,this.child=c.children[0],this.to=this.pos=0,this.touching=!1,this.start={},this.index=this.config.start,this.anim=0,this.easing=this.config.easing,d||(this.child.style.position="absolute",this.elem.style.position="relative"),a.each(["ontouchstart","ontouchmove","ontouchend","setup"],function(a,b){f[b]=function(a){return function(){a.apply(f,arguments)}}(f[b])}),this.setX=function(){var a=f.child.style;return d?void(a.MozTransform=a.webkitTransform=a.transform="translate3d("+f.pos+"px,0,0)"):void(a.left=f.pos+"px")},a(c).on("touchstart",this.ontouchstart),a(b).on("resize",this.setup),a(b).on("orientationchange",this.setup),this.setup(),function a(){g(a),f.loop.call(f)}()}};return h.prototype={constructor:h,setup:function(){this.width=a(this.elem).width(),this.length=p.ceil(a(this.child).width()/this.width),0!==this.index&&(this.index=p.max(0,p.min(this.index,this.length-1)),this.pos=this.to=-this.width*this.index)},setPosition:function(a){this.pos=a,this.to=a},ontouchstart:function(a){var b=a.originalEvent.touches;this.start={pageX:b[0].pageX,pageY:b[0].pageY,time:+new Date},this.isScrolling=null,this.touching=!0,this.deltaX=0,f.on("touchmove",this.ontouchmove),f.on("touchend",this.ontouchend)},ontouchmove:function(a){var b=a.originalEvent.touches;b&&b.length>1||a.scale&&1!==a.scale||(this.deltaX=b[0].pageX-this.start.pageX,null===this.isScrolling&&(this.isScrolling=!!(this.isScrolling||p.abs(this.deltaX)<p.abs(b[0].pageY-this.start.pageY))),this.isScrolling||(a.preventDefault(),this.deltaX/=!this.index&&this.deltaX>0||this.index==this.length-1&&this.deltaX<0?p.abs(this.deltaX)/this.width+1.8:1,this.to=this.deltaX-this.index*this.width),a.stopPropagation())},ontouchend:function(a){this.touching=!1;var b=+new Date-this.start.time<250&&p.abs(this.deltaX)>40||p.abs(this.deltaX)>this.width/2,c=!this.index&&this.deltaX>0||this.index==this.length-1&&this.deltaX<0;this.isScrolling||this.show(this.index+(b&&!c?this.deltaX<0?1:-1:0)),f.off("touchmove",this.ontouchmove),f.off("touchend",this.ontouchend)},show:function(a){a!=this.index?this.config.onchange.call(this,a):this.to=-(a*this.width)},moveTo:function(a){a!=this.index&&(this.pos=this.to=-(a*this.width),this.index=a)},loop:function(){var a=this.to-this.pos,b=1;if(this.width&&a&&(b=p.max(.5,p.min(1.5,p.abs(a/this.width)))),this.touching||p.abs(a)<=1)this.pos=this.to,a=0,this.anim&&!this.touching&&this.config.oncomplete(this.index),this.anim=0,this.easing=this.config.easing;else{this.anim||(this.anim={start:this.pos,time:+new Date,distance:a,factor:b,destination:this.to});var c=+new Date-this.anim.time,d=this.config.duration*this.anim.factor;if(c>d||this.anim.destination!=this.to)return this.anim=0,void(this.easing=this.easeout);this.pos=this.easing(null,c,this.anim.start,this.anim.distance,d)}this.setX()}},h}(),a.fn.galleria=function(b){var d=this.selector;return a(this).length?this.each(function(){a.data(this,"galleria")&&(a.data(this,"galleria").destroy(),a(this).find("*").hide()),a.data(this,"galleria",(new c).init(this,b))}):(a(function(){a(d).length?a(d).galleria(b):c.utils.wait({until:function(){return a(d).length},success:function(){a(d).galleria(b)},error:function(){c.raise('Init failed: Galleria could not find the element "'+d+'".')},timeout:5e3})}),this)},"object"==typeof module&&module&&"object"==typeof module.exports?module.exports=c:(b.Galleria=c,"function"==typeof define&&define.amd&&define("galleria",["jquery"],function(){return c}))}(jQuery,this);
153957-theme
/153957-theme-2.tar.gz/153957-theme-2/153957_theme/static/js/galleria.min.js
galleria.min.js
Edit `ForeignKey`, `ManyToManyField` and `CharField` in Django Admin using jQuery UI AutoComplete. [![Build Status](https://travis-ci.org/crucialfelix/django-ajax-selects.svg?branch=master)](https://travis-ci.org/crucialfelix/django-ajax-selects) [![PyPI version](https://badge.fury.io/py/django-ajax-selects.svg)](https://badge.fury.io/py/django-ajax-selects) --- ![selecting](/docs/source/_static/kiss.png?raw=true) ![selected](/docs/source/_static/kiss-all.png?raw=true) Documentation ------------------ http://django-ajax-selects.readthedocs.org/en/latest/ Quick Usage ----------- Define a lookup channel: ```python # yourapp/lookups.py from ajax_select import register, LookupChannel from .models import Tag @register('tags') class TagsLookup(LookupChannel): model = Tag def get_query(self, q, request): return self.model.objects.filter(name__icontains=q).order_by('name')[:50] def format_item_display(self, item): return u"<span class='tag'>%s</span>" % item.name ``` Add field to a form: ```python # yourapp/forms.py class DocumentForm(ModelForm): class Meta: model = Document tags = AutoCompleteSelectMultipleField('tags') ``` Fully customizable ------------------ - Customize search query - Query other resources besides Django ORM - Format results with HTML - Customize styling - Customize security policy - Add additional custom UI alongside widget - Integrate with other UI elements elsewhere on the page using the javascript API - Works in Admin as well as in normal views Assets included by default ------------------- - //ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js - //code.jquery.com/ui/1.10.3/jquery-ui.js - //code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css Compatibility ------------- - Django >=1.6, <=1.10 - Python >=2.7, 3.3-3.5 Contributors ------------ Many thanks to all contributors and pull requesters ! https://github.com/crucialfelix/django-ajax-selects/graphs/contributors License ------- Dual licensed under the MIT and GPL licenses: - http://www.opensource.org/licenses/mit-license.php - http://www.gnu.org/licenses/gpl.html
15five-django-ajax-selects
/15five-django-ajax-selects-1.5.2.155.tar.gz/15five-django-ajax-selects-1.5.2.155/README.md
README.md
# Change Log ## [1.5.2](https://github.com/crucialfelix/django-ajax-selects/tree/1.5.2) (2016-10-19) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.5.1...1.5.2) **Fixed bugs:** - Occasionally: $.ui.autocomplete is undefined [\#188](https://github.com/crucialfelix/django-ajax-selects/issues/188) **Closed issues:** - No cache management headers in HTTP response [\#187](https://github.com/crucialfelix/django-ajax-selects/issues/187) ## [1.5.1](https://github.com/crucialfelix/django-ajax-selects/tree/1.5.1) (2016-10-13) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.5.0...1.5.1) **Implemented enhancements:** - Prefer document.createElement to document.write [\#182](https://github.com/crucialfelix/django-ajax-selects/issues/182) **Fixed bugs:** - fix: add related for multiple select [\#184](https://github.com/crucialfelix/django-ajax-selects/pull/184) ([crucialfelix](https://github.com/crucialfelix)) ## [1.5.0](https://github.com/crucialfelix/django-ajax-selects/tree/1.5.0) (2016-09-05) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.4.3...1.5.0) - Added Support for Django 1.10 - Dropped Django 1.5 **Fixed bugs:** - Initial fields are duplicated when new row added. [\#94](https://github.com/crucialfelix/django-ajax-selects/issues/94) **Closed issues:** - ValueError in Django 1.10 [\#177](https://github.com/crucialfelix/django-ajax-selects/issues/177) - Django 1.10 did add popup [\#174](https://github.com/crucialfelix/django-ajax-selects/issues/174) - Example not Working [\#161](https://github.com/crucialfelix/django-ajax-selects/issues/161) **Merged pull requests:** - Fix documentation to format code properly [\#165](https://github.com/crucialfelix/django-ajax-selects/pull/165) ([joshblum](https://github.com/joshblum)) - install.sh not working [\#162](https://github.com/crucialfelix/django-ajax-selects/pull/162) ([hdzierz](https://github.com/hdzierz)) ## [1.4.3](https://github.com/crucialfelix/django-ajax-selects/tree/1.4.3) (2016-03-13) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.4.2...1.4.3) **Closed issues:** - Additional stacked inlines clear un-saved autocomplete fields [\#156](https://github.com/crucialfelix/django-ajax-selects/issues/156) - support request: ManyToOneRel doesn't have expected attributes [\#154](https://github.com/crucialfelix/django-ajax-selects/issues/154) **Merged pull requests:** - Stop using deprecated \_meta api. [\#160](https://github.com/crucialfelix/django-ajax-selects/pull/160) ([kramarz](https://github.com/kramarz)) - Fixed file name in documentation for custom templates. [\#158](https://github.com/crucialfelix/django-ajax-selects/pull/158) ([sebslomski](https://github.com/sebslomski)) - Fixes re-initialization upon adding inlines [\#157](https://github.com/crucialfelix/django-ajax-selects/pull/157) ([funkyfuture](https://github.com/funkyfuture)) ## [1.4.2](https://github.com/crucialfelix/django-ajax-selects/tree/1.4.2) (2016-01-18) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.4.1...1.4.2) **Fixed bugs:** - Selected data lost when adding new rows via ajax [\#145](https://github.com/crucialfelix/django-ajax-selects/issues/145) - Inline forms raise TypeError when not filled in [\#142](https://github.com/crucialfelix/django-ajax-selects/issues/142) **Merged pull requests:** - Fix incorrect has\_changed result for AutoCompleteSelectField that has not been filled in. [\#152](https://github.com/crucialfelix/django-ajax-selects/pull/152) ([unklphil](https://github.com/unklphil)) - Only trigger reset\(\) initially if data hasn't changed. [\#146](https://github.com/crucialfelix/django-ajax-selects/pull/146) ([jmfederico](https://github.com/jmfederico)) ## [1.4.1](https://github.com/crucialfelix/django-ajax-selects/tree/1.4.1) (2015-11-18) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.4.0...1.4.1) **Closed issues:** - Templates not included in pypi1.4.0 package [\#141](https://github.com/crucialfelix/django-ajax-selects/issues/141) - Documentation seems to be broken on RTD [\#140](https://github.com/crucialfelix/django-ajax-selects/issues/140) ## [1.4.0](https://github.com/crucialfelix/django-ajax-selects/tree/1.4.0) (2015-11-07) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.3.6...1.4.0) **Implemented enhancements:** - Pass `request` to `LookupChannel` methods, make overriding easier [\#40](https://github.com/crucialfelix/django-ajax-selects/issues/40) **Fixed bugs:** - AttributeError on invalid form data [\#135](https://github.com/crucialfelix/django-ajax-selects/issues/135) - Doesn't work with readonly\_fields [\#120](https://github.com/crucialfelix/django-ajax-selects/issues/120) - Add another popup doesn't add `?\_popup=1` to url in Django 1.8 [\#118](https://github.com/crucialfelix/django-ajax-selects/issues/118) - Field appers duplicated when marked as readonly in admin [\#84](https://github.com/crucialfelix/django-ajax-selects/issues/84) **Closed issues:** - can't import register module [\#139](https://github.com/crucialfelix/django-ajax-selects/issues/139) - How to fire lookup for value in text field using javascript [\#137](https://github.com/crucialfelix/django-ajax-selects/issues/137) - tests not included in MANIFEST.in [\#136](https://github.com/crucialfelix/django-ajax-selects/issues/136) - Content of input not included in field, only dropdown choices for make\_ajax\_field [\#134](https://github.com/crucialfelix/django-ajax-selects/issues/134) - documentation for add link on ajax fields for django admin inlines [\#127](https://github.com/crucialfelix/django-ajax-selects/issues/127) - Can't specify widget for AutoCompleteSelectMultipleField [\#126](https://github.com/crucialfelix/django-ajax-selects/issues/126) - RemovedInDjango19Warning in ajax\_select [\#125](https://github.com/crucialfelix/django-ajax-selects/issues/125) - Django's form change\_data always include autocomplete fields [\#123](https://github.com/crucialfelix/django-ajax-selects/issues/123) - AttributeError: 'int' object has no attribute 'isnumeric' [\#117](https://github.com/crucialfelix/django-ajax-selects/issues/117) - Error with TheForm in Django 1.8 [\#115](https://github.com/crucialfelix/django-ajax-selects/issues/115) - Not Secure. invalid literal for long\(\) with base 10 [\#114](https://github.com/crucialfelix/django-ajax-selects/issues/114) - ImportError: No module named ajax\_select [\#112](https://github.com/crucialfelix/django-ajax-selects/issues/112) - 'AutoCompleteSelectWidget' object has no attribute 'choices' [\#111](https://github.com/crucialfelix/django-ajax-selects/issues/111) - "Uncaught TypeError: Cannot read property 'autocomplete' of undefined" [\#107](https://github.com/crucialfelix/django-ajax-selects/issues/107) - Regression? Or UUID PK not supported [\#103](https://github.com/crucialfelix/django-ajax-selects/issues/103) - Support lookup channels from third-party apps [\#98](https://github.com/crucialfelix/django-ajax-selects/issues/98) - callbacks for select doesn't work [\#97](https://github.com/crucialfelix/django-ajax-selects/issues/97) - DeprecationWarning: Creating a ModelForm without either the 'fields' attribute or the 'exclude' attribute is deprecated [\#96](https://github.com/crucialfelix/django-ajax-selects/issues/96) - AutoCompleteSelectField has no attribute 'limit\_choices\_to' in Django 1.7 [\#83](https://github.com/crucialfelix/django-ajax-selects/issues/83) - Custom form [\#81](https://github.com/crucialfelix/django-ajax-selects/issues/81) - avoid warning when installing via pip [\#53](https://github.com/crucialfelix/django-ajax-selects/issues/53) - search\_fields like in ModelAdmin [\#21](https://github.com/crucialfelix/django-ajax-selects/issues/21) - Issues when using django-admin-sortable [\#12](https://github.com/crucialfelix/django-ajax-selects/issues/12) **Merged pull requests:** - Get rid of terrible `\_as\_pk` function \(fixes \#117, \#120, and \#135\) [\#138](https://github.com/crucialfelix/django-ajax-selects/pull/138) ([hwkns](https://github.com/hwkns)) - Reset button handling [\#132](https://github.com/crucialfelix/django-ajax-selects/pull/132) ([jmerdich](https://github.com/jmerdich)) - Remove unnecessary backquotes in README.md [\#131](https://github.com/crucialfelix/django-ajax-selects/pull/131) ([zablotski](https://github.com/zablotski)) - Feature autodiscover [\#129](https://github.com/crucialfelix/django-ajax-selects/pull/129) ([morr0350](https://github.com/morr0350)) - Example for get\_formset on inline admin [\#128](https://github.com/crucialfelix/django-ajax-selects/pull/128) ([rlskoeser](https://github.com/rlskoeser)) - ajax\_lookup should respond