code
stringlengths 501
5.19M
| package
stringlengths 2
81
| path
stringlengths 9
304
| filename
stringlengths 4
145
|
---|---|---|---|
"""Post-processing operations on detected boxes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import numpy as np
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import keypoint_ops
from object_detection.core import standard_fields as fields
from object_detection.utils import shape_utils
_NMS_TILE_SIZE = 512
def batch_iou(boxes1, boxes2):
"""Calculates the overlap between proposal and ground truth boxes.
Some `boxes2` may have been padded. The returned `iou` tensor for these
boxes will be -1.
Args:
boxes1: a tensor with a shape of [batch_size, N, 4]. N is the number of
proposals before groundtruth assignment. The last dimension is the pixel
coordinates in [ymin, xmin, ymax, xmax] form.
boxes2: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, 4]. This
tensor might have paddings with a negative value.
Returns:
iou: a tensor with as a shape of [batch_size, N, MAX_NUM_INSTANCES].
"""
with tf.name_scope('BatchIOU'):
y1_min, x1_min, y1_max, x1_max = tf.split(
value=boxes1, num_or_size_splits=4, axis=2)
y2_min, x2_min, y2_max, x2_max = tf.split(
value=boxes2, num_or_size_splits=4, axis=2)
# Calculates the intersection area.
intersection_xmin = tf.maximum(x1_min, tf.transpose(x2_min, [0, 2, 1]))
intersection_xmax = tf.minimum(x1_max, tf.transpose(x2_max, [0, 2, 1]))
intersection_ymin = tf.maximum(y1_min, tf.transpose(y2_min, [0, 2, 1]))
intersection_ymax = tf.minimum(y1_max, tf.transpose(y2_max, [0, 2, 1]))
intersection_area = tf.maximum(
(intersection_xmax - intersection_xmin), 0) * tf.maximum(
(intersection_ymax - intersection_ymin), 0)
# Calculates the union area.
area1 = (y1_max - y1_min) * (x1_max - x1_min)
area2 = (y2_max - y2_min) * (x2_max - x2_min)
# Adds a small epsilon to avoid divide-by-zero.
union_area = area1 + tf.transpose(area2,
[0, 2, 1]) - intersection_area + 1e-8
# Calculates IoU.
iou = intersection_area / union_area
# Fills -1 for padded ground truth boxes.
padding_mask = tf.logical_and(
tf.less(intersection_xmax, 0), tf.less(intersection_ymax, 0))
iou = tf.where(padding_mask, -tf.ones_like(iou), iou)
return iou
def _self_suppression(iou, iou_threshold, loop_condition, iou_sum):
"""Bounding-boxes self-suppression loop body.
Args:
iou: A float Tensor with shape [1, num_boxes, max_num_instance]: IOUs.
iou_threshold: A scalar, representing IOU threshold.
loop_condition: The loop condition returned from last iteration.
iou_sum: iou_sum_new returned from last iteration.
Returns:
iou_suppressed: A float Tensor with shape [1, num_boxes, max_num_instance],
IOU after suppression.
iou_threshold: A scalar, representing IOU threshold.
loop_condition: Bool Tensor of shape [], the loop condition.
iou_sum_new: The new IOU sum.
"""
del loop_condition
can_suppress_others = tf.cast(
tf.reshape(tf.reduce_max(iou, 1) <= iou_threshold, [1, -1, 1]), iou.dtype)
iou_suppressed = tf.reshape(
tf.cast(
tf.reduce_max(can_suppress_others * iou, 1) <= iou_threshold,
iou.dtype), [1, -1, 1]) * iou
iou_sum_new = tf.reduce_sum(iou_suppressed, [1, 2])
return [
iou_suppressed, iou_threshold,
tf.reduce_any(iou_sum - iou_sum_new > iou_threshold), iou_sum_new
]
def _cross_suppression(boxes, box_slice, iou_threshold, inner_idx):
"""Bounding-boxes cross-suppression loop body.
Args:
boxes: A float Tensor of shape [1, anchors, 4], representing boxes.
box_slice: A float Tensor of shape [1, _NMS_TILE_SIZE, 4], the box tile
returned from last iteration
iou_threshold: A scalar, representing IOU threshold.
inner_idx: A scalar, representing inner index.
Returns:
boxes: A float Tensor of shape [1, anchors, 4], representing boxes.
ret_slice: A float Tensor of shape [1, _NMS_TILE_SIZE, 4], the box tile
after suppression
iou_threshold: A scalar, representing IOU threshold.
inner_idx: A scalar, inner index incremented.
"""
new_slice = tf.slice(boxes, [0, inner_idx * _NMS_TILE_SIZE, 0],
[1, _NMS_TILE_SIZE, 4])
iou = batch_iou(new_slice, box_slice)
ret_slice = tf.expand_dims(
tf.cast(tf.reduce_all(iou < iou_threshold, [1]), box_slice.dtype),
2) * box_slice
return boxes, ret_slice, iou_threshold, inner_idx + 1
def _suppression_loop_body(boxes, iou_threshold, output_size, idx):
"""Process boxes in the range [idx*_NMS_TILE_SIZE, (idx+1)*_NMS_TILE_SIZE).
Args:
boxes: a tensor with a shape of [1, anchors, 4].
iou_threshold: a float representing the threshold for deciding whether boxes
overlap too much with respect to IOU.
output_size: an int32 tensor of size [1]. Representing the number of
selected boxes.
idx: an integer scalar representing induction variable.
Returns:
boxes: updated boxes.
iou_threshold: pass down iou_threshold to the next iteration.
output_size: the updated output_size.
idx: the updated induction variable.
"""
num_tiles = tf.shape(boxes)[1] // _NMS_TILE_SIZE
# Iterates over tiles that can possibly suppress the current tile.
box_slice = tf.slice(boxes, [0, idx * _NMS_TILE_SIZE, 0],
[1, _NMS_TILE_SIZE, 4])
_, box_slice, _, _ = tf.while_loop(
lambda _boxes, _box_slice, _threshold, inner_idx: inner_idx < idx,
_cross_suppression, [boxes, box_slice, iou_threshold,
tf.constant(0)])
# Iterates over the current tile to compute self-suppression.
iou = batch_iou(box_slice, box_slice)
mask = tf.expand_dims(
tf.reshape(tf.range(_NMS_TILE_SIZE), [1, -1]) > tf.reshape(
tf.range(_NMS_TILE_SIZE), [-1, 1]), 0)
iou *= tf.cast(tf.logical_and(mask, iou >= iou_threshold), iou.dtype)
suppressed_iou, _, _, _ = tf.while_loop(
lambda _iou, _threshold, loop_condition, _iou_sum: loop_condition,
_self_suppression,
[iou, iou_threshold,
tf.constant(True),
tf.reduce_sum(iou, [1, 2])])
suppressed_box = tf.reduce_sum(suppressed_iou, 1) > 0
box_slice *= tf.expand_dims(1.0 - tf.cast(suppressed_box, box_slice.dtype), 2)
# Uses box_slice to update the input boxes.
mask = tf.reshape(
tf.cast(tf.equal(tf.range(num_tiles), idx), boxes.dtype), [1, -1, 1, 1])
boxes = tf.tile(tf.expand_dims(box_slice, [1]),
[1, num_tiles, 1, 1]) * mask + tf.reshape(
boxes, [1, num_tiles, _NMS_TILE_SIZE, 4]) * (1 - mask)
boxes = tf.reshape(boxes, [1, -1, 4])
# Updates output_size.
output_size += tf.reduce_sum(
tf.cast(tf.reduce_any(box_slice > 0, [2]), tf.int32), [1])
return boxes, iou_threshold, output_size, idx + 1
def partitioned_non_max_suppression_padded(boxes,
scores,
max_output_size,
iou_threshold=0.5,
score_threshold=float('-inf')):
"""A tiled version of [`tf.image.non_max_suppression_padded`](https://www.tensorflow.org/api_docs/python/tf/image/non_max_suppression_padded).
The overall design of the algorithm is to handle boxes tile-by-tile:
boxes = boxes.pad_to_multiple_of(tile_size)
num_tiles = len(boxes) // tile_size
output_boxes = []
for i in range(num_tiles):
box_tile = boxes[i*tile_size : (i+1)*tile_size]
for j in range(i - 1):
suppressing_tile = boxes[j*tile_size : (j+1)*tile_size]
iou = batch_iou(box_tile, suppressing_tile)
# if the box is suppressed in iou, clear it to a dot
box_tile *= _update_boxes(iou)
# Iteratively handle the diagonal tile.
iou = _box_overlap(box_tile, box_tile)
iou_changed = True
while iou_changed:
# boxes that are not suppressed by anything else
suppressing_boxes = _get_suppressing_boxes(iou)
# boxes that are suppressed by suppressing_boxes
suppressed_boxes = _get_suppressed_boxes(iou, suppressing_boxes)
# clear iou to 0 for boxes that are suppressed, as they cannot be used
# to suppress other boxes any more
new_iou = _clear_iou(iou, suppressed_boxes)
iou_changed = (new_iou != iou)
iou = new_iou
# remaining boxes that can still suppress others, are selected boxes.
output_boxes.append(_get_suppressing_boxes(iou))
if len(output_boxes) >= max_output_size:
break
Args:
boxes: A 2-D float `Tensor` of shape `[num_boxes, 4]`.
scores: A 1-D float `Tensor` of shape `[num_boxes]` representing a single
score corresponding to each box (each row of boxes).
max_output_size: a scalar integer `Tensor` representing the maximum number
of boxes to be selected by non max suppression.
iou_threshold: a float representing the threshold for deciding whether boxes
overlap too much with respect to IOU.
score_threshold: A float representing the threshold for deciding when to
remove boxes based on score.
Returns:
selected_indices: a tensor of shape [anchors].
num_valid_boxes: a scalar int tensor.
nms_proposals: a tensor with a shape of [anchors, 4]. It has
same dtype as input boxes.
nms_scores: a tensor with a shape of [anchors]. It has same
dtype as input scores.
argsort_ids: a tensor of shape [anchors], mapping from input order of boxes
to output order of boxes.
"""
num_boxes = tf.shape(boxes)[0]
pad = tf.cast(
tf.ceil(tf.cast(num_boxes, tf.float32) / _NMS_TILE_SIZE),
tf.int32) * _NMS_TILE_SIZE - num_boxes
scores, argsort_ids = tf.nn.top_k(scores, k=num_boxes, sorted=True)
boxes = tf.gather(boxes, argsort_ids)
num_boxes = tf.shape(boxes)[0]
num_boxes += pad
boxes = tf.pad(
tf.cast(boxes, tf.float32), [[0, pad], [0, 0]], constant_values=-1)
scores = tf.pad(tf.cast(scores, tf.float32), [[0, pad]])
# mask boxes to -1 by score threshold
scores_mask = tf.expand_dims(
tf.cast(scores > score_threshold, boxes.dtype), axis=1)
boxes = ((boxes + 1.) * scores_mask) - 1.
boxes = tf.expand_dims(boxes, axis=0)
scores = tf.expand_dims(scores, axis=0)
def _loop_cond(unused_boxes, unused_threshold, output_size, idx):
return tf.logical_and(
tf.reduce_min(output_size) < max_output_size,
idx < num_boxes // _NMS_TILE_SIZE)
selected_boxes, _, output_size, _ = tf.while_loop(
_loop_cond, _suppression_loop_body,
[boxes, iou_threshold,
tf.zeros([1], tf.int32),
tf.constant(0)])
idx = num_boxes - tf.cast(
tf.nn.top_k(
tf.cast(tf.reduce_any(selected_boxes > 0, [2]), tf.int32) *
tf.expand_dims(tf.range(num_boxes, 0, -1), 0), max_output_size)[0],
tf.int32)
idx = tf.minimum(idx, num_boxes - 1 - pad)
idx = tf.reshape(idx + tf.reshape(tf.range(1) * num_boxes, [-1, 1]), [-1])
num_valid_boxes = tf.reduce_sum(output_size)
return (idx, num_valid_boxes, tf.reshape(boxes, [-1, 4]),
tf.reshape(scores, [-1]), argsort_ids)
def _validate_boxes_scores_iou_thresh(boxes, scores, iou_thresh,
change_coordinate_frame, clip_window):
"""Validates boxes, scores and iou_thresh.
This function validates the boxes, scores, iou_thresh
and if change_coordinate_frame is True, clip_window must be specified.
Args:
boxes: A [k, q, 4] float32 tensor containing k detections. `q` can be either
number of classes or 1 depending on whether a separate box is predicted
per class.
scores: A [k, num_classes] float32 tensor containing the scores for each of
the k detections. The scores have to be non-negative when
pad_to_max_output_size is True.
iou_thresh: scalar threshold for IOU (new boxes that have high IOU overlap
with previously selected boxes are removed).
change_coordinate_frame: Whether to normalize coordinates after clipping
relative to clip_window (this can only be set to True if a clip_window is
provided)
clip_window: A float32 tensor of the form [y_min, x_min, y_max, x_max]
representing the window to clip and normalize boxes to before performing
non-max suppression.
Raises:
ValueError: if iou_thresh is not in [0, 1] or if input boxlist does not
have a valid scores field.
"""
if not 0 <= iou_thresh <= 1.0:
raise ValueError('iou_thresh must be between 0 and 1')
if scores.shape.ndims != 2:
raise ValueError('scores field must be of rank 2')
if shape_utils.get_dim_as_int(scores.shape[1]) is None:
raise ValueError('scores must have statically defined second ' 'dimension')
if boxes.shape.ndims != 3:
raise ValueError('boxes must be of rank 3.')
if not (shape_utils.get_dim_as_int(
boxes.shape[1]) == shape_utils.get_dim_as_int(scores.shape[1]) or
shape_utils.get_dim_as_int(boxes.shape[1]) == 1):
raise ValueError('second dimension of boxes must be either 1 or equal '
'to the second dimension of scores')
if shape_utils.get_dim_as_int(boxes.shape[2]) != 4:
raise ValueError('last dimension of boxes must be of size 4.')
if change_coordinate_frame and clip_window is None:
raise ValueError('if change_coordinate_frame is True, then a clip_window'
'must be specified.')
def _clip_window_prune_boxes(sorted_boxes, clip_window, pad_to_max_output_size,
change_coordinate_frame):
"""Prune boxes with zero area.
Args:
sorted_boxes: A BoxList containing k detections.
clip_window: A float32 tensor of the form [y_min, x_min, y_max, x_max]
representing the window to clip and normalize boxes to before performing
non-max suppression.
pad_to_max_output_size: flag indicating whether to pad to max output size or
not.
change_coordinate_frame: Whether to normalize coordinates after clipping
relative to clip_window (this can only be set to True if a clip_window is
provided).
Returns:
sorted_boxes: A BoxList containing k detections after pruning.
num_valid_nms_boxes_cumulative: Number of valid NMS boxes
"""
sorted_boxes = box_list_ops.clip_to_window(
sorted_boxes,
clip_window,
filter_nonoverlapping=not pad_to_max_output_size)
# Set the scores of boxes with zero area to -1 to keep the default
# behaviour of pruning out zero area boxes.
sorted_boxes_size = tf.shape(sorted_boxes.get())[0]
non_zero_box_area = tf.cast(box_list_ops.area(sorted_boxes), tf.bool)
sorted_boxes_scores = tf.where(
non_zero_box_area, sorted_boxes.get_field(fields.BoxListFields.scores),
-1 * tf.ones(sorted_boxes_size))
sorted_boxes.add_field(fields.BoxListFields.scores, sorted_boxes_scores)
num_valid_nms_boxes_cumulative = tf.reduce_sum(
tf.cast(tf.greater_equal(sorted_boxes_scores, 0), tf.int32))
sorted_boxes = box_list_ops.sort_by_field(sorted_boxes,
fields.BoxListFields.scores)
if change_coordinate_frame:
sorted_boxes = box_list_ops.change_coordinate_frame(sorted_boxes,
clip_window)
if sorted_boxes.has_field(fields.BoxListFields.keypoints):
sorted_keypoints = sorted_boxes.get_field(fields.BoxListFields.keypoints)
sorted_keypoints = keypoint_ops.change_coordinate_frame(sorted_keypoints,
clip_window)
sorted_boxes.set_field(fields.BoxListFields.keypoints, sorted_keypoints)
return sorted_boxes, num_valid_nms_boxes_cumulative
class NullContextmanager(object):
def __enter__(self):
pass
def __exit__(self, type_arg, value_arg, traceback_arg):
return False
def multiclass_non_max_suppression(boxes,
scores,
score_thresh,
iou_thresh,
max_size_per_class,
max_total_size=0,
clip_window=None,
change_coordinate_frame=False,
masks=None,
boundaries=None,
pad_to_max_output_size=False,
use_partitioned_nms=False,
additional_fields=None,
soft_nms_sigma=0.0,
use_hard_nms=False,
use_cpu_nms=False,
scope=None):
"""Multi-class version of non maximum suppression.
This op greedily selects a subset of detection bounding boxes, pruning
away boxes that have high IOU (intersection over union) overlap (> thresh)
with already selected boxes. It operates independently for each class for
which scores are provided (via the scores field of the input box_list),
pruning boxes with score less than a provided threshold prior to
applying NMS.
Please note that this operation is performed on *all* classes, therefore any
background classes should be removed prior to calling this function.
Selected boxes are guaranteed to be sorted in decreasing order by score (but
the sort is not guaranteed to be stable).
Args:
boxes: A [k, q, 4] float32 tensor containing k detections. `q` can be either
number of classes or 1 depending on whether a separate box is predicted
per class.
scores: A [k, num_classes] float32 tensor containing the scores for each of
the k detections. The scores have to be non-negative when
pad_to_max_output_size is True.
score_thresh: scalar threshold for score (low scoring boxes are removed).
iou_thresh: scalar threshold for IOU (new boxes that have high IOU overlap
with previously selected boxes are removed).
max_size_per_class: maximum number of retained boxes per class.
max_total_size: maximum number of boxes retained over all classes. By
default returns all boxes retained after capping boxes per class.
clip_window: A float32 tensor of the form [y_min, x_min, y_max, x_max]
representing the window to clip and normalize boxes to before performing
non-max suppression.
change_coordinate_frame: Whether to normalize coordinates after clipping
relative to clip_window (this can only be set to True if a clip_window
is provided)
masks: (optional) a [k, q, mask_height, mask_width] float32 tensor
containing box masks. `q` can be either number of classes or 1 depending
on whether a separate mask is predicted per class.
boundaries: (optional) a [k, q, boundary_height, boundary_width] float32
tensor containing box boundaries. `q` can be either number of classes or 1
depending on whether a separate boundary is predicted per class.
pad_to_max_output_size: If true, the output nmsed boxes are padded to be of
length `max_size_per_class`. Defaults to false.
use_partitioned_nms: If true, use partitioned version of
non_max_suppression.
additional_fields: (optional) If not None, a dictionary that maps keys to
tensors whose first dimensions are all of size `k`. After non-maximum
suppression, all tensors corresponding to the selected boxes will be
added to resulting BoxList.
soft_nms_sigma: A scalar float representing the Soft NMS sigma parameter;
See Bodla et al, https://arxiv.org/abs/1704.04503). When
`soft_nms_sigma=0.0` (which is default), we fall back to standard (hard)
NMS. Soft NMS is currently only supported when pad_to_max_output_size is
False.
use_hard_nms: Enforce the usage of hard NMS.
use_cpu_nms: Enforce NMS to run on CPU.
scope: name scope.
Returns:
A tuple of sorted_boxes and num_valid_nms_boxes. The sorted_boxes is a
BoxList holds M boxes with a rank-1 scores field representing
corresponding scores for each box with scores sorted in decreasing order
and a rank-1 classes field representing a class label for each box. The
num_valid_nms_boxes is a 0-D integer tensor representing the number of
valid elements in `BoxList`, with the valid elements appearing first.
Raises:
ValueError: if iou_thresh is not in [0, 1] or if input boxlist does not have
a valid scores field.
ValueError: if Soft NMS (tf.image.non_max_suppression_with_scores) is not
supported in the current TF version and `soft_nms_sigma` is nonzero.
"""
_validate_boxes_scores_iou_thresh(boxes, scores, iou_thresh,
change_coordinate_frame, clip_window)
if pad_to_max_output_size and soft_nms_sigma != 0.0:
raise ValueError('Soft NMS (soft_nms_sigma != 0.0) is currently not '
'supported when pad_to_max_output_size is True.')
with tf.name_scope(scope, 'MultiClassNonMaxSuppression'), tf.device(
'cpu:0') if use_cpu_nms else NullContextmanager():
num_scores = tf.shape(scores)[0]
num_classes = shape_utils.get_dim_as_int(scores.get_shape()[1])
selected_boxes_list = []
num_valid_nms_boxes_cumulative = tf.constant(0)
per_class_boxes_list = tf.unstack(boxes, axis=1)
if masks is not None:
per_class_masks_list = tf.unstack(masks, axis=1)
if boundaries is not None:
per_class_boundaries_list = tf.unstack(boundaries, axis=1)
boxes_ids = (range(num_classes) if len(per_class_boxes_list) > 1
else [0] * num_classes)
for class_idx, boxes_idx in zip(range(num_classes), boxes_ids):
per_class_boxes = per_class_boxes_list[boxes_idx]
boxlist_and_class_scores = box_list.BoxList(per_class_boxes)
class_scores = tf.reshape(
tf.slice(scores, [0, class_idx], tf.stack([num_scores, 1])), [-1])
boxlist_and_class_scores.add_field(fields.BoxListFields.scores,
class_scores)
if masks is not None:
per_class_masks = per_class_masks_list[boxes_idx]
boxlist_and_class_scores.add_field(fields.BoxListFields.masks,
per_class_masks)
if boundaries is not None:
per_class_boundaries = per_class_boundaries_list[boxes_idx]
boxlist_and_class_scores.add_field(fields.BoxListFields.boundaries,
per_class_boundaries)
if additional_fields is not None:
for key, tensor in additional_fields.items():
boxlist_and_class_scores.add_field(key, tensor)
nms_result = None
selected_scores = None
if pad_to_max_output_size:
max_selection_size = max_size_per_class
if use_partitioned_nms:
(selected_indices, num_valid_nms_boxes,
boxlist_and_class_scores.data['boxes'],
boxlist_and_class_scores.data['scores'],
_) = partitioned_non_max_suppression_padded(
boxlist_and_class_scores.get(),
boxlist_and_class_scores.get_field(fields.BoxListFields.scores),
max_selection_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh)
else:
selected_indices, num_valid_nms_boxes = (
tf.image.non_max_suppression_padded(
boxlist_and_class_scores.get(),
boxlist_and_class_scores.get_field(
fields.BoxListFields.scores),
max_selection_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh,
pad_to_max_output_size=True))
nms_result = box_list_ops.gather(boxlist_and_class_scores,
selected_indices)
selected_scores = nms_result.get_field(fields.BoxListFields.scores)
else:
max_selection_size = tf.minimum(max_size_per_class,
boxlist_and_class_scores.num_boxes())
if (hasattr(tf.image, 'non_max_suppression_with_scores') and
tf.compat.forward_compatible(2019, 6, 6) and not use_hard_nms):
(selected_indices, selected_scores
) = tf.image.non_max_suppression_with_scores(
boxlist_and_class_scores.get(),
boxlist_and_class_scores.get_field(fields.BoxListFields.scores),
max_selection_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh,
soft_nms_sigma=soft_nms_sigma)
num_valid_nms_boxes = tf.shape(selected_indices)[0]
selected_indices = tf.concat(
[selected_indices,
tf.zeros(max_selection_size-num_valid_nms_boxes, tf.int32)], 0)
selected_scores = tf.concat(
[selected_scores,
tf.zeros(max_selection_size-num_valid_nms_boxes,
tf.float32)], -1)
nms_result = box_list_ops.gather(boxlist_and_class_scores,
selected_indices)
else:
if soft_nms_sigma != 0:
raise ValueError('Soft NMS not supported in current TF version!')
selected_indices = tf.image.non_max_suppression(
boxlist_and_class_scores.get(),
boxlist_and_class_scores.get_field(fields.BoxListFields.scores),
max_selection_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh)
num_valid_nms_boxes = tf.shape(selected_indices)[0]
selected_indices = tf.concat(
[selected_indices,
tf.zeros(max_selection_size-num_valid_nms_boxes, tf.int32)], 0)
nms_result = box_list_ops.gather(boxlist_and_class_scores,
selected_indices)
selected_scores = nms_result.get_field(fields.BoxListFields.scores)
# Make the scores -1 for invalid boxes.
valid_nms_boxes_indices = tf.less(
tf.range(max_selection_size), num_valid_nms_boxes)
nms_result.add_field(
fields.BoxListFields.scores,
tf.where(valid_nms_boxes_indices,
selected_scores, -1*tf.ones(max_selection_size)))
num_valid_nms_boxes_cumulative += num_valid_nms_boxes
nms_result.add_field(
fields.BoxListFields.classes, (tf.zeros_like(
nms_result.get_field(fields.BoxListFields.scores)) + class_idx))
selected_boxes_list.append(nms_result)
selected_boxes = box_list_ops.concatenate(selected_boxes_list)
sorted_boxes = box_list_ops.sort_by_field(selected_boxes,
fields.BoxListFields.scores)
if clip_window is not None:
# When pad_to_max_output_size is False, it prunes the boxes with zero
# area.
sorted_boxes, num_valid_nms_boxes_cumulative = _clip_window_prune_boxes(
sorted_boxes, clip_window, pad_to_max_output_size,
change_coordinate_frame)
if max_total_size:
max_total_size = tf.minimum(max_total_size, sorted_boxes.num_boxes())
sorted_boxes = box_list_ops.gather(sorted_boxes, tf.range(max_total_size))
num_valid_nms_boxes_cumulative = tf.where(
max_total_size > num_valid_nms_boxes_cumulative,
num_valid_nms_boxes_cumulative, max_total_size)
# Select only the valid boxes if pad_to_max_output_size is False.
if not pad_to_max_output_size:
sorted_boxes = box_list_ops.gather(
sorted_boxes, tf.range(num_valid_nms_boxes_cumulative))
return sorted_boxes, num_valid_nms_boxes_cumulative
def class_agnostic_non_max_suppression(boxes,
scores,
score_thresh,
iou_thresh,
max_classes_per_detection=1,
max_total_size=0,
clip_window=None,
change_coordinate_frame=False,
masks=None,
boundaries=None,
pad_to_max_output_size=False,
use_partitioned_nms=False,
additional_fields=None,
soft_nms_sigma=0.0,
scope=None):
"""Class-agnostic version of non maximum suppression.
This op greedily selects a subset of detection bounding boxes, pruning
away boxes that have high IOU (intersection over union) overlap (> thresh)
with already selected boxes. It operates on all the boxes using
max scores across all classes for which scores are provided (via the scores
field of the input box_list), pruning boxes with score less than a provided
threshold prior to applying NMS.
Please note that this operation is performed in a class-agnostic way,
therefore any background classes should be removed prior to calling this
function.
Selected boxes are guaranteed to be sorted in decreasing order by score (but
the sort is not guaranteed to be stable).
Args:
boxes: A [k, q, 4] float32 tensor containing k detections. `q` can be either
number of classes or 1 depending on whether a separate box is predicted
per class.
scores: A [k, num_classes] float32 tensor containing the scores for each of
the k detections. The scores have to be non-negative when
pad_to_max_output_size is True.
score_thresh: scalar threshold for score (low scoring boxes are removed).
iou_thresh: scalar threshold for IOU (new boxes that have high IOU overlap
with previously selected boxes are removed).
max_classes_per_detection: maximum number of retained classes per detection
box in class-agnostic NMS.
max_total_size: maximum number of boxes retained over all classes. By
default returns all boxes retained after capping boxes per class.
clip_window: A float32 tensor of the form [y_min, x_min, y_max, x_max]
representing the window to clip and normalize boxes to before performing
non-max suppression.
change_coordinate_frame: Whether to normalize coordinates after clipping
relative to clip_window (this can only be set to True if a clip_window is
provided)
masks: (optional) a [k, q, mask_height, mask_width] float32 tensor
containing box masks. `q` can be either number of classes or 1 depending
on whether a separate mask is predicted per class.
boundaries: (optional) a [k, q, boundary_height, boundary_width] float32
tensor containing box boundaries. `q` can be either number of classes or 1
depending on whether a separate boundary is predicted per class.
pad_to_max_output_size: If true, the output nmsed boxes are padded to be of
length `max_size_per_class`. Defaults to false.
use_partitioned_nms: If true, use partitioned version of
non_max_suppression.
additional_fields: (optional) If not None, a dictionary that maps keys to
tensors whose first dimensions are all of size `k`. After non-maximum
suppression, all tensors corresponding to the selected boxes will be added
to resulting BoxList.
soft_nms_sigma: A scalar float representing the Soft NMS sigma parameter;
See Bodla et al, https://arxiv.org/abs/1704.04503). When
`soft_nms_sigma=0.0` (which is default), we fall back to standard (hard)
NMS. Soft NMS is currently only supported when pad_to_max_output_size is
False.
scope: name scope.
Returns:
A tuple of sorted_boxes and num_valid_nms_boxes. The sorted_boxes is a
BoxList holds M boxes with a rank-1 scores field representing
corresponding scores for each box with scores sorted in decreasing order
and a rank-1 classes field representing a class label for each box. The
num_valid_nms_boxes is a 0-D integer tensor representing the number of
valid elements in `BoxList`, with the valid elements appearing first.
Raises:
ValueError: if iou_thresh is not in [0, 1] or if input boxlist does not have
a valid scores field or if non-zero soft_nms_sigma is provided when
pad_to_max_output_size is True.
"""
_validate_boxes_scores_iou_thresh(boxes, scores, iou_thresh,
change_coordinate_frame, clip_window)
if pad_to_max_output_size and soft_nms_sigma != 0.0:
raise ValueError('Soft NMS (soft_nms_sigma != 0.0) is currently not '
'supported when pad_to_max_output_size is True.')
if max_classes_per_detection > 1:
raise ValueError('Max classes per detection box >1 not supported.')
q = shape_utils.get_dim_as_int(boxes.shape[1])
if q > 1:
class_ids = tf.expand_dims(
tf.argmax(scores, axis=1, output_type=tf.int32), axis=1)
boxes = tf.batch_gather(boxes, class_ids)
if masks is not None:
masks = tf.batch_gather(masks, class_ids)
if boundaries is not None:
boundaries = tf.batch_gather(boundaries, class_ids)
boxes = tf.squeeze(boxes, axis=[1])
if masks is not None:
masks = tf.squeeze(masks, axis=[1])
if boundaries is not None:
boundaries = tf.squeeze(boundaries, axis=[1])
with tf.name_scope(scope, 'ClassAgnosticNonMaxSuppression'):
boxlist_and_class_scores = box_list.BoxList(boxes)
max_scores = tf.reduce_max(scores, axis=-1)
classes_with_max_scores = tf.argmax(scores, axis=-1)
boxlist_and_class_scores.add_field(fields.BoxListFields.scores, max_scores)
if masks is not None:
boxlist_and_class_scores.add_field(fields.BoxListFields.masks, masks)
if boundaries is not None:
boxlist_and_class_scores.add_field(fields.BoxListFields.boundaries,
boundaries)
if additional_fields is not None:
for key, tensor in additional_fields.items():
boxlist_and_class_scores.add_field(key, tensor)
nms_result = None
selected_scores = None
if pad_to_max_output_size:
max_selection_size = max_total_size
if use_partitioned_nms:
(selected_indices, num_valid_nms_boxes,
boxlist_and_class_scores.data['boxes'],
boxlist_and_class_scores.data['scores'],
argsort_ids) = partitioned_non_max_suppression_padded(
boxlist_and_class_scores.get(),
boxlist_and_class_scores.get_field(fields.BoxListFields.scores),
max_selection_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh)
classes_with_max_scores = tf.gather(classes_with_max_scores,
argsort_ids)
else:
selected_indices, num_valid_nms_boxes = (
tf.image.non_max_suppression_padded(
boxlist_and_class_scores.get(),
boxlist_and_class_scores.get_field(fields.BoxListFields.scores),
max_selection_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh,
pad_to_max_output_size=True))
nms_result = box_list_ops.gather(boxlist_and_class_scores,
selected_indices)
selected_scores = nms_result.get_field(fields.BoxListFields.scores)
else:
max_selection_size = tf.minimum(max_total_size,
boxlist_and_class_scores.num_boxes())
if (hasattr(tf.image, 'non_max_suppression_with_scores') and
tf.compat.forward_compatible(2019, 6, 6)):
(selected_indices, selected_scores
) = tf.image.non_max_suppression_with_scores(
boxlist_and_class_scores.get(),
boxlist_and_class_scores.get_field(fields.BoxListFields.scores),
max_selection_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh,
soft_nms_sigma=soft_nms_sigma)
num_valid_nms_boxes = tf.shape(selected_indices)[0]
selected_indices = tf.concat([
selected_indices,
tf.zeros(max_selection_size - num_valid_nms_boxes, tf.int32)
], 0)
selected_scores = tf.concat(
[selected_scores,
tf.zeros(max_selection_size-num_valid_nms_boxes, tf.float32)], -1)
nms_result = box_list_ops.gather(boxlist_and_class_scores,
selected_indices)
else:
if soft_nms_sigma != 0:
raise ValueError('Soft NMS not supported in current TF version!')
selected_indices = tf.image.non_max_suppression(
boxlist_and_class_scores.get(),
boxlist_and_class_scores.get_field(fields.BoxListFields.scores),
max_selection_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh)
num_valid_nms_boxes = tf.shape(selected_indices)[0]
selected_indices = tf.concat(
[selected_indices,
tf.zeros(max_selection_size-num_valid_nms_boxes, tf.int32)], 0)
nms_result = box_list_ops.gather(boxlist_and_class_scores,
selected_indices)
selected_scores = nms_result.get_field(fields.BoxListFields.scores)
valid_nms_boxes_indices = tf.less(
tf.range(max_selection_size), num_valid_nms_boxes)
nms_result.add_field(
fields.BoxListFields.scores,
tf.where(valid_nms_boxes_indices,
selected_scores, -1*tf.ones(max_selection_size)))
selected_classes = tf.gather(classes_with_max_scores, selected_indices)
selected_classes = tf.cast(selected_classes, tf.float32)
nms_result.add_field(fields.BoxListFields.classes, selected_classes)
selected_boxes = nms_result
sorted_boxes = box_list_ops.sort_by_field(selected_boxes,
fields.BoxListFields.scores)
if clip_window is not None:
# When pad_to_max_output_size is False, it prunes the boxes with zero
# area.
sorted_boxes, num_valid_nms_boxes = _clip_window_prune_boxes(
sorted_boxes, clip_window, pad_to_max_output_size,
change_coordinate_frame)
if max_total_size:
max_total_size = tf.minimum(max_total_size, sorted_boxes.num_boxes())
sorted_boxes = box_list_ops.gather(sorted_boxes, tf.range(max_total_size))
num_valid_nms_boxes = tf.where(max_total_size > num_valid_nms_boxes,
num_valid_nms_boxes, max_total_size)
# Select only the valid boxes if pad_to_max_output_size is False.
if not pad_to_max_output_size:
sorted_boxes = box_list_ops.gather(sorted_boxes,
tf.range(num_valid_nms_boxes))
return sorted_boxes, num_valid_nms_boxes
def batch_multiclass_non_max_suppression(boxes,
scores,
score_thresh,
iou_thresh,
max_size_per_class,
max_total_size=0,
clip_window=None,
change_coordinate_frame=False,
num_valid_boxes=None,
masks=None,
additional_fields=None,
soft_nms_sigma=0.0,
scope=None,
use_static_shapes=False,
use_partitioned_nms=False,
parallel_iterations=32,
use_class_agnostic_nms=False,
max_classes_per_detection=1,
use_dynamic_map_fn=False,
use_combined_nms=False,
use_hard_nms=False,
use_cpu_nms=False):
"""Multi-class version of non maximum suppression that operates on a batch.
This op is similar to `multiclass_non_max_suppression` but operates on a batch
of boxes and scores. See documentation for `multiclass_non_max_suppression`
for details.
Args:
boxes: A [batch_size, num_anchors, q, 4] float32 tensor containing
detections. If `q` is 1 then same boxes are used for all classes
otherwise, if `q` is equal to number of classes, class-specific boxes are
used.
scores: A [batch_size, num_anchors, num_classes] float32 tensor containing
the scores for each of the `num_anchors` detections. The scores have to be
non-negative when use_static_shapes is set True.
score_thresh: scalar threshold for score (low scoring boxes are removed).
iou_thresh: scalar threshold for IOU (new boxes that have high IOU overlap
with previously selected boxes are removed).
max_size_per_class: maximum number of retained boxes per class.
max_total_size: maximum number of boxes retained over all classes. By
default returns all boxes retained after capping boxes per class.
clip_window: A float32 tensor of shape [batch_size, 4] where each entry is
of the form [y_min, x_min, y_max, x_max] representing the window to clip
boxes to before performing non-max suppression. This argument can also be
a tensor of shape [4] in which case, the same clip window is applied to
all images in the batch. If clip_widow is None, all boxes are used to
perform non-max suppression.
change_coordinate_frame: Whether to normalize coordinates after clipping
relative to clip_window (this can only be set to True if a clip_window is
provided)
num_valid_boxes: (optional) a Tensor of type `int32`. A 1-D tensor of shape
[batch_size] representing the number of valid boxes to be considered for
each image in the batch. This parameter allows for ignoring zero
paddings.
masks: (optional) a [batch_size, num_anchors, q, mask_height, mask_width]
float32 tensor containing box masks. `q` can be either number of classes
or 1 depending on whether a separate mask is predicted per class.
additional_fields: (optional) If not None, a dictionary that maps keys to
tensors whose dimensions are [batch_size, num_anchors, ...].
soft_nms_sigma: A scalar float representing the Soft NMS sigma parameter;
See Bodla et al, https://arxiv.org/abs/1704.04503). When
`soft_nms_sigma=0.0` (which is default), we fall back to standard (hard)
NMS. Soft NMS is currently only supported when pad_to_max_output_size is
False.
scope: tf scope name.
use_static_shapes: If true, the output nmsed boxes are padded to be of
length `max_size_per_class` and it doesn't clip boxes to max_total_size.
Defaults to false.
use_partitioned_nms: If true, use partitioned version of
non_max_suppression.
parallel_iterations: (optional) number of batch items to process in
parallel.
use_class_agnostic_nms: If true, this uses class-agnostic non max
suppression
max_classes_per_detection: Maximum number of retained classes per detection
box in class-agnostic NMS.
use_dynamic_map_fn: If true, images in the batch will be processed within a
dynamic loop. Otherwise, a static loop will be used if possible.
use_combined_nms: If true, it uses tf.image.combined_non_max_suppression (
multi-class version of NMS that operates on a batch).
It greedily selects a subset of detection bounding boxes, pruning away
boxes that have high IOU (intersection over union) overlap (> thresh) with
already selected boxes. It operates independently for each batch.
Within each batch, it operates independently for each class for which
scores are provided (via the scores field of the input box_list),
pruning boxes with score less than a provided threshold prior to applying
NMS. This operation is performed on *all* batches and *all* classes
in the batch, therefore any background classes should be removed prior to
calling this function.
Masks and additional fields are not supported.
See argument checks in the code below for unsupported arguments.
use_hard_nms: Enforce the usage of hard NMS.
use_cpu_nms: Enforce NMS to run on CPU.
Returns:
'nmsed_boxes': A [batch_size, max_detections, 4] float32 tensor
containing the non-max suppressed boxes.
'nmsed_scores': A [batch_size, max_detections] float32 tensor containing
the scores for the boxes.
'nmsed_classes': A [batch_size, max_detections] float32 tensor
containing the class for boxes.
'nmsed_masks': (optional) a
[batch_size, max_detections, mask_height, mask_width] float32 tensor
containing masks for each selected box. This is set to None if input
`masks` is None.
'nmsed_additional_fields': (optional) a dictionary of
[batch_size, max_detections, ...] float32 tensors corresponding to the
tensors specified in the input `additional_fields`. This is not returned
if input `additional_fields` is None.
'num_detections': A [batch_size] int32 tensor indicating the number of
valid detections per batch item. Only the top num_detections[i] entries in
nms_boxes[i], nms_scores[i] and nms_class[i] are valid. The rest of the
entries are zero paddings.
Raises:
ValueError: if `q` in boxes.shape is not 1 or not equal to number of
classes as inferred from scores.shape.
"""
if use_combined_nms:
if change_coordinate_frame:
raise ValueError(
'change_coordinate_frame (normalizing coordinates'
' relative to clip_window) is not supported by combined_nms.')
if num_valid_boxes is not None:
raise ValueError('num_valid_boxes is not supported by combined_nms.')
if masks is not None:
raise ValueError('masks is not supported by combined_nms.')
if soft_nms_sigma != 0.0:
raise ValueError('Soft NMS is not supported by combined_nms.')
if use_class_agnostic_nms:
raise ValueError('class-agnostic NMS is not supported by combined_nms.')
if clip_window is not None:
tf.logging.warning(
'clip_window is not supported by combined_nms unless it is'
' [0. 0. 1. 1.] for each image.')
if additional_fields is not None:
tf.logging.warning('additional_fields is not supported by combined_nms.')
if parallel_iterations != 32:
tf.logging.warning('Number of batch items to be processed in parallel is'
' not configurable by combined_nms.')
if max_classes_per_detection > 1:
tf.logging.warning(
'max_classes_per_detection is not configurable by combined_nms.')
with tf.name_scope(scope, 'CombinedNonMaxSuppression'):
(batch_nmsed_boxes, batch_nmsed_scores, batch_nmsed_classes,
batch_num_detections) = tf.image.combined_non_max_suppression(
boxes=boxes,
scores=scores,
max_output_size_per_class=max_size_per_class,
max_total_size=max_total_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh,
pad_per_class=use_static_shapes)
# Not supported by combined_non_max_suppression.
batch_nmsed_masks = None
# Not supported by combined_non_max_suppression.
batch_nmsed_additional_fields = None
return (batch_nmsed_boxes, batch_nmsed_scores, batch_nmsed_classes,
batch_nmsed_masks, batch_nmsed_additional_fields,
batch_num_detections)
q = shape_utils.get_dim_as_int(boxes.shape[2])
num_classes = shape_utils.get_dim_as_int(scores.shape[2])
if q != 1 and q != num_classes:
raise ValueError('third dimension of boxes must be either 1 or equal '
'to the third dimension of scores.')
if change_coordinate_frame and clip_window is None:
raise ValueError('if change_coordinate_frame is True, then a clip_window'
'must be specified.')
original_masks = masks
# Create ordered dictionary using the sorted keys from
# additional fields to ensure getting the same key value assignment
# in _single_image_nms_fn(). The dictionary is thus a sorted version of
# additional_fields.
if additional_fields is None:
ordered_additional_fields = collections.OrderedDict()
else:
ordered_additional_fields = collections.OrderedDict(
sorted(additional_fields.items(), key=lambda item: item[0]))
with tf.name_scope(scope, 'BatchMultiClassNonMaxSuppression'):
boxes_shape = boxes.shape
batch_size = shape_utils.get_dim_as_int(boxes_shape[0])
num_anchors = shape_utils.get_dim_as_int(boxes_shape[1])
if batch_size is None:
batch_size = tf.shape(boxes)[0]
if num_anchors is None:
num_anchors = tf.shape(boxes)[1]
# If num valid boxes aren't provided, create one and mark all boxes as
# valid.
if num_valid_boxes is None:
num_valid_boxes = tf.ones([batch_size], dtype=tf.int32) * num_anchors
# If masks aren't provided, create dummy masks so we can only have one copy
# of _single_image_nms_fn and discard the dummy masks after map_fn.
if masks is None:
masks_shape = tf.stack([batch_size, num_anchors, q, 1, 1])
masks = tf.zeros(masks_shape)
if clip_window is None:
clip_window = tf.stack([
tf.reduce_min(boxes[:, :, :, 0]),
tf.reduce_min(boxes[:, :, :, 1]),
tf.reduce_max(boxes[:, :, :, 2]),
tf.reduce_max(boxes[:, :, :, 3])
])
if clip_window.shape.ndims == 1:
clip_window = tf.tile(tf.expand_dims(clip_window, 0), [batch_size, 1])
def _single_image_nms_fn(args):
"""Runs NMS on a single image and returns padded output.
Args:
args: A list of tensors consisting of the following:
per_image_boxes - A [num_anchors, q, 4] float32 tensor containing
detections. If `q` is 1 then same boxes are used for all classes
otherwise, if `q` is equal to number of classes, class-specific
boxes are used.
per_image_scores - A [num_anchors, num_classes] float32 tensor
containing the scores for each of the `num_anchors` detections.
per_image_masks - A [num_anchors, q, mask_height, mask_width] float32
tensor containing box masks. `q` can be either number of classes
or 1 depending on whether a separate mask is predicted per class.
per_image_clip_window - A 1D float32 tensor of the form
[ymin, xmin, ymax, xmax] representing the window to clip the boxes
to.
per_image_additional_fields - (optional) A variable number of float32
tensors each with size [num_anchors, ...].
per_image_num_valid_boxes - A tensor of type `int32`. A 1-D tensor of
shape [batch_size] representing the number of valid boxes to be
considered for each image in the batch. This parameter allows for
ignoring zero paddings.
Returns:
'nmsed_boxes': A [max_detections, 4] float32 tensor containing the
non-max suppressed boxes.
'nmsed_scores': A [max_detections] float32 tensor containing the scores
for the boxes.
'nmsed_classes': A [max_detections] float32 tensor containing the class
for boxes.
'nmsed_masks': (optional) a [max_detections, mask_height, mask_width]
float32 tensor containing masks for each selected box. This is set to
None if input `masks` is None.
'nmsed_additional_fields': (optional) A variable number of float32
tensors each with size [max_detections, ...] corresponding to the
input `per_image_additional_fields`.
'num_detections': A [batch_size] int32 tensor indicating the number of
valid detections per batch item. Only the top num_detections[i]
entries in nms_boxes[i], nms_scores[i] and nms_class[i] are valid. The
rest of the entries are zero paddings.
"""
per_image_boxes = args[0]
per_image_scores = args[1]
per_image_masks = args[2]
per_image_clip_window = args[3]
# Make sure that the order of elements passed in args is aligned with
# the iteration order of ordered_additional_fields
per_image_additional_fields = {
key: value
for key, value in zip(ordered_additional_fields, args[4:-1])
}
per_image_num_valid_boxes = args[-1]
if use_static_shapes:
total_proposals = tf.shape(per_image_scores)
per_image_scores = tf.where(
tf.less(tf.range(total_proposals[0]), per_image_num_valid_boxes),
per_image_scores,
tf.fill(total_proposals, np.finfo('float32').min))
else:
per_image_boxes = tf.reshape(
tf.slice(per_image_boxes, 3 * [0],
tf.stack([per_image_num_valid_boxes, -1, -1])), [-1, q, 4])
per_image_scores = tf.reshape(
tf.slice(per_image_scores, [0, 0],
tf.stack([per_image_num_valid_boxes, -1])),
[-1, num_classes])
per_image_masks = tf.reshape(
tf.slice(per_image_masks, 4 * [0],
tf.stack([per_image_num_valid_boxes, -1, -1, -1])),
[-1, q, shape_utils.get_dim_as_int(per_image_masks.shape[2]),
shape_utils.get_dim_as_int(per_image_masks.shape[3])])
if per_image_additional_fields is not None:
for key, tensor in per_image_additional_fields.items():
additional_field_shape = tensor.get_shape()
additional_field_dim = len(additional_field_shape)
per_image_additional_fields[key] = tf.reshape(
tf.slice(
per_image_additional_fields[key],
additional_field_dim * [0],
tf.stack([per_image_num_valid_boxes] +
(additional_field_dim - 1) * [-1])), [-1] + [
shape_utils.get_dim_as_int(dim)
for dim in additional_field_shape[1:]
])
if use_class_agnostic_nms:
nmsed_boxlist, num_valid_nms_boxes = class_agnostic_non_max_suppression(
per_image_boxes,
per_image_scores,
score_thresh,
iou_thresh,
max_classes_per_detection,
max_total_size,
clip_window=per_image_clip_window,
change_coordinate_frame=change_coordinate_frame,
masks=per_image_masks,
pad_to_max_output_size=use_static_shapes,
use_partitioned_nms=use_partitioned_nms,
additional_fields=per_image_additional_fields,
soft_nms_sigma=soft_nms_sigma)
else:
nmsed_boxlist, num_valid_nms_boxes = multiclass_non_max_suppression(
per_image_boxes,
per_image_scores,
score_thresh,
iou_thresh,
max_size_per_class,
max_total_size,
clip_window=per_image_clip_window,
change_coordinate_frame=change_coordinate_frame,
masks=per_image_masks,
pad_to_max_output_size=use_static_shapes,
use_partitioned_nms=use_partitioned_nms,
additional_fields=per_image_additional_fields,
soft_nms_sigma=soft_nms_sigma,
use_hard_nms=use_hard_nms,
use_cpu_nms=use_cpu_nms)
if not use_static_shapes:
nmsed_boxlist = box_list_ops.pad_or_clip_box_list(
nmsed_boxlist, max_total_size)
num_detections = num_valid_nms_boxes
nmsed_boxes = nmsed_boxlist.get()
nmsed_scores = nmsed_boxlist.get_field(fields.BoxListFields.scores)
nmsed_classes = nmsed_boxlist.get_field(fields.BoxListFields.classes)
nmsed_masks = nmsed_boxlist.get_field(fields.BoxListFields.masks)
nmsed_additional_fields = []
# Sorting is needed here to ensure that the values stored in
# nmsed_additional_fields are always kept in the same order
# across different execution runs.
for key in sorted(per_image_additional_fields.keys()):
nmsed_additional_fields.append(nmsed_boxlist.get_field(key))
return ([nmsed_boxes, nmsed_scores, nmsed_classes, nmsed_masks] +
nmsed_additional_fields + [num_detections])
num_additional_fields = 0
if ordered_additional_fields:
num_additional_fields = len(ordered_additional_fields)
num_nmsed_outputs = 4 + num_additional_fields
if use_dynamic_map_fn:
map_fn = tf.map_fn
else:
map_fn = shape_utils.static_or_dynamic_map_fn
batch_outputs = map_fn(
_single_image_nms_fn,
elems=([boxes, scores, masks, clip_window] +
list(ordered_additional_fields.values()) + [num_valid_boxes]),
dtype=(num_nmsed_outputs * [tf.float32] + [tf.int32]),
parallel_iterations=parallel_iterations)
batch_nmsed_boxes = batch_outputs[0]
batch_nmsed_scores = batch_outputs[1]
batch_nmsed_classes = batch_outputs[2]
batch_nmsed_masks = batch_outputs[3]
batch_nmsed_values = batch_outputs[4:-1]
batch_nmsed_additional_fields = {}
if num_additional_fields > 0:
# Sort the keys to ensure arranging elements in same order as
# in _single_image_nms_fn.
batch_nmsed_keys = list(ordered_additional_fields.keys())
for i in range(len(batch_nmsed_keys)):
batch_nmsed_additional_fields[
batch_nmsed_keys[i]] = batch_nmsed_values[i]
batch_num_detections = batch_outputs[-1]
if original_masks is None:
batch_nmsed_masks = None
if not ordered_additional_fields:
batch_nmsed_additional_fields = None
return (batch_nmsed_boxes, batch_nmsed_scores, batch_nmsed_classes,
batch_nmsed_masks, batch_nmsed_additional_fields,
batch_num_detections) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/post_processing.py | post_processing.py |
"""A freezable batch norm layer that uses Keras sync batch normalization."""
import tensorflow as tf
class FreezableSyncBatchNorm(tf.keras.layers.experimental.SyncBatchNormalization
):
"""Sync Batch normalization layer (Ioffe and Szegedy, 2014).
This is a `freezable` batch norm layer that supports setting the `training`
parameter in the __init__ method rather than having to set it either via
the Keras learning phase or via the `call` method parameter. This layer will
forward all other parameters to the Keras `SyncBatchNormalization` layer
This is class is necessary because Object Detection model training sometimes
requires batch normalization layers to be `frozen` and used as if it was
evaluation time, despite still training (and potentially using dropout layers)
Like the default Keras SyncBatchNormalization layer, this will normalize the
activations of the previous layer at each batch,
i.e. applies a transformation that maintains the mean activation
close to 0 and the activation standard deviation close to 1.
Input shape:
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as input.
References:
- [Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift](https://arxiv.org/abs/1502.03167)
"""
def __init__(self, training=None, **kwargs):
"""Constructor.
Args:
training: If False, the layer will normalize using the moving average and
std. dev, without updating the learned avg and std. dev.
If None or True, the layer will follow the keras SyncBatchNormalization
layer strategy of checking the Keras learning phase at `call` time to
decide what to do.
**kwargs: The keyword arguments to forward to the keras
SyncBatchNormalization layer constructor.
"""
super(FreezableSyncBatchNorm, self).__init__(**kwargs)
self._training = training
def call(self, inputs, training=None):
# Override the call arg only if the batchnorm is frozen. (Ignore None)
if self._training is False: # pylint: disable=g-bool-id-comparison
training = self._training
return super(FreezableSyncBatchNorm, self).call(inputs, training=training) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/freezable_sync_batch_norm.py | freezable_sync_batch_norm.py |
"""A freezable batch norm layer that uses Keras batch normalization."""
import tensorflow.compat.v1 as tf
class FreezableBatchNorm(tf.keras.layers.BatchNormalization):
"""Batch normalization layer (Ioffe and Szegedy, 2014).
This is a `freezable` batch norm layer that supports setting the `training`
parameter in the __init__ method rather than having to set it either via
the Keras learning phase or via the `call` method parameter. This layer will
forward all other parameters to the default Keras `BatchNormalization`
layer
This is class is necessary because Object Detection model training sometimes
requires batch normalization layers to be `frozen` and used as if it was
evaluation time, despite still training (and potentially using dropout layers)
Like the default Keras BatchNormalization layer, this will normalize the
activations of the previous layer at each batch,
i.e. applies a transformation that maintains the mean activation
close to 0 and the activation standard deviation close to 1.
Args:
training: If False, the layer will normalize using the moving average and
std. dev, without updating the learned avg and std. dev.
If None or True, the layer will follow the keras BatchNormalization layer
strategy of checking the Keras learning phase at `call` time to decide
what to do.
**kwargs: The keyword arguments to forward to the keras BatchNormalization
layer constructor.
Input shape:
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as input.
References:
- [Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift](https://arxiv.org/abs/1502.03167)
"""
def __init__(self, training=None, **kwargs):
super(FreezableBatchNorm, self).__init__(**kwargs)
self._training = training
def call(self, inputs, training=None):
# Override the call arg only if the batchnorm is frozen. (Ignore None)
if self._training is False: # pylint: disable=g-bool-id-comparison
training = self._training
return super(FreezableBatchNorm, self).call(inputs, training=training) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/freezable_batch_norm.py | freezable_batch_norm.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta
from abc import abstractmethod
from abc import abstractproperty
import six
import tensorflow.compat.v1 as tf
from object_detection.utils import shape_utils
# Box coder types.
FASTER_RCNN = 'faster_rcnn'
KEYPOINT = 'keypoint'
MEAN_STDDEV = 'mean_stddev'
SQUARE = 'square'
class BoxCoder(six.with_metaclass(ABCMeta, object)):
"""Abstract base class for box coder."""
@abstractproperty
def code_size(self):
"""Return the size of each code.
This number is a constant and should agree with the output of the `encode`
op (e.g. if rel_codes is the output of self.encode(...), then it should have
shape [N, code_size()]). This abstractproperty should be overridden by
implementations.
Returns:
an integer constant
"""
pass
def encode(self, boxes, anchors):
"""Encode a box list relative to an anchor collection.
Args:
boxes: BoxList holding N boxes to be encoded
anchors: BoxList of N anchors
Returns:
a tensor representing N relative-encoded boxes
"""
with tf.name_scope('Encode'):
return self._encode(boxes, anchors)
def decode(self, rel_codes, anchors):
"""Decode boxes that are encoded relative to an anchor collection.
Args:
rel_codes: a tensor representing N relative-encoded boxes
anchors: BoxList of anchors
Returns:
boxlist: BoxList holding N boxes encoded in the ordinary way (i.e.,
with corners y_min, x_min, y_max, x_max)
"""
with tf.name_scope('Decode'):
return self._decode(rel_codes, anchors)
@abstractmethod
def _encode(self, boxes, anchors):
"""Method to be overriden by implementations.
Args:
boxes: BoxList holding N boxes to be encoded
anchors: BoxList of N anchors
Returns:
a tensor representing N relative-encoded boxes
"""
pass
@abstractmethod
def _decode(self, rel_codes, anchors):
"""Method to be overriden by implementations.
Args:
rel_codes: a tensor representing N relative-encoded boxes
anchors: BoxList of anchors
Returns:
boxlist: BoxList holding N boxes encoded in the ordinary way (i.e.,
with corners y_min, x_min, y_max, x_max)
"""
pass
def batch_decode(encoded_boxes, box_coder, anchors):
"""Decode a batch of encoded boxes.
This op takes a batch of encoded bounding boxes and transforms
them to a batch of bounding boxes specified by their corners in
the order of [y_min, x_min, y_max, x_max].
Args:
encoded_boxes: a float32 tensor of shape [batch_size, num_anchors,
code_size] representing the location of the objects.
box_coder: a BoxCoder object.
anchors: a BoxList of anchors used to encode `encoded_boxes`.
Returns:
decoded_boxes: a float32 tensor of shape [batch_size, num_anchors,
coder_size] representing the corners of the objects in the order
of [y_min, x_min, y_max, x_max].
Raises:
ValueError: if batch sizes of the inputs are inconsistent, or if
the number of anchors inferred from encoded_boxes and anchors are
inconsistent.
"""
encoded_boxes.get_shape().assert_has_rank(3)
if (shape_utils.get_dim_as_int(encoded_boxes.get_shape()[1])
!= anchors.num_boxes_static()):
raise ValueError('The number of anchors inferred from encoded_boxes'
' and anchors are inconsistent: shape[1] of encoded_boxes'
' %s should be equal to the number of anchors: %s.' %
(shape_utils.get_dim_as_int(encoded_boxes.get_shape()[1]),
anchors.num_boxes_static()))
decoded_boxes = tf.stack([
box_coder.decode(boxes, anchors).get()
for boxes in tf.unstack(encoded_boxes)
])
return decoded_boxes | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/box_coder.py | box_coder.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import tensorflow.compat.v1 as tf
from object_detection.core import box_list
from object_detection.utils import ops
from object_detection.utils import shape_utils
class SortOrder(object):
"""Enum class for sort order.
Attributes:
ascend: ascend order.
descend: descend order.
"""
ascend = 1
descend = 2
def area(boxlist, scope=None):
"""Computes area of boxes.
Args:
boxlist: BoxList holding N boxes
scope: name scope.
Returns:
a tensor with shape [N] representing box areas.
"""
with tf.name_scope(scope, 'Area'):
y_min, x_min, y_max, x_max = tf.split(
value=boxlist.get(), num_or_size_splits=4, axis=1)
return tf.squeeze((y_max - y_min) * (x_max - x_min), [1])
def height_width(boxlist, scope=None):
"""Computes height and width of boxes in boxlist.
Args:
boxlist: BoxList holding N boxes
scope: name scope.
Returns:
Height: A tensor with shape [N] representing box heights.
Width: A tensor with shape [N] representing box widths.
"""
with tf.name_scope(scope, 'HeightWidth'):
y_min, x_min, y_max, x_max = tf.split(
value=boxlist.get(), num_or_size_splits=4, axis=1)
return tf.squeeze(y_max - y_min, [1]), tf.squeeze(x_max - x_min, [1])
def scale(boxlist, y_scale, x_scale, scope=None):
"""scale box coordinates in x and y dimensions.
Args:
boxlist: BoxList holding N boxes
y_scale: (float) scalar tensor
x_scale: (float) scalar tensor
scope: name scope.
Returns:
boxlist: BoxList holding N boxes
"""
with tf.name_scope(scope, 'Scale'):
y_scale = tf.cast(y_scale, tf.float32)
x_scale = tf.cast(x_scale, tf.float32)
y_min, x_min, y_max, x_max = tf.split(
value=boxlist.get(), num_or_size_splits=4, axis=1)
y_min = y_scale * y_min
y_max = y_scale * y_max
x_min = x_scale * x_min
x_max = x_scale * x_max
scaled_boxlist = box_list.BoxList(
tf.concat([y_min, x_min, y_max, x_max], 1))
return _copy_extra_fields(scaled_boxlist, boxlist)
def scale_height_width(boxlist, y_scale, x_scale, scope=None):
"""Scale the height and width of boxes, leaving centers unchanged.
Args:
boxlist: BoxList holding N boxes
y_scale: (float) scalar tensor
x_scale: (float) scalar tensor
scope: name scope.
Returns:
boxlist: BoxList holding N boxes
"""
with tf.name_scope(scope, 'ScaleHeightWidth'):
y_scale = tf.cast(y_scale, tf.float32)
x_scale = tf.cast(x_scale, tf.float32)
yc, xc, height_orig, width_orig = boxlist.get_center_coordinates_and_sizes()
y_min = yc - 0.5 * y_scale * height_orig
y_max = yc + 0.5 * y_scale * height_orig
x_min = xc - 0.5 * x_scale * width_orig
x_max = xc + 0.5 * x_scale * width_orig
scaled_boxlist = box_list.BoxList(
tf.stack([y_min, x_min, y_max, x_max], 1))
return _copy_extra_fields(scaled_boxlist, boxlist)
def clip_to_window(boxlist, window, filter_nonoverlapping=True, scope=None):
"""Clip bounding boxes to a window.
This op clips any input bounding boxes (represented by bounding box
corners) to a window, optionally filtering out boxes that do not
overlap at all with the window.
Args:
boxlist: BoxList holding M_in boxes
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window to which the op should clip boxes.
filter_nonoverlapping: whether to filter out boxes that do not overlap at
all with the window.
scope: name scope.
Returns:
a BoxList holding M_out boxes where M_out <= M_in
"""
with tf.name_scope(scope, 'ClipToWindow'):
y_min, x_min, y_max, x_max = tf.split(
value=boxlist.get(), num_or_size_splits=4, axis=1)
win_y_min = window[0]
win_x_min = window[1]
win_y_max = window[2]
win_x_max = window[3]
y_min_clipped = tf.maximum(tf.minimum(y_min, win_y_max), win_y_min)
y_max_clipped = tf.maximum(tf.minimum(y_max, win_y_max), win_y_min)
x_min_clipped = tf.maximum(tf.minimum(x_min, win_x_max), win_x_min)
x_max_clipped = tf.maximum(tf.minimum(x_max, win_x_max), win_x_min)
clipped = box_list.BoxList(
tf.concat([y_min_clipped, x_min_clipped, y_max_clipped, x_max_clipped],
1))
clipped = _copy_extra_fields(clipped, boxlist)
if filter_nonoverlapping:
areas = area(clipped)
nonzero_area_indices = tf.cast(
tf.reshape(tf.where(tf.greater(areas, 0.0)), [-1]), tf.int32)
clipped = gather(clipped, nonzero_area_indices)
return clipped
def prune_outside_window(boxlist, window, scope=None):
"""Prunes bounding boxes that fall outside a given window.
This function prunes bounding boxes that even partially fall outside the given
window. See also clip_to_window which only prunes bounding boxes that fall
completely outside the window, and clips any bounding boxes that partially
overflow.
Args:
boxlist: a BoxList holding M_in boxes.
window: a float tensor of shape [4] representing [ymin, xmin, ymax, xmax]
of the window
scope: name scope.
Returns:
pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in
valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
in the input tensor.
"""
with tf.name_scope(scope, 'PruneOutsideWindow'):
y_min, x_min, y_max, x_max = tf.split(
value=boxlist.get(), num_or_size_splits=4, axis=1)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
coordinate_violations = tf.concat([
tf.less(y_min, win_y_min), tf.less(x_min, win_x_min),
tf.greater(y_max, win_y_max), tf.greater(x_max, win_x_max)
], 1)
valid_indices = tf.reshape(
tf.where(tf.logical_not(tf.reduce_any(coordinate_violations, 1))), [-1])
return gather(boxlist, valid_indices), valid_indices
def prune_completely_outside_window(boxlist, window, scope=None):
"""Prunes bounding boxes that fall completely outside of the given window.
The function clip_to_window prunes bounding boxes that fall
completely outside the window, but also clips any bounding boxes that
partially overflow. This function does not clip partially overflowing boxes.
Args:
boxlist: a BoxList holding M_in boxes.
window: a float tensor of shape [4] representing [ymin, xmin, ymax, xmax]
of the window
scope: name scope.
Returns:
pruned_boxlist: a new BoxList with all bounding boxes partially or fully in
the window.
valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
in the input tensor.
"""
with tf.name_scope(scope, 'PruneCompleteleyOutsideWindow'):
y_min, x_min, y_max, x_max = tf.split(
value=boxlist.get(), num_or_size_splits=4, axis=1)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
coordinate_violations = tf.concat([
tf.greater_equal(y_min, win_y_max), tf.greater_equal(x_min, win_x_max),
tf.less_equal(y_max, win_y_min), tf.less_equal(x_max, win_x_min)
], 1)
valid_indices = tf.reshape(
tf.where(tf.logical_not(tf.reduce_any(coordinate_violations, 1))), [-1])
return gather(boxlist, valid_indices), valid_indices
def intersection(boxlist1, boxlist2, scope=None):
"""Compute pairwise intersection areas between boxes.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
scope: name scope.
Returns:
a tensor with shape [N, M] representing pairwise intersections
"""
with tf.name_scope(scope, 'Intersection'):
y_min1, x_min1, y_max1, x_max1 = tf.split(
value=boxlist1.get(), num_or_size_splits=4, axis=1)
y_min2, x_min2, y_max2, x_max2 = tf.split(
value=boxlist2.get(), num_or_size_splits=4, axis=1)
all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2))
all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2))
intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin)
all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2))
all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2))
intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin)
return intersect_heights * intersect_widths
def matched_intersection(boxlist1, boxlist2, scope=None):
"""Compute intersection areas between corresponding boxes in two boxlists.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding N boxes
scope: name scope.
Returns:
a tensor with shape [N] representing pairwise intersections
"""
with tf.name_scope(scope, 'MatchedIntersection'):
y_min1, x_min1, y_max1, x_max1 = tf.split(
value=boxlist1.get(), num_or_size_splits=4, axis=1)
y_min2, x_min2, y_max2, x_max2 = tf.split(
value=boxlist2.get(), num_or_size_splits=4, axis=1)
min_ymax = tf.minimum(y_max1, y_max2)
max_ymin = tf.maximum(y_min1, y_min2)
intersect_heights = tf.maximum(0.0, min_ymax - max_ymin)
min_xmax = tf.minimum(x_max1, x_max2)
max_xmin = tf.maximum(x_min1, x_min2)
intersect_widths = tf.maximum(0.0, min_xmax - max_xmin)
return tf.reshape(intersect_heights * intersect_widths, [-1])
def iou(boxlist1, boxlist2, scope=None):
"""Computes pairwise intersection-over-union between box collections.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
scope: name scope.
Returns:
a tensor with shape [N, M] representing pairwise iou scores.
"""
with tf.name_scope(scope, 'IOU'):
intersections = intersection(boxlist1, boxlist2)
areas1 = area(boxlist1)
areas2 = area(boxlist2)
unions = (
tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections)
return tf.where(
tf.equal(intersections, 0.0),
tf.zeros_like(intersections), tf.truediv(intersections, unions))
def l1(boxlist1, boxlist2, scope=None):
"""Computes l1 loss (pairwise) between two boxlists.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
scope: name scope.
Returns:
a tensor with shape [N, M] representing the pairwise L1 loss.
"""
with tf.name_scope(scope, 'PairwiseL1'):
ycenter1, xcenter1, h1, w1 = boxlist1.get_center_coordinates_and_sizes()
ycenter2, xcenter2, h2, w2 = boxlist2.get_center_coordinates_and_sizes()
ycenters = tf.abs(tf.expand_dims(ycenter2, axis=0) - tf.expand_dims(
tf.transpose(ycenter1), axis=1))
xcenters = tf.abs(tf.expand_dims(xcenter2, axis=0) - tf.expand_dims(
tf.transpose(xcenter1), axis=1))
heights = tf.abs(tf.expand_dims(h2, axis=0) - tf.expand_dims(
tf.transpose(h1), axis=1))
widths = tf.abs(tf.expand_dims(w2, axis=0) - tf.expand_dims(
tf.transpose(w1), axis=1))
return ycenters + xcenters + heights + widths
def giou(boxlist1, boxlist2, scope=None):
"""Computes pairwise generalized IOU between two boxlists.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
scope: name scope.
Returns:
a tensor with shape [N, M] representing the pairwise GIoU loss.
"""
with tf.name_scope(scope, 'PairwiseGIoU'):
n = boxlist1.num_boxes()
m = boxlist2.num_boxes()
boxes1 = tf.repeat(boxlist1.get(), repeats=m, axis=0)
boxes2 = tf.tile(boxlist2.get(), multiples=[n, 1])
return tf.reshape(ops.giou(boxes1, boxes2), [n, m])
def matched_iou(boxlist1, boxlist2, scope=None):
"""Compute intersection-over-union between corresponding boxes in boxlists.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding N boxes
scope: name scope.
Returns:
a tensor with shape [N] representing pairwise iou scores.
"""
with tf.name_scope(scope, 'MatchedIOU'):
intersections = matched_intersection(boxlist1, boxlist2)
areas1 = area(boxlist1)
areas2 = area(boxlist2)
unions = areas1 + areas2 - intersections
return tf.where(
tf.equal(intersections, 0.0),
tf.zeros_like(intersections), tf.truediv(intersections, unions))
def ioa(boxlist1, boxlist2, scope=None):
"""Computes pairwise intersection-over-area between box collections.
intersection-over-area (IOA) between two boxes box1 and box2 is defined as
their intersection area over box2's area. Note that ioa is not symmetric,
that is, ioa(box1, box2) != ioa(box2, box1).
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
scope: name scope.
Returns:
a tensor with shape [N, M] representing pairwise ioa scores.
"""
with tf.name_scope(scope, 'IOA'):
intersections = intersection(boxlist1, boxlist2)
areas = tf.expand_dims(area(boxlist2), 0)
return tf.truediv(intersections, areas)
def prune_non_overlapping_boxes(
boxlist1, boxlist2, min_overlap=0.0, scope=None):
"""Prunes the boxes in boxlist1 that overlap less than thresh with boxlist2.
For each box in boxlist1, we want its IOA to be more than minoverlap with
at least one of the boxes in boxlist2. If it does not, we remove it.
Args:
boxlist1: BoxList holding N boxes.
boxlist2: BoxList holding M boxes.
min_overlap: Minimum required overlap between boxes, to count them as
overlapping.
scope: name scope.
Returns:
new_boxlist1: A pruned boxlist with size [N', 4].
keep_inds: A tensor with shape [N'] indexing kept bounding boxes in the
first input BoxList `boxlist1`.
"""
with tf.name_scope(scope, 'PruneNonOverlappingBoxes'):
ioa_ = ioa(boxlist2, boxlist1) # [M, N] tensor
ioa_ = tf.reduce_max(ioa_, reduction_indices=[0]) # [N] tensor
keep_bool = tf.greater_equal(ioa_, tf.constant(min_overlap))
keep_inds = tf.squeeze(tf.where(keep_bool), axis=[1])
new_boxlist1 = gather(boxlist1, keep_inds)
return new_boxlist1, keep_inds
def prune_small_boxes(boxlist, min_side, scope=None):
"""Prunes small boxes in the boxlist which have a side smaller than min_side.
Args:
boxlist: BoxList holding N boxes.
min_side: Minimum width AND height of box to survive pruning.
scope: name scope.
Returns:
A pruned boxlist.
"""
with tf.name_scope(scope, 'PruneSmallBoxes'):
height, width = height_width(boxlist)
is_valid = tf.logical_and(tf.greater_equal(width, min_side),
tf.greater_equal(height, min_side))
return gather(boxlist, tf.reshape(tf.where(is_valid), [-1]))
def change_coordinate_frame(boxlist, window, scope=None):
"""Change coordinate frame of the boxlist to be relative to window's frame.
Given a window of the form [ymin, xmin, ymax, xmax],
changes bounding box coordinates from boxlist to be relative to this window
(e.g., the min corner maps to (0,0) and the max corner maps to (1,1)).
An example use case is data augmentation: where we are given groundtruth
boxes (boxlist) and would like to randomly crop the image to some
window (window). In this case we need to change the coordinate frame of
each groundtruth box to be relative to this new window.
Args:
boxlist: A BoxList object holding N boxes.
window: A rank 1 tensor [4].
scope: name scope.
Returns:
Returns a BoxList object with N boxes.
"""
with tf.name_scope(scope, 'ChangeCoordinateFrame'):
win_height = window[2] - window[0]
win_width = window[3] - window[1]
boxlist_new = scale(box_list.BoxList(
boxlist.get() - [window[0], window[1], window[0], window[1]]),
1.0 / win_height, 1.0 / win_width)
boxlist_new = _copy_extra_fields(boxlist_new, boxlist)
return boxlist_new
def sq_dist(boxlist1, boxlist2, scope=None):
"""Computes the pairwise squared distances between box corners.
This op treats each box as if it were a point in a 4d Euclidean space and
computes pairwise squared distances.
Mathematically, we are given two matrices of box coordinates X and Y,
where X(i,:) is the i'th row of X, containing the 4 numbers defining the
corners of the i'th box in boxlist1. Similarly Y(j,:) corresponds to
boxlist2. We compute
Z(i,j) = ||X(i,:) - Y(j,:)||^2
= ||X(i,:)||^2 + ||Y(j,:)||^2 - 2 X(i,:)' * Y(j,:),
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
scope: name scope.
Returns:
a tensor with shape [N, M] representing pairwise distances
"""
with tf.name_scope(scope, 'SqDist'):
sqnorm1 = tf.reduce_sum(tf.square(boxlist1.get()), 1, keep_dims=True)
sqnorm2 = tf.reduce_sum(tf.square(boxlist2.get()), 1, keep_dims=True)
innerprod = tf.matmul(boxlist1.get(), boxlist2.get(),
transpose_a=False, transpose_b=True)
return sqnorm1 + tf.transpose(sqnorm2) - 2.0 * innerprod
def boolean_mask(boxlist, indicator, fields=None, scope=None,
use_static_shapes=False, indicator_sum=None):
"""Select boxes from BoxList according to indicator and return new BoxList.
`boolean_mask` returns the subset of boxes that are marked as "True" by the
indicator tensor. By default, `boolean_mask` returns boxes corresponding to
the input index list, as well as all additional fields stored in the boxlist
(indexing into the first dimension). However one can optionally only draw
from a subset of fields.
Args:
boxlist: BoxList holding N boxes
indicator: a rank-1 boolean tensor
fields: (optional) list of fields to also gather from. If None (default),
all fields are gathered from. Pass an empty fields list to only gather
the box coordinates.
scope: name scope.
use_static_shapes: Whether to use an implementation with static shape
gurantees.
indicator_sum: An integer containing the sum of `indicator` vector. Only
required if `use_static_shape` is True.
Returns:
subboxlist: a BoxList corresponding to the subset of the input BoxList
specified by indicator
Raises:
ValueError: if `indicator` is not a rank-1 boolean tensor.
"""
with tf.name_scope(scope, 'BooleanMask'):
if indicator.shape.ndims != 1:
raise ValueError('indicator should have rank 1')
if indicator.dtype != tf.bool:
raise ValueError('indicator should be a boolean tensor')
if use_static_shapes:
if not (indicator_sum and isinstance(indicator_sum, int)):
raise ValueError('`indicator_sum` must be a of type int')
selected_positions = tf.cast(indicator, dtype=tf.float32)
indexed_positions = tf.cast(
tf.multiply(
tf.cumsum(selected_positions), selected_positions),
dtype=tf.int32)
one_hot_selector = tf.one_hot(
indexed_positions - 1, indicator_sum, dtype=tf.float32)
sampled_indices = tf.cast(
tf.tensordot(
tf.cast(tf.range(tf.shape(indicator)[0]), dtype=tf.float32),
one_hot_selector,
axes=[0, 0]),
dtype=tf.int32)
return gather(boxlist, sampled_indices, use_static_shapes=True)
else:
subboxlist = box_list.BoxList(tf.boolean_mask(boxlist.get(), indicator))
if fields is None:
fields = boxlist.get_extra_fields()
for field in fields:
if not boxlist.has_field(field):
raise ValueError('boxlist must contain all specified fields')
subfieldlist = tf.boolean_mask(boxlist.get_field(field), indicator)
subboxlist.add_field(field, subfieldlist)
return subboxlist
def gather(boxlist, indices, fields=None, scope=None, use_static_shapes=False):
"""Gather boxes from BoxList according to indices and return new BoxList.
By default, `gather` returns boxes corresponding to the input index list, as
well as all additional fields stored in the boxlist (indexing into the
first dimension). However one can optionally only gather from a
subset of fields.
Args:
boxlist: BoxList holding N boxes
indices: a rank-1 tensor of type int32 / int64
fields: (optional) list of fields to also gather from. If None (default),
all fields are gathered from. Pass an empty fields list to only gather
the box coordinates.
scope: name scope.
use_static_shapes: Whether to use an implementation with static shape
gurantees.
Returns:
subboxlist: a BoxList corresponding to the subset of the input BoxList
specified by indices
Raises:
ValueError: if specified field is not contained in boxlist or if the
indices are not of type int32
"""
with tf.name_scope(scope, 'Gather'):
if len(indices.shape.as_list()) != 1:
raise ValueError('indices should have rank 1')
if indices.dtype != tf.int32 and indices.dtype != tf.int64:
raise ValueError('indices should be an int32 / int64 tensor')
gather_op = tf.gather
if use_static_shapes:
gather_op = ops.matmul_gather_on_zeroth_axis
subboxlist = box_list.BoxList(gather_op(boxlist.get(), indices))
if fields is None:
fields = boxlist.get_extra_fields()
fields += ['boxes']
for field in fields:
if not boxlist.has_field(field):
raise ValueError('boxlist must contain all specified fields')
subfieldlist = gather_op(boxlist.get_field(field), indices)
subboxlist.add_field(field, subfieldlist)
return subboxlist
def concatenate(boxlists, fields=None, scope=None):
"""Concatenate list of BoxLists.
This op concatenates a list of input BoxLists into a larger BoxList. It also
handles concatenation of BoxList fields as long as the field tensor shapes
are equal except for the first dimension.
Args:
boxlists: list of BoxList objects
fields: optional list of fields to also concatenate. By default, all
fields from the first BoxList in the list are included in the
concatenation.
scope: name scope.
Returns:
a BoxList with number of boxes equal to
sum([boxlist.num_boxes() for boxlist in BoxList])
Raises:
ValueError: if boxlists is invalid (i.e., is not a list, is empty, or
contains non BoxList objects), or if requested fields are not contained in
all boxlists
"""
with tf.name_scope(scope, 'Concatenate'):
if not isinstance(boxlists, list):
raise ValueError('boxlists should be a list')
if not boxlists:
raise ValueError('boxlists should have nonzero length')
for boxlist in boxlists:
if not isinstance(boxlist, box_list.BoxList):
raise ValueError('all elements of boxlists should be BoxList objects')
concatenated = box_list.BoxList(
tf.concat([boxlist.get() for boxlist in boxlists], 0))
if fields is None:
fields = boxlists[0].get_extra_fields()
for field in fields:
first_field_shape = boxlists[0].get_field(field).get_shape().as_list()
first_field_shape[0] = -1
if None in first_field_shape:
raise ValueError('field %s must have fully defined shape except for the'
' 0th dimension.' % field)
for boxlist in boxlists:
if not boxlist.has_field(field):
raise ValueError('boxlist must contain all requested fields')
field_shape = boxlist.get_field(field).get_shape().as_list()
field_shape[0] = -1
if field_shape != first_field_shape:
raise ValueError('field %s must have same shape for all boxlists '
'except for the 0th dimension.' % field)
concatenated_field = tf.concat(
[boxlist.get_field(field) for boxlist in boxlists], 0)
concatenated.add_field(field, concatenated_field)
return concatenated
def sort_by_field(boxlist, field, order=SortOrder.descend, scope=None):
"""Sort boxes and associated fields according to a scalar field.
A common use case is reordering the boxes according to descending scores.
Args:
boxlist: BoxList holding N boxes.
field: A BoxList field for sorting and reordering the BoxList.
order: (Optional) descend or ascend. Default is descend.
scope: name scope.
Returns:
sorted_boxlist: A sorted BoxList with the field in the specified order.
Raises:
ValueError: if specified field does not exist
ValueError: if the order is not either descend or ascend
"""
with tf.name_scope(scope, 'SortByField'):
if order != SortOrder.descend and order != SortOrder.ascend:
raise ValueError('Invalid sort order')
field_to_sort = boxlist.get_field(field)
if len(field_to_sort.shape.as_list()) != 1:
raise ValueError('Field should have rank 1')
num_boxes = boxlist.num_boxes()
num_entries = tf.size(field_to_sort)
length_assert = tf.Assert(
tf.equal(num_boxes, num_entries),
['Incorrect field size: actual vs expected.', num_entries, num_boxes])
with tf.control_dependencies([length_assert]):
_, sorted_indices = tf.nn.top_k(field_to_sort, num_boxes, sorted=True)
if order == SortOrder.ascend:
sorted_indices = tf.reverse_v2(sorted_indices, [0])
return gather(boxlist, sorted_indices)
def visualize_boxes_in_image(image, boxlist, normalized=False, scope=None):
"""Overlay bounding box list on image.
Currently this visualization plots a 1 pixel thick red bounding box on top
of the image. Note that tf.image.draw_bounding_boxes essentially is
1 indexed.
Args:
image: an image tensor with shape [height, width, 3]
boxlist: a BoxList
normalized: (boolean) specify whether corners are to be interpreted
as absolute coordinates in image space or normalized with respect to the
image size.
scope: name scope.
Returns:
image_and_boxes: an image tensor with shape [height, width, 3]
"""
with tf.name_scope(scope, 'VisualizeBoxesInImage'):
if not normalized:
height, width, _ = tf.unstack(tf.shape(image))
boxlist = scale(boxlist,
1.0 / tf.cast(height, tf.float32),
1.0 / tf.cast(width, tf.float32))
corners = tf.expand_dims(boxlist.get(), 0)
image = tf.expand_dims(image, 0)
return tf.squeeze(tf.image.draw_bounding_boxes(image, corners), [0])
def filter_field_value_equals(boxlist, field, value, scope=None):
"""Filter to keep only boxes with field entries equal to the given value.
Args:
boxlist: BoxList holding N boxes.
field: field name for filtering.
value: scalar value.
scope: name scope.
Returns:
a BoxList holding M boxes where M <= N
Raises:
ValueError: if boxlist not a BoxList object or if it does not have
the specified field.
"""
with tf.name_scope(scope, 'FilterFieldValueEquals'):
if not isinstance(boxlist, box_list.BoxList):
raise ValueError('boxlist must be a BoxList')
if not boxlist.has_field(field):
raise ValueError('boxlist must contain the specified field')
filter_field = boxlist.get_field(field)
gather_index = tf.reshape(tf.where(tf.equal(filter_field, value)), [-1])
return gather(boxlist, gather_index)
def filter_greater_than(boxlist, thresh, scope=None):
"""Filter to keep only boxes with score exceeding a given threshold.
This op keeps the collection of boxes whose corresponding scores are
greater than the input threshold.
TODO(jonathanhuang): Change function name to filter_scores_greater_than
Args:
boxlist: BoxList holding N boxes. Must contain a 'scores' field
representing detection scores.
thresh: scalar threshold
scope: name scope.
Returns:
a BoxList holding M boxes where M <= N
Raises:
ValueError: if boxlist not a BoxList object or if it does not
have a scores field
"""
with tf.name_scope(scope, 'FilterGreaterThan'):
if not isinstance(boxlist, box_list.BoxList):
raise ValueError('boxlist must be a BoxList')
if not boxlist.has_field('scores'):
raise ValueError('input boxlist must have \'scores\' field')
scores = boxlist.get_field('scores')
if len(scores.shape.as_list()) > 2:
raise ValueError('Scores should have rank 1 or 2')
if len(scores.shape.as_list()) == 2 and scores.shape.as_list()[1] != 1:
raise ValueError('Scores should have rank 1 or have shape '
'consistent with [None, 1]')
high_score_indices = tf.cast(tf.reshape(
tf.where(tf.greater(scores, thresh)),
[-1]), tf.int32)
return gather(boxlist, high_score_indices)
def non_max_suppression(boxlist, thresh, max_output_size, scope=None):
"""Non maximum suppression.
This op greedily selects a subset of detection bounding boxes, pruning
away boxes that have high IOU (intersection over union) overlap (> thresh)
with already selected boxes. Note that this only works for a single class ---
to apply NMS to multi-class predictions, use MultiClassNonMaxSuppression.
Args:
boxlist: BoxList holding N boxes. Must contain a 'scores' field
representing detection scores.
thresh: scalar threshold
max_output_size: maximum number of retained boxes
scope: name scope.
Returns:
a BoxList holding M boxes where M <= max_output_size
Raises:
ValueError: if thresh is not in [0, 1]
"""
with tf.name_scope(scope, 'NonMaxSuppression'):
if not 0 <= thresh <= 1.0:
raise ValueError('thresh must be between 0 and 1')
if not isinstance(boxlist, box_list.BoxList):
raise ValueError('boxlist must be a BoxList')
if not boxlist.has_field('scores'):
raise ValueError('input boxlist must have \'scores\' field')
selected_indices = tf.image.non_max_suppression(
boxlist.get(), boxlist.get_field('scores'),
max_output_size, iou_threshold=thresh)
return gather(boxlist, selected_indices)
def _copy_extra_fields(boxlist_to_copy_to, boxlist_to_copy_from):
"""Copies the extra fields of boxlist_to_copy_from to boxlist_to_copy_to.
Args:
boxlist_to_copy_to: BoxList to which extra fields are copied.
boxlist_to_copy_from: BoxList from which fields are copied.
Returns:
boxlist_to_copy_to with extra fields.
"""
for field in boxlist_to_copy_from.get_extra_fields():
boxlist_to_copy_to.add_field(field, boxlist_to_copy_from.get_field(field))
return boxlist_to_copy_to
def to_normalized_coordinates(boxlist, height, width,
check_range=True, scope=None):
"""Converts absolute box coordinates to normalized coordinates in [0, 1].
Usually one uses the dynamic shape of the image or conv-layer tensor:
boxlist = box_list_ops.to_normalized_coordinates(boxlist,
tf.shape(images)[1],
tf.shape(images)[2]),
This function raises an assertion failed error at graph execution time when
the maximum coordinate is smaller than 1.01 (which means that coordinates are
already normalized). The value 1.01 is to deal with small rounding errors.
Args:
boxlist: BoxList with coordinates in terms of pixel-locations.
height: Maximum value for height of absolute box coordinates.
width: Maximum value for width of absolute box coordinates.
check_range: If True, checks if the coordinates are normalized or not.
scope: name scope.
Returns:
boxlist with normalized coordinates in [0, 1].
"""
with tf.name_scope(scope, 'ToNormalizedCoordinates'):
height = tf.cast(height, tf.float32)
width = tf.cast(width, tf.float32)
if check_range:
max_val = tf.reduce_max(boxlist.get())
max_assert = tf.Assert(tf.greater(max_val, 1.01),
['max value is lower than 1.01: ', max_val])
with tf.control_dependencies([max_assert]):
width = tf.identity(width)
return scale(boxlist, 1 / height, 1 / width)
def to_absolute_coordinates(boxlist,
height,
width,
check_range=True,
maximum_normalized_coordinate=1.1,
scope=None):
"""Converts normalized box coordinates to absolute pixel coordinates.
This function raises an assertion failed error when the maximum box coordinate
value is larger than maximum_normalized_coordinate (in which case coordinates
are already absolute).
Args:
boxlist: BoxList with coordinates in range [0, 1].
height: Maximum value for height of absolute box coordinates.
width: Maximum value for width of absolute box coordinates.
check_range: If True, checks if the coordinates are normalized or not.
maximum_normalized_coordinate: Maximum coordinate value to be considered
as normalized, default to 1.1.
scope: name scope.
Returns:
boxlist with absolute coordinates in terms of the image size.
"""
with tf.name_scope(scope, 'ToAbsoluteCoordinates'):
height = tf.cast(height, tf.float32)
width = tf.cast(width, tf.float32)
# Ensure range of input boxes is correct.
if check_range:
box_maximum = tf.reduce_max(boxlist.get())
max_assert = tf.Assert(
tf.greater_equal(maximum_normalized_coordinate, box_maximum),
['maximum box coordinate value is larger '
'than %f: ' % maximum_normalized_coordinate, box_maximum])
with tf.control_dependencies([max_assert]):
width = tf.identity(width)
return scale(boxlist, height, width)
def refine_boxes_multi_class(pool_boxes,
num_classes,
nms_iou_thresh,
nms_max_detections,
voting_iou_thresh=0.5):
"""Refines a pool of boxes using non max suppression and box voting.
Box refinement is done independently for each class.
Args:
pool_boxes: (BoxList) A collection of boxes to be refined. pool_boxes must
have a rank 1 'scores' field and a rank 1 'classes' field.
num_classes: (int scalar) Number of classes.
nms_iou_thresh: (float scalar) iou threshold for non max suppression (NMS).
nms_max_detections: (int scalar) maximum output size for NMS.
voting_iou_thresh: (float scalar) iou threshold for box voting.
Returns:
BoxList of refined boxes.
Raises:
ValueError: if
a) nms_iou_thresh or voting_iou_thresh is not in [0, 1].
b) pool_boxes is not a BoxList.
c) pool_boxes does not have a scores and classes field.
"""
if not 0.0 <= nms_iou_thresh <= 1.0:
raise ValueError('nms_iou_thresh must be between 0 and 1')
if not 0.0 <= voting_iou_thresh <= 1.0:
raise ValueError('voting_iou_thresh must be between 0 and 1')
if not isinstance(pool_boxes, box_list.BoxList):
raise ValueError('pool_boxes must be a BoxList')
if not pool_boxes.has_field('scores'):
raise ValueError('pool_boxes must have a \'scores\' field')
if not pool_boxes.has_field('classes'):
raise ValueError('pool_boxes must have a \'classes\' field')
refined_boxes = []
for i in range(num_classes):
boxes_class = filter_field_value_equals(pool_boxes, 'classes', i)
refined_boxes_class = refine_boxes(boxes_class, nms_iou_thresh,
nms_max_detections, voting_iou_thresh)
refined_boxes.append(refined_boxes_class)
return sort_by_field(concatenate(refined_boxes), 'scores')
def refine_boxes(pool_boxes,
nms_iou_thresh,
nms_max_detections,
voting_iou_thresh=0.5):
"""Refines a pool of boxes using non max suppression and box voting.
Args:
pool_boxes: (BoxList) A collection of boxes to be refined. pool_boxes must
have a rank 1 'scores' field.
nms_iou_thresh: (float scalar) iou threshold for non max suppression (NMS).
nms_max_detections: (int scalar) maximum output size for NMS.
voting_iou_thresh: (float scalar) iou threshold for box voting.
Returns:
BoxList of refined boxes.
Raises:
ValueError: if
a) nms_iou_thresh or voting_iou_thresh is not in [0, 1].
b) pool_boxes is not a BoxList.
c) pool_boxes does not have a scores field.
"""
if not 0.0 <= nms_iou_thresh <= 1.0:
raise ValueError('nms_iou_thresh must be between 0 and 1')
if not 0.0 <= voting_iou_thresh <= 1.0:
raise ValueError('voting_iou_thresh must be between 0 and 1')
if not isinstance(pool_boxes, box_list.BoxList):
raise ValueError('pool_boxes must be a BoxList')
if not pool_boxes.has_field('scores'):
raise ValueError('pool_boxes must have a \'scores\' field')
nms_boxes = non_max_suppression(
pool_boxes, nms_iou_thresh, nms_max_detections)
return box_voting(nms_boxes, pool_boxes, voting_iou_thresh)
def box_voting(selected_boxes, pool_boxes, iou_thresh=0.5):
"""Performs box voting as described in S. Gidaris and N. Komodakis, ICCV 2015.
Performs box voting as described in 'Object detection via a multi-region &
semantic segmentation-aware CNN model', Gidaris and Komodakis, ICCV 2015. For
each box 'B' in selected_boxes, we find the set 'S' of boxes in pool_boxes
with iou overlap >= iou_thresh. The location of B is set to the weighted
average location of boxes in S (scores are used for weighting). And the score
of B is set to the average score of boxes in S.
Args:
selected_boxes: BoxList containing a subset of boxes in pool_boxes. These
boxes are usually selected from pool_boxes using non max suppression.
pool_boxes: BoxList containing a set of (possibly redundant) boxes.
iou_thresh: (float scalar) iou threshold for matching boxes in
selected_boxes and pool_boxes.
Returns:
BoxList containing averaged locations and scores for each box in
selected_boxes.
Raises:
ValueError: if
a) selected_boxes or pool_boxes is not a BoxList.
b) if iou_thresh is not in [0, 1].
c) pool_boxes does not have a scores field.
"""
if not 0.0 <= iou_thresh <= 1.0:
raise ValueError('iou_thresh must be between 0 and 1')
if not isinstance(selected_boxes, box_list.BoxList):
raise ValueError('selected_boxes must be a BoxList')
if not isinstance(pool_boxes, box_list.BoxList):
raise ValueError('pool_boxes must be a BoxList')
if not pool_boxes.has_field('scores'):
raise ValueError('pool_boxes must have a \'scores\' field')
iou_ = iou(selected_boxes, pool_boxes)
match_indicator = tf.cast(tf.greater(iou_, iou_thresh), dtype=tf.float32)
num_matches = tf.reduce_sum(match_indicator, 1)
# TODO(kbanoop): Handle the case where some boxes in selected_boxes do not
# match to any boxes in pool_boxes. For such boxes without any matches, we
# should return the original boxes without voting.
match_assert = tf.Assert(
tf.reduce_all(tf.greater(num_matches, 0)),
['Each box in selected_boxes must match with at least one box '
'in pool_boxes.'])
scores = tf.expand_dims(pool_boxes.get_field('scores'), 1)
scores_assert = tf.Assert(
tf.reduce_all(tf.greater_equal(scores, 0)),
['Scores must be non negative.'])
with tf.control_dependencies([scores_assert, match_assert]):
sum_scores = tf.matmul(match_indicator, scores)
averaged_scores = tf.reshape(sum_scores, [-1]) / num_matches
box_locations = tf.matmul(match_indicator,
pool_boxes.get() * scores) / sum_scores
averaged_boxes = box_list.BoxList(box_locations)
_copy_extra_fields(averaged_boxes, selected_boxes)
averaged_boxes.add_field('scores', averaged_scores)
return averaged_boxes
def pad_or_clip_box_list(boxlist, num_boxes, scope=None):
"""Pads or clips all fields of a BoxList.
Args:
boxlist: A BoxList with arbitrary of number of boxes.
num_boxes: First num_boxes in boxlist are kept.
The fields are zero-padded if num_boxes is bigger than the
actual number of boxes.
scope: name scope.
Returns:
BoxList with all fields padded or clipped.
"""
with tf.name_scope(scope, 'PadOrClipBoxList'):
subboxlist = box_list.BoxList(shape_utils.pad_or_clip_tensor(
boxlist.get(), num_boxes))
for field in boxlist.get_extra_fields():
subfield = shape_utils.pad_or_clip_tensor(
boxlist.get_field(field), num_boxes)
subboxlist.add_field(field, subfield)
return subboxlist
def select_random_box(boxlist,
default_box=None,
seed=None,
scope=None):
"""Selects a random bounding box from a `BoxList`.
Args:
boxlist: A BoxList.
default_box: A [1, 4] float32 tensor. If no boxes are present in `boxlist`,
this default box will be returned. If None, will use a default box of
[[-1., -1., -1., -1.]].
seed: Random seed.
scope: Name scope.
Returns:
bbox: A [1, 4] tensor with a random bounding box.
valid: A bool tensor indicating whether a valid bounding box is returned
(True) or whether the default box is returned (False).
"""
with tf.name_scope(scope, 'SelectRandomBox'):
bboxes = boxlist.get()
combined_shape = shape_utils.combined_static_and_dynamic_shape(bboxes)
number_of_boxes = combined_shape[0]
default_box = default_box or tf.constant([[-1., -1., -1., -1.]])
def select_box():
random_index = tf.random_uniform([],
maxval=number_of_boxes,
dtype=tf.int32,
seed=seed)
return tf.expand_dims(bboxes[random_index], axis=0), tf.constant(True)
return tf.cond(
tf.greater_equal(number_of_boxes, 1),
true_fn=select_box,
false_fn=lambda: (default_box, tf.constant(False)))
def get_minimal_coverage_box(boxlist,
default_box=None,
scope=None):
"""Creates a single bounding box which covers all boxes in the boxlist.
Args:
boxlist: A Boxlist.
default_box: A [1, 4] float32 tensor. If no boxes are present in `boxlist`,
this default box will be returned. If None, will use a default box of
[[0., 0., 1., 1.]].
scope: Name scope.
Returns:
A [1, 4] float32 tensor with a bounding box that tightly covers all the
boxes in the box list. If the boxlist does not contain any boxes, the
default box is returned.
"""
with tf.name_scope(scope, 'CreateCoverageBox'):
num_boxes = boxlist.num_boxes()
def coverage_box(bboxes):
y_min, x_min, y_max, x_max = tf.split(
value=bboxes, num_or_size_splits=4, axis=1)
y_min_coverage = tf.reduce_min(y_min, axis=0)
x_min_coverage = tf.reduce_min(x_min, axis=0)
y_max_coverage = tf.reduce_max(y_max, axis=0)
x_max_coverage = tf.reduce_max(x_max, axis=0)
return tf.stack(
[y_min_coverage, x_min_coverage, y_max_coverage, x_max_coverage],
axis=1)
default_box = default_box or tf.constant([[0., 0., 1., 1.]])
return tf.cond(
tf.greater_equal(num_boxes, 1),
true_fn=lambda: coverage_box(boxlist.get()),
false_fn=lambda: default_box)
def sample_boxes_by_jittering(boxlist,
num_boxes_to_sample,
stddev=0.1,
scope=None):
"""Samples num_boxes_to_sample boxes by jittering around boxlist boxes.
It is possible that this function might generate boxes with size 0. The larger
the stddev, this is more probable. For a small stddev of 0.1 this probability
is very small.
Args:
boxlist: A boxlist containing N boxes in normalized coordinates.
num_boxes_to_sample: A positive integer containing the number of boxes to
sample.
stddev: Standard deviation. This is used to draw random offsets for the
box corners from a normal distribution. The offset is multiplied by the
box size so will be larger in terms of pixels for larger boxes.
scope: Name scope.
Returns:
sampled_boxlist: A boxlist containing num_boxes_to_sample boxes in
normalized coordinates.
"""
with tf.name_scope(scope, 'SampleBoxesByJittering'):
num_boxes = boxlist.num_boxes()
box_indices = tf.random_uniform(
[num_boxes_to_sample],
minval=0,
maxval=num_boxes,
dtype=tf.int32)
sampled_boxes = tf.gather(boxlist.get(), box_indices)
sampled_boxes_height = sampled_boxes[:, 2] - sampled_boxes[:, 0]
sampled_boxes_width = sampled_boxes[:, 3] - sampled_boxes[:, 1]
rand_miny_gaussian = tf.random_normal([num_boxes_to_sample], stddev=stddev)
rand_minx_gaussian = tf.random_normal([num_boxes_to_sample], stddev=stddev)
rand_maxy_gaussian = tf.random_normal([num_boxes_to_sample], stddev=stddev)
rand_maxx_gaussian = tf.random_normal([num_boxes_to_sample], stddev=stddev)
miny = rand_miny_gaussian * sampled_boxes_height + sampled_boxes[:, 0]
minx = rand_minx_gaussian * sampled_boxes_width + sampled_boxes[:, 1]
maxy = rand_maxy_gaussian * sampled_boxes_height + sampled_boxes[:, 2]
maxx = rand_maxx_gaussian * sampled_boxes_width + sampled_boxes[:, 3]
maxy = tf.maximum(miny, maxy)
maxx = tf.maximum(minx, maxx)
sampled_boxes = tf.stack([miny, minx, maxy, maxx], axis=1)
sampled_boxes = tf.maximum(tf.minimum(sampled_boxes, 1.0), 0.0)
return box_list.BoxList(sampled_boxes) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/box_list_ops.py | box_list_ops.py |
import os
import numpy as np
import scipy.io
import tensorflow.compat.v1 as tf
from object_detection.utils import shape_utils
PART_NAMES = [
b'torso_back', b'torso_front', b'right_hand', b'left_hand', b'left_foot',
b'right_foot', b'right_upper_leg_back', b'left_upper_leg_back',
b'right_upper_leg_front', b'left_upper_leg_front', b'right_lower_leg_back',
b'left_lower_leg_back', b'right_lower_leg_front', b'left_lower_leg_front',
b'left_upper_arm_back', b'right_upper_arm_back', b'left_upper_arm_front',
b'right_upper_arm_front', b'left_lower_arm_back', b'right_lower_arm_back',
b'left_lower_arm_front', b'right_lower_arm_front', b'right_face',
b'left_face',
]
def scale(dp_surface_coords, y_scale, x_scale, scope=None):
"""Scales DensePose coordinates in y and x dimensions.
Args:
dp_surface_coords: a tensor of shape [num_instances, num_points, 4], with
coordinates in (y, x, v, u) format.
y_scale: (float) scalar tensor
x_scale: (float) scalar tensor
scope: name scope.
Returns:
new_dp_surface_coords: a tensor of shape [num_instances, num_points, 4]
"""
with tf.name_scope(scope, 'DensePoseScale'):
y_scale = tf.cast(y_scale, tf.float32)
x_scale = tf.cast(x_scale, tf.float32)
new_keypoints = dp_surface_coords * [[[y_scale, x_scale, 1, 1]]]
return new_keypoints
def clip_to_window(dp_surface_coords, window, scope=None):
"""Clips DensePose points to a window.
This op clips any input DensePose points to a window.
Args:
dp_surface_coords: a tensor of shape [num_instances, num_points, 4] with
DensePose surface coordinates in (y, x, v, u) format.
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window to which the op should clip the keypoints.
scope: name scope.
Returns:
new_dp_surface_coords: a tensor of shape [num_instances, num_points, 4].
"""
with tf.name_scope(scope, 'DensePoseClipToWindow'):
y, x, v, u = tf.split(value=dp_surface_coords, num_or_size_splits=4, axis=2)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
y = tf.maximum(tf.minimum(y, win_y_max), win_y_min)
x = tf.maximum(tf.minimum(x, win_x_max), win_x_min)
new_dp_surface_coords = tf.concat([y, x, v, u], 2)
return new_dp_surface_coords
def prune_outside_window(dp_num_points, dp_part_ids, dp_surface_coords, window,
scope=None):
"""Prunes DensePose points that fall outside a given window.
This function replaces points that fall outside the given window with zeros.
See also clip_to_window which clips any DensePose points that fall outside the
given window.
Note that this operation uses dynamic shapes, and therefore is not currently
suitable for TPU.
Args:
dp_num_points: a tensor of shape [num_instances] that indicates how many
(non-padded) DensePose points there are per instance.
dp_part_ids: a tensor of shape [num_instances, num_points] with DensePose
part ids. These part_ids are 0-indexed, where the first non-background
part has index 0.
dp_surface_coords: a tensor of shape [num_instances, num_points, 4] with
DensePose surface coordinates in (y, x, v, u) format.
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window outside of which the op should prune the points.
scope: name scope.
Returns:
new_dp_num_points: a tensor of shape [num_instances] that indicates how many
(non-padded) DensePose points there are per instance after pruning.
new_dp_part_ids: a tensor of shape [num_instances, num_points] with
DensePose part ids. These part_ids are 0-indexed, where the first
non-background part has index 0.
new_dp_surface_coords: a tensor of shape [num_instances, num_points, 4] with
DensePose surface coordinates after pruning.
"""
with tf.name_scope(scope, 'DensePosePruneOutsideWindow'):
y, x, _, _ = tf.unstack(dp_surface_coords, axis=-1)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
num_instances, num_points = shape_utils.combined_static_and_dynamic_shape(
dp_part_ids)
dp_num_points_tiled = tf.tile(dp_num_points[:, tf.newaxis],
multiples=[1, num_points])
range_tiled = tf.tile(tf.range(num_points)[tf.newaxis, :],
multiples=[num_instances, 1])
valid_initial = range_tiled < dp_num_points_tiled
valid_in_window = tf.logical_and(
tf.logical_and(y >= win_y_min, y <= win_y_max),
tf.logical_and(x >= win_x_min, x <= win_x_max))
valid_indices = tf.logical_and(valid_initial, valid_in_window)
new_dp_num_points = tf.math.reduce_sum(
tf.cast(valid_indices, tf.int32), axis=1)
max_num_points = tf.math.reduce_max(new_dp_num_points)
def gather_and_reshuffle(elems):
dp_part_ids, dp_surface_coords, valid_indices = elems
locs = tf.where(valid_indices)[:, 0]
valid_part_ids = tf.gather(dp_part_ids, locs, axis=0)
valid_part_ids_padded = shape_utils.pad_or_clip_nd(
valid_part_ids, output_shape=[max_num_points])
valid_surface_coords = tf.gather(dp_surface_coords, locs, axis=0)
valid_surface_coords_padded = shape_utils.pad_or_clip_nd(
valid_surface_coords, output_shape=[max_num_points, 4])
return [valid_part_ids_padded, valid_surface_coords_padded]
new_dp_part_ids, new_dp_surface_coords = (
shape_utils.static_or_dynamic_map_fn(
gather_and_reshuffle,
elems=[dp_part_ids, dp_surface_coords, valid_indices],
dtype=[tf.int32, tf.float32],
back_prop=False))
return new_dp_num_points, new_dp_part_ids, new_dp_surface_coords
def change_coordinate_frame(dp_surface_coords, window, scope=None):
"""Changes coordinate frame of the points to be relative to window's frame.
Given a window of the form [y_min, x_min, y_max, x_max] in normalized
coordinates, changes DensePose coordinates to be relative to this window.
An example use case is data augmentation: where we are given groundtruth
points and would like to randomly crop the image to some window. In this
case we need to change the coordinate frame of each sampled point to be
relative to this new window.
Args:
dp_surface_coords: a tensor of shape [num_instances, num_points, 4] with
DensePose surface coordinates in (y, x, v, u) format.
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window we should change the coordinate frame to.
scope: name scope.
Returns:
new_dp_surface_coords: a tensor of shape [num_instances, num_points, 4].
"""
with tf.name_scope(scope, 'DensePoseChangeCoordinateFrame'):
win_height = window[2] - window[0]
win_width = window[3] - window[1]
new_dp_surface_coords = scale(
dp_surface_coords - [window[0], window[1], 0, 0],
1.0 / win_height, 1.0 / win_width)
return new_dp_surface_coords
def to_normalized_coordinates(dp_surface_coords, height, width,
check_range=True, scope=None):
"""Converts absolute DensePose coordinates to normalized in range [0, 1].
This function raises an assertion failed error at graph execution time when
the maximum coordinate is smaller than 1.01 (which means that coordinates are
already normalized). The value 1.01 is to deal with small rounding errors.
Args:
dp_surface_coords: a tensor of shape [num_instances, num_points, 4] with
DensePose absolute surface coordinates in (y, x, v, u) format.
height: Height of image.
width: Width of image.
check_range: If True, checks if the coordinates are already normalized.
scope: name scope.
Returns:
A tensor of shape [num_instances, num_points, 4] with normalized
coordinates.
"""
with tf.name_scope(scope, 'DensePoseToNormalizedCoordinates'):
height = tf.cast(height, tf.float32)
width = tf.cast(width, tf.float32)
if check_range:
max_val = tf.reduce_max(dp_surface_coords[:, :, :2])
max_assert = tf.Assert(tf.greater(max_val, 1.01),
['max value is lower than 1.01: ', max_val])
with tf.control_dependencies([max_assert]):
width = tf.identity(width)
return scale(dp_surface_coords, 1.0 / height, 1.0 / width)
def to_absolute_coordinates(dp_surface_coords, height, width,
check_range=True, scope=None):
"""Converts normalized DensePose coordinates to absolute pixel coordinates.
This function raises an assertion failed error when the maximum
coordinate value is larger than 1.01 (in which case coordinates are already
absolute).
Args:
dp_surface_coords: a tensor of shape [num_instances, num_points, 4] with
DensePose normalized surface coordinates in (y, x, v, u) format.
height: Height of image.
width: Width of image.
check_range: If True, checks if the coordinates are normalized or not.
scope: name scope.
Returns:
A tensor of shape [num_instances, num_points, 4] with absolute coordinates.
"""
with tf.name_scope(scope, 'DensePoseToAbsoluteCoordinates'):
height = tf.cast(height, tf.float32)
width = tf.cast(width, tf.float32)
if check_range:
max_val = tf.reduce_max(dp_surface_coords[:, :, :2])
max_assert = tf.Assert(tf.greater_equal(1.01, max_val),
['maximum coordinate value is larger than 1.01: ',
max_val])
with tf.control_dependencies([max_assert]):
width = tf.identity(width)
return scale(dp_surface_coords, height, width)
class DensePoseHorizontalFlip(object):
"""Class responsible for horizontal flipping of parts and surface coords."""
def __init__(self):
"""Constructor."""
path = os.path.dirname(os.path.abspath(__file__))
uv_symmetry_transforms_path = tf.resource_loader.get_path_to_datafile(
os.path.join(path, '..', 'dataset_tools', 'densepose',
'UV_symmetry_transforms.mat'))
tf.logging.info('Loading DensePose symmetry transforms file from {}'.format(
uv_symmetry_transforms_path))
with tf.io.gfile.GFile(uv_symmetry_transforms_path, 'rb') as f:
data = scipy.io.loadmat(f)
# Create lookup maps which indicate how a VU coordinate changes after a
# horizontal flip.
uv_symmetry_map = {}
for key in ('U_transforms', 'V_transforms'):
uv_symmetry_map_per_part = []
for i in range(data[key].shape[1]):
# The following tensor has shape [256, 256]. The raw data is stored as
# uint8 values, so convert to float and scale to the range [0., 1.]
data_normalized = data[key][0, i].astype(np.float32) / 255.
map_per_part = tf.constant(data_normalized, dtype=tf.float32)
uv_symmetry_map_per_part.append(map_per_part)
uv_symmetry_map[key] = tf.reshape(
tf.stack(uv_symmetry_map_per_part, axis=0), [-1])
# The following dictionary contains flattened lookup maps for the U and V
# coordinates separately. The shape of each is [24 * 256 * 256].
self.uv_symmetries = uv_symmetry_map
# Create a list of that maps part index to flipped part index (0-indexed).
part_symmetries = []
for i, part_name in enumerate(PART_NAMES):
if b'left' in part_name:
part_symmetries.append(PART_NAMES.index(
part_name.replace(b'left', b'right')))
elif b'right' in part_name:
part_symmetries.append(PART_NAMES.index(
part_name.replace(b'right', b'left')))
else:
part_symmetries.append(i)
self.part_symmetries = part_symmetries
def flip_parts_and_coords(self, part_ids, vu):
"""Flips part ids and coordinates.
Args:
part_ids: a [num_instances, num_points] int32 tensor with pre-flipped part
ids. These part_ids are 0-indexed, where the first non-background part
has index 0.
vu: a [num_instances, num_points, 2] float32 tensor with pre-flipped vu
normalized coordinates.
Returns:
new_part_ids: a [num_instances, num_points] int32 tensor with post-flipped
part ids. These part_ids are 0-indexed, where the first non-background
part has index 0.
new_vu: a [num_instances, num_points, 2] float32 tensor with post-flipped
vu coordinates.
"""
num_instances, num_points = shape_utils.combined_static_and_dynamic_shape(
part_ids)
part_ids_flattened = tf.reshape(part_ids, [-1])
new_part_ids_flattened = tf.gather(self.part_symmetries, part_ids_flattened)
new_part_ids = tf.reshape(new_part_ids_flattened,
[num_instances, num_points])
# Convert VU floating point coordinates to values in [256, 256] grid.
vu = tf.math.minimum(tf.math.maximum(vu, 0.0), 1.0)
vu_locs = tf.cast(vu * 256., dtype=tf.int32)
vu_locs_flattened = tf.reshape(vu_locs, [-1, 2])
v_locs_flattened, u_locs_flattened = tf.unstack(vu_locs_flattened, axis=1)
# Convert vu_locs into lookup indices (in flattened part symmetries map).
symmetry_lookup_inds = (
part_ids_flattened * 65536 + 256 * v_locs_flattened + u_locs_flattened)
# New VU coordinates.
v_new = tf.gather(self.uv_symmetries['V_transforms'], symmetry_lookup_inds)
u_new = tf.gather(self.uv_symmetries['U_transforms'], symmetry_lookup_inds)
new_vu_flattened = tf.stack([v_new, u_new], axis=1)
new_vu = tf.reshape(new_vu_flattened, [num_instances, num_points, 2])
return new_part_ids, new_vu
def flip_horizontal(dp_part_ids, dp_surface_coords, scope=None):
"""Flips the DensePose points horizontally around the flip_point.
This operation flips dense pose annotations horizontally. Note that part ids
and surface coordinates may or may not change as a result of the flip.
Args:
dp_part_ids: a tensor of shape [num_instances, num_points] with DensePose
part ids. These part_ids are 0-indexed, where the first non-background
part has index 0.
dp_surface_coords: a tensor of shape [num_instances, num_points, 4] with
DensePose surface coordinates in (y, x, v, u) normalized format.
scope: name scope.
Returns:
new_dp_part_ids: a tensor of shape [num_instances, num_points] with
DensePose part ids after flipping.
new_dp_surface_coords: a tensor of shape [num_instances, num_points, 4] with
DensePose surface coordinates after flipping.
"""
with tf.name_scope(scope, 'DensePoseFlipHorizontal'):
# First flip x coordinate.
y, x, vu = tf.split(dp_surface_coords, num_or_size_splits=[1, 1, 2], axis=2)
xflipped = 1.0 - x
# Flip part ids and surface coordinates.
horizontal_flip = DensePoseHorizontalFlip()
new_dp_part_ids, new_vu = horizontal_flip.flip_parts_and_coords(
dp_part_ids, vu)
new_dp_surface_coords = tf.concat([y, xflipped, new_vu], axis=2)
return new_dp_part_ids, new_dp_surface_coords | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/densepose_ops.py | densepose_ops.py |
import tensorflow.compat.v1 as tf
from object_detection.utils import shape_utils
class BoxList(object):
"""Box collection."""
def __init__(self, boxes):
"""Constructs box collection.
Args:
boxes: a tensor of shape [N, 4] representing box corners
Raises:
ValueError: if invalid dimensions for bbox data or if bbox data is not in
float32 format.
"""
if len(boxes.get_shape()) != 2 or boxes.get_shape()[-1] != 4:
raise ValueError('Invalid dimensions for box data: {}'.format(
boxes.shape))
if boxes.dtype != tf.float32:
raise ValueError('Invalid tensor type: should be tf.float32')
self.data = {'boxes': boxes}
def num_boxes(self):
"""Returns number of boxes held in collection.
Returns:
a tensor representing the number of boxes held in the collection.
"""
return tf.shape(self.data['boxes'])[0]
def num_boxes_static(self):
"""Returns number of boxes held in collection.
This number is inferred at graph construction time rather than run-time.
Returns:
Number of boxes held in collection (integer) or None if this is not
inferrable at graph construction time.
"""
return shape_utils.get_dim_as_int(self.data['boxes'].get_shape()[0])
def get_all_fields(self):
"""Returns all fields."""
return self.data.keys()
def get_extra_fields(self):
"""Returns all non-box fields (i.e., everything not named 'boxes')."""
return [k for k in self.data.keys() if k != 'boxes']
def add_field(self, field, field_data):
"""Add field to box list.
This method can be used to add related box data such as
weights/labels, etc.
Args:
field: a string key to access the data via `get`
field_data: a tensor containing the data to store in the BoxList
"""
self.data[field] = field_data
def has_field(self, field):
return field in self.data
def get(self):
"""Convenience function for accessing box coordinates.
Returns:
a tensor with shape [N, 4] representing box coordinates.
"""
return self.get_field('boxes')
def set(self, boxes):
"""Convenience function for setting box coordinates.
Args:
boxes: a tensor of shape [N, 4] representing box corners
Raises:
ValueError: if invalid dimensions for bbox data
"""
if len(boxes.get_shape()) != 2 or boxes.get_shape()[-1] != 4:
raise ValueError('Invalid dimensions for box data.')
self.data['boxes'] = boxes
def get_field(self, field):
"""Accesses a box collection and associated fields.
This function returns specified field with object; if no field is specified,
it returns the box coordinates.
Args:
field: this optional string parameter can be used to specify
a related field to be accessed.
Returns:
a tensor representing the box collection or an associated field.
Raises:
ValueError: if invalid field
"""
if not self.has_field(field):
raise ValueError('field ' + str(field) + ' does not exist')
return self.data[field]
def set_field(self, field, value):
"""Sets the value of a field.
Updates the field of a box_list with a given value.
Args:
field: (string) name of the field to set value.
value: the value to assign to the field.
Raises:
ValueError: if the box_list does not have specified field.
"""
if not self.has_field(field):
raise ValueError('field %s does not exist' % field)
self.data[field] = value
def get_center_coordinates_and_sizes(self, scope=None):
"""Computes the center coordinates, height and width of the boxes.
Args:
scope: name scope of the function.
Returns:
a list of 4 1-D tensors [ycenter, xcenter, height, width].
"""
with tf.name_scope(scope, 'get_center_coordinates_and_sizes'):
box_corners = self.get()
ymin, xmin, ymax, xmax = tf.unstack(tf.transpose(box_corners))
width = xmax - xmin
height = ymax - ymin
ycenter = ymin + height / 2.
xcenter = xmin + width / 2.
return [ycenter, xcenter, height, width]
def transpose_coordinates(self, scope=None):
"""Transpose the coordinate representation in a boxlist.
Args:
scope: name scope of the function.
"""
with tf.name_scope(scope, 'transpose_coordinates'):
y_min, x_min, y_max, x_max = tf.split(
value=self.get(), num_or_size_splits=4, axis=1)
self.set(tf.concat([x_min, y_min, x_max, y_max], 1))
def as_tensor_dict(self, fields=None):
"""Retrieves specified fields as a dictionary of tensors.
Args:
fields: (optional) list of fields to return in the dictionary.
If None (default), all fields are returned.
Returns:
tensor_dict: A dictionary of tensors specified by fields.
Raises:
ValueError: if specified field is not contained in boxlist.
"""
tensor_dict = {}
if fields is None:
fields = self.get_all_fields()
for field in fields:
if not self.has_field(field):
raise ValueError('boxlist must contain all specified fields')
tensor_dict[field] = self.get_field(field)
return tensor_dict | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/box_list.py | box_list.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta
from abc import abstractmethod
import six
import tensorflow.compat.v1 as tf
from object_detection.utils import ops
class MinibatchSampler(six.with_metaclass(ABCMeta, object)):
"""Abstract base class for subsampling minibatches."""
def __init__(self):
"""Constructs a minibatch sampler."""
pass
@abstractmethod
def subsample(self, indicator, batch_size, **params):
"""Returns subsample of entries in indicator.
Args:
indicator: boolean tensor of shape [N] whose True entries can be sampled.
batch_size: desired batch size.
**params: additional keyword arguments for specific implementations of
the MinibatchSampler.
Returns:
sample_indicator: boolean tensor of shape [N] whose True entries have been
sampled. If sum(indicator) >= batch_size, sum(is_sampled) = batch_size
"""
pass
@staticmethod
def subsample_indicator(indicator, num_samples):
"""Subsample indicator vector.
Given a boolean indicator vector with M elements set to `True`, the function
assigns all but `num_samples` of these previously `True` elements to
`False`. If `num_samples` is greater than M, the original indicator vector
is returned.
Args:
indicator: a 1-dimensional boolean tensor indicating which elements
are allowed to be sampled and which are not.
num_samples: int32 scalar tensor
Returns:
a boolean tensor with the same shape as input (indicator) tensor
"""
indices = tf.where(indicator)
indices = tf.random_shuffle(indices)
indices = tf.reshape(indices, [-1])
num_samples = tf.minimum(tf.size(indices), num_samples)
selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1]))
selected_indicator = ops.indices_to_dense_vector(selected_indices,
tf.shape(indicator)[0])
return tf.equal(selected_indicator, 1) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/minibatch_sampler.py | minibatch_sampler.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta
from abc import abstractmethod
import six
from six.moves import zip
import tensorflow.compat.v1 as tf
class AnchorGenerator(six.with_metaclass(ABCMeta, object)):
"""Abstract base class for anchor generators."""
@abstractmethod
def name_scope(self):
"""Name scope.
Must be defined by implementations.
Returns:
a string representing the name scope of the anchor generation operation.
"""
pass
@property
def check_num_anchors(self):
"""Whether to dynamically check the number of anchors generated.
Can be overridden by implementations that would like to disable this
behavior.
Returns:
a boolean controlling whether the Generate function should dynamically
check the number of anchors generated against the mathematically
expected number of anchors.
"""
return True
@abstractmethod
def num_anchors_per_location(self):
"""Returns the number of anchors per spatial location.
Returns:
a list of integers, one for each expected feature map to be passed to
the `generate` function.
"""
pass
def generate(self, feature_map_shape_list, **params):
"""Generates a collection of bounding boxes to be used as anchors.
TODO(rathodv): remove **params from argument list and make stride and
offsets (for multiple_grid_anchor_generator) constructor arguments.
Args:
feature_map_shape_list: list of (height, width) pairs in the format
[(height_0, width_0), (height_1, width_1), ...] that the generated
anchors must align with. Pairs can be provided as 1-dimensional
integer tensors of length 2 or simply as tuples of integers.
**params: parameters for anchor generation op
Returns:
boxes_list: a list of BoxLists each holding anchor boxes corresponding to
the input feature map shapes.
Raises:
ValueError: if the number of feature map shapes does not match the length
of NumAnchorsPerLocation.
"""
if self.check_num_anchors and (
len(feature_map_shape_list) != len(self.num_anchors_per_location())):
raise ValueError('Number of feature maps is expected to equal the length '
'of `num_anchors_per_location`.')
with tf.name_scope(self.name_scope()):
anchors_list = self._generate(feature_map_shape_list, **params)
if self.check_num_anchors:
with tf.control_dependencies([
self._assert_correct_number_of_anchors(
anchors_list, feature_map_shape_list)]):
for item in anchors_list:
item.set(tf.identity(item.get()))
return anchors_list
@abstractmethod
def _generate(self, feature_map_shape_list, **params):
"""To be overridden by implementations.
Args:
feature_map_shape_list: list of (height, width) pairs in the format
[(height_0, width_0), (height_1, width_1), ...] that the generated
anchors must align with.
**params: parameters for anchor generation op
Returns:
boxes_list: a list of BoxList, each holding a collection of N anchor
boxes.
"""
pass
def anchor_index_to_feature_map_index(self, boxlist_list):
"""Returns a 1-D array of feature map indices for each anchor.
Args:
boxlist_list: a list of Boxlist, each holding a collection of N anchor
boxes. This list is produced in self.generate().
Returns:
A [num_anchors] integer array, where each element indicates which feature
map index the anchor belongs to.
"""
feature_map_indices_list = []
for i, boxes in enumerate(boxlist_list):
feature_map_indices_list.append(
i * tf.ones([boxes.num_boxes()], dtype=tf.int32))
return tf.concat(feature_map_indices_list, axis=0)
def _assert_correct_number_of_anchors(self, anchors_list,
feature_map_shape_list):
"""Assert that correct number of anchors was generated.
Args:
anchors_list: A list of box_list.BoxList object holding anchors generated.
feature_map_shape_list: list of (height, width) pairs in the format
[(height_0, width_0), (height_1, width_1), ...] that the generated
anchors must align with.
Returns:
Op that raises InvalidArgumentError if the number of anchors does not
match the number of expected anchors.
"""
expected_num_anchors = 0
actual_num_anchors = 0
for num_anchors_per_location, feature_map_shape, anchors in zip(
self.num_anchors_per_location(), feature_map_shape_list, anchors_list):
expected_num_anchors += (num_anchors_per_location
* feature_map_shape[0]
* feature_map_shape[1])
actual_num_anchors += anchors.num_boxes()
return tf.assert_equal(expected_num_anchors, actual_num_anchors) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/anchor_generator.py | anchor_generator.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
import tensorflow.compat.v1 as tf
from object_detection.core import standard_fields as fields
# If using a new enough version of TensorFlow, detection models should be a
# tf module or keras model for tracking.
try:
_BaseClass = tf.keras.layers.Layer
except AttributeError:
_BaseClass = object
class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
"""Abstract base class for detection models.
Extends tf.Module to guarantee variable tracking.
"""
def __init__(self, num_classes):
"""Constructor.
Args:
num_classes: number of classes. Note that num_classes *does not* include
background categories that might be implicitly predicted in various
implementations.
"""
self._num_classes = num_classes
self._groundtruth_lists = {}
super(DetectionModel, self).__init__()
@property
def num_classes(self):
return self._num_classes
def groundtruth_lists(self, field):
"""Access list of groundtruth tensors.
Args:
field: a string key, options are
fields.BoxListFields.{boxes,classes,masks,mask_weights,keypoints,
keypoint_visibilities, densepose_*, track_ids,
temporal_offsets, track_match_flags}
fields.InputDataFields.is_annotated.
Returns:
a list of tensors holding groundtruth information (see also
provide_groundtruth function below), with one entry for each image in the
batch.
Raises:
RuntimeError: if the field has not been provided via provide_groundtruth.
"""
if field not in self._groundtruth_lists:
raise RuntimeError('Groundtruth tensor {} has not been provided'.format(
field))
return self._groundtruth_lists[field]
def groundtruth_has_field(self, field):
"""Determines whether the groundtruth includes the given field.
Args:
field: a string key, options are
fields.BoxListFields.{boxes,classes,masks,mask_weights,keypoints,
keypoint_visibilities, densepose_*, track_ids} or
fields.InputDataFields.is_annotated.
Returns:
True if the groundtruth includes the given field, False otherwise.
"""
return field in self._groundtruth_lists
@staticmethod
def get_side_inputs(features):
"""Get side inputs from input features.
This placeholder method provides a way for a meta-architecture to specify
how to grab additional side inputs from input features (in addition to the
image itself) and allows models to depend on contextual information. By
default, detection models do not use side information (and thus this method
returns an empty dictionary by default. However it can be overridden if
side inputs are necessary."
Args:
features: A dictionary of tensors.
Returns:
An empty dictionary by default.
"""
return {}
@abc.abstractmethod
def preprocess(self, inputs):
"""Input preprocessing.
To be overridden by implementations.
This function is responsible for any scaling/shifting of input values that
is necessary prior to running the detector on an input image.
It is also responsible for any resizing, padding that might be necessary
as images are assumed to arrive in arbitrary sizes. While this function
could conceivably be part of the predict method (below), it is often
convenient to keep these separate --- for example, we may want to preprocess
on one device, place onto a queue, and let another device (e.g., the GPU)
handle prediction.
A few important notes about the preprocess function:
+ We assume that this operation does not have any trainable variables nor
does it affect the groundtruth annotations in any way (thus data
augmentation operations such as random cropping should be performed
externally).
+ There is no assumption that the batchsize in this function is the same as
the batch size in the predict function. In fact, we recommend calling the
preprocess function prior to calling any batching operations (which should
happen outside of the model) and thus assuming that batch sizes are equal
to 1 in the preprocess function.
+ There is also no explicit assumption that the output resolutions
must be fixed across inputs --- this is to support "fully convolutional"
settings in which input images can have different shapes/resolutions.
Args:
inputs: a [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: a [batch, height_out, width_out, channels] float32
tensor representing a batch of images.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
"""
pass
@abc.abstractmethod
def predict(self, preprocessed_inputs, true_image_shapes, **side_inputs):
"""Predict prediction tensors from inputs tensor.
Outputs of this function can be passed to loss or postprocess functions.
Args:
preprocessed_inputs: a [batch, height, width, channels] float32 tensor
representing a batch of images.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
**side_inputs: additional tensors that are required by the network.
Returns:
prediction_dict: a dictionary holding prediction tensors to be
passed to the Loss or Postprocess functions.
"""
pass
@abc.abstractmethod
def postprocess(self, prediction_dict, true_image_shapes, **params):
"""Convert predicted output tensors to final detections.
This stage typically performs a few things such as
* Non-Max Suppression to remove overlapping detection boxes.
* Score conversion and background class removal.
Outputs adhere to the following conventions:
* Classes are integers in [0, num_classes); background classes are removed
and the first non-background class is mapped to 0. If the model produces
class-agnostic detections, then no output is produced for classes.
* Boxes are to be interpreted as being in [y_min, x_min, y_max, x_max]
format and normalized relative to the image window.
* `num_detections` is provided for settings where detections are padded to a
fixed number of boxes.
* We do not specifically assume any kind of probabilistic interpretation
of the scores --- the only important thing is their relative ordering.
Thus implementations of the postprocess function are free to output
logits, probabilities, calibrated probabilities, or anything else.
Args:
prediction_dict: a dictionary holding prediction tensors.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
**params: Additional keyword arguments for specific implementations of
DetectionModel.
Returns:
detections: a dictionary containing the following fields
detection_boxes: [batch, max_detections, 4]
detection_scores: [batch, max_detections]
detection_classes: [batch, max_detections]
(If a model is producing class-agnostic detections, this field may be
missing)
detection_masks: [batch, max_detections, mask_height, mask_width]
(optional)
detection_keypoints: [batch, max_detections, num_keypoints, 2]
(optional)
detection_keypoint_scores: [batch, max_detections, num_keypoints]
(optional)
detection_surface_coords: [batch, max_detections, mask_height,
mask_width, 2] (optional)
num_detections: [batch]
In addition to the above fields this stage also outputs the following
raw tensors:
raw_detection_boxes: [batch, total_detections, 4] tensor containing
all detection boxes from `prediction_dict` in the format
[ymin, xmin, ymax, xmax] and normalized co-ordinates.
raw_detection_scores: [batch, total_detections,
num_classes_with_background] tensor of class score logits for
raw detection boxes.
"""
pass
@abc.abstractmethod
def loss(self, prediction_dict, true_image_shapes):
"""Compute scalar loss tensors with respect to provided groundtruth.
Calling this function requires that groundtruth tensors have been
provided via the provide_groundtruth function.
Args:
prediction_dict: a dictionary holding predicted tensors
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
a dictionary mapping strings (loss names) to scalar tensors representing
loss values.
"""
pass
def provide_groundtruth(
self,
groundtruth_boxes_list,
groundtruth_classes_list,
groundtruth_masks_list=None,
groundtruth_mask_weights_list=None,
groundtruth_keypoints_list=None,
groundtruth_keypoint_visibilities_list=None,
groundtruth_dp_num_points_list=None,
groundtruth_dp_part_ids_list=None,
groundtruth_dp_surface_coords_list=None,
groundtruth_track_ids_list=None,
groundtruth_temporal_offsets_list=None,
groundtruth_track_match_flags_list=None,
groundtruth_weights_list=None,
groundtruth_confidences_list=None,
groundtruth_is_crowd_list=None,
groundtruth_group_of_list=None,
groundtruth_area_list=None,
is_annotated_list=None,
groundtruth_labeled_classes=None,
groundtruth_verified_neg_classes=None,
groundtruth_not_exhaustive_classes=None,
groundtruth_keypoint_depths_list=None,
groundtruth_keypoint_depth_weights_list=None):
"""Provide groundtruth tensors.
Args:
groundtruth_boxes_list: a list of 2-D tf.float32 tensors of shape
[num_boxes, 4] containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D tf.float32 one-hot (or k-hot)
tensors of shape [num_boxes, num_classes] containing the class targets
with the 0th index assumed to map to the first non-background class.
groundtruth_masks_list: a list of 3-D tf.float32 tensors of
shape [num_boxes, height_in, width_in] containing instance
masks with values in {0, 1}. If None, no masks are provided.
Mask resolution `height_in`x`width_in` must agree with the resolution
of the input image tensor provided to the `preprocess` function.
groundtruth_mask_weights_list: a list of 1-D tf.float32 tensors of shape
[num_boxes] with weights for each instance mask.
groundtruth_keypoints_list: a list of 3-D tf.float32 tensors of
shape [num_boxes, num_keypoints, 2] containing keypoints.
Keypoints are assumed to be provided in normalized coordinates and
missing keypoints should be encoded as NaN (but it is recommended to use
`groundtruth_keypoint_visibilities_list`).
groundtruth_keypoint_visibilities_list: a list of 3-D tf.bool tensors
of shape [num_boxes, num_keypoints] containing keypoint visibilities.
groundtruth_dp_num_points_list: a list of 1-D tf.int32 tensors of shape
[num_boxes] containing the number of DensePose sampled points.
groundtruth_dp_part_ids_list: a list of 2-D tf.int32 tensors of shape
[num_boxes, max_sampled_points] containing the DensePose part ids
(0-indexed) for each sampled point. Note that there may be padding.
groundtruth_dp_surface_coords_list: a list of 3-D tf.float32 tensors of
shape [num_boxes, max_sampled_points, 4] containing the DensePose
surface coordinates for each sampled point. Note that there may be
padding.
groundtruth_track_ids_list: a list of 1-D tf.int32 tensors of shape
[num_boxes] containing the track IDs of groundtruth objects.
groundtruth_temporal_offsets_list: a list of 2-D tf.float32 tensors
of shape [num_boxes, 2] containing the spatial offsets of objects'
centers compared with the previous frame.
groundtruth_track_match_flags_list: a list of 1-D tf.float32 tensors
of shape [num_boxes] containing 0-1 flags that indicate if an object
has existed in the previous frame.
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
groundtruth_confidences_list: A list of 2-D tf.float32 tensors of shape
[num_boxes, num_classes] containing class confidences for groundtruth
boxes.
groundtruth_is_crowd_list: A list of 1-D tf.bool tensors of shape
[num_boxes] containing is_crowd annotations.
groundtruth_group_of_list: A list of 1-D tf.bool tensors of shape
[num_boxes] containing group_of annotations.
groundtruth_area_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing the area (in the original absolute coordinates)
of the annotations.
is_annotated_list: A list of scalar tf.bool tensors indicating whether
images have been labeled or not.
groundtruth_labeled_classes: A list of 1-D tf.float32 tensors of shape
[num_classes], containing label indices encoded as k-hot of the classes
that are exhaustively annotated.
groundtruth_verified_neg_classes: A list of 1-D tf.float32 tensors of
shape [num_classes], containing a K-hot representation of classes
which were verified as not present in the image.
groundtruth_not_exhaustive_classes: A list of 1-D tf.float32 tensors of
shape [num_classes], containing a K-hot representation of classes
which don't have all of their instances marked exhaustively.
groundtruth_keypoint_depths_list: a list of 2-D tf.float32 tensors
of shape [num_boxes, num_keypoints] containing keypoint relative depths.
groundtruth_keypoint_depth_weights_list: a list of 2-D tf.float32 tensors
of shape [num_boxes, num_keypoints] containing the weights of the
relative depths.
"""
self._groundtruth_lists[fields.BoxListFields.boxes] = groundtruth_boxes_list
self._groundtruth_lists[
fields.BoxListFields.classes] = groundtruth_classes_list
if groundtruth_weights_list:
self._groundtruth_lists[fields.BoxListFields.
weights] = groundtruth_weights_list
if groundtruth_confidences_list:
self._groundtruth_lists[fields.BoxListFields.
confidences] = groundtruth_confidences_list
if groundtruth_masks_list:
self._groundtruth_lists[
fields.BoxListFields.masks] = groundtruth_masks_list
if groundtruth_mask_weights_list:
self._groundtruth_lists[
fields.BoxListFields.mask_weights] = groundtruth_mask_weights_list
if groundtruth_keypoints_list:
self._groundtruth_lists[
fields.BoxListFields.keypoints] = groundtruth_keypoints_list
if groundtruth_keypoint_visibilities_list:
self._groundtruth_lists[
fields.BoxListFields.keypoint_visibilities] = (
groundtruth_keypoint_visibilities_list)
if groundtruth_keypoint_depths_list:
self._groundtruth_lists[
fields.BoxListFields.keypoint_depths] = (
groundtruth_keypoint_depths_list)
if groundtruth_keypoint_depth_weights_list:
self._groundtruth_lists[
fields.BoxListFields.keypoint_depth_weights] = (
groundtruth_keypoint_depth_weights_list)
if groundtruth_dp_num_points_list:
self._groundtruth_lists[
fields.BoxListFields.densepose_num_points] = (
groundtruth_dp_num_points_list)
if groundtruth_dp_part_ids_list:
self._groundtruth_lists[
fields.BoxListFields.densepose_part_ids] = (
groundtruth_dp_part_ids_list)
if groundtruth_dp_surface_coords_list:
self._groundtruth_lists[
fields.BoxListFields.densepose_surface_coords] = (
groundtruth_dp_surface_coords_list)
if groundtruth_track_ids_list:
self._groundtruth_lists[
fields.BoxListFields.track_ids] = groundtruth_track_ids_list
if groundtruth_temporal_offsets_list:
self._groundtruth_lists[
fields.BoxListFields.temporal_offsets] = (
groundtruth_temporal_offsets_list)
if groundtruth_track_match_flags_list:
self._groundtruth_lists[
fields.BoxListFields.track_match_flags] = (
groundtruth_track_match_flags_list)
if groundtruth_is_crowd_list:
self._groundtruth_lists[
fields.BoxListFields.is_crowd] = groundtruth_is_crowd_list
if groundtruth_group_of_list:
self._groundtruth_lists[
fields.BoxListFields.group_of] = groundtruth_group_of_list
if groundtruth_area_list:
self._groundtruth_lists[
fields.InputDataFields.groundtruth_area] = groundtruth_area_list
if is_annotated_list:
self._groundtruth_lists[
fields.InputDataFields.is_annotated] = is_annotated_list
if groundtruth_labeled_classes:
self._groundtruth_lists[
fields.InputDataFields
.groundtruth_labeled_classes] = groundtruth_labeled_classes
if groundtruth_verified_neg_classes:
self._groundtruth_lists[
fields.InputDataFields
.groundtruth_verified_neg_classes] = groundtruth_verified_neg_classes
if groundtruth_not_exhaustive_classes:
self._groundtruth_lists[
fields.InputDataFields
.groundtruth_not_exhaustive_classes] = (
groundtruth_not_exhaustive_classes)
@abc.abstractmethod
def regularization_losses(self):
"""Returns a list of regularization losses for this model.
Returns a list of regularization losses for this model that the estimator
needs to use during training/optimization.
Returns:
A list of regularization loss tensors.
"""
pass
@abc.abstractmethod
def restore_map(self,
fine_tune_checkpoint_type='detection',
load_all_detection_checkpoint_vars=False):
"""Returns a map of variables to load from a foreign checkpoint.
Returns a map of variable names to load from a checkpoint to variables in
the model graph. This enables the model to initialize based on weights from
another task. For example, the feature extractor variables from a
classification model can be used to bootstrap training of an object
detector. When loading from an object detection model, the checkpoint model
should have the same parameters as this detection model with exception of
the num_classes parameter.
Args:
fine_tune_checkpoint_type: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Valid values: `detection`, `classification`. Default 'detection'.
load_all_detection_checkpoint_vars: whether to load all variables (when
`fine_tune_checkpoint_type` is `detection`). If False, only variables
within the feature extractor scope are included. Default False.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
"""
pass
@abc.abstractmethod
def restore_from_objects(self, fine_tune_checkpoint_type='detection'):
"""Returns a map of variables to load from a foreign checkpoint.
Returns a dictionary of Tensorflow 2 Trackable objects (e.g. tf.Module
or Checkpoint). This enables the model to initialize based on weights from
another task. For example, the feature extractor variables from a
classification model can be used to bootstrap training of an object
detector. When loading from an object detection model, the checkpoint model
should have the same parameters as this detection model with exception of
the num_classes parameter.
Note that this function is intended to be used to restore Keras-based
models when running Tensorflow 2, whereas restore_map (above) is intended
to be used to restore Slim-based models when running Tensorflow 1.x.
TODO(jonathanhuang,rathodv): Check tf_version and raise unimplemented
error for both restore_map and restore_from_objects depending on version.
Args:
fine_tune_checkpoint_type: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Valid values: `detection`, `classification`. Default 'detection'.
Returns:
A dict mapping keys to Trackable objects (tf.Module or Checkpoint).
"""
pass
@abc.abstractmethod
def updates(self):
"""Returns a list of update operators for this model.
Returns a list of update operators for this model that must be executed at
each training step. The estimator's train op needs to have a control
dependency on these updates.
Returns:
A list of update operators.
"""
pass
def call(self, images):
"""Returns detections from a batch of images.
This method calls the preprocess, predict and postprocess function
sequentially and returns the output.
Args:
images: a [batch_size, height, width, channels] float tensor.
Returns:
detetcions: The dict of tensors returned by the postprocess function.
"""
preprocessed_images, shapes = self.preprocess(images)
prediction_dict = self.predict(preprocessed_images, shapes)
return self.postprocess(prediction_dict, shapes) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/model.py | model.py |
import tensorflow.compat.v1 as tf
from object_detection.core import minibatch_sampler
class BalancedPositiveNegativeSampler(minibatch_sampler.MinibatchSampler):
"""Subsamples minibatches to a desired balance of positives and negatives."""
def __init__(self, positive_fraction=0.5, is_static=False):
"""Constructs a minibatch sampler.
Args:
positive_fraction: desired fraction of positive examples (scalar in [0,1])
in the batch.
is_static: If True, uses an implementation with static shape guarantees.
Raises:
ValueError: if positive_fraction < 0, or positive_fraction > 1
"""
if positive_fraction < 0 or positive_fraction > 1:
raise ValueError('positive_fraction should be in range [0,1]. '
'Received: %s.' % positive_fraction)
self._positive_fraction = positive_fraction
self._is_static = is_static
def _get_num_pos_neg_samples(self, sorted_indices_tensor, sample_size):
"""Counts the number of positives and negatives numbers to be sampled.
Args:
sorted_indices_tensor: A sorted int32 tensor of shape [N] which contains
the signed indices of the examples where the sign is based on the label
value. The examples that cannot be sampled are set to 0. It samples
atmost sample_size*positive_fraction positive examples and remaining
from negative examples.
sample_size: Size of subsamples.
Returns:
A tuple containing the number of positive and negative labels in the
subsample.
"""
input_length = tf.shape(sorted_indices_tensor)[0]
valid_positive_index = tf.greater(sorted_indices_tensor,
tf.zeros(input_length, tf.int32))
num_sampled_pos = tf.reduce_sum(tf.cast(valid_positive_index, tf.int32))
max_num_positive_samples = tf.constant(
int(sample_size * self._positive_fraction), tf.int32)
num_positive_samples = tf.minimum(max_num_positive_samples, num_sampled_pos)
num_negative_samples = tf.constant(sample_size,
tf.int32) - num_positive_samples
return num_positive_samples, num_negative_samples
def _get_values_from_start_and_end(self, input_tensor, num_start_samples,
num_end_samples, total_num_samples):
"""slices num_start_samples and last num_end_samples from input_tensor.
Args:
input_tensor: An int32 tensor of shape [N] to be sliced.
num_start_samples: Number of examples to be sliced from the beginning
of the input tensor.
num_end_samples: Number of examples to be sliced from the end of the
input tensor.
total_num_samples: Sum of is num_start_samples and num_end_samples. This
should be a scalar.
Returns:
A tensor containing the first num_start_samples and last num_end_samples
from input_tensor.
"""
input_length = tf.shape(input_tensor)[0]
start_positions = tf.less(tf.range(input_length), num_start_samples)
end_positions = tf.greater_equal(
tf.range(input_length), input_length - num_end_samples)
selected_positions = tf.logical_or(start_positions, end_positions)
selected_positions = tf.cast(selected_positions, tf.float32)
indexed_positions = tf.multiply(tf.cumsum(selected_positions),
selected_positions)
one_hot_selector = tf.one_hot(tf.cast(indexed_positions, tf.int32) - 1,
total_num_samples,
dtype=tf.float32)
return tf.cast(tf.tensordot(tf.cast(input_tensor, tf.float32),
one_hot_selector, axes=[0, 0]), tf.int32)
def _static_subsample(self, indicator, batch_size, labels):
"""Returns subsampled minibatch.
Args:
indicator: boolean tensor of shape [N] whose True entries can be sampled.
N should be a complie time constant.
batch_size: desired batch size. This scalar cannot be None.
labels: boolean tensor of shape [N] denoting positive(=True) and negative
(=False) examples. N should be a complie time constant.
Returns:
sampled_idx_indicator: boolean tensor of shape [N], True for entries which
are sampled. It ensures the length of output of the subsample is always
batch_size, even when number of examples set to True in indicator is
less than batch_size.
Raises:
ValueError: if labels and indicator are not 1D boolean tensors.
"""
# Check if indicator and labels have a static size.
if not indicator.shape.is_fully_defined():
raise ValueError('indicator must be static in shape when is_static is'
'True')
if not labels.shape.is_fully_defined():
raise ValueError('labels must be static in shape when is_static is'
'True')
if not isinstance(batch_size, int):
raise ValueError('batch_size has to be an integer when is_static is'
'True.')
input_length = tf.shape(indicator)[0]
# Set the number of examples set True in indicator to be at least
# batch_size.
num_true_sampled = tf.reduce_sum(tf.cast(indicator, tf.float32))
additional_false_sample = tf.less_equal(
tf.cumsum(tf.cast(tf.logical_not(indicator), tf.float32)),
batch_size - num_true_sampled)
indicator = tf.logical_or(indicator, additional_false_sample)
# Shuffle indicator and label. Need to store the permutation to restore the
# order post sampling.
permutation = tf.random_shuffle(tf.range(input_length))
indicator = tf.gather(indicator, permutation, axis=0)
labels = tf.gather(labels, permutation, axis=0)
# index (starting from 1) when indicator is True, 0 when False
indicator_idx = tf.where(
indicator, tf.range(1, input_length + 1),
tf.zeros(input_length, tf.int32))
# Replace -1 for negative, +1 for positive labels
signed_label = tf.where(
labels, tf.ones(input_length, tf.int32),
tf.scalar_mul(-1, tf.ones(input_length, tf.int32)))
# negative of index for negative label, positive index for positive label,
# 0 when indicator is False.
signed_indicator_idx = tf.multiply(indicator_idx, signed_label)
sorted_signed_indicator_idx = tf.nn.top_k(
signed_indicator_idx, input_length, sorted=True).values
[num_positive_samples,
num_negative_samples] = self._get_num_pos_neg_samples(
sorted_signed_indicator_idx, batch_size)
sampled_idx = self._get_values_from_start_and_end(
sorted_signed_indicator_idx, num_positive_samples,
num_negative_samples, batch_size)
# Shift the indices to start from 0 and remove any samples that are set as
# False.
sampled_idx = tf.abs(sampled_idx) - tf.ones(batch_size, tf.int32)
sampled_idx = tf.multiply(
tf.cast(tf.greater_equal(sampled_idx, tf.constant(0)), tf.int32),
sampled_idx)
sampled_idx_indicator = tf.cast(tf.reduce_sum(
tf.one_hot(sampled_idx, depth=input_length),
axis=0), tf.bool)
# project back the order based on stored permutations
idx_indicator = tf.scatter_nd(
tf.expand_dims(permutation, -1), sampled_idx_indicator,
shape=(input_length,))
return idx_indicator
def subsample(self, indicator, batch_size, labels, scope=None):
"""Returns subsampled minibatch.
Args:
indicator: boolean tensor of shape [N] whose True entries can be sampled.
batch_size: desired batch size. If None, keeps all positive samples and
randomly selects negative samples so that the positive sample fraction
matches self._positive_fraction. It cannot be None is is_static is True.
labels: boolean tensor of shape [N] denoting positive(=True) and negative
(=False) examples.
scope: name scope.
Returns:
sampled_idx_indicator: boolean tensor of shape [N], True for entries which
are sampled.
Raises:
ValueError: if labels and indicator are not 1D boolean tensors.
"""
if len(indicator.get_shape().as_list()) != 1:
raise ValueError('indicator must be 1 dimensional, got a tensor of '
'shape %s' % indicator.get_shape())
if len(labels.get_shape().as_list()) != 1:
raise ValueError('labels must be 1 dimensional, got a tensor of '
'shape %s' % labels.get_shape())
if labels.dtype != tf.bool:
raise ValueError('labels should be of type bool. Received: %s' %
labels.dtype)
if indicator.dtype != tf.bool:
raise ValueError('indicator should be of type bool. Received: %s' %
indicator.dtype)
with tf.name_scope(scope, 'BalancedPositiveNegativeSampler'):
if self._is_static:
return self._static_subsample(indicator, batch_size, labels)
else:
# Only sample from indicated samples
negative_idx = tf.logical_not(labels)
positive_idx = tf.logical_and(labels, indicator)
negative_idx = tf.logical_and(negative_idx, indicator)
# Sample positive and negative samples separately
if batch_size is None:
max_num_pos = tf.reduce_sum(tf.cast(positive_idx, dtype=tf.int32))
else:
max_num_pos = int(self._positive_fraction * batch_size)
sampled_pos_idx = self.subsample_indicator(positive_idx, max_num_pos)
num_sampled_pos = tf.reduce_sum(tf.cast(sampled_pos_idx, tf.int32))
if batch_size is None:
negative_positive_ratio = (
1 - self._positive_fraction) / self._positive_fraction
max_num_neg = tf.cast(
negative_positive_ratio *
tf.cast(num_sampled_pos, dtype=tf.float32),
dtype=tf.int32)
else:
max_num_neg = batch_size - num_sampled_pos
sampled_neg_idx = self.subsample_indicator(negative_idx, max_num_neg)
return tf.logical_or(sampled_pos_idx, sampled_neg_idx) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/balanced_positive_negative_sampler.py | balanced_positive_negative_sampler.py |
class InputDataFields(object):
"""Names for the input tensors.
Holds the standard data field names to use for identifying input tensors. This
should be used by the decoder to identify keys for the returned tensor_dict
containing input tensors. And it should be used by the model to identify the
tensors it needs.
Attributes:
image: image.
image_additional_channels: additional channels.
original_image: image in the original input size.
original_image_spatial_shape: image in the original input size.
key: unique key corresponding to image.
source_id: source of the original image.
filename: original filename of the dataset (without common path).
groundtruth_image_classes: image-level class labels.
groundtruth_image_confidences: image-level class confidences.
groundtruth_labeled_classes: image-level annotation that indicates the
classes for which an image has been labeled.
groundtruth_boxes: coordinates of the ground truth boxes in the image.
groundtruth_classes: box-level class labels.
groundtruth_track_ids: box-level track ID labels.
groundtruth_temporal_offset: box-level temporal offsets, i.e.,
movement of the box center in adjacent frames.
groundtruth_track_match_flags: box-level flags indicating if objects
exist in the previous frame.
groundtruth_confidences: box-level class confidences. The shape should be
the same as the shape of groundtruth_classes.
groundtruth_label_types: box-level label types (e.g. explicit negative).
groundtruth_is_crowd: [DEPRECATED, use groundtruth_group_of instead]
is the groundtruth a single object or a crowd.
groundtruth_area: area of a groundtruth segment.
groundtruth_difficult: is a `difficult` object
groundtruth_group_of: is a `group_of` objects, e.g. multiple objects of the
same class, forming a connected group, where instances are heavily
occluding each other.
proposal_boxes: coordinates of object proposal boxes.
proposal_objectness: objectness score of each proposal.
groundtruth_instance_masks: ground truth instance masks.
groundtruth_instance_mask_weights: ground truth instance masks weights.
groundtruth_instance_boundaries: ground truth instance boundaries.
groundtruth_instance_classes: instance mask-level class labels.
groundtruth_keypoints: ground truth keypoints.
groundtruth_keypoint_depths: Relative depth of the keypoints.
groundtruth_keypoint_depth_weights: Weights of the relative depth of the
keypoints.
groundtruth_keypoint_visibilities: ground truth keypoint visibilities.
groundtruth_keypoint_weights: groundtruth weight factor for keypoints.
groundtruth_label_weights: groundtruth label weights.
groundtruth_verified_negative_classes: groundtruth verified negative classes
groundtruth_not_exhaustive_classes: groundtruth not-exhaustively labeled
classes.
groundtruth_weights: groundtruth weight factor for bounding boxes.
groundtruth_dp_num_points: The number of DensePose sampled points for each
instance.
groundtruth_dp_part_ids: Part indices for DensePose points.
groundtruth_dp_surface_coords: Image locations and UV coordinates for
DensePose points.
num_groundtruth_boxes: number of groundtruth boxes.
is_annotated: whether an image has been labeled or not.
true_image_shapes: true shapes of images in the resized images, as resized
images can be padded with zeros.
multiclass_scores: the label score per class for each box.
context_features: a flattened list of contextual features.
context_feature_length: the fixed length of each feature in
context_features, used for reshaping.
valid_context_size: the valid context size, used in filtering the padded
context features.
context_features_image_id_list: the list of image source ids corresponding
to the features in context_features
image_format: format for the images, used to decode
image_height: height of images, used to decode
image_width: width of images, used to decode
"""
image = 'image'
image_additional_channels = 'image_additional_channels'
original_image = 'original_image'
original_image_spatial_shape = 'original_image_spatial_shape'
key = 'key'
source_id = 'source_id'
filename = 'filename'
groundtruth_image_classes = 'groundtruth_image_classes'
groundtruth_image_confidences = 'groundtruth_image_confidences'
groundtruth_labeled_classes = 'groundtruth_labeled_classes'
groundtruth_boxes = 'groundtruth_boxes'
groundtruth_classes = 'groundtruth_classes'
groundtruth_track_ids = 'groundtruth_track_ids'
groundtruth_temporal_offset = 'groundtruth_temporal_offset'
groundtruth_track_match_flags = 'groundtruth_track_match_flags'
groundtruth_confidences = 'groundtruth_confidences'
groundtruth_label_types = 'groundtruth_label_types'
groundtruth_is_crowd = 'groundtruth_is_crowd'
groundtruth_area = 'groundtruth_area'
groundtruth_difficult = 'groundtruth_difficult'
groundtruth_group_of = 'groundtruth_group_of'
proposal_boxes = 'proposal_boxes'
proposal_objectness = 'proposal_objectness'
groundtruth_instance_masks = 'groundtruth_instance_masks'
groundtruth_instance_mask_weights = 'groundtruth_instance_mask_weights'
groundtruth_instance_boundaries = 'groundtruth_instance_boundaries'
groundtruth_instance_classes = 'groundtruth_instance_classes'
groundtruth_keypoints = 'groundtruth_keypoints'
groundtruth_keypoint_depths = 'groundtruth_keypoint_depths'
groundtruth_keypoint_depth_weights = 'groundtruth_keypoint_depth_weights'
groundtruth_keypoint_visibilities = 'groundtruth_keypoint_visibilities'
groundtruth_keypoint_weights = 'groundtruth_keypoint_weights'
groundtruth_label_weights = 'groundtruth_label_weights'
groundtruth_verified_neg_classes = 'groundtruth_verified_neg_classes'
groundtruth_not_exhaustive_classes = 'groundtruth_not_exhaustive_classes'
groundtruth_weights = 'groundtruth_weights'
groundtruth_dp_num_points = 'groundtruth_dp_num_points'
groundtruth_dp_part_ids = 'groundtruth_dp_part_ids'
groundtruth_dp_surface_coords = 'groundtruth_dp_surface_coords'
num_groundtruth_boxes = 'num_groundtruth_boxes'
is_annotated = 'is_annotated'
true_image_shape = 'true_image_shape'
multiclass_scores = 'multiclass_scores'
context_features = 'context_features'
context_feature_length = 'context_feature_length'
valid_context_size = 'valid_context_size'
context_features_image_id_list = 'context_features_image_id_list'
image_timestamps = 'image_timestamps'
image_format = 'image_format'
image_height = 'image_height'
image_width = 'image_width'
class DetectionResultFields(object):
"""Naming conventions for storing the output of the detector.
Attributes:
source_id: source of the original image.
key: unique key corresponding to image.
detection_boxes: coordinates of the detection boxes in the image.
detection_scores: detection scores for the detection boxes in the image.
detection_multiclass_scores: class score distribution (including background)
for detection boxes in the image including background class.
detection_classes: detection-level class labels.
detection_masks: contains a segmentation mask for each detection box.
detection_surface_coords: contains DensePose surface coordinates for each
box.
detection_boundaries: contains an object boundary for each detection box.
detection_keypoints: contains detection keypoints for each detection box.
detection_keypoint_scores: contains detection keypoint scores.
detection_keypoint_depths: contains detection keypoint depths.
num_detections: number of detections in the batch.
raw_detection_boxes: contains decoded detection boxes without Non-Max
suppression.
raw_detection_scores: contains class score logits for raw detection boxes.
detection_anchor_indices: The anchor indices of the detections after NMS.
detection_features: contains extracted features for each detected box
after NMS.
"""
source_id = 'source_id'
key = 'key'
detection_boxes = 'detection_boxes'
detection_scores = 'detection_scores'
detection_multiclass_scores = 'detection_multiclass_scores'
detection_features = 'detection_features'
detection_classes = 'detection_classes'
detection_masks = 'detection_masks'
detection_surface_coords = 'detection_surface_coords'
detection_boundaries = 'detection_boundaries'
detection_keypoints = 'detection_keypoints'
detection_keypoint_scores = 'detection_keypoint_scores'
detection_keypoint_depths = 'detection_keypoint_depths'
detection_embeddings = 'detection_embeddings'
detection_offsets = 'detection_temporal_offsets'
num_detections = 'num_detections'
raw_detection_boxes = 'raw_detection_boxes'
raw_detection_scores = 'raw_detection_scores'
detection_anchor_indices = 'detection_anchor_indices'
class BoxListFields(object):
"""Naming conventions for BoxLists.
Attributes:
boxes: bounding box coordinates.
classes: classes per bounding box.
scores: scores per bounding box.
weights: sample weights per bounding box.
objectness: objectness score per bounding box.
masks: masks per bounding box.
mask_weights: mask weights for each bounding box.
boundaries: boundaries per bounding box.
keypoints: keypoints per bounding box.
keypoint_visibilities: keypoint visibilities per bounding box.
keypoint_heatmaps: keypoint heatmaps per bounding box.
keypoint_depths: keypoint depths per bounding box.
keypoint_depth_weights: keypoint depth weights per bounding box.
densepose_num_points: number of DensePose points per bounding box.
densepose_part_ids: DensePose part ids per bounding box.
densepose_surface_coords: DensePose surface coordinates per bounding box.
is_crowd: is_crowd annotation per bounding box.
temporal_offsets: temporal center offsets per bounding box.
track_match_flags: match flags per bounding box.
"""
boxes = 'boxes'
classes = 'classes'
scores = 'scores'
weights = 'weights'
confidences = 'confidences'
objectness = 'objectness'
masks = 'masks'
mask_weights = 'mask_weights'
boundaries = 'boundaries'
keypoints = 'keypoints'
keypoint_visibilities = 'keypoint_visibilities'
keypoint_heatmaps = 'keypoint_heatmaps'
keypoint_depths = 'keypoint_depths'
keypoint_depth_weights = 'keypoint_depth_weights'
densepose_num_points = 'densepose_num_points'
densepose_part_ids = 'densepose_part_ids'
densepose_surface_coords = 'densepose_surface_coords'
is_crowd = 'is_crowd'
group_of = 'group_of'
track_ids = 'track_ids'
temporal_offsets = 'temporal_offsets'
track_match_flags = 'track_match_flags'
class PredictionFields(object):
"""Naming conventions for standardized prediction outputs.
Attributes:
feature_maps: List of feature maps for prediction.
anchors: Generated anchors.
raw_detection_boxes: Decoded detection boxes without NMS.
raw_detection_feature_map_indices: Feature map indices from which each raw
detection box was produced.
"""
feature_maps = 'feature_maps'
anchors = 'anchors'
raw_detection_boxes = 'raw_detection_boxes'
raw_detection_feature_map_indices = 'raw_detection_feature_map_indices'
class TfExampleFields(object):
"""TF-example proto feature names for object detection.
Holds the standard feature names to load from an Example proto for object
detection.
Attributes:
image_encoded: JPEG encoded string
image_format: image format, e.g. "JPEG"
filename: filename
channels: number of channels of image
colorspace: colorspace, e.g. "RGB"
height: height of image in pixels, e.g. 462
width: width of image in pixels, e.g. 581
source_id: original source of the image
image_class_text: image-level label in text format
image_class_label: image-level label in numerical format
image_class_confidence: image-level confidence of the label
object_class_text: labels in text format, e.g. ["person", "cat"]
object_class_label: labels in numbers, e.g. [16, 8]
object_bbox_xmin: xmin coordinates of groundtruth box, e.g. 10, 30
object_bbox_xmax: xmax coordinates of groundtruth box, e.g. 50, 40
object_bbox_ymin: ymin coordinates of groundtruth box, e.g. 40, 50
object_bbox_ymax: ymax coordinates of groundtruth box, e.g. 80, 70
object_view: viewpoint of object, e.g. ["frontal", "left"]
object_truncated: is object truncated, e.g. [true, false]
object_occluded: is object occluded, e.g. [true, false]
object_difficult: is object difficult, e.g. [true, false]
object_group_of: is object a single object or a group of objects
object_depiction: is object a depiction
object_is_crowd: [DEPRECATED, use object_group_of instead]
is the object a single object or a crowd
object_segment_area: the area of the segment.
object_weight: a weight factor for the object's bounding box.
instance_masks: instance segmentation masks.
instance_boundaries: instance boundaries.
instance_classes: Classes for each instance segmentation mask.
detection_class_label: class label in numbers.
detection_bbox_ymin: ymin coordinates of a detection box.
detection_bbox_xmin: xmin coordinates of a detection box.
detection_bbox_ymax: ymax coordinates of a detection box.
detection_bbox_xmax: xmax coordinates of a detection box.
detection_score: detection score for the class label and box.
"""
image_encoded = 'image/encoded'
image_format = 'image/format' # format is reserved keyword
filename = 'image/filename'
channels = 'image/channels'
colorspace = 'image/colorspace'
height = 'image/height'
width = 'image/width'
source_id = 'image/source_id'
image_class_text = 'image/class/text'
image_class_label = 'image/class/label'
image_class_confidence = 'image/class/confidence'
object_class_text = 'image/object/class/text'
object_class_label = 'image/object/class/label'
object_bbox_ymin = 'image/object/bbox/ymin'
object_bbox_xmin = 'image/object/bbox/xmin'
object_bbox_ymax = 'image/object/bbox/ymax'
object_bbox_xmax = 'image/object/bbox/xmax'
object_view = 'image/object/view'
object_truncated = 'image/object/truncated'
object_occluded = 'image/object/occluded'
object_difficult = 'image/object/difficult'
object_group_of = 'image/object/group_of'
object_depiction = 'image/object/depiction'
object_is_crowd = 'image/object/is_crowd'
object_segment_area = 'image/object/segment/area'
object_weight = 'image/object/weight'
instance_masks = 'image/segmentation/object'
instance_boundaries = 'image/boundaries/object'
instance_classes = 'image/segmentation/object/class'
detection_class_label = 'image/detection/label'
detection_bbox_ymin = 'image/detection/bbox/ymin'
detection_bbox_xmin = 'image/detection/bbox/xmin'
detection_bbox_ymax = 'image/detection/bbox/ymax'
detection_bbox_xmax = 'image/detection/bbox/xmax'
detection_score = 'image/detection/score'
# Sequence fields for SequenceExample inputs.
# All others are considered context fields.
SEQUENCE_FIELDS = [InputDataFields.image,
InputDataFields.source_id,
InputDataFields.groundtruth_boxes,
InputDataFields.num_groundtruth_boxes,
InputDataFields.groundtruth_classes,
InputDataFields.groundtruth_weights,
InputDataFields.source_id,
InputDataFields.is_annotated] | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/standard_fields.py | standard_fields.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta
from abc import abstractmethod
import collections
import logging
import unicodedata
import numpy as np
import six
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.core import standard_fields
from object_detection.utils import label_map_util
from object_detection.utils import metrics
from object_detection.utils import per_image_evaluation
class DetectionEvaluator(six.with_metaclass(ABCMeta, object)):
"""Interface for object detection evalution classes.
Example usage of the Evaluator:
------------------------------
evaluator = DetectionEvaluator(categories)
# Detections and groundtruth for image 1.
evaluator.add_single_groundtruth_image_info(...)
evaluator.add_single_detected_image_info(...)
# Detections and groundtruth for image 2.
evaluator.add_single_groundtruth_image_info(...)
evaluator.add_single_detected_image_info(...)
metrics_dict = evaluator.evaluate()
"""
def __init__(self, categories):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
"""
self._categories = categories
def observe_result_dict_for_single_example(self, eval_dict):
"""Observes an evaluation result dict for a single example.
When executing eagerly, once all observations have been observed by this
method you can use `.evaluate()` to get the final metrics.
When using `tf.estimator.Estimator` for evaluation this function is used by
`get_estimator_eval_metric_ops()` to construct the metric update op.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
None when executing eagerly, or an update_op that can be used to update
the eval metrics in `tf.estimator.EstimatorSpec`.
"""
raise NotImplementedError('Not implemented for this evaluator!')
@abstractmethod
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary of groundtruth numpy arrays required for
evaluations.
"""
pass
@abstractmethod
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary of detection numpy arrays required for
evaluation.
"""
pass
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns dict of metrics to use with `tf.estimator.EstimatorSpec`.
Note that this must only be implemented if performing evaluation with a
`tf.estimator.Estimator`.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
A dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in `tf.estimator.EstimatorSpec`.
"""
pass
@abstractmethod
def evaluate(self):
"""Evaluates detections and returns a dictionary of metrics."""
pass
@abstractmethod
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
pass
class ObjectDetectionEvaluator(DetectionEvaluator):
"""A class to evaluate detections."""
def __init__(self,
categories,
matching_iou_threshold=0.5,
recall_lower_bound=0.0,
recall_upper_bound=1.0,
evaluate_corlocs=False,
evaluate_precision_recall=False,
metric_prefix=None,
use_weighted_mean_ap=False,
evaluate_masks=False,
group_of_weight=0.0,
nms_iou_threshold=1.0,
nms_max_output_boxes=10000):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
recall_lower_bound: lower bound of recall operating area.
recall_upper_bound: upper bound of recall operating area.
evaluate_corlocs: (optional) boolean which determines if corloc scores are
to be returned or not.
evaluate_precision_recall: (optional) boolean which determines if
precision and recall values are to be returned or not.
metric_prefix: (optional) string prefix for metric name; if None, no
prefix is used.
use_weighted_mean_ap: (optional) boolean which determines if the mean
average precision is computed directly from the scores and tp_fp_labels
of all classes.
evaluate_masks: If False, evaluation will be performed based on boxes. If
True, mask evaluation will be performed instead.
group_of_weight: Weight of group-of boxes.If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0, then
if at least one detection falls within a group-of box with
matching_iou_threshold, weight group_of_weight is added to true
positives. Consequently, if no detection falls within a group-of box,
weight group_of_weight is added to false negatives.
nms_iou_threshold: NMS IoU threashold.
nms_max_output_boxes: maximal number of boxes after NMS.
Raises:
ValueError: If the category ids are not 1-indexed.
"""
super(ObjectDetectionEvaluator, self).__init__(categories)
self._num_classes = max([cat['id'] for cat in categories])
if min(cat['id'] for cat in categories) < 1:
raise ValueError('Classes should be 1-indexed.')
self._matching_iou_threshold = matching_iou_threshold
self._recall_lower_bound = recall_lower_bound
self._recall_upper_bound = recall_upper_bound
self._use_weighted_mean_ap = use_weighted_mean_ap
self._label_id_offset = 1
self._evaluate_masks = evaluate_masks
self._group_of_weight = group_of_weight
self._nms_iou_threshold = nms_iou_threshold
self._nms_max_output_boxes = nms_max_output_boxes
self._evaluation = ObjectDetectionEvaluation(
num_groundtruth_classes=self._num_classes,
matching_iou_threshold=self._matching_iou_threshold,
recall_lower_bound=self._recall_lower_bound,
recall_upper_bound=self._recall_upper_bound,
use_weighted_mean_ap=self._use_weighted_mean_ap,
label_id_offset=self._label_id_offset,
group_of_weight=self._group_of_weight,
nms_iou_threshold=self._nms_iou_threshold,
nms_max_output_boxes=self._nms_max_output_boxes)
self._image_ids = set([])
self._evaluate_corlocs = evaluate_corlocs
self._evaluate_precision_recall = evaluate_precision_recall
self._metric_prefix = (metric_prefix + '_') if metric_prefix else ''
self._expected_keys = set([
standard_fields.InputDataFields.key,
standard_fields.InputDataFields.groundtruth_boxes,
standard_fields.InputDataFields.groundtruth_classes,
standard_fields.InputDataFields.groundtruth_difficult,
standard_fields.InputDataFields.groundtruth_instance_masks,
standard_fields.DetectionResultFields.detection_boxes,
standard_fields.DetectionResultFields.detection_scores,
standard_fields.DetectionResultFields.detection_classes,
standard_fields.DetectionResultFields.detection_masks
])
self._build_metric_names()
def get_internal_state(self):
"""Returns internal state and image ids that lead to the state.
Note that only evaluation results will be returned (e.g. not raw predictions
or groundtruth.
"""
return self._evaluation.get_internal_state(), self._image_ids
def merge_internal_state(self, image_ids, state_tuple):
"""Merges internal state with the existing state of evaluation.
If image_id is already seen by evaluator, an error will be thrown.
Args:
image_ids: list of images whose state is stored in the tuple.
state_tuple: state.
"""
for image_id in image_ids:
if image_id in self._image_ids:
logging.warning('Image with id %s already added.', image_id)
self._evaluation.merge_internal_state(state_tuple)
def _build_metric_names(self):
"""Builds a list with metric names."""
if self._recall_lower_bound > 0.0 or self._recall_upper_bound < 1.0:
self._metric_names = [
self._metric_prefix +
'Precision/mAP@{}IOU@[{:.1f},{:.1f}]Recall'.format(
self._matching_iou_threshold, self._recall_lower_bound,
self._recall_upper_bound)
]
else:
self._metric_names = [
self._metric_prefix +
'Precision/mAP@{}IOU'.format(self._matching_iou_threshold)
]
if self._evaluate_corlocs:
self._metric_names.append(
self._metric_prefix +
'Precision/meanCorLoc@{}IOU'.format(self._matching_iou_threshold))
category_index = label_map_util.create_category_index(self._categories)
for idx in range(self._num_classes):
if idx + self._label_id_offset in category_index:
category_name = category_index[idx + self._label_id_offset]['name']
try:
category_name = six.text_type(category_name, 'utf-8')
except TypeError:
pass
category_name = unicodedata.normalize('NFKD', category_name)
if six.PY2:
category_name = category_name.encode('ascii', 'ignore')
self._metric_names.append(
self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
if self._evaluate_corlocs:
self._metric_names.append(
self._metric_prefix +
'PerformanceByCategory/CorLoc@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
of shape [num_boxes] containing 1-indexed groundtruth classes for the
boxes.
standard_fields.InputDataFields.groundtruth_difficult: Optional length M
numpy boolean array denoting whether a ground truth box is a difficult
instance or not. This field is optional to support the case that no
boxes are difficult.
standard_fields.InputDataFields.groundtruth_instance_masks: Optional
numpy array of shape [num_boxes, height, width] with values in {0, 1}.
Raises:
ValueError: On adding groundtruth for an image more than once. Will also
raise error if instance masks are not in groundtruth dictionary.
"""
if image_id in self._image_ids:
logging.warning('Image with id %s already added.', image_id)
groundtruth_classes = (
groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
self._label_id_offset)
# If the key is not present in the groundtruth_dict or the array is empty
# (unless there are no annotations for the groundtruth on this image)
# use values from the dictionary or insert None otherwise.
if (standard_fields.InputDataFields.groundtruth_difficult in six.viewkeys(
groundtruth_dict) and
(groundtruth_dict[standard_fields.InputDataFields.groundtruth_difficult]
.size or not groundtruth_classes.size)):
groundtruth_difficult = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_difficult]
else:
groundtruth_difficult = None
if not len(self._image_ids) % 1000:
logging.warning(
'image %s does not have groundtruth difficult flag specified',
image_id)
groundtruth_masks = None
if self._evaluate_masks:
if (standard_fields.InputDataFields.groundtruth_instance_masks not in
groundtruth_dict):
raise ValueError('Instance masks not in groundtruth dictionary.')
groundtruth_masks = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_instance_masks]
self._evaluation.add_single_ground_truth_image_info(
image_key=image_id,
groundtruth_boxes=groundtruth_dict[
standard_fields.InputDataFields.groundtruth_boxes],
groundtruth_class_labels=groundtruth_classes,
groundtruth_is_difficult_list=groundtruth_difficult,
groundtruth_masks=groundtruth_masks)
self._image_ids.update([image_id])
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
standard_fields.DetectionResultFields.detection_boxes: float32 numpy
array of shape [num_boxes, 4] containing `num_boxes` detection boxes
of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.DetectionResultFields.detection_scores: float32 numpy
array of shape [num_boxes] containing detection scores for the boxes.
standard_fields.DetectionResultFields.detection_classes: integer numpy
array of shape [num_boxes] containing 1-indexed detection classes for
the boxes.
standard_fields.DetectionResultFields.detection_masks: uint8 numpy array
of shape [num_boxes, height, width] containing `num_boxes` masks of
values ranging between 0 and 1.