with content type `application/json` [\#119](https://github.com/crucialfelix/django-ajax-selects/pull/119) ([unklphil](https://github.com/unklphil)) - Add AjaxSelectAdminStackedInline to work similarly to AjaxSelectAdminTabularInline [\#89](https://github.com/crucialfelix/django-ajax-selects/pull/89) ([unklphil](https://github.com/unklphil)) ## [1.3.6](https://github.com/crucialfelix/django-ajax-selects/tree/1.3.6) (2015-04-06) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.3.5...1.3.6) **Closed issues:** - 'AutoCompleteSelectWidget' object has no attribute 'choices' [\#110](https://github.com/crucialfelix/django-ajax-selects/issues/110) - \_\_init\_\_\(\) got an unexpected keyword argument 'mimetype' [\#108](https://github.com/crucialfelix/django-ajax-selects/issues/108) - Limit number of results returned by lookup and auto load additional results when user scrolls to bottom of list [\#105](https://github.com/crucialfelix/django-ajax-selects/issues/105) - Support reverse relationships [\#99](https://github.com/crucialfelix/django-ajax-selects/issues/99) - 'set' object does not support indexing [\#93](https://github.com/crucialfelix/django-ajax-selects/issues/93) - deck area [\#92](https://github.com/crucialfelix/django-ajax-selects/issues/92) - Inline won't work with new lines \(SOLVED\) [\#87](https://github.com/crucialfelix/django-ajax-selects/issues/87) - Bug in ajax\_selects.js \(addKiller function call\) [\#79](https://github.com/crucialfelix/django-ajax-selects/issues/79) - AutoCompleteSelectField breaks when using localization and long ids [\#68](https://github.com/crucialfelix/django-ajax-selects/issues/68) - format\_match did not work with django-ajax-select 1.3.3 [\#58](https://github.com/crucialfelix/django-ajax-selects/issues/58) - Support Non-integer Primary Keys \(mongodb etc\) [\#34](https://github.com/crucialfelix/django-ajax-selects/issues/34) - non operation with mongodb [\#3](https://github.com/crucialfelix/django-ajax-selects/issues/3) **Merged pull requests:** - Change order for running script by .sh \#112 \(NOTICE\) [\#113](https://github.com/crucialfelix/django-ajax-selects/pull/113) ([skrzypek](https://github.com/skrzypek)) - Update README.md [\#101](https://github.com/crucialfelix/django-ajax-selects/pull/101) ([cormier](https://github.com/cormier)) - Added option for fields in TheForm superclass [\#91](https://github.com/crucialfelix/django-ajax-selects/pull/91) ([onyekaa](https://github.com/onyekaa)) ## [1.3.5](https://github.com/crucialfelix/django-ajax-selects/tree/1.3.5) (2014-08-02) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.3.4...1.3.5) **Closed issues:** - ajax-selects/fields.py simplejson is deprecated [\#74](https://github.com/crucialfelix/django-ajax-selects/issues/74) - Document the use in template for 'quick installation' [\#71](https://github.com/crucialfelix/django-ajax-selects/issues/71) - Document how to use an ajax field in a ListFilter in admin [\#70](https://github.com/crucialfelix/django-ajax-selects/issues/70) - Issue with Ajax-Search on Media-Fields [\#60](https://github.com/crucialfelix/django-ajax-selects/issues/60) - Set width of jquery autocomplete widget [\#30](https://github.com/crucialfelix/django-ajax-selects/issues/30) **Merged pull requests:** - Fix issue 58 and pull request 76 [\#85](https://github.com/crucialfelix/django-ajax-selects/pull/85) ([camillobruni](https://github.com/camillobruni)) - Django's HttpResponse object has deprecated the mimetype kwarg in 1.7 [\#82](https://github.com/crucialfelix/django-ajax-selects/pull/82) ([squidsoup](https://github.com/squidsoup)) - Support non-int primary keys [\#78](https://github.com/crucialfelix/django-ajax-selects/pull/78) ([AlexHill](https://github.com/AlexHill)) - correct import deprecated since Django 1.4 [\#77](https://github.com/crucialfelix/django-ajax-selects/pull/77) ([gertingold](https://github.com/gertingold)) - maintain compatibility with Python 2.6 [\#75](https://github.com/crucialfelix/django-ajax-selects/pull/75) ([gertingold](https://github.com/gertingold)) ## [1.3.4](https://github.com/crucialfelix/django-ajax-selects/tree/1.3.4) (2014-03-30) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.3.3...1.3.4) **Closed issues:** - Custom validation with django-ajax-selects [\#73](https://github.com/crucialfelix/django-ajax-selects/issues/73) - DeprecationWarning django.utils.simplejson [\#63](https://github.com/crucialfelix/django-ajax-selects/issues/63) - When create select list always show \(in bottom list\) add new object. [\#62](https://github.com/crucialfelix/django-ajax-selects/issues/62) **Merged pull requests:** - Trivial typo fix \(chanel\_name\) [\#69](https://github.com/crucialfelix/django-ajax-selects/pull/69) ([gthb](https://github.com/gthb)) - Fixes \#18 - AJAX Selector and dynamic inlines [\#67](https://github.com/crucialfelix/django-ajax-selects/pull/67) ([peterfarrell](https://github.com/peterfarrell)) - Using json as opposed to simplejson \(depreciated\) [\#65](https://github.com/crucialfelix/django-ajax-selects/pull/65) ([krzysztof](https://github.com/krzysztof)) ## [1.3.3](https://github.com/crucialfelix/django-ajax-selects/tree/1.3.3) (2013-11-13) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.3.2...1.3.3) **Merged pull requests:** - Remove protocol from dynamically loaded urls. [\#54](https://github.com/crucialfelix/django-ajax-selects/pull/54) ([jellonek](https://github.com/jellonek)) ## [1.3.2](https://github.com/crucialfelix/django-ajax-selects/tree/1.3.2) (2013-11-09) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.3.1...1.3.2) ## [1.3.1](https://github.com/crucialfelix/django-ajax-selects/tree/1.3.1) (2013-10-09) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.3.0...1.3.1) **Closed issues:** - parameters to triggers [\#43](https://github.com/crucialfelix/django-ajax-selects/issues/43) - django.conf.urls.defaults depreciated [\#38](https://github.com/crucialfelix/django-ajax-selects/issues/38) - How do you pass a class name for the addKiller [\#37](https://github.com/crucialfelix/django-ajax-selects/issues/37) - AutoComplete and AutoCompleteSelect renders fine but AutoCompleteMultipleSelect isnt working [\#31](https://github.com/crucialfelix/django-ajax-selects/issues/31) - django inline formset [\#18](https://github.com/crucialfelix/django-ajax-selects/issues/18) ## [1.3.0](https://github.com/crucialfelix/django-ajax-selects/tree/1.3.0) (2013-10-08) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.2.5...1.3.0) **Closed issues:** - ContentNotRenderedError [\#39](https://github.com/crucialfelix/django-ajax-selects/issues/39) - Please add a change trigger to the target. [\#35](https://github.com/crucialfelix/django-ajax-selects/issues/35) - can\_add isn't working in lookups [\#23](https://github.com/crucialfelix/django-ajax-selects/issues/23) **Merged pull requests:** - Follow the Meta definition of the original modelform [\#49](https://github.com/crucialfelix/django-ajax-selects/pull/49) ([artscoop](https://github.com/artscoop)) ## [1.2.5](https://github.com/crucialfelix/django-ajax-selects/tree/1.2.5) (2012-08-22) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.2.4...1.2.5) **Closed issues:** - dj1.4 Error importing template source loader django.template.loaders.filesystem.load\_template\_source: [\#15](https://github.com/crucialfelix/django-ajax-selects/issues/15) - fixed bug: AutoCompleteSelectMultipleField does not honor 'widget' parameter [\#14](https://github.com/crucialfelix/django-ajax-selects/issues/14) - error 'this.data\("autocomplete"\) is undefined' [\#10](https://github.com/crucialfelix/django-ajax-selects/issues/10) - Fire the change event on selection [\#8](https://github.com/crucialfelix/django-ajax-selects/issues/8) - ValueError: translation table must be 256 characters long [\#5](https://github.com/crucialfelix/django-ajax-selects/issues/5) - Error on Pop-Up [\#19](https://github.com/crucialfelix/django-ajax-selects/issues/19) **Merged pull requests:** - Small fix in CSS [\#2](https://github.com/crucialfelix/django-ajax-selects/pull/2) ([karlmoritz](https://github.com/karlmoritz)) ## [1.2.4](https://github.com/crucialfelix/django-ajax-selects/tree/1.2.4) (2012-01-15) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.2.3...1.2.4) ## [1.2.3](https://github.com/crucialfelix/django-ajax-selects/tree/1.2.3) (2011-11-29) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.2.1...1.2.3) ## [1.2.1](https://github.com/crucialfelix/django-ajax-selects/tree/1.2.1) (2011-10-19) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.1.5...1.2.1) ## [1.1.5](https://github.com/crucialfelix/django-ajax-selects/tree/1.1.5) (2011-08-24) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.1.3...1.1.5) ## [1.1.3](https://github.com/crucialfelix/django-ajax-selects/tree/1.1.3) (2010-06-06) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.1.1...1.1.3) ## [1.1.1](https://github.com/crucialfelix/django-ajax-selects/tree/1.1.1) (2010-06-03) [Full Changelog](https://github.com/crucialfelix/django-ajax-selects/compare/1.1.0...1.1.1) ## [1.1.0](https://github.com/crucialfelix/django-ajax-selects/tree/1.1.0) (2010-03-06) \* *This Change Log was automatically generated by [github_changelog_generator](https://github.com/skywinder/Github-Changelog-Generator)*
15five-django-ajax-selects
/15five-django-ajax-selects-1.5.2.155.tar.gz/15five-django-ajax-selects-1.5.2.155/CHANGELOG.md
CHANGELOG.md
from django.core.exceptions import PermissionDenied from django.utils.encoding import force_text from django.utils.html import escape class LookupChannel(object): """ Subclass this, setting the model and implementing methods to taste. Attributes: model (Model): The Django Model that this lookup channel will search for. plugin_options (dict): Options passed to jQuery UI plugin that are specific to this channel. min_length (int): Minimum number of characters user types before a search is initiated. This is passed to the jQuery plugin_options. It is used in jQuery's UI when filtering results from its own cache. It is also used in the django view to prevent expensive database queries. Large datasets can choke if they search too often with small queries. Better to demand at least 2 or 3 characters. """ model = None plugin_options = {} min_length = 1 def get_query(self, q, request): """ Return a QuerySet searching for the query string `q`. Note that you may return any iterable so you can return a list or even use yield and turn this method into a generator. Args: q (str, unicode): The query string to search for. request (Request): This can be used to customize the search by User or to use additional GET variables. Returns: (QuerySet, list, generator): iterable of related_models """ kwargs = {"%s__icontains" % self.search_field: q} return self.model.objects.filter(**kwargs).order_by(self.search_field) def get_result(self, obj): """The text result of autocompleting the entered query. For a partial string that the user typed in, each matched result is here converted to the fully completed text. This is currently displayed only for a moment in the text field after the user has selected the item. Then the item is displayed in the item_display deck and the text field is cleared. Args: obj (Model): Returns: str: The object as string """ return escape(force_text(obj)) def format_match(self, obj): """(HTML) Format item for displaying in the dropdown. Args: obj (Model): Returns: str: formatted string, may contain HTML. """ return escape(force_text(obj)) def format_item_display(self, obj): """ (HTML) format item for displaying item in the selected deck area. Args: obj (Model): Returns: str: formatted string, may contain HTML. """ return escape(force_text(obj)) def get_objects(self, ids): """This is used to retrieve the currently selected objects for either ManyToMany or ForeignKey. Note that the order of the ids supplied for ManyToMany fields is dependent on how the objects manager fetches it. ie. what is returned by `YourModel.{fieldname}_set.all()` In most situations (especially postgres) this order is indeterminate -- not the order that you originally added them in the interface. See :doc:`/Ordered-ManyToMany` for a solution to this. Args: ids (list): list of primary keys Returns: list: list of Model objects """ # return objects in the same order as passed in here pk_type = self.model._meta.pk.to_python ids = [pk_type(pk) for pk in ids] things = self.model.objects.in_bulk(ids) return [things[aid] for aid in ids if aid in things] def can_add(self, user, other_model): """Check if the user has permission to add a ForeignKey or M2M model. This enables the green popup + on the widget. Default implentation is the standard django permission check. Args: user (User) other_model (Model): the ForeignKey or M2M model to check if the User can add. Returns: bool """ from django.contrib.contenttypes.models import ContentType ctype = ContentType.objects.get_for_model(other_model) return user.has_perm("%s.add_%s" % (ctype.app_label, ctype.model)) def check_auth(self, request): """By default only request.user.is_staff have access. This ensures that nobody can get your data by simply knowing the lookup URL. This is called from the ajax_lookup view. Public facing forms (outside of the Admin) should implement this to allow non-staff to use this LookupChannel. Args: request (Request) Raises: PermissionDenied """ if not request.user.is_staff: raise PermissionDenied
15five-django-ajax-selects
/15five-django-ajax-selects-1.5.2.155.tar.gz/15five-django-ajax-selects-1.5.2.155/ajax_select/lookup_channel.py
lookup_channel.py