Raises:
ValueError: If detection masks are not in detections dictionary.
"""
detection_classes = (
detections_dict[standard_fields.DetectionResultFields.detection_classes]
- self._label_id_offset)
detection_masks = None
if self._evaluate_masks:
if (standard_fields.DetectionResultFields.detection_masks not in
detections_dict):
raise ValueError('Detection masks not in detections dictionary.')
detection_masks = detections_dict[
standard_fields.DetectionResultFields.detection_masks]
self._evaluation.add_single_detected_image_info(
image_key=image_id,
detected_boxes=detections_dict[
standard_fields.DetectionResultFields.detection_boxes],
detected_scores=detections_dict[
standard_fields.DetectionResultFields.detection_scores],
detected_class_labels=detection_classes,
detected_masks=detection_masks)
def evaluate(self):
"""Compute evaluation result.
Returns:
A dictionary of metrics with the following fields -
1. summary_metrics:
'<prefix if not empty>_Precision/mAP@<matching_iou_threshold>IOU': mean
average precision at the specified IOU threshold.
2. per_category_ap: category specific results with keys of the form
'<prefix if not empty>_PerformanceByCategory/
mAP@<matching_iou_threshold>IOU/category'.
"""
(per_class_ap, mean_ap, per_class_precision, per_class_recall,
per_class_corloc, mean_corloc) = (
self._evaluation.evaluate())
pascal_metrics = {self._metric_names[0]: mean_ap}
if self._evaluate_corlocs:
pascal_metrics[self._metric_names[1]] = mean_corloc
category_index = label_map_util.create_category_index(self._categories)
for idx in range(per_class_ap.size):
if idx + self._label_id_offset in category_index:
category_name = category_index[idx + self._label_id_offset]['name']
try:
category_name = six.text_type(category_name, 'utf-8')
except TypeError:
pass
category_name = unicodedata.normalize('NFKD', category_name)
if six.PY2:
category_name = category_name.encode('ascii', 'ignore')
display_name = (
self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
pascal_metrics[display_name] = per_class_ap[idx]
# Optionally add precision and recall values
if self._evaluate_precision_recall:
display_name = (
self._metric_prefix +
'PerformanceByCategory/Precision@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
pascal_metrics[display_name] = per_class_precision[idx]
display_name = (
self._metric_prefix +
'PerformanceByCategory/Recall@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
pascal_metrics[display_name] = per_class_recall[idx]
# Optionally add CorLoc metrics.classes
if self._evaluate_corlocs:
display_name = (
self._metric_prefix +
'PerformanceByCategory/CorLoc@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
pascal_metrics[display_name] = per_class_corloc[idx]
return pascal_metrics
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
self._evaluation = ObjectDetectionEvaluation(
num_groundtruth_classes=self._num_classes,
matching_iou_threshold=self._matching_iou_threshold,
use_weighted_mean_ap=self._use_weighted_mean_ap,
label_id_offset=self._label_id_offset,
nms_iou_threshold=self._nms_iou_threshold,
nms_max_output_boxes=self._nms_max_output_boxes,
)
self._image_ids.clear()
def add_eval_dict(self, eval_dict):
"""Observes an evaluation result dict for a single example.
When executing eagerly, once all observations have been observed by this
method you can use `.evaluate()` to get the final metrics.
When using `tf.estimator.Estimator` for evaluation this function is used by
`get_estimator_eval_metric_ops()` to construct the metric update op.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
None when executing eagerly, or an update_op that can be used to update
the eval metrics in `tf.estimator.EstimatorSpec`.
"""
# remove unexpected fields
eval_dict_filtered = dict()
for key, value in eval_dict.items():
if key in self._expected_keys:
eval_dict_filtered[key] = value
eval_dict_keys = list(eval_dict_filtered.keys())
def update_op(image_id, *eval_dict_batched_as_list):
"""Update operation that adds batch of images to ObjectDetectionEvaluator.
Args:
image_id: image id (single id or an array)
*eval_dict_batched_as_list: the values of the dictionary of tensors.
"""
if np.isscalar(image_id):
single_example_dict = dict(
zip(eval_dict_keys, eval_dict_batched_as_list))
self.add_single_ground_truth_image_info(image_id, single_example_dict)
self.add_single_detected_image_info(image_id, single_example_dict)
else:
for unzipped_tuple in zip(*eval_dict_batched_as_list):
single_example_dict = dict(zip(eval_dict_keys, unzipped_tuple))
image_id = single_example_dict[standard_fields.InputDataFields.key]
self.add_single_ground_truth_image_info(image_id, single_example_dict)
self.add_single_detected_image_info(image_id, single_example_dict)
args = [eval_dict_filtered[standard_fields.InputDataFields.key]]
args.extend(six.itervalues(eval_dict_filtered))
return tf.py_func(update_op, args, [])
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns dict of metrics to use with `tf.estimator.EstimatorSpec`.
Note that this must only be implemented if performing evaluation with a
`tf.estimator.Estimator`.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example(). It must contain
standard_fields.InputDataFields.key.
Returns:
A dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in `tf.estimator.EstimatorSpec`.
"""
update_op = self.add_eval_dict(eval_dict)
def first_value_func():
self._metrics = self.evaluate()
self.clear()
return np.float32(self._metrics[self._metric_names[0]])
def value_func_factory(metric_name):
def value_func():
return np.float32(self._metrics[metric_name])
return value_func
# Ensure that the metrics are only evaluated once.
first_value_op = tf.py_func(first_value_func, [], tf.float32)
eval_metric_ops = {self._metric_names[0]: (first_value_op, update_op)}
with tf.control_dependencies([first_value_op]):
for metric_name in self._metric_names[1:]:
eval_metric_ops[metric_name] = (tf.py_func(
value_func_factory(metric_name), [], np.float32), update_op)
return eval_metric_ops
class PascalDetectionEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate detections using PASCAL metrics."""
def __init__(self,
categories,
matching_iou_threshold=0.5,
nms_iou_threshold=1.0,
nms_max_output_boxes=10000):
super(PascalDetectionEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
metric_prefix='PascalBoxes',
use_weighted_mean_ap=False,
nms_iou_threshold=nms_iou_threshold,
nms_max_output_boxes=nms_max_output_boxes)
class WeightedPascalDetectionEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate detections using weighted PASCAL metrics.
Weighted PASCAL metrics computes the mean average precision as the average
precision given the scores and tp_fp_labels of all classes. In comparison,
PASCAL metrics computes the mean average precision as the mean of the
per-class average precisions.
This definition is very similar to the mean of the per-class average
precisions weighted by class frequency. However, they are typically not the
same as the average precision is not a linear function of the scores and
tp_fp_labels.
"""
def __init__(self, categories, matching_iou_threshold=0.5):
super(WeightedPascalDetectionEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
metric_prefix='WeightedPascalBoxes',
use_weighted_mean_ap=True)
class PrecisionAtRecallDetectionEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate detections using precision@recall metrics."""
def __init__(self,
categories,
matching_iou_threshold=0.5,
recall_lower_bound=0.0,
recall_upper_bound=1.0):
super(PrecisionAtRecallDetectionEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
recall_lower_bound=recall_lower_bound,
recall_upper_bound=recall_upper_bound,
evaluate_corlocs=False,
metric_prefix='PrecisionAtRecallBoxes',
use_weighted_mean_ap=False)
class PascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate instance masks using PASCAL metrics."""
def __init__(self, categories, matching_iou_threshold=0.5):
super(PascalInstanceSegmentationEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
metric_prefix='PascalMasks',
use_weighted_mean_ap=False,
evaluate_masks=True)
class WeightedPascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate instance masks using weighted PASCAL metrics.
Weighted PASCAL metrics computes the mean average precision as the average
precision given the scores and tp_fp_labels of all classes. In comparison,
PASCAL metrics computes the mean average precision as the mean of the
per-class average precisions.
This definition is very similar to the mean of the per-class average
precisions weighted by class frequency. However, they are typically not the
same as the average precision is not a linear function of the scores and
tp_fp_labels.
"""
def __init__(self, categories, matching_iou_threshold=0.5):
super(WeightedPascalInstanceSegmentationEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
metric_prefix='WeightedPascalMasks',
use_weighted_mean_ap=True,
evaluate_masks=True)
class OpenImagesDetectionEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate detections using Open Images V2 metrics.
Open Images V2 introduce group_of type of bounding boxes and this metric
handles those boxes appropriately.
"""
def __init__(self,
categories,
matching_iou_threshold=0.5,
evaluate_masks=False,
evaluate_corlocs=False,
metric_prefix='OpenImagesV2',
group_of_weight=0.0):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_masks: if True, evaluator evaluates masks.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
metric_prefix: Prefix name of the metric.
group_of_weight: Weight of the group-of bounding box. If set to 0 (default
for Open Images V2 detection protocol), detections of the correct class
within a group-of box are ignored. If weight is > 0, then if at least
one detection falls within a group-of box with matching_iou_threshold,
weight group_of_weight is added to true positives. Consequently, if no
detection falls within a group-of box, weight group_of_weight is added
to false negatives.
"""
super(OpenImagesDetectionEvaluator, self).__init__(
categories,
matching_iou_threshold,
evaluate_corlocs,
metric_prefix=metric_prefix,
group_of_weight=group_of_weight,
evaluate_masks=evaluate_masks)
self._expected_keys = set([
standard_fields.InputDataFields.key,
standard_fields.InputDataFields.groundtruth_boxes,
standard_fields.InputDataFields.groundtruth_classes,
standard_fields.InputDataFields.groundtruth_group_of,
standard_fields.DetectionResultFields.detection_boxes,
standard_fields.DetectionResultFields.detection_scores,
standard_fields.DetectionResultFields.detection_classes,
])
if evaluate_masks:
self._expected_keys.add(
standard_fields.InputDataFields.groundtruth_instance_masks)
self._expected_keys.add(
standard_fields.DetectionResultFields.detection_masks)
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
of shape [num_boxes] containing 1-indexed groundtruth classes for the
boxes.
standard_fields.InputDataFields.groundtruth_group_of: Optional length M
numpy boolean array denoting whether a groundtruth box contains a
group of instances.
Raises:
ValueError: On adding groundtruth for an image more than once.
"""
if image_id in self._image_ids:
logging.warning('Image with id %s already added.', image_id)
groundtruth_classes = (
groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
self._label_id_offset)
# If the key is not present in the groundtruth_dict or the array is empty
# (unless there are no annotations for the groundtruth on this image)
# use values from the dictionary or insert None otherwise.
if (standard_fields.InputDataFields.groundtruth_group_of in six.viewkeys(
groundtruth_dict) and
(groundtruth_dict[standard_fields.InputDataFields.groundtruth_group_of]
.size or not groundtruth_classes.size)):
groundtruth_group_of = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_group_of]
else:
groundtruth_group_of = None
if not len(self._image_ids) % 1000:
logging.warning(
'image %s does not have groundtruth group_of flag specified',
image_id)
if self._evaluate_masks:
groundtruth_masks = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_instance_masks]
else:
groundtruth_masks = None
self._evaluation.add_single_ground_truth_image_info(
image_id,
groundtruth_dict[standard_fields.InputDataFields.groundtruth_boxes],
groundtruth_classes,
groundtruth_is_difficult_list=None,
groundtruth_is_group_of_list=groundtruth_group_of,
groundtruth_masks=groundtruth_masks)
self._image_ids.update([image_id])
class OpenImagesChallengeEvaluator(OpenImagesDetectionEvaluator):
"""A class implements Open Images Challenge metrics.
Both Detection and Instance Segmentation evaluation metrics are implemented.
Open Images Challenge Detection metric has two major changes in comparison
with Open Images V2 detection metric:
- a custom weight might be specified for detecting an object contained in
a group-of box.
- verified image-level labels should be explicitelly provided for
evaluation: in case in image has neither positive nor negative image level
label of class c, all detections of this class on this image will be
ignored.
Open Images Challenge Instance Segmentation metric allows to measure per
formance of models in case of incomplete annotations: some instances are
annotations only on box level and some - on image-level. In addition,
image-level labels are taken into account as in detection metric.
Open Images Challenge Detection metric default parameters:
evaluate_masks = False
group_of_weight = 1.0
Open Images Challenge Instance Segmentation metric default parameters:
evaluate_masks = True
(group_of_weight will not matter)
"""
def __init__(self,
categories,
evaluate_masks=False,
matching_iou_threshold=0.5,
evaluate_corlocs=False,
group_of_weight=1.0):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
evaluate_masks: set to true for instance segmentation metric and to false
for detection metric.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
group_of_weight: Weight of group-of boxes. If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0, then
if at least one detection falls within a group-of box with
matching_iou_threshold, weight group_of_weight is added to true
positives. Consequently, if no detection falls within a group-of box,
weight group_of_weight is added to false negatives.
"""
if not evaluate_masks:
metrics_prefix = 'OpenImagesDetectionChallenge'
else:
metrics_prefix = 'OpenImagesInstanceSegmentationChallenge'
super(OpenImagesChallengeEvaluator, self).__init__(
categories,
matching_iou_threshold,
evaluate_masks=evaluate_masks,
evaluate_corlocs=evaluate_corlocs,
group_of_weight=group_of_weight,
metric_prefix=metrics_prefix)
self._evaluatable_labels = {}
# Only one of the two has to be provided, but both options are given
# for compatibility with previous codebase.
self._expected_keys.update([
standard_fields.InputDataFields.groundtruth_image_classes,
standard_fields.InputDataFields.groundtruth_labeled_classes])
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
of shape [num_boxes] containing 1-indexed groundtruth classes for the
boxes.
standard_fields.InputDataFields.groundtruth_image_classes: integer 1D
numpy array containing all classes for which labels are verified.
standard_fields.InputDataFields.groundtruth_group_of: Optional length M
numpy boolean array denoting whether a groundtruth box contains a
group of instances.
Raises:
ValueError: On adding groundtruth for an image more than once.
"""
super(OpenImagesChallengeEvaluator,
self).add_single_ground_truth_image_info(image_id, groundtruth_dict)
input_fields = standard_fields.InputDataFields
groundtruth_classes = (
groundtruth_dict[input_fields.groundtruth_classes] -
self._label_id_offset)
image_classes = np.array([], dtype=int)
if input_fields.groundtruth_image_classes in groundtruth_dict:
image_classes = groundtruth_dict[input_fields.groundtruth_image_classes]
elif input_fields.groundtruth_labeled_classes in groundtruth_dict:
image_classes = groundtruth_dict[input_fields.groundtruth_labeled_classes]
image_classes -= self._label_id_offset
self._evaluatable_labels[image_id] = np.unique(
np.concatenate((image_classes, groundtruth_classes)))
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
standard_fields.DetectionResultFields.detection_boxes: float32 numpy
array of shape [num_boxes, 4] containing `num_boxes` detection boxes
of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.DetectionResultFields.detection_scores: float32 numpy
array of shape [num_boxes] containing detection scores for the boxes.
standard_fields.DetectionResultFields.detection_classes: integer numpy
array of shape [num_boxes] containing 1-indexed detection classes for
the boxes.
Raises:
ValueError: If detection masks are not in detections dictionary.
"""
if image_id not in self._image_ids:
# Since for the correct work of evaluator it is assumed that groundtruth
# is inserted first we make sure to break the code if is it not the case.
self._image_ids.update([image_id])
self._evaluatable_labels[image_id] = np.array([])
detection_classes = (
detections_dict[standard_fields.DetectionResultFields.detection_classes]
- self._label_id_offset)
allowed_classes = np.where(
np.isin(detection_classes, self._evaluatable_labels[image_id]))
detection_classes = detection_classes[allowed_classes]
detected_boxes = detections_dict[
standard_fields.DetectionResultFields.detection_boxes][allowed_classes]
detected_scores = detections_dict[
standard_fields.DetectionResultFields.detection_scores][allowed_classes]
if self._evaluate_masks:
detection_masks = detections_dict[standard_fields.DetectionResultFields
.detection_masks][allowed_classes]
else:
detection_masks = None
self._evaluation.add_single_detected_image_info(
image_key=image_id,
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_class_labels=detection_classes,
detected_masks=detection_masks)
def clear(self):
"""Clears stored data."""
super(OpenImagesChallengeEvaluator, self).clear()
self._evaluatable_labels.clear()
ObjectDetectionEvalMetrics = collections.namedtuple(
'ObjectDetectionEvalMetrics', [
'average_precisions', 'mean_ap', 'precisions', 'recalls', 'corlocs',
'mean_corloc'
])
class OpenImagesDetectionChallengeEvaluator(OpenImagesChallengeEvaluator):
"""A class implements Open Images Detection Challenge metric."""
def __init__(self,
categories,
matching_iou_threshold=0.5,
evaluate_corlocs=False):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
"""
super(OpenImagesDetectionChallengeEvaluator, self).__init__(
categories=categories,
evaluate_masks=False,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
group_of_weight=1.0)
class OpenImagesInstanceSegmentationChallengeEvaluator(
OpenImagesChallengeEvaluator):
"""A class implements Open Images Instance Segmentation Challenge metric."""
def __init__(self,
categories,
matching_iou_threshold=0.5,
evaluate_corlocs=False):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
"""
super(OpenImagesInstanceSegmentationChallengeEvaluator, self).__init__(
categories=categories,
evaluate_masks=True,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
group_of_weight=0.0)
ObjectDetectionEvaluationState = collections.namedtuple(
'ObjectDetectionEvaluationState', [
'num_gt_instances_per_class',
'scores_per_class',
'tp_fp_labels_per_class',
'num_gt_imgs_per_class',
'num_images_correctly_detected_per_class',
])
class ObjectDetectionEvaluation(object):
"""Internal implementation of Pascal object detection metrics."""
def __init__(self,
num_groundtruth_classes,
matching_iou_threshold=0.5,
nms_iou_threshold=1.0,
nms_max_output_boxes=10000,
recall_lower_bound=0.0,
recall_upper_bound=1.0,
use_weighted_mean_ap=False,
label_id_offset=0,
group_of_weight=0.0,
per_image_eval_class=per_image_evaluation.PerImageEvaluation):
"""Constructor.
Args:
num_groundtruth_classes: Number of ground-truth classes.
matching_iou_threshold: IOU threshold used for matching detected boxes to
ground-truth boxes.
nms_iou_threshold: IOU threshold used for non-maximum suppression.
nms_max_output_boxes: Maximum number of boxes returned by non-maximum
suppression.
recall_lower_bound: lower bound of recall operating area
recall_upper_bound: upper bound of recall operating area
use_weighted_mean_ap: (optional) boolean which determines if the mean
average precision is computed directly from the scores and tp_fp_labels
of all classes.
label_id_offset: The label id offset.
group_of_weight: Weight of group-of boxes.If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0, then
if at least one detection falls within a group-of box with
matching_iou_threshold, weight group_of_weight is added to true
positives. Consequently, if no detection falls within a group-of box,
weight group_of_weight is added to false negatives.
per_image_eval_class: The class that contains functions for computing per
image metrics.
Raises:
ValueError: if num_groundtruth_classes is smaller than 1.
"""
if num_groundtruth_classes < 1:
raise ValueError('Need at least 1 groundtruth class for evaluation.')
self.per_image_eval = per_image_eval_class(
num_groundtruth_classes=num_groundtruth_classes,
matching_iou_threshold=matching_iou_threshold,
nms_iou_threshold=nms_iou_threshold,
nms_max_output_boxes=nms_max_output_boxes,
group_of_weight=group_of_weight)
self.recall_lower_bound = recall_lower_bound
self.recall_upper_bound = recall_upper_bound
self.group_of_weight = group_of_weight
self.num_class = num_groundtruth_classes
self.use_weighted_mean_ap = use_weighted_mean_ap
self.label_id_offset = label_id_offset
self.groundtruth_boxes = {}
self.groundtruth_class_labels = {}
self.groundtruth_masks = {}
self.groundtruth_is_difficult_list = {}
self.groundtruth_is_group_of_list = {}
self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=float)
self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int)
self._initialize_detections()
def _initialize_detections(self):
"""Initializes internal data structures."""
self.detection_keys = set()
self.scores_per_class = [[] for _ in range(self.num_class)]
self.tp_fp_labels_per_class = [[] for _ in range(self.num_class)]
self.num_images_correctly_detected_per_class = np.zeros(self.num_class)
self.average_precision_per_class = np.empty(self.num_class, dtype=float)
self.average_precision_per_class.fill(np.nan)
self.precisions_per_class = [np.nan] * self.num_class
self.recalls_per_class = [np.nan] * self.num_class
self.sum_tp_class = [np.nan] * self.num_class
self.corloc_per_class = np.ones(self.num_class, dtype=float)
def clear_detections(self):
self._initialize_detections()
def get_internal_state(self):
"""Returns internal state of the evaluation.
NOTE: that only evaluation results will be returned
(e.g. no raw predictions or groundtruth).
Returns:
internal state of the evaluation.
"""
return ObjectDetectionEvaluationState(
self.num_gt_instances_per_class, self.scores_per_class,
self.tp_fp_labels_per_class, self.num_gt_imgs_per_class,
self.num_images_correctly_detected_per_class)
def merge_internal_state(self, state_tuple):
"""Merges internal state of the evaluation with the current state.
Args:
state_tuple: state tuple representing evaluation state: should be of type
ObjectDetectionEvaluationState.
"""
(num_gt_instances_per_class, scores_per_class, tp_fp_labels_per_class,
num_gt_imgs_per_class, num_images_correctly_detected_per_class) = (
state_tuple)
assert self.num_class == len(num_gt_instances_per_class)
assert self.num_class == len(scores_per_class)
assert self.num_class == len(tp_fp_labels_per_class)
for i in range(self.num_class):
self.scores_per_class[i].extend(scores_per_class[i])
self.tp_fp_labels_per_class[i].extend(tp_fp_labels_per_class[i])
self.num_gt_instances_per_class[i] += num_gt_instances_per_class[i]
self.num_gt_imgs_per_class[i] += num_gt_imgs_per_class[i]
self.num_images_correctly_detected_per_class[
i] += num_images_correctly_detected_per_class[i]
def add_single_ground_truth_image_info(self,
image_key,
groundtruth_boxes,
groundtruth_class_labels,
groundtruth_is_difficult_list=None,
groundtruth_is_group_of_list=None,
groundtruth_masks=None):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_key: A unique string/integer identifier for the image.
groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing
`num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in
absolute image coordinates.
groundtruth_class_labels: integer numpy array of shape [num_boxes]
containing 0-indexed groundtruth classes for the boxes.
groundtruth_is_difficult_list: A length M numpy boolean array denoting
whether a ground truth box is a difficult instance or not. To support
the case that no boxes are difficult, it is by default set as None.
groundtruth_is_group_of_list: A length M numpy boolean array denoting
whether a ground truth box is a group-of box or not. To support the case
that no boxes are groups-of, it is by default set as None.
groundtruth_masks: uint8 numpy array of shape [num_boxes, height, width]
containing `num_boxes` groundtruth masks. The mask values range from 0
to 1.
"""
if image_key in self.groundtruth_boxes:
logging.warning(
'image %s has already been added to the ground truth database.',
image_key)
return
self.groundtruth_boxes[image_key] = groundtruth_boxes
self.groundtruth_class_labels[image_key] = groundtruth_class_labels
self.groundtruth_masks[image_key] = groundtruth_masks
if groundtruth_is_difficult_list is None:
num_boxes = groundtruth_boxes.shape[0]
groundtruth_is_difficult_list = np.zeros(num_boxes, dtype=bool)
self.groundtruth_is_difficult_list[
image_key] = groundtruth_is_difficult_list.astype(dtype=bool)
if groundtruth_is_group_of_list is None:
num_boxes = groundtruth_boxes.shape[0]
groundtruth_is_group_of_list = np.zeros(num_boxes, dtype=bool)
if groundtruth_masks is None:
num_boxes = groundtruth_boxes.shape[0]
mask_presence_indicator = np.zeros(num_boxes, dtype=bool)
else:
mask_presence_indicator = (np.sum(groundtruth_masks,
axis=(1, 2)) == 0).astype(dtype=bool)
self.groundtruth_is_group_of_list[
image_key] = groundtruth_is_group_of_list.astype(dtype=bool)
self._update_ground_truth_statistics(
groundtruth_class_labels,
groundtruth_is_difficult_list.astype(dtype=bool)
| mask_presence_indicator, # ignore boxes without masks
groundtruth_is_group_of_list.astype(dtype=bool))
def add_single_detected_image_info(self,
image_key,
detected_boxes,
detected_scores,
detected_class_labels,
detected_masks=None):
"""Adds detections for a single image to be used for evaluation.
Args:
image_key: A unique string/integer identifier for the image.
detected_boxes: float32 numpy array of shape [num_boxes, 4] containing
`num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in
absolute image coordinates.
detected_scores: float32 numpy array of shape [num_boxes] containing
detection scores for the boxes.
detected_class_labels: integer numpy array of shape [num_boxes] containing
0-indexed detection classes for the boxes.
detected_masks: np.uint8 numpy array of shape [num_boxes, height, width]
containing `num_boxes` detection masks with values ranging between 0 and
1.
Raises:
ValueError: if the number of boxes, scores and class labels differ in
length.
"""
if (len(detected_boxes) != len(detected_scores) or
len(detected_boxes) != len(detected_class_labels)):
raise ValueError(
'detected_boxes, detected_scores and '
'detected_class_labels should all have same lengths. Got'
'[%d, %d, %d]' % len(detected_boxes), len(detected_scores),
len(detected_class_labels))
if image_key in self.detection_keys:
logging.warning(
'image %s has already been added to the detection result database',
image_key)
return
self.detection_keys.add(image_key)
if image_key in self.groundtruth_boxes:
groundtruth_boxes = self.groundtruth_boxes[image_key]
groundtruth_class_labels = self.groundtruth_class_labels[image_key]
# Masks are popped instead of look up. The reason is that we do not want
# to keep all masks in memory which can cause memory overflow.
groundtruth_masks = self.groundtruth_masks.pop(image_key)
groundtruth_is_difficult_list = self.groundtruth_is_difficult_list[
image_key]
groundtruth_is_group_of_list = self.groundtruth_is_group_of_list[
image_key]
else:
groundtruth_boxes = np.empty(shape=[0, 4], dtype=float)
groundtruth_class_labels = np.array([], dtype=int)
if detected_masks is None:
groundtruth_masks = None
else:
groundtruth_masks = np.empty(shape=[0, 1, 1], dtype=float)
groundtruth_is_difficult_list = np.array([], dtype=bool)
groundtruth_is_group_of_list = np.array([], dtype=bool)
scores, tp_fp_labels, is_class_correctly_detected_in_image = (
self.per_image_eval.compute_object_detection_metrics(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_class_labels=detected_class_labels,
groundtruth_boxes=groundtruth_boxes,
groundtruth_class_labels=groundtruth_class_labels,
groundtruth_is_difficult_list=groundtruth_is_difficult_list,
groundtruth_is_group_of_list=groundtruth_is_group_of_list,
detected_masks=detected_masks,
groundtruth_masks=groundtruth_masks))
for i in range(self.num_class):
if scores[i].shape[0] > 0:
self.scores_per_class[i].append(scores[i])
self.tp_fp_labels_per_class[i].append(tp_fp_labels[i])
(self.num_images_correctly_detected_per_class
) += is_class_correctly_detected_in_image
def _update_ground_truth_statistics(self, groundtruth_class_labels,
groundtruth_is_difficult_list,
groundtruth_is_group_of_list):
"""Update grouth truth statitistics.
1. Difficult boxes are ignored when counting the number of ground truth
instances as done in Pascal VOC devkit.
2. Difficult boxes are treated as normal boxes when computing CorLoc related
statitistics.
Args:
groundtruth_class_labels: An integer numpy array of length M, representing
M class labels of object instances in ground truth
groundtruth_is_difficult_list: A boolean numpy array of length M denoting
whether a ground truth box is a difficult instance or not
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box is a group-of box or not
"""
for class_index in range(self.num_class):
num_gt_instances = np.sum(groundtruth_class_labels[
~groundtruth_is_difficult_list
& ~groundtruth_is_group_of_list] == class_index)
num_groupof_gt_instances = self.group_of_weight * np.sum(
groundtruth_class_labels[
groundtruth_is_group_of_list
& ~groundtruth_is_difficult_list] == class_index)
self.num_gt_instances_per_class[
class_index] += num_gt_instances + num_groupof_gt_instances
if np.any(groundtruth_class_labels == class_index):
self.num_gt_imgs_per_class[class_index] += 1
def evaluate(self):
"""Compute evaluation result.
Returns:
A named tuple with the following fields -
average_precision: float numpy array of average precision for
each class.
mean_ap: mean average precision of all classes, float scalar
precisions: List of precisions, each precision is a float numpy
array
recalls: List of recalls, each recall is a float numpy array
corloc: numpy float array
mean_corloc: Mean CorLoc score for each class, float scalar
"""
if (self.num_gt_instances_per_class == 0).any():
logging.warning(
'The following classes have no ground truth examples: %s',
np.squeeze(np.argwhere(self.num_gt_instances_per_class == 0)) +
self.label_id_offset)
if self.use_weighted_mean_ap:
all_scores = np.array([], dtype=float)
all_tp_fp_labels = np.array([], dtype=bool)
for class_index in range(self.num_class):
if self.num_gt_instances_per_class[class_index] == 0:
continue
if not self.scores_per_class[class_index]:
scores = np.array([], dtype=float)
tp_fp_labels = np.array([], dtype=float)
else:
scores = np.concatenate(self.scores_per_class[class_index])
tp_fp_labels = np.concatenate(self.tp_fp_labels_per_class[class_index])
if self.use_weighted_mean_ap:
all_scores = np.append(all_scores, scores)
all_tp_fp_labels = np.append(all_tp_fp_labels, tp_fp_labels)
precision, recall = metrics.compute_precision_recall(
scores, tp_fp_labels, self.num_gt_instances_per_class[class_index])
recall_within_bound_indices = [
index for index, value in enumerate(recall) if
value >= self.recall_lower_bound and value <= self.recall_upper_bound
]
recall_within_bound = recall[recall_within_bound_indices]
precision_within_bound = precision[recall_within_bound_indices]
self.precisions_per_class[class_index] = precision_within_bound
self.recalls_per_class[class_index] = recall_within_bound
self.sum_tp_class[class_index] = tp_fp_labels.sum()
average_precision = metrics.compute_average_precision(
precision_within_bound, recall_within_bound)
self.average_precision_per_class[class_index] = average_precision
logging.info('average_precision: %f', average_precision)
self.corloc_per_class = metrics.compute_cor_loc(
self.num_gt_imgs_per_class,
self.num_images_correctly_detected_per_class)
if self.use_weighted_mean_ap:
num_gt_instances = np.sum(self.num_gt_instances_per_class)
precision, recall = metrics.compute_precision_recall(
all_scores, all_tp_fp_labels, num_gt_instances)
recall_within_bound_indices = [
index for index, value in enumerate(recall) if
value >= self.recall_lower_bound and value <= self.recall_upper_bound
]
recall_within_bound = recall[recall_within_bound_indices]
precision_within_bound = precision[recall_within_bound_indices]
mean_ap = metrics.compute_average_precision(precision_within_bound,
recall_within_bound)
else:
mean_ap = np.nanmean(self.average_precision_per_class)
mean_corloc = np.nanmean(self.corloc_per_class)
return ObjectDetectionEvalMetrics(self.average_precision_per_class, mean_ap,
self.precisions_per_class,
self.recalls_per_class,
self.corloc_per_class, mean_corloc) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/object_detection_evaluation.py | object_detection_evaluation.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
from object_detection.utils import np_box_list
from object_detection.utils import np_box_list_ops
class PerImageVRDEvaluation(object):
"""Evaluate vrd result of a single image."""
def __init__(self, matching_iou_threshold=0.5):
"""Initialized PerImageVRDEvaluation by evaluation parameters.
Args:
matching_iou_threshold: A ratio of area intersection to union, which is
the threshold to consider whether a detection is true positive or not;
in phrase detection subtask.
"""
self.matching_iou_threshold = matching_iou_threshold
def compute_detection_tp_fp(self, detected_box_tuples, detected_scores,
detected_class_tuples, groundtruth_box_tuples,
groundtruth_class_tuples):
"""Evaluates VRD as being tp, fp from a single image.
Args:
detected_box_tuples: A numpy array of structures with shape [N,],
representing N tuples, each tuple containing the same number of named
bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max].
detected_scores: A float numpy array of shape [N,], representing
the confidence scores of the detected N object instances.
detected_class_tuples: A numpy array of structures shape [N,],
representing the class labels of the corresponding bounding boxes and
possibly additional classes.
groundtruth_box_tuples: A float numpy array of structures with the shape
[M,], representing M tuples, each tuple containing the same number
of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max].
groundtruth_class_tuples: A numpy array of structures shape [M,],
representing the class labels of the corresponding bounding boxes and
possibly additional classes.
Returns:
scores: A single numpy array with shape [N,], representing N scores
detected with object class, sorted in descentent order.
tp_fp_labels: A single boolean numpy array of shape [N,], representing N
True/False positive label, one label per tuple. The labels are sorted
so that the order of the labels matches the order of the scores.
result_mapping: A numpy array with shape [N,] with original index of each
entry.
"""
scores, tp_fp_labels, result_mapping = self._compute_tp_fp(
detected_box_tuples=detected_box_tuples,
detected_scores=detected_scores,
detected_class_tuples=detected_class_tuples,
groundtruth_box_tuples=groundtruth_box_tuples,
groundtruth_class_tuples=groundtruth_class_tuples)
return scores, tp_fp_labels, result_mapping
def _compute_tp_fp(self, detected_box_tuples, detected_scores,
detected_class_tuples, groundtruth_box_tuples,
groundtruth_class_tuples):
"""Labels as true/false positives detection tuples across all classes.
Args:
detected_box_tuples: A numpy array of structures with shape [N,],
representing N tuples, each tuple containing the same number of named
bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
detected_scores: A float numpy array of shape [N,], representing
the confidence scores of the detected N object instances.
detected_class_tuples: A numpy array of structures shape [N,],
representing the class labels of the corresponding bounding boxes and
possibly additional classes.
groundtruth_box_tuples: A float numpy array of structures with the shape
[M,], representing M tuples, each tuple containing the same number
of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
groundtruth_class_tuples: A numpy array of structures shape [M,],
representing the class labels of the corresponding bounding boxes and
possibly additional classes.
Returns:
scores: A single numpy array with shape [N,], representing N scores
detected with object class, sorted in descentent order.
tp_fp_labels: A single boolean numpy array of shape [N,], representing N
True/False positive label, one label per tuple. The labels are sorted
so that the order of the labels matches the order of the scores.
result_mapping: A numpy array with shape [N,] with original index of each
entry.
"""
unique_gt_tuples = np.unique(
np.concatenate((groundtruth_class_tuples, detected_class_tuples)))
result_scores = []
result_tp_fp_labels = []
result_mapping = []
for unique_tuple in unique_gt_tuples:
detections_selector = (detected_class_tuples == unique_tuple)
gt_selector = (groundtruth_class_tuples == unique_tuple)
selector_mapping = np.where(detections_selector)[0]
detection_scores_per_tuple = detected_scores[detections_selector]
detection_box_per_tuple = detected_box_tuples[detections_selector]
sorted_indices = np.argsort(detection_scores_per_tuple)
sorted_indices = sorted_indices[::-1]
tp_fp_labels = self._compute_tp_fp_for_single_class(
detected_box_tuples=detection_box_per_tuple[sorted_indices],
groundtruth_box_tuples=groundtruth_box_tuples[gt_selector])
result_scores.append(detection_scores_per_tuple[sorted_indices])
result_tp_fp_labels.append(tp_fp_labels)
result_mapping.append(selector_mapping[sorted_indices])
if result_scores:
result_scores = np.concatenate(result_scores)
result_tp_fp_labels = np.concatenate(result_tp_fp_labels)
result_mapping = np.concatenate(result_mapping)
else:
result_scores = np.array([], dtype=float)
result_tp_fp_labels = np.array([], dtype=bool)
result_mapping = np.array([], dtype=int)
sorted_indices = np.argsort(result_scores)
sorted_indices = sorted_indices[::-1]
return result_scores[sorted_indices], result_tp_fp_labels[
sorted_indices], result_mapping[sorted_indices]
def _get_overlaps_and_scores_relation_tuples(self, detected_box_tuples,
groundtruth_box_tuples):
"""Computes overlaps and scores between detected and groundtruth tuples.
Both detections and groundtruth boxes have the same class tuples.
Args:
detected_box_tuples: A numpy array of structures with shape [N,],
representing N tuples, each tuple containing the same number of named
bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
groundtruth_box_tuples: A float numpy array of structures with the shape
[M,], representing M tuples, each tuple containing the same number
of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
Returns:
result_iou: A float numpy array of size
[num_detected_tuples, num_gt_box_tuples].
"""
result_iou = np.ones(
(detected_box_tuples.shape[0], groundtruth_box_tuples.shape[0]),
dtype=float)
for field in detected_box_tuples.dtype.fields:
detected_boxlist_field = np_box_list.BoxList(detected_box_tuples[field])
gt_boxlist_field = np_box_list.BoxList(groundtruth_box_tuples[field])
iou_field = np_box_list_ops.iou(detected_boxlist_field, gt_boxlist_field)
result_iou = np.minimum(iou_field, result_iou)
return result_iou
def _compute_tp_fp_for_single_class(self, detected_box_tuples,
groundtruth_box_tuples):
"""Labels boxes detected with the same class from the same image as tp/fp.
Detection boxes are expected to be already sorted by score.
Args:
detected_box_tuples: A numpy array of structures with shape [N,],
representing N tuples, each tuple containing the same number of named
bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
groundtruth_box_tuples: A float numpy array of structures with the shape
[M,], representing M tuples, each tuple containing the same number
of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
Returns:
tp_fp_labels: a boolean numpy array indicating whether a detection is a
true positive.
"""
if detected_box_tuples.size == 0:
return np.array([], dtype=bool)
min_iou = self._get_overlaps_and_scores_relation_tuples(
detected_box_tuples, groundtruth_box_tuples)
num_detected_tuples = detected_box_tuples.shape[0]
tp_fp_labels = np.zeros(num_detected_tuples, dtype=bool)
if min_iou.shape[1] > 0:
max_overlap_gt_ids = np.argmax(min_iou, axis=1)
is_gt_tuple_detected = np.zeros(min_iou.shape[1], dtype=bool)
for i in range(num_detected_tuples):
gt_id = max_overlap_gt_ids[i]
if min_iou[i, gt_id] >= self.matching_iou_threshold:
if not is_gt_tuple_detected[gt_id]:
tp_fp_labels[i] = True
is_gt_tuple_detected[gt_id] = True
return tp_fp_labels | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/per_image_vrd_evaluation.py | per_image_vrd_evaluation.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
from object_detection.utils import np_box_list
from object_detection.utils import np_box_list_ops
from object_detection.utils import np_box_mask_list
from object_detection.utils import np_box_mask_list_ops
class PerImageEvaluation(object):
"""Evaluate detection result of a single image."""
def __init__(self,
num_groundtruth_classes,
matching_iou_threshold=0.5,
nms_iou_threshold=0.3,
nms_max_output_boxes=50,
group_of_weight=0.0):
"""Initialized PerImageEvaluation by evaluation parameters.
Args:
num_groundtruth_classes: Number of ground truth object classes
matching_iou_threshold: A ratio of area intersection to union, which is
the threshold to consider whether a detection is true positive or not
nms_iou_threshold: IOU threshold used in Non Maximum Suppression.
nms_max_output_boxes: Number of maximum output boxes in NMS.
group_of_weight: Weight of the group-of boxes.
"""
self.matching_iou_threshold = matching_iou_threshold
self.nms_iou_threshold = nms_iou_threshold
self.nms_max_output_boxes = nms_max_output_boxes
self.num_groundtruth_classes = num_groundtruth_classes
self.group_of_weight = group_of_weight
def compute_object_detection_metrics(self,
detected_boxes,
detected_scores,
detected_class_labels,
groundtruth_boxes,
groundtruth_class_labels,
groundtruth_is_difficult_list,
groundtruth_is_group_of_list,
detected_masks=None,
groundtruth_masks=None):
"""Evaluates detections as being tp, fp or weighted from a single image.
The evaluation is done in two stages:
1. All detections are matched to non group-of boxes; true positives are
determined and detections matched to difficult boxes are ignored.
2. Detections that are determined as false positives are matched against
group-of boxes and weighted if matched.
Args:
detected_boxes: A float numpy array of shape [N, 4], representing N
regions of detected object regions. Each row is of the format [y_min,
x_min, y_max, x_max]
detected_scores: A float numpy array of shape [N, 1], representing the
confidence scores of the detected N object instances.
detected_class_labels: A integer numpy array of shape [N, 1], repreneting
the class labels of the detected N object instances.
groundtruth_boxes: A float numpy array of shape [M, 4], representing M
regions of object instances in ground truth
groundtruth_class_labels: An integer numpy array of shape [M, 1],
representing M class labels of object instances in ground truth
groundtruth_is_difficult_list: A boolean numpy array of length M denoting
whether a ground truth box is a difficult instance or not
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag
detected_masks: (optional) A uint8 numpy array of shape [N, height,
width]. If not None, the metrics will be computed based on masks.
groundtruth_masks: (optional) A uint8 numpy array of shape [M, height,
width]. Can have empty masks, i.e. where all values are 0.
Returns:
scores: A list of C float numpy arrays. Each numpy array is of
shape [K, 1], representing K scores detected with object class
label c
tp_fp_labels: A list of C boolean numpy arrays. Each numpy array
is of shape [K, 1], representing K True/False positive label of
object instances detected with class label c
is_class_correctly_detected_in_image: a numpy integer array of
shape [C, 1], indicating whether the correponding class has a least
one instance being correctly detected in the image
"""
detected_boxes, detected_scores, detected_class_labels, detected_masks = (
self._remove_invalid_boxes(detected_boxes, detected_scores,
detected_class_labels, detected_masks))
scores, tp_fp_labels = self._compute_tp_fp(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_class_labels=detected_class_labels,
groundtruth_boxes=groundtruth_boxes,
groundtruth_class_labels=groundtruth_class_labels,
groundtruth_is_difficult_list=groundtruth_is_difficult_list,
groundtruth_is_group_of_list=groundtruth_is_group_of_list,
detected_masks=detected_masks,
groundtruth_masks=groundtruth_masks)
is_class_correctly_detected_in_image = self._compute_cor_loc(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_class_labels=detected_class_labels,
groundtruth_boxes=groundtruth_boxes,
groundtruth_class_labels=groundtruth_class_labels,
detected_masks=detected_masks,
groundtruth_masks=groundtruth_masks)
return scores, tp_fp_labels, is_class_correctly_detected_in_image
def _compute_cor_loc(self,
detected_boxes,
detected_scores,
detected_class_labels,
groundtruth_boxes,
groundtruth_class_labels,
detected_masks=None,
groundtruth_masks=None):
"""Compute CorLoc score for object detection result.
Args:
detected_boxes: A float numpy array of shape [N, 4], representing N
regions of detected object regions. Each row is of the format [y_min,
x_min, y_max, x_max]
detected_scores: A float numpy array of shape [N, 1], representing the
confidence scores of the detected N object instances.
detected_class_labels: A integer numpy array of shape [N, 1], repreneting
the class labels of the detected N object instances.
groundtruth_boxes: A float numpy array of shape [M, 4], representing M
regions of object instances in ground truth
groundtruth_class_labels: An integer numpy array of shape [M, 1],
representing M class labels of object instances in ground truth
detected_masks: (optional) A uint8 numpy array of shape [N, height,
width]. If not None, the scores will be computed based on masks.
groundtruth_masks: (optional) A uint8 numpy array of shape [M, height,
width].
Returns:
is_class_correctly_detected_in_image: a numpy integer array of
shape [C, 1], indicating whether the correponding class has a least
one instance being correctly detected in the image
Raises:
ValueError: If detected masks is not None but groundtruth masks are None,
or the other way around.
"""
if (detected_masks is not None and
groundtruth_masks is None) or (detected_masks is None and
groundtruth_masks is not None):
raise ValueError(
'If `detected_masks` is provided, then `groundtruth_masks` should '
'also be provided.')
is_class_correctly_detected_in_image = np.zeros(
self.num_groundtruth_classes, dtype=int)
for i in range(self.num_groundtruth_classes):
(gt_boxes_at_ith_class, gt_masks_at_ith_class,
detected_boxes_at_ith_class, detected_scores_at_ith_class,
detected_masks_at_ith_class) = self._get_ith_class_arrays(
detected_boxes, detected_scores, detected_masks,
detected_class_labels, groundtruth_boxes, groundtruth_masks,
groundtruth_class_labels, i)
is_class_correctly_detected_in_image[i] = (
self._compute_is_class_correctly_detected_in_image(
detected_boxes=detected_boxes_at_ith_class,
detected_scores=detected_scores_at_ith_class,
groundtruth_boxes=gt_boxes_at_ith_class,
detected_masks=detected_masks_at_ith_class,
groundtruth_masks=gt_masks_at_ith_class))
return is_class_correctly_detected_in_image
def _compute_is_class_correctly_detected_in_image(self,
detected_boxes,
detected_scores,
groundtruth_boxes,
detected_masks=None,
groundtruth_masks=None):
"""Compute CorLoc score for a single class.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box
coordinates
detected_scores: A 1-d numpy array of length N representing classification
score
groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
box coordinates
detected_masks: (optional) A np.uint8 numpy array of shape [N, height,
width]. If not None, the scores will be computed based on masks.
groundtruth_masks: (optional) A np.uint8 numpy array of shape [M, height,
width].
Returns:
is_class_correctly_detected_in_image: An integer 1 or 0 denoting whether a
class is correctly detected in the image or not
"""
if detected_boxes.size > 0:
if groundtruth_boxes.size > 0:
max_score_id = np.argmax(detected_scores)
mask_mode = False
if detected_masks is not None and groundtruth_masks is not None:
mask_mode = True
if mask_mode:
detected_boxlist = np_box_mask_list.BoxMaskList(
box_data=np.expand_dims(detected_boxes[max_score_id], axis=0),
mask_data=np.expand_dims(detected_masks[max_score_id], axis=0))
gt_boxlist = np_box_mask_list.BoxMaskList(
box_data=groundtruth_boxes, mask_data=groundtruth_masks)
iou = np_box_mask_list_ops.iou(detected_boxlist, gt_boxlist)
else:
detected_boxlist = np_box_list.BoxList(
np.expand_dims(detected_boxes[max_score_id, :], axis=0))
gt_boxlist = np_box_list.BoxList(groundtruth_boxes)
iou = np_box_list_ops.iou(detected_boxlist, gt_boxlist)
if np.max(iou) >= self.matching_iou_threshold:
return 1
return 0
def _compute_tp_fp(self,
detected_boxes,
detected_scores,
detected_class_labels,
groundtruth_boxes,
groundtruth_class_labels,
groundtruth_is_difficult_list,
groundtruth_is_group_of_list,
detected_masks=None,
groundtruth_masks=None):
"""Labels true/false positives of detections of an image across all classes.
Args:
detected_boxes: A float numpy array of shape [N, 4], representing N
regions of detected object regions. Each row is of the format [y_min,
x_min, y_max, x_max]
detected_scores: A float numpy array of shape [N, 1], representing the
confidence scores of the detected N object instances.
detected_class_labels: A integer numpy array of shape [N, 1], repreneting
the class labels of the detected N object instances.
groundtruth_boxes: A float numpy array of shape [M, 4], representing M
regions of object instances in ground truth
groundtruth_class_labels: An integer numpy array of shape [M, 1],
representing M class labels of object instances in ground truth
groundtruth_is_difficult_list: A boolean numpy array of length M denoting
whether a ground truth box is a difficult instance or not
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag
detected_masks: (optional) A np.uint8 numpy array of shape [N, height,
width]. If not None, the scores will be computed based on masks.
groundtruth_masks: (optional) A np.uint8 numpy array of shape [M, height,
width].
Returns:
result_scores: A list of float numpy arrays. Each numpy array is of
shape [K, 1], representing K scores detected with object class
label c
result_tp_fp_labels: A list of boolean numpy array. Each numpy array is of
shape [K, 1], representing K True/False positive label of object
instances detected with class label c
Raises:
ValueError: If detected masks is not None but groundtruth masks are None,
or the other way around.
"""
if detected_masks is not None and groundtruth_masks is None:
raise ValueError(
'Detected masks is available but groundtruth masks is not.')
if detected_masks is None and groundtruth_masks is not None:
raise ValueError(
'Groundtruth masks is available but detected masks is not.')
result_scores = []
result_tp_fp_labels = []
for i in range(self.num_groundtruth_classes):
groundtruth_is_difficult_list_at_ith_class = (
groundtruth_is_difficult_list[groundtruth_class_labels == i])
groundtruth_is_group_of_list_at_ith_class = (
groundtruth_is_group_of_list[groundtruth_class_labels == i])
(gt_boxes_at_ith_class, gt_masks_at_ith_class,
detected_boxes_at_ith_class, detected_scores_at_ith_class,
detected_masks_at_ith_class) = self._get_ith_class_arrays(
detected_boxes, detected_scores, detected_masks,
detected_class_labels, groundtruth_boxes, groundtruth_masks,
groundtruth_class_labels, i)
scores, tp_fp_labels = self._compute_tp_fp_for_single_class(
detected_boxes=detected_boxes_at_ith_class,
detected_scores=detected_scores_at_ith_class,
groundtruth_boxes=gt_boxes_at_ith_class,
groundtruth_is_difficult_list=groundtruth_is_difficult_list_at_ith_class,
groundtruth_is_group_of_list=groundtruth_is_group_of_list_at_ith_class,
detected_masks=detected_masks_at_ith_class,
groundtruth_masks=gt_masks_at_ith_class)
result_scores.append(scores)
result_tp_fp_labels.append(tp_fp_labels)
return result_scores, result_tp_fp_labels
def _get_overlaps_and_scores_mask_mode(self, detected_boxes, detected_scores,
detected_masks, groundtruth_boxes,
groundtruth_masks,
groundtruth_is_group_of_list):
"""Computes overlaps and scores between detected and groudntruth masks.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box
coordinates
detected_scores: A 1-d numpy array of length N representing classification
score
detected_masks: A uint8 numpy array of shape [N, height, width]. If not
None, the scores will be computed based on masks.
groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
box coordinates
groundtruth_masks: A uint8 numpy array of shape [M, height, width].
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag. If a groundtruth box is
group-of box, every detection matching this box is ignored.
Returns:
iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_group_of_boxlist.num_boxes() == 0 it will be None.
scores: The score of the detected boxlist.
num_boxes: Number of non-maximum suppressed detected boxes.
"""
detected_boxlist = np_box_mask_list.BoxMaskList(
box_data=detected_boxes, mask_data=detected_masks)
detected_boxlist.add_field('scores', detected_scores)
detected_boxlist = np_box_mask_list_ops.non_max_suppression(
detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
gt_non_group_of_boxlist = np_box_mask_list.BoxMaskList(
box_data=groundtruth_boxes[~groundtruth_is_group_of_list],
mask_data=groundtruth_masks[~groundtruth_is_group_of_list])
gt_group_of_boxlist = np_box_mask_list.BoxMaskList(
box_data=groundtruth_boxes[groundtruth_is_group_of_list],
mask_data=groundtruth_masks[groundtruth_is_group_of_list])
iou = np_box_mask_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
ioa = np.transpose(
np_box_mask_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
scores = detected_boxlist.get_field('scores')
num_boxes = detected_boxlist.num_boxes()
return iou, ioa, scores, num_boxes
def _get_overlaps_and_scores_box_mode(self, detected_boxes, detected_scores,
groundtruth_boxes,
groundtruth_is_group_of_list):
"""Computes overlaps and scores between detected and groudntruth boxes.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box
coordinates
detected_scores: A 1-d numpy array of length N representing classification
score
groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
box coordinates
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag. If a groundtruth box is
group-of box, every detection matching this box is ignored.
Returns:
iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_group_of_boxlist.num_boxes() == 0 it will be None.
scores: The score of the detected boxlist.
num_boxes: Number of non-maximum suppressed detected boxes.
"""
detected_boxlist = np_box_list.BoxList(detected_boxes)
detected_boxlist.add_field('scores', detected_scores)
detected_boxlist = np_box_list_ops.non_max_suppression(
detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
gt_non_group_of_boxlist = np_box_list.BoxList(
groundtruth_boxes[~groundtruth_is_group_of_list])
gt_group_of_boxlist = np_box_list.BoxList(
groundtruth_boxes[groundtruth_is_group_of_list])
iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
ioa = np.transpose(
np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
scores = detected_boxlist.get_field('scores')
num_boxes = detected_boxlist.num_boxes()
return iou, ioa, scores, num_boxes
def _compute_tp_fp_for_single_class(self,
detected_boxes,
detected_scores,
groundtruth_boxes,
groundtruth_is_difficult_list,
groundtruth_is_group_of_list,
detected_masks=None,
groundtruth_masks=None):
"""Labels boxes detected with the same class from the same image as tp/fp.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box
coordinates
detected_scores: A 1-d numpy array of length N representing classification
score
groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
box coordinates
groundtruth_is_difficult_list: A boolean numpy array of length M denoting
whether a ground truth box is a difficult instance or not. If a
groundtruth box is difficult, every detection matching this box is
ignored.
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag. If a groundtruth box is
group-of box, every detection matching this box is ignored.
detected_masks: (optional) A uint8 numpy array of shape [N, height,
width]. If not None, the scores will be computed based on masks.
groundtruth_masks: (optional) A uint8 numpy array of shape [M, height,
width].
Returns:
Two arrays of the same size, containing all boxes that were evaluated as
being true positives or false positives; if a box matched to a difficult
box or to a group-of box, it is ignored.
scores: A numpy array representing the detection scores.
tp_fp_labels: a boolean numpy array indicating whether a detection is a
true positive.
"""
if detected_boxes.size == 0:
return np.array([], dtype=float), np.array([], dtype=bool)
mask_mode = False
if detected_masks is not None and groundtruth_masks is not None:
mask_mode = True
iou = np.ndarray([0, 0])
ioa = np.ndarray([0, 0])
iou_mask = np.ndarray([0, 0])
ioa_mask = np.ndarray([0, 0])
if mask_mode:
# For Instance Segmentation Evaluation on Open Images V5, not all boxed
# instances have corresponding segmentation annotations. Those boxes that
# dont have segmentation annotations are represented as empty masks in
# groundtruth_masks nd array.
mask_presence_indicator = (np.sum(groundtruth_masks, axis=(1, 2)) > 0)
(iou_mask, ioa_mask, scores,
num_detected_boxes) = self._get_overlaps_and_scores_mask_mode(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_masks=detected_masks,
groundtruth_boxes=groundtruth_boxes[mask_presence_indicator, :],
groundtruth_masks=groundtruth_masks[mask_presence_indicator, :],
groundtruth_is_group_of_list=groundtruth_is_group_of_list[
mask_presence_indicator])
if sum(mask_presence_indicator) < len(mask_presence_indicator):
# Not all masks are present - some masks are empty
(iou, ioa, _,
num_detected_boxes) = self._get_overlaps_and_scores_box_mode(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
groundtruth_boxes=groundtruth_boxes[~mask_presence_indicator, :],
groundtruth_is_group_of_list=groundtruth_is_group_of_list[
~mask_presence_indicator])
num_detected_boxes = detected_boxes.shape[0]
else:
mask_presence_indicator = np.zeros(
groundtruth_is_group_of_list.shape, dtype=bool)
(iou, ioa, scores,
num_detected_boxes) = self._get_overlaps_and_scores_box_mode(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
groundtruth_boxes=groundtruth_boxes,
groundtruth_is_group_of_list=groundtruth_is_group_of_list)
if groundtruth_boxes.size == 0:
return scores, np.zeros(num_detected_boxes, dtype=bool)
tp_fp_labels = np.zeros(num_detected_boxes, dtype=bool)
is_matched_to_box = np.zeros(num_detected_boxes, dtype=bool)
is_matched_to_difficult = np.zeros(num_detected_boxes, dtype=bool)
is_matched_to_group_of = np.zeros(num_detected_boxes, dtype=bool)
def compute_match_iou(iou, groundtruth_nongroup_of_is_difficult_list,
is_box):
"""Computes TP/FP for non group-of box matching.
The function updates the following local variables:
tp_fp_labels - if a box is matched to group-of
is_matched_to_difficult - the detections that were processed at this are
matched to difficult box.
is_matched_to_box - the detections that were processed at this stage are
marked as is_box.
Args:
iou: intersection-over-union matrix [num_gt_boxes]x[num_det_boxes].
groundtruth_nongroup_of_is_difficult_list: boolean that specifies if gt
box is difficult.
is_box: boolean that specifies if currently boxes or masks are
processed.
"""
max_overlap_gt_ids = np.argmax(iou, axis=1)
is_gt_detected = np.zeros(iou.shape[1], dtype=bool)
for i in range(num_detected_boxes):
gt_id = max_overlap_gt_ids[i]
is_evaluatable = (not tp_fp_labels[i] and
not is_matched_to_difficult[i] and
iou[i, gt_id] >= self.matching_iou_threshold and
not is_matched_to_group_of[i])
if is_evaluatable:
if not groundtruth_nongroup_of_is_difficult_list[gt_id]:
if not is_gt_detected[gt_id]:
tp_fp_labels[i] = True
is_gt_detected[gt_id] = True
is_matched_to_box[i] = is_box
else:
is_matched_to_difficult[i] = True
def compute_match_ioa(ioa, is_box):
"""Computes TP/FP for group-of box matching.
The function updates the following local variables:
is_matched_to_group_of - if a box is matched to group-of
is_matched_to_box - the detections that were processed at this stage are
marked as is_box.
Args:
ioa: intersection-over-area matrix [num_gt_boxes]x[num_det_boxes].
is_box: boolean that specifies if currently boxes or masks are
processed.
Returns:
scores_group_of: of detections matched to group-of boxes
[num_groupof_matched].
tp_fp_labels_group_of: boolean array of size [num_groupof_matched], all
values are True.
"""
scores_group_of = np.zeros(ioa.shape[1], dtype=float)
tp_fp_labels_group_of = self.group_of_weight * np.ones(
ioa.shape[1], dtype=float)
max_overlap_group_of_gt_ids = np.argmax(ioa, axis=1)
for i in range(num_detected_boxes):
gt_id = max_overlap_group_of_gt_ids[i]
is_evaluatable = (not tp_fp_labels[i] and
not is_matched_to_difficult[i] and
ioa[i, gt_id] >= self.matching_iou_threshold and
not is_matched_to_group_of[i])
if is_evaluatable:
is_matched_to_group_of[i] = True
is_matched_to_box[i] = is_box
scores_group_of[gt_id] = max(scores_group_of[gt_id], scores[i])
selector = np.where((scores_group_of > 0) & (tp_fp_labels_group_of > 0))
scores_group_of = scores_group_of[selector]
tp_fp_labels_group_of = tp_fp_labels_group_of[selector]
return scores_group_of, tp_fp_labels_group_of
# The evaluation is done in two stages:
# 1. Evaluate all objects that actually have instance level masks.
# 2. Evaluate all objects that are not already evaluated as boxes.
if iou_mask.shape[1] > 0:
groundtruth_is_difficult_mask_list = groundtruth_is_difficult_list[
mask_presence_indicator]
groundtruth_is_group_of_mask_list = groundtruth_is_group_of_list[
mask_presence_indicator]
compute_match_iou(
iou_mask,
groundtruth_is_difficult_mask_list[
~groundtruth_is_group_of_mask_list],
is_box=False)
scores_mask_group_of = np.ndarray([0], dtype=float)
tp_fp_labels_mask_group_of = np.ndarray([0], dtype=float)
if ioa_mask.shape[1] > 0:
scores_mask_group_of, tp_fp_labels_mask_group_of = compute_match_ioa(
ioa_mask, is_box=False)
# Tp-fp evaluation for non-group of boxes (if any).
if iou.shape[1] > 0:
groundtruth_is_difficult_box_list = groundtruth_is_difficult_list[
~mask_presence_indicator]
groundtruth_is_group_of_box_list = groundtruth_is_group_of_list[
~mask_presence_indicator]
compute_match_iou(
iou,
groundtruth_is_difficult_box_list[~groundtruth_is_group_of_box_list],
is_box=True)
scores_box_group_of = np.ndarray([0], dtype=float)
tp_fp_labels_box_group_of = np.ndarray([0], dtype=float)
if ioa.shape[1] > 0:
scores_box_group_of, tp_fp_labels_box_group_of = compute_match_ioa(
ioa, is_box=True)
if mask_mode:
# Note: here crowds are treated as ignore regions.
valid_entries = (~is_matched_to_difficult & ~is_matched_to_group_of
& ~is_matched_to_box)
return np.concatenate(
(scores[valid_entries], scores_mask_group_of)), np.concatenate(
(tp_fp_labels[valid_entries].astype(float),
tp_fp_labels_mask_group_of))
else:
valid_entries = (~is_matched_to_difficult & ~is_matched_to_group_of)
return np.concatenate(
(scores[valid_entries], scores_box_group_of)), np.concatenate(
(tp_fp_labels[valid_entries].astype(float),
tp_fp_labels_box_group_of))
def _get_ith_class_arrays(self, detected_boxes, detected_scores,
detected_masks, detected_class_labels,
groundtruth_boxes, groundtruth_masks,
groundtruth_class_labels, class_index):
"""Returns numpy arrays belonging to class with index `class_index`.
Args:
detected_boxes: A numpy array containing detected boxes.
detected_scores: A numpy array containing detected scores.
detected_masks: A numpy array containing detected masks.
detected_class_labels: A numpy array containing detected class labels.
groundtruth_boxes: A numpy array containing groundtruth boxes.
groundtruth_masks: A numpy array containing groundtruth masks.
groundtruth_class_labels: A numpy array containing groundtruth class
labels.
class_index: An integer index.
Returns:
gt_boxes_at_ith_class: A numpy array containing groundtruth boxes labeled
as ith class.
gt_masks_at_ith_class: A numpy array containing groundtruth masks labeled
as ith class.
detected_boxes_at_ith_class: A numpy array containing detected boxes
corresponding to the ith class.
detected_scores_at_ith_class: A numpy array containing detected scores
corresponding to the ith class.
detected_masks_at_ith_class: A numpy array containing detected masks
corresponding to the ith class.
"""
selected_groundtruth = (groundtruth_class_labels == class_index)
gt_boxes_at_ith_class = groundtruth_boxes[selected_groundtruth]
if groundtruth_masks is not None:
gt_masks_at_ith_class = groundtruth_masks[selected_groundtruth]
else:
gt_masks_at_ith_class = None
selected_detections = (detected_class_labels == class_index)
detected_boxes_at_ith_class = detected_boxes[selected_detections]
detected_scores_at_ith_class = detected_scores[selected_detections]
if detected_masks is not None:
detected_masks_at_ith_class = detected_masks[selected_detections]
else:
detected_masks_at_ith_class = None
return (gt_boxes_at_ith_class, gt_masks_at_ith_class,
detected_boxes_at_ith_class, detected_scores_at_ith_class,
detected_masks_at_ith_class)
def _remove_invalid_boxes(self,
detected_boxes,
detected_scores,
detected_class_labels,
detected_masks=None):
"""Removes entries with invalid boxes.
A box is invalid if either its xmax is smaller than its xmin, or its ymax
is smaller than its ymin.
Args:
detected_boxes: A float numpy array of size [num_boxes, 4] containing box
coordinates in [ymin, xmin, ymax, xmax] format.
detected_scores: A float numpy array of size [num_boxes].
detected_class_labels: A int32 numpy array of size [num_boxes].
detected_masks: A uint8 numpy array of size [num_boxes, height, width].
Returns:
valid_detected_boxes: A float numpy array of size [num_valid_boxes, 4]
containing box coordinates in [ymin, xmin, ymax, xmax] format.
valid_detected_scores: A float numpy array of size [num_valid_boxes].
valid_detected_class_labels: A int32 numpy array of size
[num_valid_boxes].
valid_detected_masks: A uint8 numpy array of size
[num_valid_boxes, height, width].
"""
valid_indices = np.logical_and(detected_boxes[:, 0] < detected_boxes[:, 2],
detected_boxes[:, 1] < detected_boxes[:, 3])
detected_boxes = detected_boxes[valid_indices]
detected_scores = detected_scores[valid_indices]
detected_class_labels = detected_class_labels[valid_indices]
if detected_masks is not None:
detected_masks = detected_masks[valid_indices]
return [
detected_boxes, detected_scores, detected_class_labels, detected_masks
] | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/per_image_evaluation.py | per_image_evaluation.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
from object_detection.utils import np_box_list_ops
from object_detection.utils import np_box_mask_list
from object_detection.utils import np_mask_ops
def box_list_to_box_mask_list(boxlist):
"""Converts a BoxList containing 'masks' into a BoxMaskList.
Args:
boxlist: An np_box_list.BoxList object.
Returns:
An np_box_mask_list.BoxMaskList object.
Raises:
ValueError: If boxlist does not contain `masks` as a field.
"""
if not boxlist.has_field('masks'):
raise ValueError('boxlist does not contain mask field.')
box_mask_list = np_box_mask_list.BoxMaskList(
box_data=boxlist.get(),
mask_data=boxlist.get_field('masks'))
extra_fields = boxlist.get_extra_fields()
for key in extra_fields:
if key != 'masks':
box_mask_list.data[key] = boxlist.get_field(key)
return box_mask_list
def area(box_mask_list):
"""Computes area of masks.
Args:
box_mask_list: np_box_mask_list.BoxMaskList holding N boxes and masks
Returns:
a numpy array with shape [N*1] representing mask areas
"""
return np_mask_ops.area(box_mask_list.get_masks())
def intersection(box_mask_list1, box_mask_list2):
"""Compute pairwise intersection areas between masks.
Args:
box_mask_list1: BoxMaskList holding N boxes and masks
box_mask_list2: BoxMaskList holding M boxes and masks
Returns:
a numpy array with shape [N*M] representing pairwise intersection area
"""
return np_mask_ops.intersection(box_mask_list1.get_masks(),
box_mask_list2.get_masks())
def iou(box_mask_list1, box_mask_list2):
"""Computes pairwise intersection-over-union between box and mask collections.
Args:
box_mask_list1: BoxMaskList holding N boxes and masks
box_mask_list2: BoxMaskList holding M boxes and masks
Returns:
a numpy array with shape [N, M] representing pairwise iou scores.
"""
return np_mask_ops.iou(box_mask_list1.get_masks(),
box_mask_list2.get_masks())
def ioa(box_mask_list1, box_mask_list2):
"""Computes pairwise intersection-over-area between box and mask collections.
Intersection-over-area (ioa) between two masks mask1 and mask2 is defined as
their intersection area over mask2's area. Note that ioa is not symmetric,
that is, IOA(mask1, mask2) != IOA(mask2, mask1).
Args:
box_mask_list1: np_box_mask_list.BoxMaskList holding N boxes and masks
box_mask_list2: np_box_mask_list.BoxMaskList holding M boxes and masks
Returns:
a numpy array with shape [N, M] representing pairwise ioa scores.
"""
return np_mask_ops.ioa(box_mask_list1.get_masks(), box_mask_list2.get_masks())
def gather(box_mask_list, indices, fields=None):
"""Gather boxes from np_box_mask_list.BoxMaskList according to indices.
By default, gather returns boxes corresponding to the input index list, as
well as all additional fields stored in the box_mask_list (indexing into the
first dimension). However one can optionally only gather from a
subset of fields.
Args:
box_mask_list: np_box_mask_list.BoxMaskList holding N boxes
indices: a 1-d numpy array of type int_
fields: (optional) list of fields to also gather from. If None (default),
all fields are gathered from. Pass an empty fields list to only gather
the box coordinates.
Returns:
subbox_mask_list: a np_box_mask_list.BoxMaskList corresponding to the subset
of the input box_mask_list specified by indices
Raises:
ValueError: if specified field is not contained in box_mask_list or if the
indices are not of type int_
"""
if fields is not None:
if 'masks' not in fields:
fields.append('masks')
return box_list_to_box_mask_list(
np_box_list_ops.gather(
boxlist=box_mask_list, indices=indices, fields=fields))
def sort_by_field(box_mask_list, field,
order=np_box_list_ops.SortOrder.DESCEND):
"""Sort boxes and associated fields according to a scalar field.
A common use case is reordering the boxes according to descending scores.
Args:
box_mask_list: BoxMaskList holding N boxes.
field: A BoxMaskList field for sorting and reordering the BoxMaskList.
order: (Optional) 'descend' or 'ascend'. Default is descend.
Returns:
sorted_box_mask_list: A sorted BoxMaskList with the field in the specified
order.
"""
return box_list_to_box_mask_list(
np_box_list_ops.sort_by_field(
boxlist=box_mask_list, field=field, order=order))
def non_max_suppression(box_mask_list,
max_output_size=10000,
iou_threshold=1.0,
score_threshold=-10.0):
"""Non maximum suppression.
This op greedily selects a subset of detection bounding boxes, pruning
away boxes that have high IOU (intersection over union) overlap (> thresh)
with already selected boxes. In each iteration, the detected bounding box with
highest score in the available pool is selected.
Args:
box_mask_list: np_box_mask_list.BoxMaskList holding N boxes. Must contain
a 'scores' field representing detection scores. All scores belong to the
same class.
max_output_size: maximum number of retained boxes
iou_threshold: intersection over union threshold.
score_threshold: minimum score threshold. Remove the boxes with scores
less than this value. Default value is set to -10. A very
low threshold to pass pretty much all the boxes, unless
the user sets a different score threshold.
Returns:
an np_box_mask_list.BoxMaskList holding M boxes where M <= max_output_size
Raises:
ValueError: if 'scores' field does not exist
ValueError: if threshold is not in [0, 1]
ValueError: if max_output_size < 0
"""
if not box_mask_list.has_field('scores'):
raise ValueError('Field scores does not exist')
if iou_threshold < 0. or iou_threshold > 1.0:
raise ValueError('IOU threshold must be in [0, 1]')
if max_output_size < 0:
raise ValueError('max_output_size must be bigger than 0.')
box_mask_list = filter_scores_greater_than(box_mask_list, score_threshold)
if box_mask_list.num_boxes() == 0:
return box_mask_list
box_mask_list = sort_by_field(box_mask_list, 'scores')
# Prevent further computation if NMS is disabled.
if iou_threshold == 1.0:
if box_mask_list.num_boxes() > max_output_size:
selected_indices = np.arange(max_output_size)
return gather(box_mask_list, selected_indices)
else:
return box_mask_list
masks = box_mask_list.get_masks()
num_masks = box_mask_list.num_boxes()
# is_index_valid is True only for all remaining valid boxes,
is_index_valid = np.full(num_masks, 1, dtype=bool)
selected_indices = []
num_output = 0
for i in range(num_masks):
if num_output < max_output_size:
if is_index_valid[i]:
num_output += 1
selected_indices.append(i)
is_index_valid[i] = False
valid_indices = np.where(is_index_valid)[0]
if valid_indices.size == 0:
break
intersect_over_union = np_mask_ops.iou(
np.expand_dims(masks[i], axis=0), masks[valid_indices])
intersect_over_union = np.squeeze(intersect_over_union, axis=0)
is_index_valid[valid_indices] = np.logical_and(
is_index_valid[valid_indices],
intersect_over_union <= iou_threshold)
return gather(box_mask_list, np.array(selected_indices))
def multi_class_non_max_suppression(box_mask_list, score_thresh, iou_thresh,
max_output_size):
"""Multi-class version of non maximum suppression.
This op greedily selects a subset of detection bounding boxes, pruning
away boxes that have high IOU (intersection over union) overlap (> thresh)
with already selected boxes. It operates independently for each class for
which scores are provided (via the scores field of the input box_list),
pruning boxes with score less than a provided threshold prior to
applying NMS.
Args:
box_mask_list: np_box_mask_list.BoxMaskList holding N boxes. Must contain a
'scores' field representing detection scores. This scores field is a
tensor that can be 1 dimensional (in the case of a single class) or
2-dimensional, in which case we assume that it takes the
shape [num_boxes, num_classes]. We further assume that this rank is known
statically and that scores.shape[1] is also known (i.e., the number of
classes is fixed and known at graph construction time).
score_thresh: scalar threshold for score (low scoring boxes are removed).
iou_thresh: scalar threshold for IOU (boxes that that high IOU overlap
with previously selected boxes are removed).
max_output_size: maximum number of retained boxes per class.
Returns:
a box_mask_list holding M boxes with a rank-1 scores field representing
corresponding scores for each box with scores sorted in decreasing order
and a rank-1 classes field representing a class label for each box.
Raises:
ValueError: if iou_thresh is not in [0, 1] or if input box_mask_list does
not have a valid scores field.
"""
if not 0 <= iou_thresh <= 1.0:
raise ValueError('thresh must be between 0 and 1')
if not isinstance(box_mask_list, np_box_mask_list.BoxMaskList):
raise ValueError('box_mask_list must be a box_mask_list')
if not box_mask_list.has_field('scores'):
raise ValueError('input box_mask_list must have \'scores\' field')
scores = box_mask_list.get_field('scores')
if len(scores.shape) == 1:
scores = np.reshape(scores, [-1, 1])
elif len(scores.shape) == 2:
if scores.shape[1] is None:
raise ValueError('scores field must have statically defined second '
'dimension')
else:
raise ValueError('scores field must be of rank 1 or 2')
num_boxes = box_mask_list.num_boxes()
num_scores = scores.shape[0]
num_classes = scores.shape[1]
if num_boxes != num_scores:
raise ValueError('Incorrect scores field length: actual vs expected.')
selected_boxes_list = []
for class_idx in range(num_classes):
box_mask_list_and_class_scores = np_box_mask_list.BoxMaskList(
box_data=box_mask_list.get(),
mask_data=box_mask_list.get_masks())
class_scores = np.reshape(scores[0:num_scores, class_idx], [-1])
box_mask_list_and_class_scores.add_field('scores', class_scores)
box_mask_list_filt = filter_scores_greater_than(
box_mask_list_and_class_scores, score_thresh)
nms_result = non_max_suppression(
box_mask_list_filt,
max_output_size=max_output_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh)
nms_result.add_field(
'classes',
np.zeros_like(nms_result.get_field('scores')) + class_idx)
selected_boxes_list.append(nms_result)
selected_boxes = np_box_list_ops.concatenate(selected_boxes_list)
sorted_boxes = np_box_list_ops.sort_by_field(selected_boxes, 'scores')
return box_list_to_box_mask_list(boxlist=sorted_boxes)
def prune_non_overlapping_masks(box_mask_list1, box_mask_list2, minoverlap=0.0):
"""Prunes the boxes in list1 that overlap less than thresh with list2.
For each mask in box_mask_list1, we want its IOA to be more than minoverlap
with at least one of the masks in box_mask_list2. If it does not, we remove
it. If the masks are not full size image, we do the pruning based on boxes.
Args:
box_mask_list1: np_box_mask_list.BoxMaskList holding N boxes and masks.
box_mask_list2: np_box_mask_list.BoxMaskList holding M boxes and masks.
minoverlap: Minimum required overlap between boxes, to count them as
overlapping.
Returns:
A pruned box_mask_list with size [N', 4].
"""
intersection_over_area = ioa(box_mask_list2, box_mask_list1) # [M, N] tensor
intersection_over_area = np.amax(intersection_over_area, axis=0) # [N] tensor
keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap))
keep_inds = np.nonzero(keep_bool)[0]
new_box_mask_list1 = gather(box_mask_list1, keep_inds)
return new_box_mask_list1
def concatenate(box_mask_lists, fields=None):
"""Concatenate list of box_mask_lists.
This op concatenates a list of input box_mask_lists into a larger
box_mask_list. It also
handles concatenation of box_mask_list fields as long as the field tensor
shapes are equal except for the first dimension.
Args:
box_mask_lists: list of np_box_mask_list.BoxMaskList objects
fields: optional list of fields to also concatenate. By default, all
fields from the first BoxMaskList in the list are included in the
concatenation.
Returns:
a box_mask_list with number of boxes equal to
sum([box_mask_list.num_boxes() for box_mask_list in box_mask_list])
Raises:
ValueError: if box_mask_lists is invalid (i.e., is not a list, is empty, or
contains non box_mask_list objects), or if requested fields are not
contained in all box_mask_lists
"""
if fields is not None:
if 'masks' not in fields:
fields.append('masks')
return box_list_to_box_mask_list(
np_box_list_ops.concatenate(boxlists=box_mask_lists, fields=fields))
def filter_scores_greater_than(box_mask_list, thresh):
"""Filter to keep only boxes and masks with score exceeding a given threshold.
This op keeps the collection of boxes and masks whose corresponding scores are
greater than the input threshold.
Args:
box_mask_list: BoxMaskList holding N boxes and masks. Must contain a
'scores' field representing detection scores.
thresh: scalar threshold
Returns:
a BoxMaskList holding M boxes and masks where M <= N
Raises:
ValueError: if box_mask_list not a np_box_mask_list.BoxMaskList object or
if it does not have a scores field
"""
if not isinstance(box_mask_list, np_box_mask_list.BoxMaskList):
raise ValueError('box_mask_list must be a BoxMaskList')
if not box_mask_list.has_field('scores'):
raise ValueError('input box_mask_list must have \'scores\' field')
scores = box_mask_list.get_field('scores')
if len(scores.shape) > 2:
raise ValueError('Scores should have rank 1 or 2')
if len(scores.shape) == 2 and scores.shape[1] != 1:
raise ValueError('Scores should have rank 1 or have shape '
'consistent with [None, 1]')
high_score_indices = np.reshape(np.where(np.greater(scores, thresh)),
[-1]).astype(np.int32)
return gather(box_mask_list, high_score_indices) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/np_box_mask_list_ops.py | np_box_mask_list_ops.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import collections
# Set headless-friendly backend.
import matplotlib; matplotlib.use('Agg') # pylint: disable=multiple-statements
import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top
import numpy as np
import PIL.Image as Image
import PIL.ImageColor as ImageColor
import PIL.ImageDraw as ImageDraw
import PIL.ImageFont as ImageFont
import six
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.core import keypoint_ops
from object_detection.core import standard_fields as fields
from object_detection.utils import shape_utils
_TITLE_LEFT_MARGIN = 10
_TITLE_TOP_MARGIN = 10
STANDARD_COLORS = [
'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
'WhiteSmoke', 'Yellow', 'YellowGreen'
]
def _get_multiplier_for_color_randomness():
"""Returns a multiplier to get semi-random colors from successive indices.
This function computes a prime number, p, in the range [2, 17] that:
- is closest to len(STANDARD_COLORS) / 10
- does not divide len(STANDARD_COLORS)
If no prime numbers in that range satisfy the constraints, p is returned as 1.
Once p is established, it can be used as a multiplier to select
non-consecutive colors from STANDARD_COLORS:
colors = [(p * i) % len(STANDARD_COLORS) for i in range(20)]
"""
num_colors = len(STANDARD_COLORS)
prime_candidates = [5, 7, 11, 13, 17]
# Remove all prime candidates that divide the number of colors.
prime_candidates = [p for p in prime_candidates if num_colors % p]
if not prime_candidates:
return 1
# Return the closest prime number to num_colors / 10.
abs_distance = [np.abs(num_colors / 10. - p) for p in prime_candidates]
num_candidates = len(abs_distance)
inds = [i for _, i in sorted(zip(abs_distance, range(num_candidates)))]
return prime_candidates[inds[0]]
def save_image_array_as_png(image, output_path):
"""Saves an image (represented as a numpy array) to PNG.
Args:
image: a numpy array with shape [height, width, 3].
output_path: path to which image should be written.
"""
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
with tf.gfile.Open(output_path, 'w') as fid:
image_pil.save(fid, 'PNG')
def encode_image_array_as_png_str(image):
"""Encodes a numpy array into a PNG string.
Args:
image: a numpy array with shape [height, width, 3].
Returns:
PNG encoded image string.
"""
image_pil = Image.fromarray(np.uint8(image))
output = six.BytesIO()
image_pil.save(output, format='PNG')
png_string = output.getvalue()
output.close()
return png_string
def draw_bounding_box_on_image_array(image,
ymin,
xmin,
ymax,
xmax,
color='red',
thickness=4,
display_str_list=(),
use_normalized_coordinates=True):
"""Adds a bounding box to an image (numpy array).
Bounding box coordinates can be specified in either absolute (pixel) or
normalized coordinates by setting the use_normalized_coordinates argument.
Args:
image: a numpy array with shape [height, width, 3].
ymin: ymin of bounding box.
xmin: xmin of bounding box.
ymax: ymax of bounding box.
xmax: xmax of bounding box.
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list: list of strings to display in box
(each to be shown on its own line).
use_normalized_coordinates: If True (default), treat coordinates
ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
coordinates as absolute.
"""
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
thickness, display_str_list,
use_normalized_coordinates)
np.copyto(image, np.array(image_pil))
def draw_bounding_box_on_image(image,
ymin,
xmin,
ymax,
xmax,
color='red',
thickness=4,
display_str_list=(),
use_normalized_coordinates=True):
"""Adds a bounding box to an image.
Bounding box coordinates can be specified in either absolute (pixel) or
normalized coordinates by setting the use_normalized_coordinates argument.
Each string in display_str_list is displayed on a separate line above the
bounding box in black text on a rectangle filled with the input 'color'.
If the top of the bounding box extends to the edge of the image, the strings
are displayed below the bounding box.
Args:
image: a PIL.Image object.
ymin: ymin of bounding box.
xmin: xmin of bounding box.
ymax: ymax of bounding box.
xmax: xmax of bounding box.
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list: list of strings to display in box
(each to be shown on its own line).
use_normalized_coordinates: If True (default), treat coordinates
ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
coordinates as absolute.
"""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
if use_normalized_coordinates:
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
else:
(left, right, top, bottom) = (xmin, xmax, ymin, ymax)
if thickness > 0:
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
(left, top)],
width=thickness,
fill=color)
try:
font = ImageFont.truetype('arial.ttf', 24)
except IOError:
font = ImageFont.load_default()
# If the total height of the display strings added to the top of the bounding
# box exceeds the top of the image, stack the strings below the bounding box
# instead of above.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
# Each display_str has a top and bottom margin of 0.05x.
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
if top > total_display_str_height:
text_bottom = top
else:
text_bottom = bottom + total_display_str_height
# Reverse list and print from bottom to top.
for display_str in display_str_list[::-1]:
text_width, text_height = font.getsize(display_str)
margin = np.ceil(0.05 * text_height)
draw.rectangle(
[(left, text_bottom - text_height - 2 * margin), (left + text_width,
text_bottom)],
fill=color)
draw.text(
(left + margin, text_bottom - text_height - margin),
display_str,
fill='black',
font=font)
text_bottom -= text_height - 2 * margin
def draw_bounding_boxes_on_image_array(image,
boxes,
color='red',
thickness=4,
display_str_list_list=()):
"""Draws bounding boxes on image (numpy array).
Args:
image: a numpy array object.
boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
The coordinates are in normalized format between [0, 1].
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list_list: list of list of strings.
a list of strings for each bounding box.
The reason to pass a list of strings for a
bounding box is that it might contain
multiple labels.
Raises:
ValueError: if boxes is not a [N, 4] array
"""
image_pil = Image.fromarray(image)
draw_bounding_boxes_on_image(image_pil, boxes, color, thickness,
display_str_list_list)
np.copyto(image, np.array(image_pil))
def draw_bounding_boxes_on_image(image,
boxes,
color='red',
thickness=4,
display_str_list_list=()):
"""Draws bounding boxes on image.
Args:
image: a PIL.Image object.
boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
The coordinates are in normalized format between [0, 1].
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list_list: list of list of strings.
a list of strings for each bounding box.
The reason to pass a list of strings for a
bounding box is that it might contain
multiple labels.
Raises:
ValueError: if boxes is not a [N, 4] array
"""
boxes_shape = boxes.shape
if not boxes_shape:
return
if len(boxes_shape) != 2 or boxes_shape[1] != 4:
raise ValueError('Input must be of size [N, 4]')
for i in range(boxes_shape[0]):
display_str_list = ()
if display_str_list_list:
display_str_list = display_str_list_list[i]
draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2],
boxes[i, 3], color, thickness, display_str_list)
def create_visualization_fn(category_index,
include_masks=False,
include_keypoints=False,
include_keypoint_scores=False,
include_track_ids=False,
**kwargs):
"""Constructs a visualization function that can be wrapped in a py_func.
py_funcs only accept positional arguments. This function returns a suitable
function with the correct positional argument mapping. The positional
arguments in order are:
0: image
1: boxes
2: classes
3: scores
[4]: masks (optional)
[4-5]: keypoints (optional)
[4-6]: keypoint_scores (optional)
[4-7]: track_ids (optional)
-- Example 1 --
vis_only_masks_fn = create_visualization_fn(category_index,
include_masks=True, include_keypoints=False, include_track_ids=False,
**kwargs)
image = tf.py_func(vis_only_masks_fn,
inp=[image, boxes, classes, scores, masks],
Tout=tf.uint8)
-- Example 2 --
vis_masks_and_track_ids_fn = create_visualization_fn(category_index,
include_masks=True, include_keypoints=False, include_track_ids=True,
**kwargs)
image = tf.py_func(vis_masks_and_track_ids_fn,
inp=[image, boxes, classes, scores, masks, track_ids],
Tout=tf.uint8)
Args:
category_index: a dict that maps integer ids to category dicts. e.g.
{1: {1: 'dog'}, 2: {2: 'cat'}, ...}
include_masks: Whether masks should be expected as a positional argument in
the returned function.
include_keypoints: Whether keypoints should be expected as a positional
argument in the returned function.
include_keypoint_scores: Whether keypoint scores should be expected as a
positional argument in the returned function.
include_track_ids: Whether track ids should be expected as a positional
argument in the returned function.
**kwargs: Additional kwargs that will be passed to
visualize_boxes_and_labels_on_image_array.
Returns:
Returns a function that only takes tensors as positional arguments.
"""
def visualization_py_func_fn(*args):
"""Visualization function that can be wrapped in a tf.py_func.
Args:
*args: First 4 positional arguments must be:
image - uint8 numpy array with shape (img_height, img_width, 3).
boxes - a numpy array of shape [N, 4].
classes - a numpy array of shape [N].
scores - a numpy array of shape [N] or None.
-- Optional positional arguments --
instance_masks - a numpy array of shape [N, image_height, image_width].
keypoints - a numpy array of shape [N, num_keypoints, 2].
keypoint_scores - a numpy array of shape [N, num_keypoints].
track_ids - a numpy array of shape [N] with unique track ids.
Returns:
uint8 numpy array with shape (img_height, img_width, 3) with overlaid
boxes.
"""
image = args[0]
boxes = args[1]
classes = args[2]
scores = args[3]
masks = keypoints = keypoint_scores = track_ids = None
pos_arg_ptr = 4 # Positional argument for first optional tensor (masks).
if include_masks:
masks = args[pos_arg_ptr]
pos_arg_ptr += 1
if include_keypoints:
keypoints = args[pos_arg_ptr]
pos_arg_ptr += 1
if include_keypoint_scores:
keypoint_scores = args[pos_arg_ptr]
pos_arg_ptr += 1
if include_track_ids:
track_ids = args[pos_arg_ptr]
return visualize_boxes_and_labels_on_image_array(
image,
boxes,
classes,
scores,
category_index=category_index,
instance_masks=masks,
keypoints=keypoints,
keypoint_scores=keypoint_scores,
track_ids=track_ids,
**kwargs)
return visualization_py_func_fn
def draw_heatmaps_on_image(image, heatmaps):
"""Draws heatmaps on an image.
The heatmaps are handled channel by channel and different colors are used to
paint different heatmap channels.
Args:
image: a PIL.Image object.
heatmaps: a numpy array with shape [image_height, image_width, channel].
Note that the image_height and image_width should match the size of input
image.
"""
draw = ImageDraw.Draw(image)
channel = heatmaps.shape[2]
for c in range(channel):
heatmap = heatmaps[:, :, c] * 255
heatmap = heatmap.astype('uint8')
bitmap = Image.fromarray(heatmap, 'L')
bitmap.convert('1')
draw.bitmap(
xy=[(0, 0)],
bitmap=bitmap,
fill=STANDARD_COLORS[c])
def draw_heatmaps_on_image_array(image, heatmaps):
"""Overlays heatmaps to an image (numpy array).
The function overlays the heatmaps on top of image. The heatmap values will be
painted with different colors depending on the channels. Similar to
"draw_heatmaps_on_image_array" function except the inputs are numpy arrays.
Args:
image: a numpy array with shape [height, width, 3].
heatmaps: a numpy array with shape [height, width, channel].
Returns:
An uint8 numpy array representing the input image painted with heatmap
colors.
"""
if not isinstance(image, np.ndarray):
image = image.numpy()
if not isinstance(heatmaps, np.ndarray):
heatmaps = heatmaps.numpy()
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
draw_heatmaps_on_image(image_pil, heatmaps)
return np.array(image_pil)
def draw_heatmaps_on_image_tensors(images,
heatmaps,
apply_sigmoid=False):
"""Draws heatmaps on batch of image tensors.
Args:
images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
channels will be ignored. If C = 1, then we convert the images to RGB
images.
heatmaps: [N, h, w, channel] float32 tensor of heatmaps. Note that the
heatmaps will be resized to match the input image size before overlaying
the heatmaps with input images. Theoretically the heatmap height width
should have the same aspect ratio as the input image to avoid potential
misalignment introduced by the image resize.
apply_sigmoid: Whether to apply a sigmoid layer on top of the heatmaps. If
the heatmaps come directly from the prediction logits, then we should
apply the sigmoid layer to make sure the values are in between [0.0, 1.0].
Returns:
4D image tensor of type uint8, with heatmaps overlaid on top.
"""
# Additional channels are being ignored.
if images.shape[3] > 3:
images = images[:, :, :, 0:3]
elif images.shape[3] == 1:
images = tf.image.grayscale_to_rgb(images)
_, height, width, _ = shape_utils.combined_static_and_dynamic_shape(images)
if apply_sigmoid:
heatmaps = tf.math.sigmoid(heatmaps)
resized_heatmaps = tf.image.resize(heatmaps, size=[height, width])
elems = [images, resized_heatmaps]
def draw_heatmaps(image_and_heatmaps):
"""Draws heatmaps on image."""
image_with_heatmaps = tf.py_function(
draw_heatmaps_on_image_array,
image_and_heatmaps,
tf.uint8)
return image_with_heatmaps
images = tf.map_fn(draw_heatmaps, elems, dtype=tf.uint8, back_prop=False)
return images
def _resize_original_image(image, image_shape):
image = tf.expand_dims(image, 0)
image = tf.image.resize_images(
image,
image_shape,
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=True)
return tf.cast(tf.squeeze(image, 0), tf.uint8)
def draw_bounding_boxes_on_image_tensors(images,
boxes,
classes,
scores,
category_index,
original_image_spatial_shape=None,
true_image_shape=None,
instance_masks=None,
keypoints=None,
keypoint_scores=None,
keypoint_edges=None,
track_ids=None,
max_boxes_to_draw=20,
min_score_thresh=0.2,
use_normalized_coordinates=True):
"""Draws bounding boxes, masks, and keypoints on batch of image tensors.
Args:
images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
channels will be ignored. If C = 1, then we convert the images to RGB
images.
boxes: [N, max_detections, 4] float32 tensor of detection boxes.
classes: [N, max_detections] int tensor of detection classes. Note that
classes are 1-indexed.
scores: [N, max_detections] float32 tensor of detection scores.
category_index: a dict that maps integer ids to category dicts. e.g.
{1: {1: 'dog'}, 2: {2: 'cat'}, ...}
original_image_spatial_shape: [N, 2] tensor containing the spatial size of
the original image.
true_image_shape: [N, 3] tensor containing the spatial size of unpadded
original_image.
instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with
instance masks.
keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2]
with keypoints.
keypoint_scores: A 3D float32 tensor of shape [N, max_detection,
num_keypoints] with keypoint scores.
keypoint_edges: A list of tuples with keypoint indices that specify which
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
edges from keypoint 0 to 1 and from keypoint 2 to 4.
track_ids: [N, max_detections] int32 tensor of unique tracks ids (i.e.
instance ids for each object). If provided, the color-coding of boxes is
dictated by these ids, and not classes.
max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20.
min_score_thresh: Minimum score threshold for visualization. Default 0.2.
use_normalized_coordinates: Whether to assume boxes and kepoints are in
normalized coordinates (as opposed to absolute coordiantes).
Default is True.
Returns:
4D image tensor of type uint8, with boxes drawn on top.
"""
# Additional channels are being ignored.
if images.shape[3] > 3:
images = images[:, :, :, 0:3]
elif images.shape[3] == 1:
images = tf.image.grayscale_to_rgb(images)
visualization_keyword_args = {
'use_normalized_coordinates': use_normalized_coordinates,
'max_boxes_to_draw': max_boxes_to_draw,
'min_score_thresh': min_score_thresh,
'agnostic_mode': False,
'line_thickness': 4,
'keypoint_edges': keypoint_edges
}
if true_image_shape is None:
true_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 3])
else:
true_shapes = true_image_shape
if original_image_spatial_shape is None:
original_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 2])
else:
original_shapes = original_image_spatial_shape
visualize_boxes_fn = create_visualization_fn(
category_index,
include_masks=instance_masks is not None,
include_keypoints=keypoints is not None,
include_keypoint_scores=keypoint_scores is not None,
include_track_ids=track_ids is not None,
**visualization_keyword_args)
elems = [true_shapes, original_shapes, images, boxes, classes, scores]
if instance_masks is not None:
elems.append(instance_masks)
if keypoints is not None:
elems.append(keypoints)
if keypoint_scores is not None:
elems.append(keypoint_scores)
if track_ids is not None:
elems.append(track_ids)
def draw_boxes(image_and_detections):
"""Draws boxes on image."""
true_shape = image_and_detections[0]
original_shape = image_and_detections[1]
if true_image_shape is not None:
image = shape_utils.pad_or_clip_nd(image_and_detections[2],
[true_shape[0], true_shape[1], 3])
if original_image_spatial_shape is not None:
image_and_detections[2] = _resize_original_image(image, original_shape)
image_with_boxes = tf.py_func(visualize_boxes_fn, image_and_detections[2:],
tf.uint8)
return image_with_boxes
images = tf.map_fn(draw_boxes, elems, dtype=tf.uint8, back_prop=False)
return images
def draw_side_by_side_evaluation_image(eval_dict,
category_index,
max_boxes_to_draw=20,
min_score_thresh=0.2,
use_normalized_coordinates=True,
keypoint_edges=None):
"""Creates a side-by-side image with detections and groundtruth.
Bounding boxes (and instance masks, if available) are visualized on both
subimages.
Args:
eval_dict: The evaluation dictionary returned by
eval_util.result_dict_for_batched_example() or
eval_util.result_dict_for_single_example().
category_index: A category index (dictionary) produced from a labelmap.
max_boxes_to_draw: The maximum number of boxes to draw for detections.
min_score_thresh: The minimum score threshold for showing detections.
use_normalized_coordinates: Whether to assume boxes and keypoints are in
normalized coordinates (as opposed to absolute coordinates).
Default is True.
keypoint_edges: A list of tuples with keypoint indices that specify which
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
edges from keypoint 0 to 1 and from keypoint 2 to 4.
Returns:
A list of [1, H, 2 * W, C] uint8 tensor. The subimage on the left
corresponds to detections, while the subimage on the right corresponds to
groundtruth.
"""
detection_fields = fields.DetectionResultFields()
input_data_fields = fields.InputDataFields()
images_with_detections_list = []
# Add the batch dimension if the eval_dict is for single example.
if len(eval_dict[detection_fields.detection_classes].shape) == 1:
for key in eval_dict:
if (key != input_data_fields.original_image and
key != input_data_fields.image_additional_channels):
eval_dict[key] = tf.expand_dims(eval_dict[key], 0)
num_gt_boxes = [-1] * eval_dict[input_data_fields.original_image].shape[0]
if input_data_fields.num_groundtruth_boxes in eval_dict:
num_gt_boxes = tf.cast(eval_dict[input_data_fields.num_groundtruth_boxes],
tf.int32)
for indx in range(eval_dict[input_data_fields.original_image].shape[0]):
instance_masks = None
if detection_fields.detection_masks in eval_dict:
instance_masks = tf.cast(
tf.expand_dims(
eval_dict[detection_fields.detection_masks][indx], axis=0),
tf.uint8)
keypoints = None
keypoint_scores = None
if detection_fields.detection_keypoints in eval_dict:
keypoints = tf.expand_dims(
eval_dict[detection_fields.detection_keypoints][indx], axis=0)
if detection_fields.detection_keypoint_scores in eval_dict:
keypoint_scores = tf.expand_dims(
eval_dict[detection_fields.detection_keypoint_scores][indx], axis=0)
else:
keypoint_scores = tf.expand_dims(tf.cast(
keypoint_ops.set_keypoint_visibilities(
eval_dict[detection_fields.detection_keypoints][indx]),
dtype=tf.float32), axis=0)
groundtruth_instance_masks = None
if input_data_fields.groundtruth_instance_masks in eval_dict:
groundtruth_instance_masks = tf.cast(
tf.expand_dims(
eval_dict[input_data_fields.groundtruth_instance_masks][indx],
axis=0), tf.uint8)
groundtruth_keypoints = None
groundtruth_keypoint_scores = None
gt_kpt_vis_fld = input_data_fields.groundtruth_keypoint_visibilities
if input_data_fields.groundtruth_keypoints in eval_dict:
groundtruth_keypoints = tf.expand_dims(
eval_dict[input_data_fields.groundtruth_keypoints][indx], axis=0)
if gt_kpt_vis_fld in eval_dict:
groundtruth_keypoint_scores = tf.expand_dims(
tf.cast(eval_dict[gt_kpt_vis_fld][indx], dtype=tf.float32), axis=0)
else:
groundtruth_keypoint_scores = tf.expand_dims(tf.cast(
keypoint_ops.set_keypoint_visibilities(
eval_dict[input_data_fields.groundtruth_keypoints][indx]),
dtype=tf.float32), axis=0)
images_with_detections = draw_bounding_boxes_on_image_tensors(
tf.expand_dims(
eval_dict[input_data_fields.original_image][indx], axis=0),
tf.expand_dims(
eval_dict[detection_fields.detection_boxes][indx], axis=0),
tf.expand_dims(
eval_dict[detection_fields.detection_classes][indx], axis=0),
tf.expand_dims(
eval_dict[detection_fields.detection_scores][indx], axis=0),
category_index,
original_image_spatial_shape=tf.expand_dims(
eval_dict[input_data_fields.original_image_spatial_shape][indx],
axis=0),
true_image_shape=tf.expand_dims(
eval_dict[input_data_fields.true_image_shape][indx], axis=0),
instance_masks=instance_masks,
keypoints=keypoints,
keypoint_scores=keypoint_scores,
keypoint_edges=keypoint_edges,
max_boxes_to_draw=max_boxes_to_draw,
min_score_thresh=min_score_thresh,
use_normalized_coordinates=use_normalized_coordinates)
num_gt_boxes_i = num_gt_boxes[indx]
images_with_groundtruth = draw_bounding_boxes_on_image_tensors(
tf.expand_dims(
eval_dict[input_data_fields.original_image][indx],
axis=0),
tf.expand_dims(
eval_dict[input_data_fields.groundtruth_boxes][indx]
[:num_gt_boxes_i],
axis=0),
tf.expand_dims(
eval_dict[input_data_fields.groundtruth_classes][indx]
[:num_gt_boxes_i],
axis=0),
tf.expand_dims(
tf.ones_like(
eval_dict[input_data_fields.groundtruth_classes][indx]
[:num_gt_boxes_i],
dtype=tf.float32),
axis=0),
category_index,
original_image_spatial_shape=tf.expand_dims(
eval_dict[input_data_fields.original_image_spatial_shape][indx],
axis=0),
true_image_shape=tf.expand_dims(
eval_dict[input_data_fields.true_image_shape][indx], axis=0),
instance_masks=groundtruth_instance_masks,
keypoints=groundtruth_keypoints,
keypoint_scores=groundtruth_keypoint_scores,
keypoint_edges=keypoint_edges,
max_boxes_to_draw=None,
min_score_thresh=0.0,
use_normalized_coordinates=use_normalized_coordinates)
images_to_visualize = tf.concat([images_with_detections,
images_with_groundtruth], axis=2)
if input_data_fields.image_additional_channels in eval_dict:
images_with_additional_channels_groundtruth = (
draw_bounding_boxes_on_image_tensors(
tf.expand_dims(
eval_dict[input_data_fields.image_additional_channels][indx],
axis=0),
tf.expand_dims(
eval_dict[input_data_fields.groundtruth_boxes][indx]
[:num_gt_boxes_i],
axis=0),
tf.expand_dims(
eval_dict[input_data_fields.groundtruth_classes][indx]
[:num_gt_boxes_i],
axis=0),
tf.expand_dims(
tf.ones_like(
eval_dict[input_data_fields.groundtruth_classes][indx]
[num_gt_boxes_i],
dtype=tf.float32),
axis=0),
category_index,
original_image_spatial_shape=tf.expand_dims(
eval_dict[input_data_fields.original_image_spatial_shape]
[indx],
axis=0),
true_image_shape=tf.expand_dims(
eval_dict[input_data_fields.true_image_shape][indx], axis=0),
instance_masks=groundtruth_instance_masks,
keypoints=None,
keypoint_edges=None,
max_boxes_to_draw=None,
min_score_thresh=0.0,
use_normalized_coordinates=use_normalized_coordinates))
images_to_visualize = tf.concat(
[images_to_visualize, images_with_additional_channels_groundtruth],
axis=2)
images_with_detections_list.append(images_to_visualize)
return images_with_detections_list
def draw_densepose_visualizations(eval_dict,
max_boxes_to_draw=20,
min_score_thresh=0.2,
num_parts=24,
dp_coord_to_visualize=0):
"""Draws DensePose visualizations.
Args:
eval_dict: The evaluation dictionary returned by
eval_util.result_dict_for_batched_example().
max_boxes_to_draw: The maximum number of boxes to draw for detections.
min_score_thresh: The minimum score threshold for showing detections.
num_parts: The number of different densepose parts.
dp_coord_to_visualize: Whether to visualize v-coordinates (0) or
u-coordinates (0) overlaid on the person masks.
Returns:
A list of [1, H, W, C] uint8 tensor, each element corresponding to an image
in the batch.
Raises:
ValueError: If `dp_coord_to_visualize` is not 0 or 1.
"""
if dp_coord_to_visualize not in (0, 1):
raise ValueError('`dp_coord_to_visualize` must be either 0 for v '
'coordinates), or 1 for u coordinates, but instead got '
'{}'.format(dp_coord_to_visualize))
detection_fields = fields.DetectionResultFields()
input_data_fields = fields.InputDataFields()
if detection_fields.detection_masks not in eval_dict:
raise ValueError('Expected `detection_masks` in `eval_dict`.')
if detection_fields.detection_surface_coords not in eval_dict:
raise ValueError('Expected `detection_surface_coords` in `eval_dict`.')
images_with_detections_list = []
for indx in range(eval_dict[input_data_fields.original_image].shape[0]):
# Note that detection masks have already been resized to the original image
# shapes, but `original_image` has not.
# TODO(ronnyvotel): Consider resizing `original_image` in
# eval_util.result_dict_for_batched_example().
true_shape = eval_dict[input_data_fields.true_image_shape][indx]
original_shape = eval_dict[
input_data_fields.original_image_spatial_shape][indx]
image = eval_dict[input_data_fields.original_image][indx]
image = shape_utils.pad_or_clip_nd(image, [true_shape[0], true_shape[1], 3])
image = _resize_original_image(image, original_shape)
scores = eval_dict[detection_fields.detection_scores][indx]
detection_masks = eval_dict[detection_fields.detection_masks][indx]
surface_coords = eval_dict[detection_fields.detection_surface_coords][indx]
def draw_densepose_py_func(image, detection_masks, surface_coords, scores):
"""Overlays part masks and surface coords on original images."""
surface_coord_image = np.copy(image)
for i, (score, surface_coord, mask) in enumerate(
zip(scores, surface_coords, detection_masks)):
if i == max_boxes_to_draw:
break
if score > min_score_thresh:
draw_part_mask_on_image_array(image, mask, num_parts=num_parts)
draw_float_channel_on_image_array(
surface_coord_image, surface_coord[:, :, dp_coord_to_visualize],
mask)
return np.concatenate([image, surface_coord_image], axis=1)
image_with_densepose = tf.py_func(
draw_densepose_py_func,
[image, detection_masks, surface_coords, scores],
tf.uint8)
images_with_detections_list.append(
image_with_densepose[tf.newaxis, :, :, :])
return images_with_detections_list
def draw_keypoints_on_image_array(image,
keypoints,
keypoint_scores=None,
min_score_thresh=0.5,
color='red',
radius=2,
use_normalized_coordinates=True,
keypoint_edges=None,
keypoint_edge_color='green',
keypoint_edge_width=2):
"""Draws keypoints on an image (numpy array).
Args:
image: a numpy array with shape [height, width, 3].
keypoints: a numpy array with shape [num_keypoints, 2].
keypoint_scores: a numpy array with shape [num_keypoints]. If provided, only
those keypoints with a score above score_threshold will be visualized.
min_score_thresh: A scalar indicating the minimum keypoint score required
for a keypoint to be visualized. Note that keypoint_scores must be
provided for this threshold to take effect.
color: color to draw the keypoints with. Default is red.
radius: keypoint radius. Default value is 2.
use_normalized_coordinates: if True (default), treat keypoint values as
relative to the image. Otherwise treat them as absolute.
keypoint_edges: A list of tuples with keypoint indices that specify which
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
edges from keypoint 0 to 1 and from keypoint 2 to 4.
keypoint_edge_color: color to draw the keypoint edges with. Default is red.
keypoint_edge_width: width of the edges drawn between keypoints. Default
value is 2.
"""
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
draw_keypoints_on_image(image_pil,
keypoints,
keypoint_scores=keypoint_scores,
min_score_thresh=min_score_thresh,
color=color,
radius=radius,
use_normalized_coordinates=use_normalized_coordinates,
keypoint_edges=keypoint_edges,
keypoint_edge_color=keypoint_edge_color,
keypoint_edge_width=keypoint_edge_width)
np.copyto(image, np.array(image_pil))
def draw_keypoints_on_image(image,
keypoints,
keypoint_scores=None,
min_score_thresh=0.5,
color='red',
radius=2,
use_normalized_coordinates=True,
keypoint_edges=None,
keypoint_edge_color='green',
keypoint_edge_width=2):
"""Draws keypoints on an image.
Args:
image: a PIL.Image object.
keypoints: a numpy array with shape [num_keypoints, 2].
keypoint_scores: a numpy array with shape [num_keypoints].
min_score_thresh: a score threshold for visualizing keypoints. Only used if
keypoint_scores is provided.
color: color to draw the keypoints with. Default is red.
radius: keypoint radius. Default value is 2.
use_normalized_coordinates: if True (default), treat keypoint values as
relative to the image. Otherwise treat them as absolute.
keypoint_edges: A list of tuples with keypoint indices that specify which
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
edges from keypoint 0 to 1 and from keypoint 2 to 4.
keypoint_edge_color: color to draw the keypoint edges with. Default is red.
keypoint_edge_width: width of the edges drawn between keypoints. Default
value is 2.
"""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
keypoints = np.array(keypoints)
keypoints_x = [k[1] for k in keypoints]
keypoints_y = [k[0] for k in keypoints]
if use_normalized_coordinates:
keypoints_x = tuple([im_width * x for x in keypoints_x])
keypoints_y = tuple([im_height * y for y in keypoints_y])
if keypoint_scores is not None:
keypoint_scores = np.array(keypoint_scores)
valid_kpt = np.greater(keypoint_scores, min_score_thresh)
else:
valid_kpt = np.where(np.any(np.isnan(keypoints), axis=1),
np.zeros_like(keypoints[:, 0]),
np.ones_like(keypoints[:, 0]))
valid_kpt = [v for v in valid_kpt]
for keypoint_x, keypoint_y, valid in zip(keypoints_x, keypoints_y, valid_kpt):
if valid:
draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
(keypoint_x + radius, keypoint_y + radius)],
outline=color, fill=color)
if keypoint_edges is not None:
for keypoint_start, keypoint_end in keypoint_edges:
if (keypoint_start < 0 or keypoint_start >= len(keypoints) or
keypoint_end < 0 or keypoint_end >= len(keypoints)):
continue
if not (valid_kpt[keypoint_start] and valid_kpt[keypoint_end]):
continue
edge_coordinates = [
keypoints_x[keypoint_start], keypoints_y[keypoint_start],
keypoints_x[keypoint_end], keypoints_y[keypoint_end]
]
draw.line(
edge_coordinates, fill=keypoint_edge_color, width=keypoint_edge_width)
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
"""Draws mask on an image.
Args:
image: uint8 numpy array with shape (img_height, img_height, 3)
mask: a uint8 numpy array of shape (img_height, img_height) with
values between either 0 or 1.
color: color to draw the keypoints with. Default is red.
alpha: transparency value between 0 and 1. (default: 0.4)
Raises:
ValueError: On incorrect data type for image or masks.
"""
if image.dtype != np.uint8:
raise ValueError('`image` not of type np.uint8')
if mask.dtype != np.uint8:
raise ValueError('`mask` not of type np.uint8')
if image.shape[:2] != mask.shape:
raise ValueError('The image has spatial dimensions %s but the mask has '
'dimensions %s' % (image.shape[:2], mask.shape))
rgb = ImageColor.getrgb(color)
pil_image = Image.fromarray(image)
solid_color = np.expand_dims(
np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
pil_mask = Image.fromarray(np.uint8(255.0*alpha*(mask > 0))).convert('L')
pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
np.copyto(image, np.array(pil_image.convert('RGB')))
def draw_part_mask_on_image_array(image, mask, alpha=0.4, num_parts=24):
"""Draws part mask on an image.
Args:
image: uint8 numpy array with shape (img_height, img_height, 3)
mask: a uint8 numpy array of shape (img_height, img_height) with
1-indexed parts (0 for background).
alpha: transparency value between 0 and 1 (default: 0.4)
num_parts: the maximum number of parts that may exist in the image (default
24 for DensePose).
Raises:
ValueError: On incorrect data type for image or masks.
"""
if image.dtype != np.uint8:
raise ValueError('`image` not of type np.uint8')
if mask.dtype != np.uint8:
raise ValueError('`mask` not of type np.uint8')
if image.shape[:2] != mask.shape:
raise ValueError('The image has spatial dimensions %s but the mask has '
'dimensions %s' % (image.shape[:2], mask.shape))
pil_image = Image.fromarray(image)
part_colors = np.zeros_like(image)
mask_1_channel = mask[:, :, np.newaxis]
for i, color in enumerate(STANDARD_COLORS[:num_parts]):
rgb = np.array(ImageColor.getrgb(color), dtype=np.uint8)
part_colors += (mask_1_channel == i + 1) * rgb[np.newaxis, np.newaxis, :]
pil_part_colors = Image.fromarray(np.uint8(part_colors)).convert('RGBA')
pil_mask = Image.fromarray(np.uint8(255.0 * alpha * (mask > 0))).convert('L')
pil_image = Image.composite(pil_part_colors, pil_image, pil_mask)
np.copyto(image, np.array(pil_image.convert('RGB')))
def draw_float_channel_on_image_array(image, channel, mask, alpha=0.9,
cmap='YlGn'):
"""Draws a floating point channel on an image array.
Args:
image: uint8 numpy array with shape (img_height, img_height, 3)
channel: float32 numpy array with shape (img_height, img_height). The values
should be in the range [0, 1], and will be mapped to colors using the
provided colormap `cmap` argument.
mask: a uint8 numpy array of shape (img_height, img_height) with
1-indexed parts (0 for background).
alpha: transparency value between 0 and 1 (default: 0.9)
cmap: string with the colormap to use.
Raises:
ValueError: On incorrect data type for image or masks.
"""
if image.dtype != np.uint8:
raise ValueError('`image` not of type np.uint8')
if channel.dtype != np.float32:
raise ValueError('`channel` not of type np.float32')
if mask.dtype != np.uint8:
raise ValueError('`mask` not of type np.uint8')
if image.shape[:2] != channel.shape:
raise ValueError('The image has spatial dimensions %s but the channel has '
'dimensions %s' % (image.shape[:2], channel.shape))
if image.shape[:2] != mask.shape:
raise ValueError('The image has spatial dimensions %s but the mask has '
'dimensions %s' % (image.shape[:2], mask.shape))
cm = plt.get_cmap(cmap)
pil_image = Image.fromarray(image)
colored_channel = cm(channel)[:, :, :3]
pil_colored_channel = Image.fromarray(
np.uint8(colored_channel * 255)).convert('RGBA')
pil_mask = Image.fromarray(np.uint8(255.0 * alpha * (mask > 0))).convert('L')
pil_image = Image.composite(pil_colored_channel, pil_image, pil_mask)
np.copyto(image, np.array(pil_image.convert('RGB')))
def visualize_boxes_and_labels_on_image_array(
image,
boxes,
classes,
scores,
category_index,
instance_masks=None,
instance_boundaries=None,
keypoints=None,
keypoint_scores=None,
keypoint_edges=None,
track_ids=None,
use_normalized_coordinates=False,
max_boxes_to_draw=20,
min_score_thresh=.5,
agnostic_mode=False,
line_thickness=4,
mask_alpha=.4,
groundtruth_box_visualization_color='black',
skip_boxes=False,
skip_scores=False,
skip_labels=False,
skip_track_ids=False):
"""Overlay labeled boxes on an image with formatted scores and label names.
This function groups boxes that correspond to the same location
and creates a display string for each detection and overlays these
on the image. Note that this function modifies the image in place, and returns
that same image.
Args:
image: uint8 numpy array with shape (img_height, img_width, 3)
boxes: a numpy array of shape [N, 4]
classes: a numpy array of shape [N]. Note that class indices are 1-based,
and match the keys in the label map.
scores: a numpy array of shape [N] or None. If scores=None, then
this function assumes that the boxes to be plotted are groundtruth
boxes and plot all boxes as black with no classes or scores.
category_index: a dict containing category dictionaries (each holding
category index `id` and category name `name`) keyed by category indices.
instance_masks: a uint8 numpy array of shape [N, image_height, image_width],
can be None.
instance_boundaries: a numpy array of shape [N, image_height, image_width]
with values ranging between 0 and 1, can be None.
keypoints: a numpy array of shape [N, num_keypoints, 2], can
be None.
keypoint_scores: a numpy array of shape [N, num_keypoints], can be None.
keypoint_edges: A list of tuples with keypoint indices that specify which
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
edges from keypoint 0 to 1 and from keypoint 2 to 4.
track_ids: a numpy array of shape [N] with unique track ids. If provided,
color-coding of boxes will be determined by these ids, and not the class
indices.
use_normalized_coordinates: whether boxes is to be interpreted as
normalized coordinates or not.
max_boxes_to_draw: maximum number of boxes to visualize. If None, draw
all boxes.
min_score_thresh: minimum score threshold for a box or keypoint to be
visualized.
agnostic_mode: boolean (default: False) controlling whether to evaluate in
class-agnostic mode or not. This mode will display scores but ignore
classes.
line_thickness: integer (default: 4) controlling line width of the boxes.
mask_alpha: transparency value between 0 and 1 (default: 0.4).
groundtruth_box_visualization_color: box color for visualizing groundtruth
boxes
skip_boxes: whether to skip the drawing of bounding boxes.
skip_scores: whether to skip score when drawing a single detection
skip_labels: whether to skip label when drawing a single detection
skip_track_ids: whether to skip track id when drawing a single detection
Returns:
uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
"""
# Create a display string (and color) for every box location, group any boxes
# that correspond to the same location.
box_to_display_str_map = collections.defaultdict(list)
box_to_color_map = collections.defaultdict(str)
box_to_instance_masks_map = {}
box_to_instance_boundaries_map = {}
box_to_keypoints_map = collections.defaultdict(list)
box_to_keypoint_scores_map = collections.defaultdict(list)
box_to_track_ids_map = {}
if not max_boxes_to_draw:
max_boxes_to_draw = boxes.shape[0]
for i in range(boxes.shape[0]):
if max_boxes_to_draw == len(box_to_color_map):
break
if scores is None or scores[i] > min_score_thresh:
box = tuple(boxes[i].tolist())
if instance_masks is not None:
box_to_instance_masks_map[box] = instance_masks[i]
if instance_boundaries is not None:
box_to_instance_boundaries_map[box] = instance_boundaries[i]
if keypoints is not None:
box_to_keypoints_map[box].extend(keypoints[i])
if keypoint_scores is not None:
box_to_keypoint_scores_map[box].extend(keypoint_scores[i])
if track_ids is not None:
box_to_track_ids_map[box] = track_ids[i]
if scores is None:
box_to_color_map[box] = groundtruth_box_visualization_color
else:
display_str = ''
if not skip_labels:
if not agnostic_mode:
if classes[i] in six.viewkeys(category_index):
class_name = category_index[classes[i]]['name']
else:
class_name = 'N/A'
display_str = str(class_name)
if not skip_scores:
if not display_str:
display_str = '{}%'.format(round(100*scores[i]))
else:
display_str = '{}: {}%'.format(display_str, round(100*scores[i]))
if not skip_track_ids and track_ids is not None:
if not display_str:
display_str = 'ID {}'.format(track_ids[i])
else:
display_str = '{}: ID {}'.format(display_str, track_ids[i])
box_to_display_str_map[box].append(display_str)
if agnostic_mode:
box_to_color_map[box] = 'DarkOrange'
elif track_ids is not None:
prime_multipler = _get_multiplier_for_color_randomness()
box_to_color_map[box] = STANDARD_COLORS[
(prime_multipler * track_ids[i]) % len(STANDARD_COLORS)]
else:
box_to_color_map[box] = STANDARD_COLORS[
classes[i] % len(STANDARD_COLORS)]
# Draw all boxes onto image.
for box, color in box_to_color_map.items():
ymin, xmin, ymax, xmax = box
if instance_masks is not None:
draw_mask_on_image_array(
image,
box_to_instance_masks_map[box],
color=color,
alpha=mask_alpha
)
if instance_boundaries is not None:
draw_mask_on_image_array(
image,
box_to_instance_boundaries_map[box],
color='red',
alpha=1.0
)
draw_bounding_box_on_image_array(
image,
ymin,
xmin,
ymax,
xmax,
color=color,
thickness=0 if skip_boxes else line_thickness,
display_str_list=box_to_display_str_map[box],
use_normalized_coordinates=use_normalized_coordinates)
if keypoints is not None:
keypoint_scores_for_box = None
if box_to_keypoint_scores_map:
keypoint_scores_for_box = box_to_keypoint_scores_map[box]
draw_keypoints_on_image_array(
image,
box_to_keypoints_map[box],
keypoint_scores_for_box,
min_score_thresh=min_score_thresh,
color=color,
radius=line_thickness / 2,
use_normalized_coordinates=use_normalized_coordinates,
keypoint_edges=keypoint_edges,
keypoint_edge_color=color,
keypoint_edge_width=line_thickness // 2)
return image
def add_cdf_image_summary(values, name):
"""Adds a tf.summary.image for a CDF plot of the values.
Normalizes `values` such that they sum to 1, plots the cumulative distribution
function and creates a tf image summary.
Args:
values: a 1-D float32 tensor containing the values.
name: name for the image summary.
"""
def cdf_plot(values):
"""Numpy function to plot CDF."""
normalized_values = values / np.sum(values)
sorted_values = np.sort(normalized_values)
cumulative_values = np.cumsum(sorted_values)
fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32)
/ cumulative_values.size)
fig = plt.figure(frameon=False)
ax = fig.add_subplot('111')
ax.plot(fraction_of_examples, cumulative_values)
ax.set_ylabel('cumulative normalized values')
ax.set_xlabel('fraction of examples')
fig.canvas.draw()
width, height = fig.get_size_inches() * fig.get_dpi()
image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(
1, int(height), int(width), 3)
return image
cdf_plot = tf.py_func(cdf_plot, [values], tf.uint8)
tf.summary.image(name, cdf_plot)
def add_hist_image_summary(values, bins, name):
"""Adds a tf.summary.image for a histogram plot of the values.
Plots the histogram of values and creates a tf image summary.
Args:
values: a 1-D float32 tensor containing the values.
bins: bin edges which will be directly passed to np.histogram.
name: name for the image summary.
"""
def hist_plot(values, bins):
"""Numpy function to plot hist."""
fig = plt.figure(frameon=False)
ax = fig.add_subplot('111')
y, x = np.histogram(values, bins=bins)
ax.plot(x[:-1], y)
ax.set_ylabel('count')
ax.set_xlabel('value')
fig.canvas.draw()
width, height = fig.get_size_inches() * fig.get_dpi()
image = np.fromstring(
fig.canvas.tostring_rgb(), dtype='uint8').reshape(
1, int(height), int(width), 3)
return image
hist_plot = tf.py_func(hist_plot, [values, bins], tf.uint8)
tf.summary.image(name, hist_plot)
class EvalMetricOpsVisualization(six.with_metaclass(abc.ABCMeta, object)):
"""Abstract base class responsible for visualizations during evaluation.
Currently, summary images are not run during evaluation. One way to produce
evaluation images in Tensorboard is to provide tf.summary.image strings as
`value_ops` in tf.estimator.EstimatorSpec's `eval_metric_ops`. This class is
responsible for accruing images (with overlaid detections and groundtruth)
and returning a dictionary that can be passed to `eval_metric_ops`.
"""
def __init__(self,
category_index,
max_examples_to_draw=5,
max_boxes_to_draw=20,
min_score_thresh=0.2,
use_normalized_coordinates=True,
summary_name_prefix='evaluation_image',
keypoint_edges=None):
"""Creates an EvalMetricOpsVisualization.
Args:
category_index: A category index (dictionary) produced from a labelmap.
max_examples_to_draw: The maximum number of example summaries to produce.
max_boxes_to_draw: The maximum number of boxes to draw for detections.
min_score_thresh: The minimum score threshold for showing detections.
use_normalized_coordinates: Whether to assume boxes and keypoints are in
normalized coordinates (as opposed to absolute coordinates).
Default is True.
summary_name_prefix: A string prefix for each image summary.
keypoint_edges: A list of tuples with keypoint indices that specify which
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
edges from keypoint 0 to 1 and from keypoint 2 to 4.
"""
self._category_index = category_index
self._max_examples_to_draw = max_examples_to_draw
self._max_boxes_to_draw = max_boxes_to_draw
self._min_score_thresh = min_score_thresh
self._use_normalized_coordinates = use_normalized_coordinates
self._summary_name_prefix = summary_name_prefix
self._keypoint_edges = keypoint_edges
self._images = []
def clear(self):
self._images = []
def add_images(self, images):
"""Store a list of images, each with shape [1, H, W, C]."""
if len(self._images) >= self._max_examples_to_draw:
return
# Store images and clip list if necessary.
self._images.extend(images)
if len(self._images) > self._max_examples_to_draw:
self._images[self._max_examples_to_draw:] = []
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns metric ops for use in tf.estimator.EstimatorSpec.
Args:
eval_dict: A dictionary that holds an image, groundtruth, and detections
for a batched example. Note that, we use only the first example for
visualization. See eval_util.result_dict_for_batched_example() for a
convenient method for constructing such a dictionary. The dictionary
contains
fields.InputDataFields.original_image: [batch_size, H, W, 3] image.
fields.InputDataFields.original_image_spatial_shape: [batch_size, 2]
tensor containing the size of the original image.
fields.InputDataFields.true_image_shape: [batch_size, 3]
tensor containing the spatial size of the upadded original image.
fields.InputDataFields.groundtruth_boxes - [batch_size, num_boxes, 4]
float32 tensor with groundtruth boxes in range [0.0, 1.0].
fields.InputDataFields.groundtruth_classes - [batch_size, num_boxes]
int64 tensor with 1-indexed groundtruth classes.
fields.InputDataFields.groundtruth_instance_masks - (optional)
[batch_size, num_boxes, H, W] int64 tensor with instance masks.
fields.InputDataFields.groundtruth_keypoints - (optional)
[batch_size, num_boxes, num_keypoints, 2] float32 tensor with
keypoint coordinates in format [y, x].
fields.InputDataFields.groundtruth_keypoint_visibilities - (optional)
[batch_size, num_boxes, num_keypoints] bool tensor with
keypoint visibilities.
fields.DetectionResultFields.detection_boxes - [batch_size,
max_num_boxes, 4] float32 tensor with detection boxes in range [0.0,
1.0].
fields.DetectionResultFields.detection_classes - [batch_size,
max_num_boxes] int64 tensor with 1-indexed detection classes.
fields.DetectionResultFields.detection_scores - [batch_size,
max_num_boxes] float32 tensor with detection scores.
fields.DetectionResultFields.detection_masks - (optional) [batch_size,
max_num_boxes, H, W] float32 tensor of binarized masks.
fields.DetectionResultFields.detection_keypoints - (optional)
[batch_size, max_num_boxes, num_keypoints, 2] float32 tensor with
keypoints.
fields.DetectionResultFields.detection_keypoint_scores - (optional)
[batch_size, max_num_boxes, num_keypoints] float32 tensor with
keypoints scores.
Returns:
A dictionary of image summary names to tuple of (value_op, update_op). The
`update_op` is the same for all items in the dictionary, and is
responsible for saving a single side-by-side image with detections and
groundtruth. Each `value_op` holds the tf.summary.image string for a given
image.
"""
if self._max_examples_to_draw == 0:
return {}
images = self.images_from_evaluation_dict(eval_dict)
def get_images():
"""Returns a list of images, padded to self._max_images_to_draw."""
images = self._images
while len(images) < self._max_examples_to_draw:
images.append(np.array(0, dtype=np.uint8))
self.clear()
return images
def image_summary_or_default_string(summary_name, image):
"""Returns image summaries for non-padded elements."""
return tf.cond(
tf.equal(tf.size(tf.shape(image)), 4),
lambda: tf.summary.image(summary_name, image),
lambda: tf.constant(''))
if tf.executing_eagerly():
update_op = self.add_images([[images[0]]])
image_tensors = get_images()
else:
update_op = tf.py_func(self.add_images, [[images[0]]], [])
image_tensors = tf.py_func(
get_images, [], [tf.uint8] * self._max_examples_to_draw)
eval_metric_ops = {}
for i, image in enumerate(image_tensors):
summary_name = self._summary_name_prefix + '/' + str(i)
value_op = image_summary_or_default_string(summary_name, image)
eval_metric_ops[summary_name] = (value_op, update_op)
return eval_metric_ops
@abc.abstractmethod
def images_from_evaluation_dict(self, eval_dict):
"""Converts evaluation dictionary into a list of image tensors.
To be overridden by implementations.
Args:
eval_dict: A dictionary with all the necessary information for producing
visualizations.
Returns:
A list of [1, H, W, C] uint8 tensors.
"""
raise NotImplementedError
class VisualizeSingleFrameDetections(EvalMetricOpsVisualization):
"""Class responsible for single-frame object detection visualizations."""
def __init__(self,
category_index,
max_examples_to_draw=5,
max_boxes_to_draw=20,
min_score_thresh=0.2,
use_normalized_coordinates=True,
summary_name_prefix='Detections_Left_Groundtruth_Right',
keypoint_edges=None):
super(VisualizeSingleFrameDetections, self).__init__(
category_index=category_index,
max_examples_to_draw=max_examples_to_draw,
max_boxes_to_draw=max_boxes_to_draw,
min_score_thresh=min_score_thresh,
use_normalized_coordinates=use_normalized_coordinates,
summary_name_prefix=summary_name_prefix,
keypoint_edges=keypoint_edges)
def images_from_evaluation_dict(self, eval_dict):
return draw_side_by_side_evaluation_image(eval_dict, self._category_index,
self._max_boxes_to_draw,
self._min_score_thresh,
self._use_normalized_coordinates,
self._keypoint_edges) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/visualization_utils.py | visualization_utils.py |
"""Functions for reading and updating configuration files."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from google.protobuf import text_format
import tensorflow.compat.v1 as tf
from tensorflow.python.lib.io import file_io
from object_detection.protos import eval_pb2
from object_detection.protos import graph_rewriter_pb2
from object_detection.protos import input_reader_pb2
from object_detection.protos import model_pb2
from object_detection.protos import pipeline_pb2
from object_detection.protos import train_pb2
def get_image_resizer_config(model_config):
"""Returns the image resizer config from a model config.
Args:
model_config: A model_pb2.DetectionModel.
Returns:
An image_resizer_pb2.ImageResizer.
Raises:
ValueError: If the model type is not recognized.
"""
meta_architecture = model_config.WhichOneof("model")
meta_architecture_config = getattr(model_config, meta_architecture)
if hasattr(meta_architecture_config, "image_resizer"):
return getattr(meta_architecture_config, "image_resizer")
else:
raise ValueError("{} has no image_reszier_config".format(
meta_architecture))
def get_spatial_image_size(image_resizer_config):
"""Returns expected spatial size of the output image from a given config.
Args:
image_resizer_config: An image_resizer_pb2.ImageResizer.
Returns:
A list of two integers of the form [height, width]. `height` and `width` are
set -1 if they cannot be determined during graph construction.
Raises:
ValueError: If the model type is not recognized.
"""
if image_resizer_config.HasField("fixed_shape_resizer"):
return [
image_resizer_config.fixed_shape_resizer.height,
image_resizer_config.fixed_shape_resizer.width
]
if image_resizer_config.HasField("keep_aspect_ratio_resizer"):
if image_resizer_config.keep_aspect_ratio_resizer.pad_to_max_dimension:
return [image_resizer_config.keep_aspect_ratio_resizer.max_dimension] * 2
else:
return [-1, -1]
if image_resizer_config.HasField(
"identity_resizer") or image_resizer_config.HasField(
"conditional_shape_resizer"):
return [-1, -1]
raise ValueError("Unknown image resizer type.")
def get_max_num_context_features(model_config):
"""Returns maximum number of context features from a given config.
Args:
model_config: A model config file.
Returns:
An integer specifying the max number of context features if the model
config contains context_config, None otherwise
"""
meta_architecture = model_config.WhichOneof("model")
meta_architecture_config = getattr(model_config, meta_architecture)
if hasattr(meta_architecture_config, "context_config"):
return meta_architecture_config.context_config.max_num_context_features
def get_context_feature_length(model_config):
"""Returns context feature length from a given config.
Args:
model_config: A model config file.
Returns:
An integer specifying the fixed length of each feature in context_features.
"""
meta_architecture = model_config.WhichOneof("model")
meta_architecture_config = getattr(model_config, meta_architecture)
if hasattr(meta_architecture_config, "context_config"):
return meta_architecture_config.context_config.context_feature_length
def get_configs_from_pipeline_file(pipeline_config_path, config_override=None):
"""Reads config from a file containing pipeline_pb2.TrainEvalPipelineConfig.
Args:
pipeline_config_path: Path to pipeline_pb2.TrainEvalPipelineConfig text
proto.
config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
override pipeline_config_path.
Returns:
Dictionary of configuration objects. Keys are `model`, `train_config`,
`train_input_config`, `eval_config`, `eval_input_config`. Value are the
corresponding config objects.
"""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile(pipeline_config_path, "r") as f:
proto_str = f.read()
text_format.Merge(proto_str, pipeline_config)
if config_override:
text_format.Merge(config_override, pipeline_config)
return create_configs_from_pipeline_proto(pipeline_config)
def clear_fine_tune_checkpoint(pipeline_config_path,
new_pipeline_config_path):
"""Clears fine_tune_checkpoint and writes a new pipeline config file."""
configs = get_configs_from_pipeline_file(pipeline_config_path)
configs["train_config"].fine_tune_checkpoint = ""
configs["train_config"].load_all_detection_checkpoint_vars = False
pipeline_proto = create_pipeline_proto_from_configs(configs)
with tf.gfile.Open(new_pipeline_config_path, "wb") as f:
f.write(text_format.MessageToString(pipeline_proto))
def update_fine_tune_checkpoint_type(train_config):
"""Set `fine_tune_checkpoint_type` using `from_detection_checkpoint`.
`train_config.from_detection_checkpoint` field is deprecated. For backward
compatibility, this function sets `train_config.fine_tune_checkpoint_type`
based on `train_config.from_detection_checkpoint`.
Args:
train_config: train_pb2.TrainConfig proto object.
"""
if not train_config.fine_tune_checkpoint_type:
if train_config.from_detection_checkpoint:
train_config.fine_tune_checkpoint_type = "detection"
else:
train_config.fine_tune_checkpoint_type = "classification"
def create_configs_from_pipeline_proto(pipeline_config):
"""Creates a configs dictionary from pipeline_pb2.TrainEvalPipelineConfig.
Args:
pipeline_config: pipeline_pb2.TrainEvalPipelineConfig proto object.
Returns:
Dictionary of configuration objects. Keys are `model`, `train_config`,
`train_input_config`, `eval_config`, `eval_input_configs`. Value are
the corresponding config objects or list of config objects (only for
eval_input_configs).
"""
configs = {}
configs["model"] = pipeline_config.model
configs["train_config"] = pipeline_config.train_config
configs["train_input_config"] = pipeline_config.train_input_reader
configs["eval_config"] = pipeline_config.eval_config
configs["eval_input_configs"] = pipeline_config.eval_input_reader
# Keeps eval_input_config only for backwards compatibility. All clients should
# read eval_input_configs instead.
if configs["eval_input_configs"]:
configs["eval_input_config"] = configs["eval_input_configs"][0]
if pipeline_config.HasField("graph_rewriter"):
configs["graph_rewriter_config"] = pipeline_config.graph_rewriter
return configs
def get_graph_rewriter_config_from_file(graph_rewriter_config_file):
"""Parses config for graph rewriter.
Args:
graph_rewriter_config_file: file path to the graph rewriter config.
Returns:
graph_rewriter_pb2.GraphRewriter proto
"""
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
with tf.gfile.GFile(graph_rewriter_config_file, "r") as f:
text_format.Merge(f.read(), graph_rewriter_config)
return graph_rewriter_config
def create_pipeline_proto_from_configs(configs):
"""Creates a pipeline_pb2.TrainEvalPipelineConfig from configs dictionary.
This function performs the inverse operation of
create_configs_from_pipeline_proto().
Args:
configs: Dictionary of configs. See get_configs_from_pipeline_file().
Returns:
A fully populated pipeline_pb2.TrainEvalPipelineConfig.
"""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.CopyFrom(configs["model"])
pipeline_config.train_config.CopyFrom(configs["train_config"])
pipeline_config.train_input_reader.CopyFrom(configs["train_input_config"])
pipeline_config.eval_config.CopyFrom(configs["eval_config"])
pipeline_config.eval_input_reader.extend(configs["eval_input_configs"])
if "graph_rewriter_config" in configs:
pipeline_config.graph_rewriter.CopyFrom(configs["graph_rewriter_config"])
return pipeline_config
def save_pipeline_config(pipeline_config, directory):
"""Saves a pipeline config text file to disk.
Args:
pipeline_config: A pipeline_pb2.TrainEvalPipelineConfig.
directory: The model directory into which the pipeline config file will be
saved.
"""
if not file_io.file_exists(directory):
file_io.recursive_create_dir(directory)
pipeline_config_path = os.path.join(directory, "pipeline.config")
config_text = text_format.MessageToString(pipeline_config)
with tf.gfile.Open(pipeline_config_path, "wb") as f:
tf.logging.info("Writing pipeline config file to %s",
pipeline_config_path)
f.write(config_text)
def get_configs_from_multiple_files(model_config_path="",
train_config_path="",
train_input_config_path="",
eval_config_path="",
eval_input_config_path="",
graph_rewriter_config_path=""):
"""Reads training configuration from multiple config files.
Args:
model_config_path: Path to model_pb2.DetectionModel.
train_config_path: Path to train_pb2.TrainConfig.
train_input_config_path: Path to input_reader_pb2.InputReader.
eval_config_path: Path to eval_pb2.EvalConfig.
eval_input_config_path: Path to input_reader_pb2.InputReader.
graph_rewriter_config_path: Path to graph_rewriter_pb2.GraphRewriter.
Returns:
Dictionary of configuration objects. Keys are `model`, `train_config`,
`train_input_config`, `eval_config`, `eval_input_config`. Key/Values are
returned only for valid (non-empty) strings.
"""
configs = {}
if model_config_path:
model_config = model_pb2.DetectionModel()
with tf.gfile.GFile(model_config_path, "r") as f:
text_format.Merge(f.read(), model_config)
configs["model"] = model_config
if train_config_path:
train_config = train_pb2.TrainConfig()
with tf.gfile.GFile(train_config_path, "r") as f:
text_format.Merge(f.read(), train_config)
configs["train_config"] = train_config
if train_input_config_path:
train_input_config = input_reader_pb2.InputReader()
with tf.gfile.GFile(train_input_config_path, "r") as f:
text_format.Merge(f.read(), train_input_config)
configs["train_input_config"] = train_input_config
if eval_config_path:
eval_config = eval_pb2.EvalConfig()
with tf.gfile.GFile(eval_config_path, "r") as f:
text_format.Merge(f.read(), eval_config)
configs["eval_config"] = eval_config
if eval_input_config_path:
eval_input_config = input_reader_pb2.InputReader()
with tf.gfile.GFile(eval_input_config_path, "r") as f:
text_format.Merge(f.read(), eval_input_config)
configs["eval_input_configs"] = [eval_input_config]
if graph_rewriter_config_path:
configs["graph_rewriter_config"] = get_graph_rewriter_config_from_file(
graph_rewriter_config_path)
return configs
def get_number_of_classes(model_config):
"""Returns the number of classes for a detection model.
Args:
model_config: A model_pb2.DetectionModel.
Returns:
Number of classes.
Raises:
ValueError: If the model type is not recognized.
"""
meta_architecture = model_config.WhichOneof("model")
meta_architecture_config = getattr(model_config, meta_architecture)
if hasattr(meta_architecture_config, "num_classes"):
return meta_architecture_config.num_classes
else:
raise ValueError("{} does not have num_classes.".format(meta_architecture))
def get_optimizer_type(train_config):
"""Returns the optimizer type for training.
Args:
train_config: A train_pb2.TrainConfig.
Returns:
The type of the optimizer
"""
return train_config.optimizer.WhichOneof("optimizer")
def get_learning_rate_type(optimizer_config):
"""Returns the learning rate type for training.
Args:
optimizer_config: An optimizer_pb2.Optimizer.
Returns:
The type of the learning rate.
"""
return optimizer_config.learning_rate.WhichOneof("learning_rate")
def _is_generic_key(key):
"""Determines whether the key starts with a generic config dictionary key."""
for prefix in [
"graph_rewriter_config",
"model",
"train_input_config",
"train_config",
"eval_config"]:
if key.startswith(prefix + "."):
return True
return False
def _check_and_convert_legacy_input_config_key(key):
"""Checks key and converts legacy input config update to specific update.
Args:
key: string indicates the target of update operation.
Returns:
is_valid_input_config_key: A boolean indicating whether the input key is to
update input config(s).
key_name: 'eval_input_configs' or 'train_input_config' string if
is_valid_input_config_key is true. None if is_valid_input_config_key is
false.
input_name: always returns None since legacy input config key never
specifies the target input config. Keeping this output only to match the
output form defined for input config update.
field_name: the field name in input config. `key` itself if
is_valid_input_config_key is false.
"""
key_name = None
input_name = None
field_name = key
is_valid_input_config_key = True
if field_name == "train_shuffle":
key_name = "train_input_config"
field_name = "shuffle"
elif field_name == "eval_shuffle":
key_name = "eval_input_configs"
field_name = "shuffle"
elif field_name == "train_input_path":
key_name = "train_input_config"
field_name = "input_path"
elif field_name == "eval_input_path":
key_name = "eval_input_configs"
field_name = "input_path"
elif field_name == "append_train_input_path":
key_name = "train_input_config"
field_name = "input_path"
elif field_name == "append_eval_input_path":
key_name = "eval_input_configs"
field_name = "input_path"
else:
is_valid_input_config_key = False
return is_valid_input_config_key, key_name, input_name, field_name
def check_and_parse_input_config_key(configs, key):
"""Checks key and returns specific fields if key is valid input config update.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
key: string indicates the target of update operation.
Returns:
is_valid_input_config_key: A boolean indicate whether the input key is to
update input config(s).
key_name: 'eval_input_configs' or 'train_input_config' string if
is_valid_input_config_key is true. None if is_valid_input_config_key is
false.
input_name: the name of the input config to be updated. None if
is_valid_input_config_key is false.
field_name: the field name in input config. `key` itself if
is_valid_input_config_key is false.
Raises:
ValueError: when the input key format doesn't match any known formats.
ValueError: if key_name doesn't match 'eval_input_configs' or
'train_input_config'.
ValueError: if input_name doesn't match any name in train or eval input
configs.
ValueError: if field_name doesn't match any supported fields.
"""
key_name = None
input_name = None
field_name = None
fields = key.split(":")
if len(fields) == 1:
field_name = key
return _check_and_convert_legacy_input_config_key(key)
elif len(fields) == 3:
key_name = fields[0]
input_name = fields[1]
field_name = fields[2]
else:
raise ValueError("Invalid key format when overriding configs.")
# Checks if key_name is valid for specific update.
if key_name not in ["eval_input_configs", "train_input_config"]:
raise ValueError("Invalid key_name when overriding input config.")
# Checks if input_name is valid for specific update. For train input config it
# should match configs[key_name].name, for eval input configs it should match
# the name field of one of the eval_input_configs.
if isinstance(configs[key_name], input_reader_pb2.InputReader):
is_valid_input_name = configs[key_name].name == input_name
else:
is_valid_input_name = input_name in [
eval_input_config.name for eval_input_config in configs[key_name]
]
if not is_valid_input_name:
raise ValueError("Invalid input_name when overriding input config.")
# Checks if field_name is valid for specific update.
if field_name not in [
"input_path", "label_map_path", "shuffle", "mask_type",
"sample_1_of_n_examples"
]:
raise ValueError("Invalid field_name when overriding input config.")
return True, key_name, input_name, field_name
def merge_external_params_with_configs(configs, hparams=None, kwargs_dict=None):
"""Updates `configs` dictionary based on supplied parameters.
This utility is for modifying specific fields in the object detection configs.
Say that one would like to experiment with different learning rates, momentum
values, or batch sizes. Rather than creating a new config text file for each
experiment, one can use a single base config file, and update particular
values.
There are two types of field overrides:
1. Strategy-based overrides, which update multiple relevant configuration
options. For example, updating `learning_rate` will update both the warmup and
final learning rates.
In this case key can be one of the following formats:
1. legacy update: single string that indicates the attribute to be
updated. E.g. 'label_map_path', 'eval_input_path', 'shuffle'.
Note that when updating fields (e.g. eval_input_path, eval_shuffle) in
eval_input_configs, the override will only be applied when
eval_input_configs has exactly 1 element.
2. specific update: colon separated string that indicates which field in
which input_config to update. It should have 3 fields:
- key_name: Name of the input config we should update, either
'train_input_config' or 'eval_input_configs'
- input_name: a 'name' that can be used to identify elements, especially
when configs[key_name] is a repeated field.
- field_name: name of the field that you want to override.
For example, given configs dict as below:
configs = {
'model': {...}
'train_config': {...}
'train_input_config': {...}
'eval_config': {...}
'eval_input_configs': [{ name:"eval_coco", ...},
{ name:"eval_voc", ... }]
}
Assume we want to update the input_path of the eval_input_config
whose name is 'eval_coco'. The `key` would then be:
'eval_input_configs:eval_coco:input_path'
2. Generic key/value, which update a specific parameter based on namespaced
configuration keys. For example,
`model.ssd.loss.hard_example_miner.max_negatives_per_positive` will update the
hard example miner configuration for an SSD model config. Generic overrides
are automatically detected based on the namespaced keys.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
hparams: A `HParams`.
kwargs_dict: Extra keyword arguments that are treated the same way as
attribute/value pairs in `hparams`. Note that hyperparameters with the
same names will override keyword arguments.
Returns:
`configs` dictionary.
Raises:
ValueError: when the key string doesn't match any of its allowed formats.
"""
if kwargs_dict is None:
kwargs_dict = {}
if hparams:
kwargs_dict.update(hparams.values())
for key, value in kwargs_dict.items():
tf.logging.info("Maybe overwriting %s: %s", key, value)
# pylint: disable=g-explicit-bool-comparison
if value == "" or value is None:
continue
# pylint: enable=g-explicit-bool-comparison
elif _maybe_update_config_with_key_value(configs, key, value):
continue
elif _is_generic_key(key):
_update_generic(configs, key, value)
else:
tf.logging.info("Ignoring config override key: %s", key)
return configs
def _maybe_update_config_with_key_value(configs, key, value):
"""Checks key type and updates `configs` with the key value pair accordingly.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
key: String indicates the field(s) to be updated.
value: Value used to override existing field value.
Returns:
A boolean value that indicates whether the override succeeds.
Raises:
ValueError: when the key string doesn't match any of the formats above.
"""
is_valid_input_config_key, key_name, input_name, field_name = (
check_and_parse_input_config_key(configs, key))
if is_valid_input_config_key:
update_input_reader_config(
configs,
key_name=key_name,
input_name=input_name,
field_name=field_name,
value=value)
elif field_name == "learning_rate":
_update_initial_learning_rate(configs, value)
elif field_name == "batch_size":
_update_batch_size(configs, value)
elif field_name == "momentum_optimizer_value":
_update_momentum_optimizer_value(configs, value)
elif field_name == "classification_localization_weight_ratio":
# Localization weight is fixed to 1.0.
_update_classification_localization_weight_ratio(configs, value)
elif field_name == "focal_loss_gamma":
_update_focal_loss_gamma(configs, value)
elif field_name == "focal_loss_alpha":
_update_focal_loss_alpha(configs, value)
elif field_name == "train_steps":
_update_train_steps(configs, value)
elif field_name == "label_map_path":
_update_label_map_path(configs, value)
elif field_name == "mask_type":
_update_mask_type(configs, value)
elif field_name == "sample_1_of_n_eval_examples":
_update_all_eval_input_configs(configs, "sample_1_of_n_examples", value)
elif field_name == "eval_num_epochs":
_update_all_eval_input_configs(configs, "num_epochs", value)
elif field_name == "eval_with_moving_averages":
_update_use_moving_averages(configs, value)
elif field_name == "retain_original_images_in_eval":
_update_retain_original_images(configs["eval_config"], value)
elif field_name == "use_bfloat16":
_update_use_bfloat16(configs, value)
elif field_name == "retain_original_image_additional_channels_in_eval":
_update_retain_original_image_additional_channels(configs["eval_config"],
value)
elif field_name == "num_classes":
_update_num_classes(configs["model"], value)
elif field_name == "sample_from_datasets_weights":
_update_sample_from_datasets_weights(configs["train_input_config"], value)
elif field_name == "peak_max_pool_kernel_size":
_update_peak_max_pool_kernel_size(configs["model"], value)
elif field_name == "candidate_search_scale":
_update_candidate_search_scale(configs["model"], value)
elif field_name == "candidate_ranking_mode":
_update_candidate_ranking_mode(configs["model"], value)
elif field_name == "score_distance_offset":
_update_score_distance_offset(configs["model"], value)
elif field_name == "box_scale":
_update_box_scale(configs["model"], value)
elif field_name == "keypoint_candidate_score_threshold":
_update_keypoint_candidate_score_threshold(configs["model"], value)
elif field_name == "rescore_instances":
_update_rescore_instances(configs["model"], value)
elif field_name == "unmatched_keypoint_score":
_update_unmatched_keypoint_score(configs["model"], value)
else:
return False
return True
def _update_tf_record_input_path(input_config, input_path):
"""Updates input configuration to reflect a new input path.
The input_config object is updated in place, and hence not returned.
Args:
input_config: A input_reader_pb2.InputReader.
input_path: A path to data or list of paths.
Raises:
TypeError: if input reader type is not `tf_record_input_reader`.
"""
input_reader_type = input_config.WhichOneof("input_reader")
if input_reader_type == "tf_record_input_reader":
input_config.tf_record_input_reader.ClearField("input_path")
if isinstance(input_path, list):
input_config.tf_record_input_reader.input_path.extend(input_path)
else:
input_config.tf_record_input_reader.input_path.append(input_path)
else:
raise TypeError("Input reader type must be `tf_record_input_reader`.")
def update_input_reader_config(configs,
key_name=None,
input_name=None,
field_name=None,
value=None,
path_updater=_update_tf_record_input_path):
"""Updates specified input reader config field.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
key_name: Name of the input config we should update, either
'train_input_config' or 'eval_input_configs'
input_name: String name used to identify input config to update with. Should
be either None or value of the 'name' field in one of the input reader
configs.
field_name: Field name in input_reader_pb2.InputReader.
value: Value used to override existing field value.
path_updater: helper function used to update the input path. Only used when
field_name is "input_path".
Raises:
ValueError: when input field_name is None.
ValueError: when input_name is None and number of eval_input_readers does
not equal to 1.
"""
if isinstance(configs[key_name], input_reader_pb2.InputReader):
# Updates singular input_config object.
target_input_config = configs[key_name]
if field_name == "input_path":
path_updater(input_config=target_input_config, input_path=value)
else:
setattr(target_input_config, field_name, value)
elif input_name is None and len(configs[key_name]) == 1:
# Updates first (and the only) object of input_config list.
target_input_config = configs[key_name][0]
if field_name == "input_path":
path_updater(input_config=target_input_config, input_path=value)
else:
setattr(target_input_config, field_name, value)
elif input_name is not None and len(configs[key_name]):
# Updates input_config whose name matches input_name.
update_count = 0
for input_config in configs[key_name]:
if input_config.name == input_name:
setattr(input_config, field_name, value)
update_count = update_count + 1
if not update_count:
raise ValueError(
"Input name {} not found when overriding.".format(input_name))
elif update_count > 1:
raise ValueError("Duplicate input name found when overriding.")
else:
key_name = "None" if key_name is None else key_name
input_name = "None" if input_name is None else input_name
field_name = "None" if field_name is None else field_name
raise ValueError("Unknown input config overriding: "
"key_name:{}, input_name:{}, field_name:{}.".format(
key_name, input_name, field_name))
def _update_initial_learning_rate(configs, learning_rate):
"""Updates `configs` to reflect the new initial learning rate.
This function updates the initial learning rate. For learning rate schedules,
all other defined learning rates in the pipeline config are scaled to maintain
their same ratio with the initial learning rate.
The configs dictionary is updated in place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
learning_rate: Initial learning rate for optimizer.
Raises:
TypeError: if optimizer type is not supported, or if learning rate type is
not supported.
"""
optimizer_type = get_optimizer_type(configs["train_config"])
if optimizer_type == "rms_prop_optimizer":
optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
elif optimizer_type == "momentum_optimizer":
optimizer_config = configs["train_config"].optimizer.momentum_optimizer
elif optimizer_type == "adam_optimizer":
optimizer_config = configs["train_config"].optimizer.adam_optimizer
else:
raise TypeError("Optimizer %s is not supported." % optimizer_type)
learning_rate_type = get_learning_rate_type(optimizer_config)
if learning_rate_type == "constant_learning_rate":
constant_lr = optimizer_config.learning_rate.constant_learning_rate
constant_lr.learning_rate = learning_rate
elif learning_rate_type == "exponential_decay_learning_rate":
exponential_lr = (
optimizer_config.learning_rate.exponential_decay_learning_rate)
exponential_lr.initial_learning_rate = learning_rate
elif learning_rate_type == "manual_step_learning_rate":
manual_lr = optimizer_config.learning_rate.manual_step_learning_rate
original_learning_rate = manual_lr.initial_learning_rate
learning_rate_scaling = float(learning_rate) / original_learning_rate
manual_lr.initial_learning_rate = learning_rate
for schedule in manual_lr.schedule:
schedule.learning_rate *= learning_rate_scaling
elif learning_rate_type == "cosine_decay_learning_rate":
cosine_lr = optimizer_config.learning_rate.cosine_decay_learning_rate
learning_rate_base = cosine_lr.learning_rate_base
warmup_learning_rate = cosine_lr.warmup_learning_rate
warmup_scale_factor = warmup_learning_rate / learning_rate_base
cosine_lr.learning_rate_base = learning_rate
cosine_lr.warmup_learning_rate = warmup_scale_factor * learning_rate
else:
raise TypeError("Learning rate %s is not supported." % learning_rate_type)
def _update_batch_size(configs, batch_size):
"""Updates `configs` to reflect the new training batch size.
The configs dictionary is updated in place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
batch_size: Batch size to use for training (Ideally a power of 2). Inputs
are rounded, and capped to be 1 or greater.
"""
configs["train_config"].batch_size = max(1, int(round(batch_size)))
def _validate_message_has_field(message, field):
if not message.HasField(field):
raise ValueError("Expecting message to have field %s" % field)
def _update_generic(configs, key, value):
"""Update a pipeline configuration parameter based on a generic key/value.
Args:
configs: Dictionary of pipeline configuration protos.
key: A string key, dot-delimited to represent the argument key.
e.g. "model.ssd.train_config.batch_size"
value: A value to set the argument to. The type of the value must match the
type for the protocol buffer. Note that setting the wrong type will
result in a TypeError.
e.g. 42
Raises:
ValueError if the message key does not match the existing proto fields.
TypeError the value type doesn't match the protobuf field type.
"""
fields = key.split(".")
first_field = fields.pop(0)
last_field = fields.pop()
message = configs[first_field]
for field in fields:
_validate_message_has_field(message, field)
message = getattr(message, field)
_validate_message_has_field(message, last_field)
setattr(message, last_field, value)
def _update_momentum_optimizer_value(configs, momentum):
"""Updates `configs` to reflect the new momentum value.
Momentum is only supported for RMSPropOptimizer and MomentumOptimizer. For any
other optimizer, no changes take place. The configs dictionary is updated in
place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
momentum: New momentum value. Values are clipped at 0.0 and 1.0.
Raises:
TypeError: If the optimizer type is not `rms_prop_optimizer` or
`momentum_optimizer`.
"""
optimizer_type = get_optimizer_type(configs["train_config"])
if optimizer_type == "rms_prop_optimizer":
optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
elif optimizer_type == "momentum_optimizer":
optimizer_config = configs["train_config"].optimizer.momentum_optimizer
else:
raise TypeError("Optimizer type must be one of `rms_prop_optimizer` or "
"`momentum_optimizer`.")
optimizer_config.momentum_optimizer_value = min(max(0.0, momentum), 1.0)
def _update_classification_localization_weight_ratio(configs, ratio):
"""Updates the classification/localization weight loss ratio.
Detection models usually define a loss weight for both classification and
objectness. This function updates the weights such that the ratio between
classification weight to localization weight is the ratio provided.
Arbitrarily, localization weight is set to 1.0.
Note that in the case of Faster R-CNN, this same ratio is applied to the first
stage objectness loss weight relative to localization loss weight.
The configs dictionary is updated in place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
ratio: Desired ratio of classification (and/or objectness) loss weight to
localization loss weight.
"""
meta_architecture = configs["model"].WhichOneof("model")
if meta_architecture == "faster_rcnn":
model = configs["model"].faster_rcnn
model.first_stage_localization_loss_weight = 1.0
model.first_stage_objectness_loss_weight = ratio
model.second_stage_localization_loss_weight = 1.0
model.second_stage_classification_loss_weight = ratio
if meta_architecture == "ssd":
model = configs["model"].ssd
model.loss.localization_weight = 1.0
model.loss.classification_weight = ratio
def _get_classification_loss(model_config):
"""Returns the classification loss for a model."""
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "faster_rcnn":
model = model_config.faster_rcnn
classification_loss = model.second_stage_classification_loss
elif meta_architecture == "ssd":
model = model_config.ssd
classification_loss = model.loss.classification_loss
else:
raise TypeError("Did not recognize the model architecture.")
return classification_loss
def _update_focal_loss_gamma(configs, gamma):
"""Updates the gamma value for a sigmoid focal loss.
The configs dictionary is updated in place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
gamma: Exponent term in focal loss.
Raises:
TypeError: If the classification loss is not `weighted_sigmoid_focal`.
"""
classification_loss = _get_classification_loss(configs["model"])
classification_loss_type = classification_loss.WhichOneof(
"classification_loss")
if classification_loss_type != "weighted_sigmoid_focal":
raise TypeError("Classification loss must be `weighted_sigmoid_focal`.")
classification_loss.weighted_sigmoid_focal.gamma = gamma
def _update_focal_loss_alpha(configs, alpha):
"""Updates the alpha value for a sigmoid focal loss.
The configs dictionary is updated in place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
alpha: Class weight multiplier for sigmoid loss.
Raises:
TypeError: If the classification loss is not `weighted_sigmoid_focal`.
"""
classification_loss = _get_classification_loss(configs["model"])
classification_loss_type = classification_loss.WhichOneof(
"classification_loss")
if classification_loss_type != "weighted_sigmoid_focal":
raise TypeError("Classification loss must be `weighted_sigmoid_focal`.")
classification_loss.weighted_sigmoid_focal.alpha = alpha
def _update_train_steps(configs, train_steps):
"""Updates `configs` to reflect new number of training steps."""
configs["train_config"].num_steps = int(train_steps)
def _update_all_eval_input_configs(configs, field, value):
"""Updates the content of `field` with `value` for all eval input configs."""
for eval_input_config in configs["eval_input_configs"]:
setattr(eval_input_config, field, value)
def _update_label_map_path(configs, label_map_path):
"""Updates the label map path for both train and eval input readers.
The configs dictionary is updated in place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
label_map_path: New path to `StringIntLabelMap` pbtxt file.
"""
configs["train_input_config"].label_map_path = label_map_path
_update_all_eval_input_configs(configs, "label_map_path", label_map_path)
def _update_mask_type(configs, mask_type):
"""Updates the mask type for both train and eval input readers.
The configs dictionary is updated in place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
mask_type: A string name representing a value of
input_reader_pb2.InstanceMaskType
"""
configs["train_input_config"].mask_type = mask_type
_update_all_eval_input_configs(configs, "mask_type", mask_type)
def _update_use_moving_averages(configs, use_moving_averages):
"""Updates the eval config option to use or not use moving averages.
The configs dictionary is updated in place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
use_moving_averages: Boolean indicating whether moving average variables
should be loaded during evaluation.
"""
configs["eval_config"].use_moving_averages = use_moving_averages
def _update_retain_original_images(eval_config, retain_original_images):
"""Updates eval config with option to retain original images.
The eval_config object is updated in place, and hence not returned.
Args:
eval_config: A eval_pb2.EvalConfig.
retain_original_images: Boolean indicating whether to retain original images
in eval mode.
"""
eval_config.retain_original_images = retain_original_images
def _update_use_bfloat16(configs, use_bfloat16):
"""Updates `configs` to reflect the new setup on whether to use bfloat16.
The configs dictionary is updated in place, and hence not returned.
Args:
configs: Dictionary of configuration objects. See outputs from
get_configs_from_pipeline_file() or get_configs_from_multiple_files().
use_bfloat16: A bool, indicating whether to use bfloat16 for training.
"""
configs["train_config"].use_bfloat16 = use_bfloat16
def _update_retain_original_image_additional_channels(
eval_config,
retain_original_image_additional_channels):
"""Updates eval config to retain original image additional channels or not.
The eval_config object is updated in place, and hence not returned.
Args:
eval_config: A eval_pb2.EvalConfig.
retain_original_image_additional_channels: Boolean indicating whether to
retain original image additional channels in eval mode.
"""
eval_config.retain_original_image_additional_channels = (
retain_original_image_additional_channels)
def remove_unnecessary_ema(variables_to_restore, no_ema_collection=None):
"""Remap and Remove EMA variable that are not created during training.
ExponentialMovingAverage.variables_to_restore() returns a map of EMA names
to tf variables to restore. E.g.:
{
conv/batchnorm/gamma/ExponentialMovingAverage: conv/batchnorm/gamma,
conv_4/conv2d_params/ExponentialMovingAverage: conv_4/conv2d_params,
global_step: global_step
}
This function takes care of the extra ExponentialMovingAverage variables
that get created during eval but aren't available in the checkpoint, by
remapping the key to the variable itself, and remove the entry of its EMA from
the variables to restore. An example resulting dictionary would look like:
{
conv/batchnorm/gamma: conv/batchnorm/gamma,
conv_4/conv2d_params: conv_4/conv2d_params,
global_step: global_step
}
Args:
variables_to_restore: A dictionary created by ExponentialMovingAverage.
variables_to_restore().
no_ema_collection: A list of namescope substrings to match the variables
to eliminate EMA.
Returns:
A variables_to_restore dictionary excluding the collection of unwanted
EMA mapping.
"""
if no_ema_collection is None:
return variables_to_restore
restore_map = {}
for key in variables_to_restore:
if ("ExponentialMovingAverage" in key
and any([name in key for name in no_ema_collection])):
new_key = key.replace("/ExponentialMovingAverage", "")
else:
new_key = key
restore_map[new_key] = variables_to_restore[key]
return restore_map
def _update_num_classes(model_config, num_classes):
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "faster_rcnn":
model_config.faster_rcnn.num_classes = num_classes
if meta_architecture == "ssd":
model_config.ssd.num_classes = num_classes
def _update_sample_from_datasets_weights(input_reader_config, weights):
"""Updated sample_from_datasets_weights with overrides."""
if len(weights) != len(input_reader_config.sample_from_datasets_weights):
raise ValueError(
"sample_from_datasets_weights override has a different number of values"
" ({}) than the configured dataset weights ({})."
.format(
len(input_reader_config.sample_from_datasets_weights),
len(weights)))
del input_reader_config.sample_from_datasets_weights[:]
input_reader_config.sample_from_datasets_weights.extend(weights)
def _update_peak_max_pool_kernel_size(model_config, kernel_size):
"""Updates the max pool kernel size (NMS) for keypoints in CenterNet."""
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "center_net":
if len(model_config.center_net.keypoint_estimation_task) == 1:
kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0]
kpt_estimation_task.peak_max_pool_kernel_size = kernel_size
else:
tf.logging.warning("Ignoring config override key for "
"peak_max_pool_kernel_size since there are multiple "
"keypoint estimation tasks")
def _update_candidate_search_scale(model_config, search_scale):
"""Updates the keypoint candidate search scale in CenterNet."""
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "center_net":
if len(model_config.center_net.keypoint_estimation_task) == 1:
kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0]
kpt_estimation_task.candidate_search_scale = search_scale
else:
tf.logging.warning("Ignoring config override key for "
"candidate_search_scale since there are multiple "
"keypoint estimation tasks")
def _update_candidate_ranking_mode(model_config, mode):
"""Updates how keypoints are snapped to candidates in CenterNet."""
if mode not in ("min_distance", "score_distance_ratio"):
raise ValueError("Attempting to set the keypoint candidate ranking mode "
"to {}, but the only options are 'min_distance' and "
"'score_distance_ratio'.".format(mode))
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "center_net":
if len(model_config.center_net.keypoint_estimation_task) == 1:
kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0]
kpt_estimation_task.candidate_ranking_mode = mode
else:
tf.logging.warning("Ignoring config override key for "
"candidate_ranking_mode since there are multiple "
"keypoint estimation tasks")
def _update_score_distance_offset(model_config, offset):
"""Updates the keypoint candidate selection metric. See CenterNet proto."""
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "center_net":
if len(model_config.center_net.keypoint_estimation_task) == 1:
kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0]
kpt_estimation_task.score_distance_offset = offset
else:
tf.logging.warning("Ignoring config override key for "
"score_distance_offset since there are multiple "
"keypoint estimation tasks")
def _update_box_scale(model_config, box_scale):
"""Updates the keypoint candidate search region. See CenterNet proto."""
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "center_net":
if len(model_config.center_net.keypoint_estimation_task) == 1:
kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0]
kpt_estimation_task.box_scale = box_scale
else:
tf.logging.warning("Ignoring config override key for box_scale since "
"there are multiple keypoint estimation tasks")
def _update_keypoint_candidate_score_threshold(model_config, threshold):
"""Updates the keypoint candidate score threshold. See CenterNet proto."""
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "center_net":
if len(model_config.center_net.keypoint_estimation_task) == 1:
kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0]
kpt_estimation_task.keypoint_candidate_score_threshold = threshold
else:
tf.logging.warning("Ignoring config override key for "
"keypoint_candidate_score_threshold since there are "
"multiple keypoint estimation tasks")
def _update_rescore_instances(model_config, should_rescore):
"""Updates whether boxes should be rescored based on keypoint confidences."""
if isinstance(should_rescore, str):
should_rescore = True if should_rescore == "True" else False
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "center_net":
if len(model_config.center_net.keypoint_estimation_task) == 1:
kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0]
kpt_estimation_task.rescore_instances = should_rescore
else:
tf.logging.warning("Ignoring config override key for "
"rescore_instances since there are multiple keypoint "
"estimation tasks")
def _update_unmatched_keypoint_score(model_config, score):
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "center_net":
if len(model_config.center_net.keypoint_estimation_task) == 1:
kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0]
kpt_estimation_task.unmatched_keypoint_score = score
else:
tf.logging.warning("Ignoring config override key for "
"unmatched_keypoint_score since there are multiple "
"keypoint estimation tasks") | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/config_util.py | config_util.py |
"""Utils for colab tutorials located in object_detection/colab_tutorials/..."""
import base64
import io
import json
from typing import Dict
from typing import List
from typing import Union
import uuid
from IPython.display import display
from IPython.display import Javascript
import numpy as np
from PIL import Image
from google.colab import output
from google.colab.output import eval_js
def image_from_numpy(image):
"""Open an image at the specified path and encode it in Base64.
Args:
image: np.ndarray
Image represented as a numpy array
Returns:
An encoded Base64 representation of the image
"""
with io.BytesIO() as img_output:
Image.fromarray(image).save(img_output, format='JPEG')
data = img_output.getvalue()
data = str(base64.b64encode(data))[2:-1]
return data
def draw_bbox(image_urls, callbackId): # pylint: disable=invalid-name
"""Open the bounding box UI and send the results to a callback function.
Args:
image_urls: list[str | np.ndarray]
List of locations from where to load the images from. If a np.ndarray is
given, the array is interpretted as an image and sent to the frontend.
If a str is given, the string is interpreted as a path and is read as a
np.ndarray before being sent to the frontend.
callbackId: str
The ID for the callback function to send the bounding box results to
when the user hits submit.
"""
js = Javascript('''
async function load_image(imgs, callbackId) {
//init organizational elements
const div = document.createElement('div');
var image_cont = document.createElement('div');
var errorlog = document.createElement('div');
var crosshair_h = document.createElement('div');
crosshair_h.style.position = "absolute";
crosshair_h.style.backgroundColor = "transparent";
crosshair_h.style.width = "100%";
crosshair_h.style.height = "0px";
crosshair_h.style.zIndex = 9998;
crosshair_h.style.borderStyle = "dotted";
crosshair_h.style.borderWidth = "2px";
crosshair_h.style.borderColor = "rgba(255, 0, 0, 0.75)";
crosshair_h.style.cursor = "crosshair";
var crosshair_v = document.createElement('div');
crosshair_v.style.position = "absolute";
crosshair_v.style.backgroundColor = "transparent";
crosshair_v.style.width = "0px";
crosshair_v.style.height = "100%";
crosshair_v.style.zIndex = 9999;
crosshair_v.style.top = "0px";
crosshair_v.style.borderStyle = "dotted";
crosshair_v.style.borderWidth = "2px";
crosshair_v.style.borderColor = "rgba(255, 0, 0, 0.75)";
crosshair_v.style.cursor = "crosshair";
crosshair_v.style.marginTop = "23px";
var brdiv = document.createElement('br');
//init control elements
var next = document.createElement('button');
var prev = document.createElement('button');
var submit = document.createElement('button');
var deleteButton = document.createElement('button');
var deleteAllbutton = document.createElement('button');
//init image containers
var image = new Image();
var canvas_img = document.createElement('canvas');
var ctx = canvas_img.getContext("2d");
canvas_img.style.cursor = "crosshair";
canvas_img.setAttribute('draggable', false);
crosshair_v.setAttribute('draggable', false);
crosshair_h.setAttribute('draggable', false);
// bounding box containers
const height = 600
var allBoundingBoxes = [];
var curr_image = 0
var im_height = 0;
var im_width = 0;
//initialize bounding boxes
for (var i = 0; i < imgs.length; i++) {
allBoundingBoxes[i] = [];
}
//initialize image view
errorlog.id = 'errorlog';
image.style.display = 'block';
image.setAttribute('draggable', false);
//load the first image
img = imgs[curr_image];
image.src = "data:image/png;base64," + img;
image.onload = function() {
// normalize display height and canvas
image.height = height;
image_cont.height = canvas_img.height = image.height;
image_cont.width = canvas_img.width = image.naturalWidth;
crosshair_v.style.height = image_cont.height + "px";
crosshair_h.style.width = image_cont.width + "px";
// draw the new image
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
};
// move to next image in array
next.textContent = "next image";
next.onclick = function(){
if (curr_image < imgs.length - 1){
// clear canvas and load new image
curr_image += 1;
errorlog.innerHTML = "";
}
else{
errorlog.innerHTML = "All images completed!!";
}
resetcanvas();
}
//move forward through list of images
prev.textContent = "prev image"
prev.onclick = function(){
if (curr_image > 0){
// clear canvas and load new image
curr_image -= 1;
errorlog.innerHTML = "";
}
else{
errorlog.innerHTML = "at the beginning";
}
resetcanvas();
}
// on delete, deletes the last bounding box
deleteButton.textContent = "undo bbox";
deleteButton.onclick = function(){
boundingBoxes.pop();
ctx.clearRect(0, 0, canvas_img.width, canvas_img.height);
image.src = "data:image/png;base64," + img;
image.onload = function() {
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
boundingBoxes.map(r => {drawRect(r)});
};
}
// on all delete, deletes all of the bounding box
deleteAllbutton.textContent = "delete all"
deleteAllbutton.onclick = function(){
boundingBoxes = [];
ctx.clearRect(0, 0, canvas_img.width, canvas_img.height);
image.src = "data:image/png;base64," + img;
image.onload = function() {
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
//boundingBoxes.map(r => {drawRect(r)});
};
}
// on submit, send the boxes to display
submit.textContent = "submit";
submit.onclick = function(){
errorlog.innerHTML = "";
// send box data to callback fucntion
google.colab.kernel.invokeFunction(callbackId, [allBoundingBoxes], {});
}
// init template for annotations
const annotation = {
x: 0,
y: 0,
w: 0,
h: 0,
};
// the array of all rectangles
let boundingBoxes = allBoundingBoxes[curr_image];
// the actual rectangle, the one that is being drawn
let o = {};
// a variable to store the mouse position
let m = {},
// a variable to store the point where you begin to draw the
// rectangle
start = {};
// a boolean variable to store the drawing state
let isDrawing = false;
var elem = null;
function handleMouseDown(e) {
// on mouse click set change the cursor and start tracking the mouse position
start = oMousePos(canvas_img, e);
// configure is drawing to true
isDrawing = true;
}
function handleMouseMove(e) {
// move crosshairs, but only within the bounds of the canvas
if (document.elementsFromPoint(e.pageX, e.pageY).includes(canvas_img)) {
crosshair_h.style.top = e.pageY + "px";
crosshair_v.style.left = e.pageX + "px";
}
// move the bounding box
if(isDrawing){
m = oMousePos(canvas_img, e);
draw();
}
}
function handleMouseUp(e) {
if (isDrawing) {
// on mouse release, push a bounding box to array and draw all boxes
isDrawing = false;
const box = Object.create(annotation);
// calculate the position of the rectangle
if (o.w > 0){
box.x = o.x;
}
else{
box.x = o.x + o.w;
}
if (o.h > 0){
box.y = o.y;
}
else{
box.y = o.y + o.h;
}
box.w = Math.abs(o.w);
box.h = Math.abs(o.h);
// add the bounding box to the image
boundingBoxes.push(box);
draw();
}
}
function draw() {
o.x = (start.x)/image.width; // start position of x
o.y = (start.y)/image.height; // start position of y
o.w = (m.x - start.x)/image.width; // width
o.h = (m.y - start.y)/image.height; // height
ctx.clearRect(0, 0, canvas_img.width, canvas_img.height);
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
// draw all the rectangles saved in the rectsRy
boundingBoxes.map(r => {drawRect(r)});
// draw the actual rectangle
drawRect(o);
}
// add the handlers needed for dragging
crosshair_h.addEventListener("mousedown", handleMouseDown);
crosshair_v.addEventListener("mousedown", handleMouseDown);
document.addEventListener("mousemove", handleMouseMove);
document.addEventListener("mouseup", handleMouseUp);
function resetcanvas(){
// clear canvas
ctx.clearRect(0, 0, canvas_img.width, canvas_img.height);
img = imgs[curr_image]
image.src = "data:image/png;base64," + img;
// onload init new canvas and display image
image.onload = function() {
// normalize display height and canvas
image.height = height;
image_cont.height = canvas_img.height = image.height;
image_cont.width = canvas_img.width = image.naturalWidth;
crosshair_v.style.height = image_cont.height + "px";
crosshair_h.style.width = image_cont.width + "px";
// draw the new image
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
// draw bounding boxes
boundingBoxes = allBoundingBoxes[curr_image];
boundingBoxes.map(r => {drawRect(r)});
};
}
function drawRect(o){
// draw a predefined rectangle
ctx.strokeStyle = "red";
ctx.lineWidth = 2;
ctx.beginPath(o);
ctx.rect(o.x * image.width, o.y * image.height, o.w * image.width, o.h * image.height);
ctx.stroke();
}
// Function to detect the mouse position
function oMousePos(canvas_img, evt) {
let ClientRect = canvas_img.getBoundingClientRect();
return {
x: evt.clientX - ClientRect.left,
y: evt.clientY - ClientRect.top
};
}
//configure colab output display
google.colab.output.setIframeHeight(document.documentElement.scrollHeight, true);
//build the html document that will be seen in output
div.appendChild(document.createElement('br'))
div.appendChild(image_cont)
image_cont.appendChild(canvas_img)
image_cont.appendChild(crosshair_h)
image_cont.appendChild(crosshair_v)
div.appendChild(document.createElement('br'))
div.appendChild(errorlog)
div.appendChild(prev)
div.appendChild(next)
div.appendChild(deleteButton)
div.appendChild(deleteAllbutton)
div.appendChild(document.createElement('br'))
div.appendChild(brdiv)
div.appendChild(submit)
document.querySelector("#output-area").appendChild(div);
return
}''')
# load the images as a byte array
bytearrays = []
for image in image_urls:
if isinstance(image, np.ndarray):
bytearrays.append(image_from_numpy(image))
else:
raise TypeError('Image has unsupported type {}.'.format(type(image)))
# format arrays for input
image_data = json.dumps(bytearrays)
del bytearrays
# call java script function pass string byte array(image_data) as input
display(js)
eval_js('load_image({}, \'{}\')'.format(image_data, callbackId))
return
def annotate(imgs: List[Union[str, np.ndarray]], # pylint: disable=invalid-name
box_storage_pointer: List[np.ndarray],
callbackId: str = None):
"""Open the bounding box UI and prompt the user for input.