from django.core.exceptions import ImproperlyConfigured from django.conf import settings class LookupChannelRegistry(object): """ Registry for LookupChannels activated for your django project. This includes any installed apps that contain lookup.py modules (django 1.7+) and any lookups that are explicitly declared in `settings.AJAX_LOOKUP_CHANNELS` """ _registry = {} def load_channels(self): """ Called when loading the application. Cannot be called a second time, (eg. for testing) as Django will not re-import and re-register anything. """ self._registry = {} try: from django.utils.module_loading import autodiscover_modules except ImportError: pass else: autodiscover_modules('lookups') if hasattr(settings, 'AJAX_LOOKUP_CHANNELS'): self.register(settings.AJAX_LOOKUP_CHANNELS) def register(self, lookup_specs): """Register a set of lookup definitions. Args: lookup_specs (dict): One or more LookupChannel specifications - `{'channel': LookupChannelSubclass}` - `{'channel': ('module.of.lookups', 'MyLookupClass')}` - `{'channel': {'model': 'MyModelToBeLookedUp', 'search_field': 'field_to_search'}}` """ for channel, spec in lookup_specs.items(): if spec is None: # unset if channel in self._registry: del self._registry[channel] else: self._registry[channel] = spec def get(self, channel): """Find the LookupChannel class for the named channel and instantiate it. Args: channel (string): - name that the lookup channel was registered at Returns: LookupChannel Raises: ImproperlyConfigured - if channel is not found. Exception - invalid lookup_spec was stored in registery """ from ajax_select import LookupChannel try: lookup_spec = self._registry[channel] except KeyError: raise ImproperlyConfigured( "No ajax_select LookupChannel named %(channel)r is registered." % {'channel': channel}) if (type(lookup_spec) is type) and issubclass(lookup_spec, LookupChannel): return lookup_spec() # damnit python. # ideally this would match regardless of how you imported the parent class # but these are different classes: # from ajax_select.lookup_channel import LookupChannel # from ajax_select import LookupChannel elif isinstance(lookup_spec, dict): # 'channel' : dict(model='app.model', search_field='title' ) # generate a simple channel dynamically return self.make_channel(lookup_spec['model'], lookup_spec['search_field']) elif isinstance(lookup_spec, tuple): # a tuple # 'channel' : ('app.module','LookupClass') # from app.module load LookupClass and instantiate lookup_module = __import__(lookup_spec[0], {}, {}, ['']) lookup_class = getattr(lookup_module, lookup_spec[1]) return lookup_class() else: raise Exception("Invalid lookup spec: %s" % lookup_spec) def is_registered(self, channel): return channel in self._registry def make_channel(self, app_model, arg_search_field): """Automatically make a LookupChannel. Args: app_model (str): app_name.ModelName arg_search_field (str): the field to search against and to display in search results Returns: LookupChannel """ from ajax_select import LookupChannel app_label, model_name = app_model.split(".") class MadeLookupChannel(LookupChannel): model = get_model(app_label, model_name) search_field = arg_search_field return MadeLookupChannel() registry = LookupChannelRegistry() def get_model(app_label, model_name): """Loads the model given an 'app_label' 'ModelName'""" try: # django >= 1.7 from django.apps import apps except ImportError: # django < 1.7 from django.db import models return models.get_model(app_label, model_name) else: return apps.get_model(app_label, model_name) def can_autodiscover(): try: from django.apps import AppConfig # noqa except ImportError: return False return True def register(channel): """Decorator to register a LookupClass. Example:: from ajax_select import LookupChannel, register @register('agent') class AgentLookup(LookupClass): def get_query(self): ... def format_item(self): ... """ def _wrapper(lookup_class): if not channel: raise ValueError('Lookup Channel must have a channel name') registry.register({channel: lookup_class}) return lookup_class return _wrapper
15five-django-ajax-selects
/15five-django-ajax-selects-1.5.2.155.tar.gz/15five-django-ajax-selects-1.5.2.155/ajax_select/registry.py
registry.py
from django.db.models.fields.related import ForeignKey, ManyToManyField from django.forms.models import ModelForm from django.utils.text import capfirst from django.utils.encoding import force_text from django.utils.translation import ugettext_lazy as _ def make_ajax_form(model, fieldlist, superclass=ModelForm, show_help_text=False, **kwargs): """Creates a ModelForm subclass with AutoComplete fields. Args: model (type): Model class for which you are making the ModelForm fieldlist (dict): {field_name -> channel_name, ...} superclass (type): optional ModelForm superclass show_help_text (bool): suppress or show the widget help text Returns: ModelForm: a ModelForm suitable for use in an Admin Usage:: from django.contrib import admin from ajax_select import make_ajax_form from yourapp.models import YourModel @admin.register(YourModel) class YourModelAdmin(Admin): form = make_ajax_form(YourModel, { 'contacts': 'contact', # ManyToManyField 'author':'contact' # ForeignKeyField }) Where 'contacts' is a ManyToManyField specifying to use the lookup channel 'contact' and 'author' is a ForeignKeyField specifying here to also use the same lookup channel 'contact' """ # will support previous arg name for several versions before deprecating # TODO: time to go if 'show_m2m_help' in kwargs: show_help_text = kwargs.pop('show_m2m_help') class TheForm(superclass): class Meta: exclude = [] setattr(Meta, 'model', model) if hasattr(superclass, 'Meta'): if hasattr(superclass.Meta, 'fields'): setattr(Meta, 'fields', superclass.Meta.fields) if hasattr(superclass.Meta, 'exclude'): setattr(Meta, 'exclude', superclass.Meta.exclude) if hasattr(superclass.Meta, 'widgets'): setattr(Meta, 'widgets', superclass.Meta.widgets) for model_fieldname, channel in fieldlist.items(): f = make_ajax_field(model, model_fieldname, channel, show_help_text) TheForm.declared_fields[model_fieldname] = f TheForm.base_fields[model_fieldname] = f return TheForm def make_ajax_field(related_model, fieldname_on_model, channel, show_help_text=False, **kwargs): """Makes an AutoComplete field for use in a Form. Args: related_model (Model): model of the related object fieldname_on_model (str): field name on the model being edited channel (str): channel name of a registered LookupChannel show_help_text (bool): show or supress help text below the widget Django admin will show help text below the widget, but not for ManyToMany inside of admin inlines This setting will show the help text inside the widget itself. kwargs: optional args - help_text: default is the model db field's help_text. None will disable all help text - label: default is the model db field's verbose name - required: default is the model db field's (not) blank Returns: (AutoCompleteField, AutoCompleteSelectField, AutoCompleteSelectMultipleField): field """ from ajax_select.fields import AutoCompleteField, \ AutoCompleteSelectMultipleField, \ AutoCompleteSelectField field = related_model._meta.get_field(fieldname_on_model) if 'label' not in kwargs: kwargs['label'] = _(capfirst(force_text(field.verbose_name))) if ('help_text' not in kwargs) and field.help_text: kwargs['help_text'] = field.help_text if 'required' not in kwargs: kwargs['required'] = not field.blank kwargs['show_help_text'] = show_help_text if isinstance(field, ManyToManyField): f = AutoCompleteSelectMultipleField( channel, **kwargs) elif isinstance(field, ForeignKey): f = AutoCompleteSelectField( channel, **kwargs) else: f = AutoCompleteField( channel, **kwargs) return f
15five-django-ajax-selects
/15five-django-ajax-selects-1.5.2.155.tar.gz/15five-django-ajax-selects-1.5.2.155/ajax_select/helpers.py
helpers.py
from __future__ import unicode_literals import json from ajax_select.registry import registry from django import forms from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.core.urlresolvers import reverse from django.db.models.query import QuerySet try: from django.forms.utils import flatatt except ImportError: # < django 1.7 from django.forms.util import flatatt from django.template.loader import render_to_string from django.template.defaultfilters import force_escape from django.utils.encoding import force_text from django.utils.safestring import mark_safe from django.utils.six import text_type from django.utils.translation import ugettext as _ as_default_help = 'Enter text to search.' def _media(self): # unless AJAX_SELECT_BOOTSTRAP == False # then load jquery and jquery ui + default css # where needed js = ('ajax_select/js/bootstrap.js', 'ajax_select/js/ajax_select.js') try: if not settings.AJAX_SELECT_BOOTSTRAP: js = ('ajax_select/js/ajax_select.js',) except AttributeError: pass return forms.Media(css={'all': ('ajax_select/css/ajax_select.css',)}, js=js) #################################################################################### class AutoCompleteSelectWidget(forms.widgets.TextInput): """Widget to search for a model and return it as text for use in a CharField.""" media = property(_media) add_link = None def __init__(self, channel, help_text='', show_help_text=True, plugin_options=None, *args, **kwargs): self.plugin_options = plugin_options or {} super(forms.widgets.TextInput, self).__init__(*args, **kwargs) self.channel = channel self.help_text = help_text self.show_help_text = show_help_text def render(self, name, value, attrs=None): value = value or '' # Always ignore required attribute when rendering HTML fields attrs.pop('required', None) final_attrs = self.build_attrs(attrs) self.html_id = final_attrs.pop('id', name) current_repr = '' initial = None lookup = registry.get(self.channel) if value: objs = lookup.get_objects([value]) try: obj = objs[0] except IndexError: raise Exception("%s cannot find object:%s" % (lookup, value)) current_repr = lookup.format_item_display(obj) initial = [current_repr, obj.pk] if self.show_help_text: help_text = self.help_text else: help_text = '' context = { 'name': name, 'html_id': self.html_id, 'current_id': value, 'current_repr': current_repr, 'help_text': help_text, 'extra_attrs': mark_safe(flatatt(final_attrs)), 'func_slug': self.html_id.replace("-", ""), 'add_link': self.add_link, } context.update(make_plugin_options(lookup, self.channel, self.plugin_options, initial)) templates = ( 'ajax_select/autocompleteselect_%s.html' % self.channel, 'ajax_select/autocompleteselect.html') out = render_to_string(templates, context) return mark_safe(out) def value_from_datadict(self, data, files, name): return data.get(name, None) def id_for_label(self, id_): return '%s_text' % id_ class AutoCompleteSelectField(forms.fields.CharField): """Form field to select a Model for a ForeignKey db field.""" channel = None def __init__(self, channel, *args, **kwargs): self.channel = channel widget_kwargs = dict( channel=channel, help_text=kwargs.get('help_text', _(as_default_help)), show_help_text=kwargs.pop('show_help_text', True), plugin_options=kwargs.pop('plugin_options', {}) ) widget_kwargs.update(kwargs.pop('widget_options', {})) kwargs["widget"] = AutoCompleteSelectWidget(**widget_kwargs) super(AutoCompleteSelectField, self).__init__(max_length=255, *args, **kwargs) def clean(self, value): if value: lookup = registry.get(self.channel) objs = lookup.get_objects([value]) if len(objs) != 1: # someone else might have deleted it while you were editing # or your channel is faulty # out of the scope of this field to do anything more than tell you it doesn't exist raise forms.ValidationError("%s cannot find object: %s" % (lookup, value)) return objs[0] else: if self.required: raise forms.ValidationError(self.error_messages['required']) return None def check_can_add(self, user, model): _check_can_add(self, user, model) def has_changed(self, initial, data): # 1 vs u'1' initial_value = initial if initial is not None else '' data_value = data if data is not None else '' return text_type(initial_value) != text_type(data_value) #################################################################################### class AutoCompleteSelectMultipleWidget(forms.widgets.SelectMultiple): """Widget to select multiple models for a ManyToMany db field.""" media = property(_media) add_link = None def __init__(self, channel, help_text='', show_help_text=True, plugin_options=None, *args, **kwargs): super(AutoCompleteSelectMultipleWidget, self).__init__(*args, **kwargs) self.channel = channel self.help_text = help_text self.show_help_text = show_help_text self.plugin_options = plugin_options or {} def render(self, name, value, attrs=None): if value is None: value = [] final_attrs = self.build_attrs(attrs) self.html_id = final_attrs.pop('id', name) lookup = registry.get(self.channel) if isinstance(value, QuerySet): objects = value else: objects = lookup.get_objects(value) current_ids = pack_ids([obj.pk for obj in objects]) # text repr of currently selected items initial = [ [lookup.format_item_display(obj), obj.pk] for obj in objects ] if self.show_help_text: help_text = self.help_text else: help_text = '' context = { 'name': name, 'html_id': self.html_id, 'current': value, 'current_ids': current_ids, 'current_reprs': mark_safe(json.dumps(initial)), 'help_text': help_text, 'extra_attrs': mark_safe(flatatt(final_attrs)), 'func_slug': self.html_id.replace("-", ""), 'add_link': self.add_link, } context.update(make_plugin_options(lookup, self.channel, self.plugin_options, initial)) templates = ('ajax_select/autocompleteselectmultiple_%s.html' % self.channel, 'ajax_select/autocompleteselectmultiple.html') out = render_to_string(templates, context) return mark_safe(out) def value_from_datadict(self, data, files, name): # eg. 'members': ['|229|4688|190|'] return [val for val in data.get(name, '').split('|') if val] def id_for_label(self, id_): return '%s_text' % id_ class AutoCompleteSelectMultipleField(forms.fields.CharField): """ form field to select multiple models for a ManyToMany db field """ channel = None def __init__(self, channel, *args, **kwargs): self.channel = channel help_text = kwargs.get('help_text') show_help_text = kwargs.pop('show_help_text', False) if not (help_text is None): # '' will cause translation to fail # should be '' if isinstance(help_text, str): help_text = force_text(help_text) # django admin appends "Hold down "Control",..." to the help text # regardless of which widget is used. so even when you specify an explicit # help text it appends this other default text onto the end. # This monkey patches the help text to remove that if help_text != '': if not isinstance(help_text, text_type): # ideally this could check request.LANGUAGE_CODE translated = help_text.translate(settings.LANGUAGE_CODE) else: translated = help_text dh = 'Hold down "Control", or "Command" on a Mac, to select more than one.' django_default_help = _(dh).translate(settings.LANGUAGE_CODE) if django_default_help in translated: cleaned_help = translated.replace(django_default_help, '').strip() # probably will not show up in translations if cleaned_help: help_text = cleaned_help else: help_text = "" show_help_text = False else: help_text = _(as_default_help) # django admin will also show help text outside of the display # area of the widget. this results in duplicated help. # it should just let the widget do the rendering # so by default do not show it in widget # if using in a normal form then set to True when creating the field widget_kwargs = { 'channel': channel, 'help_text': help_text, 'show_help_text': show_help_text, 'plugin_options': kwargs.pop('plugin_options', {}) } widget_kwargs.update(kwargs.pop('widget_options', {})) kwargs['widget'] = AutoCompleteSelectMultipleWidget(**widget_kwargs) kwargs['help_text'] = help_text super(AutoCompleteSelectMultipleField, self).