Args:
imgs: list[str | np.ndarray]
List of locations from where to load the images from. If a np.ndarray is
given, the array is interpretted as an image and sent to the frontend. If
a str is given, the string is interpreted as a path and is read as a
np.ndarray before being sent to the frontend.
box_storage_pointer: list[np.ndarray]
Destination list for bounding box arrays. Each array in this list
corresponds to one of the images given in imgs. The array is a
N x 4 array where N is the number of bounding boxes given by the user
for that particular image. If there are no bounding boxes for an image,
None is used instead of an empty array.
callbackId: str, optional
The ID for the callback function that communicates between the fontend
and the backend. If no ID is given, a random UUID string is used instead.
"""
# Set a random ID for the callback function
if callbackId is None:
callbackId = str(uuid.uuid1()).replace('-', '')
def dictToList(input_bbox): # pylint: disable=invalid-name
"""Convert bbox.
This function converts the dictionary from the frontend (if the format
{x, y, w, h} as shown in callbackFunction) into a list
([y_min, x_min, y_max, x_max])
Args:
input_bbox:
Returns:
A list with bbox coordinates in the form [ymin, xmin, ymax, xmax].
"""
return (input_bbox['y'], input_bbox['x'], input_bbox['y'] + input_bbox['h'],
input_bbox['x'] + input_bbox['w'])
def callbackFunction(annotations: List[List[Dict[str, float]]]): # pylint: disable=invalid-name
"""Callback function.
This is the call back function to capture the data from the frontend and
convert the data into a numpy array.
Args:
annotations: list[list[dict[str, float]]]
The input of the call back function is a list of list of objects
corresponding to the annotations. The format of annotations is shown
below
[
// stuff for image 1
[
// stuff for rect 1
{x, y, w, h},
// stuff for rect 2
{x, y, w, h},
...
],
// stuff for image 2
[
// stuff for rect 1
{x, y, w, h},
// stuff for rect 2
{x, y, w, h},
...
],
...
]
"""
# reset the boxes list
nonlocal box_storage_pointer
boxes: List[np.ndarray] = box_storage_pointer
boxes.clear()
# load the new annotations into the boxes list
for annotations_per_img in annotations:
rectangles_as_arrays = [np.clip(dictToList(annotation), 0, 1)
for annotation in annotations_per_img]
if rectangles_as_arrays:
boxes.append(np.stack(rectangles_as_arrays))
else:
boxes.append(None)
# output the annotations to the errorlog
with output.redirect_to_element('#errorlog'):
display('--boxes array populated--')
output.register_callback(callbackId, callbackFunction)
draw_bbox(imgs, callbackId) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/colab_utils.py | colab_utils.py |
"""Label map utility functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import logging
import numpy as np
from six import string_types
from six.moves import range
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from object_detection.protos import string_int_label_map_pb2
_LABEL_OFFSET = 1
def _validate_label_map(label_map):
"""Checks if a label map is valid.
Args:
label_map: StringIntLabelMap to validate.
Raises:
ValueError: if label map is invalid.
"""
for item in label_map.item:
if item.id < 0:
raise ValueError('Label map ids should be >= 0.')
if (item.id == 0 and item.name != 'background' and
item.display_name != 'background'):
raise ValueError('Label map id 0 is reserved for the background label')
def create_category_index(categories):
"""Creates dictionary of COCO compatible categories keyed by category id.
Args:
categories: a list of dicts, each of which has the following keys:
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name
e.g., 'cat', 'dog', 'pizza'.
Returns:
category_index: a dict containing the same entries as categories, but keyed
by the 'id' field of each category.
"""
category_index = {}
for cat in categories:
category_index[cat['id']] = cat
return category_index
def get_max_label_map_index(label_map):
"""Get maximum index in label map.
Args:
label_map: a StringIntLabelMapProto
Returns:
an integer
"""
return max([item.id for item in label_map.item])
def convert_label_map_to_categories(label_map,
max_num_classes,
use_display_name=True):
"""Given label map proto returns categories list compatible with eval.
This function converts label map proto and returns a list of dicts, each of
which has the following keys:
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name
e.g., 'cat', 'dog', 'pizza'.
'keypoints': (optional) a dictionary of keypoint string 'label' to integer
'id'.
We only allow class into the list if its id-label_id_offset is
between 0 (inclusive) and max_num_classes (exclusive).
If there are several items mapping to the same id in the label map,
we will only keep the first one in the categories list.
Args:
label_map: a StringIntLabelMapProto or None. If None, a default categories
list is created with max_num_classes categories.
max_num_classes: maximum number of (consecutive) label indices to include.
use_display_name: (boolean) choose whether to load 'display_name' field as
category name. If False or if the display_name field does not exist, uses
'name' field as category names instead.
Returns:
categories: a list of dictionaries representing all possible categories.
"""
categories = []
list_of_ids_already_added = []
if not label_map:
label_id_offset = 1
for class_id in range(max_num_classes):
categories.append({
'id': class_id + label_id_offset,
'name': 'category_{}'.format(class_id + label_id_offset)
})
return categories
for item in label_map.item:
if not 0 < item.id <= max_num_classes:
logging.info(
'Ignore item %d since it falls outside of requested '
'label range.', item.id)
continue
if use_display_name and item.HasField('display_name'):
name = item.display_name
else:
name = item.name
if item.id not in list_of_ids_already_added:
list_of_ids_already_added.append(item.id)
category = {'id': item.id, 'name': name}
if item.HasField('frequency'):
if item.frequency == string_int_label_map_pb2.LVISFrequency.Value(
'FREQUENT'):
category['frequency'] = 'f'
elif item.frequency == string_int_label_map_pb2.LVISFrequency.Value(
'COMMON'):
category['frequency'] = 'c'
elif item.frequency == string_int_label_map_pb2.LVISFrequency.Value(
'RARE'):
category['frequency'] = 'r'
if item.HasField('instance_count'):
category['instance_count'] = item.instance_count
if item.keypoints:
keypoints = {}
list_of_keypoint_ids = []
for kv in item.keypoints:
if kv.id in list_of_keypoint_ids:
raise ValueError('Duplicate keypoint ids are not allowed. '
'Found {} more than once'.format(kv.id))
keypoints[kv.label] = kv.id
list_of_keypoint_ids.append(kv.id)
category['keypoints'] = keypoints
categories.append(category)
return categories
def load_labelmap(path):
"""Loads label map proto.
Args:
path: path to StringIntLabelMap proto text file.
Returns:
a StringIntLabelMapProto
"""
with tf.io.gfile.GFile(path, 'r') as fid:
label_map_string = fid.read()
label_map = string_int_label_map_pb2.StringIntLabelMap()
try:
text_format.Merge(label_map_string, label_map)
except text_format.ParseError:
label_map.ParseFromString(label_map_string)
_validate_label_map(label_map)
return label_map
def get_label_map_dict(label_map_path_or_proto,
use_display_name=False,
fill_in_gaps_and_background=False):
"""Reads a label map and returns a dictionary of label names to id.
Args:
label_map_path_or_proto: path to StringIntLabelMap proto text file or the
proto itself.
use_display_name: whether to use the label map items' display names as keys.
fill_in_gaps_and_background: whether to fill in gaps and background with
respect to the id field in the proto. The id: 0 is reserved for the
'background' class and will be added if it is missing. All other missing
ids in range(1, max(id)) will be added with a dummy class name
("class_<id>") if they are missing.
Returns:
A dictionary mapping label names to id.
Raises:
ValueError: if fill_in_gaps_and_background and label_map has non-integer or
negative values.
"""
if isinstance(label_map_path_or_proto, string_types):
label_map = load_labelmap(label_map_path_or_proto)
else:
_validate_label_map(label_map_path_or_proto)
label_map = label_map_path_or_proto
label_map_dict = {}
for item in label_map.item:
if use_display_name:
label_map_dict[item.display_name] = item.id
else:
label_map_dict[item.name] = item.id
if fill_in_gaps_and_background:
values = set(label_map_dict.values())
if 0 not in values:
label_map_dict['background'] = 0
if not all(isinstance(value, int) for value in values):
raise ValueError('The values in label map must be integers in order to'
'fill_in_gaps_and_background.')
if not all(value >= 0 for value in values):
raise ValueError('The values in the label map must be positive.')
if len(values) != max(values) + 1:
# there are gaps in the labels, fill in gaps.
for value in range(1, max(values)):
if value not in values:
# TODO(rathodv): Add a prefix 'class_' here once the tool to generate
# teacher annotation adds this prefix in the data.
label_map_dict[str(value)] = value
return label_map_dict
def get_label_map_hierarchy_lut(label_map_path_or_proto,
include_identity=False):
"""Reads a label map and returns ancestors and descendants in the hierarchy.
The function returns the ancestors and descendants as separate look up tables
(LUT) numpy arrays of shape [max_id, max_id] where lut[i,j] = 1 when there is
a hierarchical relationship between class i and j.
Args:
label_map_path_or_proto: path to StringIntLabelMap proto text file or the
proto itself.
include_identity: Boolean to indicate whether to include a class element
among its ancestors and descendants. Setting this will result in the lut
diagonal being set to 1.
Returns:
ancestors_lut: Look up table with the ancestors.
descendants_lut: Look up table with the descendants.
"""
if isinstance(label_map_path_or_proto, string_types):
label_map = load_labelmap(label_map_path_or_proto)
else:
_validate_label_map(label_map_path_or_proto)
label_map = label_map_path_or_proto
hierarchy_dict = {
'ancestors': collections.defaultdict(list),
'descendants': collections.defaultdict(list)
}
max_id = -1
for item in label_map.item:
max_id = max(max_id, item.id)
for ancestor in item.ancestor_ids:
hierarchy_dict['ancestors'][item.id].append(ancestor)
for descendant in item.descendant_ids:
hierarchy_dict['descendants'][item.id].append(descendant)
def get_graph_relations_tensor(graph_relations):
graph_relations_tensor = np.zeros([max_id, max_id])
for id_val, ids_related in graph_relations.items():
id_val = int(id_val) - _LABEL_OFFSET
for id_related in ids_related:
id_related -= _LABEL_OFFSET
graph_relations_tensor[id_val, id_related] = 1
if include_identity:
graph_relations_tensor += np.eye(max_id)
return graph_relations_tensor
ancestors_lut = get_graph_relations_tensor(hierarchy_dict['ancestors'])
descendants_lut = get_graph_relations_tensor(hierarchy_dict['descendants'])
return ancestors_lut, descendants_lut
def create_categories_from_labelmap(label_map_path, use_display_name=True):
"""Reads a label map and returns categories list compatible with eval.
This function converts label map proto and returns a list of dicts, each of
which has the following keys:
'id': an integer id uniquely identifying this category.
'name': string representing category name e.g., 'cat', 'dog'.
'keypoints': a dictionary of keypoint string label to integer id. It is only
returned when available in label map proto.
Args:
label_map_path: Path to `StringIntLabelMap` proto text file.
use_display_name: (boolean) choose whether to load 'display_name' field
as category name. If False or if the display_name field does not exist,
uses 'name' field as category names instead.
Returns:
categories: a list of dictionaries representing all possible categories.
"""
label_map = load_labelmap(label_map_path)
max_num_classes = max(item.id for item in label_map.item)
return convert_label_map_to_categories(label_map, max_num_classes,
use_display_name)
def create_category_index_from_labelmap(label_map_path, use_display_name=True):
"""Reads a label map and returns a category index.
Args:
label_map_path: Path to `StringIntLabelMap` proto text file.
use_display_name: (boolean) choose whether to load 'display_name' field
as category name. If False or if the display_name field does not exist,
uses 'name' field as category names instead.
Returns:
A category index, which is a dictionary that maps integer ids to dicts
containing categories, e.g.
{1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}, ...}
"""
categories = create_categories_from_labelmap(label_map_path, use_display_name)
return create_category_index(categories)
def create_class_agnostic_category_index():
"""Creates a category index with a single `object` class."""
return {1: {'id': 1, 'name': 'object'}} | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/label_map_util.py | label_map_util.py |
"""Functions for computing metrics like precision, recall, CorLoc and etc."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
def compute_precision_recall(scores, labels, num_gt):
"""Compute precision and recall.
Args:
scores: A float numpy array representing detection score
labels: A float numpy array representing weighted true/false positive labels
num_gt: Number of ground truth instances
Raises:
ValueError: if the input is not of the correct format
Returns:
precision: Fraction of positive instances over detected ones. This value is
None if no ground truth labels are present.
recall: Fraction of detected positive instance over all positive instances.
This value is None if no ground truth labels are present.
"""
if not isinstance(labels, np.ndarray) or len(labels.shape) != 1:
raise ValueError("labels must be single dimension numpy array")
if labels.dtype != np.float and labels.dtype != np.bool:
raise ValueError("labels type must be either bool or float")
if not isinstance(scores, np.ndarray) or len(scores.shape) != 1:
raise ValueError("scores must be single dimension numpy array")
if num_gt < np.sum(labels):
raise ValueError("Number of true positives must be smaller than num_gt.")
if len(scores) != len(labels):
raise ValueError("scores and labels must be of the same size.")
if num_gt == 0:
return None, None
sorted_indices = np.argsort(scores)
sorted_indices = sorted_indices[::-1]
true_positive_labels = labels[sorted_indices]
false_positive_labels = (true_positive_labels <= 0).astype(float)
cum_true_positives = np.cumsum(true_positive_labels)
cum_false_positives = np.cumsum(false_positive_labels)
precision = cum_true_positives.astype(float) / (
cum_true_positives + cum_false_positives)
recall = cum_true_positives.astype(float) / num_gt
return precision, recall
def compute_average_precision(precision, recall):
"""Compute Average Precision according to the definition in VOCdevkit.
Precision is modified to ensure that it does not decrease as recall
decrease.
Args:
precision: A float [N, 1] numpy array of precisions
recall: A float [N, 1] numpy array of recalls
Raises:
ValueError: if the input is not of the correct format
Returns:
average_precison: The area under the precision recall curve. NaN if
precision and recall are None.
"""
if precision is None:
if recall is not None:
raise ValueError("If precision is None, recall must also be None")
return np.NAN
if not isinstance(precision, np.ndarray) or not isinstance(
recall, np.ndarray):
raise ValueError("precision and recall must be numpy array")
if precision.dtype != np.float or recall.dtype != np.float:
raise ValueError("input must be float numpy array.")
if len(precision) != len(recall):
raise ValueError("precision and recall must be of the same size.")
if not precision.size:
return 0.0
if np.amin(precision) < 0 or np.amax(precision) > 1:
raise ValueError("Precision must be in the range of [0, 1].")
if np.amin(recall) < 0 or np.amax(recall) > 1:
raise ValueError("recall must be in the range of [0, 1].")
if not all(recall[i] <= recall[i + 1] for i in range(len(recall) - 1)):
raise ValueError("recall must be a non-decreasing array")
recall = np.concatenate([[0], recall, [1]])
precision = np.concatenate([[0], precision, [0]])
# Preprocess precision to be a non-decreasing array
for i in range(len(precision) - 2, -1, -1):
precision[i] = np.maximum(precision[i], precision[i + 1])
indices = np.where(recall[1:] != recall[:-1])[0] + 1
average_precision = np.sum(
(recall[indices] - recall[indices - 1]) * precision[indices])
return average_precision
def compute_cor_loc(num_gt_imgs_per_class,
num_images_correctly_detected_per_class):
"""Compute CorLoc according to the definition in the following paper.
https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf
Returns nans if there are no ground truth images for a class.
Args:
num_gt_imgs_per_class: 1D array, representing number of images containing
at least one object instance of a particular class
num_images_correctly_detected_per_class: 1D array, representing number of
images that are correctly detected at least one object instance of a
particular class
Returns:
corloc_per_class: A float numpy array represents the corloc score of each
class
"""
return np.where(
num_gt_imgs_per_class == 0, np.nan,
num_images_correctly_detected_per_class / num_gt_imgs_per_class)
def compute_median_rank_at_k(tp_fp_list, k):
"""Computes MedianRank@k, where k is the top-scoring labels.
Args:
tp_fp_list: a list of numpy arrays; each numpy array corresponds to the all
detection on a single image, where the detections are sorted by score in
descending order. Further, each numpy array element can have boolean or
float values. True positive elements have either value >0.0 or True;
any other value is considered false positive.
k: number of top-scoring proposals to take.
Returns:
median_rank: median rank of all true positive proposals among top k by
score.
"""
ranks = []
for i in range(len(tp_fp_list)):
ranks.append(
np.where(tp_fp_list[i][0:min(k, tp_fp_list[i].shape[0])] > 0)[0])
concatenated_ranks = np.concatenate(ranks)
return np.median(concatenated_ranks)
def compute_recall_at_k(tp_fp_list, num_gt, k):
"""Computes Recall@k, MedianRank@k, where k is the top-scoring labels.
Args:
tp_fp_list: a list of numpy arrays; each numpy array corresponds to the all
detection on a single image, where the detections are sorted by score in
descending order. Further, each numpy array element can have boolean or
float values. True positive elements have either value >0.0 or True;
any other value is considered false positive.
num_gt: number of groundtruth anotations.
k: number of top-scoring proposals to take.
Returns:
recall: recall evaluated on the top k by score detections.
"""
tp_fp_eval = []
for i in range(len(tp_fp_list)):
tp_fp_eval.append(tp_fp_list[i][0:min(k, tp_fp_list[i].shape[0])])
tp_fp_eval = np.concatenate(tp_fp_eval)
return np.sum(tp_fp_eval) / num_gt | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/metrics.py | metrics.py |
"""A module for helper tensorflow ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import six
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.core import standard_fields as fields
from object_detection.utils import shape_utils
from object_detection.utils import spatial_transform_ops as spatial_ops
from object_detection.utils import static_shape
matmul_crop_and_resize = spatial_ops.matmul_crop_and_resize
multilevel_roi_align = spatial_ops.multilevel_roi_align
native_crop_and_resize = spatial_ops.native_crop_and_resize
def expanded_shape(orig_shape, start_dim, num_dims):
"""Inserts multiple ones into a shape vector.
Inserts an all-1 vector of length num_dims at position start_dim into a shape.
Can be combined with tf.reshape to generalize tf.expand_dims.
Args:
orig_shape: the shape into which the all-1 vector is added (int32 vector)
start_dim: insertion position (int scalar)
num_dims: length of the inserted all-1 vector (int scalar)
Returns:
An int32 vector of length tf.size(orig_shape) + num_dims.
"""
with tf.name_scope('ExpandedShape'):
start_dim = tf.expand_dims(start_dim, 0) # scalar to rank-1
before = tf.slice(orig_shape, [0], start_dim)
add_shape = tf.ones(tf.reshape(num_dims, [1]), dtype=tf.int32)
after = tf.slice(orig_shape, start_dim, [-1])
new_shape = tf.concat([before, add_shape, after], 0)
return new_shape
def normalized_to_image_coordinates(normalized_boxes, image_shape,
parallel_iterations=32):
"""Converts a batch of boxes from normal to image coordinates.
Args:
normalized_boxes: a tensor of shape [None, num_boxes, 4] in
normalized coordinates. The dtype of this tensor must support tf.mul.
image_shape: a tensor of shape [4] containing the image shape, with same
dtype as `normalized_boxes`.
parallel_iterations: parallelism for the map_fn op.
Returns:
absolute_boxes: a tensor of shape [None, num_boxes, 4] containing
the boxes in image coordinates, with same
dtype as `normalized_boxes`.
"""
x_scale = tf.cast(image_shape[2], normalized_boxes.dtype)
y_scale = tf.cast(image_shape[1], normalized_boxes.dtype)
def _to_absolute_coordinates(normalized_boxes):
y_min, x_min, y_max, x_max = tf.split(
value=normalized_boxes, num_or_size_splits=4, axis=1)
y_min = y_scale * y_min
y_max = y_scale * y_max
x_min = x_scale * x_min
x_max = x_scale * x_max
scaled_boxes = tf.concat([y_min, x_min, y_max, x_max], 1)
return scaled_boxes
absolute_boxes = shape_utils.static_or_dynamic_map_fn(
_to_absolute_coordinates,
elems=(normalized_boxes),
dtype=normalized_boxes.dtype,
parallel_iterations=parallel_iterations,
back_prop=True)
return absolute_boxes
def meshgrid(x, y):
"""Tiles the contents of x and y into a pair of grids.
Multidimensional analog of numpy.meshgrid, giving the same behavior if x and y
are vectors. Generally, this will give:
xgrid(i1, ..., i_m, j_1, ..., j_n) = x(j_1, ..., j_n)
ygrid(i1, ..., i_m, j_1, ..., j_n) = y(i_1, ..., i_m)
Keep in mind that the order of the arguments and outputs is reverse relative
to the order of the indices they go into, done for compatibility with numpy.
The output tensors have the same shapes. Specifically:
xgrid.get_shape() = y.get_shape().concatenate(x.get_shape())
ygrid.get_shape() = y.get_shape().concatenate(x.get_shape())
Args:
x: A tensor of arbitrary shape and rank. xgrid will contain these values
varying in its last dimensions.
y: A tensor of arbitrary shape and rank. ygrid will contain these values
varying in its first dimensions.
Returns:
A tuple of tensors (xgrid, ygrid).
"""
with tf.name_scope('Meshgrid'):
x = tf.convert_to_tensor(x)
y = tf.convert_to_tensor(y)
x_exp_shape = expanded_shape(tf.shape(x), 0, tf.rank(y))
y_exp_shape = expanded_shape(tf.shape(y), tf.rank(y), tf.rank(x))
xgrid = tf.tile(tf.reshape(x, x_exp_shape), y_exp_shape)
ygrid = tf.tile(tf.reshape(y, y_exp_shape), x_exp_shape)
new_shape = y.get_shape().concatenate(x.get_shape())
xgrid.set_shape(new_shape)
ygrid.set_shape(new_shape)
return xgrid, ygrid
def fixed_padding(inputs, kernel_size, rate=1):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: A tensor of size [batch, height_in, width_in, channels].
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
Should be a positive integer.
rate: An integer, rate for atrous convolution.
Returns:
output: A tensor of size [batch, height_out, width_out, channels] with the
input, either intact (if kernel_size == 1) or padded (if kernel_size > 1).
"""
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]])
return padded_inputs
def pad_to_multiple(tensor, multiple):
"""Returns the tensor zero padded to the specified multiple.
Appends 0s to the end of the first and second dimension (height and width) of
the tensor until both dimensions are a multiple of the input argument
'multiple'. E.g. given an input tensor of shape [1, 3, 5, 1] and an input
multiple of 4, PadToMultiple will append 0s so that the resulting tensor will
be of shape [1, 4, 8, 1].
Args:
tensor: rank 4 float32 tensor, where
tensor -> [batch_size, height, width, channels].
multiple: the multiple to pad to.
Returns:
padded_tensor: the tensor zero padded to the specified multiple.
"""
if multiple == 1:
return tensor
tensor_shape = tensor.get_shape()
batch_size = static_shape.get_batch_size(tensor_shape)
tensor_height = static_shape.get_height(tensor_shape)
tensor_width = static_shape.get_width(tensor_shape)
tensor_depth = static_shape.get_depth(tensor_shape)
if batch_size is None:
batch_size = tf.shape(tensor)[0]
if tensor_height is None:
tensor_height = tf.shape(tensor)[1]
padded_tensor_height = tf.cast(
tf.ceil(
tf.cast(tensor_height, dtype=tf.float32) /
tf.cast(multiple, dtype=tf.float32)),
dtype=tf.int32) * multiple
else:
padded_tensor_height = int(
math.ceil(float(tensor_height) / multiple) * multiple)
if tensor_width is None:
tensor_width = tf.shape(tensor)[2]
padded_tensor_width = tf.cast(
tf.ceil(
tf.cast(tensor_width, dtype=tf.float32) /
tf.cast(multiple, dtype=tf.float32)),
dtype=tf.int32) * multiple
else:
padded_tensor_width = int(
math.ceil(float(tensor_width) / multiple) * multiple)
if tensor_depth is None:
tensor_depth = tf.shape(tensor)[3]
# Use tf.concat instead of tf.pad to preserve static shape
if padded_tensor_height != tensor_height:
height_pad = tf.zeros([
batch_size, padded_tensor_height - tensor_height, tensor_width,
tensor_depth
], dtype=tensor.dtype)
tensor = tf.concat([tensor, height_pad], 1)
if padded_tensor_width != tensor_width:
width_pad = tf.zeros([
batch_size, padded_tensor_height, padded_tensor_width - tensor_width,
tensor_depth
], dtype=tensor.dtype)
tensor = tf.concat([tensor, width_pad], 2)
return tensor
def padded_one_hot_encoding(indices, depth, left_pad):
"""Returns a zero padded one-hot tensor.
This function converts a sparse representation of indices (e.g., [4]) to a
zero padded one-hot representation (e.g., [0, 0, 0, 0, 1] with depth = 4 and
left_pad = 1). If `indices` is empty, the result will simply be a tensor of
shape (0, depth + left_pad). If depth = 0, then this function just returns
`None`.
Args:
indices: an integer tensor of shape [num_indices].
depth: depth for the one-hot tensor (integer).
left_pad: number of zeros to left pad the one-hot tensor with (integer).
Returns:
padded_onehot: a tensor with shape (num_indices, depth + left_pad). Returns
`None` if the depth is zero.
Raises:
ValueError: if `indices` does not have rank 1 or if `left_pad` or `depth are
either negative or non-integers.
TODO(rathodv): add runtime checks for depth and indices.
"""
if depth < 0 or not isinstance(depth, six.integer_types):
raise ValueError('`depth` must be a non-negative integer.')
if left_pad < 0 or not isinstance(left_pad, six.integer_types):
raise ValueError('`left_pad` must be a non-negative integer.')
if depth == 0:
return None
rank = len(indices.get_shape().as_list())
if rank != 1:
raise ValueError('`indices` must have rank 1, but has rank=%s' % rank)
def one_hot_and_pad():
one_hot = tf.cast(tf.one_hot(tf.cast(indices, tf.int64), depth,
on_value=1, off_value=0), tf.float32)
return tf.pad(one_hot, [[0, 0], [left_pad, 0]], mode='CONSTANT')
result = tf.cond(tf.greater(tf.size(indices), 0), one_hot_and_pad,
lambda: tf.zeros((tf.size(indices), depth + left_pad)))
return tf.reshape(result, [-1, depth + left_pad])
def dense_to_sparse_boxes(dense_locations, dense_num_boxes, num_classes):
"""Converts bounding boxes from dense to sparse form.
Args:
dense_locations: a [max_num_boxes, 4] tensor in which only the first k rows
are valid bounding box location coordinates, where k is the sum of
elements in dense_num_boxes.
dense_num_boxes: a [max_num_classes] tensor indicating the counts of
various bounding box classes e.g. [1, 0, 0, 2] means that the first
bounding box is of class 0 and the second and third bounding boxes are
of class 3. The sum of elements in this tensor is the number of valid
bounding boxes.
num_classes: number of classes
Returns:
box_locations: a [num_boxes, 4] tensor containing only valid bounding
boxes (i.e. the first num_boxes rows of dense_locations)
box_classes: a [num_boxes] tensor containing the classes of each bounding
box (e.g. dense_num_boxes = [1, 0, 0, 2] => box_classes = [0, 3, 3]
"""
num_valid_boxes = tf.reduce_sum(dense_num_boxes)
box_locations = tf.slice(dense_locations,
tf.constant([0, 0]), tf.stack([num_valid_boxes, 4]))
tiled_classes = [tf.tile([i], tf.expand_dims(dense_num_boxes[i], 0))
for i in range(num_classes)]
box_classes = tf.concat(tiled_classes, 0)
box_locations.set_shape([None, 4])
return box_locations, box_classes
def indices_to_dense_vector(indices,
size,
indices_value=1.,
default_value=0,
dtype=tf.float32):
"""Creates dense vector with indices set to specific value and rest to zeros.
This function exists because it is unclear if it is safe to use
tf.sparse_to_dense(indices, [size], 1, validate_indices=False)
with indices which are not ordered.
This function accepts a dynamic size (e.g. tf.shape(tensor)[0])
Args:
indices: 1d Tensor with integer indices which are to be set to
indices_values.
size: scalar with size (integer) of output Tensor.
indices_value: values of elements specified by indices in the output vector
default_value: values of other elements in the output vector.
dtype: data type.
Returns:
dense 1D Tensor of shape [size] with indices set to indices_values and the
rest set to default_value.
"""
size = tf.cast(size, dtype=tf.int32)
zeros = tf.ones([size], dtype=dtype) * default_value
values = tf.ones_like(indices, dtype=dtype) * indices_value
return tf.dynamic_stitch([tf.range(size), tf.cast(indices, dtype=tf.int32)],
[zeros, values])
def reduce_sum_trailing_dimensions(tensor, ndims):
"""Computes sum across all dimensions following first `ndims` dimensions."""
return tf.reduce_sum(tensor, axis=tuple(range(ndims, tensor.shape.ndims)))
def retain_groundtruth(tensor_dict, valid_indices):
"""Retains groundtruth by valid indices.
Args:
tensor_dict: a dictionary of following groundtruth tensors -
fields.InputDataFields.groundtruth_boxes
fields.InputDataFields.groundtruth_classes
fields.InputDataFields.groundtruth_confidences
fields.InputDataFields.groundtruth_keypoints
fields.InputDataFields.groundtruth_instance_masks
fields.InputDataFields.groundtruth_is_crowd
fields.InputDataFields.groundtruth_area
fields.InputDataFields.groundtruth_label_types
fields.InputDataFields.groundtruth_difficult
valid_indices: a tensor with valid indices for the box-level groundtruth.
Returns:
a dictionary of tensors containing only the groundtruth for valid_indices.
Raises:
ValueError: If the shape of valid_indices is invalid.
ValueError: field fields.InputDataFields.groundtruth_boxes is
not present in tensor_dict.
"""
input_shape = valid_indices.get_shape().as_list()
if not (len(input_shape) == 1 or
(len(input_shape) == 2 and input_shape[1] == 1)):
raise ValueError('The shape of valid_indices is invalid.')
valid_indices = tf.reshape(valid_indices, [-1])
valid_dict = {}
if fields.InputDataFields.groundtruth_boxes in tensor_dict:
# Prevents reshape failure when num_boxes is 0.
num_boxes = tf.maximum(tf.shape(
tensor_dict[fields.InputDataFields.groundtruth_boxes])[0], 1)
for key in tensor_dict:
if key in [fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
fields.InputDataFields.groundtruth_confidences,
fields.InputDataFields.groundtruth_keypoints,
fields.InputDataFields.groundtruth_keypoint_visibilities,
fields.InputDataFields.groundtruth_instance_masks]:
valid_dict[key] = tf.gather(tensor_dict[key], valid_indices)
# Input decoder returns empty tensor when these fields are not provided.
# Needs to reshape into [num_boxes, -1] for tf.gather() to work.
elif key in [fields.InputDataFields.groundtruth_is_crowd,
fields.InputDataFields.groundtruth_area,
fields.InputDataFields.groundtruth_difficult,
fields.InputDataFields.groundtruth_label_types]:
valid_dict[key] = tf.reshape(
tf.gather(tf.reshape(tensor_dict[key], [num_boxes, -1]),
valid_indices), [-1])
# Fields that are not associated with boxes.
else:
valid_dict[key] = tensor_dict[key]
else:
raise ValueError('%s not present in input tensor dict.' % (
fields.InputDataFields.groundtruth_boxes))
return valid_dict
def retain_groundtruth_with_positive_classes(tensor_dict):
"""Retains only groundtruth with positive class ids.
Args:
tensor_dict: a dictionary of following groundtruth tensors -
fields.InputDataFields.groundtruth_boxes
fields.InputDataFields.groundtruth_classes
fields.InputDataFields.groundtruth_confidences
fields.InputDataFields.groundtruth_keypoints
fields.InputDataFields.groundtruth_instance_masks
fields.InputDataFields.groundtruth_is_crowd
fields.InputDataFields.groundtruth_area
fields.InputDataFields.groundtruth_label_types
fields.InputDataFields.groundtruth_difficult
Returns:
a dictionary of tensors containing only the groundtruth with positive
classes.
Raises:
ValueError: If groundtruth_classes tensor is not in tensor_dict.
"""
if fields.InputDataFields.groundtruth_classes not in tensor_dict:
raise ValueError('`groundtruth classes` not in tensor_dict.')
keep_indices = tf.where(tf.greater(
tensor_dict[fields.InputDataFields.groundtruth_classes], 0))
return retain_groundtruth(tensor_dict, keep_indices)
def replace_nan_groundtruth_label_scores_with_ones(label_scores):
"""Replaces nan label scores with 1.0.
Args:
label_scores: a tensor containing object annoation label scores.
Returns:
a tensor where NaN label scores have been replaced by ones.
"""
return tf.where(
tf.is_nan(label_scores), tf.ones(tf.shape(label_scores)), label_scores)
def filter_groundtruth_with_crowd_boxes(tensor_dict):
"""Filters out groundtruth with boxes corresponding to crowd.
Args:
tensor_dict: a dictionary of following groundtruth tensors -
fields.InputDataFields.groundtruth_boxes
fields.InputDataFields.groundtruth_classes
fields.InputDataFields.groundtruth_confidences
fields.InputDataFields.groundtruth_keypoints
fields.InputDataFields.groundtruth_instance_masks
fields.InputDataFields.groundtruth_is_crowd
fields.InputDataFields.groundtruth_area
fields.InputDataFields.groundtruth_label_types
Returns:
a dictionary of tensors containing only the groundtruth that have bounding
boxes.
"""
if fields.InputDataFields.groundtruth_is_crowd in tensor_dict:
is_crowd = tensor_dict[fields.InputDataFields.groundtruth_is_crowd]
is_not_crowd = tf.logical_not(is_crowd)
is_not_crowd_indices = tf.where(is_not_crowd)
tensor_dict = retain_groundtruth(tensor_dict, is_not_crowd_indices)
return tensor_dict
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
"""Filters out groundtruth with no bounding boxes.
Args:
tensor_dict: a dictionary of following groundtruth tensors -
fields.InputDataFields.groundtruth_boxes
fields.InputDataFields.groundtruth_classes
fields.InputDataFields.groundtruth_confidences
fields.InputDataFields.groundtruth_keypoints
fields.InputDataFields.groundtruth_instance_masks
fields.InputDataFields.groundtruth_is_crowd
fields.InputDataFields.groundtruth_area
fields.InputDataFields.groundtruth_label_types
Returns:
a dictionary of tensors containing only the groundtruth that have bounding
boxes.
"""
groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
nan_indicator_vector = tf.greater(tf.reduce_sum(tf.cast(
tf.is_nan(groundtruth_boxes), dtype=tf.int32), reduction_indices=[1]), 0)
valid_indicator_vector = tf.logical_not(nan_indicator_vector)
valid_indices = tf.where(valid_indicator_vector)
return retain_groundtruth(tensor_dict, valid_indices)
def filter_unrecognized_classes(tensor_dict):
"""Filters out class labels that are not unrecognized by the labelmap.
Decoder would parse unrecognized classes (not included in the labelmap) to
a label of value -1. Such targets are unecessary for training, and causes
issue for evaluation, due to labeling mapping logic. This function filters
those labels out for both training and evaluation.
Args:
tensor_dict: dictionary containing input tensors keyed by
fields.InputDataFields.
Returns:
A dictionary keyed by fields.InputDataFields containing the tensors
obtained after applying the filtering.
Raises:
ValueError: If groundtruth_classes tensor is not in tensor_dict.
"""
if fields.InputDataFields.groundtruth_classes not in tensor_dict:
raise ValueError('`groundtruth classes` not in tensor_dict.')
# Refer to tf_example_decoder for how unrecognized labels are handled.
unrecognized_label = -1
recognized_indices = tf.where(
tf.greater(tensor_dict[fields.InputDataFields.groundtruth_classes],
unrecognized_label))
return retain_groundtruth(tensor_dict, recognized_indices)
def normalize_to_target(inputs,
target_norm_value,
dim,
epsilon=1e-7,
trainable=True,
scope='NormalizeToTarget',
summarize=True):
"""L2 normalizes the inputs across the specified dimension to a target norm.
This op implements the L2 Normalization layer introduced in
Liu, Wei, et al. "SSD: Single Shot MultiBox Detector."
and Liu, Wei, Andrew Rabinovich, and Alexander C. Berg.
"Parsenet: Looking wider to see better." and is useful for bringing
activations from multiple layers in a convnet to a standard scale.
Note that the rank of `inputs` must be known and the dimension to which
normalization is to be applied should be statically defined.
TODO(jonathanhuang): Add option to scale by L2 norm of the entire input.
Args:
inputs: A `Tensor` of arbitrary size.
target_norm_value: A float value that specifies an initial target norm or
a list of floats (whose length must be equal to the depth along the
dimension to be normalized) specifying a per-dimension multiplier
after normalization.
dim: The dimension along which the input is normalized.
epsilon: A small value to add to the inputs to avoid dividing by zero.
trainable: Whether the norm is trainable or not
scope: Optional scope for variable_scope.
summarize: Whether or not to add a tensorflow summary for the op.
Returns:
The input tensor normalized to the specified target norm.
Raises:
ValueError: If dim is smaller than the number of dimensions in 'inputs'.
ValueError: If target_norm_value is not a float or a list of floats with
length equal to the depth along the dimension to be normalized.
"""
with tf.variable_scope(scope, 'NormalizeToTarget', [inputs]):
if not inputs.get_shape():
raise ValueError('The input rank must be known.')
input_shape = inputs.get_shape().as_list()
input_rank = len(input_shape)
if dim < 0 or dim >= input_rank:
raise ValueError(
'dim must be non-negative but smaller than the input rank.')
if not input_shape[dim]:
raise ValueError('input shape should be statically defined along '
'the specified dimension.')
depth = input_shape[dim]
if not (isinstance(target_norm_value, float) or
(isinstance(target_norm_value, list) and
len(target_norm_value) == depth) and
all([isinstance(val, float) for val in target_norm_value])):
raise ValueError('target_norm_value must be a float or a list of floats '
'with length equal to the depth along the dimension to '
'be normalized.')
if isinstance(target_norm_value, float):
initial_norm = depth * [target_norm_value]
else:
initial_norm = target_norm_value
target_norm = slim.model_variable(
name='weights',
dtype=tf.float32,
initializer=tf.constant(initial_norm, dtype=tf.float32),
trainable=trainable)
if summarize:
mean = tf.reduce_mean(target_norm)
tf.summary.scalar(tf.get_variable_scope().name, mean)
lengths = epsilon + tf.sqrt(tf.reduce_sum(tf.square(inputs), dim, True))
mult_shape = input_rank*[1]
mult_shape[dim] = depth
return tf.reshape(target_norm, mult_shape) * tf.truediv(inputs, lengths)
def batch_position_sensitive_crop_regions(images,
boxes,
crop_size,
num_spatial_bins,
global_pool,
parallel_iterations=64):
"""Position sensitive crop with batches of images and boxes.
This op is exactly like `position_sensitive_crop_regions` below but operates
on batches of images and boxes. See `position_sensitive_crop_regions` function
below for the operation applied per batch element.
Args:
images: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
`int16`, `int32`, `int64`, `half`, `float32`, `float64`.
A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
Both `image_height` and `image_width` need to be positive.
boxes: A `Tensor` of type `float32`.
A 3-D tensor of shape `[batch, num_boxes, 4]`. Each box is specified in
normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value
of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so
as the `[0, 1]` interval of normalized image height is mapped to
`[0, image_height - 1] in image height coordinates. We do allow y1 > y2,
in which case the sampled crop is an up-down flipped version of the
original image. The width dimension is treated similarly.
crop_size: See `position_sensitive_crop_regions` below.
num_spatial_bins: See `position_sensitive_crop_regions` below.
global_pool: See `position_sensitive_crop_regions` below.
parallel_iterations: Number of batch items to process in parallel.
Returns:
"""
def _position_sensitive_crop_fn(inputs):
images, boxes = inputs
return position_sensitive_crop_regions(
images,
boxes,
crop_size=crop_size,
num_spatial_bins=num_spatial_bins,
global_pool=global_pool)
return shape_utils.static_or_dynamic_map_fn(
_position_sensitive_crop_fn,
elems=[images, boxes],
dtype=tf.float32,
parallel_iterations=parallel_iterations)
def position_sensitive_crop_regions(image,
boxes,
crop_size,
num_spatial_bins,
global_pool):
"""Position-sensitive crop and pool rectangular regions from a feature grid.
The output crops are split into `spatial_bins_y` vertical bins
and `spatial_bins_x` horizontal bins. For each intersection of a vertical
and a horizontal bin the output values are gathered by performing
`tf.image.crop_and_resize` (bilinear resampling) on a a separate subset of
channels of the image. This reduces `depth` by a factor of
`(spatial_bins_y * spatial_bins_x)`.
When global_pool is True, this function implements a differentiable version
of position-sensitive RoI pooling used in
[R-FCN detection system](https://arxiv.org/abs/1605.06409).
When global_pool is False, this function implements a differentiable version
of position-sensitive assembling operation used in
[instance FCN](https://arxiv.org/abs/1603.08678).
Args:
image: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
`int16`, `int32`, `int64`, `half`, `float32`, `float64`.
A 3-D tensor of shape `[image_height, image_width, depth]`.
Both `image_height` and `image_width` need to be positive.
boxes: A `Tensor` of type `float32`.
A 2-D tensor of shape `[num_boxes, 4]`. Each box is specified in
normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value
of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so
as the `[0, 1]` interval of normalized image height is mapped to
`[0, image_height - 1] in image height coordinates. We do allow y1 > y2,
in which case the sampled crop is an up-down flipped version of the
original image. The width dimension is treated similarly.
crop_size: A list of two integers `[crop_height, crop_width]`. All
cropped image patches are resized to this size. The aspect ratio of the
image content is not preserved. Both `crop_height` and `crop_width` need
to be positive.
num_spatial_bins: A list of two integers `[spatial_bins_y, spatial_bins_x]`.
Represents the number of position-sensitive bins in y and x directions.
Both values should be >= 1. `crop_height` should be divisible by
`spatial_bins_y`, and similarly for width.
The number of image channels should be divisible by
(spatial_bins_y * spatial_bins_x).
Suggested value from R-FCN paper: [3, 3].
global_pool: A boolean variable.
If True, we perform average global pooling on the features assembled from
the position-sensitive score maps.
If False, we keep the position-pooled features without global pooling
over the spatial coordinates.
Note that using global_pool=True is equivalent to but more efficient than
running the function with global_pool=False and then performing global
average pooling.
Returns:
position_sensitive_features: A 4-D tensor of shape
`[num_boxes, K, K, crop_channels]`,
where `crop_channels = depth / (spatial_bins_y * spatial_bins_x)`,
where K = 1 when global_pool is True (Average-pooled cropped regions),
and K = crop_size when global_pool is False.
Raises:
ValueError: Raised in four situations:
`num_spatial_bins` is not >= 1;
`num_spatial_bins` does not divide `crop_size`;
`(spatial_bins_y*spatial_bins_x)` does not divide `depth`;
`bin_crop_size` is not square when global_pool=False due to the
constraint in function space_to_depth.
"""
total_bins = 1
bin_crop_size = []
for (num_bins, crop_dim) in zip(num_spatial_bins, crop_size):
if num_bins < 1:
raise ValueError('num_spatial_bins should be >= 1')
if crop_dim % num_bins != 0:
raise ValueError('crop_size should be divisible by num_spatial_bins')
total_bins *= num_bins
bin_crop_size.append(crop_dim // num_bins)
if not global_pool and bin_crop_size[0] != bin_crop_size[1]:
raise ValueError('Only support square bin crop size for now.')
ymin, xmin, ymax, xmax = tf.unstack(boxes, axis=1)
spatial_bins_y, spatial_bins_x = num_spatial_bins
# Split each box into spatial_bins_y * spatial_bins_x bins.
position_sensitive_boxes = []
for bin_y in range(spatial_bins_y):
step_y = (ymax - ymin) / spatial_bins_y
for bin_x in range(spatial_bins_x):
step_x = (xmax - xmin) / spatial_bins_x
box_coordinates = [ymin + bin_y * step_y,
xmin + bin_x * step_x,
ymin + (bin_y + 1) * step_y,
xmin + (bin_x + 1) * step_x,
]
position_sensitive_boxes.append(tf.stack(box_coordinates, axis=1))
image_splits = tf.split(value=image, num_or_size_splits=total_bins, axis=2)
image_crops = []
for (split, box) in zip(image_splits, position_sensitive_boxes):
if split.shape.is_fully_defined() and box.shape.is_fully_defined():
crop = tf.squeeze(
matmul_crop_and_resize(
tf.expand_dims(split, axis=0), tf.expand_dims(box, axis=0),
bin_crop_size),
axis=0)
else:
crop = tf.image.crop_and_resize(
tf.expand_dims(split, 0), box,
tf.zeros(tf.shape(boxes)[0], dtype=tf.int32), bin_crop_size)
image_crops.append(crop)
if global_pool:
# Average over all bins.
position_sensitive_features = tf.add_n(image_crops) / len(image_crops)
# Then average over spatial positions within the bins.
position_sensitive_features = tf.reduce_mean(
position_sensitive_features, [1, 2], keepdims=True)
else:
# Reorder height/width to depth channel.
block_size = bin_crop_size[0]
if block_size >= 2:
image_crops = [tf.space_to_depth(
crop, block_size=block_size) for crop in image_crops]
# Pack image_crops so that first dimension is for position-senstive boxes.
position_sensitive_features = tf.stack(image_crops, axis=0)
# Unroll the position-sensitive boxes to spatial positions.
position_sensitive_features = tf.squeeze(
tf.batch_to_space_nd(position_sensitive_features,
block_shape=[1] + num_spatial_bins,
crops=tf.zeros((3, 2), dtype=tf.int32)),
axis=[0])
# Reorder back the depth channel.
if block_size >= 2:
position_sensitive_features = tf.depth_to_space(
position_sensitive_features, block_size=block_size)
return position_sensitive_features
def reframe_box_masks_to_image_masks(box_masks, boxes, image_height,
image_width, resize_method='bilinear'):
"""Transforms the box masks back to full image masks.
Embeds masks in bounding boxes of larger masks whose shapes correspond to
image shape.
Args:
box_masks: A tensor of size [num_masks, mask_height, mask_width].
boxes: A tf.float32 tensor of size [num_masks, 4] containing the box
corners. Row i contains [ymin, xmin, ymax, xmax] of the box
corresponding to mask i. Note that the box corners are in
normalized coordinates.
image_height: Image height. The output mask will have the same height as
the image height.
image_width: Image width. The output mask will have the same width as the
image width.
resize_method: The resize method, either 'bilinear' or 'nearest'. Note that
'bilinear' is only respected if box_masks is a float.
Returns:
A tensor of size [num_masks, image_height, image_width] with the same dtype
as `box_masks`.
"""
resize_method = 'nearest' if box_masks.dtype == tf.uint8 else resize_method
# TODO(rathodv): Make this a public function.
def reframe_box_masks_to_image_masks_default():
"""The default function when there are more than 0 box masks."""
def transform_boxes_relative_to_boxes(boxes, reference_boxes):
boxes = tf.reshape(boxes, [-1, 2, 2])
min_corner = tf.expand_dims(reference_boxes[:, 0:2], 1)
max_corner = tf.expand_dims(reference_boxes[:, 2:4], 1)
denom = max_corner - min_corner
# Prevent a divide by zero.
denom = tf.math.maximum(denom, 1e-4)
transformed_boxes = (boxes - min_corner) / denom
return tf.reshape(transformed_boxes, [-1, 4])
box_masks_expanded = tf.expand_dims(box_masks, axis=3)
num_boxes = tf.shape(box_masks_expanded)[0]
unit_boxes = tf.concat(
[tf.zeros([num_boxes, 2]), tf.ones([num_boxes, 2])], axis=1)
reverse_boxes = transform_boxes_relative_to_boxes(unit_boxes, boxes)
# TODO(vighneshb) Use matmul_crop_and_resize so that the output shape
# is static. This will help us run and test on TPUs.
resized_crops = tf.image.crop_and_resize(
image=box_masks_expanded,
boxes=reverse_boxes,
box_ind=tf.range(num_boxes),
crop_size=[image_height, image_width],
method=resize_method,
extrapolation_value=0)
return tf.cast(resized_crops, box_masks.dtype)
image_masks = tf.cond(
tf.shape(box_masks)[0] > 0,
reframe_box_masks_to_image_masks_default,
lambda: tf.zeros([0, image_height, image_width, 1], box_masks.dtype))
return tf.squeeze(image_masks, axis=3)
def merge_boxes_with_multiple_labels(boxes,
classes,
confidences,
num_classes,
quantization_bins=10000):
"""Merges boxes with same coordinates and returns K-hot encoded classes.
Args:
boxes: A tf.float32 tensor with shape [N, 4] holding N boxes. Only
normalized coordinates are allowed.
classes: A tf.int32 tensor with shape [N] holding class indices.
The class index starts at 0.
confidences: A tf.float32 tensor with shape [N] holding class confidences.
num_classes: total number of classes to use for K-hot encoding.
quantization_bins: the number of bins used to quantize the box coordinate.
Returns:
merged_boxes: A tf.float32 tensor with shape [N', 4] holding boxes,
where N' <= N.
class_encodings: A tf.int32 tensor with shape [N', num_classes] holding
K-hot encodings for the merged boxes.
confidence_encodings: A tf.float32 tensor with shape [N', num_classes]
holding encodings of confidences for the merged boxes.
merged_box_indices: A tf.int32 tensor with shape [N'] holding original
indices of the boxes.
"""
boxes_shape = tf.shape(boxes)
classes_shape = tf.shape(classes)
confidences_shape = tf.shape(confidences)
box_class_shape_assert = shape_utils.assert_shape_equal_along_first_dimension(
boxes_shape, classes_shape)
box_confidence_shape_assert = (
shape_utils.assert_shape_equal_along_first_dimension(
boxes_shape, confidences_shape))
box_dimension_assert = tf.assert_equal(boxes_shape[1], 4)
box_normalized_assert = shape_utils.assert_box_normalized(boxes)
with tf.control_dependencies(
[box_class_shape_assert, box_confidence_shape_assert,
box_dimension_assert, box_normalized_assert]):
quantized_boxes = tf.to_int64(boxes * (quantization_bins - 1))
ymin, xmin, ymax, xmax = tf.unstack(quantized_boxes, axis=1)
hashcodes = (
ymin +
xmin * quantization_bins +
ymax * quantization_bins * quantization_bins +
xmax * quantization_bins * quantization_bins * quantization_bins)
unique_hashcodes, unique_indices = tf.unique(hashcodes)
num_boxes = tf.shape(boxes)[0]
num_unique_boxes = tf.shape(unique_hashcodes)[0]
merged_box_indices = tf.unsorted_segment_min(
tf.range(num_boxes), unique_indices, num_unique_boxes)
merged_boxes = tf.gather(boxes, merged_box_indices)
unique_indices = tf.to_int64(unique_indices)
classes = tf.to_int64(classes)
def map_box_encodings(i):
"""Produces box K-hot and score encodings for each class index."""
box_mask = tf.equal(
unique_indices, i * tf.ones(num_boxes, dtype=tf.int64))
box_mask = tf.reshape(box_mask, [-1])
box_indices = tf.boolean_mask(classes, box_mask)
box_confidences = tf.boolean_mask(confidences, box_mask)
box_class_encodings = tf.sparse_to_dense(
box_indices, [num_classes], tf.constant(1, dtype=tf.int64),
validate_indices=False)
box_confidence_encodings = tf.sparse_to_dense(
box_indices, [num_classes], box_confidences, validate_indices=False)
return box_class_encodings, box_confidence_encodings
# Important to avoid int32 here since there is no GPU kernel for int32.
# int64 and float32 are fine.
class_encodings, confidence_encodings = tf.map_fn(
map_box_encodings,
tf.range(tf.to_int64(num_unique_boxes)),
back_prop=False,
dtype=(tf.int64, tf.float32))
merged_boxes = tf.reshape(merged_boxes, [-1, 4])
class_encodings = tf.cast(class_encodings, dtype=tf.int32)
class_encodings = tf.reshape(class_encodings, [-1, num_classes])
confidence_encodings = tf.reshape(confidence_encodings, [-1, num_classes])
merged_box_indices = tf.reshape(merged_box_indices, [-1])
return (merged_boxes, class_encodings, confidence_encodings,
merged_box_indices)
def nearest_neighbor_upsampling(input_tensor, scale=None, height_scale=None,
width_scale=None):
"""Nearest neighbor upsampling implementation.
Nearest neighbor upsampling function that maps input tensor with shape
[batch_size, height, width, channels] to [batch_size, height * scale
, width * scale, channels]. This implementation only uses reshape and
broadcasting to make it TPU compatible.
Args:
input_tensor: A float32 tensor of size [batch, height_in, width_in,
channels].
scale: An integer multiple to scale resolution of input data in both height
and width dimensions.
height_scale: An integer multiple to scale the height of input image. This
option when provided overrides `scale` option.
width_scale: An integer multiple to scale the width of input image. This
option when provided overrides `scale` option.
Returns:
data_up: A float32 tensor of size
[batch, height_in*scale, width_in*scale, channels].
Raises:
ValueError: If both scale and height_scale or if both scale and width_scale
are None.
"""
if not scale and (height_scale is None or width_scale is None):
raise ValueError('Provide either `scale` or `height_scale` and'
' `width_scale`.')
with tf.name_scope('nearest_neighbor_upsampling'):
h_scale = scale if height_scale is None else height_scale
w_scale = scale if width_scale is None else width_scale
(batch_size, height, width,
channels) = shape_utils.combined_static_and_dynamic_shape(input_tensor)
output_tensor = tf.stack([input_tensor] * w_scale, axis=3)
output_tensor = tf.stack([output_tensor] * h_scale, axis=2)
return tf.reshape(output_tensor,
[batch_size, height * h_scale, width * w_scale, channels])
def matmul_gather_on_zeroth_axis(params, indices, scope=None):
"""Matrix multiplication based implementation of tf.gather on zeroth axis.
TODO(rathodv, jonathanhuang): enable sparse matmul option.
Args:
params: A float32 Tensor. The tensor from which to gather values.
Must be at least rank 1.
indices: A Tensor. Must be one of the following types: int32, int64.
Must be in range [0, params.shape[0])
scope: A name for the operation (optional).
Returns:
A Tensor. Has the same type as params. Values from params gathered
from indices given by indices, with shape indices.shape + params.shape[1:].
"""
with tf.name_scope(scope, 'MatMulGather'):
params_shape = shape_utils.combined_static_and_dynamic_shape(params)
indices_shape = shape_utils.combined_static_and_dynamic_shape(indices)
params2d = tf.reshape(params, [params_shape[0], -1])
indicator_matrix = tf.one_hot(indices, params_shape[0])
gathered_result_flattened = tf.matmul(indicator_matrix, params2d)
return tf.reshape(gathered_result_flattened,
tf.stack(indices_shape + params_shape[1:]))
def fpn_feature_levels(num_levels, unit_scale_index, image_ratio, boxes):
"""Returns fpn feature level for each box based on its area.
See section 4.2 of https://arxiv.org/pdf/1612.03144.pdf for details.
Args:
num_levels: An integer indicating the number of feature levels to crop boxes
from.
unit_scale_index: An 0-based integer indicating the index of feature map
which most closely matches the resolution of the pretrained model.
image_ratio: A float indicating the ratio of input image area to pretraining
image area.
boxes: A float tensor of shape [batch, num_boxes, 4] containing boxes of the
form [ymin, xmin, ymax, xmax] in normalized coordinates.
Returns:
An int32 tensor of shape [batch_size, num_boxes] containing feature indices.
"""
assert num_levels > 0, (
'`num_levels` must be > 0. Found {}'.format(num_levels))
assert unit_scale_index < num_levels and unit_scale_index >= 0, (
'`unit_scale_index` must be in [0, {}). Found {}.'.format(
num_levels, unit_scale_index))
box_height_width = boxes[:, :, 2:4] - boxes[:, :, 0:2]
areas_sqrt = tf.sqrt(tf.reduce_prod(box_height_width, axis=2))
log_2 = tf.cast(tf.log(2.0), dtype=boxes.dtype)
levels = tf.cast(
tf.floordiv(tf.log(areas_sqrt * image_ratio), log_2)
+
unit_scale_index,
dtype=tf.int32)
levels = tf.maximum(0, tf.minimum(num_levels - 1, levels))
return levels
def bfloat16_to_float32_nested(input_nested):
"""Convert float32 tensors in a nested structure to bfloat16.
Args:
input_nested: A Python dict, values being Tensor or Python list/tuple of
Tensor or Non-Tensor.
Returns:
A Python dict with the same structure as `tensor_dict`,
with all bfloat16 tensors converted to float32.
"""
if isinstance(input_nested, tf.Tensor):
if input_nested.dtype == tf.bfloat16:
return tf.cast(input_nested, dtype=tf.float32)
else:
return input_nested
elif isinstance(input_nested, (list, tuple)):
out_tensor_dict = [bfloat16_to_float32_nested(t) for t in input_nested]
elif isinstance(input_nested, dict):
out_tensor_dict = {
k: bfloat16_to_float32_nested(v) for k, v in input_nested.items()
}
else:
return input_nested
return out_tensor_dict
def gather_with_padding_values(input_tensor, indices, padding_value):
"""Gathers elements from tensor and pads `padding_value` for ignore indices.
Gathers elements from `input_tensor` based on `indices`. If there are ignore
indices (which are "-1"s) in `indices`, `padding_value` will be gathered for
those positions.
Args:
input_tensor: A N-D tensor of shape [M, d_1, d_2 .. d_(N-1)] to gather
values from.
indices: A 1-D tensor in which each element is either an index in the
first dimension of input_tensor or -1.
padding_value: A (N-1)-D tensor of shape [d_1, d_2 .. d_(N-1)] which will be
used as gathered value for each ignore index in `indices`.
Returns:
gathered_tensor: A tensor of shape [L, d_1, d_2 .. d_(N-1)] containing
values gathered from input_tensor. The first dimension L is equal to the
length of `indices`.
"""
padding_value = tf.expand_dims(padding_value, axis=0)
input_tensor = tf.concat([padding_value, input_tensor], axis=0)
gather_indices = indices + 1
gathered_tensor = tf.gather(input_tensor, gather_indices)
return gathered_tensor
EqualizationLossConfig = collections.namedtuple('EqualizationLossConfig',
['weight', 'exclude_prefixes'])
def tile_context_tensors(tensor_dict):
"""Tiles context fields to have num_frames along 0-th dimension."""
num_frames = tf.shape(tensor_dict[fields.InputDataFields.image])[0]
for key in tensor_dict:
if key not in fields.SEQUENCE_FIELDS:
original_tensor = tensor_dict[key]
tensor_shape = shape_utils.combined_static_and_dynamic_shape(
original_tensor)
tensor_dict[key] = tf.tile(
tf.expand_dims(original_tensor, 0),
tf.stack([num_frames] + [1] * len(tensor_shape), axis=0))
return tensor_dict
def decode_image(tensor_dict):
"""Decodes images in a tensor dict."""
tensor_dict[fields.InputDataFields.image] = tf.io.decode_image(
tensor_dict[fields.InputDataFields.image], channels=3)
tensor_dict[fields.InputDataFields.image].set_shape([None, None, 3])
return tensor_dict
def giou(boxes1, boxes2):
"""Computes generalized IOU between two tensors.
Each box should be represented as [ymin, xmin, ymax, xmax].
Args:
boxes1: a tensor with shape [num_boxes, 4]
boxes2: a tensor with shape [num_boxes, 4]
Returns:
a tensor of shape [num_boxes] containing GIoUs
"""
pred_ymin, pred_xmin, pred_ymax, pred_xmax = tf.unstack(boxes1, axis=1)
gt_ymin, gt_xmin, gt_ymax, gt_xmax = tf.unstack(boxes2, axis=1)
gt_area = (gt_ymax - gt_ymin) * (gt_xmax - gt_xmin)
pred_area = (pred_ymax - pred_ymin) * (pred_xmax - pred_xmin)
x1_i = tf.maximum(pred_xmin, gt_xmin)
x2_i = tf.minimum(pred_xmax, gt_xmax)
y1_i = tf.maximum(pred_ymin, gt_ymin)
y2_i = tf.minimum(pred_ymax, gt_ymax)
intersection_area = tf.maximum(0.0, y2_i - y1_i) * tf.maximum(0.0,
x2_i - x1_i)
x1_c = tf.minimum(pred_xmin, gt_xmin)
x2_c = tf.maximum(pred_xmax, gt_xmax)
y1_c = tf.minimum(pred_ymin, gt_ymin)
y2_c = tf.maximum(pred_ymax, gt_ymax)
hull_area = (y2_c - y1_c) * (x2_c - x1_c)
union_area = gt_area + pred_area - intersection_area
iou = tf.where(tf.equal(union_area, 0.0),
tf.zeros_like(union_area), intersection_area / union_area)
giou_ = iou - tf.where(hull_area > 0.0,
(hull_area - union_area) / hull_area, iou)
return giou_
def center_to_corner_coordinate(input_tensor):
"""Converts input boxes from center to corner representation."""
reshaped_encodings = tf.reshape(input_tensor, [-1, 4])
ycenter = tf.gather(reshaped_encodings, [0], axis=1)
xcenter = tf.gather(reshaped_encodings, [1], axis=1)
h = tf.gather(reshaped_encodings, [2], axis=1)
w = tf.gather(reshaped_encodings, [3], axis=1)
ymin = ycenter - h / 2.
xmin = xcenter - w / 2.
ymax = ycenter + h / 2.
xmax = xcenter + w / 2.
return tf.squeeze(tf.stack([ymin, xmin, ymax, xmax], axis=1)) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/ops.py | ops.py |
"""Utility functions used by target assigner."""
import tensorflow.compat.v1 as tf
from object_detection.utils import shape_utils
def image_shape_to_grids(height, width):
"""Computes xy-grids given the shape of the image.
Args:
height: The height of the image.
width: The width of the image.
Returns:
A tuple of two tensors:
y_grid: A float tensor with shape [height, width] representing the
y-coordinate of each pixel grid.
x_grid: A float tensor with shape [height, width] representing the
x-coordinate of each pixel grid.
"""
out_height = tf.cast(height, tf.float32)
out_width = tf.cast(width, tf.float32)
x_range = tf.range(out_width, dtype=tf.float32)
y_range = tf.range(out_height, dtype=tf.float32)
x_grid, y_grid = tf.meshgrid(x_range, y_range, indexing='xy')
return (y_grid, x_grid)
def _coordinates_to_heatmap_dense(y_grid, x_grid, y_coordinates, x_coordinates,
sigma, channel_onehot, channel_weights=None):
"""Dense version of coordinates to heatmap that uses an outer product."""
num_instances, num_channels = (
shape_utils.combined_static_and_dynamic_shape(channel_onehot))
x_grid = tf.expand_dims(x_grid, 2)
y_grid = tf.expand_dims(y_grid, 2)
# The raw center coordinates in the output space.
x_diff = x_grid - tf.math.floor(x_coordinates)
y_diff = y_grid - tf.math.floor(y_coordinates)
squared_distance = x_diff**2 + y_diff**2
gaussian_map = tf.exp(-squared_distance / (2 * sigma * sigma))
reshaped_gaussian_map = tf.expand_dims(gaussian_map, axis=-1)
reshaped_channel_onehot = tf.reshape(channel_onehot,
(1, 1, num_instances, num_channels))
gaussian_per_box_per_class_map = (
reshaped_gaussian_map * reshaped_channel_onehot)
if channel_weights is not None:
reshaped_weights = tf.reshape(channel_weights, (1, 1, num_instances, 1))
gaussian_per_box_per_class_map *= reshaped_weights
# Take maximum along the "instance" dimension so that all per-instance
# heatmaps of the same class are merged together.
heatmap = tf.reduce_max(gaussian_per_box_per_class_map, axis=2)
# Maximum of an empty tensor is -inf, the following is to avoid that.
heatmap = tf.maximum(heatmap, 0)
return tf.stop_gradient(heatmap)
def _coordinates_to_heatmap_sparse(y_grid, x_grid, y_coordinates, x_coordinates,
sigma, channel_onehot, channel_weights=None):
"""Sparse version of coordinates to heatmap using tf.scatter."""
if not hasattr(tf, 'tensor_scatter_nd_max'):
raise RuntimeError(
('Please upgrade tensowflow to use `tensor_scatter_nd_max` or set '
'compute_heatmap_sparse=False'))
_, num_channels = (
shape_utils.combined_static_and_dynamic_shape(channel_onehot))
height, width = shape_utils.combined_static_and_dynamic_shape(y_grid)
x_grid = tf.expand_dims(x_grid, 2)
y_grid = tf.expand_dims(y_grid, 2)
# The raw center coordinates in the output space.
x_diff = x_grid - tf.math.floor(x_coordinates)
y_diff = y_grid - tf.math.floor(y_coordinates)
squared_distance = x_diff**2 + y_diff**2
gaussian_map = tf.exp(-squared_distance / (2 * sigma * sigma))
if channel_weights is not None:
gaussian_map = gaussian_map * channel_weights[tf.newaxis, tf.newaxis, :]
channel_indices = tf.argmax(channel_onehot, axis=1)
channel_indices = channel_indices[:, tf.newaxis]
heatmap_init = tf.zeros((num_channels, height, width))
gaussian_map = tf.transpose(gaussian_map, (2, 0, 1))
heatmap = tf.tensor_scatter_nd_max(
heatmap_init, channel_indices, gaussian_map)
# Maximum of an empty tensor is -inf, the following is to avoid that.
heatmap = tf.maximum(heatmap, 0)
return tf.stop_gradient(tf.transpose(heatmap, (1, 2, 0)))
def coordinates_to_heatmap(y_grid,
x_grid,
y_coordinates,
x_coordinates,
sigma,
channel_onehot,
channel_weights=None,
sparse=False):
"""Returns the heatmap targets from a set of point coordinates.
This function maps a set of point coordinates to the output heatmap image
applied using a Gaussian kernel. Note that this function be can used by both
object detection and keypoint estimation tasks. For object detection, the
"channel" refers to the object class. For keypoint estimation, the "channel"
refers to the number of keypoint types.
Args:
y_grid: A 2D tensor with shape [height, width] which contains the grid
y-coordinates given in the (output) image dimensions.
x_grid: A 2D tensor with shape [height, width] which contains the grid
x-coordinates given in the (output) image dimensions.
y_coordinates: A 1D tensor with shape [num_instances] representing the
y-coordinates of the instances in the output space coordinates.
x_coordinates: A 1D tensor with shape [num_instances] representing the
x-coordinates of the instances in the output space coordinates.
sigma: A 1D tensor with shape [num_instances] representing the standard
deviation of the Gaussian kernel to be applied to the point.
channel_onehot: A 2D tensor with shape [num_instances, num_channels]
representing the one-hot encoded channel labels for each point.
channel_weights: A 1D tensor with shape [num_instances] corresponding to the
weight of each instance.
sparse: bool, indicating whether or not to use the sparse implementation
of the function. The sparse version scales better with number of channels,
but in some cases is known to cause OOM error. See (b/170989061).
Returns:
heatmap: A tensor of size [height, width, num_channels] representing the
heatmap. Output (height, width) match the dimensions of the input grids.
"""
if sparse:
return _coordinates_to_heatmap_sparse(
y_grid, x_grid, y_coordinates, x_coordinates, sigma, channel_onehot,
channel_weights)
else:
return _coordinates_to_heatmap_dense(
y_grid, x_grid, y_coordinates, x_coordinates, sigma, channel_onehot,
channel_weights)
def compute_floor_offsets_with_indices(y_source,
x_source,
y_target=None,
x_target=None):
"""Computes offsets from floored source(floored) to target coordinates.
This function computes the offsets from source coordinates ("floored" as if
they were put on the grids) to target coordinates. Note that the input
coordinates should be the "absolute" coordinates in terms of the output image
dimensions as opposed to the normalized coordinates (i.e. values in [0, 1]).
If the input y and x source have the second dimension (representing the
neighboring pixels), then the offsets are computed from each of the
neighboring pixels to their corresponding target (first dimension).
Args:
y_source: A tensor with shape [num_points] (or [num_points, num_neighbors])
representing the absolute y-coordinates (in the output image space) of the
source points.
x_source: A tensor with shape [num_points] (or [num_points, num_neighbors])
representing the absolute x-coordinates (in the output image space) of the
source points.
y_target: A tensor with shape [num_points] representing the absolute
y-coordinates (in the output image space) of the target points. If not
provided, then y_source is used as the targets.
x_target: A tensor with shape [num_points] representing the absolute
x-coordinates (in the output image space) of the target points. If not
provided, then x_source is used as the targets.
Returns:
A tuple of two tensors:
offsets: A tensor with shape [num_points, 2] (or
[num_points, num_neighbors, 2]) representing the offsets of each input
point.
indices: A tensor with shape [num_points, 2] (or
[num_points, num_neighbors, 2]) representing the indices of where the
offsets should be retrieved in the output image dimension space.
Raise:
ValueError: source and target shapes have unexpected values.
"""
y_source_floored = tf.floor(y_source)
x_source_floored = tf.floor(x_source)
source_shape = shape_utils.combined_static_and_dynamic_shape(y_source)
if y_target is None and x_target is None:
y_target = y_source
x_target = x_source
else:
target_shape = shape_utils.combined_static_and_dynamic_shape(y_target)
if len(source_shape) == 2 and len(target_shape) == 1:
_, num_neighbors = source_shape
y_target = tf.tile(
tf.expand_dims(y_target, -1), multiples=[1, num_neighbors])
x_target = tf.tile(
tf.expand_dims(x_target, -1), multiples=[1, num_neighbors])
elif source_shape != target_shape:
raise ValueError('Inconsistent source and target shape.')
y_offset = y_target - y_source_floored
x_offset = x_target - x_source_floored
y_source_indices = tf.cast(y_source_floored, tf.int32)
x_source_indices = tf.cast(x_source_floored, tf.int32)
indices = tf.stack([y_source_indices, x_source_indices], axis=-1)
offsets = tf.stack([y_offset, x_offset], axis=-1)
return offsets, indices
def get_valid_keypoint_mask_for_class(keypoint_coordinates,
class_id,
class_onehot,
class_weights=None,
keypoint_indices=None):
"""Mask keypoints by their class ids and indices.
For a given task, we may want to only consider a subset of instances or
keypoints. This function is used to provide the mask (in terms of weights) to
mark those elements which should be considered based on the classes of the
instances and optionally, their keypoint indices. Note that the NaN values
in the keypoints will also be masked out.
Args:
keypoint_coordinates: A float tensor with shape [num_instances,
num_keypoints, 2] which contains the coordinates of each keypoint.
class_id: An integer representing the target class id to be selected.
class_onehot: A 2D tensor of shape [num_instances, num_classes] repesents
the onehot (or k-hot) encoding of the class for each instance.
class_weights: A 1D tensor of shape [num_instances] repesents the weight of
each instance. If not provided, all instances are weighted equally.
keypoint_indices: A list of integers representing the keypoint indices used
to select the values on the keypoint dimension. If provided, the output
dimension will be [num_instances, len(keypoint_indices)]
Returns:
A tuple of tensors:
mask: A float tensor of shape [num_instances, K], where K is num_keypoints
or len(keypoint_indices) if provided. The tensor has values either 0 or
1 indicating whether an element in the input keypoints should be used.
keypoints_nan_to_zeros: Same as input keypoints with the NaN values
replaced by zeros and selected columns corresponding to the
keypoint_indices (if provided). The shape of this tensor will always be
the same as the output mask.
"""
num_keypoints = tf.shape(keypoint_coordinates)[1]
class_mask = class_onehot[:, class_id]
reshaped_class_mask = tf.tile(
tf.expand_dims(class_mask, axis=-1), multiples=[1, num_keypoints])
not_nan = tf.math.logical_not(tf.math.is_nan(keypoint_coordinates))
mask = reshaped_class_mask * tf.cast(not_nan[:, :, 0], dtype=tf.float32)
keypoints_nan_to_zeros = tf.where(not_nan, keypoint_coordinates,
tf.zeros_like(keypoint_coordinates))
if class_weights is not None:
reshaped_class_weight = tf.tile(
tf.expand_dims(class_weights, axis=-1), multiples=[1, num_keypoints])
mask = mask * reshaped_class_weight
if keypoint_indices is not None:
mask = tf.gather(mask, indices=keypoint_indices, axis=1)
keypoints_nan_to_zeros = tf.gather(
keypoints_nan_to_zeros, indices=keypoint_indices, axis=1)
return mask, keypoints_nan_to_zeros
def blackout_pixel_weights_by_box_regions(height, width, boxes, blackout,
weights=None):
"""Apply weights at pixel locations.
This function is used to generate the pixel weight mask (usually in the output
image dimension). The mask is to ignore some regions when computing loss.
Weights are applied as follows:
- Any region outside of a box gets the default weight 1.0
- Any box for which an explicit weight is specifed gets that weight. If
multiple boxes overlap, the maximum of the weights is applied.
- Any box for which blackout=True is specified will get a weight of 0.0,
regardless of whether an equivalent non-zero weight is specified. Also, the
blackout region takes precedence over other boxes which may overlap with
non-zero weight.
Example:
height = 4
width = 4
boxes = [[0., 0., 2., 2.],
[0., 0., 4., 2.],
[3., 0., 4., 4.]]
blackout = [False, False, True]
weights = [4.0, 3.0, 2.0]
blackout_pixel_weights_by_box_regions(height, width, boxes, blackout,
weights)
>> [[4.0, 4.0, 1.0, 1.0],
[4.0, 4.0, 1.0, 1.0],
[3.0, 3.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]
Args:
height: int, height of the (output) image.
width: int, width of the (output) image.
boxes: A float tensor with shape [num_instances, 4] indicating the
coordinates of the four corners of the boxes.
blackout: A boolean tensor with shape [num_instances] indicating whether to
blackout (zero-out) the weights within the box regions.
weights: An optional float32 tensor with shape [num_instances] indicating
a value to apply in each box region. Note that if blackout=True for a
given box, the weight will be zero. If None, all weights are assumed to be
1.
Returns:
A float tensor with shape [height, width] where all values within the
regions of the blackout boxes are 0.0 and 1.0 (or weights if supplied)
elsewhere.
"""
num_instances, _ = shape_utils.combined_static_and_dynamic_shape(boxes)
# If no annotation instance is provided, return all ones (instead of
# unexpected values) to avoid NaN loss value.
if num_instances == 0:
return tf.ones([height, width], dtype=tf.float32)
(y_grid, x_grid) = image_shape_to_grids(height, width)
y_grid = tf.expand_dims(y_grid, axis=0)
x_grid = tf.expand_dims(x_grid, axis=0)
y_min = tf.expand_dims(boxes[:, 0:1], axis=-1)
x_min = tf.expand_dims(boxes[:, 1:2], axis=-1)
y_max = tf.expand_dims(boxes[:, 2:3], axis=-1)
x_max = tf.expand_dims(boxes[:, 3:], axis=-1)
# Make the mask with all 1.0 in the box regions.
# Shape: [num_instances, height, width]
in_boxes = tf.math.logical_and(
tf.math.logical_and(y_grid >= y_min, y_grid < y_max),
tf.math.logical_and(x_grid >= x_min, x_grid < x_max))
if weights is None:
weights = tf.ones_like(blackout, dtype=tf.float32)
# Compute a [height, width] tensor with the maximum weight in each box, and
# 0.0 elsewhere.
weights_tiled = tf.tile(
weights[:, tf.newaxis, tf.newaxis], [1, height, width])
weights_3d = tf.where(in_boxes, weights_tiled,
tf.zeros_like(weights_tiled))
weights_2d = tf.math.maximum(
tf.math.reduce_max(weights_3d, axis=0), 0.0)
# Add 1.0 to all regions outside a box.
weights_2d = tf.where(
tf.math.reduce_any(in_boxes, axis=0),
weights_2d,
tf.ones_like(weights_2d))
# Now enforce that blackout regions all have zero weights.
keep_region = tf.cast(tf.math.logical_not(blackout), tf.float32)
keep_region_tiled = tf.tile(
keep_region[:, tf.newaxis, tf.newaxis], [1, height, width])
keep_region_3d = tf.where(in_boxes, keep_region_tiled,
tf.ones_like(keep_region_tiled))
keep_region_2d = tf.math.reduce_min(keep_region_3d, axis=0)
return weights_2d * keep_region_2d
def _get_yx_indices_offset_by_radius(radius):
"""Gets the y and x index offsets that are within the radius."""
y_offsets = []
x_offsets = []
for y_offset in range(-radius, radius + 1, 1):
for x_offset in range(-radius, radius + 1, 1):
if x_offset ** 2 + y_offset ** 2 <= radius ** 2:
y_offsets.append(y_offset)
x_offsets.append(x_offset)
return (tf.constant(y_offsets, dtype=tf.float32),
tf.constant(x_offsets, dtype=tf.float32))
def get_surrounding_grids(height, width, y_coordinates, x_coordinates, radius):
"""Gets the indices of the surrounding pixels of the input y, x coordinates.
This function returns the pixel indices corresponding to the (floor of the)
input coordinates and their surrounding pixels within the radius. If the
radius is set to 0, then only the pixels that correspond to the floor of the
coordinates will be returned. If the radius is larger than 0, then all of the
pixels within the radius of the "floor pixels" will also be returned. For
example, if the input coorindate is [2.1, 3.5] and radius is 1, then the five
pixel indices will be returned: [2, 3], [1, 3], [2, 2], [2, 4], [3, 3]. Also,
if the surrounding pixels are outside of valid image region, then the returned
pixel indices will be [0, 0] and its corresponding "valid" value will be
False.
Args:
height: int, the height of the output image.
width: int, the width of the output image.
y_coordinates: A tensor with shape [num_points] representing the absolute
y-coordinates (in the output image space) of the points.
x_coordinates: A tensor with shape [num_points] representing the absolute
x-coordinates (in the output image space) of the points.
radius: int, the radius of the neighboring pixels to be considered and
returned. If set to 0, then only the pixel indices corresponding to the
floor of the input coordinates will be returned.
Returns:
A tuple of three tensors:
y_indices: A [num_points, num_neighbors] float tensor representing the
pixel y indices corresponding to the input points within radius. The
"num_neighbors" is determined by the size of the radius.
x_indices: A [num_points, num_neighbors] float tensor representing the
pixel x indices corresponding to the input points within radius. The
"num_neighbors" is determined by the size of the radius.
valid: A [num_points, num_neighbors] boolean tensor representing whether
each returned index is in valid image region or not.
"""
# Floored y, x: [num_points, 1].
y_center = tf.expand_dims(tf.math.floor(y_coordinates), axis=-1)
x_center = tf.expand_dims(tf.math.floor(x_coordinates), axis=-1)
y_offsets, x_offsets = _get_yx_indices_offset_by_radius(radius)
# Indices offsets: [1, num_neighbors].
y_offsets = tf.expand_dims(y_offsets, axis=0)
x_offsets = tf.expand_dims(x_offsets, axis=0)
# Floor + offsets: [num_points, num_neighbors].
y_output = y_center + y_offsets
x_output = x_center + x_offsets
default_output = tf.zeros_like(y_output)
valid = tf.logical_and(
tf.logical_and(x_output >= 0, x_output < width),
tf.logical_and(y_output >= 0, y_output < height))
y_output = tf.where(valid, y_output, default_output)
x_output = tf.where(valid, x_output, default_output)
return (y_output, x_output, valid) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/target_assigner_utils.py | target_assigner_utils.py |
from six.moves import range
import tensorflow as tf
from object_detection.utils import ops
from object_detection.utils import shape_utils
def create_conv_block(name, num_filters, kernel_size, strides, padding,
use_separable, apply_batchnorm, apply_activation,
conv_hyperparams, is_training, freeze_batchnorm,
conv_bn_act_pattern=True):
"""Create Keras layers for regular or separable convolutions.
Args:
name: String. The name of the layer.
num_filters: Number of filters (channels) for the output feature maps.
kernel_size: A list of length 2: [kernel_height, kernel_width] of the
filters, or a single int if both values are the same.
strides: A list of length 2: [stride_height, stride_width], specifying the
convolution stride, or a single int if both strides are the same.
padding: One of 'VALID' or 'SAME'.
use_separable: Bool. Whether to use depthwise separable convolution instead
of regular convolution.
apply_batchnorm: Bool. Whether to apply a batch normalization layer after
convolution, constructed according to the conv_hyperparams.
apply_activation: Bool. Whether to apply an activation layer after
convolution, constructed according to the conv_hyperparams.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
is_training: Bool. Whether the feature generator is in training mode.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
conv_bn_act_pattern: Bool. By default, when True, the layers returned by
this function are in the order [conv, batchnorm, activation]. Otherwise,
when False, the order of the layers is [activation, conv, batchnorm].
Returns:
A list of keras layers, including (regular or seperable) convolution, and
optionally batch normalization and activation layers.
"""
layers = []
if use_separable:
kwargs = conv_hyperparams.params()
# Both the regularizer and initializer apply to the depthwise layer,
# so we remap the kernel_* to depthwise_* here.
kwargs['depthwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['depthwise_initializer'] = kwargs['kernel_initializer']
# TODO(aom): Verify that the pointwise regularizer/initializer should be set
# here, since this is not the case in feature_map_generators.py
kwargs['pointwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['pointwise_initializer'] = kwargs['kernel_initializer']
layers.append(
tf.keras.layers.SeparableConv2D(
filters=num_filters,
kernel_size=kernel_size,
depth_multiplier=1,
padding=padding,
strides=strides,
name=name + 'separable_conv',
**kwargs))
else:
layers.append(
tf.keras.layers.Conv2D(
filters=num_filters,
kernel_size=kernel_size,
padding=padding,
strides=strides,
name=name + 'conv',
**conv_hyperparams.params()))
if apply_batchnorm:
layers.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name=name + 'batchnorm'))
if apply_activation:
activation_layer = conv_hyperparams.build_activation_layer(
name=name + 'activation')
if conv_bn_act_pattern:
layers.append(activation_layer)
else:
layers = [activation_layer] + layers
return layers
def create_downsample_feature_map_ops(scale, downsample_method,
conv_hyperparams, is_training,
freeze_batchnorm, name):
"""Creates Keras layers for downsampling feature maps.
Args:
scale: Int. The scale factor by which to downsample input feature maps. For
example, in the case of a typical feature map pyramid, the scale factor
between level_i and level_i+1 is 2.
downsample_method: String. The method used for downsampling. Currently
supported methods include 'max_pooling', 'avg_pooling', and
'depthwise_conv'.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
is_training: Bool. Whether the feature generator is in training mode.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
name: String. The name used to prefix the constructed layers.
Returns:
A list of Keras layers which will downsample input feature maps by the
desired scale factor.
"""
layers = []
padding = 'SAME'
stride = int(scale)
kernel_size = stride + 1
if downsample_method == 'max_pooling':
layers.append(
tf.keras.layers.MaxPooling2D(
pool_size=kernel_size,
strides=stride,
padding=padding,
name=name + 'downsample_max_x{}'.format(stride)))
elif downsample_method == 'avg_pooling':
layers.append(
tf.keras.layers.AveragePooling2D(
pool_size=kernel_size,
strides=stride,
padding=padding,
name=name + 'downsample_avg_x{}'.format(stride)))
elif downsample_method == 'depthwise_conv':
layers.append(
tf.keras.layers.DepthwiseConv2D(
kernel_size=kernel_size,
strides=stride,
padding=padding,
name=name + 'downsample_depthwise_x{}'.format(stride)))
layers.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name=name + 'downsample_batchnorm'))
layers.append(
conv_hyperparams.build_activation_layer(name=name +
'downsample_activation'))
else:
raise ValueError('Unknown downsample method: {}'.format(downsample_method))
return layers
def create_upsample_feature_map_ops(scale, use_native_resize_op, name):
"""Creates Keras layers for upsampling feature maps.
Args:
scale: Int. The scale factor by which to upsample input feature maps. For
example, in the case of a typical feature map pyramid, the scale factor
between level_i and level_i-1 is 2.
use_native_resize_op: If True, uses tf.image.resize_nearest_neighbor op for
the upsampling process instead of reshape and broadcasting implementation.
name: String. The name used to prefix the constructed layers.
Returns:
A list of Keras layers which will upsample input feature maps by the
desired scale factor.
"""
layers = []
if use_native_resize_op:
def resize_nearest_neighbor(image):
image_shape = shape_utils.combined_static_and_dynamic_shape(image)
return tf.image.resize_nearest_neighbor(
image, [image_shape[1] * scale, image_shape[2] * scale])
layers.append(
tf.keras.layers.Lambda(
resize_nearest_neighbor,
name=name + 'nearest_neighbor_upsampling_x{}'.format(scale)))
else:
def nearest_neighbor_upsampling(image):
return ops.nearest_neighbor_upsampling(image, scale=scale)
layers.append(
tf.keras.layers.Lambda(
nearest_neighbor_upsampling,
name=name + 'nearest_neighbor_upsampling_x{}'.format(scale)))
return layers
def create_resample_feature_map_ops(input_scale_factor, output_scale_factor,
downsample_method, use_native_resize_op,
conv_hyperparams, is_training,
freeze_batchnorm, name):
"""Creates Keras layers for downsampling or upsampling feature maps.
Args:
input_scale_factor: Int. Scale factor of the input feature map. For example,
for a feature pyramid where each successive level halves its spatial
resolution, the scale factor of a level is 2^level. The input and output
scale factors are used to compute the scale for upsampling or downsamling,
so they should be evenly divisible.
output_scale_factor: Int. Scale factor of the output feature map. See
input_scale_factor for additional details.
downsample_method: String. The method used for downsampling. See
create_downsample_feature_map_ops for details on supported methods.
use_native_resize_op: If True, uses tf.image.resize_nearest_neighbor op for
the upsampling process instead of reshape and broadcasting implementation.
See create_upsample_feature_map_ops for details.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
is_training: Bool. Whether the feature generator is in training mode.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
name: String. The name used to prefix the constructed layers.
Returns:
A list of Keras layers which will downsample or upsample input feature maps
to match the desired output feature map scale.
"""
if input_scale_factor < output_scale_factor:
if output_scale_factor % input_scale_factor != 0:
raise ValueError('Invalid scale factor: input scale 1/{} not divisible by'
'output scale 1/{}'.format(input_scale_factor,
output_scale_factor))
scale = output_scale_factor // input_scale_factor
return create_downsample_feature_map_ops(scale, downsample_method,
conv_hyperparams, is_training,
freeze_batchnorm, name)
elif input_scale_factor > output_scale_factor:
if input_scale_factor % output_scale_factor != 0:
raise ValueError('Invalid scale factor: input scale 1/{} not a divisor of'
'output scale 1/{}'.format(input_scale_factor,
output_scale_factor))
scale = input_scale_factor // output_scale_factor
return create_upsample_feature_map_ops(scale, use_native_resize_op, name)
else:
return []
# TODO(aom): Add tests for this module in a followup CL.
class BiFPNCombineLayer(tf.keras.layers.Layer):
"""Combines multiple input feature maps into a single output feature map.
A Keras layer which combines multiple input feature maps into a single output
feature map, according to the desired combination method. Options for
combining feature maps include simple summation, or several types of weighted
sums using learned weights for each input feature map. These include
'weighted_sum', 'attention', and 'fast_attention'. For more details, see the
EfficientDet paper by Tan et al, see arxiv.org/abs/1911.09070.
Specifically, this layer takes a list of tensors as input, all of the same
shape, and returns a single tensor, also of the same shape.
"""
def __init__(self, combine_method, **kwargs):
"""Constructor.
Args:
combine_method: String. The method used to combine the input feature maps
into a single output feature map. One of 'sum', 'weighted_sum',
'attention', or 'fast_attention'.
**kwargs: Additional Keras layer arguments.
"""
super(BiFPNCombineLayer, self).__init__(**kwargs)
self.combine_method = combine_method
def _combine_weighted_sum(self, inputs):
return tf.squeeze(
tf.linalg.matmul(tf.stack(inputs, axis=-1), self.per_input_weights),
axis=[-1])
def _combine_attention(self, inputs):
normalized_weights = tf.nn.softmax(self.per_input_weights)
return tf.squeeze(
tf.linalg.matmul(tf.stack(inputs, axis=-1), normalized_weights),
axis=[-1])
def _combine_fast_attention(self, inputs):
weights_non_neg = tf.nn.relu(self.per_input_weights)
normalizer = tf.reduce_sum(weights_non_neg) + 0.0001
normalized_weights = weights_non_neg / normalizer
return tf.squeeze(
tf.linalg.matmul(tf.stack(inputs, axis=-1), normalized_weights),
axis=[-1])
def build(self, input_shape):
if not isinstance(input_shape, list):
raise ValueError('A BiFPN combine layer should be called '
'on a list of inputs.')
if len(input_shape) < 2:
raise ValueError('A BiFPN combine layer should be called '
'on a list of at least 2 inputs. '
'Got ' + str(len(input_shape)) + ' inputs.')
if self.combine_method == 'sum':
self._combine_op = tf.keras.layers.Add()
elif self.combine_method == 'weighted_sum':
self._combine_op = self._combine_weighted_sum
elif self.combine_method == 'attention':
self._combine_op = self._combine_attention
elif self.combine_method == 'fast_attention':
self._combine_op = self._combine_fast_attention
else:
raise ValueError('Unknown combine type: {}'.format(self.combine_method))
if self.combine_method in {'weighted_sum', 'attention', 'fast_attention'}:
self.per_input_weights = self.add_weight(
name='bifpn_combine_weights',
shape=(len(input_shape), 1),
initializer='ones',
trainable=True)
super(BiFPNCombineLayer, self).build(input_shape)
def call(self, inputs):
"""Combines multiple input feature maps into a single output feature map.
Executed when calling the `.__call__` method on input.
Args:
inputs: A list of tensors where all tensors have the same shape, [batch,
height_i, width_i, depth_i].
Returns:
A single tensor, with the same shape as the input tensors,
[batch, height_i, width_i, depth_i].
"""
return self._combine_op(inputs)
def compute_output_shape(self, input_shape):
output_shape = input_shape[0]
for i in range(1, len(input_shape)):
if input_shape[i] != output_shape:
raise ValueError(
'Inputs could not be combined. Shapes should match, '
'but input_shape[0] is {} while input_shape[{}] is {}'.format(
output_shape, i, input_shape[i])) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/bifpn_utils.py | bifpn_utils.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def area(boxes):
"""Computes area of boxes.
Args:
boxes: Numpy array with shape [N, 4] holding N boxes
Returns:
a numpy array with shape [N*1] representing box areas
"""
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def intersection(boxes1, boxes2):
"""Compute pairwise intersection areas between boxes.
Args:
boxes1: a numpy array with shape [N, 4] holding N boxes
boxes2: a numpy array with shape [M, 4] holding M boxes
Returns:
a numpy array with shape [N*M] representing pairwise intersection area
"""
[y_min1, x_min1, y_max1, x_max1] = np.split(boxes1, 4, axis=1)
[y_min2, x_min2, y_max2, x_max2] = np.split(boxes2, 4, axis=1)
all_pairs_min_ymax = np.minimum(y_max1, np.transpose(y_max2))
all_pairs_max_ymin = np.maximum(y_min1, np.transpose(y_min2))
intersect_heights = np.maximum(
np.zeros(all_pairs_max_ymin.shape),
all_pairs_min_ymax - all_pairs_max_ymin)
all_pairs_min_xmax = np.minimum(x_max1, np.transpose(x_max2))
all_pairs_max_xmin = np.maximum(x_min1, np.transpose(x_min2))
intersect_widths = np.maximum(
np.zeros(all_pairs_max_xmin.shape),
all_pairs_min_xmax - all_pairs_max_xmin)
return intersect_heights * intersect_widths
def iou(boxes1, boxes2):
"""Computes pairwise intersection-over-union between box collections.
Args:
boxes1: a numpy array with shape [N, 4] holding N boxes.
boxes2: a numpy array with shape [M, 4] holding N boxes.
Returns:
a numpy array with shape [N, M] representing pairwise iou scores.
"""
intersect = intersection(boxes1, boxes2)
area1 = area(boxes1)
area2 = area(boxes2)
union = np.expand_dims(area1, axis=1) + np.expand_dims(
area2, axis=0) - intersect
return intersect / union
def ioa(boxes1, boxes2):
"""Computes pairwise intersection-over-area between box collections.
Intersection-over-area (ioa) between two boxes box1 and box2 is defined as
their intersection area over box2's area. Note that ioa is not symmetric,
that is, IOA(box1, box2) != IOA(box2, box1).
Args:
boxes1: a numpy array with shape [N, 4] holding N boxes.
boxes2: a numpy array with shape [M, 4] holding N boxes.
Returns:
a numpy array with shape [N, M] representing pairwise ioa scores.
"""
intersect = intersection(boxes1, boxes2)
areas = np.expand_dims(area(boxes2), axis=0)
return intersect / areas | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/np_box_ops.py | np_box_ops.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
def extract_submodel(model, inputs, outputs, name=None):
"""Extracts a section of a Keras model into a new model.
This method walks an existing model from the specified outputs back to the
specified inputs in order to construct a new model containing only a portion
of the old model, while sharing the layers and weights with the original
model.
WARNING: This method does not work for submodels containing layers that have
been used multiple times in the original model, or in other models beyond
the original model. (E.g. does not work for submodels that contain layers that
use shared weights). This also means that multiple overlapping submodels
cannot be extracted from the same model.
It also relies on recursion and will hit python's recursion limit for large
submodels.
Args:
model: The existing Keras model this method extracts a submodel from.
inputs: The layer inputs in the existing model that start the submodel
outputs: The layer outputs in the existing model that should be output by
the submodel
name: The name for the extracted model
Returns:
The extracted submodel specified by the given inputs and outputs
"""
output_to_layer = {}
output_to_layer_input = {}
for layer in model.layers:
layer_output = layer.output
layer_inputs = layer.input
output_to_layer[layer_output.experimental_ref()] = layer
output_to_layer_input[layer_output.experimental_ref()] = layer_inputs
model_inputs_dict = {}
memoized_results = {}
# Relies on recursion, very low limit in python
def _recurse_in_model(tensor):
"""Walk the existing model recursively to copy a submodel."""
if tensor.experimental_ref() in memoized_results:
return memoized_results[tensor.experimental_ref()]
if (tensor.experimental_ref() == inputs.experimental_ref()) or (
isinstance(inputs, list) and tensor in inputs):
if tensor.experimental_ref() not in model_inputs_dict:
model_inputs_dict[tensor.experimental_ref()] = tf.keras.layers.Input(
tensor=tensor)
out = model_inputs_dict[tensor.experimental_ref()]
else:
cur_inputs = output_to_layer_input[tensor.experimental_ref()]
cur_layer = output_to_layer[tensor.experimental_ref()]
if isinstance(cur_inputs, list):
out = cur_layer([_recurse_in_model(inp) for inp in cur_inputs])
else:
out = cur_layer(_recurse_in_model(cur_inputs))
memoized_results[tensor.experimental_ref()] = out
return out
if isinstance(outputs, list):
model_outputs = [_recurse_in_model(tensor) for tensor in outputs]
else:
model_outputs = _recurse_in_model(outputs)
if isinstance(inputs, list):
model_inputs = [
model_inputs_dict[tensor.experimental_ref()] for tensor in inputs
]
else:
model_inputs = model_inputs_dict[inputs.experimental_ref()]
return tf.keras.Model(inputs=model_inputs, outputs=model_outputs, name=name) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/model_util.py | model_util.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.utils import static_shape
get_dim_as_int = static_shape.get_dim_as_int
def _is_tensor(t):
"""Returns a boolean indicating whether the input is a tensor.
Args:
t: the input to be tested.
Returns:
a boolean that indicates whether t is a tensor.
"""
return isinstance(t, (tf.Tensor, tf.SparseTensor, tf.Variable))
def _set_dim_0(t, d0):
"""Sets the 0-th dimension of the input tensor.
Args:
t: the input tensor, assuming the rank is at least 1.
d0: an integer indicating the 0-th dimension of the input tensor.
Returns:
the tensor t with the 0-th dimension set.
"""
t_shape = t.get_shape().as_list()
t_shape[0] = d0
t.set_shape(t_shape)
return t
def pad_tensor(t, length):
"""Pads the input tensor with 0s along the first dimension up to the length.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after padding, assuming length <= t.shape[0].
Returns:
padded_t: the padded tensor, whose first dimension is length. If the length
is an integer, the first dimension of padded_t is set to length
statically.
"""
# Computing the padding statically makes the operation work with XLA.
rank = len(t.get_shape())
paddings = [[0 for _ in range(2)] for _ in range(rank)]
t_d0 = tf.shape(t)[0]
if isinstance(length, int) or len(length.get_shape()) == 0: # pylint:disable=g-explicit-length-test
paddings[0][1] = length - t_d0
else:
paddings[0][1] = length[0] - t_d0
return tf.pad(t, paddings)
def clip_tensor(t, length):
"""Clips the input tensor along the first dimension up to the length.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after clipping, assuming length <= t.shape[0].
Returns:
clipped_t: the clipped tensor, whose first dimension is length. If the
length is an integer, the first dimension of clipped_t is set to length
statically.
"""
clipped_t = tf.gather(t, tf.range(length))
if not _is_tensor(length):
clipped_t = _set_dim_0(clipped_t, length)
return clipped_t
def pad_or_clip_tensor(t, length):
"""Pad or clip the input tensor along the first dimension.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after processing.
Returns:
processed_t: the processed tensor, whose first dimension is length. If the
length is an integer, the first dimension of the processed tensor is set
to length statically.
"""
return pad_or_clip_nd(t, [length] + t.shape.as_list()[1:])
def pad_or_clip_nd(tensor, output_shape):
"""Pad or Clip given tensor to the output shape.
Args:
tensor: Input tensor to pad or clip.
output_shape: A list of integers / scalar tensors (or None for dynamic dim)
representing the size to pad or clip each dimension of the input tensor.
Returns:
Input tensor padded and clipped to the output shape.
"""
tensor_shape = tf.shape(tensor)
clip_size = [
tf.where(tensor_shape[i] - shape > 0, shape, -1)
if shape is not None else -1 for i, shape in enumerate(output_shape)
]
clipped_tensor = tf.slice(
tensor,
begin=tf.zeros(len(clip_size), dtype=tf.int32),
size=clip_size)
# Pad tensor if the shape of clipped tensor is smaller than the expected
# shape.
clipped_tensor_shape = tf.shape(clipped_tensor)
trailing_paddings = [
shape - clipped_tensor_shape[i] if shape is not None else 0
for i, shape in enumerate(output_shape)
]
paddings = tf.stack(
[
tf.zeros(len(trailing_paddings), dtype=tf.int32),
trailing_paddings
],
axis=1)
padded_tensor = tf.pad(clipped_tensor, paddings=paddings)
output_static_shape = [
dim if not isinstance(dim, tf.Tensor) else None for dim in output_shape
]
padded_tensor.set_shape(output_static_shape)
return padded_tensor
def combined_static_and_dynamic_shape(tensor):
"""Returns a list containing static and dynamic values for the dimensions.
Returns a list of static and dynamic values for shape dimensions. This is
useful to preserve static shapes when available in reshape operation.
Args:
tensor: A tensor of any type.
Returns:
A list of size tensor.shape.ndims containing integers or a scalar tensor.
"""
static_tensor_shape = tensor.shape.as_list()
dynamic_tensor_shape = tf.shape(tensor)
combined_shape = []
for index, dim in enumerate(static_tensor_shape):
if dim is not None:
combined_shape.append(dim)
else:
combined_shape.append(dynamic_tensor_shape[index])
return combined_shape
def static_or_dynamic_map_fn(fn, elems, dtype=None,
parallel_iterations=32, back_prop=True):
"""Runs map_fn as a (static) for loop when possible.
This function rewrites the map_fn as an explicit unstack input -> for loop
over function calls -> stack result combination. This allows our graphs to
be acyclic when the batch size is static.
For comparison, see https://www.tensorflow.org/api_docs/python/tf/map_fn.
Note that `static_or_dynamic_map_fn` currently is not *fully* interchangeable
with the default tf.map_fn function as it does not accept nested inputs (only
Tensors or lists of Tensors). Likewise, the output of `fn` can only be a
Tensor or list of Tensors.
TODO(jonathanhuang): make this function fully interchangeable with tf.map_fn.
Args:
fn: The callable to be performed. It accepts one argument, which will have
the same structure as elems. Its output must have the
same structure as elems.
elems: A tensor or list of tensors, each of which will
be unpacked along their first dimension. The sequence of the
resulting slices will be applied to fn.
dtype: (optional) The output type(s) of fn. If fn returns a structure of
Tensors differing from the structure of elems, then dtype is not optional
and must have the same structure as the output of fn.
parallel_iterations: (optional) number of batch items to process in
parallel. This flag is only used if the native tf.map_fn is used
and defaults to 32 instead of 10 (unlike the standard tf.map_fn default).
back_prop: (optional) True enables support for back propagation.
This flag is only used if the native tf.map_fn is used.
Returns:
A tensor or sequence of tensors. Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, from first to last.
Raises:
ValueError: if `elems` a Tensor or a list of Tensors.
ValueError: if `fn` does not return a Tensor or list of Tensors
"""
if isinstance(elems, list):
for elem in elems:
if not isinstance(elem, tf.Tensor):
raise ValueError('`elems` must be a Tensor or list of Tensors.')
elem_shapes = [elem.shape.as_list() for elem in elems]
# Fall back on tf.map_fn if shapes of each entry of `elems` are None or fail
# to all be the same size along the batch dimension.
for elem_shape in elem_shapes:
if (not elem_shape or not elem_shape[0]
or elem_shape[0] != elem_shapes[0][0]):
return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop)
arg_tuples = zip(*[tf.unstack(elem) for elem in elems])
outputs = [fn(arg_tuple) for arg_tuple in arg_tuples]
else:
if not isinstance(elems, tf.Tensor):
raise ValueError('`elems` must be a Tensor or list of Tensors.')
elems_shape = elems.shape.as_list()
if not elems_shape or not elems_shape[0]:
return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop)
outputs = [fn(arg) for arg in tf.unstack(elems)]
# Stack `outputs`, which is a list of Tensors or list of lists of Tensors
if all([isinstance(output, tf.Tensor) for output in outputs]):
return tf.stack(outputs)
else:
if all([isinstance(output, list) for output in outputs]):
if all([all(
[isinstance(entry, tf.Tensor) for entry in output_list])
for output_list in outputs]):
return [tf.stack(output_tuple) for output_tuple in zip(*outputs)]
raise ValueError('`fn` should return a Tensor or a list of Tensors.')
def check_min_image_dim(min_dim, image_tensor):
"""Checks that the image width/height are greater than some number.
This function is used to check that the width and height of an image are above
a certain value. If the image shape is static, this function will perform the
check at graph construction time. Otherwise, if the image shape varies, an
Assertion control dependency will be added to the graph.
Args:
min_dim: The minimum number of pixels along the width and height of the
image.
image_tensor: The image tensor to check size for.
Returns:
If `image_tensor` has dynamic size, return `image_tensor` with a Assert
control dependency. Otherwise returns image_tensor.
Raises:
ValueError: if `image_tensor`'s' width or height is smaller than `min_dim`.
"""
image_shape = image_tensor.get_shape()
image_height = static_shape.get_height(image_shape)
image_width = static_shape.get_width(image_shape)
if image_height is None or image_width is None:
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(image_tensor)[1], min_dim),
tf.greater_equal(tf.shape(image_tensor)[2], min_dim)),
['image size must be >= {} in both height and width.'.format(min_dim)])
with tf.control_dependencies([shape_assert]):
return tf.identity(image_tensor)
if image_height < min_dim or image_width < min_dim:
raise ValueError(
'image size must be >= %d in both height and width; image dim = %d,%d' %
(min_dim, image_height, image_width))
return image_tensor
def assert_shape_equal(shape_a, shape_b):
"""Asserts that shape_a and shape_b are equal.
If the shapes are static, raises a ValueError when the shapes
mismatch.
If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes
mismatch.
Args:
shape_a: a list containing shape of the first tensor.
shape_b: a list containing shape of the second tensor.
Returns:
Either a tf.no_op() when shapes are all static and a tf.assert_equal() op
when the shapes are dynamic.
Raises:
ValueError: When shapes are both static and unequal.
"""
if (all(isinstance(dim, int) for dim in shape_a) and
all(isinstance(dim, int) for dim in shape_b)):
if shape_a != shape_b:
raise ValueError('Unequal shapes {}, {}'.format(shape_a, shape_b))
else: return tf.no_op()
else:
return tf.assert_equal(shape_a, shape_b)
def assert_shape_equal_along_first_dimension(shape_a, shape_b):
"""Asserts that shape_a and shape_b are the same along the 0th-dimension.
If the shapes are static, raises a ValueError when the shapes
mismatch.
If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes
mismatch.
Args:
shape_a: a list containing shape of the first tensor.
shape_b: a list containing shape of the second tensor.
Returns:
Either a tf.no_op() when shapes are all static and a tf.assert_equal() op
when the shapes are dynamic.
Raises:
ValueError: When shapes are both static and unequal.
"""
if isinstance(shape_a[0], int) and isinstance(shape_b[0], int):
if shape_a[0] != shape_b[0]:
raise ValueError('Unequal first dimension {}, {}'.format(
shape_a[0], shape_b[0]))
else: return tf.no_op()
else:
return tf.assert_equal(shape_a[0], shape_b[0])
def assert_box_normalized(boxes, maximum_normalized_coordinate=1.1):
"""Asserts the input box tensor is normalized.
Args:
boxes: a tensor of shape [N, 4] where N is the number of boxes.
maximum_normalized_coordinate: Maximum coordinate value to be considered
as normalized, default to 1.1.
Returns:
a tf.Assert op which fails when the input box tensor is not normalized.
Raises:
ValueError: When the input box tensor is not normalized.
"""
box_minimum = tf.reduce_min(boxes)
box_maximum = tf.reduce_max(boxes)
return tf.Assert(
tf.logical_and(
tf.less_equal(box_maximum, maximum_normalized_coordinate),
tf.greater_equal(box_minimum, 0)),
[boxes])
def flatten_dimensions(inputs, first, last):
"""Flattens `K-d` tensor along [first, last) dimensions.
Converts `inputs` with shape [D0, D1, ..., D(K-1)] into a tensor of shape
[D0, D1, ..., D(first) * D(first+1) * ... * D(last-1), D(last), ..., D(K-1)].
Example:
`inputs` is a tensor with initial shape [10, 5, 20, 20, 3].
new_tensor = flatten_dimensions(inputs, first=1, last=3)
new_tensor.shape -> [10, 100, 20, 3].
Args:
inputs: a tensor with shape [D0, D1, ..., D(K-1)].
first: first value for the range of dimensions to flatten.
last: last value for the range of dimensions to flatten. Note that the last
dimension itself is excluded.
Returns:
a tensor with shape
[D0, D1, ..., D(first) * D(first + 1) * ... * D(last - 1), D(last), ...,
D(K-1)].
Raises:
ValueError: if first and last arguments are incorrect.
"""
if first >= inputs.shape.ndims or last > inputs.shape.ndims:
raise ValueError('`first` and `last` must be less than inputs.shape.ndims. '
'found {} and {} respectively while ndims is {}'.format(
first, last, inputs.shape.ndims))
shape = combined_static_and_dynamic_shape(inputs)
flattened_dim_prod = tf.reduce_prod(shape[first:last],
keepdims=True)
new_shape = tf.concat([shape[:first], flattened_dim_prod,
shape[last:]], axis=0)
return tf.reshape(inputs, new_shape)
def flatten_first_n_dimensions(inputs, n):
"""Flattens `K-d` tensor along first n dimension to be a `(K-n+1)-d` tensor.
Converts `inputs` with shape [D0, D1, ..., D(K-1)] into a tensor of shape
[D0 * D1 * ... * D(n-1), D(n), ... D(K-1)].
Example:
`inputs` is a tensor with initial shape [10, 5, 20, 20, 3].
new_tensor = flatten_first_n_dimensions(inputs, 2)
new_tensor.shape -> [50, 20, 20, 3].
Args:
inputs: a tensor with shape [D0, D1, ..., D(K-1)].
n: The number of dimensions to flatten.
Returns:
a tensor with shape [D0 * D1 * ... * D(n-1), D(n), ... D(K-1)].
"""
return flatten_dimensions(inputs, first=0, last=n)
def expand_first_dimension(inputs, dims):
"""Expands `K-d` tensor along first dimension to be a `(K+n-1)-d` tensor.
Converts `inputs` with shape [D0, D1, ..., D(K-1)] into a tensor of shape
[dims[0], dims[1], ..., dims[-1], D1, ..., D(k-1)].
Example:
`inputs` is a tensor with shape [50, 20, 20, 3].
new_tensor = expand_first_dimension(inputs, [10, 5]).
new_tensor.shape -> [10, 5, 20, 20, 3].
Args:
inputs: a tensor with shape [D0, D1, ..., D(K-1)].
dims: List with new dimensions to expand first axis into. The length of
`dims` is typically 2 or larger.
Returns:
a tensor with shape [dims[0], dims[1], ..., dims[-1], D1, ..., D(k-1)].
"""
inputs_shape = combined_static_and_dynamic_shape(inputs)
expanded_shape = tf.stack(dims + inputs_shape[1:])
# Verify that it is possible to expand the first axis of inputs.
assert_op = tf.assert_equal(
inputs_shape[0], tf.reduce_prod(tf.stack(dims)),
message=('First dimension of `inputs` cannot be expanded into provided '
'`dims`'))
with tf.control_dependencies([assert_op]):
inputs_reshaped = tf.reshape(inputs, expanded_shape)
return inputs_reshaped
def resize_images_and_return_shapes(inputs, image_resizer_fn):
"""Resizes images using the given function and returns their true shapes.
Args:
inputs: a float32 Tensor representing a batch of inputs of shape
[batch_size, height, width, channels].
image_resizer_fn: a function which takes in a single image and outputs
a resized image and its original shape.
Returns:
resized_inputs: The inputs resized according to image_resizer_fn.
true_image_shapes: A integer tensor of shape [batch_size, 3]
representing the height, width and number of channels in inputs.
"""
if inputs.dtype is not tf.float32:
raise ValueError('`resize_images_and_return_shapes` expects a'
' tf.float32 tensor')
# TODO(jonathanhuang): revisit whether to always use batch size as
# the number of parallel iterations vs allow for dynamic batching.
outputs = static_or_dynamic_map_fn(
image_resizer_fn,
elems=inputs,
dtype=[tf.float32, tf.int32])
resized_inputs = outputs[0]
true_image_shapes = outputs[1]
return resized_inputs, true_image_shapes | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/shape_utils.py | shape_utils.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
class BoxList(object):
"""Box collection.
BoxList represents a list of bounding boxes as numpy array, where each
bounding box is represented as a row of 4 numbers,
[y_min, x_min, y_max, x_max]. It is assumed that all bounding boxes within a
given list correspond to a single image.
Optionally, users can add additional related fields (such as
objectness/classification scores).
"""
def __init__(self, data):
"""Constructs box collection.
Args:
data: a numpy array of shape [N, 4] representing box coordinates
Raises:
ValueError: if bbox data is not a numpy array
ValueError: if invalid dimensions for bbox data
"""
if not isinstance(data, np.ndarray):
raise ValueError('data must be a numpy array.')
if len(data.shape) != 2 or data.shape[1] != 4:
raise ValueError('Invalid dimensions for box data.')
if data.dtype != np.float32 and data.dtype != np.float64:
raise ValueError('Invalid data type for box data: float is required.')
if not self._is_valid_boxes(data):
raise ValueError('Invalid box data. data must be a numpy array of '
'N*[y_min, x_min, y_max, x_max]')
self.data = {'boxes': data}
def num_boxes(self):
"""Return number of boxes held in collections."""
return self.data['boxes'].shape[0]
def get_extra_fields(self):
"""Return all non-box fields."""
return [k for k in self.data.keys() if k != 'boxes']
def has_field(self, field):
return field in self.data
def add_field(self, field, field_data):
"""Add data to a specified field.
Args:
field: a string parameter used to speficy a related field to be accessed.
field_data: a numpy array of [N, ...] representing the data associated
with the field.
Raises:
ValueError: if the field is already exist or the dimension of the field
data does not matches the number of boxes.
"""
if self.has_field(field):
raise ValueError('Field ' + field + 'already exists')
if len(field_data.shape) < 1 or field_data.shape[0] != self.num_boxes():
raise ValueError('Invalid dimensions for field data')
self.data[field] = field_data
def get(self):
"""Convenience function for accesssing box coordinates.
Returns:
a numpy array of shape [N, 4] representing box corners
"""
return self.get_field('boxes')
def get_field(self, field):
"""Accesses data associated with the specified field in the box collection.
Args:
field: a string parameter used to speficy a related field to be accessed.
Returns:
a numpy 1-d array representing data of an associated field
Raises:
ValueError: if invalid field
"""
if not self.has_field(field):
raise ValueError('field {} does not exist'.format(field))
return self.data[field]
def get_coordinates(self):
"""Get corner coordinates of boxes.
Returns:
a list of 4 1-d numpy arrays [y_min, x_min, y_max, x_max]
"""
box_coordinates = self.get()
y_min = box_coordinates[:, 0]
x_min = box_coordinates[:, 1]
y_max = box_coordinates[:, 2]
x_max = box_coordinates[:, 3]
return [y_min, x_min, y_max, x_max]
def _is_valid_boxes(self, data):
"""Check whether data fullfills the format of N*[ymin, xmin, ymax, xmin].
Args:
data: a numpy array of shape [N, 4] representing box coordinates
Returns:
a boolean indicating whether all ymax of boxes are equal or greater than
ymin, and all xmax of boxes are equal or greater than xmin.
"""
if data.shape[0] > 0:
for i in range(data.shape[0]):
if data[i, 0] > data[i, 2] or data[i, 1] > data[i, 3]:
return False
return True | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/np_box_list.py | np_box_list.py |
"""Library of common learning rate schedules."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
def _learning_rate_return_value(eager_decay_rate):
"""Helper function to return proper learning rate based on tf version."""
if tf.executing_eagerly():
return eager_decay_rate
else:
return eager_decay_rate()
def exponential_decay_with_burnin(global_step,
learning_rate_base,
learning_rate_decay_steps,
learning_rate_decay_factor,
burnin_learning_rate=0.0,
burnin_steps=0,
min_learning_rate=0.0,
staircase=True):
"""Exponential decay schedule with burn-in period.
In this schedule, learning rate is fixed at burnin_learning_rate
for a fixed period, before transitioning to a regular exponential
decay schedule.
Args:
global_step: int tensor representing global step.
learning_rate_base: base learning rate.
learning_rate_decay_steps: steps to take between decaying the learning rate.
Note that this includes the number of burn-in steps.
learning_rate_decay_factor: multiplicative factor by which to decay
learning rate.
burnin_learning_rate: initial learning rate during burn-in period. If
0.0 (which is the default), then the burn-in learning rate is simply
set to learning_rate_base.
burnin_steps: number of steps to use burnin learning rate.
min_learning_rate: the minimum learning rate.
staircase: whether use staircase decay.
Returns:
If executing eagerly:
returns a no-arg callable that outputs the (scalar)
float tensor learning rate given the current value of global_step.
If in a graph:
immediately returns a (scalar) float tensor representing learning rate.
"""
if burnin_learning_rate == 0:
burnin_learning_rate = learning_rate_base
def eager_decay_rate():
"""Callable to compute the learning rate."""
post_burnin_learning_rate = tf.train.exponential_decay(
learning_rate_base,
global_step - burnin_steps,
learning_rate_decay_steps,
learning_rate_decay_factor,
staircase=staircase)
if callable(post_burnin_learning_rate):
post_burnin_learning_rate = post_burnin_learning_rate()
return tf.maximum(tf.where(
tf.less(tf.cast(global_step, tf.int32), tf.constant(burnin_steps)),
tf.constant(burnin_learning_rate),
post_burnin_learning_rate), min_learning_rate, name='learning_rate')
return _learning_rate_return_value(eager_decay_rate)
def exponential_decay_with_warmup(global_step,
learning_rate_base,
learning_rate_decay_steps,
learning_rate_decay_factor,
warmup_learning_rate=0.0,
warmup_steps=0,
min_learning_rate=0.0,
staircase=True):
"""Exponential decay schedule with warm up period.
Args:
global_step: int tensor representing global step.
learning_rate_base: base learning rate.
learning_rate_decay_steps: steps to take between decaying the learning rate.
Note that this includes the number of burn-in steps.
learning_rate_decay_factor: multiplicative factor by which to decay learning
rate.
warmup_learning_rate: initial learning rate during warmup period.
warmup_steps: number of steps to use warmup learning rate.
min_learning_rate: the minimum learning rate.
staircase: whether use staircase decay.
Returns:
If executing eagerly:
returns a no-arg callable that outputs the (scalar)
float tensor learning rate given the current value of global_step.
If in a graph:
immediately returns a (scalar) float tensor representing learning rate.
"""
def eager_decay_rate():
"""Callable to compute the learning rate."""
post_warmup_learning_rate = tf.train.exponential_decay(
learning_rate_base,
global_step - warmup_steps,
learning_rate_decay_steps,
learning_rate_decay_factor,
staircase=staircase)
if callable(post_warmup_learning_rate):
post_warmup_learning_rate = post_warmup_learning_rate()
if learning_rate_base < warmup_learning_rate:
raise ValueError('learning_rate_base must be larger or equal to '
'warmup_learning_rate.')
slope = (learning_rate_base - warmup_learning_rate) / warmup_steps
warmup_rate = slope * tf.cast(global_step,
tf.float32) + warmup_learning_rate
learning_rate = tf.where(
tf.less(tf.cast(global_step, tf.int32), tf.constant(warmup_steps)),
warmup_rate,
tf.maximum(post_warmup_learning_rate, min_learning_rate),
name='learning_rate')
return learning_rate
return _learning_rate_return_value(eager_decay_rate)
def cosine_decay_with_warmup(global_step,
learning_rate_base,
total_steps,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0):
"""Cosine decay schedule with warm up period.
Cosine annealing learning rate as described in:
Loshchilov and Hutter, SGDR: Stochastic Gradient Descent with Warm Restarts.
ICLR 2017. https://arxiv.org/abs/1608.03983
In this schedule, the learning rate grows linearly from warmup_learning_rate
to learning_rate_base for warmup_steps, then transitions to a cosine decay
schedule.
Args:
global_step: int64 (scalar) tensor representing global step.
learning_rate_base: base learning rate.
total_steps: total number of training steps.
warmup_learning_rate: initial learning rate for warm up.
warmup_steps: number of warmup steps.
hold_base_rate_steps: Optional number of steps to hold base learning rate
before decaying.
Returns:
If executing eagerly:
returns a no-arg callable that outputs the (scalar)
float tensor learning rate given the current value of global_step.
If in a graph:
immediately returns a (scalar) float tensor representing learning rate.
Raises:
ValueError: if warmup_learning_rate is larger than learning_rate_base,
or if warmup_steps is larger than total_steps.
"""
if total_steps < warmup_steps:
raise ValueError('total_steps must be larger or equal to '
'warmup_steps.')
def eager_decay_rate():
"""Callable to compute the learning rate."""
learning_rate = 0.5 * learning_rate_base * (1 + tf.cos(
np.pi *
(tf.cast(global_step, tf.float32) - warmup_steps - hold_base_rate_steps
) / float(total_steps - warmup_steps - hold_base_rate_steps)))
if hold_base_rate_steps > 0:
learning_rate = tf.where(
global_step > warmup_steps + hold_base_rate_steps,
learning_rate, learning_rate_base)
if warmup_steps > 0:
if learning_rate_base < warmup_learning_rate:
raise ValueError('learning_rate_base must be larger or equal to '
'warmup_learning_rate.')
slope = (learning_rate_base - warmup_learning_rate) / warmup_steps
warmup_rate = slope * tf.cast(global_step,
tf.float32) + warmup_learning_rate
learning_rate = tf.where(global_step < warmup_steps, warmup_rate,
learning_rate)
return tf.where(global_step > total_steps, 0.0, learning_rate,
name='learning_rate')
return _learning_rate_return_value(eager_decay_rate)
def manual_stepping(global_step, boundaries, rates, warmup=False):
"""Manually stepped learning rate schedule.
This function provides fine grained control over learning rates. One must
specify a sequence of learning rates as well as a set of integer steps
at which the current learning rate must transition to the next. For example,
if boundaries = [5, 10] and rates = [.1, .01, .001], then the learning
rate returned by this function is .1 for global_step=0,...,4, .01 for
global_step=5...9, and .001 for global_step=10 and onward.
Args:
global_step: int64 (scalar) tensor representing global step.
boundaries: a list of global steps at which to switch learning
rates. This list is assumed to consist of increasing positive integers.
rates: a list of (float) learning rates corresponding to intervals between
the boundaries. The length of this list must be exactly
len(boundaries) + 1.
warmup: Whether to linearly interpolate learning rate for steps in
[0, boundaries[0]].
Returns:
If executing eagerly:
returns a no-arg callable that outputs the (scalar)
float tensor learning rate given the current value of global_step.
If in a graph:
immediately returns a (scalar) float tensor representing learning rate.
Raises:
ValueError: if one of the following checks fails:
1. boundaries is a strictly increasing list of positive integers
2. len(rates) == len(boundaries) + 1
3. boundaries[0] != 0
"""
if any([b < 0 for b in boundaries]) or any(
[not isinstance(b, int) for b in boundaries]):
raise ValueError('boundaries must be a list of positive integers')
if any([bnext <= b for bnext, b in zip(boundaries[1:], boundaries[:-1])]):
raise ValueError('Entries in boundaries must be strictly increasing.')
if any([not isinstance(r, float) for r in rates]):
raise ValueError('Learning rates must be floats')
if len(rates) != len(boundaries) + 1:
raise ValueError('Number of provided learning rates must exceed '
'number of boundary points by exactly 1.')
if boundaries and boundaries[0] == 0:
raise ValueError('First step cannot be zero.')
if warmup and boundaries:
slope = (rates[1] - rates[0]) * 1.0 / boundaries[0]
warmup_steps = list(range(boundaries[0]))
warmup_rates = [rates[0] + slope * step for step in warmup_steps]
boundaries = warmup_steps + boundaries
rates = warmup_rates + rates[1:]
else:
boundaries = [0] + boundaries
num_boundaries = len(boundaries)
def eager_decay_rate():
"""Callable to compute the learning rate."""
rate_index = tf.reduce_max(tf.where(
tf.greater_equal(global_step, boundaries),
list(range(num_boundaries)),
[0] * num_boundaries))
return tf.reduce_sum(rates * tf.one_hot(rate_index, depth=num_boundaries),
name='learning_rate')
return _learning_rate_return_value(eager_decay_rate) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/learning_schedules.py | learning_schedules.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import inspect
import math
import six
import tensorflow.compat.v1 as tf
# pylint: disable=g-import-not-at-top
try:
from tensorflow.contrib import image as contrib_image
from tensorflow.contrib import training as contrib_training
except ImportError:
# TF 2.0 doesn't ship with contrib.
pass
# pylint: enable=g-import-not-at-top
# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.
# Represents an invalid bounding box that is used for checking for padding
# lists of bounding box coordinates for a few augmentation operations
_INVALID_BOX = [[-1.0, -1.0, -1.0, -1.0]]
def policy_v0():
"""Autoaugment policy that was used in AutoAugment Detection Paper."""
# Each tuple is an augmentation operation of the form
# (operation, probability, magnitude). Each element in policy is a
# sub-policy that will be applied sequentially on the image.
policy = [
[('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
[('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
[('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
[('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
[('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
]
return policy
def policy_v1():
"""Autoaugment policy that was used in AutoAugment Detection Paper."""
# Each tuple is an augmentation operation of the form
# (operation, probability, magnitude). Each element in policy is a
# sub-policy that will be applied sequentially on the image.
policy = [
[('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
[('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
[('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
[('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
[('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
[('Color', 0.0, 0), ('ShearX_Only_BBoxes', 0.8, 4)],
[('ShearY_Only_BBoxes', 0.8, 2), ('Flip_Only_BBoxes', 0.0, 10)],
[('Equalize', 0.6, 10), ('TranslateX_BBox', 0.2, 2)],
[('Color', 1.0, 10), ('TranslateY_Only_BBoxes', 0.4, 6)],
[('Rotate_BBox', 0.8, 10), ('Contrast', 0.0, 10)],
[('Cutout', 0.2, 2), ('Brightness', 0.8, 10)],
[('Color', 1.0, 6), ('Equalize', 1.0, 2)],
[('Cutout_Only_BBoxes', 0.4, 6), ('TranslateY_Only_BBoxes', 0.8, 2)],
[('Color', 0.2, 8), ('Rotate_BBox', 0.8, 10)],
[('Sharpness', 0.4, 4), ('TranslateY_Only_BBoxes', 0.0, 4)],
[('Sharpness', 1.0, 4), ('SolarizeAdd', 0.4, 4)],
[('Rotate_BBox', 1.0, 8), ('Sharpness', 0.2, 8)],
[('ShearY_BBox', 0.6, 10), ('Equalize_Only_BBoxes', 0.6, 8)],
[('ShearX_BBox', 0.2, 6), ('TranslateY_Only_BBoxes', 0.2, 10)],
[('SolarizeAdd', 0.6, 8), ('Brightness', 0.8, 10)],
]
return policy
def policy_vtest():
"""Autoaugment test policy for debugging."""
# Each tuple is an augmentation operation of the form
# (operation, probability, magnitude). Each element in policy is a
# sub-policy that will be applied sequentially on the image.
policy = [
[('TranslateX_BBox', 1.0, 4), ('Equalize', 1.0, 10)],
]
return policy
def policy_v2():
"""Additional policy that performs well on object detection."""
# Each tuple is an augmentation operation of the form
# (operation, probability, magnitude). Each element in policy is a
# sub-policy that will be applied sequentially on the image.
policy = [
[('Color', 0.0, 6), ('Cutout', 0.6, 8), ('Sharpness', 0.4, 8)],
[('Rotate_BBox', 0.4, 8), ('Sharpness', 0.4, 2),
('Rotate_BBox', 0.8, 10)],
[('TranslateY_BBox', 1.0, 8), ('AutoContrast', 0.8, 2)],
[('AutoContrast', 0.4, 6), ('ShearX_BBox', 0.8, 8),
('Brightness', 0.0, 10)],
[('SolarizeAdd', 0.2, 6), ('Contrast', 0.0, 10),
('AutoContrast', 0.6, 0)],
[('Cutout', 0.2, 0), ('Solarize', 0.8, 8), ('Color', 1.0, 4)],
[('TranslateY_BBox', 0.0, 4), ('Equalize', 0.6, 8),
('Solarize', 0.0, 10)],
[('TranslateY_BBox', 0.2, 2), ('ShearY_BBox', 0.8, 8),
('Rotate_BBox', 0.8, 8)],
[('Cutout', 0.8, 8), ('Brightness', 0.8, 8), ('Cutout', 0.2, 2)],
[('Color', 0.8, 4), ('TranslateY_BBox', 1.0, 6), ('Rotate_BBox', 0.6, 6)],
[('Rotate_BBox', 0.6, 10), ('BBox_Cutout', 1.0, 4), ('Cutout', 0.2, 8)],
[('Rotate_BBox', 0.0, 0), ('Equalize', 0.6, 6), ('ShearY_BBox', 0.6, 8)],
[('Brightness', 0.8, 8), ('AutoContrast', 0.4, 2),
('Brightness', 0.2, 2)],
[('TranslateY_BBox', 0.4, 8), ('Solarize', 0.4, 6),
('SolarizeAdd', 0.2, 10)],
[('Contrast', 1.0, 10), ('SolarizeAdd', 0.2, 8), ('Equalize', 0.2, 4)],
]
return policy
def policy_v3():
""""Additional policy that performs well on object detection."""
# Each tuple is an augmentation operation of the form
# (operation, probability, magnitude). Each element in policy is a
# sub-policy that will be applied sequentially on the image.
policy = [
[('Posterize', 0.8, 2), ('TranslateX_BBox', 1.0, 8)],
[('BBox_Cutout', 0.2, 10), ('Sharpness', 1.0, 8)],
[('Rotate_BBox', 0.6, 8), ('Rotate_BBox', 0.8, 10)],
[('Equalize', 0.8, 10), ('AutoContrast', 0.2, 10)],
[('SolarizeAdd', 0.2, 2), ('TranslateY_BBox', 0.2, 8)],
[('Sharpness', 0.0, 2), ('Color', 0.4, 8)],
[('Equalize', 1.0, 8), ('TranslateY_BBox', 1.0, 8)],
[('Posterize', 0.6, 2), ('Rotate_BBox', 0.0, 10)],
[('AutoContrast', 0.6, 0), ('Rotate_BBox', 1.0, 6)],
[('Equalize', 0.0, 4), ('Cutout', 0.8, 10)],
[('Brightness', 1.0, 2), ('TranslateY_BBox', 1.0, 6)],
[('Contrast', 0.0, 2), ('ShearY_BBox', 0.8, 0)],
[('AutoContrast', 0.8, 10), ('Contrast', 0.2, 10)],
[('Rotate_BBox', 1.0, 10), ('Cutout', 1.0, 10)],
[('SolarizeAdd', 0.8, 6), ('Equalize', 0.8, 8)],
]
return policy
def blend(image1, image2, factor):
"""Blend image1 and image2 using 'factor'.
Factor can be above 0.0. A value of 0.0 means only image1 is used.
A value of 1.0 means only image2 is used. A value between 0.0 and
1.0 means we linearly interpolate the pixel values between the two
images. A value greater than 1.0 "extrapolates" the difference
between the two pixel values, and we clip the results to values
between 0 and 255.
Args:
image1: An image Tensor of type uint8.
image2: An image Tensor of type uint8.
factor: A floating point value above 0.0.
Returns:
A blended image Tensor of type uint8.
"""
if factor == 0.0:
return tf.convert_to_tensor(image1)
if factor == 1.0:
return tf.convert_to_tensor(image2)
image1 = tf.to_float(image1)
image2 = tf.to_float(image2)
difference = image2 - image1
scaled = factor * difference
# Do addition in float.
temp = tf.to_float(image1) + scaled
# Interpolate
if factor > 0.0 and factor < 1.0:
# Interpolation means we always stay within 0 and 255.
return tf.cast(temp, tf.uint8)
# Extrapolate:
#
# We need to clip and then cast.
return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8)
def cutout(image, pad_size, replace=0):
"""Apply cutout (https://arxiv.org/abs/1708.04552) to image.
This operation applies a (2*pad_size x 2*pad_size) mask of zeros to
a random location within `img`. The pixel values filled in will be of the
value `replace`. The located where the mask will be applied is randomly
chosen uniformly over the whole image.
Args:
image: An image Tensor of type uint8.
pad_size: Specifies how big the zero mask that will be generated is that
is applied to the image. The mask will be of size
(2*pad_size x 2*pad_size).
replace: What pixel value to fill in the image in the area that has
the cutout mask applied to it.
Returns:
An image Tensor that is of type uint8.
"""
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
# Sample the center location in the image where the zero mask will be applied.
cutout_center_height = tf.random_uniform(
shape=[], minval=0, maxval=image_height,
dtype=tf.int32)
cutout_center_width = tf.random_uniform(
shape=[], minval=0, maxval=image_width,
dtype=tf.int32)
lower_pad = tf.maximum(0, cutout_center_height - pad_size)
upper_pad = tf.maximum(0, image_height - cutout_center_height - pad_size)
left_pad = tf.maximum(0, cutout_center_width - pad_size)
right_pad = tf.maximum(0, image_width - cutout_center_width - pad_size)
cutout_shape = [image_height - (lower_pad + upper_pad),
image_width - (left_pad + right_pad)]
padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
mask = tf.pad(
tf.zeros(cutout_shape, dtype=image.dtype),
padding_dims, constant_values=1)
mask = tf.expand_dims(mask, -1)
mask = tf.tile(mask, [1, 1, 3])
image = tf.where(
tf.equal(mask, 0),
tf.ones_like(image, dtype=image.dtype) * replace,
image)
return image
def solarize(image, threshold=128):
# For each pixel in the image, select the pixel
# if the value is less than the threshold.
# Otherwise, subtract 255 from the pixel.
return tf.where(image < threshold, image, 255 - image)
def solarize_add(image, addition=0, threshold=128):
# For each pixel in the image less than threshold
# we add 'addition' amount to it and then clip the
# pixel value to be between 0 and 255. The value
# of 'addition' is between -128 and 128.
added_image = tf.cast(image, tf.int64) + addition
added_image = tf.cast(tf.clip_by_value(added_image, 0, 255), tf.uint8)
return tf.where(image < threshold, added_image, image)
def color(image, factor):
"""Equivalent of PIL Color."""
degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image))
return blend(degenerate, image, factor)
def contrast(image, factor):
"""Equivalent of PIL Contrast."""
degenerate = tf.image.rgb_to_grayscale(image)
# Cast before calling tf.histogram.
degenerate = tf.cast(degenerate, tf.int32)
# Compute the grayscale histogram, then compute the mean pixel value,
# and create a constant image size of that value. Use that as the
# blending degenerate target of the original image.
hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256)
mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0
degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8))
return blend(degenerate, image, factor)
def brightness(image, factor):
"""Equivalent of PIL Brightness."""
degenerate = tf.zeros_like(image)
return blend(degenerate, image, factor)
def posterize(image, bits):
"""Equivalent of PIL Posterize."""
shift = 8 - bits
return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift)
def rotate(image, degrees, replace):
"""Rotates the image by degrees either clockwise or counterclockwise.
Args:
image: An image Tensor of type uint8.
degrees: Float, a scalar angle in degrees to rotate all images by. If
degrees is positive the image will be rotated clockwise otherwise it will
be rotated counterclockwise.
replace: A one or three value 1D tensor to fill empty pixels caused by
the rotate operation.
Returns:
The rotated version of image.
"""
# Convert from degrees to radians.
degrees_to_radians = math.pi / 180.0
radians = degrees * degrees_to_radians
# In practice, we should randomize the rotation degrees by flipping
# it negatively half the time, but that's done on 'degrees' outside
# of the function.
image = contrib_image.rotate(wrap(image), radians)
return unwrap(image, replace)
def random_shift_bbox(image, bbox, pixel_scaling, replace,
new_min_bbox_coords=None):
"""Move the bbox and the image content to a slightly new random location.
Args:
image: 3D uint8 Tensor.
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
of type float that represents the normalized coordinates between 0 and 1.
The potential values for the new min corner of the bbox will be between
[old_min - pixel_scaling * bbox_height/2,
old_min - pixel_scaling * bbox_height/2].
pixel_scaling: A float between 0 and 1 that specifies the pixel range
that the new bbox location will be sampled from.
replace: A one or three value 1D tensor to fill empty pixels.
new_min_bbox_coords: If not None, then this is a tuple that specifies the
(min_y, min_x) coordinates of the new bbox. Normally this is randomly
specified, but this allows it to be manually set. The coordinates are
the absolute coordinates between 0 and image height/width and are int32.
Returns:
The new image that will have the shifted bbox location in it along with
the new bbox that contains the new coordinates.
"""
# Obtains image height and width and create helper clip functions.
image_height = tf.to_float(tf.shape(image)[0])
image_width = tf.to_float(tf.shape(image)[1])
def clip_y(val):
return tf.clip_by_value(val, 0, tf.to_int32(image_height) - 1)
def clip_x(val):
return tf.clip_by_value(val, 0, tf.to_int32(image_width) - 1)
# Convert bbox to pixel coordinates.
min_y = tf.to_int32(image_height * bbox[0])
min_x = tf.to_int32(image_width * bbox[1])
max_y = clip_y(tf.to_int32(image_height * bbox[2]))
max_x = clip_x(tf.to_int32(image_width * bbox[3]))
bbox_height, bbox_width = (max_y - min_y + 1, max_x - min_x + 1)
image_height = tf.to_int32(image_height)
image_width = tf.to_int32(image_width)
# Select the new min/max bbox ranges that are used for sampling the
# new min x/y coordinates of the shifted bbox.
minval_y = clip_y(
min_y - tf.to_int32(pixel_scaling * tf.to_float(bbox_height) / 2.0))
maxval_y = clip_y(
min_y + tf.to_int32(pixel_scaling * tf.to_float(bbox_height) / 2.0))
minval_x = clip_x(
min_x - tf.to_int32(pixel_scaling * tf.to_float(bbox_width) / 2.0))
maxval_x = clip_x(
min_x + tf.to_int32(pixel_scaling * tf.to_float(bbox_width) / 2.0))
# Sample and calculate the new unclipped min/max coordinates of the new bbox.
if new_min_bbox_coords is None:
unclipped_new_min_y = tf.random_uniform(
shape=[], minval=minval_y, maxval=maxval_y,
dtype=tf.int32)
unclipped_new_min_x = tf.random_uniform(
shape=[], minval=minval_x, maxval=maxval_x,
dtype=tf.int32)
else:
unclipped_new_min_y, unclipped_new_min_x = (
clip_y(new_min_bbox_coords[0]), clip_x(new_min_bbox_coords[1]))
unclipped_new_max_y = unclipped_new_min_y + bbox_height - 1
unclipped_new_max_x = unclipped_new_min_x + bbox_width - 1
# Determine if any of the new bbox was shifted outside the current image.
# This is used for determining if any of the original bbox content should be
# discarded.
new_min_y, new_min_x, new_max_y, new_max_x = (
clip_y(unclipped_new_min_y), clip_x(unclipped_new_min_x),
clip_y(unclipped_new_max_y), clip_x(unclipped_new_max_x))
shifted_min_y = (new_min_y - unclipped_new_min_y) + min_y
shifted_max_y = max_y - (unclipped_new_max_y - new_max_y)
shifted_min_x = (new_min_x - unclipped_new_min_x) + min_x
shifted_max_x = max_x - (unclipped_new_max_x - new_max_x)
# Create the new bbox tensor by converting pixel integer values to floats.
new_bbox = tf.stack([
tf.to_float(new_min_y) / tf.to_float(image_height),
tf.to_float(new_min_x) / tf.to_float(image_width),
tf.to_float(new_max_y) / tf.to_float(image_height),
tf.to_float(new_max_x) / tf.to_float(image_width)])
# Copy the contents in the bbox and fill the old bbox location
# with gray (128).
bbox_content = image[shifted_min_y:shifted_max_y + 1,
shifted_min_x:shifted_max_x + 1, :]
def mask_and_add_image(
min_y_, min_x_, max_y_, max_x_, mask, content_tensor, image_):
"""Applies mask to bbox region in image then adds content_tensor to it."""
mask = tf.pad(mask,
[[min_y_, (image_height - 1) - max_y_],
[min_x_, (image_width - 1) - max_x_],
[0, 0]], constant_values=1)
content_tensor = tf.pad(content_tensor,
[[min_y_, (image_height - 1) - max_y_],
[min_x_, (image_width - 1) - max_x_],
[0, 0]], constant_values=0)
return image_ * mask + content_tensor
# Zero out original bbox location.
mask = tf.zeros_like(image)[min_y:max_y+1, min_x:max_x+1, :]
grey_tensor = tf.zeros_like(mask) + replace[0]
image = mask_and_add_image(min_y, min_x, max_y, max_x, mask,
grey_tensor, image)
# Fill in bbox content to new bbox location.
mask = tf.zeros_like(bbox_content)
image = mask_and_add_image(new_min_y, new_min_x, new_max_y, new_max_x, mask,
bbox_content, image)
return image, new_bbox
def _clip_bbox(min_y, min_x, max_y, max_x):
"""Clip bounding box coordinates between 0 and 1.
Args:
min_y: Normalized bbox coordinate of type float between 0 and 1.
min_x: Normalized bbox coordinate of type float between 0 and 1.
max_y: Normalized bbox coordinate of type float between 0 and 1.
max_x: Normalized bbox coordinate of type float between 0 and 1.
Returns:
Clipped coordinate values between 0 and 1.
"""
min_y = tf.clip_by_value(min_y, 0.0, 1.0)
min_x = tf.clip_by_value(min_x, 0.0, 1.0)
max_y = tf.clip_by_value(max_y, 0.0, 1.0)
max_x = tf.clip_by_value(max_x, 0.0, 1.0)
return min_y, min_x, max_y, max_x
def _check_bbox_area(min_y, min_x, max_y, max_x, delta=0.05):
"""Adjusts bbox coordinates to make sure the area is > 0.
Args:
min_y: Normalized bbox coordinate of type float between 0 and 1.
min_x: Normalized bbox coordinate of type float between 0 and 1.
max_y: Normalized bbox coordinate of type float between 0 and 1.
max_x: Normalized bbox coordinate of type float between 0 and 1.
delta: Float, this is used to create a gap of size 2 * delta between
bbox min/max coordinates that are the same on the boundary.
This prevents the bbox from having an area of zero.
Returns:
Tuple of new bbox coordinates between 0 and 1 that will now have a
guaranteed area > 0.
"""
height = max_y - min_y
width = max_x - min_x
def _adjust_bbox_boundaries(min_coord, max_coord):
# Make sure max is never 0 and min is never 1.
max_coord = tf.maximum(max_coord, 0.0 + delta)
min_coord = tf.minimum(min_coord, 1.0 - delta)
return min_coord, max_coord
min_y, max_y = tf.cond(tf.equal(height, 0.0),
lambda: _adjust_bbox_boundaries(min_y, max_y),
lambda: (min_y, max_y))
min_x, max_x = tf.cond(tf.equal(width, 0.0),
lambda: _adjust_bbox_boundaries(min_x, max_x),
lambda: (min_x, max_x))
return min_y, min_x, max_y, max_x
def _scale_bbox_only_op_probability(prob):
"""Reduce the probability of the bbox-only operation.
Probability is reduced so that we do not distort the content of too many
bounding boxes that are close to each other. The value of 3.0 was a chosen
hyper parameter when designing the autoaugment algorithm that we found
empirically to work well.
Args:
prob: Float that is the probability of applying the bbox-only operation.
Returns:
Reduced probability.
"""
return prob / 3.0
def _apply_bbox_augmentation(image, bbox, augmentation_func, *args):
"""Applies augmentation_func to the subsection of image indicated by bbox.
Args:
image: 3D uint8 Tensor.
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
of type float that represents the normalized coordinates between 0 and 1.
augmentation_func: Augmentation function that will be applied to the
subsection of image.
*args: Additional parameters that will be passed into augmentation_func
when it is called.
Returns:
A modified version of image, where the bbox location in the image will
have `ugmentation_func applied to it.
"""
image_height = tf.to_float(tf.shape(image)[0])
image_width = tf.to_float(tf.shape(image)[1])
min_y = tf.to_int32(image_height * bbox[0])
min_x = tf.to_int32(image_width * bbox[1])
max_y = tf.to_int32(image_height * bbox[2])
max_x = tf.to_int32(image_width * bbox[3])
image_height = tf.to_int32(image_height)
image_width = tf.to_int32(image_width)
# Clip to be sure the max values do not fall out of range.
max_y = tf.minimum(max_y, image_height - 1)
max_x = tf.minimum(max_x, image_width - 1)
# Get the sub-tensor that is the image within the bounding box region.
bbox_content = image[min_y:max_y + 1, min_x:max_x + 1, :]
# Apply the augmentation function to the bbox portion of the image.
augmented_bbox_content = augmentation_func(bbox_content, *args)
# Pad the augmented_bbox_content and the mask to match the shape of original
# image.
augmented_bbox_content = tf.pad(augmented_bbox_content,
[[min_y, (image_height - 1) - max_y],
[min_x, (image_width - 1) - max_x],
[0, 0]])
# Create a mask that will be used to zero out a part of the original image.
mask_tensor = tf.zeros_like(bbox_content)
mask_tensor = tf.pad(mask_tensor,
[[min_y, (image_height - 1) - max_y],
[min_x, (image_width - 1) - max_x],
[0, 0]],
constant_values=1)
# Replace the old bbox content with the new augmented content.
image = image * mask_tensor + augmented_bbox_content
return image
def _concat_bbox(bbox, bboxes):
"""Helper function that concates bbox to bboxes along the first dimension."""
# Note if all elements in bboxes are -1 (_INVALID_BOX), then this means
# we discard bboxes and start the bboxes Tensor with the current bbox.
bboxes_sum_check = tf.reduce_sum(bboxes)
bbox = tf.expand_dims(bbox, 0)
# This check will be true when it is an _INVALID_BOX
bboxes = tf.cond(tf.equal(bboxes_sum_check, -4.0),
lambda: bbox,
lambda: tf.concat([bboxes, bbox], 0))
return bboxes
def _apply_bbox_augmentation_wrapper(image, bbox, new_bboxes, prob,
augmentation_func, func_changes_bbox,
*args):
"""Applies _apply_bbox_augmentation with probability prob.
Args:
image: 3D uint8 Tensor.
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
of type float that represents the normalized coordinates between 0 and 1.
new_bboxes: 2D Tensor that is a list of the bboxes in the image after they
have been altered by aug_func. These will only be changed when
func_changes_bbox is set to true. Each bbox has 4 elements
(min_y, min_x, max_y, max_x) of type float that are the normalized
bbox coordinates between 0 and 1.
prob: Float that is the probability of applying _apply_bbox_augmentation.
augmentation_func: Augmentation function that will be applied to the
subsection of image.
func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
to image.
*args: Additional parameters that will be passed into augmentation_func
when it is called.
Returns:
A tuple. Fist element is a modified version of image, where the bbox
location in the image will have augmentation_func applied to it if it is
chosen to be called with probability `prob`. The second element is a
Tensor of Tensors of length 4 that will contain the altered bbox after
applying augmentation_func.
"""
should_apply_op = tf.cast(
tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool)
if func_changes_bbox:
augmented_image, bbox = tf.cond(
should_apply_op,
lambda: augmentation_func(image, bbox, *args),
lambda: (image, bbox))
else:
augmented_image = tf.cond(
should_apply_op,
lambda: _apply_bbox_augmentation(image, bbox, augmentation_func, *args),
lambda: image)
new_bboxes = _concat_bbox(bbox, new_bboxes)
return augmented_image, new_bboxes
def _apply_multi_bbox_augmentation(image, bboxes, prob, aug_func,
func_changes_bbox, *args):
"""Applies aug_func to the image for each bbox in bboxes.
Args:
image: 3D uint8 Tensor.
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
has 4 elements (min_y, min_x, max_y, max_x) of type float.
prob: Float that is the probability of applying aug_func to a specific
bounding box within the image.
aug_func: Augmentation function that will be applied to the
subsections of image indicated by the bbox values in bboxes.
func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
to image.
*args: Additional parameters that will be passed into augmentation_func
when it is called.
Returns:
A modified version of image, where each bbox location in the image will
have augmentation_func applied to it if it is chosen to be called with
probability prob independently across all bboxes. Also the final
bboxes are returned that will be unchanged if func_changes_bbox is set to
false and if true, the new altered ones will be returned.
"""
# Will keep track of the new altered bboxes after aug_func is repeatedly
# applied. The -1 values are a dummy value and this first Tensor will be
# removed upon appending the first real bbox.
new_bboxes = tf.constant(_INVALID_BOX)
# If the bboxes are empty, then just give it _INVALID_BOX. The result
# will be thrown away.
bboxes = tf.cond(tf.equal(tf.size(bboxes), 0),
lambda: tf.constant(_INVALID_BOX),
lambda: bboxes)
bboxes = tf.ensure_shape(bboxes, (None, 4))
# pylint:disable=g-long-lambda
# pylint:disable=line-too-long
wrapped_aug_func = lambda _image, bbox, _new_bboxes: _apply_bbox_augmentation_wrapper(
_image, bbox, _new_bboxes, prob, aug_func, func_changes_bbox, *args)
# pylint:enable=g-long-lambda
# pylint:enable=line-too-long
# Setup the while_loop.
num_bboxes = tf.shape(bboxes)[0] # We loop until we go over all bboxes.
idx = tf.constant(0) # Counter for the while loop.
# Conditional function when to end the loop once we go over all bboxes
# images_and_bboxes contain (_image, _new_bboxes)
cond = lambda _idx, _images_and_bboxes: tf.less(_idx, num_bboxes)
# Shuffle the bboxes so that the augmentation order is not deterministic if
# we are not changing the bboxes with aug_func.
if not func_changes_bbox:
loop_bboxes = tf.random.shuffle(bboxes)
else:
loop_bboxes = bboxes
# Main function of while_loop where we repeatedly apply augmentation on the
# bboxes in the image.
# pylint:disable=g-long-lambda
body = lambda _idx, _images_and_bboxes: [
_idx + 1, wrapped_aug_func(_images_and_bboxes[0],
loop_bboxes[_idx],
_images_and_bboxes[1])]
# pylint:enable=g-long-lambda
_, (image, new_bboxes) = tf.while_loop(
cond, body, [idx, (image, new_bboxes)],
shape_invariants=[idx.get_shape(),
(image.get_shape(), tf.TensorShape([None, 4]))])
# Either return the altered bboxes or the original ones depending on if
# we altered them in anyway.
if func_changes_bbox:
final_bboxes = new_bboxes
else:
final_bboxes = bboxes
return image, final_bboxes
def _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, aug_func,
func_changes_bbox, *args):
"""Checks to be sure num bboxes > 0 before calling inner function."""
num_bboxes = tf.shape(bboxes)[0]
image, bboxes = tf.cond(
tf.equal(num_bboxes, 0),
lambda: (image, bboxes),
# pylint:disable=g-long-lambda
lambda: _apply_multi_bbox_augmentation(
image, bboxes, prob, aug_func, func_changes_bbox, *args))
# pylint:enable=g-long-lambda
return image, bboxes
def rotate_only_bboxes(image, bboxes, prob, degrees, replace):
"""Apply rotate to each bbox in the image with probability prob."""
func_changes_bbox = False
prob = _scale_bbox_only_op_probability(prob)
return _apply_multi_bbox_augmentation_wrapper(
image, bboxes, prob, rotate, func_changes_bbox, degrees, replace)
def shear_x_only_bboxes(image, bboxes, prob, level, replace):
"""Apply shear_x to each bbox in the image with probability prob."""
func_changes_bbox = False
prob = _scale_bbox_only_op_probability(prob)
return _apply_multi_bbox_augmentation_wrapper(
image, bboxes, prob, shear_x, func_changes_bbox, level, replace)
def shear_y_only_bboxes(image, bboxes, prob, level, replace):
"""Apply shear_y to each bbox in the image with probability prob."""
func_changes_bbox = False
prob = _scale_bbox_only_op_probability(prob)
return _apply_multi_bbox_augmentation_wrapper(
image, bboxes, prob, shear_y, func_changes_bbox, level, replace)
def translate_x_only_bboxes(image, bboxes, prob, pixels, replace):
"""Apply translate_x to each bbox in the image with probability prob."""
func_changes_bbox = False
prob = _scale_bbox_only_op_probability(prob)
return _apply_multi_bbox_augmentation_wrapper(
image, bboxes, prob, translate_x, func_changes_bbox, pixels, replace)
def translate_y_only_bboxes(image, bboxes, prob, pixels, replace):
"""Apply translate_y to each bbox in the image with probability prob."""
func_changes_bbox = False
prob = _scale_bbox_only_op_probability(prob)
return _apply_multi_bbox_augmentation_wrapper(
image, bboxes, prob, translate_y, func_changes_bbox, pixels, replace)
def flip_only_bboxes(image, bboxes, prob):
"""Apply flip_lr to each bbox in the image with probability prob."""
func_changes_bbox = False
prob = _scale_bbox_only_op_probability(prob)
return _apply_multi_bbox_augmentation_wrapper(
image, bboxes, prob, tf.image.flip_left_right, func_changes_bbox)
def solarize_only_bboxes(image, bboxes, prob, threshold):
"""Apply solarize to each bbox in the image with probability prob."""
func_changes_bbox = False
prob = _scale_bbox_only_op_probability(prob)
return _apply_multi_bbox_augmentation_wrapper(
image, bboxes, prob, solarize, func_changes_bbox, threshold)
def equalize_only_bboxes(image, bboxes, prob):
"""Apply equalize to each bbox in the image with probability prob."""
func_changes_bbox = False
prob = _scale_bbox_only_op_probability(prob)
return _apply_multi_bbox_augmentation_wrapper(
image, bboxes, prob, equalize, func_changes_bbox)
def cutout_only_bboxes(image, bboxes, prob, pad_size, replace):
"""Apply cutout to each bbox in the image with probability prob."""
func_changes_bbox = False
prob = _scale_bbox_only_op_probability(prob)
return _apply_multi_bbox_augmentation_wrapper(
image, bboxes, prob, cutout, func_changes_bbox, pad_size, replace)
def _rotate_bbox(bbox, image_height, image_width, degrees):
"""Rotates the bbox coordinated by degrees.
Args:
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
of type float that represents the normalized coordinates between 0 and 1.
image_height: Int, height of the image.
image_width: Int, height of the image.
degrees: Float, a scalar angle in degrees to rotate all images by. If
degrees is positive the image will be rotated clockwise otherwise it will
be rotated counterclockwise.
Returns:
A tensor of the same shape as bbox, but now with the rotated coordinates.
"""
image_height, image_width = (
tf.to_float(image_height), tf.to_float(image_width))
# Convert from degrees to radians.
degrees_to_radians = math.pi / 180.0
radians = degrees * degrees_to_radians
# Translate the bbox to the center of the image and turn the normalized 0-1
# coordinates to absolute pixel locations.
# Y coordinates are made negative as the y axis of images goes down with
# increasing pixel values, so we negate to make sure x axis and y axis points
# are in the traditionally positive direction.
min_y = -tf.to_int32(image_height * (bbox[0] - 0.5))
min_x = tf.to_int32(image_width * (bbox[1] - 0.5))
max_y = -tf.to_int32(image_height * (bbox[2] - 0.5))
max_x = tf.to_int32(image_width * (bbox[3] - 0.5))
coordinates = tf.stack(
[[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
coordinates = tf.cast(coordinates, tf.float32)
# Rotate the coordinates according to the rotation matrix clockwise if
# radians is positive, else negative
rotation_matrix = tf.stack(
[[tf.cos(radians), tf.sin(radians)],
[-tf.sin(radians), tf.cos(radians)]])
new_coords = tf.cast(
tf.matmul(rotation_matrix, tf.transpose(coordinates)), tf.int32)
# Find min/max values and convert them back to normalized 0-1 floats.
min_y = -(tf.to_float(tf.reduce_max(new_coords[0, :])) / image_height - 0.5)
min_x = tf.to_float(tf.reduce_min(new_coords[1, :])) / image_width + 0.5
max_y = -(tf.to_float(tf.reduce_min(new_coords[0, :])) / image_height - 0.5)
max_x = tf.to_float(tf.reduce_max(new_coords[1, :])) / image_width + 0.5
# Clip the bboxes to be sure the fall between [0, 1].
min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
return tf.stack([min_y, min_x, max_y, max_x])
def rotate_with_bboxes(image, bboxes, degrees, replace):
"""Equivalent of PIL Rotate that rotates the image and bbox.
Args:
image: 3D uint8 Tensor.
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
has 4 elements (min_y, min_x, max_y, max_x) of type float.
degrees: Float, a scalar angle in degrees to rotate all images by. If
degrees is positive the image will be rotated clockwise otherwise it will
be rotated counterclockwise.
replace: A one or three value 1D tensor to fill empty pixels.
Returns:
A tuple containing a 3D uint8 Tensor that will be the result of rotating
image by degrees. The second element of the tuple is bboxes, where now
the coordinates will be shifted to reflect the rotated image.
"""
# Rotate the image.
image = rotate(image, degrees, replace)
# Convert bbox coordinates to pixel values.
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
# pylint:disable=g-long-lambda
wrapped_rotate_bbox = lambda bbox: _rotate_bbox(
bbox, image_height, image_width, degrees)
# pylint:enable=g-long-lambda
bboxes = tf.map_fn(wrapped_rotate_bbox, bboxes)
return image, bboxes
def translate_x(image, pixels, replace):
"""Equivalent of PIL Translate in X dimension."""
image = contrib_image.translate(wrap(image), [-pixels, 0])
return unwrap(image, replace)
def translate_y(image, pixels, replace):
"""Equivalent of PIL Translate in Y dimension."""
image = contrib_image.translate(wrap(image), [0, -pixels])
return unwrap(image, replace)
def _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal):
"""Shifts the bbox coordinates by pixels.
Args:
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
of type float that represents the normalized coordinates between 0 and 1.
image_height: Int, height of the image.
image_width: Int, width of the image.
pixels: An int. How many pixels to shift the bbox.
shift_horizontal: Boolean. If true then shift in X dimension else shift in
Y dimension.
Returns:
A tensor of the same shape as bbox, but now with the shifted coordinates.
"""
pixels = tf.to_int32(pixels)
# Convert bbox to integer pixel locations.
min_y = tf.to_int32(tf.to_float(image_height) * bbox[0])
min_x = tf.to_int32(tf.to_float(image_width) * bbox[1])
max_y = tf.to_int32(tf.to_float(image_height) * bbox[2])
max_x = tf.to_int32(tf.to_float(image_width) * bbox[3])
if shift_horizontal:
min_x = tf.maximum(0, min_x - pixels)
max_x = tf.minimum(image_width, max_x - pixels)
else:
min_y = tf.maximum(0, min_y - pixels)
max_y = tf.minimum(image_height, max_y - pixels)
# Convert bbox back to floats.
min_y = tf.to_float(min_y) / tf.to_float(image_height)
min_x = tf.to_float(min_x) / tf.to_float(image_width)
max_y = tf.to_float(max_y) / tf.to_float(image_height)
max_x = tf.to_float(max_x) / tf.to_float(image_width)
# Clip the bboxes to be sure the fall between [0, 1].
min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
return tf.stack([min_y, min_x, max_y, max_x])
def translate_bbox(image, bboxes, pixels, replace, shift_horizontal):
"""Equivalent of PIL Translate in X/Y dimension that shifts image and bbox.
Args:
image: 3D uint8 Tensor.
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
has 4 elements (min_y, min_x, max_y, max_x) of type float with values
between [0, 1].
pixels: An int. How many pixels to shift the image and bboxes
replace: A one or three value 1D tensor to fill empty pixels.
shift_horizontal: Boolean. If true then shift in X dimension else shift in
Y dimension.
Returns:
A tuple containing a 3D uint8 Tensor that will be the result of translating
image by pixels. The second element of the tuple is bboxes, where now
the coordinates will be shifted to reflect the shifted image.
"""
if shift_horizontal:
image = translate_x(image, pixels, replace)
else:
image = translate_y(image, pixels, replace)
# Convert bbox coordinates to pixel values.
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
# pylint:disable=g-long-lambda
wrapped_shift_bbox = lambda bbox: _shift_bbox(
bbox, image_height, image_width, pixels, shift_horizontal)
# pylint:enable=g-long-lambda
bboxes = tf.map_fn(wrapped_shift_bbox, bboxes)
return image, bboxes
def shear_x(image, level, replace):
"""Equivalent of PIL Shearing in X dimension."""
# Shear parallel to x axis is a projective transform
# with a matrix form of:
# [1 level
# 0 1].
image = contrib_image.transform(
wrap(image), [1., level, 0., 0., 1., 0., 0., 0.])
return unwrap(image, replace)
def shear_y(image, level, replace):
"""Equivalent of PIL Shearing in Y dimension."""
# Shear parallel to y axis is a projective transform
# with a matrix form of:
# [1 0
# level 1].
image = contrib_image.transform(
wrap(image), [1., 0., 0., level, 1., 0., 0., 0.])
return unwrap(image, replace)
def _shear_bbox(bbox, image_height, image_width, level, shear_horizontal):
"""Shifts the bbox according to how the image was sheared.
Args:
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
of type float that represents the normalized coordinates between 0 and 1.
image_height: Int, height of the image.
image_width: Int, height of the image.
level: Float. How much to shear the image.
shear_horizontal: If true then shear in X dimension else shear in
the Y dimension.
Returns:
A tensor of the same shape as bbox, but now with the shifted coordinates.
"""
image_height, image_width = (
tf.to_float(image_height), tf.to_float(image_width))
# Change bbox coordinates to be pixels.
min_y = tf.to_int32(image_height * bbox[0])
min_x = tf.to_int32(image_width * bbox[1])
max_y = tf.to_int32(image_height * bbox[2])
max_x = tf.to_int32(image_width * bbox[3])
coordinates = tf.stack(
[[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
coordinates = tf.cast(coordinates, tf.float32)
# Shear the coordinates according to the translation matrix.
if shear_horizontal:
translation_matrix = tf.stack(
[[1, 0], [-level, 1]])
else:
translation_matrix = tf.stack(
[[1, -level], [0, 1]])
translation_matrix = tf.cast(translation_matrix, tf.float32)
new_coords = tf.cast(
tf.matmul(translation_matrix, tf.transpose(coordinates)), tf.int32)
# Find min/max values and convert them back to floats.
min_y = tf.to_float(tf.reduce_min(new_coords[0, :])) / image_height
min_x = tf.to_float(tf.reduce_min(new_coords[1, :])) / image_width
max_y = tf.to_float(tf.reduce_max(new_coords[0, :])) / image_height
max_x = tf.to_float(tf.reduce_max(new_coords[1, :])) / image_width
# Clip the bboxes to be sure the fall between [0, 1].
min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
return tf.stack([min_y, min_x, max_y, max_x])
def shear_with_bboxes(image, bboxes, level, replace, shear_horizontal):
"""Applies Shear Transformation to the image and shifts the bboxes.
Args:
image: 3D uint8 Tensor.
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
has 4 elements (min_y, min_x, max_y, max_x) of type float with values
between [0, 1].
level: Float. How much to shear the image. This value will be between
-0.3 to 0.3.
replace: A one or three value 1D tensor to fill empty pixels.
shear_horizontal: Boolean. If true then shear in X dimension else shear in
the Y dimension.
Returns:
A tuple containing a 3D uint8 Tensor that will be the result of shearing
image by level. The second element of the tuple is bboxes, where now
the coordinates will be shifted to reflect the sheared image.
"""
if shear_horizontal:
image = shear_x(image, level, replace)
else:
image = shear_y(image, level, replace)
# Convert bbox coordinates to pixel values.
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
# pylint:disable=g-long-lambda
wrapped_shear_bbox = lambda bbox: _shear_bbox(
bbox, image_height, image_width, level, shear_horizontal)
# pylint:enable=g-long-lambda
bboxes = tf.map_fn(wrapped_shear_bbox, bboxes)
return image, bboxes
def autocontrast(image):
"""Implements Autocontrast function from PIL using TF ops.
Args:
image: A 3D uint8 tensor.
Returns:
The image after it has had autocontrast applied to it and will be of type
uint8.
"""
def scale_channel(image):
"""Scale the 2D image using the autocontrast rule."""
# A possibly cheaper version can be done using cumsum/unique_with_counts
# over the histogram values, rather than iterating over the entire image.
# to compute mins and maxes.
lo = tf.to_float(tf.reduce_min(image))
hi = tf.to_float(tf.reduce_max(image))
# Scale the image, making the lowest value 0 and the highest value 255.
def scale_values(im):
scale = 255.0 / (hi - lo)
offset = -lo * scale
im = tf.to_float(im) * scale + offset
im = tf.clip_by_value(im, 0.0, 255.0)
return tf.cast(im, tf.uint8)
result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image)
return result
# Assumes RGB for now. Scales each channel independently
# and then stacks the result.
s1 = scale_channel(image[:, :, 0])
s2 = scale_channel(image[:, :, 1])
s3 = scale_channel(image[:, :, 2])
image = tf.stack([s1, s2, s3], 2)
return image
def sharpness(image, factor):
"""Implements Sharpness function from PIL using TF ops."""
orig_image = image
image = tf.cast(image, tf.float32)
# Make image 4D for conv operation.
image = tf.expand_dims(image, 0)
# SMOOTH PIL Kernel.
kernel = tf.constant(
[[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32,
shape=[3, 3, 1, 1]) / 13.
# Tile across channel dimension.
kernel = tf.tile(kernel, [1, 1, 3, 1])
strides = [1, 1, 1, 1]
degenerate = tf.nn.depthwise_conv2d(
image, kernel, strides, padding='VALID', rate=[1, 1])
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0])
# For the borders of the resulting image, fill in the values of the
# original image.
mask = tf.ones_like(degenerate)
padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]])
padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]])
result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image)
# Blend the final result.
return blend(result, orig_image, factor)
def equalize(image):
"""Implements Equalize function from PIL using TF ops."""
def scale_channel(im, c):
"""Scale the data in the channel to implement equalize."""
im = tf.cast(im[:, :, c], tf.int32)
# Compute the histogram of the image channel.
histo = tf.histogram_fixed_width(im, [0, 255], nbins=256)
# For the purposes of computing the step, filter out the nonzeros.
nonzero = tf.where(tf.not_equal(histo, 0))
nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1])
step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255
def build_lut(histo, step):
# Compute the cumulative sum, shifting by step // 2
# and then normalization by step.
lut = (tf.cumsum(histo) + (step // 2)) // step
# Shift lut, prepending with 0.
lut = tf.concat([[0], lut[:-1]], 0)
# Clip the counts to be in range. This is done
# in the C code for image.point.
return tf.clip_by_value(lut, 0, 255)
# If step is zero, return the original image. Otherwise, build
# lut from the full histogram and step and then index from it.
result = tf.cond(tf.equal(step, 0),
lambda: im,
lambda: tf.gather(build_lut(histo, step), im))
return tf.cast(result, tf.uint8)
# Assumes RGB for now. Scales each channel independently
# and then stacks the result.
s1 = scale_channel(image, 0)
s2 = scale_channel(image, 1)
s3 = scale_channel(image, 2)
image = tf.stack([s1, s2, s3], 2)
return image
def wrap(image):
"""Returns 'image' with an extra channel set to all 1s."""
shape = tf.shape(image)
extended_channel = tf.ones([shape[0], shape[1], 1], image.dtype)
extended = tf.concat([image, extended_channel], 2)
return extended
def unwrap(image, replace):
"""Unwraps an image produced by wrap.
Where there is a 0 in the last channel for every spatial position,
the rest of the three channels in that spatial dimension are grayed
(set to 128). Operations like translate and shear on a wrapped
Tensor will leave 0s in empty locations. Some transformations look
at the intensity of values to do preprocessing, and we want these
empty pixels to assume the 'average' value, rather than pure black.
Args:
image: A 3D Image Tensor with 4 channels.
replace: A one or three value 1D tensor to fill empty pixels.
Returns:
image: A 3D image Tensor with 3 channels.
"""
image_shape = tf.shape(image)
# Flatten the spatial dimensions.
flattened_image = tf.reshape(image, [-1, image_shape[2]])
# Find all pixels where the last channel is zero.
alpha_channel = flattened_image[:, 3]
replace = tf.concat([replace, tf.ones([1], image.dtype)], 0)
# Where they are zero, fill them in with 'replace'.
flattened_image = tf.where(
tf.equal(alpha_channel, 0),
tf.ones_like(flattened_image, dtype=image.dtype) * replace,
flattened_image)
image = tf.reshape(flattened_image, image_shape)
image = tf.slice(image, [0, 0, 0], [image_shape[0], image_shape[1], 3])
return image
def _cutout_inside_bbox(image, bbox, pad_fraction):
"""Generates cutout mask and the mean pixel value of the bbox.
First a location is randomly chosen within the image as the center where the
cutout mask will be applied. Note this can be towards the boundaries of the
image, so the full cutout mask may not be applied.
Args:
image: 3D uint8 Tensor.
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
of type float that represents the normalized coordinates between 0 and 1.
pad_fraction: Float that specifies how large the cutout mask should be in
in reference to the size of the original bbox. If pad_fraction is 0.25,
then the cutout mask will be of shape
(0.25 * bbox height, 0.25 * bbox width).
Returns:
A tuple. Fist element is a tensor of the same shape as image where each
element is either a 1 or 0 that is used to determine where the image
will have cutout applied. The second element is the mean of the pixels
in the image where the bbox is located.
"""
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
# Transform from shape [1, 4] to [4].
bbox = tf.squeeze(bbox)
min_y = tf.to_int32(tf.to_float(image_height) * bbox[0])
min_x = tf.to_int32(tf.to_float(image_width) * bbox[1])
max_y = tf.to_int32(tf.to_float(image_height) * bbox[2])
max_x = tf.to_int32(tf.to_float(image_width) * bbox[3])
# Calculate the mean pixel values in the bounding box, which will be used
# to fill the cutout region.
mean = tf.reduce_mean(image[min_y:max_y + 1, min_x:max_x + 1],
reduction_indices=[0, 1])
# Cutout mask will be size pad_size_heigh * 2 by pad_size_width * 2 if the
# region lies entirely within the bbox.
box_height = max_y - min_y + 1
box_width = max_x - min_x + 1
pad_size_height = tf.to_int32(pad_fraction * (box_height / 2))
pad_size_width = tf.to_int32(pad_fraction * (box_width / 2))
# Sample the center location in the image where the zero mask will be applied.
cutout_center_height = tf.random_uniform(
shape=[], minval=min_y, maxval=max_y+1,
dtype=tf.int32)
cutout_center_width = tf.random_uniform(
shape=[], minval=min_x, maxval=max_x+1,
dtype=tf.int32)
lower_pad = tf.maximum(
0, cutout_center_height - pad_size_height)
upper_pad = tf.maximum(
0, image_height - cutout_center_height - pad_size_height)
left_pad = tf.maximum(
0, cutout_center_width - pad_size_width)
right_pad = tf.maximum(
0, image_width - cutout_center_width - pad_size_width)
cutout_shape = [image_height - (lower_pad + upper_pad),
image_width - (left_pad + right_pad)]
padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
mask = tf.pad(
tf.zeros(cutout_shape, dtype=image.dtype),
padding_dims, constant_values=1)
mask = tf.expand_dims(mask, 2)
mask = tf.tile(mask, [1, 1, 3])
return mask, mean
def bbox_cutout(image, bboxes, pad_fraction, replace_with_mean):
"""Applies cutout to the image according to bbox information.
This is a cutout variant that using bbox information to make more informed
decisions on where to place the cutout mask.
Args:
image: 3D uint8 Tensor.
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
has 4 elements (min_y, min_x, max_y, max_x) of type float with values
between [0, 1].
pad_fraction: Float that specifies how large the cutout mask should be in
in reference to the size of the original bbox. If pad_fraction is 0.25,
then the cutout mask will be of shape
(0.25 * bbox height, 0.25 * bbox width).
replace_with_mean: Boolean that specified what value should be filled in
where the cutout mask is applied. Since the incoming image will be of
uint8 and will not have had any mean normalization applied, by default
we set the value to be 128. If replace_with_mean is True then we find
the mean pixel values across the channel dimension and use those to fill
in where the cutout mask is applied.
Returns:
A tuple. First element is a tensor of the same shape as image that has
cutout applied to it. Second element is the bboxes that were passed in
that will be unchanged.
"""
def apply_bbox_cutout(image, bboxes, pad_fraction):
"""Applies cutout to a single bounding box within image."""