__init__(*args, **kwargs) def clean(self, value): if not value and self.required: raise forms.ValidationError(self.error_messages['required']) return value # a list of primary keys from widget value_from_datadict def check_can_add(self, user, model): _check_can_add(self, user, model) def has_changed(self, initial_value, data_value): # [1, 2] vs [u'1', u'2'] ivs = [text_type(v) for v in (initial_value or [])] dvs = [text_type(v) for v in (data_value or [])] return ivs != dvs #################################################################################### class AutoCompleteWidget(forms.TextInput): """ Widget to select a search result and enter the result as raw text in the text input field. the user may also simply enter text and ignore any auto complete suggestions. """ media = property(_media) channel = None help_text = '' html_id = '' def __init__(self, channel, *args, **kwargs): self.channel = channel self.help_text = kwargs.pop('help_text', '') self.show_help_text = kwargs.pop('show_help_text', True) self.plugin_options = kwargs.pop('plugin_options', {}) super(AutoCompleteWidget, self).__init__(*args, **kwargs) def render(self, name, value, attrs=None): initial = value or '' final_attrs = self.build_attrs(attrs) self.html_id = final_attrs.pop('id', name) lookup = registry.get(self.channel) if self.show_help_text: help_text = self.help_text else: help_text = '' context = { 'current_repr': initial, 'current_id': initial, 'help_text': help_text, 'html_id': self.html_id, 'name': name, 'extra_attrs': mark_safe(flatatt(final_attrs)), 'func_slug': self.html_id.replace("-", ""), } context.update(make_plugin_options(lookup, self.channel, self.plugin_options, initial)) templates = ('ajax_select/autocomplete_%s.html' % self.channel, 'ajax_select/autocomplete.html') return mark_safe(render_to_string(templates, context)) class AutoCompleteField(forms.CharField): """ A CharField that uses an AutoCompleteWidget to lookup matching and stores the result as plain text. """ channel = None def __init__(self, channel, *args, **kwargs): self.channel = channel widget_kwargs = dict( help_text=kwargs.get('help_text', _(as_default_help)), show_help_text=kwargs.pop('show_help_text', True), plugin_options=kwargs.pop('plugin_options', {}) ) widget_kwargs.update(kwargs.pop('widget_options', {})) if 'attrs' in kwargs: widget_kwargs['attrs'] = kwargs.pop('attrs') widget = AutoCompleteWidget(channel, **widget_kwargs) defaults = {'max_length': 255, 'widget': widget} defaults.update(kwargs) super(AutoCompleteField, self).__init__(*args, **defaults) #################################################################################### def _check_can_add(self, user, related_model): """ Check if the User can create a related_model. If the LookupChannel implements check_can_add() then use this. Else uses Django's default permission system. If it can add, then enable the widget to show the green + link """ lookup = registry.get(self.channel) if hasattr(lookup, 'can_add'): can_add = lookup.can_add(user, related_model) else: ctype = ContentType.objects.get_for_model(related_model) can_add = user.has_perm("%s.add_%s" % (ctype.app_label, ctype.model)) if can_add: app_label = related_model._meta.app_label model = related_model._meta.object_name.lower() self.widget.add_link = reverse('admin:%s_%s_add' % (app_label, model)) + '?_popup=1' def autoselect_fields_check_can_add(form, model, user): """ Check the form's fields for any autoselect fields and enable their widgets with green + button if permissions allow then to create the related_model. """ for name, form_field in form.declared_fields.items(): if isinstance(form_field, (AutoCompleteSelectMultipleField, AutoCompleteSelectField)): db_field = model._meta.get_field(name) form_field.check_can_add(user, db_field.rel.to) def make_plugin_options(lookup, channel_name, widget_plugin_options, initial): """ Make a JSON dumped dict of all options for the jQuery ui plugin.""" po = {} if initial: po['initial'] = initial po.update(getattr(lookup, 'plugin_options', {})) po.update(widget_plugin_options) if not po.get('source'): po['source'] = reverse('ajax_lookup', kwargs={'channel': channel_name}) # allow html unless explicitly set if po.get('html') is None: po['html'] = True return { 'plugin_options': mark_safe(json.dumps(po)), 'data_plugin_options': force_escape(json.dumps(po)) } def pack_ids(ids): if ids: # |pk|pk| of current return "|" + "|".join(str(pk) for pk in ids) + "|" else: return "|"
15five-django-ajax-selects
/15five-django-ajax-selects-1.5.2.155.tar.gz/15five-django-ajax-selects-1.5.2.155/ajax_select/fields.py
fields.py
(function() { var $ = window.jQuery; $.fn.autocompleteselect = function(options) { return this.each(function() { var id = this.id, $this = $(this), $text = $('#' + id + '_text'), $deck = $('#' + id + '_on_deck'); function receiveResult(event, ui) { if ($this.val()) { kill(); } $this.val(ui.item.pk); $text.val(''); addKiller(ui.item.repr, ui.item.pk); $deck.trigger('added', [ui.item.pk, ui.item]); $this.trigger('change'); return false; } function addKiller(repr, pk) { var killId = 'kill_' + pk + id, killButton = '<span class="ui-icon ui-icon-trash" id="' + killId + '">X</span> '; if (repr) { $deck.empty(); $deck.append('<div>' + killButton + repr + '</div>'); } else { $('#' + id + '_on_deck > div').prepend(killButton); } $('#' + killId).click(function() { kill(); $deck.trigger('killed', [pk]); }); } function kill() { $this.val(''); $deck.children().fadeOut(1.0).remove(); } options.select = receiveResult; $text.autocomplete(options); function reset() { if (options.initial) { addKiller(options.initial[0], options.initial[1]); $this.val(options.initial[1]); } else { kill(); } } if (!$this.attr('data-changed')) { reset(); $this.attr('data-changed', true); } $this.closest('form').on('reset', reset); $this.bind('didAddPopup', function(event, pk, repr) { receiveResult(null, {item: {pk: pk, repr: repr}}); }); }); }; $.fn.autocompleteselectmultiple = function(options) { return this.each(function() { var id = this.id, $this = $(this), $text = $('#' + id + '_text'), $deck = $('#' + id + '_on_deck'); function receiveResult(event, ui) { var pk = ui.item.pk, prev = $this.val(); if (prev.indexOf('|' + pk + '|') === -1) { $this.val((prev ? prev : '|') + pk + '|'); addKiller(ui.item.repr, pk); $text.val(''); $deck.trigger('added', [ui.item.pk, ui.item]); $this.trigger('change'); } return false; } function addKiller(repr, pk) { var killId = 'kill_' + pk + id, killButton = '<span class="ui-icon ui-icon-trash" id="' + killId + '">X</span> '; $deck.append('<div id="' + id + '_on_deck_' + pk + '">' + killButton + repr + ' </div>'); $('#' + killId).click(function() { kill(pk); $deck.trigger('killed', [pk]); }); } function kill(pk) { $this.val($this.val().replace('|' + pk + '|', '|')); $('#' + id + '_on_deck_' + pk).fadeOut().remove(); } options.select = receiveResult; $text.autocomplete(options); function reset() { $deck.empty(); var query = '|'; if (options.initial) { $.each(options.initial, function(i, its) { addKiller(its[0], its[1]); query += its[1] + '|'; }); } $this.val(query); } if (!$this.attr('data-changed')) { reset(); $this.attr('data-changed', true); } $this.closest('form').on('reset', reset); $this.bind('didAddPopup', function(event, pk, repr) { receiveResult(null, {item: {pk: pk, repr: repr}}); }); }); }; function addAutoComplete (inp, callback) { var $inp = $(inp), opts = JSON.parse($inp.attr('data-plugin-options')); // Do not activate empty-form inline rows. // These are cloned into the form when adding another row and will be activated at that time. if ($inp.attr('id').indexOf('__prefix__') !== -1) { // console.log('skipping __prefix__ row', $inp); return; } if ($inp.data('_ajax_select_inited_')) { // console.log('skipping already activated row', $inp); return; } // console.log('activating', $inp); callback($inp, opts); $inp.data('_ajax_select_inited_', true); } // allow html in the results menu // https://github.com/scottgonzalez/jquery-ui-extensions var proto = $.ui.autocomplete.prototype, initSource = proto._initSource; function filter(array, term) { var matcher = new RegExp($.ui.autocomplete.escapeRegex(term), 'i'); return $.grep(array, function(value) { return matcher.test($('<div>').html(value.label || value.value || value).text()); }); } $.extend(proto, { _initSource: function() { if (this.options.html && $.isArray(this.options.source)) { this.source = function(request, response) { response(filter(this.options.source, request.term)); }; } else { initSource.call(this); } }, _renderItem: function(ul, item) { var body = this.options.html ? item.match: item.label; return $('<li></li>') .data('item.autocomplete', item) .append($('<a></a>')[this.options.html ? 'html' : 'text' ](body)) .appendTo(ul); } }); /* Called by the popup create object when it closes. * For the popup this is opener.dismissAddRelatedObjectPopup * Django implements this in RelatedObjectLookups.js * In django >= 1.10 we can rely on input.trigger('change') * and avoid this hijacking. */ var djangoDismissAddRelatedObjectPopup = window.dismissAddRelatedObjectPopup || window.dismissAddAnotherPopup; window.dismissAddRelatedObjectPopup = function(win, newId, newRepr) { // Iff this is an ajax-select input then close the window and // trigger didAddPopup var name = window.windowname_to_id(win.name); var input = $('#' + name); if (input.data('ajax-select')) { win.close(); // newRepr is django's repr of object // not the Lookup's formatting of it. input.trigger('didAddPopup', [newId, newRepr]); } else { // Call the normal django set and close function. djangoDismissAddRelatedObjectPopup(win, newId, newRepr); } } // Django renamed this function in 1.8 window.dismissAddAnotherPopup = window.dismissAddRelatedObjectPopup; // activate any on page $(window).bind('init-autocomplete', function() { $('input[data-ajax-select=autocomplete]').each(function(i, inp) { addAutoComplete(inp, function($inp, opts) { opts.select = function(event, ui) { $inp.val(ui.item.value).trigger('added', [ui.item.pk, ui.item]); return false; }; $inp.autocomplete(opts); }); }); $('input[data-ajax-select=autocompleteselect]').each(function(i, inp) { addAutoComplete(inp, function($inp, opts) { $inp.autocompleteselect(opts); }); }); $('input[data-ajax-select=autocompleteselectmultiple]').each(function(i, inp) { addAutoComplete(inp, function($inp, opts) { $inp.autocompleteselectmultiple(opts); }); }); }); $(document).ready(function() { // if dynamically injecting forms onto a page // you can trigger them to be ajax-selects-ified: $(window).trigger('init-autocomplete'); // When adding new rows in inline forms, reinitialize and activate newly added rows. $(document) .on('click', '.inline-group ul.tools a.add, .inline-group div.add-row a, .inline-group .tabular tr.add-row td a', function() { $(window).trigger('init-autocomplete'); }); }); })();
15five-django-ajax-selects
/15five-django-ajax-selects-1.5.2.155.tar.gz/15five-django-ajax-selects-1.5.2.155/ajax_select/static/ajax_select/js/ajax_select.js
ajax_select.js
====================================================== Python Analytics for Snowplow ====================================================== .. image:: https://travis-ci.org/snowplow/snowplow-python-tracker.png?branch=master :alt: Build Status :target: https://travis-ci.org/snowplow/snowplow-python-tracker .. image:: https://badge.fury.io/py/snowplow-tracker.png :target: http://badge.fury.io/py/snowplow-tracker .. image:: https://coveralls.io/repos/snowplow/snowplow-python-tracker/badge.png :target: https://coveralls.io/r/snowplow/snowplow-python-tracker .. image:: http://img.shields.io/badge/license-Apache--2-blue.svg?style=flat :target: http://www.apache.org/licenses/LICENSE-2.0 Overview ######## Add analytics to your Python apps and Python games with the Snowplow_ event tracker for Python_. .. _Snowplow: http://snowplowanalytics.com .. _Python: http://python.org With this tracker you can collect event data from your Python-based applications, games or Python web servers/frameworks. Find out more ############# +---------------------------------+---------------------------+-------------------------+-----------------------------------+ | Technical Docs | Setup Guide | Roadmap | Contributing | +=================================+===========================+=========================+===================================+ | |techdocs|_ | |setup|_ | |roadmap| | |contributing| | +---------------------------------+---------------------------+-------------------------+-----------------------------------+ | `Technical Docs`_ | `Setup Guide`_ | `Roadmap`_ | `Contributing`_ | +---------------------------------+---------------------------+-------------------------+-----------------------------------+ .. |techdocs| image:: https://d3i6fms1cm1j0i.cloudfront.net/github/images/techdocs.png .. |setup| image:: https://d3i6fms1cm1j0i.cloudfront.net/github/images/setup.png .. |roadmap| image:: https://d3i6fms1cm1j0i.cloudfront.net/github/images/roadmap.png .. |contributing| image:: https://d3i6fms1cm1j0i.cloudfront.net/github/images/contributing.png .. _techdocs: https://github.com/snowplow/snowplow/wiki/Python-Tracker .. _setup: https://github.com/snowplow/snowplow/wiki/Python-Tracker-Setup .. _`Technical Docs`: https://github.com/snowplow/snowplow/wiki/Python-Tracker .. _`Setup Guide`: https://github.com/snowplow/snowplow/wiki/Python-Tracker-Setup .. _`Roadmap`: https://github.com/snowplow/snowplow/wiki/Python-Tracker-Roadmap .. _`Contributing`: https://github.com/snowplow/snowplow/wiki/Python-Tracker-Contributing Contributing quickstart ####################### Assuming Git, Vagrant_ and VirtualBox_ are installed: :: host$ git clone git@github.com:snowplow/snowplow-python-tracker.git host$ vagrant up && vagrant ssh guest$ cd /vagrant guest$ ./run-tests.sh deploy guest$ ./run-tests.sh test .. _Vagrant: http://docs.vagrantup.com/v2/installation/index.html .. _VirtualBox: https://www.virtualbox.org/wiki/Downloads Publishing ########## :: host$ vagrant push Copyright and license ##################### The Snowplow Python Tracker is copyright 2013-2014 Snowplow Analytics Ltd. Licensed under the `Apache License, Version 2.0`_ (the "License"); you may not use this software except in compliance with the License. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. .. _Apache License, Version 2.0: http://www.apache.org/licenses/LICENSE-2.0