# Choose a single bounding box to apply cutout to.
random_index = tf.random_uniform(
shape=[], maxval=tf.shape(bboxes)[0], dtype=tf.int32)
# Select the corresponding bbox and apply cutout.
chosen_bbox = tf.gather(bboxes, random_index)
mask, mean = _cutout_inside_bbox(image, chosen_bbox, pad_fraction)
# When applying cutout we either set the pixel value to 128 or to the mean
# value inside the bbox.
replace = mean if replace_with_mean else 128
# Apply the cutout mask to the image. Where the mask is 0 we fill it with
# `replace`.
image = tf.where(
tf.equal(mask, 0),
tf.cast(tf.ones_like(image, dtype=image.dtype) * replace,
dtype=image.dtype),
image)
return image
# Check to see if there are boxes, if so then apply boxcutout.
image = tf.cond(tf.equal(tf.size(bboxes), 0), lambda: image,
lambda: apply_bbox_cutout(image, bboxes, pad_fraction))
return image, bboxes
NAME_TO_FUNC = {
'AutoContrast': autocontrast,
'Equalize': equalize,
'Posterize': posterize,
'Solarize': solarize,
'SolarizeAdd': solarize_add,
'Color': color,
'Contrast': contrast,
'Brightness': brightness,
'Sharpness': sharpness,
'Cutout': cutout,
'BBox_Cutout': bbox_cutout,
'Rotate_BBox': rotate_with_bboxes,
# pylint:disable=g-long-lambda
'TranslateX_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
image, bboxes, pixels, replace, shift_horizontal=True),
'TranslateY_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
image, bboxes, pixels, replace, shift_horizontal=False),
'ShearX_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
image, bboxes, level, replace, shear_horizontal=True),
'ShearY_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
image, bboxes, level, replace, shear_horizontal=False),
# pylint:enable=g-long-lambda
'Rotate_Only_BBoxes': rotate_only_bboxes,
'ShearX_Only_BBoxes': shear_x_only_bboxes,
'ShearY_Only_BBoxes': shear_y_only_bboxes,
'TranslateX_Only_BBoxes': translate_x_only_bboxes,
'TranslateY_Only_BBoxes': translate_y_only_bboxes,
'Flip_Only_BBoxes': flip_only_bboxes,
'Solarize_Only_BBoxes': solarize_only_bboxes,
'Equalize_Only_BBoxes': equalize_only_bboxes,
'Cutout_Only_BBoxes': cutout_only_bboxes,
}
def _randomly_negate_tensor(tensor):
"""With 50% prob turn the tensor negative."""
should_flip = tf.cast(tf.floor(tf.random_uniform([]) + 0.5), tf.bool)
final_tensor = tf.cond(should_flip, lambda: tensor, lambda: -tensor)
return final_tensor
def _rotate_level_to_arg(level):
level = (level/_MAX_LEVEL) * 30.
level = _randomly_negate_tensor(level)
return (level,)
def _shrink_level_to_arg(level):
"""Converts level to ratio by which we shrink the image content."""
if level == 0:
return (1.0,) # if level is zero, do not shrink the image
# Maximum shrinking ratio is 2.9.
level = 2. / (_MAX_LEVEL / level) + 0.9
return (level,)
def _enhance_level_to_arg(level):
return ((level/_MAX_LEVEL) * 1.8 + 0.1,)
def _shear_level_to_arg(level):
level = (level/_MAX_LEVEL) * 0.3
# Flip level to negative with 50% chance.
level = _randomly_negate_tensor(level)
return (level,)
def _translate_level_to_arg(level, translate_const):
level = (level/_MAX_LEVEL) * float(translate_const)
# Flip level to negative with 50% chance.
level = _randomly_negate_tensor(level)
return (level,)
def _bbox_cutout_level_to_arg(level, hparams):
cutout_pad_fraction = (level/_MAX_LEVEL) * hparams.cutout_max_pad_fraction
return (cutout_pad_fraction,
hparams.cutout_bbox_replace_with_mean)
def level_to_arg(hparams):
return {
'AutoContrast': lambda level: (),
'Equalize': lambda level: (),
'Posterize': lambda level: (int((level/_MAX_LEVEL) * 4),),
'Solarize': lambda level: (int((level/_MAX_LEVEL) * 256),),
'SolarizeAdd': lambda level: (int((level/_MAX_LEVEL) * 110),),
'Color': _enhance_level_to_arg,
'Contrast': _enhance_level_to_arg,
'Brightness': _enhance_level_to_arg,
'Sharpness': _enhance_level_to_arg,
'Cutout': lambda level: (int((level/_MAX_LEVEL) * hparams.cutout_const),),
# pylint:disable=g-long-lambda
'BBox_Cutout': lambda level: _bbox_cutout_level_to_arg(
level, hparams),
'TranslateX_BBox': lambda level: _translate_level_to_arg(
level, hparams.translate_const),
'TranslateY_BBox': lambda level: _translate_level_to_arg(
level, hparams.translate_const),
# pylint:enable=g-long-lambda
'ShearX_BBox': _shear_level_to_arg,
'ShearY_BBox': _shear_level_to_arg,
'Rotate_BBox': _rotate_level_to_arg,
'Rotate_Only_BBoxes': _rotate_level_to_arg,
'ShearX_Only_BBoxes': _shear_level_to_arg,
'ShearY_Only_BBoxes': _shear_level_to_arg,
# pylint:disable=g-long-lambda
'TranslateX_Only_BBoxes': lambda level: _translate_level_to_arg(
level, hparams.translate_bbox_const),
'TranslateY_Only_BBoxes': lambda level: _translate_level_to_arg(
level, hparams.translate_bbox_const),
# pylint:enable=g-long-lambda
'Flip_Only_BBoxes': lambda level: (),
'Solarize_Only_BBoxes': lambda level: (int((level/_MAX_LEVEL) * 256),),
'Equalize_Only_BBoxes': lambda level: (),
# pylint:disable=g-long-lambda
'Cutout_Only_BBoxes': lambda level: (
int((level/_MAX_LEVEL) * hparams.cutout_bbox_const),),
# pylint:enable=g-long-lambda
}
def bbox_wrapper(func):
"""Adds a bboxes function argument to func and returns unchanged bboxes."""
def wrapper(images, bboxes, *args, **kwargs):
return (func(images, *args, **kwargs), bboxes)
return wrapper
def _parse_policy_info(name, prob, level, replace_value, augmentation_hparams):
"""Return the function that corresponds to `name` and update `level` param."""
func = NAME_TO_FUNC[name]
args = level_to_arg(augmentation_hparams)[name](level)
if six.PY2:
# pylint: disable=deprecated-method
arg_spec = inspect.getargspec(func)
# pylint: enable=deprecated-method
else:
arg_spec = inspect.getfullargspec(func)
# Check to see if prob is passed into function. This is used for operations
# where we alter bboxes independently.
# pytype:disable=wrong-arg-types
if 'prob' in arg_spec[0]:
args = tuple([prob] + list(args))
# pytype:enable=wrong-arg-types
# Add in replace arg if it is required for the function that is being called.
if 'replace' in arg_spec[0]:
# Make sure replace is the final argument
assert 'replace' == arg_spec[0][-1]
args = tuple(list(args) + [replace_value])
# Add bboxes as the second positional argument for the function if it does
# not already exist.
if 'bboxes' not in arg_spec[0]:
func = bbox_wrapper(func)
return (func, prob, args)
def _apply_func_with_prob(func, image, args, prob, bboxes):
"""Apply `func` to image w/ `args` as input with probability `prob`."""
assert isinstance(args, tuple)
if six.PY2:
# pylint: disable=deprecated-method
arg_spec = inspect.getargspec(func)
# pylint: enable=deprecated-method
else:
arg_spec = inspect.getfullargspec(func)
assert 'bboxes' == arg_spec[0][1]
# If prob is a function argument, then this randomness is being handled
# inside the function, so make sure it is always called.
if 'prob' in arg_spec[0]:
prob = 1.0
# Apply the function with probability `prob`.
should_apply_op = tf.cast(
tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool)
augmented_image, augmented_bboxes = tf.cond(
should_apply_op,
lambda: func(image, bboxes, *args),
lambda: (image, bboxes))
return augmented_image, augmented_bboxes
def select_and_apply_random_policy(policies, image, bboxes):
"""Select a random policy from `policies` and apply it to `image`."""
policy_to_select = tf.random_uniform([], maxval=len(policies), dtype=tf.int32)
# Note that using tf.case instead of tf.conds would result in significantly
# larger graphs and would even break export for some larger policies.
for (i, policy) in enumerate(policies):
image, bboxes = tf.cond(
tf.equal(i, policy_to_select),
lambda selected_policy=policy: selected_policy(image, bboxes),
lambda: (image, bboxes))
return (image, bboxes)
def build_and_apply_nas_policy(policies, image, bboxes,
augmentation_hparams):
"""Build a policy from the given policies passed in and apply to image.
Args:
policies: list of lists of tuples in the form `(func, prob, level)`, `func`
is a string name of the augmentation function, `prob` is the probability
of applying the `func` operation, `level` is the input argument for
`func`.
image: tf.Tensor that the resulting policy will be applied to.
bboxes:
augmentation_hparams: Hparams associated with the NAS learned policy.
Returns:
A version of image that now has data augmentation applied to it based on
the `policies` pass into the function. Additionally, returns bboxes if
a value for them is passed in that is not None
"""
replace_value = [128, 128, 128]
# func is the string name of the augmentation function, prob is the
# probability of applying the operation and level is the parameter associated
# with the tf op.
# tf_policies are functions that take in an image and return an augmented
# image.
tf_policies = []
for policy in policies:
tf_policy = []
# Link string name to the correct python function and make sure the correct
# argument is passed into that function.
for policy_info in policy:
policy_info = list(policy_info) + [replace_value, augmentation_hparams]
tf_policy.append(_parse_policy_info(*policy_info))
# Now build the tf policy that will apply the augmentation procedue
# on image.
def make_final_policy(tf_policy_):
def final_policy(image_, bboxes_):
for func, prob, args in tf_policy_:
image_, bboxes_ = _apply_func_with_prob(
func, image_, args, prob, bboxes_)
return image_, bboxes_
return final_policy
tf_policies.append(make_final_policy(tf_policy))
augmented_image, augmented_bbox = select_and_apply_random_policy(
tf_policies, image, bboxes)
# If no bounding boxes were specified, then just return the images.
return (augmented_image, augmented_bbox)
# TODO(barretzoph): Add in ArXiv link once paper is out.
def distort_image_with_autoaugment(image, bboxes, augmentation_name):
"""Applies the AutoAugment policy to `image` and `bboxes`.
Args:
image: `Tensor` of shape [height, width, 3] representing an image.
bboxes: `Tensor` of shape [N, 4] representing ground truth boxes that are
normalized between [0, 1].
augmentation_name: The name of the AutoAugment policy to use. The available
options are `v0`, `v1`, `v2`, `v3` and `test`. `v0` is the policy used for
all of the results in the paper and was found to achieve the best results
on the COCO dataset. `v1`, `v2` and `v3` are additional good policies
found on the COCO dataset that have slight variation in what operations
were used during the search procedure along with how many operations are
applied in parallel to a single image (2 vs 3).
Returns:
A tuple containing the augmented versions of `image` and `bboxes`.
"""
image = tf.cast(image, tf.uint8)
available_policies = {'v0': policy_v0, 'v1': policy_v1, 'v2': policy_v2,
'v3': policy_v3, 'test': policy_vtest}
if augmentation_name not in available_policies:
raise ValueError('Invalid augmentation_name: {}'.format(augmentation_name))
policy = available_policies[augmentation_name]()
# Hparams that will be used for AutoAugment.
augmentation_hparams = contrib_training.HParams(
cutout_max_pad_fraction=0.75,
cutout_bbox_replace_with_mean=False,
cutout_const=100,
translate_const=250,
cutout_bbox_const=50,
translate_bbox_const=120)
augmented_image, augmented_bbox = (
build_and_apply_nas_policy(policy, image, bboxes, augmentation_hparams))
augmented_image = tf.cast(augmented_image, tf.float32)
return augmented_image, augmented_bbox | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/autoaugment_utils.py | autoaugment_utils.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import abstractmethod
import collections
import logging
import numpy as np
import six
from six.moves import range
from object_detection.core import standard_fields
from object_detection.utils import metrics
from object_detection.utils import object_detection_evaluation
from object_detection.utils import per_image_vrd_evaluation
# Below standard input numpy datatypes are defined:
# box_data_type - datatype of the groundtruth visual relations box annotations;
# this datatype consists of two named boxes: subject bounding box and object
# bounding box. Each box is of the format [y_min, x_min, y_max, x_max], each
# coordinate being of type float32.
# label_data_type - corresponding datatype of the visual relations label
# annotaions; it consists of three numerical class labels: subject class label,
# object class label and relation class label, each class label being of type
# int32.
vrd_box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))])
single_box_data_type = np.dtype([('box', 'f4', (4,))])
label_data_type = np.dtype([('subject', 'i4'), ('object', 'i4'), ('relation',
'i4')])
class VRDDetectionEvaluator(object_detection_evaluation.DetectionEvaluator):
"""A class to evaluate VRD detections.
This class serves as a base class for VRD evaluation in two settings:
- phrase detection
- relation detection.
"""
def __init__(self, matching_iou_threshold=0.5, metric_prefix=None):
"""Constructor.
Args:
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
metric_prefix: (optional) string prefix for metric name; if None, no
prefix is used.
"""
super(VRDDetectionEvaluator, self).__init__([])
self._matching_iou_threshold = matching_iou_threshold
self._evaluation = _VRDDetectionEvaluation(
matching_iou_threshold=self._matching_iou_threshold)
self._image_ids = set([])
self._metric_prefix = (metric_prefix + '_') if metric_prefix else ''
self._evaluatable_labels = {}
self._negative_labels = {}
@abstractmethod
def _process_groundtruth_boxes(self, groundtruth_box_tuples):
"""Pre-processes boxes before adding them to the VRDDetectionEvaluation.
Phrase detection and Relation detection subclasses re-implement this method
depending on the task.
Args:
groundtruth_box_tuples: A numpy array of structures with the shape
[M, 1], each structure containing the same number of named bounding
boxes. Each box is of the format [y_min, x_min, y_max, x_max] (see
datatype vrd_box_data_type, single_box_data_type above).
"""
raise NotImplementedError(
'_process_groundtruth_boxes method should be implemented in subclasses'
'of VRDDetectionEvaluator.')
@abstractmethod
def _process_detection_boxes(self, detections_box_tuples):
"""Pre-processes boxes before adding them to the VRDDetectionEvaluation.
Phrase detection and Relation detection subclasses re-implement this method
depending on the task.
Args:
detections_box_tuples: A numpy array of structures with the shape
[M, 1], each structure containing the same number of named bounding
boxes. Each box is of the format [y_min, x_min, y_max, x_max] (see
datatype vrd_box_data_type, single_box_data_type above).
"""
raise NotImplementedError(
'_process_detection_boxes method should be implemented in subclasses'
'of VRDDetectionEvaluator.')
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
standard_fields.InputDataFields.groundtruth_boxes: A numpy array
of structures with the shape [M, 1], representing M tuples, each tuple
containing the same number of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max] (see
datatype vrd_box_data_type, single_box_data_type above).
standard_fields.InputDataFields.groundtruth_classes: A numpy array of
structures shape [M, 1], representing the class labels of the
corresponding bounding boxes and possibly additional classes (see
datatype label_data_type above).
standard_fields.InputDataFields.groundtruth_image_classes: numpy array
of shape [K] containing verified labels.
Raises:
ValueError: On adding groundtruth for an image more than once.
"""
if image_id in self._image_ids:
raise ValueError('Image with id {} already added.'.format(image_id))
groundtruth_class_tuples = (
groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes])
groundtruth_box_tuples = (
groundtruth_dict[standard_fields.InputDataFields.groundtruth_boxes])
self._evaluation.add_single_ground_truth_image_info(
image_key=image_id,
groundtruth_box_tuples=self._process_groundtruth_boxes(
groundtruth_box_tuples),
groundtruth_class_tuples=groundtruth_class_tuples)
self._image_ids.update([image_id])
all_classes = []
for field in groundtruth_box_tuples.dtype.fields:
all_classes.append(groundtruth_class_tuples[field])
groudtruth_positive_classes = np.unique(np.concatenate(all_classes))
verified_labels = groundtruth_dict.get(
standard_fields.InputDataFields.groundtruth_image_classes,
np.array([], dtype=int))
self._evaluatable_labels[image_id] = np.unique(
np.concatenate((verified_labels, groudtruth_positive_classes)))
self._negative_labels[image_id] = np.setdiff1d(verified_labels,
groudtruth_positive_classes)
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
standard_fields.DetectionResultFields.detection_boxes: A numpy array of
structures with shape [N, 1], representing N tuples, each tuple
containing the same number of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max] (as an example
see datatype vrd_box_data_type, single_box_data_type above).
standard_fields.DetectionResultFields.detection_scores: float32 numpy
array of shape [N] containing detection scores for the boxes.
standard_fields.DetectionResultFields.detection_classes: A numpy array
of structures shape [N, 1], representing the class labels of the
corresponding bounding boxes and possibly additional classes (see
datatype label_data_type above).
"""
if image_id not in self._image_ids:
logging.warning('No groundtruth for the image with id %s.', image_id)
# Since for the correct work of evaluator it is assumed that groundtruth
# is inserted first we make sure to break the code if is it not the case.
self._image_ids.update([image_id])
self._negative_labels[image_id] = np.array([])
self._evaluatable_labels[image_id] = np.array([])
num_detections = detections_dict[
standard_fields.DetectionResultFields.detection_boxes].shape[0]
detection_class_tuples = detections_dict[
standard_fields.DetectionResultFields.detection_classes]
detection_box_tuples = detections_dict[
standard_fields.DetectionResultFields.detection_boxes]
negative_selector = np.zeros(num_detections, dtype=bool)
selector = np.ones(num_detections, dtype=bool)
# Only check boxable labels
for field in detection_box_tuples.dtype.fields:
# Verify if one of the labels is negative (this is sure FP)
negative_selector |= np.isin(detection_class_tuples[field],
self._negative_labels[image_id])
# Verify if all labels are verified
selector &= np.isin(detection_class_tuples[field],
self._evaluatable_labels[image_id])
selector |= negative_selector
self._evaluation.add_single_detected_image_info(
image_key=image_id,
detected_box_tuples=self._process_detection_boxes(
detection_box_tuples[selector]),
detected_scores=detections_dict[
standard_fields.DetectionResultFields.detection_scores][selector],
detected_class_tuples=detection_class_tuples[selector])
def evaluate(self, relationships=None):
"""Compute evaluation result.
Args:
relationships: A dictionary of numerical label-text label mapping; if
specified, returns per-relationship AP.
Returns:
A dictionary of metrics with the following fields -
summary_metrics:
'weightedAP@<matching_iou_threshold>IOU' : weighted average precision
at the specified IOU threshold.
'AP@<matching_iou_threshold>IOU/<relationship>' : AP per relationship.
'mAP@<matching_iou_threshold>IOU': mean average precision at the
specified IOU threshold.
'Recall@50@<matching_iou_threshold>IOU': recall@50 at the specified IOU
threshold.
'Recall@100@<matching_iou_threshold>IOU': recall@100 at the specified
IOU threshold.
if relationships is specified, returns <relationship> in AP metrics as
readable names, otherwise the names correspond to class numbers.
"""
(weighted_average_precision, mean_average_precision, average_precisions, _,
_, recall_50, recall_100, _, _) = (
self._evaluation.evaluate())
vrd_metrics = {
(self._metric_prefix + 'weightedAP@{}IOU'.format(
self._matching_iou_threshold)):
weighted_average_precision,
self._metric_prefix + 'mAP@{}IOU'.format(self._matching_iou_threshold):
mean_average_precision,
self._metric_prefix + 'Recall@50@{}IOU'.format(
self._matching_iou_threshold):
recall_50,
self._metric_prefix + 'Recall@100@{}IOU'.format(
self._matching_iou_threshold):
recall_100,
}
if relationships:
for key, average_precision in six.iteritems(average_precisions):
vrd_metrics[self._metric_prefix + 'AP@{}IOU/{}'.format(
self._matching_iou_threshold,
relationships[key])] = average_precision
else:
for key, average_precision in six.iteritems(average_precisions):
vrd_metrics[self._metric_prefix + 'AP@{}IOU/{}'.format(
self._matching_iou_threshold, key)] = average_precision
return vrd_metrics
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
self._evaluation = _VRDDetectionEvaluation(
matching_iou_threshold=self._matching_iou_threshold)
self._image_ids.clear()
self._negative_labels.clear()
self._evaluatable_labels.clear()
class VRDRelationDetectionEvaluator(VRDDetectionEvaluator):
"""A class to evaluate VRD detections in relations setting.
Expected groundtruth box datatype is vrd_box_data_type, expected groudtruth
labels datatype is label_data_type.
Expected detection box datatype is vrd_box_data_type, expected detection
labels
datatype is label_data_type.
"""
def __init__(self, matching_iou_threshold=0.5):
super(VRDRelationDetectionEvaluator, self).__init__(
matching_iou_threshold=matching_iou_threshold,
metric_prefix='VRDMetric_Relationships')
def _process_groundtruth_boxes(self, groundtruth_box_tuples):
"""Pre-processes boxes before adding them to the VRDDetectionEvaluation.
Args:
groundtruth_box_tuples: A numpy array of structures with the shape
[M, 1], each structure containing the same number of named bounding
boxes. Each box is of the format [y_min, x_min, y_max, x_max].
Returns:
Unchanged input.
"""
return groundtruth_box_tuples
def _process_detection_boxes(self, detections_box_tuples):
"""Pre-processes boxes before adding them to the VRDDetectionEvaluation.
Phrase detection and Relation detection subclasses re-implement this method
depending on the task.
Args:
detections_box_tuples: A numpy array of structures with the shape
[M, 1], each structure containing the same number of named bounding
boxes. Each box is of the format [y_min, x_min, y_max, x_max] (see
datatype vrd_box_data_type, single_box_data_type above).
Returns:
Unchanged input.
"""
return detections_box_tuples
class VRDPhraseDetectionEvaluator(VRDDetectionEvaluator):
"""A class to evaluate VRD detections in phrase setting.
Expected groundtruth box datatype is vrd_box_data_type, expected groudtruth
labels datatype is label_data_type.
Expected detection box datatype is single_box_data_type, expected detection
labels datatype is label_data_type.
"""
def __init__(self, matching_iou_threshold=0.5):
super(VRDPhraseDetectionEvaluator, self).__init__(
matching_iou_threshold=matching_iou_threshold,
metric_prefix='VRDMetric_Phrases')
def _process_groundtruth_boxes(self, groundtruth_box_tuples):
"""Pre-processes boxes before adding them to the VRDDetectionEvaluation.
In case of phrase evaluation task, evaluation expects exactly one bounding
box containing all objects in the phrase. This bounding box is computed
as an enclosing box of all groundtruth boxes of a phrase.
Args:
groundtruth_box_tuples: A numpy array of structures with the shape
[M, 1], each structure containing the same number of named bounding
boxes. Each box is of the format [y_min, x_min, y_max, x_max]. See
vrd_box_data_type for an example of structure.
Returns:
result: A numpy array of structures with the shape [M, 1], each
structure containing exactly one named bounding box. i-th output
structure corresponds to the result of processing i-th input structure,
where the named bounding box is computed as an enclosing bounding box
of all bounding boxes of the i-th input structure.
"""
first_box_key = next(six.iterkeys(groundtruth_box_tuples.dtype.fields))
miny = groundtruth_box_tuples[first_box_key][:, 0]
minx = groundtruth_box_tuples[first_box_key][:, 1]
maxy = groundtruth_box_tuples[first_box_key][:, 2]
maxx = groundtruth_box_tuples[first_box_key][:, 3]
for fields in groundtruth_box_tuples.dtype.fields:
miny = np.minimum(groundtruth_box_tuples[fields][:, 0], miny)
minx = np.minimum(groundtruth_box_tuples[fields][:, 1], minx)
maxy = np.maximum(groundtruth_box_tuples[fields][:, 2], maxy)
maxx = np.maximum(groundtruth_box_tuples[fields][:, 3], maxx)
data_result = []
for i in range(groundtruth_box_tuples.shape[0]):
data_result.append(([miny[i], minx[i], maxy[i], maxx[i]],))
result = np.array(data_result, dtype=[('box', 'f4', (4,))])
return result
def _process_detection_boxes(self, detections_box_tuples):
"""Pre-processes boxes before adding them to the VRDDetectionEvaluation.
In case of phrase evaluation task, evaluation expects exactly one bounding
box containing all objects in the phrase. This bounding box is computed
as an enclosing box of all groundtruth boxes of a phrase.
Args:
detections_box_tuples: A numpy array of structures with the shape
[M, 1], each structure containing the same number of named bounding
boxes. Each box is of the format [y_min, x_min, y_max, x_max]. See
vrd_box_data_type for an example of this structure.
Returns:
result: A numpy array of structures with the shape [M, 1], each
structure containing exactly one named bounding box. i-th output
structure corresponds to the result of processing i-th input structure,
where the named bounding box is computed as an enclosing bounding box
of all bounding boxes of the i-th input structure.
"""
first_box_key = next(six.iterkeys(detections_box_tuples.dtype.fields))
miny = detections_box_tuples[first_box_key][:, 0]
minx = detections_box_tuples[first_box_key][:, 1]
maxy = detections_box_tuples[first_box_key][:, 2]
maxx = detections_box_tuples[first_box_key][:, 3]
for fields in detections_box_tuples.dtype.fields:
miny = np.minimum(detections_box_tuples[fields][:, 0], miny)
minx = np.minimum(detections_box_tuples[fields][:, 1], minx)
maxy = np.maximum(detections_box_tuples[fields][:, 2], maxy)
maxx = np.maximum(detections_box_tuples[fields][:, 3], maxx)
data_result = []
for i in range(detections_box_tuples.shape[0]):
data_result.append(([miny[i], minx[i], maxy[i], maxx[i]],))
result = np.array(data_result, dtype=[('box', 'f4', (4,))])
return result
VRDDetectionEvalMetrics = collections.namedtuple('VRDDetectionEvalMetrics', [
'weighted_average_precision', 'mean_average_precision',
'average_precisions', 'precisions', 'recalls', 'recall_50', 'recall_100',
'median_rank_50', 'median_rank_100'
])
class _VRDDetectionEvaluation(object):
"""Performs metric computation for the VRD task. This class is internal.
"""
def __init__(self, matching_iou_threshold=0.5):
"""Constructor.
Args:
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
"""
self._per_image_eval = per_image_vrd_evaluation.PerImageVRDEvaluation(
matching_iou_threshold=matching_iou_threshold)
self._groundtruth_box_tuples = {}
self._groundtruth_class_tuples = {}
self._num_gt_instances = 0
self._num_gt_imgs = 0
self._num_gt_instances_per_relationship = {}
self.clear_detections()
def clear_detections(self):
"""Clears detections."""
self._detection_keys = set()
self._scores = []
self._relation_field_values = []
self._tp_fp_labels = []
self._average_precisions = {}
self._precisions = []
self._recalls = []
def add_single_ground_truth_image_info(
self, image_key, groundtruth_box_tuples, groundtruth_class_tuples):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_key: A unique string/integer identifier for the image.
groundtruth_box_tuples: A numpy array of structures with the shape
[M, 1], representing M tuples, each tuple containing the same number
of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max].
groundtruth_class_tuples: A numpy array of structures shape [M, 1],
representing the class labels of the corresponding bounding boxes and
possibly additional classes.
"""
if image_key in self._groundtruth_box_tuples:
logging.warning(
'image %s has already been added to the ground truth database.',
image_key)
return
self._groundtruth_box_tuples[image_key] = groundtruth_box_tuples
self._groundtruth_class_tuples[image_key] = groundtruth_class_tuples
self._update_groundtruth_statistics(groundtruth_class_tuples)
def add_single_detected_image_info(self, image_key, detected_box_tuples,
detected_scores, detected_class_tuples):
"""Adds detections for a single image to be used for evaluation.
Args:
image_key: A unique string/integer identifier for the image.
detected_box_tuples: A numpy array of structures with shape [N, 1],
representing N tuples, each tuple containing the same number of named
bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max].
detected_scores: A float numpy array of shape [N, 1], representing
the confidence scores of the detected N object instances.
detected_class_tuples: A numpy array of structures shape [N, 1],
representing the class labels of the corresponding bounding boxes and
possibly additional classes.
"""
self._detection_keys.add(image_key)
if image_key in self._groundtruth_box_tuples:
groundtruth_box_tuples = self._groundtruth_box_tuples[image_key]
groundtruth_class_tuples = self._groundtruth_class_tuples[image_key]
else:
groundtruth_box_tuples = np.empty(
shape=[0, 4], dtype=detected_box_tuples.dtype)
groundtruth_class_tuples = np.array([], dtype=detected_class_tuples.dtype)
scores, tp_fp_labels, mapping = (
self._per_image_eval.compute_detection_tp_fp(
detected_box_tuples=detected_box_tuples,
detected_scores=detected_scores,
detected_class_tuples=detected_class_tuples,
groundtruth_box_tuples=groundtruth_box_tuples,
groundtruth_class_tuples=groundtruth_class_tuples))
self._scores += [scores]
self._tp_fp_labels += [tp_fp_labels]
self._relation_field_values += [detected_class_tuples[mapping]['relation']]
def _update_groundtruth_statistics(self, groundtruth_class_tuples):
"""Updates grouth truth statistics.
Args:
groundtruth_class_tuples: A numpy array of structures shape [M, 1],
representing the class labels of the corresponding bounding boxes and
possibly additional classes.
"""
self._num_gt_instances += groundtruth_class_tuples.shape[0]
self._num_gt_imgs += 1
for relation_field_value in np.unique(groundtruth_class_tuples['relation']):
if relation_field_value not in self._num_gt_instances_per_relationship:
self._num_gt_instances_per_relationship[relation_field_value] = 0
self._num_gt_instances_per_relationship[relation_field_value] += np.sum(
groundtruth_class_tuples['relation'] == relation_field_value)
def evaluate(self):
"""Computes evaluation result.
Returns:
A named tuple with the following fields -
average_precision: a float number corresponding to average precision.
precisions: an array of precisions.
recalls: an array of recalls.
recall@50: recall computed on 50 top-scoring samples.
recall@100: recall computed on 100 top-scoring samples.
median_rank@50: median rank computed on 50 top-scoring samples.
median_rank@100: median rank computed on 100 top-scoring samples.
"""
if self._num_gt_instances == 0:
logging.warning('No ground truth instances')
if not self._scores:
scores = np.array([], dtype=float)
tp_fp_labels = np.array([], dtype=bool)
else:
scores = np.concatenate(self._scores)
tp_fp_labels = np.concatenate(self._tp_fp_labels)
relation_field_values = np.concatenate(self._relation_field_values)
for relation_field_value, _ in (six.iteritems(
self._num_gt_instances_per_relationship)):
precisions, recalls = metrics.compute_precision_recall(
scores[relation_field_values == relation_field_value],
tp_fp_labels[relation_field_values == relation_field_value],
self._num_gt_instances_per_relationship[relation_field_value])
self._average_precisions[
relation_field_value] = metrics.compute_average_precision(
precisions, recalls)
self._mean_average_precision = np.mean(
list(self._average_precisions.values()))
self._precisions, self._recalls = metrics.compute_precision_recall(
scores, tp_fp_labels, self._num_gt_instances)
self._weighted_average_precision = metrics.compute_average_precision(
self._precisions, self._recalls)
self._recall_50 = (
metrics.compute_recall_at_k(self._tp_fp_labels, self._num_gt_instances,
50))
self._median_rank_50 = (
metrics.compute_median_rank_at_k(self._tp_fp_labels, 50))
self._recall_100 = (
metrics.compute_recall_at_k(self._tp_fp_labels, self._num_gt_instances,
100))
self._median_rank_100 = (
metrics.compute_median_rank_at_k(self._tp_fp_labels, 100))
return VRDDetectionEvalMetrics(
self._weighted_average_precision, self._mean_average_precision,
self._average_precisions, self._precisions, self._recalls,
self._recall_50, self._recall_100, self._median_rank_50,
self._median_rank_100) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/vrd_evaluation.py | vrd_evaluation.py |
"""Spatial transformation ops like RoIAlign, CropAndResize."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from object_detection.utils import shape_utils
def _coordinate_vector_1d(start, end, size, align_endpoints):
"""Generates uniformly spaced coordinate vector.
Args:
start: A float tensor of shape [batch, num_boxes] indicating start values.
end: A float tensor of shape [batch, num_boxes] indicating end values.
size: Number of points in coordinate vector.
align_endpoints: Whether to align first and last points exactly to
endpoints.
Returns:
A 3D float tensor of shape [batch, num_boxes, size] containing grid
coordinates.
"""
start = tf.expand_dims(start, -1)
end = tf.expand_dims(end, -1)
length = end - start
if align_endpoints:
relative_grid_spacing = tf.linspace(0.0, 1.0, size)
offset = 0 if size > 1 else length / 2
else:
relative_grid_spacing = tf.linspace(0.0, 1.0, size + 1)[:-1]
offset = length / (2 * size)
relative_grid_spacing = tf.reshape(relative_grid_spacing, [1, 1, size])
relative_grid_spacing = tf.cast(relative_grid_spacing, dtype=start.dtype)
absolute_grid = start + offset + relative_grid_spacing * length
return absolute_grid
def box_grid_coordinate_vectors(boxes, size_y, size_x, align_corners=False):
"""Generates coordinate vectors for a `size x size` grid in boxes.
Each box is subdivided uniformly into a grid consisting of size x size
rectangular cells. This function returns coordinate vectors describing
the center of each cell.
If `align_corners` is true, grid points are uniformly spread such that the
corner points on the grid exactly overlap corners of the boxes.
Note that output coordinates are expressed in the same coordinate frame as
input boxes.
Args:
boxes: A float tensor of shape [batch, num_boxes, 4] containing boxes of the
form [ymin, xmin, ymax, xmax].
size_y: Size of the grid in y axis.
size_x: Size of the grid in x axis.
align_corners: Whether to align the corner grid points exactly with box
corners.
Returns:
box_grid_y: A float tensor of shape [batch, num_boxes, size_y] containing y
coordinates for grid points.
box_grid_x: A float tensor of shape [batch, num_boxes, size_x] containing x
coordinates for grid points.
"""
ymin, xmin, ymax, xmax = tf.unstack(boxes, axis=-1)
box_grid_y = _coordinate_vector_1d(ymin, ymax, size_y, align_corners)
box_grid_x = _coordinate_vector_1d(xmin, xmax, size_x, align_corners)
return box_grid_y, box_grid_x
def feature_grid_coordinate_vectors(box_grid_y, box_grid_x):
"""Returns feature grid point coordinate vectors for bilinear interpolation.
Box grid is specified in absolute coordinate system with origin at left top
(0, 0). The returned coordinate vectors contain 0-based feature point indices.
This function snaps each point in the box grid to nearest 4 points on the
feature map.
In this function we also follow the convention of treating feature pixels as
point objects with no spatial extent.
Args:
box_grid_y: A float tensor of shape [batch, num_boxes, size] containing y
coordinate vector of the box grid.
box_grid_x: A float tensor of shape [batch, num_boxes, size] containing x
coordinate vector of the box grid.
Returns:
feature_grid_y0: An int32 tensor of shape [batch, num_boxes, size]
containing y coordinate vector for the top neighbors.
feature_grid_x0: A int32 tensor of shape [batch, num_boxes, size]
containing x coordinate vector for the left neighbors.
feature_grid_y1: A int32 tensor of shape [batch, num_boxes, size]
containing y coordinate vector for the bottom neighbors.
feature_grid_x1: A int32 tensor of shape [batch, num_boxes, size]
containing x coordinate vector for the right neighbors.
"""
feature_grid_y0 = tf.floor(box_grid_y)
feature_grid_x0 = tf.floor(box_grid_x)
feature_grid_y1 = tf.floor(box_grid_y + 1)
feature_grid_x1 = tf.floor(box_grid_x + 1)
feature_grid_y0 = tf.cast(feature_grid_y0, dtype=tf.int32)
feature_grid_y1 = tf.cast(feature_grid_y1, dtype=tf.int32)
feature_grid_x0 = tf.cast(feature_grid_x0, dtype=tf.int32)
feature_grid_x1 = tf.cast(feature_grid_x1, dtype=tf.int32)
return (feature_grid_y0, feature_grid_x0, feature_grid_y1, feature_grid_x1)
def _valid_indicator(feature_grid_y, feature_grid_x, true_feature_shapes):
"""Computes a indicator vector for valid indices.
Computes an indicator vector which is true for points on feature map and
false for points off feature map.
Args:
feature_grid_y: An int32 tensor of shape [batch, num_boxes, size_y]
containing y coordinate vector.
feature_grid_x: An int32 tensor of shape [batch, num_boxes, size_x]
containing x coordinate vector.
true_feature_shapes: A int32 tensor of shape [batch, num_boxes, 2]
containing valid height and width of feature maps. Feature maps are
assumed to be aligned to the left top corner.
Returns:
indices: A 1D bool tensor indicating valid feature indices.
"""
height = tf.cast(true_feature_shapes[:, :, 0:1], dtype=feature_grid_y.dtype)
width = tf.cast(true_feature_shapes[:, :, 1:2], dtype=feature_grid_x.dtype)
valid_indicator = tf.logical_and(
tf.expand_dims(
tf.logical_and(feature_grid_y >= 0, tf.less(feature_grid_y, height)),
3),
tf.expand_dims(
tf.logical_and(feature_grid_x >= 0, tf.less(feature_grid_x, width)),
2))
return tf.reshape(valid_indicator, [-1])
def ravel_indices(feature_grid_y, feature_grid_x, num_levels, height, width,
box_levels):
"""Returns grid indices in a flattened feature map of shape [-1, channels].
The returned 1-D array can be used to gather feature grid points from a
feature map that has been flattened from [batch, num_levels, max_height,
max_width, channels] to [batch * num_levels * max_height * max_width,
channels].
Args:
feature_grid_y: An int32 tensor of shape [batch, num_boxes, size_y]
containing y coordinate vector.
feature_grid_x: An int32 tensor of shape [batch, num_boxes, size_x]
containing x coordinate vector.
num_levels: Number of feature levels.
height: An integer indicating the padded height of feature maps.
width: An integer indicating the padded width of feature maps.
box_levels: An int32 tensor of shape [batch, num_boxes] indicating
feature level assigned to each box.
Returns:
indices: A 1D int32 tensor containing feature point indices in a flattened
feature grid.
"""
num_boxes = tf.shape(feature_grid_y)[1]
batch_size = tf.shape(feature_grid_y)[0]
size_y = tf.shape(feature_grid_y)[2]
size_x = tf.shape(feature_grid_x)[2]
height_dim_offset = width
level_dim_offset = height * height_dim_offset
batch_dim_offset = num_levels * level_dim_offset
batch_dim_indices = (
tf.reshape(
tf.range(batch_size) * batch_dim_offset, [batch_size, 1, 1, 1]) *
tf.ones([1, num_boxes, size_y, size_x], dtype=tf.int32))
box_level_indices = (
tf.reshape(box_levels * level_dim_offset, [batch_size, num_boxes, 1, 1]) *
tf.ones([1, 1, size_y, size_x], dtype=tf.int32))
height_indices = (
tf.reshape(feature_grid_y * height_dim_offset,
[batch_size, num_boxes, size_y, 1]) *
tf.ones([1, 1, 1, size_x], dtype=tf.int32))
width_indices = (
tf.reshape(feature_grid_x, [batch_size, num_boxes, 1, size_x])
* tf.ones([1, 1, size_y, 1], dtype=tf.int32))
indices = (
batch_dim_indices + box_level_indices + height_indices + width_indices)
flattened_indices = tf.reshape(indices, [-1])
return flattened_indices
def pad_to_max_size(features):
"""Pads features to max height and max width and stacks them up.
Args:
features: A list of num_levels 4D float tensors of shape [batch, height_i,
width_i, channels] containing feature maps.
Returns:
stacked_features: A 5D float tensor of shape [batch, num_levels, max_height,
max_width, channels] containing stacked features.
true_feature_shapes: A 2D int32 tensor of shape [num_levels, 2] containing
height and width of the feature maps before padding.
"""
if len(features) == 1:
return tf.expand_dims(features[0],
1), tf.expand_dims(tf.shape(features[0])[1:3], 0)
if all([feature.shape.is_fully_defined() for feature in features]):
heights = [feature.shape[1] for feature in features]
widths = [feature.shape[2] for feature in features]
max_height = max(heights)
max_width = max(widths)
else:
heights = [tf.shape(feature)[1] for feature in features]
widths = [tf.shape(feature)[2] for feature in features]
max_height = tf.reduce_max(heights)
max_width = tf.reduce_max(widths)
features_all = [
tf.image.pad_to_bounding_box(feature, 0, 0, max_height,
max_width) for feature in features
]
features_all = tf.stack(features_all, axis=1)
true_feature_shapes = tf.stack([tf.shape(feature)[1:3]
for feature in features])
return features_all, true_feature_shapes
def _gather_valid_indices(tensor, indices, padding_value=0.0):
"""Gather values for valid indices.
TODO(rathodv): We can't use ops.gather_with_padding_values due to cyclic
dependency. Start using it after migrating all users of spatial ops to import
this module directly rather than util/ops.py
Args:
tensor: A tensor to gather valid values from.
indices: A 1-D int32 tensor containing indices along axis 0 of `tensor`.
Invalid indices must be marked with -1.
padding_value: Value to return for invalid indices.
Returns:
A tensor sliced based on indices. For indices that are equal to -1, returns
rows of padding value.
"""
padded_tensor = tf.concat(
[
padding_value *
tf.ones([1, tf.shape(tensor)[-1]], dtype=tensor.dtype), tensor
],
axis=0,
)
# tf.concat gradient op uses tf.where(condition) (which is not
# supported on TPU) when the inputs to it are tf.IndexedSlices instead of
# tf.Tensor. Since gradient op for tf.gather returns tf.IndexedSlices,
# we add a dummy op inbetween tf.concat and tf.gather to ensure tf.concat
# gradient function gets tf.Tensor inputs and not tf.IndexedSlices.
padded_tensor *= 1.0
return tf.gather(padded_tensor, indices + 1)
def multilevel_roi_align(features, boxes, box_levels, output_size,
num_samples_per_cell_y=1, num_samples_per_cell_x=1,
align_corners=False, extrapolation_value=0.0,
scope=None):
"""Applies RoI Align op and returns feature for boxes.
Given multiple features maps indexed by different levels, and a set of boxes
where each box is mapped to a certain level, this function selectively crops
and resizes boxes from the corresponding feature maps.
We follow the RoI Align technique in https://arxiv.org/pdf/1703.06870.pdf
figure 3. Specifically, each box is subdivided uniformly into a grid
consisting of output_size[0] x output_size[1] rectangular cells. Within each
cell we select `num_points` points uniformly and compute feature values using
bilinear interpolation. Finally, we average pool the interpolated values in
each cell to obtain a [output_size[0], output_size[1], channels] feature.
If `align_corners` is true, sampling points are uniformly spread such that
corner points exactly overlap corners of the boxes.
In this function we also follow the convention of treating feature pixels as
point objects with no spatial extent.
Args:
features: A list of 4D float tensors of shape [batch_size, max_height,
max_width, channels] containing features. Note that each feature map must
have the same number of channels.
boxes: A 3D float tensor of shape [batch_size, num_boxes, 4] containing
boxes of the form [ymin, xmin, ymax, xmax] in normalized coordinates.
box_levels: A 3D int32 tensor of shape [batch_size, num_boxes]
representing the feature level index for each box.
output_size: An list of two integers [size_y, size_x] indicating the output
feature size for each box.
num_samples_per_cell_y: Number of grid points to sample along y axis in each
cell.
num_samples_per_cell_x: Number of grid points to sample along x axis in each
cell.
align_corners: Whether to align the corner grid points exactly with box
corners.
extrapolation_value: a float value to use for extrapolation.
scope: Scope name to use for this op.
Returns:
A 5D float tensor of shape [batch_size, num_boxes, output_size[0],
output_size[1], channels] representing the cropped features.
"""
with tf.name_scope(scope, 'MultiLevelRoIAlign'):
features, true_feature_shapes = pad_to_max_size(features)
batch_size = shape_utils.combined_static_and_dynamic_shape(features)[0]
num_levels = features.get_shape().as_list()[1]
max_feature_height = tf.shape(features)[2]
max_feature_width = tf.shape(features)[3]
num_filters = features.get_shape().as_list()[4]
num_boxes = tf.shape(boxes)[1]
# Convert boxes to absolute co-ordinates.
true_feature_shapes = tf.cast(true_feature_shapes, dtype=boxes.dtype)
true_feature_shapes = tf.gather(true_feature_shapes, box_levels)
boxes *= tf.concat([true_feature_shapes - 1] * 2, axis=-1)
size_y = output_size[0] * num_samples_per_cell_y
size_x = output_size[1] * num_samples_per_cell_x
box_grid_y, box_grid_x = box_grid_coordinate_vectors(
boxes, size_y=size_y, size_x=size_x, align_corners=align_corners)
(feature_grid_y0, feature_grid_x0, feature_grid_y1,
feature_grid_x1) = feature_grid_coordinate_vectors(box_grid_y, box_grid_x)
feature_grid_y = tf.reshape(
tf.stack([feature_grid_y0, feature_grid_y1], axis=3),
[batch_size, num_boxes, -1])
feature_grid_x = tf.reshape(
tf.stack([feature_grid_x0, feature_grid_x1], axis=3),
[batch_size, num_boxes, -1])
feature_coordinates = ravel_indices(feature_grid_y, feature_grid_x,
num_levels, max_feature_height,
max_feature_width, box_levels)
valid_indices = _valid_indicator(feature_grid_y, feature_grid_x,
true_feature_shapes)
feature_coordinates = tf.where(valid_indices, feature_coordinates,
-1 * tf.ones_like(feature_coordinates))
flattened_features = tf.reshape(features, [-1, num_filters])
flattened_feature_values = _gather_valid_indices(flattened_features,
feature_coordinates,
extrapolation_value)
features_per_box = tf.reshape(
flattened_feature_values,
[batch_size, num_boxes, size_y * 2, size_x * 2, num_filters])
# Cast tensors into dtype of features.
box_grid_y = tf.cast(box_grid_y, dtype=features_per_box.dtype)
box_grid_x = tf.cast(box_grid_x, dtype=features_per_box.dtype)
feature_grid_y0 = tf.cast(feature_grid_y0, dtype=features_per_box.dtype)
feature_grid_x0 = tf.cast(feature_grid_x0, dtype=features_per_box.dtype)
# RoI Align operation is a bilinear interpolation of four
# neighboring feature points f0, f1, f2, and f3 onto point y, x given by
# f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
# [f10, f11]]
#
# Unrolling the matrix multiplies gives us:
# f(y, x) = (hy * hx) f00 + (hy * lx) f01 + (ly * hx) f10 + (lx * ly) f11
# f(y, x) = w00 * f00 + w01 * f01 + w10 * f10 + w11 * f11
#
# This can be computed by applying pointwise multiplication and sum_pool in
# a 2x2 window.
ly = box_grid_y - feature_grid_y0
lx = box_grid_x - feature_grid_x0
hy = 1.0 - ly
hx = 1.0 - lx
kernel_y = tf.reshape(
tf.stack([hy, ly], axis=3), [batch_size, num_boxes, size_y * 2, 1])
kernel_x = tf.reshape(
tf.stack([hx, lx], axis=3), [batch_size, num_boxes, 1, size_x * 2])
# Multiplier 4 is to make tf.nn.avg_pool behave like sum_pool.
interpolation_kernel = kernel_y * kernel_x * 4
# Interpolate the gathered features with computed interpolation kernels.
features_per_box *= tf.expand_dims(interpolation_kernel, axis=4),
features_per_box = tf.reshape(
features_per_box,
[batch_size * num_boxes, size_y * 2, size_x * 2, num_filters])
# This combines the two pooling operations - sum_pool to perform bilinear
# interpolation and avg_pool to pool the values in each bin.
features_per_box = tf.nn.avg_pool(
features_per_box,
[1, num_samples_per_cell_y * 2, num_samples_per_cell_x * 2, 1],
[1, num_samples_per_cell_y * 2, num_samples_per_cell_x * 2, 1], 'VALID')
features_per_box = tf.reshape(
features_per_box,
[batch_size, num_boxes, output_size[0], output_size[1], num_filters])
return features_per_box
def multilevel_native_crop_and_resize(images, boxes, box_levels,
crop_size, scope=None):
"""Multilevel native crop and resize.
Same as `multilevel_matmul_crop_and_resize` but uses tf.image.crop_and_resize.
Args:
images: A list of 4-D tensor of shape
[batch, image_height, image_width, depth] representing features of
different size.
boxes: A `Tensor` of type `float32`.
A 3-D tensor of shape `[batch, num_boxes, 4]`. The boxes are specified in
normalized coordinates and are of the form `[y1, x1, y2, x2]`. A
normalized coordinate value of `y` is mapped to the image coordinate at
`y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image
height is mapped to `[0, image_height - 1] in image height coordinates.
We do allow y1 > y2, in which case the sampled crop is an up-down flipped
version of the original image. The width dimension is treated similarly.
Normalized coordinates outside the `[0, 1]` range are allowed, in which
case we use `extrapolation_value` to extrapolate the input image values.
box_levels: A 2-D tensor of shape [batch, num_boxes] representing the level
of the box.
crop_size: A list of two integers `[crop_height, crop_width]`. All
cropped image patches are resized to this size. The aspect ratio of the
image content is not preserved. Both `crop_height` and `crop_width` need
to be positive.
scope: A name for the operation (optional).
Returns:
A 5-D float tensor of shape `[batch, num_boxes, crop_height, crop_width,
depth]`
"""
if box_levels is None:
return native_crop_and_resize(images[0], boxes, crop_size, scope)
with tf.name_scope('MultiLevelNativeCropAndResize'):
cropped_feature_list = []
for level, image in enumerate(images):
# For each level, crop the feature according to all boxes
# set the cropped feature not at this level to 0 tensor.
# Consider more efficient way of computing cropped features.
cropped = native_crop_and_resize(image, boxes, crop_size, scope)
cond = tf.tile(
tf.equal(box_levels, level)[:, :, tf.newaxis],
[1, 1] + [tf.math.reduce_prod(cropped.shape.as_list()[2:])])
cond = tf.reshape(cond, cropped.shape)
cropped_final = tf.where(cond, cropped, tf.zeros_like(cropped))
cropped_feature_list.append(cropped_final)
return tf.math.reduce_sum(cropped_feature_list, axis=0)
def native_crop_and_resize(image, boxes, crop_size, scope=None):
"""Same as `matmul_crop_and_resize` but uses tf.image.crop_and_resize."""
def get_box_inds(proposals):
proposals_shape = proposals.shape.as_list()
if any(dim is None for dim in proposals_shape):
proposals_shape = tf.shape(proposals)
ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
multiplier = tf.expand_dims(
tf.range(start=0, limit=proposals_shape[0]), 1)
return tf.reshape(ones_mat * multiplier, [-1])
with tf.name_scope(scope, 'CropAndResize'):
cropped_regions = tf.image.crop_and_resize(
image, tf.reshape(boxes, [-1] + boxes.shape.as_list()[2:]),
get_box_inds(boxes), crop_size)
final_shape = tf.concat([tf.shape(boxes)[:2],
tf.shape(cropped_regions)[1:]], axis=0)
return tf.reshape(cropped_regions, final_shape)
def multilevel_matmul_crop_and_resize(images, boxes, box_levels, crop_size,
extrapolation_value=0.0, scope=None):
"""Multilevel matmul crop and resize.
Same as `matmul_crop_and_resize` but crop images according to box levels.
Args:
images: A list of 4-D tensor of shape
[batch, image_height, image_width, depth] representing features of
different size.
boxes: A `Tensor` of type `float32` or 'bfloat16'.
A 3-D tensor of shape `[batch, num_boxes, 4]`. The boxes are specified in
normalized coordinates and are of the form `[y1, x1, y2, x2]`. A
normalized coordinate value of `y` is mapped to the image coordinate at
`y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image
height is mapped to `[0, image_height - 1] in image height coordinates.
We do allow y1 > y2, in which case the sampled crop is an up-down flipped
version of the original image. The width dimension is treated similarly.
Normalized coordinates outside the `[0, 1]` range are allowed, in which
case we use `extrapolation_value` to extrapolate the input image values.
box_levels: A 2-D tensor of shape [batch, num_boxes] representing the level
of the box.
crop_size: A list of two integers `[crop_height, crop_width]`. All
cropped image patches are resized to this size. The aspect ratio of the
image content is not preserved. Both `crop_height` and `crop_width` need
to be positive.
extrapolation_value: A float value to use for extrapolation.
scope: A name for the operation (optional).
Returns:
A 5-D float tensor of shape `[batch, num_boxes, crop_height, crop_width,
depth]`
"""
with tf.name_scope(scope, 'MultiLevelMatMulCropAndResize'):
if box_levels is None:
box_levels = tf.zeros(tf.shape(boxes)[:2], dtype=tf.int32)
return multilevel_roi_align(images,
boxes,
box_levels,
crop_size,
align_corners=True,
extrapolation_value=extrapolation_value)
def matmul_crop_and_resize(image, boxes, crop_size, extrapolation_value=0.0,
scope=None):
"""Matrix multiplication based implementation of the crop and resize op.
Extracts crops from the input image tensor and bilinearly resizes them
(possibly with aspect ratio change) to a common output size specified by
crop_size. This is more general than the crop_to_bounding_box op which
extracts a fixed size slice from the input image and does not allow
resizing or aspect ratio change.
Returns a tensor with crops from the input image at positions defined at
the bounding box locations in boxes. The cropped boxes are all resized
(with bilinear interpolation) to a fixed size = `[crop_height, crop_width]`.
The result is a 5-D tensor `[batch, num_boxes, crop_height, crop_width,
depth]`.
Note that this operation is meant to replicate the behavior of the standard
tf.image.crop_and_resize operation but there are a few differences.
Specifically:
1) There is no `box_indices` argument --- to run this op on multiple images,
one must currently call this op independently on each image.
2) The `crop_size` parameter is assumed to be statically defined.
Moreover, the number of boxes must be strictly nonzero.
Args:
image: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
`int16`, `int32`, `int64`, `half`, 'bfloat16', `float32`, `float64`.
A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
Both `image_height` and `image_width` need to be positive.
boxes: A `Tensor` of type `float32` or 'bfloat16'.
A 3-D tensor of shape `[batch, num_boxes, 4]`. The boxes are specified in
normalized coordinates and are of the form `[y1, x1, y2, x2]`. A
normalized coordinate value of `y` is mapped to the image coordinate at
`y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image
height is mapped to `[0, image_height - 1] in image height coordinates.
We do allow y1 > y2, in which case the sampled crop is an up-down flipped
version of the original image. The width dimension is treated similarly.
Normalized coordinates outside the `[0, 1]` range are allowed, in which
case we use `extrapolation_value` to extrapolate the input image values.
crop_size: A list of two integers `[crop_height, crop_width]`. All
cropped image patches are resized to this size. The aspect ratio of the
image content is not preserved. Both `crop_height` and `crop_width` need
to be positive.
extrapolation_value: a float value to use for extrapolation.
scope: A name for the operation (optional).
Returns:
A 5-D tensor of shape `[batch, num_boxes, crop_height, crop_width, depth]`
"""
with tf.name_scope(scope, 'MatMulCropAndResize'):
box_levels = tf.zeros(tf.shape(boxes)[:2], dtype=tf.int32)
return multilevel_roi_align([image],
boxes,
box_levels,
crop_size,
align_corners=True,
extrapolation_value=extrapolation_value) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/spatial_transform_ops.py | spatial_transform_ops.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
from object_detection.utils import np_box_list
from object_detection.utils import np_box_ops
class SortOrder(object):
"""Enum class for sort order.
Attributes:
ascend: ascend order.
descend: descend order.
"""
ASCEND = 1
DESCEND = 2
def area(boxlist):
"""Computes area of boxes.
Args:
boxlist: BoxList holding N boxes
Returns:
a numpy array with shape [N*1] representing box areas
"""
y_min, x_min, y_max, x_max = boxlist.get_coordinates()
return (y_max - y_min) * (x_max - x_min)
def intersection(boxlist1, boxlist2):
"""Compute pairwise intersection areas between boxes.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
Returns:
a numpy array with shape [N*M] representing pairwise intersection area
"""
return np_box_ops.intersection(boxlist1.get(), boxlist2.get())
def iou(boxlist1, boxlist2):
"""Computes pairwise intersection-over-union between box collections.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
Returns:
a numpy array with shape [N, M] representing pairwise iou scores.
"""
return np_box_ops.iou(boxlist1.get(), boxlist2.get())
def ioa(boxlist1, boxlist2):
"""Computes pairwise intersection-over-area between box collections.
Intersection-over-area (ioa) between two boxes box1 and box2 is defined as
their intersection area over box2's area. Note that ioa is not symmetric,
that is, IOA(box1, box2) != IOA(box2, box1).
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
Returns:
a numpy array with shape [N, M] representing pairwise ioa scores.
"""
return np_box_ops.ioa(boxlist1.get(), boxlist2.get())
def gather(boxlist, indices, fields=None):
"""Gather boxes from BoxList according to indices and return new BoxList.
By default, gather returns boxes corresponding to the input index list, as
well as all additional fields stored in the boxlist (indexing into the
first dimension). However one can optionally only gather from a
subset of fields.
Args:
boxlist: BoxList holding N boxes
indices: a 1-d numpy array of type int_
fields: (optional) list of fields to also gather from. If None (default),
all fields are gathered from. Pass an empty fields list to only gather
the box coordinates.
Returns:
subboxlist: a BoxList corresponding to the subset of the input BoxList
specified by indices
Raises:
ValueError: if specified field is not contained in boxlist or if the
indices are not of type int_
"""
if indices.size:
if np.amax(indices) >= boxlist.num_boxes() or np.amin(indices) < 0:
raise ValueError('indices are out of valid range.')
subboxlist = np_box_list.BoxList(boxlist.get()[indices, :])
if fields is None:
fields = boxlist.get_extra_fields()
for field in fields:
extra_field_data = boxlist.get_field(field)
subboxlist.add_field(field, extra_field_data[indices, ...])
return subboxlist
def sort_by_field(boxlist, field, order=SortOrder.DESCEND):
"""Sort boxes and associated fields according to a scalar field.
A common use case is reordering the boxes according to descending scores.
Args:
boxlist: BoxList holding N boxes.
field: A BoxList field for sorting and reordering the BoxList.
order: (Optional) 'descend' or 'ascend'. Default is descend.
Returns:
sorted_boxlist: A sorted BoxList with the field in the specified order.
Raises:
ValueError: if specified field does not exist or is not of single dimension.
ValueError: if the order is not either descend or ascend.
"""
if not boxlist.has_field(field):
raise ValueError('Field ' + field + ' does not exist')
if len(boxlist.get_field(field).shape) != 1:
raise ValueError('Field ' + field + 'should be single dimension.')
if order != SortOrder.DESCEND and order != SortOrder.ASCEND:
raise ValueError('Invalid sort order')
field_to_sort = boxlist.get_field(field)
sorted_indices = np.argsort(field_to_sort)
if order == SortOrder.DESCEND:
sorted_indices = sorted_indices[::-1]
return gather(boxlist, sorted_indices)
def non_max_suppression(boxlist,
max_output_size=10000,
iou_threshold=1.0,
score_threshold=-10.0):
"""Non maximum suppression.
This op greedily selects a subset of detection bounding boxes, pruning
away boxes that have high IOU (intersection over union) overlap (> thresh)
with already selected boxes. In each iteration, the detected bounding box with
highest score in the available pool is selected.
Args:
boxlist: BoxList holding N boxes. Must contain a 'scores' field
representing detection scores. All scores belong to the same class.
max_output_size: maximum number of retained boxes
iou_threshold: intersection over union threshold.
score_threshold: minimum score threshold. Remove the boxes with scores
less than this value. Default value is set to -10. A very
low threshold to pass pretty much all the boxes, unless
the user sets a different score threshold.
Returns:
a BoxList holding M boxes where M <= max_output_size
Raises:
ValueError: if 'scores' field does not exist
ValueError: if threshold is not in [0, 1]
ValueError: if max_output_size < 0
"""
if not boxlist.has_field('scores'):
raise ValueError('Field scores does not exist')
if iou_threshold < 0. or iou_threshold > 1.0:
raise ValueError('IOU threshold must be in [0, 1]')
if max_output_size < 0:
raise ValueError('max_output_size must be bigger than 0.')
boxlist = filter_scores_greater_than(boxlist, score_threshold)
if boxlist.num_boxes() == 0:
return boxlist
boxlist = sort_by_field(boxlist, 'scores')
# Prevent further computation if NMS is disabled.
if iou_threshold == 1.0:
if boxlist.num_boxes() > max_output_size:
selected_indices = np.arange(max_output_size)
return gather(boxlist, selected_indices)
else:
return boxlist
boxes = boxlist.get()
num_boxes = boxlist.num_boxes()
# is_index_valid is True only for all remaining valid boxes,
is_index_valid = np.full(num_boxes, 1, dtype=bool)
selected_indices = []
num_output = 0
for i in range(num_boxes):
if num_output < max_output_size:
if is_index_valid[i]:
num_output += 1
selected_indices.append(i)
is_index_valid[i] = False
valid_indices = np.where(is_index_valid)[0]
if valid_indices.size == 0:
break
intersect_over_union = np_box_ops.iou(
np.expand_dims(boxes[i, :], axis=0), boxes[valid_indices, :])
intersect_over_union = np.squeeze(intersect_over_union, axis=0)
is_index_valid[valid_indices] = np.logical_and(
is_index_valid[valid_indices],
intersect_over_union <= iou_threshold)
return gather(boxlist, np.array(selected_indices))
def multi_class_non_max_suppression(boxlist, score_thresh, iou_thresh,
max_output_size):
"""Multi-class version of non maximum suppression.
This op greedily selects a subset of detection bounding boxes, pruning
away boxes that have high IOU (intersection over union) overlap (> thresh)
with already selected boxes. It operates independently for each class for
which scores are provided (via the scores field of the input box_list),
pruning boxes with score less than a provided threshold prior to
applying NMS.
Args:
boxlist: BoxList holding N boxes. Must contain a 'scores' field
representing detection scores. This scores field is a tensor that can
be 1 dimensional (in the case of a single class) or 2-dimensional, which
which case we assume that it takes the shape [num_boxes, num_classes].
We further assume that this rank is known statically and that
scores.shape[1] is also known (i.e., the number of classes is fixed
and known at graph construction time).
score_thresh: scalar threshold for score (low scoring boxes are removed).
iou_thresh: scalar threshold for IOU (boxes that that high IOU overlap
with previously selected boxes are removed).
max_output_size: maximum number of retained boxes per class.
Returns:
a BoxList holding M boxes with a rank-1 scores field representing
corresponding scores for each box with scores sorted in decreasing order
and a rank-1 classes field representing a class label for each box.
Raises:
ValueError: if iou_thresh is not in [0, 1] or if input boxlist does not have
a valid scores field.
"""
if not 0 <= iou_thresh <= 1.0:
raise ValueError('thresh must be between 0 and 1')
if not isinstance(boxlist, np_box_list.BoxList):
raise ValueError('boxlist must be a BoxList')
if not boxlist.has_field('scores'):
raise ValueError('input boxlist must have \'scores\' field')
scores = boxlist.get_field('scores')
if len(scores.shape) == 1:
scores = np.reshape(scores, [-1, 1])
elif len(scores.shape) == 2:
if scores.shape[1] is None:
raise ValueError('scores field must have statically defined second '
'dimension')
else:
raise ValueError('scores field must be of rank 1 or 2')
num_boxes = boxlist.num_boxes()
num_scores = scores.shape[0]
num_classes = scores.shape[1]
if num_boxes != num_scores:
raise ValueError('Incorrect scores field length: actual vs expected.')
selected_boxes_list = []
for class_idx in range(num_classes):
boxlist_and_class_scores = np_box_list.BoxList(boxlist.get())
class_scores = np.reshape(scores[0:num_scores, class_idx], [-1])
boxlist_and_class_scores.add_field('scores', class_scores)
boxlist_filt = filter_scores_greater_than(boxlist_and_class_scores,
score_thresh)
nms_result = non_max_suppression(boxlist_filt,
max_output_size=max_output_size,
iou_threshold=iou_thresh,
score_threshold=score_thresh)
nms_result.add_field(
'classes', np.zeros_like(nms_result.get_field('scores')) + class_idx)
selected_boxes_list.append(nms_result)
selected_boxes = concatenate(selected_boxes_list)
sorted_boxes = sort_by_field(selected_boxes, 'scores')
return sorted_boxes
def scale(boxlist, y_scale, x_scale):
"""Scale box coordinates in x and y dimensions.
Args:
boxlist: BoxList holding N boxes
y_scale: float
x_scale: float
Returns:
boxlist: BoxList holding N boxes
"""
y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
y_min = y_scale * y_min
y_max = y_scale * y_max
x_min = x_scale * x_min
x_max = x_scale * x_max
scaled_boxlist = np_box_list.BoxList(np.hstack([y_min, x_min, y_max, x_max]))
fields = boxlist.get_extra_fields()
for field in fields:
extra_field_data = boxlist.get_field(field)
scaled_boxlist.add_field(field, extra_field_data)
return scaled_boxlist
def clip_to_window(boxlist, window, filter_nonoverlapping=True):
"""Clip bounding boxes to a window.
This op clips input bounding boxes (represented by bounding box
corners) to a window, optionally filtering out boxes that do not
overlap at all with the window.
Args:
boxlist: BoxList holding M_in boxes
window: a numpy array of shape [4] representing the
[y_min, x_min, y_max, x_max] window to which the op
should clip boxes.
filter_nonoverlapping: whether to filter out boxes that do not overlap at
all with the window.
Returns:
a BoxList holding M_out boxes where M_out <= M_in
"""
y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
win_y_min = window[0]
win_x_min = window[1]
win_y_max = window[2]
win_x_max = window[3]
y_min_clipped = np.fmax(np.fmin(y_min, win_y_max), win_y_min)
y_max_clipped = np.fmax(np.fmin(y_max, win_y_max), win_y_min)
x_min_clipped = np.fmax(np.fmin(x_min, win_x_max), win_x_min)
x_max_clipped = np.fmax(np.fmin(x_max, win_x_max), win_x_min)
clipped = np_box_list.BoxList(
np.hstack([y_min_clipped, x_min_clipped, y_max_clipped, x_max_clipped]))
clipped = _copy_extra_fields(clipped, boxlist)
if filter_nonoverlapping:
areas = area(clipped)
nonzero_area_indices = np.reshape(
np.nonzero(np.greater(areas, 0.0)), [-1]).astype(np.int32)
clipped = gather(clipped, nonzero_area_indices)
return clipped
def prune_non_overlapping_boxes(boxlist1, boxlist2, minoverlap=0.0):
"""Prunes the boxes in boxlist1 that overlap less than thresh with boxlist2.
For each box in boxlist1, we want its IOA to be more than minoverlap with
at least one of the boxes in boxlist2. If it does not, we remove it.
Args:
boxlist1: BoxList holding N boxes.
boxlist2: BoxList holding M boxes.
minoverlap: Minimum required overlap between boxes, to count them as
overlapping.
Returns:
A pruned boxlist with size [N', 4].
"""
intersection_over_area = ioa(boxlist2, boxlist1) # [M, N] tensor
intersection_over_area = np.amax(intersection_over_area, axis=0) # [N] tensor
keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap))
keep_inds = np.nonzero(keep_bool)[0]
new_boxlist1 = gather(boxlist1, keep_inds)
return new_boxlist1
def prune_outside_window(boxlist, window):
"""Prunes bounding boxes that fall outside a given window.
This function prunes bounding boxes that even partially fall outside the given
window. See also ClipToWindow which only prunes bounding boxes that fall
completely outside the window, and clips any bounding boxes that partially
overflow.
Args:
boxlist: a BoxList holding M_in boxes.
window: a numpy array of size 4, representing [ymin, xmin, ymax, xmax]
of the window.
Returns:
pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in.
valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
in the input tensor.
"""
y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
win_y_min = window[0]
win_x_min = window[1]
win_y_max = window[2]
win_x_max = window[3]
coordinate_violations = np.hstack([np.less(y_min, win_y_min),
np.less(x_min, win_x_min),
np.greater(y_max, win_y_max),
np.greater(x_max, win_x_max)])
valid_indices = np.reshape(
np.where(np.logical_not(np.max(coordinate_violations, axis=1))), [-1])
return gather(boxlist, valid_indices), valid_indices
def concatenate(boxlists, fields=None):
"""Concatenate list of BoxLists.
This op concatenates a list of input BoxLists into a larger BoxList. It also
handles concatenation of BoxList fields as long as the field tensor shapes
are equal except for the first dimension.
Args:
boxlists: list of BoxList objects
fields: optional list of fields to also concatenate. By default, all
fields from the first BoxList in the list are included in the
concatenation.
Returns:
a BoxList with number of boxes equal to
sum([boxlist.num_boxes() for boxlist in BoxList])
Raises:
ValueError: if boxlists is invalid (i.e., is not a list, is empty, or
contains non BoxList objects), or if requested fields are not contained in
all boxlists
"""
if not isinstance(boxlists, list):
raise ValueError('boxlists should be a list')
if not boxlists:
raise ValueError('boxlists should have nonzero length')
for boxlist in boxlists:
if not isinstance(boxlist, np_box_list.BoxList):
raise ValueError('all elements of boxlists should be BoxList objects')
concatenated = np_box_list.BoxList(
np.vstack([boxlist.get() for boxlist in boxlists]))
if fields is None:
fields = boxlists[0].get_extra_fields()
for field in fields:
first_field_shape = boxlists[0].get_field(field).shape
first_field_shape = first_field_shape[1:]
for boxlist in boxlists:
if not boxlist.has_field(field):
raise ValueError('boxlist must contain all requested fields')
field_shape = boxlist.get_field(field).shape
field_shape = field_shape[1:]
if field_shape != first_field_shape:
raise ValueError('field %s must have same shape for all boxlists '
'except for the 0th dimension.' % field)
concatenated_field = np.concatenate(
[boxlist.get_field(field) for boxlist in boxlists], axis=0)
concatenated.add_field(field, concatenated_field)
return concatenated
def filter_scores_greater_than(boxlist, thresh):
"""Filter to keep only boxes with score exceeding a given threshold.
This op keeps the collection of boxes whose corresponding scores are
greater than the input threshold.
Args:
boxlist: BoxList holding N boxes. Must contain a 'scores' field
representing detection scores.
thresh: scalar threshold
Returns:
a BoxList holding M boxes where M <= N
Raises:
ValueError: if boxlist not a BoxList object or if it does not
have a scores field
"""
if not isinstance(boxlist, np_box_list.BoxList):
raise ValueError('boxlist must be a BoxList')
if not boxlist.has_field('scores'):
raise ValueError('input boxlist must have \'scores\' field')
scores = boxlist.get_field('scores')
if len(scores.shape) > 2:
raise ValueError('Scores should have rank 1 or 2')
if len(scores.shape) == 2 and scores.shape[1] != 1:
raise ValueError('Scores should have rank 1 or have shape '
'consistent with [None, 1]')
high_score_indices = np.reshape(np.where(np.greater(scores, thresh)),
[-1]).astype(np.int32)
return gather(boxlist, high_score_indices)
def change_coordinate_frame(boxlist, window):
"""Change coordinate frame of the boxlist to be relative to window's frame.
Given a window of the form [ymin, xmin, ymax, xmax],
changes bounding box coordinates from boxlist to be relative to this window
(e.g., the min corner maps to (0,0) and the max corner maps to (1,1)).
An example use case is data augmentation: where we are given groundtruth
boxes (boxlist) and would like to randomly crop the image to some
window (window). In this case we need to change the coordinate frame of
each groundtruth box to be relative to this new window.
Args:
boxlist: A BoxList object holding N boxes.
window: a size 4 1-D numpy array.
Returns:
Returns a BoxList object with N boxes.
"""
win_height = window[2] - window[0]
win_width = window[3] - window[1]
boxlist_new = scale(
np_box_list.BoxList(boxlist.get() -
[window[0], window[1], window[0], window[1]]),
1.0 / win_height, 1.0 / win_width)
_copy_extra_fields(boxlist_new, boxlist)
return boxlist_new
def _copy_extra_fields(boxlist_to_copy_to, boxlist_to_copy_from):
"""Copies the extra fields of boxlist_to_copy_from to boxlist_to_copy_to.
Args:
boxlist_to_copy_to: BoxList to which extra fields are copied.
boxlist_to_copy_from: BoxList from which fields are copied.
Returns:
boxlist_to_copy_to with extra fields.
"""
for field in boxlist_to_copy_from.get_extra_fields():
boxlist_to_copy_to.add_field(field, boxlist_to_copy_from.get_field(field))
return boxlist_to_copy_to
def _update_valid_indices_by_removing_high_iou_boxes(
selected_indices, is_index_valid, intersect_over_union, threshold):
max_iou = np.max(intersect_over_union[:, selected_indices], axis=1)
return np.logical_and(is_index_valid, max_iou <= threshold) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/np_box_list_ops.py | np_box_list_ops.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
def int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def int64_list_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def bytes_list_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def float_list_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def read_examples_list(path):
"""Read list of training or validation examples.
The file is assumed to contain a single example per line where the first
token in the line is an identifier that allows us to find the image and
annotation xml for that example.
For example, the line:
xyz 3
would allow us to find files xyz.jpg and xyz.xml (the 3 would be ignored).
Args:
path: absolute path to examples list file.
Returns:
list of example identifiers (strings).
"""
with tf.gfile.GFile(path) as fid:
lines = fid.readlines()
return [line.strip().split(' ')[0] for line in lines]
def recursive_parse_xml_to_dict(xml):
"""Recursively parses XML contents to python dict.
We assume that `object` tags are the only ones that can appear
multiple times at the same level of a tree.
Args:
xml: xml tree obtained by parsing XML file contents using lxml.etree
Returns:
Python dictionary holding XML contents.
"""
if not xml:
return {xml.tag: xml.text}
result = {}
for child in xml:
child_result = recursive_parse_xml_to_dict(child)
if child.tag != 'object':
result[child.tag] = child_result[child.tag]
else:
if child.tag not in result:
result[child.tag] = []
result[child.tag].append(child_result[child.tag])
return {xml.tag: result} | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/dataset_util.py | dataset_util.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
EPSILON = 1e-7
def area(masks):
"""Computes area of masks.
Args:
masks: Numpy array with shape [N, height, width] holding N masks. Masks
values are of type np.uint8 and values are in {0,1}.
Returns:
a numpy array with shape [N*1] representing mask areas.
Raises:
ValueError: If masks.dtype is not np.uint8
"""
if masks.dtype != np.uint8:
raise ValueError('Masks type should be np.uint8')
return np.sum(masks, axis=(1, 2), dtype=np.float32)
def intersection(masks1, masks2):
"""Compute pairwise intersection areas between masks.
Args:
masks1: a numpy array with shape [N, height, width] holding N masks. Masks
values are of type np.uint8 and values are in {0,1}.
masks2: a numpy array with shape [M, height, width] holding M masks. Masks
values are of type np.uint8 and values are in {0,1}.
Returns:
a numpy array with shape [N*M] representing pairwise intersection area.
Raises:
ValueError: If masks1 and masks2 are not of type np.uint8.
"""
if masks1.dtype != np.uint8 or masks2.dtype != np.uint8:
raise ValueError('masks1 and masks2 should be of type np.uint8')
n = masks1.shape[0]
m = masks2.shape[0]
answer = np.zeros([n, m], dtype=np.float32)
for i in np.arange(n):
for j in np.arange(m):
answer[i, j] = np.sum(np.minimum(masks1[i], masks2[j]), dtype=np.float32)
return answer
def iou(masks1, masks2):
"""Computes pairwise intersection-over-union between mask collections.
Args:
masks1: a numpy array with shape [N, height, width] holding N masks. Masks
values are of type np.uint8 and values are in {0,1}.
masks2: a numpy array with shape [M, height, width] holding N masks. Masks
values are of type np.uint8 and values are in {0,1}.
Returns:
a numpy array with shape [N, M] representing pairwise iou scores.
Raises:
ValueError: If masks1 and masks2 are not of type np.uint8.
"""
if masks1.dtype != np.uint8 or masks2.dtype != np.uint8:
raise ValueError('masks1 and masks2 should be of type np.uint8')
intersect = intersection(masks1, masks2)
area1 = area(masks1)
area2 = area(masks2)
union = np.expand_dims(area1, axis=1) + np.expand_dims(
area2, axis=0) - intersect
return intersect / np.maximum(union, EPSILON)
def ioa(masks1, masks2):
"""Computes pairwise intersection-over-area between box collections.
Intersection-over-area (ioa) between two masks, mask1 and mask2 is defined as
their intersection area over mask2's area. Note that ioa is not symmetric,
that is, IOA(mask1, mask2) != IOA(mask2, mask1).
Args:
masks1: a numpy array with shape [N, height, width] holding N masks. Masks
values are of type np.uint8 and values are in {0,1}.
masks2: a numpy array with shape [M, height, width] holding N masks. Masks
values are of type np.uint8 and values are in {0,1}.
Returns:
a numpy array with shape [N, M] representing pairwise ioa scores.
Raises:
ValueError: If masks1 and masks2 are not of type np.uint8.
"""
if masks1.dtype != np.uint8 or masks2.dtype != np.uint8:
raise ValueError('masks1 and masks2 should be of type np.uint8')
intersect = intersection(masks1, masks2)
areas = np.expand_dims(area(masks2), axis=0)
return intersect / (areas + EPSILON) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/np_mask_ops.py | np_mask_ops.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
def get_patch_mask(y, x, patch_size, image_shape):
"""Creates a 2D mask array for a square patch of a given size and location.
The mask is created with its center at the y and x coordinates, which must be
within the image. While the mask center must be within the image, the mask
itself can be partially outside of it. If patch_size is an even number, then
the mask is created with lower-valued coordinates first (top and left).
Args:
y: An integer or scalar int32 tensor. The vertical coordinate of the
patch mask center. Must be within the range [0, image_height).
x: An integer or scalar int32 tensor. The horizontal coordinate of the
patch mask center. Must be within the range [0, image_width).
patch_size: An integer or scalar int32 tensor. The square size of the
patch mask. Must be at least 1.
image_shape: A list or 1D int32 tensor representing the shape of the image
to which the mask will correspond, with the first two values being image
height and width. For example, [image_height, image_width] or
[image_height, image_width, image_channels].
Returns:
Boolean mask tensor of shape [image_height, image_width] with True values
for the patch.
Raises:
tf.errors.InvalidArgumentError: if x is not in the range [0, image_width), y
is not in the range [0, image_height), or patch_size is not at least 1.
"""
image_hw = image_shape[:2]
mask_center_yx = tf.stack([y, x])
with tf.control_dependencies([
tf.debugging.assert_greater_equal(
patch_size, 1,
message='Patch size must be >= 1'),
tf.debugging.assert_greater_equal(
mask_center_yx, 0,
message='Patch center (y, x) must be >= (0, 0)'),
tf.debugging.assert_less(
mask_center_yx, image_hw,
message='Patch center (y, x) must be < image (h, w)')
]):
mask_center_yx = tf.identity(mask_center_yx)
half_patch_size = tf.cast(patch_size, dtype=tf.float32) / 2
start_yx = mask_center_yx - tf.cast(tf.floor(half_patch_size), dtype=tf.int32)
end_yx = mask_center_yx + tf.cast(tf.ceil(half_patch_size), dtype=tf.int32)
start_yx = tf.maximum(start_yx, 0)
end_yx = tf.minimum(end_yx, image_hw)
start_y = start_yx[0]
start_x = start_yx[1]
end_y = end_yx[0]
end_x = end_yx[1]
lower_pad = image_hw[0] - end_y
upper_pad = start_y
left_pad = start_x
right_pad = image_hw[1] - end_x
mask = tf.ones([end_y - start_y, end_x - start_x], dtype=tf.bool)
return tf.pad(mask, [[upper_pad, lower_pad], [left_pad, right_pad]]) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/patch_ops.py | patch_ops.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import os
import re
import tensorflow.compat.v1 as tf
import tf_slim as slim
from tensorflow.python.ops import variables as tf_variables
# Maps checkpoint types to variable name prefixes that are no longer
# supported
DETECTION_FEATURE_EXTRACTOR_MSG = """\
The checkpoint type 'detection' is not supported when it contains variable
names with 'feature_extractor'. Please download the new checkpoint file
from model zoo.
"""
DEPRECATED_CHECKPOINT_MAP = {
'detection': ('feature_extractor', DETECTION_FEATURE_EXTRACTOR_MSG)
}
# TODO(derekjchow): Consider replacing with tf.contrib.filter_variables in
# tensorflow/contrib/framework/python/ops/variables.py
def filter_variables(variables, filter_regex_list, invert=False):
"""Filters out the variables matching the filter_regex.
Filter out the variables whose name matches the any of the regular
expressions in filter_regex_list and returns the remaining variables.
Optionally, if invert=True, the complement set is returned.
Args:
variables: a list of tensorflow variables.
filter_regex_list: a list of string regular expressions.
invert: (boolean). If True, returns the complement of the filter set; that
is, all variables matching filter_regex are kept and all others discarded.
Returns:
a list of filtered variables.
"""
kept_vars = []
variables_to_ignore_patterns = list([fre for fre in filter_regex_list if fre])
for var in variables:
add = True
for pattern in variables_to_ignore_patterns:
if re.match(pattern, var.op.name):
add = False
break
if add != invert:
kept_vars.append(var)
return kept_vars
def multiply_gradients_matching_regex(grads_and_vars, regex_list, multiplier):
"""Multiply gradients whose variable names match a regular expression.
Args:
grads_and_vars: A list of gradient to variable pairs (tuples).
regex_list: A list of string regular expressions.
multiplier: A (float) multiplier to apply to each gradient matching the
regular expression.
Returns:
grads_and_vars: A list of gradient to variable pairs (tuples).
"""
variables = [pair[1] for pair in grads_and_vars]
matching_vars = filter_variables(variables, regex_list, invert=True)
for var in matching_vars:
logging.info('Applying multiplier %f to variable [%s]',
multiplier, var.op.name)
grad_multipliers = {var: float(multiplier) for var in matching_vars}
return slim.learning.multiply_gradients(grads_and_vars,
grad_multipliers)
def freeze_gradients_matching_regex(grads_and_vars, regex_list):
"""Freeze gradients whose variable names match a regular expression.
Args:
grads_and_vars: A list of gradient to variable pairs (tuples).
regex_list: A list of string regular expressions.
Returns:
grads_and_vars: A list of gradient to variable pairs (tuples) that do not
contain the variables and gradients matching the regex.
"""
variables = [pair[1] for pair in grads_and_vars]
matching_vars = filter_variables(variables, regex_list, invert=True)
kept_grads_and_vars = [pair for pair in grads_and_vars
if pair[1] not in matching_vars]
for var in matching_vars:
logging.info('Freezing variable [%s]', var.op.name)
return kept_grads_and_vars
def get_variables_available_in_checkpoint(variables,
checkpoint_path,
include_global_step=True):
"""Returns the subset of variables available in the checkpoint.
Inspects given checkpoint and returns the subset of variables that are
available in it.
TODO(rathodv): force input and output to be a dictionary.
Args:
variables: a list or dictionary of variables to find in checkpoint.
checkpoint_path: path to the checkpoint to restore variables from.
include_global_step: whether to include `global_step` variable, if it
exists. Default True.
Returns:
A list or dictionary of variables.
Raises:
ValueError: if `variables` is not a list or dict.
"""
if isinstance(variables, list):
variable_names_map = {}
for variable in variables:
if isinstance(variable, tf_variables.PartitionedVariable):
name = variable.name
else:
name = variable.op.name
variable_names_map[name] = variable
elif isinstance(variables, dict):
variable_names_map = variables
else:
raise ValueError('`variables` is expected to be a list or dict.')
ckpt_reader = tf.train.NewCheckpointReader(checkpoint_path)
ckpt_vars_to_shape_map = ckpt_reader.get_variable_to_shape_map()
if not include_global_step:
ckpt_vars_to_shape_map.pop(tf.GraphKeys.GLOBAL_STEP, None)
vars_in_ckpt = {}
for variable_name, variable in sorted(variable_names_map.items()):
if variable_name in ckpt_vars_to_shape_map:
if ckpt_vars_to_shape_map[variable_name] == variable.shape.as_list():
vars_in_ckpt[variable_name] = variable
else:
logging.warning('Variable [%s] is available in checkpoint, but has an '
'incompatible shape with model variable. Checkpoint '
'shape: [%s], model variable shape: [%s]. This '
'variable will not be initialized from the checkpoint.',
variable_name, ckpt_vars_to_shape_map[variable_name],
variable.shape.as_list())
else:
logging.warning('Variable [%s] is not available in checkpoint',
variable_name)
if isinstance(variables, list):
return list(vars_in_ckpt.values())
return vars_in_ckpt
def get_global_variables_safely():
"""If not executing eagerly, returns tf.global_variables().
Raises a ValueError if eager execution is enabled,
because the variables are not tracked when executing eagerly.
If executing eagerly, use a Keras model's .variables property instead.
Returns:
The result of tf.global_variables()
"""
with tf.init_scope():
if tf.executing_eagerly():
raise ValueError("Global variables collection is not tracked when "
"executing eagerly. Use a Keras model's `.variables` "
"attribute instead.")
return tf.global_variables()
def ensure_checkpoint_supported(checkpoint_path, checkpoint_type, model_dir):
"""Ensures that the given checkpoint can be properly loaded.
Performs the following checks
1. Raises an error if checkpoint_path and model_dir are same.
2. Checks that checkpoint_path does not contain a deprecated checkpoint file
by inspecting its variables.
Args:
checkpoint_path: str, path to checkpoint.
checkpoint_type: str, denotes the type of checkpoint.
model_dir: The model directory to store intermediate training checkpoints.
Raises:
RuntimeError: If
1. We detect an deprecated checkpoint file.
2. model_dir and checkpoint_path are in the same directory.
"""
variables = tf.train.list_variables(checkpoint_path)
if checkpoint_type in DEPRECATED_CHECKPOINT_MAP:
blocked_prefix, msg = DEPRECATED_CHECKPOINT_MAP[checkpoint_type]
for var_name, _ in variables:
if var_name.startswith(blocked_prefix):
tf.logging.error('Found variable name - %s with prefix %s', var_name,
blocked_prefix)
raise RuntimeError(msg)
checkpoint_path_dir = os.path.abspath(os.path.dirname(checkpoint_path))
model_dir = os.path.abspath(model_dir)
if model_dir == checkpoint_path_dir:
raise RuntimeError(
('Checkpoint dir ({}) and model_dir ({}) cannot be same.'.format(
checkpoint_path_dir, model_dir) +
(' Please set model_dir to a different path.'))) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/utils/variables_helper.py | variables_helper.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
from lvis import eval as lvis_eval
from lvis import lvis
import numpy as np
from pycocotools import mask
import six
from six.moves import range
def RleCompress(masks):
"""Compresses mask using Run-length encoding provided by pycocotools.
Args:
masks: uint8 numpy array of shape [mask_height, mask_width] with values in
{0, 1}.
Returns:
A pycocotools Run-length encoding of the mask.
"""
rle = mask.encode(np.asfortranarray(masks))
rle['counts'] = six.ensure_str(rle['counts'])
return rle
def _ConvertBoxToCOCOFormat(box):
"""Converts a box in [ymin, xmin, ymax, xmax] format to COCO format.
This is a utility function for converting from our internal
[ymin, xmin, ymax, xmax] convention to the convention used by the COCO API
i.e., [xmin, ymin, width, height].