15five-snowplow-tracker
/15five-snowplow-tracker-0.8.156.tar.gz/15five-snowplow-tracker-0.8.156/README.rst
README.rst
import time import uuid import six from contracts import contract, new_contract from snowplow_tracker import payload, _version, SelfDescribingJson from snowplow_tracker import subject as _subject from snowplow_tracker.timestamp import Timestamp, TrueTimestamp, DeviceTimestamp """ Constants & config """ VERSION = "py-%s" % _version.__version__ DEFAULT_ENCODE_BASE64 = True BASE_SCHEMA_PATH = "iglu:com.snowplowanalytics.snowplow" SCHEMA_TAG = "jsonschema" CONTEXT_SCHEMA = "%s/contexts/%s/1-0-1" % (BASE_SCHEMA_PATH, SCHEMA_TAG) UNSTRUCT_EVENT_SCHEMA = "%s/unstruct_event/%s/1-0-0" % (BASE_SCHEMA_PATH, SCHEMA_TAG) FORM_NODE_NAMES = ("INPUT", "TEXTAREA", "SELECT") FORM_TYPES = ( "button", "checkbox", "color", "date", "datetime", "datetime-local", "email", "file", "hidden", "image", "month", "number", "password", "radio", "range", "reset", "search", "submit", "tel", "text", "time", "url", "week" ) """ Tracker class """ class Tracker: new_contract("not_none", lambda s: s is not None) new_contract("non_empty_string", lambda s: isinstance(s, six.string_types) and len(s) > 0) new_contract("string_or_none", lambda s: (isinstance(s, six.string_types) and len(s) > 0) or s is None) new_contract("payload", lambda s: isinstance(s, payload.Payload)) new_contract("tracker", lambda s: isinstance(s, Tracker)) new_contract("emitter", lambda s: hasattr(s, "input")) new_contract("self_describing_json", lambda s: isinstance(s, SelfDescribingJson)) new_contract("context_array", "list(self_describing_json)") new_contract("form_node_name", lambda s: s in FORM_NODE_NAMES) new_contract("form_type", lambda s: s.lower() in FORM_TYPES) new_contract("timestamp", lambda x: (isinstance(x, Timestamp))) new_contract("form_element", lambda x: Tracker.check_form_element(x)) @contract def __init__(self, emitters, subject=None, namespace=None, app_id=None, encode_base64=DEFAULT_ENCODE_BASE64): """ :param emitters: Emitters to which events will be sent :type emitters: list[>0](emitter) | emitter :param subject: Subject to be tracked :type subject: subject | None :param namespace: Identifier for the Tracker instance :type namespace: string_or_none :param app_id: Application ID :type app_id: string_or_none :param encode_base64: Whether JSONs in the payload should be base-64 encoded :type encode_base64: bool """ if subject is None: subject = _subject.Subject() if type(emitters) is list: self.emitters = emitters else: self.emitters = [emitters] self.subject = subject self.encode_base64 = encode_base64 self.standard_nv_pairs = { "tv": VERSION, "tna": namespace, "aid": app_id } self.timer = None @staticmethod @contract def get_uuid(): """ Set transaction ID for the payload once during the lifetime of the event. :rtype: string """ return str(uuid.uuid4()) @staticmethod @contract def get_timestamp(tstamp=None): """ :param tstamp: User-input timestamp or None :type tstamp: int | float | None :rtype: int """ if tstamp is None: return int(time.time() * 1000) elif isinstance(tstamp, (int, float, )): return int(tstamp) """ Tracking methods """ @contract def track(self, pb): """ Send the payload to a emitter :param pb: Payload builder :type pb: payload :rtype: tracker """ for emitter in self.emitters: emitter.input(pb.nv_pairs) return self @contract def complete_payload(self, pb, context, tstamp): """ Called by all tracking events to add the standard name-value pairs to the Payload object irrespective of the tracked event. :param pb: Payload builder :type pb: payload :param context: Custom context for the event :type context: context_array | None :param tstamp: Optional user-provided timestamp for the event :type tstamp: timestamp | int | float | None :rtype: tracker """ pb.add("eid", Tracker.get_uuid()) if isinstance(tstamp, TrueTimestamp): pb.add("ttm", tstamp.value) if isinstance(tstamp, DeviceTimestamp): pb.add("dtm", Tracker.get_timestamp(tstamp.value)) elif isinstance(tstamp, (int, float, type(None))): pb.add("dtm", Tracker.get_timestamp(tstamp)) if context is not None: context_jsons = list(map(lambda c: c.to_json(), context)) context_envelope = SelfDescribingJson(CONTEXT_SCHEMA, context_jsons).to_json() pb.add_json(context_envelope, self.encode_base64, "cx", "co") pb.add_dict(self.standard_nv_pairs) pb.add_dict(self.subject.standard_nv_pairs) return self.track(pb) @contract def track_page_view(self, page_url, page_title=None, referrer=None, context=None, tstamp=None): """ :param page_url: URL of the viewed page :type page_url: non_empty_string :param page_title: Title of the viewed page :type page_title: string_or_none :param referrer: Referrer of the page :type referrer: string_or_none :param context: Custom context for the event :type context: context_array | None :param tstamp: Optional user-provided timestamp for the event :type tstamp: timestamp | int | float | None :rtype: tracker """ pb = payload.Payload() pb.add("e", "pv") # pv: page view pb.add("url", page_url) pb.add("page", page_title) pb.add("refr", referrer) return self.complete_payload(pb, context, tstamp) @contract def track_page_ping(self, page_url, page_title=None, referrer=None, min_x=None, max_x=None, min_y=None, max_y=None, context=None, tstamp=None): """ :param page_url: URL of the viewed page :type page_url: non_empty_string :param page_title: Title of the viewed page :type page_title: string_or_none :param referrer: Referrer of the page :type referrer: string_or_none :param min_x: Minimum page x offset seen in the last ping period :type min_x: int | None :param max_x: Maximum page x offset seen in the last ping period :type max_x: int | None :param min_y: Minimum page y offset seen in the last ping period :type min_y: int | None :param max_y: Maximum page y offset seen in the last ping period :type max_y: int | None :param context: Custom context for the event :type context: context_array | None :param tstamp: Optional user-provided timestamp for the event :type tstamp: timestamp | int | float | None :rtype: tracker """ pb = payload.Payload() pb.add("e", "pp") # pp: page ping pb.add("url", page_url) pb.add("page", page_title) pb.add("refr", referrer) pb.add("pp_mix", min_x) pb.add("pp_max", max_x) pb.add("pp_miy", min_y) pb.add("pp_may", max_y) return self.complete_payload(pb, context, tstamp) @contract def track_link_click(self, target_url, element_id=None, element_classes=None, element_target=None, element_content=None, context=None, tstamp=None): """ :param target_url: Target URL of the link :type target_url: non_empty_string :param element_id: ID attribute of the HTML element :type element_id: string_or_none :param element_classes: Classes of the HTML element :type element_classes: list(str) | tuple(str,*) | None :param element_content: The content of the HTML element :type element_content: string_or_none :param context: Custom context for the event :type context: context_array | None :param tstamp: Optional user-provided timestamp for the event :type tstamp: timestamp | int | float | None :rtype: tracker """ properties = {} properties["targetUrl"] = target_url if element_id is not None: properties["elementId"] = element_id if element_classes is not None: properties["elementClasses"] = element_classes if element_target is not None: properties["elementTarget"] = element_target if element_content is not None: properties["elementContent"] = element_content event_json = SelfDescribingJson("%s/link_click/%s/1-0-1" % (BASE_SCHEMA_PATH, SCHEMA_TAG), properties) return self.track_unstruct_event(event_json, context, tstamp) @contract def track_add_to_cart(self, sku, quantity, name=None, category=None, unit_price=None, currency=None, context=None, tstamp=None): """ :param sku: Item SKU or ID :type sku: non_empty_string :param quantity: Number added to cart :type quantity: int :param name: Item's name :type name: string_or_none :param category: Item's category :type category: string_or_none :param unit_price: Item's price :type unit_price: int | float | None :param currency: Type of currency the price is in :type currency: string_or_none :param context: Custom context for the event :type context: context_array | None :param tstamp: Optional user-provided timestamp for the event :type tstamp: timestamp | int | float | None :rtype: tracker """ properties = {} properties["sku"] = sku properties["quantity"] = quantity if name is not None: properties["name"] = name if category is not None: properties["category"] = category if unit_price is not None: properties["unitPrice"] = unit_price if currency is not None: properties["currency"] = currency event_json = SelfDescribingJson("%s/add_to_cart/%s/1-0-0" % (BASE_SCHEMA_PATH, SCHEMA_TAG), properties) return self.track_unstruct_event(event_json, context, tstamp) @contract def track_remove_from_cart(self, sku, quantity, name=None, category=None, unit_price=None, currency=None, context=None, tstamp=None): """ :param sku: Item SKU or ID :type sku: non_empty_string :param quantity: Number added to cart :type quantity: int :param name: Item's name :type name: string_or_none :param category: Item's category :type category: string_or_none :param unit_price: Item's price :type unit_price: int | float | None :param currency: Type of currency the price is in :type currency: string_or_none :param context: Custom context for the event :type context: context_array | None :param tstamp: Optional user-provided timestamp for the event :type tstamp: timestamp | int | float | None :rtype: tracker """ properties = {} properties["sku"] = sku properties["quantity"] = quantity if name is not None: properties["name"] = name if category is not None: properties["category"] = category if unit_price is not None: properties["unitPrice"] = unit_price if currency is not None: properties["currency"] = currency event_json = SelfDescribingJson("%s/remove_from_cart/%s/1-0-0" % (BASE_SCHEMA_PATH, SCHEMA_TAG), properties) return self.track_unstruct_event(event_json, context, tstamp) @contract def track_form_change(self, form_id, element_id, node_name, value, type_=None, element_classes=None, context=None, tstamp=None): """ :param form_id: ID attribute of the HTML form :type form_id: non_empty_string :param element_id: ID attribute of the HTML element :type element_id: string_or_none :param node_name: Type of input element :type node_name: form_node_name :param value: Value of the input element :type value: string_or_none :param type_: Type of data the element represents :type type_: non_empty_string, form_type :param element_classes: Classes of the HTML element :type element_classes: list(str) | tuple(str,*) | None :param context: Custom context for the event :type context: context_array | None :param tstamp: Optional user-provided timestamp for the event :type tstamp: timestamp | int | float | None :rtype: tracker """ properties = dict() properties["formId"] = form_id properties["elementId"] = element_id properties["nodeName"] = node_name properties["value"] = value if type_ is not None: properties["type"] = type_ if element_classes is not None: properties["elementClasses"] = element_classes event_json = SelfDescribingJson("%s/change_form/%s/1-0-0" % (BASE_SCHEMA_PATH, SCHEMA_TAG), properties) return self.track_unstruct_event(event_json, context, tstamp) @contract def track_form_submit(self, form_id, form_classes=None, elements=None, context=None, tstamp=None): """ :param form_id: ID attribute of the HTML form :type form_id: non_empty_string :param form_classes: Classes of the HTML form :type form_classes: list(str) | tuple(str,*) | None :param elements: Classes of the HTML form :type elements: list(form_element) | None :param context: Custom context for the event :type context: context_array | None :param tstamp: Optional user-provided timestamp for the event :type tstamp: timestamp | int | float | None :rtype: tracker """ properties = dict() properties['formId'] = form_id if form_classes is not None: properties['formClasses'] = form_classes if elements is not None and len(elements) > 0: properties['elements'] = elements event_json = SelfDescribingJson("%s/submit_form/%s/1-0-0" % (BASE_SCHEMA_PATH, SCHEMA_TAG), properties) return self.track_unstruct_event(event_json, context, tstamp) @contract def track_site_search(self, terms, filters=None, total_results=None, page_results=None, context=None, tstamp=None): """ :param terms: Search terms :type terms: seq[>=1](str) :param filters: Filters applied to the search :type filters: dict(str:str|bool) | None :param total_results: Total number of results returned :type total_results: int | None :param page_results: Total number of pages of results :type page_results: int | None :param context: Custom context for the event :type context: context_array | None :param tstamp: Optional user-provided timestamp for the event :type tstamp: timestamp | int | float | None :rtype: tracker """ properties = {} properties["terms"] = terms if filters is not None: properties["filters"] = filters if total_results is not None: properties["totalResults"] = total_results if page_results is not None: properties["pageResults"] = page_results event_json = SelfDescribingJson("%s/site_search/%s/1-0-0" % (BASE_SCHEMA_PATH, SCHEMA_TAG), properties) return self.track_unstruct_event(event_json, context, tstamp) @contract def track_ecommerce_transaction_item(self, order_id, sku, price, quantity, name=None, category=None, currency=None, context=None, tstamp=None): """ This is an internal method called by track_ecommerce_transaction. It is not for public use. :param order_id: Order ID :type order_id: non_empty_string :param sku: Item SKU :type sku: non_empty_string :param price: Item price :type price: int | float :param quantity: Item quantity :type quantity: int :param name: Item name :type name: string_or_none :param category: Item category :type category: string_or_none :param currency: The currency the price is expressed in :type currency: string_or_none :param context: Custom context for the event :type context: context_array | None :rtype: tracker """ pb = payload.Payload() pb.add("e", "ti") pb.add("ti_id", order_id) pb.add("ti_sk", sku) pb.add("ti_nm", name) pb.add("ti_ca", category) pb.add("ti_pr", price) pb.add("ti_qu", quantity) pb.add("ti_cu", currency) return self.complete_payload(pb, context, tstamp) @contract def track_ecommerce_transaction(self, order_id, total_value, affiliation=None, tax_value=None, shipping=None, city=None, state=None, country=None, currency=None, items=None, context=None, tstamp=None): """ :param order_id: ID of the eCommerce transaction :type order_id: non_empty_string :param total_value: Total transaction value :type total_value: int | float :param affiliation: Transaction affiliation :type affiliation: string_or_none :param tax_value: Transaction tax value :type tax_value: int | float | None :param shipping: Delivery cost charged :type shipping: int | float | None :param city: Delivery address city :type city: string_or_none :param state: Delivery address state :type state: string_or_none :param country: Delivery address country :type country: string_or_none :param currency: The currency the price is expressed in :type currency: string_or_none :param items: The items in the transaction :type items: list(dict(str:*)) :param context: Custom context for the event :type context: context_array | None :rtype: tracker """ pb = payload.Payload() pb.add("e", "tr") pb.add("tr_id", order_id) pb.add("tr_tt", total_value) pb.add("tr_af", affiliation) pb.add("tr_tx", tax_value) pb.add("tr_sh", shipping) pb.add("tr_ci", city) pb.add("tr_st", state) pb.add("tr_co", country) pb.add("tr_cu", currency) tstamp = Tracker.get_timestamp(tstamp) self.complete_payload(pb, context, tstamp) for item in items: item["tstamp"] = tstamp item["order_id"] = order_id item["currency"] = currency self.track_ecommerce_transaction_item(**item) return self @contract def track_screen_view(self, name=None, id_=None, context=None, tstamp=None): """ :param name: The name of the screen view event :type name: string_or_none :param id_: Screen view ID :type id_: string_or_none :param context: Custom context for the event :type context: context_array | None :rtype: tracker """ screen_view_properties = {} if name is not None: screen_view_properties["name"] = name if id_ is not None: screen_view_properties["id"] = id_ event_json = SelfDescribingJson("%s/screen_view/%s/1-0-0" % (BASE_SCHEMA_PATH, SCHEMA_TAG), screen_view_properties) return self.track_unstruct_event(event_json, context, tstamp) @contract def track_struct_event(self, category, action, label=None, property_=None, value=None, context=None, tstamp=None): """ :param category: Category of the event :type category: non_empty_string :param action: The event itself :type action: non_empty_string :param label: Refer to the object the action is performed on :type label: string_or_none :param property_: Property associated with either the action or the object :type property_: string_or_none :param value: A value associated with the user action :type value: int | float | None :param context: Custom context for the event :type context: context_array | None :rtype: tracker """ pb = payload.Payload() pb.add("e", "se") pb.add("se_ca", category) pb.add("se_ac", action) pb.add("se_la", label) pb.add("se_pr", property_) pb.add("se_va", value) return self.complete_payload(pb, context, tstamp) @contract def track_unstruct_event(self, event_json, context=None, tstamp=None): """ :param event_json: The properties of the event. Has two field: A "data" field containing the event properties and A "schema" field identifying the schema against which the data is validated :type event_json: self_describing_json :param context: Custom context for the event :type context: context_array | None :param tstamp: User-set timestamp :type tstamp: timestamp | int | None :rtype: tracker """ envelope = SelfDescribingJson(UNSTRUCT_EVENT_SCHEMA, event_json.to_json()).to_json() pb = payload.Payload() pb.add("e", "ue") pb.add_json(envelope, self.encode_base64, "ue_px", "ue_pr") return self.complete_payload(pb, context, tstamp) # Alias track_self_describing_event = track_unstruct_event @contract def flush(self, is_async=False): """ Flush the emitter :param is_async: Whether the flush is done asynchronously. Default is False :type is_async: bool :rtype: tracker """ for emitter in self.emitters: if is_async: emitter.flush() else: emitter.sync_flush() return self @contract def set_subject(self, subject): """ Set the subject of the events fired by the tracker :param subject: Subject to be tracked :type subject: subject | None :rtype: tracker """ self.subject = subject return self @contract def add_emitter(self, emitter): """ Add a new emitter to which events should be passed :param emitter: New emitter :type emitter: emitter :rtype: tracker """ self.emitters.append(emitter) return self @staticmethod def check_form_element(element): """ PyContracts helper method to check that dictionary conforms element in sumbit_form and change_form schemas """ all_present = isinstance(element, dict) and 'name' in element and 'value' in element and 'nodeName' in element try: if element['type'] in FORM_TYPES: type_valid = True else: type_valid = False except KeyError: type_valid = True return all_present and element['nodeName'] in FORM_NODE_NAMES and type_valid
15five-snowplow-tracker
/15five-snowplow-tracker-0.8.156.tar.gz/15five-snowplow-tracker-0.8.156/snowplow_tracker/tracker.py
tracker.py
from contracts import contract, new_contract SUPPORTED_PLATFORMS = set(["pc", "tv", "mob", "cnsl", "iot", "web", "srv", "app"]) DEFAULT_PLATFORM = "pc" new_contract("subject", lambda x: isinstance(x, Subject)) new_contract("supported_platform", lambda x: x in SUPPORTED_PLATFORMS) class Subject(object): """ Class for an event subject, where we view events as of the form (Subject) -> (Verb) -> (Object) """ def __init__(self): self.standard_nv_pairs = {"p": DEFAULT_PLATFORM} @contract def set_platform(self, value): """ :param value: One of ["pc", "tv", "mob", "cnsl", "iot", "web", "srv", "app"] :type value: supported_platform :rtype: subject """ self.standard_nv_pairs["p"] = value return self @contract def set_user_id(self, user_id): """ :param user_id: User ID :type user_id: string :rtype: subject """ self.standard_nv_pairs["uid"] = user_id return self @contract def set_screen_resolution(self, width, height): """ :param width: Width of the screen :param height: Height of the screen :type width: int,>0 :type height: int,>0 :rtype: subject """ self.standard_nv_pairs["res"] = "".join([str(width), "x", str(height)]) return self @contract def set_viewport(self, width, height): """ :param width: Width of the viewport :param height: Height of the viewport :type width: int,>0 :type height: int,>0 :rtype: subject """ self.standard_nv_pairs["vp"] = "".join([str(width), "x", str(height)]) return self @contract def set_color_depth(self, depth): """ :param depth: Depth of the color on the screen :type depth: int :rtype: subject """ self.standard_nv_pairs["cd"] = depth return self @contract def set_timezone(self, timezone): """ :param timezone: Timezone as a string :type timezone: string :rtype: subject """ self.standard_nv_pairs["tz"] = timezone return self @contract def set_lang(self, lang): """ Set language. :param lang: Language the application is set to :type lang: string :rtype: subject """ self.standard_nv_pairs["lang"] = lang return self @contract def set_domain_user_id(self, duid): """ Set the domain user ID :param duid: Domain user ID :type duid: string :rtype: subject """ self.standard_nv_pairs["duid"] = duid return self @contract def set_ip_address(self, ip): """ Set the domain user ID :param ip: IP address :type ip: string :rtype: subject """ self.standard_nv_pairs["ip"] = ip return self @contract def set_useragent(self, ua): """ Set the user agent :param ua: User agent :type ua: string :rtype: subject """ self.standard_nv_pairs["ua"] = ua return self @contract def set_network_user_id(self, nuid): """ Set the network user ID field This overwrites the nuid field set by the collector :param nuid: Network user ID :type nuid: string :rtype: subject """ self.standard_nv_pairs["tnuid"] = nuid return self def set_custom(self, field, value): """ Set custom field :param field: Field name :param value: Value for a field """ self.standard_nv_pairs[field] = value return self def set_custom_by_name(self, field, value): """ Set custom field by getting field name from SNOWPLOW_REVERTED_TRANSFORM_MAP :param field: Field name :param value: Value for a field """ self.standard_nv_pairs[SNOWPLOW_REVERTED_TRANSFORM_MAP.get(field, field)] = value return self SNOWPLOW_REVERTED_TRANSFORM_MAP = { "event": "e", "user_ipaddress": "ip", "app_id": "aid", "platform": "p", "txn_id": "tid", "user_id": "uid", "domain_userid": "duid", "network_userid": "nuid", "useragent": "ua", "user_fingerprint": "fp", "domain_sessionidx": "vid", "domain_sessionid": "sid", "dvce_created_tstamp": "dtm", "true_tstamp": "ttm", "dvce_sent_tstamp": "stm", "name_tracker": "tna", "v_tracker": "tv", "v_collector": "cv", "br_lang": "lang", "br_features_pdf": "f_pdf", "br_features_flash": "f_fla", "br_features_java": "f_java", "br_features_director": "f_dir", "br_features_quicktime": "f_qt", "br_features_realplayer": "f_realp", "br_features_windowsmedia": "f_wma", "br_features_gears": "f_gears", "br_features_silverlight": "f_ag", "br_cookies": "cookie", "br_colordepth": "cd", "os_timezone": "tz", "page_referrer": "refr", "page_url": "url", "page_title": "page", "doc_charset": "cs", "event_id": "eid", "contexts": "cx", "se_category": "se_ca", "se_action": "se_ac", "se_label": "se_la", "se_property": "se_pr", "se_value": "se_va", "unstruct_event": "ue_pr", "tr_orderid": "tr_id", "tr_affiliation": "tr_af", "tr_total": "tr_tt", "tr_tax": "tr_tx", "tr_shipping": "tr_sh", "tr_city": "tr_ci", "tr_state": "tr_st", "tr_country": "tr_co", "ti_orderid": "ti_id", "ti_sku": "ti_sk", "ti_name": "ti_nm", "ti_category": "ti_ca", "ti_price": "ti_pr", "ti_quantity": "ti_qu", "pp_xoffset_min": "pp_mix", "pp_xoffset_max": "pp_max", "pp_yoffset_min": "pp_miy", "pp_yoffset_max": "pp_may", "tr_currency": "tr_cu", "ti_currency": "ti_cu", }
15five-snowplow-tracker
/15five-snowplow-tracker-0.8.156.tar.gz/15five-snowplow-tracker-0.8.156/snowplow_tracker/subject.py
subject.py
import json import logging import time import threading try: # Python 2 from Queue import Queue except ImportError: # Python 3 from queue import Queue from celery import shared_task import redis import requests from contracts import contract, new_contract from snowplow_tracker.utils import http_get, http_post, is_good_status_code from snowplow_tracker.self_describing_json import SelfDescribingJson logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) DEFAULT_MAX_LENGTH = 10 PAYLOAD_DATA_SCHEMA = "iglu:com.snowplowanalytics.snowplow/payload_data/jsonschema/1-0-4" new_contract("protocol", lambda x: x == "http" or x == "https") new_contract("method", lambda x: x == "get" or x == "post") new_contract("function", lambda x: hasattr(x, "__call__")) new_contract("redis", lambda x: isinstance(x, (redis.Redis, redis.StrictRedis))) class Emitter(object): """ Synchronously send Snowplow events to a Snowplow collector Supports both GET and POST requests """ @contract def __init__(self, endpoint, protocol="http", port=None, method="get", buffer_size=None, on_success=None, on_failure=None, byte_limit=None): """ :param endpoint: The collector URL. Don't include "http://" - this is done automatically. :type endpoint: string :param protocol: The protocol to use - http or https. Defaults to http. :type protocol: protocol :param port: The collector port to connect to :type port: int | None :param method: The HTTP request method :type method: method :param buffer_size: The maximum number of queued events before the buffer is flushed. Default is 10. :type buffer_size: int | None :param on_success: Callback executed after every HTTP request in a flush has status code 200 Gets passed the number of events flushed. :type on_success: function | None :param on_failure: Callback executed if at least one HTTP request in a flush has status code 200 Gets passed two arguments: 1) The number of events which were successfully sent 2) If method is "post": The unsent data in string form; If method is "get": An array of dictionaries corresponding to the unsent events' payloads :type on_failure: function | None :param byte_limit: The size event list after reaching which queued events will be flushed :type byte_limit: int | None """ self.endpoint = Emitter.as_collector_uri(endpoint, protocol, port, method) self.method = method if buffer_size is None: if method == "post": buffer_size = DEFAULT_MAX_LENGTH else: buffer_size = 1 self.buffer_size = buffer_size self.buffer = [] self.byte_limit = byte_limit self.bytes_queued = None if byte_limit is None else 0 self.on_success = on_success self.on_failure = on_failure self.lock = threading.RLock() self.timer = None logger.info("Emitter initialized with endpoint " + self.endpoint) @staticmethod @contract def as_collector_uri(endpoint, protocol="http", port=None, method="get"): """ :param endpoint: The raw endpoint provided by the user :type endpoint: string :param protocol: The protocol to use - http or https :type protocol: protocol :param port: The collector port to connect to :type port: int | None :param method: Either `get` or `post` HTTP method :type method: method :rtype: string """ if method == "get": path = "/i" else: path = "/com.snowplowanalytics.snowplow/tp2" if port is None: return protocol + "://" + endpoint + path else: return protocol + "://" + endpoint + ":" + str(port) + path @contract def input(self, payload): """ Adds an event to the buffer. If the maximum size has been reached, flushes the buffer. :param payload: The name-value pairs for the event :type payload: dict(string:*) """ with self.lock: if self.bytes_queued is not None: self.bytes_queued += len(str(payload)) if self.method == "post": self.buffer.append({key: str(payload[key]) for key in payload}) else: self.buffer.append(payload) if self.reached_limit(): self.flush() def reached_limit(self): """ Checks if event-size or bytes limit are reached :rtype: bool """ if self.byte_limit is None: return len(self.buffer) >= self.buffer_size else: return self.bytes_queued >= self.byte_limit or len(self.buffer) >= self.buffer_size def flush(self): """ Sends all events in the buffer to the collector. """ with self.lock: self.send_events(self.buffer) self.buffer = [] if self.bytes_queued is not None: self.bytes_queued = 0 @contract def http_post(self, data): """ :param data: The array of JSONs to be sent :type data: string """ logger.info("Sending POST request to %s..." % self.endpoint) logger.debug("Payload: %s" % data) r = requests.post(self.endpoint, data=data, headers={'content-type': 'application/json; charset=utf-8'}) getattr(logger, "info" if self.is_good_status_code(r.status_code) else "warn")("POST request finished with status code: " + str(r.status_code)) return r @contract def http_get(self, payload): """ :param payload: The event properties :type payload: dict(string:*) """ logger.info("Sending GET request to %s..." % self.endpoint) logger.debug("Payload: %s" % payload) r = requests.get(self.endpoint, params=payload) getattr(logger, "info" if self.is_good_status_code(r.status_code) else "warn")("GET request finished with status code: " + str(r.status_code)) return r def sync_flush(self): """ Calls the flush method of the base Emitter class. This is guaranteed to be blocking, not asynchronous. """ logger.debug("Starting synchronous flush...") Emitter.flush(self) logger.info("Finished synchrous flush") @staticmethod @contract def is_good_status_code(status_code): """ :param status_code: HTTP status code :type status_code: int :rtype: bool """ return 200 <= status_code < 400 @contract def send_events(self, evts): """ :param evts: Array of events to be sent :type evts: list(dict(string:*)) """ send_events(self.endpoint, evts, self.method) @contract def set_flush_timer(self, timeout, flush_now=False): """ Set an interval at which the buffer will be flushed :param timeout: interval in seconds :type timeout: int | float :param flush_now: immediately flush buffer :type flush_now: bool """ # Repeatable create new timer if flush_now: self.flush() self.timer = threading.Timer(timeout, self.set_flush_timer, [timeout, True]) self.timer.daemon = True self.timer.start() def cancel_flush_timer(self): """ Abort automatic async flushing """ if self.timer is not None: self.timer.cancel() @staticmethod def attach_sent_timestamp(events): """ Attach (by mutating in-place) current timestamp in milliseconds as `stm` param :param events: Array of events to be sent :type events: list(dict(string:*)) :rtype: None """ def update(e): e.update({'stm': str(int(time.time()) * 1000)}) [update(event) for event in events] class AsyncEmitter(Emitter): """ Uses threads to send HTTP requests asynchronously """ @contract def __init__( self, endpoint, protocol="http", port=None, method="get", buffer_size=None, on_success=None, on_failure=None, thread_count=1, byte_limit=None): """ :param endpoint: The collector URL. Don't include "http://" - this is done automatically. :type endpoint: string :param protocol: The protocol to use - http or https. Defaults to http. :type protocol: protocol :param port: The collector port to connect to :type port: int | None :param method: The HTTP request method :type method: method :param buffer_size: The maximum number of queued events before the buffer is flushed. Default is 10. :type buffer_size: int | None :param on_success: Callback executed after every HTTP request in a flush has status code 200 Gets passed the number of events flushed. :type on_success: function | None :param on_failure: Callback executed if at least one HTTP request in a flush has status code 200 Gets passed two arguments: 1) The number of events which were successfully sent 2) If method is "post": The unsent data in string form; If method is "get": An array of dictionaries corresponding to the unsent events' payloads :type on_failure: function | None :param thread_count: Number of worker threads to use for HTTP requests :type thread_count: int :param byte_limit: The size event list after reaching which queued events will be flushed :type byte_limit: int | None """ super(AsyncEmitter, self).__init__(endpoint, protocol, port, method, buffer_size, on_success, on_failure, byte_limit) self.queue = Queue() for i in range(thread_count): t = threading.Thread(target=self.consume) t.daemon = True t.start() def sync_flush(self): while True: self.flush() self.queue.join() if len(self.buffer) < 1: break def flush(self): """ Removes all dead threads, then creates a new thread which executes the flush method of the base Emitter class """ with self.lock: self.queue.put(self.buffer) self.buffer = [] if self.bytes_queued is not None: self.bytes_queued = 0 def consume(self): while True: evts = self.queue.get() self.send_events(evts) self.queue.task_done() class CeleryEmitter(Emitter): """ Uses a Celery worker to send HTTP requests asynchronously. Works like the base Emitter class, but on_success and on_failure callbacks cannot be set. """ celery_app = None def __init__(self, endpoint, protocol="http", port=None, method="get", buffer_size=None, byte_limit=None): super(CeleryEmitter, self).__init__(endpoint, protocol, port, method, buffer_size, None, None, byte_limit) def send_events(self, evts): """ Schedules a flush task """ send_events.delay(self.endpoint, evts, self.method) logger.info("Scheduled a Celery task to flush the event queue") class RedisEmitter(object): """ Sends Snowplow events to a Redis database """ @contract def __init__(self, rdb=None, key="snowplow"): """ :param rdb: Optional custom Redis database :type rdb: redis | None :param key: The Redis key for the list of events :type key: string """ if rdb is None: rdb = redis.StrictRedis() self.rdb = rdb self.key = key @contract def input(self, payload): """ :param payload: The event properties :type payload: dict(string:*) """ logger.debug("Pushing event to Redis queue...") self.rdb.rpush(self.key, json.dumps(payload)) logger.info("Finished sending event to Redis.") def flush(self): logger.warn("The RedisEmitter class does not need to be flushed") def sync_flush(self): self.flush() @shared_task def send_events(endpoint, evts, method): if len(evts) > 0: logger.info("Attempting to send %s requests" % len(evts)) Emitter.attach_sent_timestamp(evts) if method == 'post': data = SelfDescribingJson(PAYLOAD_DATA_SCHEMA, evts).to_string() post_succeeded = False try: status_code = http_post(endpoint, data).status_code post_succeeded = is_good_status_code(status_code) except requests.RequestException as e: logger.warn(e) if post_succeeded: logger.info("Success") else: logger.info("Fail") elif method == 'get': success_count = 0 unsent_requests = [] for evt in evts: get_succeeded = False try: status_code = http_get(endpoint, evt).status_code get_succeeded = is_good_status_code(status_code) except requests.RequestException as e: logger.warn(e) if get_succeeded: success_count += 1 else: unsent_requests.append(evt) else: logger.info("Skipping flush since buffer is empty")
15five-snowplow-tracker
/15five-snowplow-tracker-0.8.156.tar.gz/15five-snowplow-tracker-0.8.156/snowplow_tracker/emitters.py
emitters.py
import random import time import json import base64 from contracts import contract class Payload: def __init__(self, dict_=None): """ Constructor """ self.nv_pairs = {} if dict_ is not None: for f in dict_: self.nv_pairs[f] = dict_[f] """ Methods to add to the payload """ def add(self, name, value): """ Add a name value pair to the Payload object """ if not (value == "" or value is None): self.nv_pairs[name] = value @contract def add_dict(self, dict_, base64=False): """ Add a dict of name value pairs to the Payload object :param dict_: Dictionary to be added to the Payload :type dict_: dict(string:*) """ for f in dict_: self.add(f, dict_[f]) @contract def add_json(self, dict_, encode_base64, type_when_encoded, type_when_not_encoded): """ Add an encoded or unencoded JSON to the payload :param dict_: Custom context for the event :type dict_: dict(string:*) | None :param encode_base64: If the payload is base64 encoded :type encode_base64: bool :param type_when_encoded: Name of the field when encode_base64 is set :type type_when_encoded: string :param type_when_not_encoded: Name of the field when encode_base64 is not set :type type_when_not_encoded: string """ if dict_ is not None and dict_ != {}: json_dict = json.dumps(dict_, ensure_ascii=False) if encode_base64: encoded_dict = base64.urlsafe_b64encode(json_dict.encode("ascii")) if not isinstance(encoded_dict, str): encoded_dict = encoded_dict.decode("utf-8") self.add(type_when_encoded, encoded_dict) else: self.add(type_when_not_encoded, json_dict) def get(self): """ Returns the context dictionary from the Payload object """ return self.nv_pairs
15five-snowplow-tracker
/15five-snowplow-tracker-0.8.156.tar.gz/15five-snowplow-tracker-0.8.156/snowplow_tracker/payload.py
payload.py
# Resumo do funcionamento A biblioteca desenvolvida auxilia desenvolvedores a explorar os dados com funções essenciais para a identificação de outliers e anomalias e uma interface que auxilia a visualizar as informações de acordo com o arquivo de configuração. A biblioteca recebe um arquivo yaml com as configurações de cada etapa do pipeline de dados, e do endereço do banco de dados. Após a execução do banco de dados, o banco de dados de dados é atualizado com os resultados da análise e os resultados podem ser visualizados por meio de dashboards no metabase.
170051277-trab-final-gces
/170051277_trab_final_gces-0.5.0-py3-none-any.whl/170051277_trab_final_gces/README.md
README.md
from statistics import mean class KeySmash: """A class for calculating metrics to indicate key smashing behavior in a text. Key smashing is the act of typing on a keyboard in a rapid and uncontrolled manner, often resulting in a series of random characters being entered into a document or text field. """ def __init__(self): self.char_sets = { "vowels": 'aeiouáéíóúãõ', "consonants": 'bcdfghjklmnñpqrstvwxyz', "special_characters": '!@#$%^¨|\'\"&*()_+:;~`´]}{[}ºª=-.¿¡' } def calculate_char_frequency_metric(self, text): """ Calculate the Char Frequency Metric. Parameters ---------- text : str The text to use for the calculation. Returns ------- float Char Frequency Metric. Examples -------- >>> calculate_char_frequency_metric("PUENTECILLA KM. 1.7") 1.121212121212121 >>> calculate_char_frequency_metric("ASDASD XXXX") 3.0 """ word_results = [] for w in text.split(' '): char_count = [] if w and len(w) > 0: for e in set(w): char_count.append(w.count(e)**2) word_results.append(sum(char_count)/len(w)) if word_results == 0 or len(word_results) == 0: return 0 else: return mean(word_results) def calculate_irregular_sequence_metric(self, text, opt): """ Calculate the Irregular Sequence Metric. Parameters ---------- text : str The text to use for the calculation. opt : str The type of characters to consider for the calculation, can be one of 'vowels', 'consonants', or 'special_characters'. Returns ------- float Irregular Sequence Metric. Examples -------- >>> calculate_irregular_sequence_metric("PUENTECILLA KM. 1.7", "vowels") 0.21052631578947367 >>> calculate_irregular_sequence_metric("ASDASD XXXX", "consonants") 2.1818181818181817 >>> calculate_irregular_sequence_metric("!@#$% ASDFGHJKL", "special_characters") 1.5625 """ count_sequence = 1 sequence_regex = [] text = str(text).lower() opt = self.char_sets[opt] for i in range(len(text) - 1): if text[i] in opt and text[i + 1] in opt: count_sequence = count_sequence + 1 else: if (count_sequence != 1): sequence_regex.append(count_sequence**2) count_sequence = 1 if (count_sequence != 1): sequence_regex.append(count_sequence**2) return sum(sequence_regex)/len(text) def calculate_number_count_metric(self, text): """ Calculate the Number Count Metric. Parameters ---------- text : str The text field to use for the calculation. Returns ------- float Number Count Metric. Examples -------- >>> calculate_number_count_metric("ABC 123 !@#") 0.0 >>> calculate_number_count_metric("ABC123 !@#") 0.9 """ text_list = text.split() calc_num_line = 0 if text_list: for word in text_list: if any(char.isdigit() for char in word) and any(not char.isdigit() for char in word): num = len([char for char in word if char.isdigit()]) calc_num = num**2 calc_num_line += calc_num return calc_num_line / len(' '.join(text_list)) return 0
170051277-trab-final-gces
/170051277_trab_final_gces-0.5.0-py3-none-any.whl/170051277_trab_final_gces/src/data_pipeline/feature_engineering/key_smash.py
key_smash.py
from src.parser.parser_base import ParserBase class FeatureEngineeringParser(ParserBase): def parse(self, data: list): return self._parse_feature_engineering_configs(data) def _parse_feature_engineering_configs(self, data: list): if(not data): return configs = [] columns_set_alias = [] for inputs in data: input = self._try_get(inputs, 'input') # columns columns_set, columns_alias = self._get_dataframe(self._try_get(input, 'columns')) columns_set_alias = columns_alias + columns_set_alias # features word_embedding, keyboard_smash = self._get_features_details(self._try_get(input, 'features')) data_lang, dimensions = self._get_word_embedding_config(word_embedding, columns_set_alias) # Enabled features enabled_features = keyboard_smash if(not dimensions): enabled_features['word_embedding'] = False else: enabled_features['word_embedding'] = True configs.append({ 'columns_alias': columns_alias, 'columns_set': columns_set, 'data_lang': data_lang, 'dimensions': dimensions, 'enabled_features': enabled_features }) return configs, columns_set_alias def _get_dataframe(self, columns: dict): if(not columns): return columns_alias = [] for column in columns: for key in column.keys(): columns_alias.append(key) return columns, columns_alias def _get_features_details(self, features: dict): if(not features): return word_embedding = self._try_get(features, 'word_embedding') if (word_embedding == 'off'): word_embedding = False keyboard_smash = self._get_keyboard_smash_config(features) return word_embedding, keyboard_smash def _get_word_embedding_config(self, feature: dict, columns_alias: list): if(not feature): return 'es', None data_lang = self._get(feature, 'data_lang', 'es') if ('data_lang' in feature): del feature['data_lang'] dimensions = {} dimensions_default_value = 25 for key, item in feature.items(): if(not(key in columns_alias)): error_msg = f'Label {key} not match' raise ValueError(error_msg) dimensions[key] = self._get(item, 'dimensions', dimensions_default_value) for name in columns_alias: if(not(name in dimensions)): dimensions[name] = dimensions_default_value return data_lang, dimensions def _get_keyboard_smash_config(self, features: dict): keyboard_smash_default_value = { 'ksmash_sequence_vowels': True, 'ksmash_sequence_consonants': True, 'ksmash_sequence_special_characters': True, 'ksmash_numbers': True, 'ksmash_char_frequence': True } keyboard_smash = self._get(features, 'keyboard_smash', keyboard_smash_default_value) if (keyboard_smash == keyboard_smash_default_value): return keyboard_smash for key in keyboard_smash.keys(): if(key in keyboard_smash_default_value and keyboard_smash[key] == 'off'): keyboard_smash_default_value[key] = False return keyboard_smash_default_value
170051277-trab-final-gces
/170051277_trab_final_gces-0.5.0-py3-none-any.whl/170051277_trab_final_gces/src/parser/feature_engineering_parser.py
feature_engineering_parser.py
from src.parser.parser_base import ParserBase from src.parser.const import model_type class ModelParser(ParserBase): def __init__(self, columns_alias): self.columns_alias = columns_alias self.default_keyboard_smash_values = { 'ksmash_sequence_vowels': 1.00, 'ksmash_sequence_consonants': 1.999, 'ksmash_sequence_special_characters': 2.2499, 'ksmash_numbers': 2.9, 'ksmash_char_frequence': 2.78 } def parse(self, data: list): return self._parse_modal_configs(data) def _parse_modal_configs(self, data: list): if(not data): return random_forest = data.get('random_forest') if(random_forest): return self.get_random_forest_address_config(random_forest) def get_random_forest_address_config(self, model: list): configs = [] for inputs in model: input = self._try_get(inputs, 'input', 'The inputs should be specified') type = self._try_get(input, 'type') if (type == model_type['ADDRESS']): columns_set_alias = self.get_columns(input) keyboard_smash, n_estimators, test_size = self.get_thresholds(input, columns_set_alias) configs.append({ 'model': 'keyboard_smash', 'type': model_type['ADDRESS'], 'columns_set_alias': columns_set_alias, 'keyboard_smash': keyboard_smash, 'n_estimators': n_estimators, 'test_size': test_size }) return configs def get_columns(self, input): columns_set_alias = self._try_get(input, 'columns') for alias in columns_set_alias: if(not(alias in self.columns_alias)): raise ValueError(f'`{alias}` column not match with the available columns') return columns_set_alias def get_thresholds(self, input, columns_set_alias): thresholds = self._try_get(input, 'thresholds') test_size = self._get(thresholds, 'test_size', 0.3) n_estimators = self._get(thresholds, 'n_estimators', 100) keyboard_smash_default = self.get_keyboard_smash_default_thresholds(columns_set_alias) keyboard_smash = self._get(thresholds, 'keyboard_smash', keyboard_smash_default) for key in keyboard_smash.keys(): if(not(key in columns_set_alias)): raise ValueError(f'`{key}` key not match with the available columns') for alias in columns_set_alias: if(not(alias in keyboard_smash.keys())): keyboard_smash.append({alias: self.default_keyboard_smash_values}) return keyboard_smash, n_estimators, test_size def get_keyboard_smash_default_thresholds(self, columns_set_alias): default_config = [] for alias in columns_set_alias: default_config.append({alias: self.default_keyboard_smash_values}) return default_config
170051277-trab-final-gces
/170051277_trab_final_gces-0.5.0-py3-none-any.whl/170051277_trab_final_gces/src/parser/model_parser.py
model_parser.py
17MonIP Changelog ================= Version 0.2.7 ------------- Released on Oct 14, 2015. - update dat version to 20151001 Version 0.2.6 ------------- Released on April 21, 2015. - support python wheel Version 0.2.5 ------------- Released on April 21, 2015. - update dat version to 20150401 - use binary search to replace line search for speed boost, via #7 .. _`#7`: https://github.com/lxyu/17monip/issues/7 Version 0.2.4 ------------- Released on November 18, 2014. - update dat version to 20141001 - code rewrite via `#3`_ and `#5`_, .. _`#3`: https://github.com/lxyu/17monip/issues/3 .. _`#5`: https://github.com/lxyu/17monip/issues/5 Version 0.2.3 ------------- Released on August 6, 2014. - add support for py2.6, py3.2 Version 0.2.2 ------------- Released on August 5, 2014. - update dat version to 20140804 - update tests and docs Version 0.2.1 ------------- Released on July 4, 2014. - update dat version to 20140701 - change bin script from 'ip' to 'iploc' via `#2`_. .. _`#2`: https://github.com/lxyu/17monip/issues/2 Version 0.2.0 ------------- Released on June 4, 2014. - update dat version to 20140601 - increased accuracy from province to city - add command line utils - add tests Version 0.1.0 ------------- First release.
17MonIP
/17MonIP-0.2.7.tar.gz/17MonIP-0.2.7/CHANGES.rst
CHANGES.rst
17MonIP Python Lib ================== .. image:: http://img.shields.io/pypi/v/17MonIP.svg?style=flat :target: https://pypi.python.org/pypi/17MonIP .. image:: http://img.shields.io/travis/lxyu/17monip/master.svg?style=flat :target: https://travis-ci.org/lxyu/17monip .. image:: http://img.shields.io/pypi/dm/17MonIP.svg?style=flat :target: https://pypi.python.org/pypi/17MonIP IP search based on 17mon.cn, the best IP database for china. Source: http://tool.17mon.cn Install ------- Supports python2.6 to python3.4 and pypy. .. code:: bash $ pip install 17monip Usage ----- .. code:: python >>> import IP >>> IP.find("www.baidu.com") '中国\t浙江\t杭州' >>> IP.find("127.0.0.1") '本机地址\t本机地址' CMD Util -------- .. code:: bash $ iploc ele.me 中国 北京 北京 $ iploc aliyun.com 中国 浙江 杭州 Changelog --------- https://github.com/lxyu/17monip/blob/master/CHANGES.rst
17MonIP
/17MonIP-0.2.7.tar.gz/17MonIP-0.2.7/README.rst
README.rst
import os import socket import struct try: import mmap except ImportError: mmap = None __all__ = ['IPv4Database', 'find'] _unpack_V = lambda b: struct.unpack("<L", b)[0] _unpack_N = lambda b: struct.unpack(">L", b)[0] def _unpack_C(b): if isinstance(b, int): return b return struct.unpack("B", b)[0] datfile = os.path.join(os.path.dirname(__file__), "17monipdb.dat") class IPv4Database(object): """Database for search IPv4 address. The 17mon dat file format in bytes:: ----------- | 4 bytes | <- offset number ----------------- | 256 * 4 bytes | <- first ip number index ----------------------- | offset - 1028 bytes | <- ip index ----------------------- | data storage | ----------------------- """ def __init__(self, filename=None, use_mmap=True): if filename is None: filename = datfile with open(filename, 'rb') as f: if use_mmap and mmap is not None: buf = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) else: buf = f.read() use_mmap = False self._use_mmap = use_mmap self._buf = buf self._offset = _unpack_N(buf[:4]) self._is_closed = False def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def close(self): if self._use_mmap: self._buf.close() self._is_closed = True def _lookup_ipv4(self, ip): nip = socket.inet_aton(ip) # first IP number fip = bytearray(nip)[0] # 4 + (fip - 1) * 4 fip_offset = fip * 4 + 4 # position in the index block count = _unpack_V(self._buf[fip_offset:fip_offset + 4]) pos = count * 8 offset = pos + 1028 data_length = 0 data_pos = 0 lo, hi = 0, (self._offset - offset) // 8 while lo < hi: mid = (lo + hi) // 2 mid_offset = pos + 1028 + 8 * mid mid_val = self._buf[mid_offset: mid_offset+4] if mid_val < nip: lo = mid + 1 else: hi = mid offset = pos + 1028 + 8 * lo if offset == self._offset: return None data_pos = _unpack_V(self._buf[offset + 4:offset + 7] + b'\0') data_length = _unpack_C(self._buf[offset + 7]) offset = self._offset + data_pos - 1024 value = self._buf[offset:offset + data_length] return value.decode('utf-8').strip() def find(self, ip): if self._is_closed: raise ValueError('I/O operation on closed dat file') return self._lookup_ipv4(ip) def find(ip): # keep find for compatibility try: ip = socket.gethostbyname(ip) except socket.gaierror: return with IPv4Database() as db: return db.find(ip)
17MonIP
/17MonIP-0.2.7.tar.gz/17MonIP-0.2.7/IP/ip.py
ip.py
=============== 199Fix =============== 199Fix provides a logging handler to push exceptions and other errors to https://199fix.com/. Installation ============ Installation with ``pip``: :: $ pip install 199fix Get an API Key here https://199fix.com/signup/ Add ``'199fix.handlers.I99FixHandler'`` as a logging handler: :: LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { '199fix': { 'level': 'ERROR', 'class': 'i99fix.handlers.I99FixHandler', 'filters': ['require_debug_false'], 'api_key': '[your-api-key]', 'env_name': 'production', }, }, 'loggers': { 'django': { 'handlers': ['199fix'], 'level': 'ERROR', 'propagate': True, }, } } Settings ======== ``level`` (built-in setting) Change the ``level`` to ``'ERROR'`` to disable logging of 404 error messages. ``api_key`` (required) API key , Get one here https://199fix.com/. ``env_name`` (required) Name of the environment (e.g. production, development) Contributing ============ * Fork the repository on GitHub and start hacking. * Run the tests. * Send a pull request with your changes.
199Fix
/199Fix-1.1.2.tar.gz/199Fix-1.1.2/README.rst
README.rst
import logging import traceback try: from urllib.request import Request, urlopen from urllib.error import HTTPError except ImportError: from urllib2 import Request, urlopen, HTTPError import json from i99fix import __version__ _DEFAULT_API_URL = 'https://199fix.com/api/logger/' _DEFAULT_ENV_VARIABLES = ['DJANGO_SETTINGS_MODULE', ] _DEFAULT_META_VARIABLES = ['HTTP_USER_AGENT', 'REMOTE_ADDR', 'SERVER_NAME', 'SERVER_SOFTWARE', ] class I99FixHandler(logging.Handler): ''' Error logger for 199fix.com ''' def __init__(self, api_key, env_name, api_url=_DEFAULT_API_URL, timeout=30, env_variables=_DEFAULT_ENV_VARIABLES, meta_variables=_DEFAULT_META_VARIABLES): logging.Handler.__init__(self) self.api_key = api_key self.api_url = api_url self.env_name = env_name self.env_variables = env_variables self.meta_variables = meta_variables self.timeout = timeout def emit(self, record): try: message = self.generate_json(record) self._sendMessage(message) except Exception: return None def generate_json(self, record): ''' generate json from data ''' exn = None trace = None data = {} if record.exc_info: _, exn, trace = record.exc_info message = record.getMessage() if exn: message = "{0}: {1}".format(message, str(exn)) if hasattr(record, 'request'): request = record.request cgi_data = [] for key, value in request.META.items(): if key in self.meta_variables: '''more data''' cgi_data.append({key: value}) data['cgi_data'] = cgi_data data['exception'] = exn.__class__.__name__ if exn else '' data['message'] = message data['level'] = record.levelname trace_data = [] try: if trace is None: trace_data = {'file': record.pathname, 'number': str(record.lineno), 'method': record.funcName } else: for pathname, lineno, funcName, text in traceback.extract_tb(trace): trace_data = {'file': pathname, 'number': str(lineno), 'method': '%s: %s' % (funcName, text) } except Exception: pass try: ''' request url ''' data['url'] = request.build_absolute_uri() except Exception: pass data['backtrace'] = trace_data return data def _sendHttpRequest(self, message={}): ''' send json request to url ''' try: '''initial values''' message['__version__'] = __version__ message['api-key'] = self.api_key message['environment-name'] = self.env_name req = Request(self.api_url) req.add_header('Content-Type', 'application/json') response = urlopen(req, json.dumps(message), timeout=self.timeout) status = response.getcode() except HTTPError as e: status = e.code return status def _sendMessage(self, message): ''' send message ''' status = self._sendHttpRequest(message) if status == 200: return if status == 403: exceptionMessage = "Invalid API credentials" elif status == 422: exceptionMessage = "Invalid Json sent: {0}".format(message) elif status == 500: exceptionMessage = "Destination server is unavailable. " \ "Please check the remote server status." elif status == 503: exceptionMessage = "Service unavailable. You may be over your " \ "quota." elif status == 303: exceptionMessage = "Invalid Url for this application" else: exceptionMessage = "Unexpected status code {0}".format(str(status)) raise Exception('[199fix] %s' % exceptionMessage)
199Fix
/199Fix-1.1.2.tar.gz/199Fix-1.1.2/i99fix/handlers.py
handlers.py
import torch import torch.nn as nn import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor # Class id to name mapping COCO_INSTANCE_CATEGORY_NAMES = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # Class definition for the model class ObjectDetectionModel(object): ''' The blackbox object detection model (Faster RCNN for those who want to know). Given an image as numpy array (3, H, W), it detects objects (generates their category ids and bounding boxes). ''' # __init__ function def __init__(self): self.model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) self.model.eval() # function for calling the faster-rcnn model def __call__(self, input): ''' Arguments: input (numpy array): A (3, H, W) array of numbers in [0, 1] representing the image. Returns: pred_boxes (list): list of bounding boxes, [[x1 y1 x2 y2], ..] where (x1, y1) are the coordinates of the top left corner and (x2, y2) are the coordinates of the bottom right corner. pred_class (list): list of predicted classes pred_score (list): list of the probability (confidence) of prediction of each of the bounding boxes Tip: You can print the outputs to get better clarity :) ''' input_tensor = torch.from_numpy(input) input_tensor = input_tensor.type(torch.FloatTensor) input_tensor = input_tensor.unsqueeze(0) predictions = self.model(input_tensor) pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(predictions[0]['labels'].numpy())] # Get the Prediction Score pred_boxes = [[(i[0], i[1]), (i[2], i[3])] for i in list(predictions[0]['boxes'].detach().numpy())] # Bounding boxes pred_score = list(predictions[0]['scores'].detach().numpy()) return pred_boxes, pred_class, pred_score
19CS30055-Q2
/19CS30055_Q2-0.0.6.tar.gz/19CS30055_Q2-0.0.6/my_package/model.py
model.py