Args:
box: a [ymin, xmin, ymax, xmax] numpy array
Returns:
a list of floats representing [xmin, ymin, width, height]
"""
return [float(box[1]), float(box[0]), float(box[3] - box[1]),
float(box[2] - box[0])]
class LVISWrapper(lvis.LVIS):
"""Wrapper for the lvis.LVIS class."""
def __init__(self, dataset, detection_type='bbox'):
"""LVISWrapper constructor.
See https://www.lvisdataset.org/dataset for a description of the format.
By default, the coco.COCO class constructor reads from a JSON file.
This function duplicates the same behavior but loads from a dictionary,
allowing us to perform evaluation without writing to external storage.
Args:
dataset: a dictionary holding bounding box annotations in the COCO format.
detection_type: type of detections being wrapped. Can be one of ['bbox',
'segmentation']
Raises:
ValueError: if detection_type is unsupported.
"""
self.logger = logging.getLogger(__name__)
self.logger.info('Loading annotations.')
self.dataset = dataset
self._create_index()
class LVISEvalWrapper(lvis_eval.LVISEval):
"""LVISEval wrapper."""
def __init__(self, groundtruth=None, detections=None, iou_type='bbox'):
lvis_eval.LVISEval.__init__(
self, groundtruth, detections, iou_type=iou_type)
self._iou_type = iou_type
def ComputeMetrics(self):
self.run()
summary_metrics = {}
summary_metrics = self.results
return summary_metrics
def ExportSingleImageGroundtruthToLVIS(image_id,
next_annotation_id,
category_id_set,
groundtruth_boxes,
groundtruth_classes,
groundtruth_masks=None,
groundtruth_area=None):
"""Export groundtruth of a single image to LVIS format.
This function converts groundtruth detection annotations represented as numpy
arrays to dictionaries that can be ingested by the LVIS evaluation API. Note
that the image_ids provided here must match the ones given to
ExportSingleImageDetectionMasksToLVIS. We assume that boxes, classes and masks
are in correspondence - that is, e.g., groundtruth_boxes[i, :], and
groundtruth_classes[i] are associated with the same groundtruth annotation.
In the exported result, "area" fields are always set to the area of the
groundtruth bounding box.
Args:
image_id: a unique image identifier castable to integer.
next_annotation_id: integer specifying the first id to use for the
groundtruth annotations. All annotations are assigned a continuous integer
id starting from this value.
category_id_set: A set of valid class ids. Groundtruth with classes not in
category_id_set are dropped.
groundtruth_boxes: numpy array (float32) with shape [num_gt_boxes, 4]
groundtruth_classes: numpy array (int) with shape [num_gt_boxes]
groundtruth_masks: optional uint8 numpy array of shape [num_detections,
image_height, image_width] containing detection_masks.
groundtruth_area: numpy array (float32) with shape [num_gt_boxes]. If
provided, then the area values (in the original absolute coordinates) will
be populated instead of calculated from bounding box coordinates.
Returns:
a list of groundtruth annotations for a single image in the COCO format.
Raises:
ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the
right lengths or (2) if each of the elements inside these lists do not
have the correct shapes or (3) if image_ids are not integers
"""
if len(groundtruth_classes.shape) != 1:
raise ValueError('groundtruth_classes is '
'expected to be of rank 1.')
if len(groundtruth_boxes.shape) != 2:
raise ValueError('groundtruth_boxes is expected to be of '
'rank 2.')
if groundtruth_boxes.shape[1] != 4:
raise ValueError('groundtruth_boxes should have '
'shape[1] == 4.')
num_boxes = groundtruth_classes.shape[0]
if num_boxes != groundtruth_boxes.shape[0]:
raise ValueError('Corresponding entries in groundtruth_classes, '
'and groundtruth_boxes should have '
'compatible shapes (i.e., agree on the 0th dimension).'
'Classes shape: %d. Boxes shape: %d. Image ID: %s' % (
groundtruth_classes.shape[0],
groundtruth_boxes.shape[0], image_id))
groundtruth_list = []
for i in range(num_boxes):
if groundtruth_classes[i] in category_id_set:
if groundtruth_area is not None and groundtruth_area[i] > 0:
area = float(groundtruth_area[i])
else:
area = float((groundtruth_boxes[i, 2] - groundtruth_boxes[i, 0]) *
(groundtruth_boxes[i, 3] - groundtruth_boxes[i, 1]))
export_dict = {
'id':
next_annotation_id + i,
'image_id':
int(image_id),
'category_id':
int(groundtruth_classes[i]),
'bbox':
list(_ConvertBoxToCOCOFormat(groundtruth_boxes[i, :])),
'area': area,
}
if groundtruth_masks is not None:
export_dict['segmentation'] = RleCompress(groundtruth_masks[i])
groundtruth_list.append(export_dict)
return groundtruth_list
def ExportSingleImageDetectionMasksToLVIS(image_id,
category_id_set,
detection_masks,
detection_scores,
detection_classes):
"""Export detection masks of a single image to LVIS format.
This function converts detections represented as numpy arrays to dictionaries
that can be ingested by the LVIS evaluation API. We assume that
detection_masks, detection_scores, and detection_classes are in correspondence
- that is: detection_masks[i, :], detection_classes[i] and detection_scores[i]
are associated with the same annotation.
Args:
image_id: unique image identifier castable to integer.
category_id_set: A set of valid class ids. Detections with classes not in
category_id_set are dropped.
detection_masks: uint8 numpy array of shape [num_detections, image_height,
image_width] containing detection_masks.
detection_scores: float numpy array of shape [num_detections] containing
scores for detection masks.
detection_classes: integer numpy array of shape [num_detections] containing
the classes for detection masks.
Returns:
a list of detection mask annotations for a single image in the COCO format.
Raises:
ValueError: if (1) detection_masks, detection_scores and detection_classes
do not have the right lengths or (2) if each of the elements inside these
lists do not have the correct shapes or (3) if image_ids are not integers.
"""
if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
num_boxes = detection_classes.shape[0]
if not num_boxes == len(detection_masks) == detection_scores.shape[0]:
raise ValueError('Corresponding entries in detection_classes, '
'detection_scores and detection_masks should have '
'compatible lengths and shapes '
'Classes length: %d. Masks length: %d. '
'Scores length: %d' % (
detection_classes.shape[0], len(detection_masks),
detection_scores.shape[0]
))
detections_list = []
for i in range(num_boxes):
if detection_classes[i] in category_id_set:
detections_list.append({
'image_id': int(image_id),
'category_id': int(detection_classes[i]),
'segmentation': RleCompress(detection_masks[i]),
'score': float(detection_scores[i])
})
return detections_list | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/lvis_tools.py | lvis_tools.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.python.ops import metrics_impl
def _safe_div(numerator, denominator):
"""Divides two tensors element-wise, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
t = tf.truediv(numerator, denominator)
zero = tf.zeros_like(t, dtype=denominator.dtype)
condition = tf.greater(denominator, zero)
zero = tf.cast(zero, t.dtype)
return tf.where(condition, t, zero)
def _ece_from_bins(bin_counts, bin_true_sum, bin_preds_sum, name):
"""Calculates Expected Calibration Error from accumulated statistics."""
bin_accuracies = _safe_div(bin_true_sum, bin_counts)
bin_confidences = _safe_div(bin_preds_sum, bin_counts)
abs_bin_errors = tf.abs(bin_accuracies - bin_confidences)
bin_weights = _safe_div(bin_counts, tf.reduce_sum(bin_counts))
return tf.reduce_sum(abs_bin_errors * bin_weights, name=name)
def expected_calibration_error(y_true, y_pred, nbins=20):
"""Calculates Expected Calibration Error (ECE).
ECE is a scalar summary statistic of calibration error. It is the
sample-weighted average of the difference between the predicted and true
probabilities of a positive detection across uniformly-spaced model
confidences [0, 1]. See referenced paper for a thorough explanation.
Reference:
Guo, et. al, "On Calibration of Modern Neural Networks"
Page 2, Expected Calibration Error (ECE).
https://arxiv.org/pdf/1706.04599.pdf
This function creates three local variables, `bin_counts`, `bin_true_sum`, and
`bin_preds_sum` that are used to compute ECE. For estimation of the metric
over a stream of data, the function creates an `update_op` operation that
updates these variables and returns the ECE.
Args:
y_true: 1-D tf.int64 Tensor of binarized ground truth, corresponding to each
prediction in y_pred.
y_pred: 1-D tf.float32 tensor of model confidence scores in range
[0.0, 1.0].
nbins: int specifying the number of uniformly-spaced bins into which y_pred
will be bucketed.
Returns:
value_op: A value metric op that returns ece.
update_op: An operation that increments the `bin_counts`, `bin_true_sum`,
and `bin_preds_sum` variables appropriately and whose value matches `ece`.
Raises:
InvalidArgumentError: if y_pred is not in [0.0, 1.0].
"""
bin_counts = metrics_impl.metric_variable(
[nbins], tf.float32, name='bin_counts')
bin_true_sum = metrics_impl.metric_variable(
[nbins], tf.float32, name='true_sum')
bin_preds_sum = metrics_impl.metric_variable(
[nbins], tf.float32, name='preds_sum')
with tf.control_dependencies([
tf.assert_greater_equal(y_pred, 0.0),
tf.assert_less_equal(y_pred, 1.0),
]):
bin_ids = tf.histogram_fixed_width_bins(y_pred, [0.0, 1.0], nbins=nbins)
with tf.control_dependencies([bin_ids]):
update_bin_counts_op = tf.assign_add(
bin_counts, tf.cast(tf.bincount(bin_ids, minlength=nbins),
dtype=tf.float32))
update_bin_true_sum_op = tf.assign_add(
bin_true_sum,
tf.cast(tf.bincount(bin_ids, weights=y_true, minlength=nbins),
dtype=tf.float32))
update_bin_preds_sum_op = tf.assign_add(
bin_preds_sum,
tf.cast(tf.bincount(bin_ids, weights=y_pred, minlength=nbins),
dtype=tf.float32))
ece_update_op = _ece_from_bins(
update_bin_counts_op,
update_bin_true_sum_op,
update_bin_preds_sum_op,
name='update_op')
ece = _ece_from_bins(bin_counts, bin_true_sum, bin_preds_sum, name='value')
return ece, ece_update_op | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/calibration_metrics.py | calibration_metrics.py |
r"""Converts data from CSV to the OpenImagesDetectionChallengeEvaluator format."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import base64
import zlib
import numpy as np
import pandas as pd
from pycocotools import mask as coco_mask
from object_detection.core import standard_fields
def _to_normalized_box(mask_np):
"""Decodes binary segmentation masks into np.arrays and boxes.
Args:
mask_np: np.ndarray of size NxWxH.
Returns:
a np.ndarray of the size Nx4, each row containing normalized coordinates
[YMin, XMin, YMax, XMax] of a box computed of axis parallel enclosing box of
a mask.
"""
coord1, coord2 = np.nonzero(mask_np)
if coord1.size > 0:
ymin = float(min(coord1)) / mask_np.shape[0]
ymax = float(max(coord1) + 1) / mask_np.shape[0]
xmin = float(min(coord2)) / mask_np.shape[1]
xmax = float((max(coord2) + 1)) / mask_np.shape[1]
return np.array([ymin, xmin, ymax, xmax])
else:
return np.array([0.0, 0.0, 0.0, 0.0])
def _decode_raw_data_into_masks_and_boxes(segments, image_widths,
image_heights):
"""Decods binary segmentation masks into np.arrays and boxes.
Args:
segments: pandas Series object containing either None entries, or strings
with base64, zlib compressed, COCO RLE-encoded binary masks. All masks are
expected to be the same size.
image_widths: pandas Series of mask widths.
image_heights: pandas Series of mask heights.
Returns:
a np.ndarray of the size NxWxH, where W and H is determined from the encoded
masks; for the None values, zero arrays of size WxH are created. If input
contains only None values, W=1, H=1.
"""
segment_masks = []
segment_boxes = []
ind = segments.first_valid_index()
if ind is not None:
size = [int(image_heights[ind]), int(image_widths[ind])]
else:
# It does not matter which size we pick since no masks will ever be
# evaluated.
return np.zeros((segments.shape[0], 1, 1), dtype=np.uint8), np.zeros(
(segments.shape[0], 4), dtype=np.float32)
for segment, im_width, im_height in zip(segments, image_widths,
image_heights):
if pd.isnull(segment):
segment_masks.append(np.zeros([1, size[0], size[1]], dtype=np.uint8))
segment_boxes.append(np.expand_dims(np.array([0.0, 0.0, 0.0, 0.0]), 0))
else:
compressed_mask = base64.b64decode(segment)
rle_encoded_mask = zlib.decompress(compressed_mask)
decoding_dict = {
'size': [im_height, im_width],
'counts': rle_encoded_mask
}
mask_tensor = coco_mask.decode(decoding_dict)
segment_masks.append(np.expand_dims(mask_tensor, 0))
segment_boxes.append(np.expand_dims(_to_normalized_box(mask_tensor), 0))
return np.concatenate(
segment_masks, axis=0), np.concatenate(
segment_boxes, axis=0)
def merge_boxes_and_masks(box_data, mask_data):
return pd.merge(
box_data,
mask_data,
how='outer',
on=['LabelName', 'ImageID', 'XMin', 'XMax', 'YMin', 'YMax', 'IsGroupOf'])
def build_groundtruth_dictionary(data, class_label_map):
"""Builds a groundtruth dictionary from groundtruth data in CSV file.
Args:
data: Pandas DataFrame with the groundtruth data for a single image.
class_label_map: Class labelmap from string label name to an integer.
Returns:
A dictionary with keys suitable for passing to
OpenImagesDetectionChallengeEvaluator.add_single_ground_truth_image_info:
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
of shape [num_boxes] containing 1-indexed groundtruth classes for the
boxes.
standard_fields.InputDataFields.verified_labels: integer 1D numpy array
containing all classes for which labels are verified.
standard_fields.InputDataFields.groundtruth_group_of: Optional length
M numpy boolean array denoting whether a groundtruth box contains a
group of instances.
"""
data_location = data[data.XMin.notnull()]
data_labels = data[data.ConfidenceImageLabel.notnull()]
dictionary = {
standard_fields.InputDataFields.groundtruth_boxes:
data_location[['YMin', 'XMin', 'YMax',
'XMax']].to_numpy().astype(float),
standard_fields.InputDataFields.groundtruth_classes:
data_location['LabelName'].map(lambda x: class_label_map[x]
).to_numpy(),
standard_fields.InputDataFields.groundtruth_group_of:
data_location['IsGroupOf'].to_numpy().astype(int),
standard_fields.InputDataFields.groundtruth_image_classes:
data_labels['LabelName'].map(lambda x: class_label_map[x]).to_numpy(),
}
if 'Mask' in data_location:
segments, _ = _decode_raw_data_into_masks_and_boxes(
data_location['Mask'], data_location['ImageWidth'],
data_location['ImageHeight'])
dictionary[
standard_fields.InputDataFields.groundtruth_instance_masks] = segments
return dictionary
def build_predictions_dictionary(data, class_label_map):
"""Builds a predictions dictionary from predictions data in CSV file.
Args:
data: Pandas DataFrame with the predictions data for a single image.
class_label_map: Class labelmap from string label name to an integer.
Returns:
Dictionary with keys suitable for passing to
OpenImagesDetectionChallengeEvaluator.add_single_detected_image_info:
standard_fields.DetectionResultFields.detection_boxes: float32 numpy
array of shape [num_boxes, 4] containing `num_boxes` detection boxes
of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.DetectionResultFields.detection_scores: float32 numpy
array of shape [num_boxes] containing detection scores for the boxes.
standard_fields.DetectionResultFields.detection_classes: integer numpy
array of shape [num_boxes] containing 1-indexed detection classes for
the boxes.
"""
dictionary = {
standard_fields.DetectionResultFields.detection_classes:
data['LabelName'].map(lambda x: class_label_map[x]).to_numpy(),
standard_fields.DetectionResultFields.detection_scores:
data['Score'].to_numpy().astype(float)
}
if 'Mask' in data:
segments, boxes = _decode_raw_data_into_masks_and_boxes(
data['Mask'], data['ImageWidth'], data['ImageHeight'])
dictionary[standard_fields.DetectionResultFields.detection_masks] = segments
dictionary[standard_fields.DetectionResultFields.detection_boxes] = boxes
else:
dictionary[standard_fields.DetectionResultFields.detection_boxes] = data[[
'YMin', 'XMin', 'YMax', 'XMax'
]].to_numpy().astype(float)
return dictionary | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/oid_challenge_evaluation_utils.py | oid_challenge_evaluation_utils.py |
r"""Evaluation executable for detection data.
This executable evaluates precomputed detections produced by a detection
model and writes the evaluation results into csv file metrics.csv, stored
in the directory, specified by --eval_dir.
The evaluation metrics set is supplied in object_detection.protos.EvalConfig
in metrics_set field.
Currently two set of metrics are supported:
- pascal_voc_metrics: standard PASCAL VOC 2007 metric
- open_images_detection_metrics: Open Image V2 metric
All other field of object_detection.protos.EvalConfig are ignored.
Example usage:
./compute_metrics \
--eval_dir=path/to/eval_dir \
--eval_config_path=path/to/evaluation/configuration/file \
--input_config_path=path/to/input/configuration/file
"""
import csv
import os
import re
import tensorflow.compat.v1 as tf
from object_detection import eval_util
from object_detection.core import standard_fields
from object_detection.metrics import tf_example_parser
from object_detection.utils import config_util
from object_detection.utils import label_map_util
flags = tf.app.flags
tf.logging.set_verbosity(tf.logging.INFO)
flags.DEFINE_string('eval_dir', None, 'Directory to write eval summaries to.')
flags.DEFINE_string('eval_config_path', None,
'Path to an eval_pb2.EvalConfig config file.')
flags.DEFINE_string('input_config_path', None,
'Path to an eval_pb2.InputConfig config file.')
FLAGS = flags.FLAGS
def _generate_sharded_filenames(filename):
m = re.search(r'@(\d{1,})', filename)
if m:
num_shards = int(m.group(1))
return [
re.sub(r'@(\d{1,})', '-%.5d-of-%.5d' % (i, num_shards), filename)
for i in range(num_shards)
]
else:
return [filename]
def _generate_filenames(filenames):
result = []
for filename in filenames:
result += _generate_sharded_filenames(filename)
return result
def read_data_and_evaluate(input_config, eval_config):
"""Reads pre-computed object detections and groundtruth from tf_record.
Args:
input_config: input config proto of type
object_detection.protos.InputReader.
eval_config: evaluation config proto of type
object_detection.protos.EvalConfig.
Returns:
Evaluated detections metrics.
Raises:
ValueError: if input_reader type is not supported or metric type is unknown.
"""
if input_config.WhichOneof('input_reader') == 'tf_record_input_reader':
input_paths = input_config.tf_record_input_reader.input_path
categories = label_map_util.create_categories_from_labelmap(
input_config.label_map_path)
object_detection_evaluators = eval_util.get_evaluators(
eval_config, categories)
# Support a single evaluator
object_detection_evaluator = object_detection_evaluators[0]
skipped_images = 0
processed_images = 0
for input_path in _generate_filenames(input_paths):
tf.logging.info('Processing file: {0}'.format(input_path))
record_iterator = tf.python_io.tf_record_iterator(path=input_path)
data_parser = tf_example_parser.TfExampleDetectionAndGTParser()
for string_record in record_iterator:
tf.logging.log_every_n(tf.logging.INFO, 'Processed %d images...', 1000,
processed_images)
processed_images += 1
example = tf.train.Example()
example.ParseFromString(string_record)
decoded_dict = data_parser.parse(example)
if decoded_dict:
object_detection_evaluator.add_single_ground_truth_image_info(
decoded_dict[standard_fields.DetectionResultFields.key],
decoded_dict)
object_detection_evaluator.add_single_detected_image_info(
decoded_dict[standard_fields.DetectionResultFields.key],
decoded_dict)
else:
skipped_images += 1
tf.logging.info('Skipped images: {0}'.format(skipped_images))
return object_detection_evaluator.evaluate()
raise ValueError('Unsupported input_reader_config.')
def write_metrics(metrics, output_dir):
"""Write metrics to the output directory.
Args:
metrics: A dictionary containing metric names and values.
output_dir: Directory to write metrics to.
"""
tf.logging.info('Writing metrics.')
with open(os.path.join(output_dir, 'metrics.csv'), 'w') as csvfile:
metrics_writer = csv.writer(csvfile, delimiter=',')
for metric_name, metric_value in metrics.items():
metrics_writer.writerow([metric_name, str(metric_value)])
def main(argv):
del argv
required_flags = ['input_config_path', 'eval_config_path', 'eval_dir']
for flag_name in required_flags:
if not getattr(FLAGS, flag_name):
raise ValueError('Flag --{} is required'.format(flag_name))
configs = config_util.get_configs_from_multiple_files(
eval_input_config_path=FLAGS.input_config_path,
eval_config_path=FLAGS.eval_config_path)
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
metrics = read_data_and_evaluate(input_config, eval_config)
# Save metrics
write_metrics(metrics, FLAGS.eval_dir)
if __name__ == '__main__':
tf.app.run(main) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/offline_eval_map_corloc.py | offline_eval_map_corloc.py |
"""Class for evaluating object detections with calibration metrics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from object_detection.box_coders import mean_stddev_box_coder
from object_detection.core import box_list
from object_detection.core import region_similarity_calculator
from object_detection.core import standard_fields
from object_detection.core import target_assigner
from object_detection.matchers import argmax_matcher
from object_detection.metrics import calibration_metrics
from object_detection.utils import object_detection_evaluation
# TODO(zbeaver): Implement metrics per category.
class CalibrationDetectionEvaluator(
object_detection_evaluation.DetectionEvaluator):
"""Class to evaluate calibration detection metrics."""
def __init__(self,
categories,
iou_threshold=0.5):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
iou_threshold: Threshold above which to consider a box as matched during
evaluation.
"""
super(CalibrationDetectionEvaluator, self).__init__(categories)
# Constructing target_assigner to match detections to groundtruth.
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(
matched_threshold=iou_threshold, unmatched_threshold=iou_threshold)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
self._target_assigner = target_assigner.TargetAssigner(
similarity_calc, matcher, box_coder)
def match_single_image_info(self, image_info):
"""Match detections to groundtruth for a single image.
Detections are matched to available groundtruth in the image based on the
IOU threshold from the constructor. The classes of the detections and
groundtruth matches are then compared. Detections that do not have IOU above
the required threshold or have different classes from their match are
considered negative matches. All inputs in `image_info` originate or are
inferred from the eval_dict passed to class method
`get_estimator_eval_metric_ops`.
Args:
image_info: a tuple or list containing the following (in order):
- gt_boxes: tf.float32 tensor of groundtruth boxes.
- gt_classes: tf.int64 tensor of groundtruth classes associated with
groundtruth boxes.
- num_gt_box: scalar indicating the number of groundtruth boxes per
image.
- det_boxes: tf.float32 tensor of detection boxes.
- det_classes: tf.int64 tensor of detection classes associated with
detection boxes.
- num_det_box: scalar indicating the number of detection boxes per
image.
Returns:
is_class_matched: tf.int64 tensor identical in shape to det_boxes,
indicating whether detection boxes matched with and had the same
class as groundtruth annotations.
"""
(gt_boxes, gt_classes, num_gt_box, det_boxes, det_classes,
num_det_box) = image_info
detection_boxes = det_boxes[:num_det_box]
detection_classes = det_classes[:num_det_box]
groundtruth_boxes = gt_boxes[:num_gt_box]
groundtruth_classes = gt_classes[:num_gt_box]
det_boxlist = box_list.BoxList(detection_boxes)
gt_boxlist = box_list.BoxList(groundtruth_boxes)
# Target assigner requires classes in one-hot format. An additional
# dimension is required since gt_classes are 1-indexed; the zero index is
# provided to all non-matches.
one_hot_depth = tf.cast(tf.add(tf.reduce_max(groundtruth_classes), 1),
dtype=tf.int32)
gt_classes_one_hot = tf.one_hot(
groundtruth_classes, one_hot_depth, dtype=tf.float32)
one_hot_cls_targets, _, _, _, _ = self._target_assigner.assign(
det_boxlist,
gt_boxlist,
gt_classes_one_hot,
unmatched_class_label=tf.zeros(shape=one_hot_depth, dtype=tf.float32))
# Transform from one-hot back to indexes.
cls_targets = tf.argmax(one_hot_cls_targets, axis=1)
is_class_matched = tf.cast(
tf.equal(tf.cast(cls_targets, tf.int64), detection_classes),
dtype=tf.int64)
return is_class_matched
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns a dictionary of eval metric ops.
Note that once value_op is called, the detections and groundtruth added via
update_op are cleared.
This function can take in groundtruth and detections for a batch of images,
or for a single image. For the latter case, the batch dimension for input
tensors need not be present.
Args:
eval_dict: A dictionary that holds tensors for evaluating object detection
performance. For single-image evaluation, this dictionary may be
produced from eval_util.result_dict_for_single_example(). If multi-image
evaluation, `eval_dict` should contain the fields
'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
properly unpad the tensors from the batch.
Returns:
a dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
update ops must be run together and similarly all value ops must be run
together to guarantee correct behaviour.
"""
# Unpack items from the evaluation dictionary.
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
image_id = eval_dict[input_data_fields.key]
groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
detection_boxes = eval_dict[detection_fields.detection_boxes]
detection_scores = eval_dict[detection_fields.detection_scores]
detection_classes = eval_dict[detection_fields.detection_classes]
num_gt_boxes_per_image = eval_dict.get(
'num_groundtruth_boxes_per_image', None)
num_det_boxes_per_image = eval_dict.get('num_det_boxes_per_image', None)
is_annotated_batched = eval_dict.get('is_annotated', None)
if not image_id.shape.as_list():
# Apply a batch dimension to all tensors.
image_id = tf.expand_dims(image_id, 0)
groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
detection_boxes = tf.expand_dims(detection_boxes, 0)
detection_scores = tf.expand_dims(detection_scores, 0)
detection_classes = tf.expand_dims(detection_classes, 0)
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
else:
num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.shape(detection_boxes)[1:2]
else:
num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)
if is_annotated_batched is None:
is_annotated_batched = tf.constant([True])
else:
is_annotated_batched = tf.expand_dims(is_annotated_batched, 0)
else:
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.tile(
tf.shape(groundtruth_boxes)[1:2],
multiples=tf.shape(groundtruth_boxes)[0:1])
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.tile(
tf.shape(detection_boxes)[1:2],
multiples=tf.shape(detection_boxes)[0:1])
if is_annotated_batched is None:
is_annotated_batched = tf.ones_like(image_id, dtype=tf.bool)
# Filter images based on is_annotated_batched and match detections.
image_info = [tf.boolean_mask(tensor, is_annotated_batched) for tensor in
[groundtruth_boxes, groundtruth_classes,
num_gt_boxes_per_image, detection_boxes, detection_classes,
num_det_boxes_per_image]]
is_class_matched = tf.map_fn(
self.match_single_image_info, image_info, dtype=tf.int64)
y_true = tf.squeeze(is_class_matched)
y_pred = tf.squeeze(tf.boolean_mask(detection_scores, is_annotated_batched))
ece, update_op = calibration_metrics.expected_calibration_error(
y_true, y_pred)
return {'CalibrationError/ExpectedCalibrationError': (ece, update_op)}
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary of groundtruth numpy arrays required
for evaluations.
"""
raise NotImplementedError
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary of detection numpy arrays required for
evaluation.
"""
raise NotImplementedError
def evaluate(self):
"""Evaluates detections and returns a dictionary of metrics."""
raise NotImplementedError
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
raise NotImplementedError | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/calibration_evaluation.py | calibration_evaluation.py |
r"""Converts data from CSV format to the VRDDetectionEvaluator format."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from object_detection.core import standard_fields
from object_detection.utils import vrd_evaluation
def build_groundtruth_vrd_dictionary(data, class_label_map,
relationship_label_map):
"""Builds a groundtruth dictionary from groundtruth data in CSV file.
Args:
data: Pandas DataFrame with the groundtruth data for a single image.
class_label_map: Class labelmap from string label name to an integer.
relationship_label_map: Relationship type labelmap from string name to an
integer.
Returns:
A dictionary with keys suitable for passing to
VRDDetectionEvaluator.add_single_ground_truth_image_info:
standard_fields.InputDataFields.groundtruth_boxes: A numpy array
of structures with the shape [M, 1], representing M tuples, each tuple
containing the same number of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max] (see
datatype vrd_box_data_type, single_box_data_type above).
standard_fields.InputDataFields.groundtruth_classes: A numpy array of
structures shape [M, 1], representing the class labels of the
corresponding bounding boxes and possibly additional classes (see
datatype label_data_type above).
standard_fields.InputDataFields.verified_labels: numpy array
of shape [K] containing verified labels.
"""
data_boxes = data[data.LabelName.isnull()]
data_labels = data[data.LabelName1.isnull()]
boxes = np.zeros(data_boxes.shape[0], dtype=vrd_evaluation.vrd_box_data_type)
boxes['subject'] = data_boxes[['YMin1', 'XMin1', 'YMax1',
'XMax1']].to_numpy()
boxes['object'] = data_boxes[['YMin2', 'XMin2', 'YMax2', 'XMax2']].to_numpy()
labels = np.zeros(data_boxes.shape[0], dtype=vrd_evaluation.label_data_type)
labels['subject'] = data_boxes['LabelName1'].map(
lambda x: class_label_map[x]).to_numpy()
labels['object'] = data_boxes['LabelName2'].map(
lambda x: class_label_map[x]).to_numpy()
labels['relation'] = data_boxes['RelationshipLabel'].map(
lambda x: relationship_label_map[x]).to_numpy()
return {
standard_fields.InputDataFields.groundtruth_boxes:
boxes,
standard_fields.InputDataFields.groundtruth_classes:
labels,
standard_fields.InputDataFields.groundtruth_image_classes:
data_labels['LabelName'].map(lambda x: class_label_map[x])
.to_numpy(),
}
def build_predictions_vrd_dictionary(data, class_label_map,
relationship_label_map):
"""Builds a predictions dictionary from predictions data in CSV file.
Args:
data: Pandas DataFrame with the predictions data for a single image.
class_label_map: Class labelmap from string label name to an integer.
relationship_label_map: Relationship type labelmap from string name to an
integer.
Returns:
Dictionary with keys suitable for passing to
VRDDetectionEvaluator.add_single_detected_image_info:
standard_fields.DetectionResultFields.detection_boxes: A numpy array of
structures with shape [N, 1], representing N tuples, each tuple
containing the same number of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max] (as an example
see datatype vrd_box_data_type, single_box_data_type above).
standard_fields.DetectionResultFields.detection_scores: float32 numpy
array of shape [N] containing detection scores for the boxes.
standard_fields.DetectionResultFields.detection_classes: A numpy array
of structures shape [N, 1], representing the class labels of the
corresponding bounding boxes and possibly additional classes (see
datatype label_data_type above).
"""
data_boxes = data
boxes = np.zeros(data_boxes.shape[0], dtype=vrd_evaluation.vrd_box_data_type)
boxes['subject'] = data_boxes[['YMin1', 'XMin1', 'YMax1',
'XMax1']].to_numpy()
boxes['object'] = data_boxes[['YMin2', 'XMin2', 'YMax2', 'XMax2']].to_numpy()
labels = np.zeros(data_boxes.shape[0], dtype=vrd_evaluation.label_data_type)
labels['subject'] = data_boxes['LabelName1'].map(
lambda x: class_label_map[x]).to_numpy()
labels['object'] = data_boxes['LabelName2'].map(
lambda x: class_label_map[x]).to_numpy()
labels['relation'] = data_boxes['RelationshipLabel'].map(
lambda x: relationship_label_map[x]).to_numpy()
return {
standard_fields.DetectionResultFields.detection_boxes:
boxes,
standard_fields.DetectionResultFields.detection_classes:
labels,
standard_fields.DetectionResultFields.detection_scores:
data_boxes['Score'].to_numpy()
} | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/oid_vrd_challenge_evaluation_utils.py | oid_vrd_challenge_evaluation_utils.py |
"""Class for evaluating object detections with COCO metrics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.core import standard_fields
from object_detection.metrics import coco_tools
from object_detection.utils import json_utils
from object_detection.utils import np_mask_ops
from object_detection.utils import object_detection_evaluation
class CocoDetectionEvaluator(object_detection_evaluation.DetectionEvaluator):
"""Class to evaluate COCO detection metrics."""
def __init__(self,
categories,
include_metrics_per_category=False,
all_metrics_per_category=False,
skip_predictions_for_unlabeled_class=False,
super_categories=None):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
include_metrics_per_category: If True, include metrics for each category.
all_metrics_per_category: Whether to include all the summary metrics for
each category in per_category_ap. Be careful with setting it to true if
you have more than handful of categories, because it will pollute
your mldash.
skip_predictions_for_unlabeled_class: Skip predictions that do not match
with the labeled classes for the image.
super_categories: None or a python dict mapping super-category names
(strings) to lists of categories (corresponding to category names
in the label_map). Metrics are aggregated along these super-categories
and added to the `per_category_ap` and are associated with the name
`PerformanceBySuperCategory/<super-category-name>`.
"""
super(CocoDetectionEvaluator, self).__init__(categories)
# _image_ids is a dictionary that maps unique image ids to Booleans which
# indicate whether a corresponding detection has been added.
self._image_ids = {}
self._groundtruth_list = []
self._detection_boxes_list = []
self._category_id_set = set([cat['id'] for cat in self._categories])
self._annotation_id = 1
self._metrics = None
self._include_metrics_per_category = include_metrics_per_category
self._all_metrics_per_category = all_metrics_per_category
self._skip_predictions_for_unlabeled_class = skip_predictions_for_unlabeled_class
self._groundtruth_labeled_classes = {}
self._super_categories = super_categories
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
self._image_ids.clear()
self._groundtruth_list = []
self._detection_boxes_list = []
def add_single_ground_truth_image_info(self,
image_id,
groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
If the image has already been added, a warning is logged, and groundtruth is
ignored.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
InputDataFields.groundtruth_boxes: float32 numpy array of shape
[num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
[ymin, xmin, ymax, xmax] in absolute image coordinates.
InputDataFields.groundtruth_classes: integer numpy array of shape
[num_boxes] containing 1-indexed groundtruth classes for the boxes.
InputDataFields.groundtruth_is_crowd (optional): integer numpy array of
shape [num_boxes] containing iscrowd flag for groundtruth boxes.
InputDataFields.groundtruth_area (optional): float numpy array of
shape [num_boxes] containing the area (in the original absolute
coordinates) of the annotated object.
InputDataFields.groundtruth_keypoints (optional): float numpy array of
keypoints with shape [num_boxes, num_keypoints, 2].
InputDataFields.groundtruth_keypoint_visibilities (optional): integer
numpy array of keypoint visibilities with shape [num_gt_boxes,
num_keypoints]. Integer is treated as an enum with 0=not labeled,
1=labeled but not visible and 2=labeled and visible.
InputDataFields.groundtruth_labeled_classes (optional): a tensor of
shape [num_classes + 1] containing the multi-hot tensor indicating the
classes that each image is labeled for. Note that the classes labels
are 1-indexed.
"""
if image_id in self._image_ids:
tf.logging.warning('Ignoring ground truth with image id %s since it was '
'previously added', image_id)
return
# Drop optional fields if empty tensor.
groundtruth_is_crowd = groundtruth_dict.get(
standard_fields.InputDataFields.groundtruth_is_crowd)
groundtruth_area = groundtruth_dict.get(
standard_fields.InputDataFields.groundtruth_area)
groundtruth_keypoints = groundtruth_dict.get(
standard_fields.InputDataFields.groundtruth_keypoints)
groundtruth_keypoint_visibilities = groundtruth_dict.get(
standard_fields.InputDataFields.groundtruth_keypoint_visibilities)
if groundtruth_is_crowd is not None and not groundtruth_is_crowd.shape[0]:
groundtruth_is_crowd = None
if groundtruth_area is not None and not groundtruth_area.shape[0]:
groundtruth_area = None
if groundtruth_keypoints is not None and not groundtruth_keypoints.shape[0]:
groundtruth_keypoints = None
if groundtruth_keypoint_visibilities is not None and not groundtruth_keypoint_visibilities.shape[
0]:
groundtruth_keypoint_visibilities = None
self._groundtruth_list.extend(
coco_tools.ExportSingleImageGroundtruthToCoco(
image_id=image_id,
next_annotation_id=self._annotation_id,
category_id_set=self._category_id_set,
groundtruth_boxes=groundtruth_dict[
standard_fields.InputDataFields.groundtruth_boxes],
groundtruth_classes=groundtruth_dict[
standard_fields.InputDataFields.groundtruth_classes],
groundtruth_is_crowd=groundtruth_is_crowd,
groundtruth_area=groundtruth_area,
groundtruth_keypoints=groundtruth_keypoints,
groundtruth_keypoint_visibilities=groundtruth_keypoint_visibilities)
)
self._annotation_id += groundtruth_dict[standard_fields.InputDataFields.
groundtruth_boxes].shape[0]
if (standard_fields.InputDataFields.groundtruth_labeled_classes
) in groundtruth_dict:
labeled_classes = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_labeled_classes]
if labeled_classes.shape != (len(self._category_id_set) + 1,):
raise ValueError('Invalid shape for groundtruth labeled classes: {}, '
'num_categories_including_background: {}'.format(
labeled_classes,
len(self._category_id_set) + 1))
self._groundtruth_labeled_classes[image_id] = np.flatnonzero(
groundtruth_dict[standard_fields.InputDataFields
.groundtruth_labeled_classes] == 1).tolist()
# Boolean to indicate whether a detection has been added for this image.
self._image_ids[image_id] = False
def add_single_detected_image_info(self,
image_id,
detections_dict):
"""Adds detections for a single image to be used for evaluation.
If a detection has already been added for this image id, a warning is
logged, and the detection is skipped.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
DetectionResultFields.detection_boxes: float32 numpy array of shape
[num_boxes, 4] containing `num_boxes` detection boxes of the format
[ymin, xmin, ymax, xmax] in absolute image coordinates.
DetectionResultFields.detection_scores: float32 numpy array of shape
[num_boxes] containing detection scores for the boxes.
DetectionResultFields.detection_classes: integer numpy array of shape
[num_boxes] containing 1-indexed detection classes for the boxes.
DetectionResultFields.detection_keypoints (optional): float numpy array
of keypoints with shape [num_boxes, num_keypoints, 2].
Raises:
ValueError: If groundtruth for the image_id is not available.
"""
if image_id not in self._image_ids:
raise ValueError('Missing groundtruth for image id: {}'.format(image_id))
if self._image_ids[image_id]:
tf.logging.warning('Ignoring detection with image id %s since it was '
'previously added', image_id)
return
# Drop optional fields if empty tensor.
detection_keypoints = detections_dict.get(
standard_fields.DetectionResultFields.detection_keypoints)
if detection_keypoints is not None and not detection_keypoints.shape[0]:
detection_keypoints = None
if self._skip_predictions_for_unlabeled_class:
det_classes = detections_dict[
standard_fields.DetectionResultFields.detection_classes]
num_det_boxes = det_classes.shape[0]
keep_box_ids = []
for box_id in range(num_det_boxes):
if det_classes[box_id] in self._groundtruth_labeled_classes[image_id]:
keep_box_ids.append(box_id)
self._detection_boxes_list.extend(
coco_tools.ExportSingleImageDetectionBoxesToCoco(
image_id=image_id,
category_id_set=self._category_id_set,
detection_boxes=detections_dict[
standard_fields.DetectionResultFields.detection_boxes]
[keep_box_ids],
detection_scores=detections_dict[
standard_fields.DetectionResultFields.detection_scores]
[keep_box_ids],
detection_classes=detections_dict[
standard_fields.DetectionResultFields.detection_classes]
[keep_box_ids],
detection_keypoints=detection_keypoints))
else:
self._detection_boxes_list.extend(
coco_tools.ExportSingleImageDetectionBoxesToCoco(
image_id=image_id,
category_id_set=self._category_id_set,
detection_boxes=detections_dict[
standard_fields.DetectionResultFields.detection_boxes],
detection_scores=detections_dict[
standard_fields.DetectionResultFields.detection_scores],
detection_classes=detections_dict[
standard_fields.DetectionResultFields.detection_classes],
detection_keypoints=detection_keypoints))
self._image_ids[image_id] = True
def dump_detections_to_json_file(self, json_output_path):
"""Saves the detections into json_output_path in the format used by MS COCO.
Args:
json_output_path: String containing the output file's path. It can be also
None. In that case nothing will be written to the output file.
"""
if json_output_path and json_output_path is not None:
with tf.gfile.GFile(json_output_path, 'w') as fid:
tf.logging.info('Dumping detections to output json file.')
json_utils.Dump(
obj=self._detection_boxes_list, fid=fid, float_digits=4, indent=2)
def evaluate(self):
"""Evaluates the detection boxes and returns a dictionary of coco metrics.
Returns:
A dictionary holding -
1. summary_metrics:
'DetectionBoxes_Precision/mAP': mean average precision over classes
averaged over IOU thresholds ranging from .5 to .95 with .05
increments.
'DetectionBoxes_Precision/mAP@.50IOU': mean average precision at 50% IOU
'DetectionBoxes_Precision/mAP@.75IOU': mean average precision at 75% IOU
'DetectionBoxes_Precision/mAP (small)': mean average precision for small
objects (area < 32^2 pixels).
'DetectionBoxes_Precision/mAP (medium)': mean average precision for
medium sized objects (32^2 pixels < area < 96^2 pixels).
'DetectionBoxes_Precision/mAP (large)': mean average precision for large
objects (96^2 pixels < area < 10000^2 pixels).
'DetectionBoxes_Recall/AR@1': average recall with 1 detection.
'DetectionBoxes_Recall/AR@10': average recall with 10 detections.
'DetectionBoxes_Recall/AR@100': average recall with 100 detections.
'DetectionBoxes_Recall/AR@100 (small)': average recall for small objects
with 100.
'DetectionBoxes_Recall/AR@100 (medium)': average recall for medium objects
with 100.
'DetectionBoxes_Recall/AR@100 (large)': average recall for large objects
with 100 detections.
2. per_category_ap: if include_metrics_per_category is True, category
specific results with keys of the form:
'Precision mAP ByCategory/category' (without the supercategory part if
no supercategories exist). For backward compatibility
'PerformanceByCategory' is included in the output regardless of
all_metrics_per_category.
If super_categories are provided, then this will additionally include
metrics aggregated along the super_categories with keys of the form:
`PerformanceBySuperCategory/<super-category-name>`
"""
tf.logging.info('Performing evaluation on %d images.', len(self._image_ids))
groundtruth_dict = {
'annotations': self._groundtruth_list,
'images': [{'id': image_id} for image_id in self._image_ids],
'categories': self._categories
}
coco_wrapped_groundtruth = coco_tools.COCOWrapper(groundtruth_dict)
coco_wrapped_detections = coco_wrapped_groundtruth.LoadAnnotations(
self._detection_boxes_list)
box_evaluator = coco_tools.COCOEvalWrapper(
coco_wrapped_groundtruth, coco_wrapped_detections, agnostic_mode=False)
box_metrics, box_per_category_ap = box_evaluator.ComputeMetrics(
include_metrics_per_category=self._include_metrics_per_category,
all_metrics_per_category=self._all_metrics_per_category,
super_categories=self._super_categories)
box_metrics.update(box_per_category_ap)
box_metrics = {'DetectionBoxes_'+ key: value
for key, value in iter(box_metrics.items())}
return box_metrics
def add_eval_dict(self, eval_dict):
"""Observes an evaluation result dict for a single example.
When executing eagerly, once all observations have been observed by this
method you can use `.evaluate()` to get the final metrics.
When using `tf.estimator.Estimator` for evaluation this function is used by
`get_estimator_eval_metric_ops()` to construct the metric update op.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
None when executing eagerly, or an update_op that can be used to update
the eval metrics in `tf.estimator.EstimatorSpec`.
"""
def update_op(image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched, groundtruth_is_crowd_batched,
groundtruth_labeled_classes_batched, num_gt_boxes_per_image,
detection_boxes_batched, detection_scores_batched,
detection_classes_batched, num_det_boxes_per_image,
is_annotated_batched):
"""Update operation for adding batch of images to Coco evaluator."""
for (image_id, gt_box, gt_class, gt_is_crowd, gt_labeled_classes,
num_gt_box, det_box, det_score, det_class,
num_det_box, is_annotated) in zip(
image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched, groundtruth_is_crowd_batched,
groundtruth_labeled_classes_batched, num_gt_boxes_per_image,
detection_boxes_batched, detection_scores_batched,
detection_classes_batched, num_det_boxes_per_image,
is_annotated_batched):
if is_annotated:
self.add_single_ground_truth_image_info(
image_id, {
'groundtruth_boxes': gt_box[:num_gt_box],
'groundtruth_classes': gt_class[:num_gt_box],
'groundtruth_is_crowd': gt_is_crowd[:num_gt_box],
'groundtruth_labeled_classes': gt_labeled_classes
})
self.add_single_detected_image_info(
image_id,
{'detection_boxes': det_box[:num_det_box],
'detection_scores': det_score[:num_det_box],
'detection_classes': det_class[:num_det_box]})
# Unpack items from the evaluation dictionary.
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
image_id = eval_dict[input_data_fields.key]
groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
groundtruth_is_crowd = eval_dict.get(
input_data_fields.groundtruth_is_crowd, None)
groundtruth_labeled_classes = eval_dict.get(
input_data_fields.groundtruth_labeled_classes, None)
detection_boxes = eval_dict[detection_fields.detection_boxes]
detection_scores = eval_dict[detection_fields.detection_scores]
detection_classes = eval_dict[detection_fields.detection_classes]
num_gt_boxes_per_image = eval_dict.get(
input_data_fields.num_groundtruth_boxes, None)
num_det_boxes_per_image = eval_dict.get(detection_fields.num_detections,
None)
is_annotated = eval_dict.get('is_annotated', None)
if groundtruth_is_crowd is None:
groundtruth_is_crowd = tf.zeros_like(groundtruth_classes, dtype=tf.bool)
# If groundtruth_labeled_classes is not provided, make it equal to the
# detection_classes. This assumes that all predictions will be kept to
# compute eval metrics.
if groundtruth_labeled_classes is None:
groundtruth_labeled_classes = tf.reduce_max(
tf.one_hot(
tf.cast(detection_classes, tf.int32),
len(self._category_id_set) + 1),
axis=-2)
if not image_id.shape.as_list():
# Apply a batch dimension to all tensors.
image_id = tf.expand_dims(image_id, 0)
groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
groundtruth_is_crowd = tf.expand_dims(groundtruth_is_crowd, 0)
groundtruth_labeled_classes = tf.expand_dims(groundtruth_labeled_classes,
0)
detection_boxes = tf.expand_dims(detection_boxes, 0)
detection_scores = tf.expand_dims(detection_scores, 0)
detection_classes = tf.expand_dims(detection_classes, 0)
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
else:
num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.shape(detection_boxes)[1:2]
else:
num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)
if is_annotated is None:
is_annotated = tf.constant([True])
else:
is_annotated = tf.expand_dims(is_annotated, 0)
else:
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.tile(
tf.shape(groundtruth_boxes)[1:2],
multiples=tf.shape(groundtruth_boxes)[0:1])
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.tile(
tf.shape(detection_boxes)[1:2],
multiples=tf.shape(detection_boxes)[0:1])
if is_annotated is None:
is_annotated = tf.ones_like(image_id, dtype=tf.bool)
return tf.py_func(update_op, [
image_id, groundtruth_boxes, groundtruth_classes, groundtruth_is_crowd,
groundtruth_labeled_classes, num_gt_boxes_per_image, detection_boxes,
detection_scores, detection_classes, num_det_boxes_per_image,
is_annotated
], [])
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns a dictionary of eval metric ops.
Note that once value_op is called, the detections and groundtruth added via
update_op are cleared.
This function can take in groundtruth and detections for a batch of images,
or for a single image. For the latter case, the batch dimension for input
tensors need not be present.
Args:
eval_dict: A dictionary that holds tensors for evaluating object detection
performance. For single-image evaluation, this dictionary may be
produced from eval_util.result_dict_for_single_example(). If multi-image
evaluation, `eval_dict` should contain the fields
'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
properly unpad the tensors from the batch.
Returns:
a dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
update ops must be run together and similarly all value ops must be run
together to guarantee correct behaviour.
"""
update_op = self.add_eval_dict(eval_dict)
metric_names = ['DetectionBoxes_Precision/mAP',
'DetectionBoxes_Precision/mAP@.50IOU',
'DetectionBoxes_Precision/mAP@.75IOU',
'DetectionBoxes_Precision/mAP (large)',
'DetectionBoxes_Precision/mAP (medium)',
'DetectionBoxes_Precision/mAP (small)',
'DetectionBoxes_Recall/AR@1',
'DetectionBoxes_Recall/AR@10',
'DetectionBoxes_Recall/AR@100',
'DetectionBoxes_Recall/AR@100 (large)',
'DetectionBoxes_Recall/AR@100 (medium)',
'DetectionBoxes_Recall/AR@100 (small)']
if self._include_metrics_per_category:
for category_dict in self._categories:
metric_names.append('DetectionBoxes_PerformanceByCategory/mAP/' +
category_dict['name'])
def first_value_func():
self._metrics = self.evaluate()
self.clear()
return np.float32(self._metrics[metric_names[0]])
def value_func_factory(metric_name):
def value_func():
return np.float32(self._metrics[metric_name])
return value_func
# Ensure that the metrics are only evaluated once.
first_value_op = tf.py_func(first_value_func, [], tf.float32)
eval_metric_ops = {metric_names[0]: (first_value_op, update_op)}
with tf.control_dependencies([first_value_op]):
for metric_name in metric_names[1:]:
eval_metric_ops[metric_name] = (tf.py_func(
value_func_factory(metric_name), [], np.float32), update_op)
return eval_metric_ops
def convert_masks_to_binary(masks):
"""Converts masks to 0 or 1 and uint8 type."""
return (masks > 0).astype(np.uint8)
class CocoKeypointEvaluator(CocoDetectionEvaluator):
"""Class to evaluate COCO keypoint metrics."""
def __init__(self,
category_id,
category_keypoints,
class_text,
oks_sigmas=None):
"""Constructor.
Args:
category_id: An integer id uniquely identifying this category.
category_keypoints: A list specifying keypoint mappings, with items:
'id': (required) an integer id identifying the keypoint.
'name': (required) a string representing the keypoint name.
class_text: A string representing the category name for which keypoint
metrics are to be computed.
oks_sigmas: A dict of keypoint name to standard deviation values for OKS
metrics. If not provided, default value of 0.05 will be used.
"""
self._category_id = category_id
self._category_name = class_text
self._keypoint_ids = sorted(
[keypoint['id'] for keypoint in category_keypoints])
kpt_id_to_name = {kpt['id']: kpt['name'] for kpt in category_keypoints}
if oks_sigmas:
self._oks_sigmas = np.array([
oks_sigmas[kpt_id_to_name[idx]] for idx in self._keypoint_ids
])
else:
# Default all per-keypoint sigmas to 0.
self._oks_sigmas = np.full((len(self._keypoint_ids)), 0.05)
tf.logging.warning('No default keypoint OKS sigmas provided. Will use '
'0.05')
tf.logging.info('Using the following keypoint OKS sigmas: {}'.format(
self._oks_sigmas))
self._metrics = None
super(CocoKeypointEvaluator, self).__init__([{
'id': self._category_id,
'name': class_text
}])
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image with keypoints.
If the image has already been added, a warning is logged, and groundtruth
is ignored.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
InputDataFields.groundtruth_boxes: float32 numpy array of shape
[num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
[ymin, xmin, ymax, xmax] in absolute image coordinates.
InputDataFields.groundtruth_classes: integer numpy array of shape
[num_boxes] containing 1-indexed groundtruth classes for the boxes.
InputDataFields.groundtruth_is_crowd (optional): integer numpy array of
shape [num_boxes] containing iscrowd flag for groundtruth boxes.
InputDataFields.groundtruth_area (optional): float numpy array of
shape [num_boxes] containing the area (in the original absolute
coordinates) of the annotated object.
InputDataFields.groundtruth_keypoints: float numpy array of
keypoints with shape [num_boxes, num_keypoints, 2].
InputDataFields.groundtruth_keypoint_visibilities (optional): integer
numpy array of keypoint visibilities with shape [num_gt_boxes,
num_keypoints]. Integer is treated as an enum with 0=not labels,
1=labeled but not visible and 2=labeled and visible.
"""
# Keep only the groundtruth for our category and its keypoints.
groundtruth_classes = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_classes]
groundtruth_boxes = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_boxes]
groundtruth_keypoints = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_keypoints]
class_indices = [
idx for idx, gt_class_id in enumerate(groundtruth_classes)
if gt_class_id == self._category_id
]
filtered_groundtruth_classes = np.take(
groundtruth_classes, class_indices, axis=0)
filtered_groundtruth_boxes = np.take(
groundtruth_boxes, class_indices, axis=0)
filtered_groundtruth_keypoints = np.take(
groundtruth_keypoints, class_indices, axis=0)
filtered_groundtruth_keypoints = np.take(
filtered_groundtruth_keypoints, self._keypoint_ids, axis=1)
filtered_groundtruth_dict = {}
filtered_groundtruth_dict[
standard_fields.InputDataFields
.groundtruth_classes] = filtered_groundtruth_classes
filtered_groundtruth_dict[standard_fields.InputDataFields
.groundtruth_boxes] = filtered_groundtruth_boxes
filtered_groundtruth_dict[
standard_fields.InputDataFields
.groundtruth_keypoints] = filtered_groundtruth_keypoints
if (standard_fields.InputDataFields.groundtruth_is_crowd in
groundtruth_dict.keys()):
groundtruth_is_crowd = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_is_crowd]
filtered_groundtruth_is_crowd = np.take(groundtruth_is_crowd,
class_indices, 0)
filtered_groundtruth_dict[
standard_fields.InputDataFields
.groundtruth_is_crowd] = filtered_groundtruth_is_crowd
if (standard_fields.InputDataFields.groundtruth_area in
groundtruth_dict.keys()):
groundtruth_area = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_area]
filtered_groundtruth_area = np.take(groundtruth_area, class_indices, 0)
filtered_groundtruth_dict[
standard_fields.InputDataFields
.groundtruth_area] = filtered_groundtruth_area
if (standard_fields.InputDataFields.groundtruth_keypoint_visibilities in
groundtruth_dict.keys()):
groundtruth_keypoint_visibilities = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_keypoint_visibilities]
filtered_groundtruth_keypoint_visibilities = np.take(
groundtruth_keypoint_visibilities, class_indices, axis=0)
filtered_groundtruth_keypoint_visibilities = np.take(
filtered_groundtruth_keypoint_visibilities,
self._keypoint_ids,
axis=1)
filtered_groundtruth_dict[
standard_fields.InputDataFields.
groundtruth_keypoint_visibilities] = filtered_groundtruth_keypoint_visibilities
super(CocoKeypointEvaluator,
self).add_single_ground_truth_image_info(image_id,
filtered_groundtruth_dict)
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image and the specific category for which keypoints are evaluated.
If a detection has already been added for this image id, a warning is
logged, and the detection is skipped.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
DetectionResultFields.detection_boxes: float32 numpy array of shape
[num_boxes, 4] containing `num_boxes` detection boxes of the format
[ymin, xmin, ymax, xmax] in absolute image coordinates.
DetectionResultFields.detection_scores: float32 numpy array of shape
[num_boxes] containing detection scores for the boxes.
DetectionResultFields.detection_classes: integer numpy array of shape
[num_boxes] containing 1-indexed detection classes for the boxes.
DetectionResultFields.detection_keypoints: float numpy array of
keypoints with shape [num_boxes, num_keypoints, 2].
Raises:
ValueError: If groundtruth for the image_id is not available.
"""
# Keep only the detections for our category and its keypoints.
detection_classes = detections_dict[
standard_fields.DetectionResultFields.detection_classes]
detection_boxes = detections_dict[
standard_fields.DetectionResultFields.detection_boxes]
detection_scores = detections_dict[
standard_fields.DetectionResultFields.detection_scores]
detection_keypoints = detections_dict[
standard_fields.DetectionResultFields.detection_keypoints]
class_indices = [
idx for idx, class_id in enumerate(detection_classes)
if class_id == self._category_id
]
filtered_detection_classes = np.take(
detection_classes, class_indices, axis=0)
filtered_detection_boxes = np.take(detection_boxes, class_indices, axis=0)
filtered_detection_scores = np.take(detection_scores, class_indices, axis=0)
filtered_detection_keypoints = np.take(
detection_keypoints, class_indices, axis=0)
filtered_detection_keypoints = np.take(
filtered_detection_keypoints, self._keypoint_ids, axis=1)
filtered_detections_dict = {}
filtered_detections_dict[standard_fields.DetectionResultFields
.detection_classes] = filtered_detection_classes
filtered_detections_dict[standard_fields.DetectionResultFields
.detection_boxes] = filtered_detection_boxes
filtered_detections_dict[standard_fields.DetectionResultFields
.detection_scores] = filtered_detection_scores
filtered_detections_dict[standard_fields.DetectionResultFields.
detection_keypoints] = filtered_detection_keypoints
super(CocoKeypointEvaluator,
self).add_single_detected_image_info(image_id,
filtered_detections_dict)
def evaluate(self):
"""Evaluates the keypoints and returns a dictionary of coco metrics.
Returns:
A dictionary holding -
1. summary_metrics:
'Keypoints_Precision/mAP': mean average precision over classes
averaged over OKS thresholds ranging from .5 to .95 with .05
increments.
'Keypoints_Precision/mAP@.50IOU': mean average precision at 50% OKS
'Keypoints_Precision/mAP@.75IOU': mean average precision at 75% OKS
'Keypoints_Precision/mAP (medium)': mean average precision for medium
sized objects (32^2 pixels < area < 96^2 pixels).
'Keypoints_Precision/mAP (large)': mean average precision for large
objects (96^2 pixels < area < 10000^2 pixels).
'Keypoints_Recall/AR@1': average recall with 1 detection.
'Keypoints_Recall/AR@10': average recall with 10 detections.
'Keypoints_Recall/AR@100': average recall with 100 detections.
'Keypoints_Recall/AR@100 (medium)': average recall for medium objects with
100.
'Keypoints_Recall/AR@100 (large)': average recall for large objects with
100 detections.
"""
tf.logging.info('Performing evaluation on %d images.', len(self._image_ids))
groundtruth_dict = {
'annotations': self._groundtruth_list,
'images': [{'id': image_id} for image_id in self._image_ids],
'categories': self._categories
}
coco_wrapped_groundtruth = coco_tools.COCOWrapper(
groundtruth_dict, detection_type='bbox')
coco_wrapped_detections = coco_wrapped_groundtruth.LoadAnnotations(
self._detection_boxes_list)
keypoint_evaluator = coco_tools.COCOEvalWrapper(
coco_wrapped_groundtruth,
coco_wrapped_detections,
agnostic_mode=False,
iou_type='keypoints',
oks_sigmas=self._oks_sigmas)
keypoint_metrics, _ = keypoint_evaluator.ComputeMetrics(
include_metrics_per_category=False, all_metrics_per_category=False)
keypoint_metrics = {
'Keypoints_' + key: value
for key, value in iter(keypoint_metrics.items())
}
return keypoint_metrics
def add_eval_dict(self, eval_dict):
"""Observes an evaluation result dict for a single example.
When executing eagerly, once all observations have been observed by this
method you can use `.evaluate()` to get the final metrics.
When using `tf.estimator.Estimator` for evaluation this function is used by
`get_estimator_eval_metric_ops()` to construct the metric update op.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
None when executing eagerly, or an update_op that can be used to update
the eval metrics in `tf.estimator.EstimatorSpec`.
"""
def update_op(
image_id_batched,
groundtruth_boxes_batched,
groundtruth_classes_batched,
groundtruth_is_crowd_batched,
groundtruth_area_batched,
groundtruth_keypoints_batched,
groundtruth_keypoint_visibilities_batched,
num_gt_boxes_per_image,
detection_boxes_batched,
detection_scores_batched,
detection_classes_batched,
detection_keypoints_batched,
num_det_boxes_per_image,
is_annotated_batched):
"""Update operation for adding batch of images to Coco evaluator."""
for (image_id, gt_box, gt_class, gt_is_crowd, gt_area, gt_keyp,
gt_keyp_vis, num_gt_box, det_box, det_score, det_class, det_keyp,
num_det_box, is_annotated) in zip(
image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched, groundtruth_is_crowd_batched,
groundtruth_area_batched, groundtruth_keypoints_batched,
groundtruth_keypoint_visibilities_batched,
num_gt_boxes_per_image, detection_boxes_batched,
detection_scores_batched, detection_classes_batched,
detection_keypoints_batched, num_det_boxes_per_image,
is_annotated_batched):
if is_annotated:
self.add_single_ground_truth_image_info(
image_id, {
'groundtruth_boxes': gt_box[:num_gt_box],
'groundtruth_classes': gt_class[:num_gt_box],
'groundtruth_is_crowd': gt_is_crowd[:num_gt_box],
'groundtruth_area': gt_area[:num_gt_box],
'groundtruth_keypoints': gt_keyp[:num_gt_box],
'groundtruth_keypoint_visibilities': gt_keyp_vis[:num_gt_box]
})
self.add_single_detected_image_info(
image_id, {
'detection_boxes': det_box[:num_det_box],
'detection_scores': det_score[:num_det_box],
'detection_classes': det_class[:num_det_box],
'detection_keypoints': det_keyp[:num_det_box],
})
# Unpack items from the evaluation dictionary.
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
image_id = eval_dict[input_data_fields.key]
groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
groundtruth_is_crowd = eval_dict.get(input_data_fields.groundtruth_is_crowd,
None)
groundtruth_area = eval_dict.get(input_data_fields.groundtruth_area, None)
groundtruth_keypoints = eval_dict[input_data_fields.groundtruth_keypoints]
groundtruth_keypoint_visibilities = eval_dict.get(
input_data_fields.groundtruth_keypoint_visibilities, None)
detection_boxes = eval_dict[detection_fields.detection_boxes]
detection_scores = eval_dict[detection_fields.detection_scores]
detection_classes = eval_dict[detection_fields.detection_classes]
detection_keypoints = eval_dict[detection_fields.detection_keypoints]
num_gt_boxes_per_image = eval_dict.get(
'num_groundtruth_boxes_per_image', None)
num_det_boxes_per_image = eval_dict.get('num_det_boxes_per_image', None)
is_annotated = eval_dict.get('is_annotated', None)
if groundtruth_is_crowd is None:
groundtruth_is_crowd = tf.zeros_like(groundtruth_classes, dtype=tf.bool)
if groundtruth_area is None:
groundtruth_area = tf.zeros_like(groundtruth_classes, dtype=tf.float32)
if not image_id.shape.as_list():
# Apply a batch dimension to all tensors.
image_id = tf.expand_dims(image_id, 0)
groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
groundtruth_is_crowd = tf.expand_dims(groundtruth_is_crowd, 0)
groundtruth_area = tf.expand_dims(groundtruth_area, 0)
groundtruth_keypoints = tf.expand_dims(groundtruth_keypoints, 0)
detection_boxes = tf.expand_dims(detection_boxes, 0)
detection_scores = tf.expand_dims(detection_scores, 0)
detection_classes = tf.expand_dims(detection_classes, 0)
detection_keypoints = tf.expand_dims(detection_keypoints, 0)
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
else:
num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.shape(detection_boxes)[1:2]
else:
num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)
if is_annotated is None:
is_annotated = tf.constant([True])
else:
is_annotated = tf.expand_dims(is_annotated, 0)
if groundtruth_keypoint_visibilities is None:
groundtruth_keypoint_visibilities = tf.fill([
tf.shape(groundtruth_boxes)[1],
tf.shape(groundtruth_keypoints)[2]
], tf.constant(2, dtype=tf.int32))
groundtruth_keypoint_visibilities = tf.expand_dims(
groundtruth_keypoint_visibilities, 0)
else:
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.tile(
tf.shape(groundtruth_boxes)[1:2],
multiples=tf.shape(groundtruth_boxes)[0:1])
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.tile(
tf.shape(detection_boxes)[1:2],
multiples=tf.shape(detection_boxes)[0:1])
if is_annotated is None:
is_annotated = tf.ones_like(image_id, dtype=tf.bool)
if groundtruth_keypoint_visibilities is None:
groundtruth_keypoint_visibilities = tf.fill([
tf.shape(groundtruth_keypoints)[1],
tf.shape(groundtruth_keypoints)[2]
], tf.constant(2, dtype=tf.int32))
groundtruth_keypoint_visibilities = tf.tile(
tf.expand_dims(groundtruth_keypoint_visibilities, 0),
multiples=[tf.shape(groundtruth_keypoints)[0], 1, 1])
return tf.py_func(update_op, [
image_id, groundtruth_boxes, groundtruth_classes, groundtruth_is_crowd,
groundtruth_area, groundtruth_keypoints,
groundtruth_keypoint_visibilities, num_gt_boxes_per_image,
detection_boxes, detection_scores, detection_classes,
detection_keypoints, num_det_boxes_per_image, is_annotated
], [])
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns a dictionary of eval metric ops.
Note that once value_op is called, the detections and groundtruth added via
update_op are cleared.
This function can take in groundtruth and detections for a batch of images,
or for a single image. For the latter case, the batch dimension for input
tensors need not be present.
Args:
eval_dict: A dictionary that holds tensors for evaluating object detection
performance. For single-image evaluation, this dictionary may be
produced from eval_util.result_dict_for_single_example(). If multi-image
evaluation, `eval_dict` should contain the fields
'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
properly unpad the tensors from the batch.
Returns:
a dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
update ops must be run together and similarly all value ops must be run
together to guarantee correct behaviour.
"""
update_op = self.add_eval_dict(eval_dict)
category = self._category_name
metric_names = [
'Keypoints_Precision/mAP ByCategory/{}'.format(category),
'Keypoints_Precision/mAP@.50IOU ByCategory/{}'.format(category),
'Keypoints_Precision/mAP@.75IOU ByCategory/{}'.format(category),
'Keypoints_Precision/mAP (large) ByCategory/{}'.format(category),
'Keypoints_Precision/mAP (medium) ByCategory/{}'.format(category),
'Keypoints_Recall/AR@1 ByCategory/{}'.format(category),
'Keypoints_Recall/AR@10 ByCategory/{}'.format(category),
'Keypoints_Recall/AR@100 ByCategory/{}'.format(category),
'Keypoints_Recall/AR@100 (large) ByCategory/{}'.format(category),
'Keypoints_Recall/AR@100 (medium) ByCategory/{}'.format(category)
]
def first_value_func():
self._metrics = self.evaluate()
self.clear()
return np.float32(self._metrics[metric_names[0]])
def value_func_factory(metric_name):
def value_func():
return np.float32(self._metrics[metric_name])
return value_func
# Ensure that the metrics are only evaluated once.
first_value_op = tf.py_func(first_value_func, [], tf.float32)
eval_metric_ops = {metric_names[0]: (first_value_op, update_op)}
with tf.control_dependencies([first_value_op]):
for metric_name in metric_names[1:]:
eval_metric_ops[metric_name] = (tf.py_func(
value_func_factory(metric_name), [], np.float32), update_op)
return eval_metric_ops
class CocoMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
"""Class to evaluate COCO detection metrics."""
def __init__(self, categories,
include_metrics_per_category=False,
all_metrics_per_category=False,
super_categories=None):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
include_metrics_per_category: If True, include metrics for each category.
all_metrics_per_category: Whether to include all the summary metrics for
each category in per_category_ap. Be careful with setting it to true if
you have more than handful of categories, because it will pollute
your mldash.
super_categories: None or a python dict mapping super-category names
(strings) to lists of categories (corresponding to category names
in the label_map). Metrics are aggregated along these super-categories
and added to the `per_category_ap` and are associated with the name
`PerformanceBySuperCategory/<super-category-name>`.
"""
super(CocoMaskEvaluator, self).__init__(categories)
self._image_id_to_mask_shape_map = {}
self._image_ids_with_detections = set([])
self._groundtruth_list = []
self._detection_masks_list = []
self._category_id_set = set([cat['id'] for cat in self._categories])
self._annotation_id = 1
self._include_metrics_per_category = include_metrics_per_category
self._super_categories = super_categories
self._all_metrics_per_category = all_metrics_per_category
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
self._image_id_to_mask_shape_map.clear()
self._image_ids_with_detections.clear()
self._groundtruth_list = []
self._detection_masks_list = []
def add_single_ground_truth_image_info(self,
image_id,
groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
If the image has already been added, a warning is logged, and groundtruth is
ignored.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
InputDataFields.groundtruth_boxes: float32 numpy array of shape
[num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
[ymin, xmin, ymax, xmax] in absolute image coordinates.
InputDataFields.groundtruth_classes: integer numpy array of shape
[num_boxes] containing 1-indexed groundtruth classes for the boxes.
InputDataFields.groundtruth_instance_masks: uint8 numpy array of shape
[num_boxes, image_height, image_width] containing groundtruth masks
corresponding to the boxes. The elements of the array must be in
{0, 1}.
InputDataFields.groundtruth_is_crowd (optional): integer numpy array of
shape [num_boxes] containing iscrowd flag for groundtruth boxes.
InputDataFields.groundtruth_area (optional): float numpy array of
shape [num_boxes] containing the area (in the original absolute
coordinates) of the annotated object.
"""
if image_id in self._image_id_to_mask_shape_map:
tf.logging.warning('Ignoring ground truth with image id %s since it was '
'previously added', image_id)
return
# Drop optional fields if empty tensor.
groundtruth_is_crowd = groundtruth_dict.get(
standard_fields.InputDataFields.groundtruth_is_crowd)
groundtruth_area = groundtruth_dict.get(
standard_fields.InputDataFields.groundtruth_area)
if groundtruth_is_crowd is not None and not groundtruth_is_crowd.shape[0]:
groundtruth_is_crowd = None
if groundtruth_area is not None and not groundtruth_area.shape[0]:
groundtruth_area = None
groundtruth_instance_masks = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_instance_masks]
groundtruth_instance_masks = convert_masks_to_binary(
groundtruth_instance_masks)
self._groundtruth_list.extend(
coco_tools.
ExportSingleImageGroundtruthToCoco(
image_id=image_id,
next_annotation_id=self._annotation_id,
category_id_set=self._category_id_set,
groundtruth_boxes=groundtruth_dict[standard_fields.InputDataFields.
groundtruth_boxes],
groundtruth_classes=groundtruth_dict[standard_fields.
InputDataFields.
groundtruth_classes],
groundtruth_masks=groundtruth_instance_masks,
groundtruth_is_crowd=groundtruth_is_crowd,
groundtruth_area=groundtruth_area))
self._annotation_id += groundtruth_dict[standard_fields.InputDataFields.
groundtruth_boxes].shape[0]
self._image_id_to_mask_shape_map[image_id] = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_instance_masks].shape
def add_single_detected_image_info(self,
image_id,
detections_dict):
"""Adds detections for a single image to be used for evaluation.
If a detection has already been added for this image id, a warning is
logged, and the detection is skipped.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
DetectionResultFields.detection_scores: float32 numpy array of shape
[num_boxes] containing detection scores for the boxes.
DetectionResultFields.detection_classes: integer numpy array of shape
[num_boxes] containing 1-indexed detection classes for the boxes.
DetectionResultFields.detection_masks: optional uint8 numpy array of
shape [num_boxes, image_height, image_width] containing instance
masks corresponding to the boxes. The elements of the array must be
in {0, 1}.
Raises:
ValueError: If groundtruth for the image_id is not available or if
spatial shapes of groundtruth_instance_masks and detection_masks are
incompatible.
"""
if image_id not in self._image_id_to_mask_shape_map:
raise ValueError('Missing groundtruth for image id: {}'.format(image_id))
if image_id in self._image_ids_with_detections:
tf.logging.warning('Ignoring detection with image id %s since it was '
'previously added', image_id)
return
groundtruth_masks_shape = self._image_id_to_mask_shape_map[image_id]
detection_masks = detections_dict[standard_fields.DetectionResultFields.
detection_masks]
if groundtruth_masks_shape[1:] != detection_masks.shape[1:]:
raise ValueError('Spatial shape of groundtruth masks and detection masks '
'are incompatible: {} vs {}'.format(
groundtruth_masks_shape,
detection_masks.shape))
detection_masks = convert_masks_to_binary(detection_masks)
self._detection_masks_list.extend(
coco_tools.ExportSingleImageDetectionMasksToCoco(
image_id=image_id,
category_id_set=self._category_id_set,
detection_masks=detection_masks,
detection_scores=detections_dict[standard_fields.
DetectionResultFields.
detection_scores],
detection_classes=detections_dict[standard_fields.
DetectionResultFields.
detection_classes]))
self._image_ids_with_detections.update([image_id])
def dump_detections_to_json_file(self, json_output_path):
"""Saves the detections into json_output_path in the format used by MS COCO.
Args:
json_output_path: String containing the output file's path. It can be also
None. In that case nothing will be written to the output file.
"""
if json_output_path and json_output_path is not None:
tf.logging.info('Dumping detections to output json file.')
with tf.gfile.GFile(json_output_path, 'w') as fid:
json_utils.Dump(
obj=self._detection_masks_list, fid=fid, float_digits=4, indent=2)
def evaluate(self):
"""Evaluates the detection masks and returns a dictionary of coco metrics.
Returns:
A dictionary holding -
1. summary_metrics:
'DetectionMasks_Precision/mAP': mean average precision over classes
averaged over IOU thresholds ranging from .5 to .95 with .05 increments.
'DetectionMasks_Precision/mAP@.50IOU': mean average precision at 50% IOU.
'DetectionMasks_Precision/mAP@.75IOU': mean average precision at 75% IOU.
'DetectionMasks_Precision/mAP (small)': mean average precision for small
objects (area < 32^2 pixels).
'DetectionMasks_Precision/mAP (medium)': mean average precision for medium
sized objects (32^2 pixels < area < 96^2 pixels).
'DetectionMasks_Precision/mAP (large)': mean average precision for large
objects (96^2 pixels < area < 10000^2 pixels).
'DetectionMasks_Recall/AR@1': average recall with 1 detection.
'DetectionMasks_Recall/AR@10': average recall with 10 detections.
'DetectionMasks_Recall/AR@100': average recall with 100 detections.
'DetectionMasks_Recall/AR@100 (small)': average recall for small objects
with 100 detections.
'DetectionMasks_Recall/AR@100 (medium)': average recall for medium objects
with 100 detections.
'DetectionMasks_Recall/AR@100 (large)': average recall for large objects
with 100 detections.
2. per_category_ap: if include_metrics_per_category is True, category
specific results with keys of the form:
'Precision mAP ByCategory/category' (without the supercategory part if
no supercategories exist). For backward compatibility
'PerformanceByCategory' is included in the output regardless of
all_metrics_per_category.
If super_categories are provided, then this will additionally include
metrics aggregated along the super_categories with keys of the form:
`PerformanceBySuperCategory/<super-category-name>`
"""
groundtruth_dict = {
'annotations': self._groundtruth_list,
'images': [{'id': image_id, 'height': shape[1], 'width': shape[2]}
for image_id, shape in self._image_id_to_mask_shape_map.
items()],
'categories': self._categories
}
coco_wrapped_groundtruth = coco_tools.COCOWrapper(
groundtruth_dict, detection_type='segmentation')
coco_wrapped_detection_masks = coco_wrapped_groundtruth.LoadAnnotations(
self._detection_masks_list)
mask_evaluator = coco_tools.COCOEvalWrapper(
coco_wrapped_groundtruth, coco_wrapped_detection_masks,
agnostic_mode=False, iou_type='segm')
mask_metrics, mask_per_category_ap = mask_evaluator.ComputeMetrics(
include_metrics_per_category=self._include_metrics_per_category,
super_categories=self._super_categories,
all_metrics_per_category=self._all_metrics_per_category)
mask_metrics.update(mask_per_category_ap)
mask_metrics = {'DetectionMasks_'+ key: value
for key, value in mask_metrics.items()}
return mask_metrics
def add_eval_dict(self, eval_dict):
"""Observes an evaluation result dict for a single example.
When executing eagerly, once all observations have been observed by this
method you can use `.evaluate()` to get the final metrics.
When using `tf.estimator.Estimator` for evaluation this function is used by
`get_estimator_eval_metric_ops()` to construct the metric update op.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
None when executing eagerly, or an update_op that can be used to update
the eval metrics in `tf.estimator.EstimatorSpec`.
"""
def update_op(image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched,
groundtruth_instance_masks_batched,
groundtruth_is_crowd_batched, num_gt_boxes_per_image,
detection_scores_batched, detection_classes_batched,
detection_masks_batched, num_det_boxes_per_image,
original_image_spatial_shape):
"""Update op for metrics."""
for (image_id, groundtruth_boxes, groundtruth_classes,
groundtruth_instance_masks, groundtruth_is_crowd, num_gt_box,
detection_scores, detection_classes,
detection_masks, num_det_box, original_image_shape) in zip(
image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched, groundtruth_instance_masks_batched,
groundtruth_is_crowd_batched, num_gt_boxes_per_image,
detection_scores_batched, detection_classes_batched,
detection_masks_batched, num_det_boxes_per_image,
original_image_spatial_shape):
self.add_single_ground_truth_image_info(
image_id, {
'groundtruth_boxes':
groundtruth_boxes[:num_gt_box],
'groundtruth_classes':
groundtruth_classes[:num_gt_box],
'groundtruth_instance_masks':
groundtruth_instance_masks[
:num_gt_box,
:original_image_shape[0],
:original_image_shape[1]],
'groundtruth_is_crowd':
groundtruth_is_crowd[:num_gt_box]
})
self.add_single_detected_image_info(
image_id, {
'detection_scores': detection_scores[:num_det_box],
'detection_classes': detection_classes[:num_det_box],
'detection_masks': detection_masks[
:num_det_box,
:original_image_shape[0],
:original_image_shape[1]]
})
# Unpack items from the evaluation dictionary.
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
image_id = eval_dict[input_data_fields.key]
original_image_spatial_shape = eval_dict[
input_data_fields.original_image_spatial_shape]
groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
groundtruth_instance_masks = eval_dict[
input_data_fields.groundtruth_instance_masks]
groundtruth_is_crowd = eval_dict.get(
input_data_fields.groundtruth_is_crowd, None)
num_gt_boxes_per_image = eval_dict.get(
input_data_fields.num_groundtruth_boxes, None)
detection_scores = eval_dict[detection_fields.detection_scores]
detection_classes = eval_dict[detection_fields.detection_classes]
detection_masks = eval_dict[detection_fields.detection_masks]
num_det_boxes_per_image = eval_dict.get(detection_fields.num_detections,
None)
if groundtruth_is_crowd is None:
groundtruth_is_crowd = tf.zeros_like(groundtruth_classes, dtype=tf.bool)
if not image_id.shape.as_list():
# Apply a batch dimension to all tensors.
image_id = tf.expand_dims(image_id, 0)
groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
groundtruth_instance_masks = tf.expand_dims(groundtruth_instance_masks, 0)
groundtruth_is_crowd = tf.expand_dims(groundtruth_is_crowd, 0)
detection_scores = tf.expand_dims(detection_scores, 0)
detection_classes = tf.expand_dims(detection_classes, 0)
detection_masks = tf.expand_dims(detection_masks, 0)
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
else:
num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.shape(detection_scores)[1:2]
else:
num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)
else:
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.tile(
tf.shape(groundtruth_boxes)[1:2],
multiples=tf.shape(groundtruth_boxes)[0:1])
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.tile(
tf.shape(detection_scores)[1:2],
multiples=tf.shape(detection_scores)[0:1])
return tf.py_func(update_op, [
image_id, groundtruth_boxes, groundtruth_classes,
groundtruth_instance_masks, groundtruth_is_crowd,
num_gt_boxes_per_image, detection_scores, detection_classes,
detection_masks, num_det_boxes_per_image, original_image_spatial_shape
], [])
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns a dictionary of eval metric ops.
Note that once value_op is called, the detections and groundtruth added via
update_op are cleared.
Args:
eval_dict: A dictionary that holds tensors for evaluating object detection
performance. For single-image evaluation, this dictionary may be
produced from eval_util.result_dict_for_single_example(). If multi-image
evaluation, `eval_dict` should contain the fields
'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
properly unpad the tensors from the batch.
Returns:
a dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
update ops must be run together and similarly all value ops must be run
together to guarantee correct behaviour.
"""
update_op = self.add_eval_dict(eval_dict)
metric_names = ['DetectionMasks_Precision/mAP',
'DetectionMasks_Precision/mAP@.50IOU',
'DetectionMasks_Precision/mAP@.75IOU',
'DetectionMasks_Precision/mAP (small)',
'DetectionMasks_Precision/mAP (medium)',
'DetectionMasks_Precision/mAP (large)',
'DetectionMasks_Recall/AR@1',
'DetectionMasks_Recall/AR@10',
'DetectionMasks_Recall/AR@100',
'DetectionMasks_Recall/AR@100 (small)',
'DetectionMasks_Recall/AR@100 (medium)',
'DetectionMasks_Recall/AR@100 (large)']
if self._include_metrics_per_category:
for category_dict in self._categories:
metric_names.append('DetectionMasks_PerformanceByCategory/mAP/' +
category_dict['name'])
def first_value_func():
self._metrics = self.evaluate()
self.clear()
return np.float32(self._metrics[metric_names[0]])
def value_func_factory(metric_name):
def value_func():
return np.float32(self._metrics[metric_name])
return value_func
# Ensure that the metrics are only evaluated once.
first_value_op = tf.py_func(first_value_func, [], tf.float32)
eval_metric_ops = {metric_names[0]: (first_value_op, update_op)}
with tf.control_dependencies([first_value_op]):
for metric_name in metric_names[1:]:
eval_metric_ops[metric_name] = (tf.py_func(
value_func_factory(metric_name), [], np.float32), update_op)
return eval_metric_ops
class CocoPanopticSegmentationEvaluator(
object_detection_evaluation.DetectionEvaluator):
"""Class to evaluate PQ (panoptic quality) metric on COCO dataset.
More details about this metric: https://arxiv.org/pdf/1801.00868.pdf.
"""
def __init__(self,
categories,
include_metrics_per_category=False,
iou_threshold=0.5,
ioa_threshold=0.5):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
include_metrics_per_category: If True, include metrics for each category.
iou_threshold: intersection-over-union threshold for mask matching (with
normal groundtruths).
ioa_threshold: intersection-over-area threshold for mask matching with
"is_crowd" groundtruths.
"""
super(CocoPanopticSegmentationEvaluator, self).__init__(categories)
self._groundtruth_masks = {}
self._groundtruth_class_labels = {}
self._groundtruth_is_crowd = {}
self._predicted_masks = {}
self._predicted_class_labels = {}
self._include_metrics_per_category = include_metrics_per_category
self._iou_threshold = iou_threshold
self._ioa_threshold = ioa_threshold
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
self._groundtruth_masks.clear()
self._groundtruth_class_labels.clear()
self._groundtruth_is_crowd.clear()
self._predicted_masks.clear()
self._predicted_class_labels.clear()
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
If the image has already been added, a warning is logged, and groundtruth is
ignored.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
InputDataFields.groundtruth_classes: integer numpy array of shape
[num_masks] containing 1-indexed groundtruth classes for the mask.
InputDataFields.groundtruth_instance_masks: uint8 numpy array of shape
[num_masks, image_height, image_width] containing groundtruth masks.
The elements of the array must be in {0, 1}.
InputDataFields.groundtruth_is_crowd (optional): integer numpy array of
shape [num_boxes] containing iscrowd flag for groundtruth boxes.
"""
if image_id in self._groundtruth_masks:
tf.logging.warning(
'Ignoring groundtruth with image %s, since it has already been '
'added to the ground truth database.', image_id)
return
self._groundtruth_masks[image_id] = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_instance_masks]
self._groundtruth_class_labels[image_id] = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_classes]
groundtruth_is_crowd = groundtruth_dict.get(
standard_fields.InputDataFields.groundtruth_is_crowd)
# Drop groundtruth_is_crowd if empty tensor.
if groundtruth_is_crowd is not None and not groundtruth_is_crowd.size > 0:
groundtruth_is_crowd = None
if groundtruth_is_crowd is not None:
self._groundtruth_is_crowd[image_id] = groundtruth_is_crowd
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
If a detection has already been added for this image id, a warning is
logged, and the detection is skipped.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
DetectionResultFields.detection_classes: integer numpy array of shape
[num_masks] containing 1-indexed detection classes for the masks.
DetectionResultFields.detection_masks: optional uint8 numpy array of
shape [num_masks, image_height, image_width] containing instance
masks. The elements of the array must be in {0, 1}.
Raises:
ValueError: If results and groundtruth shape don't match.
"""
if image_id not in self._groundtruth_masks:
raise ValueError('Missing groundtruth for image id: {}'.format(image_id))
detection_masks = detections_dict[
standard_fields.DetectionResultFields.detection_masks]
self._predicted_masks[image_id] = detection_masks
self._predicted_class_labels[image_id] = detections_dict[
standard_fields.DetectionResultFields.detection_classes]
groundtruth_mask_shape = self._groundtruth_masks[image_id].shape
if groundtruth_mask_shape[1:] != detection_masks.shape[1:]:
raise ValueError("The shape of results doesn't match groundtruth.")
def evaluate(self):
"""Evaluates the detection masks and returns a dictionary of coco metrics.
Returns:
A dictionary holding -
1. summary_metric:
'PanopticQuality@%.2fIOU': mean panoptic quality averaged over classes at
the required IOU.
'SegmentationQuality@%.2fIOU': mean segmentation quality averaged over
classes at the required IOU.
'RecognitionQuality@%.2fIOU': mean recognition quality averaged over
classes at the required IOU.
'NumValidClasses': number of valid classes. A valid class should have at
least one normal (is_crowd=0) groundtruth mask or one predicted mask.
'NumTotalClasses': number of total classes.
2. per_category_pq: if include_metrics_per_category is True, category
specific results with keys of the form:
'PanopticQuality@%.2fIOU_ByCategory/category'.
"""
# Evaluate and accumulate the iou/tp/fp/fn.
sum_tp_iou, sum_num_tp, sum_num_fp, sum_num_fn = self._evaluate_all_masks()
# Compute PQ metric for each category and average over all classes.
mask_metrics = self._compute_panoptic_metrics(sum_tp_iou, sum_num_tp,
sum_num_fp, sum_num_fn)
return mask_metrics
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns a dictionary of eval metric ops.
Note that once value_op is called, the detections and groundtruth added via
update_op are cleared.
Args:
eval_dict: A dictionary that holds tensors for evaluating object detection
performance. For single-image evaluation, this dictionary may be
produced from eval_util.result_dict_for_single_example(). If multi-image
evaluation, `eval_dict` should contain the fields
'num_gt_masks_per_image' and 'num_det_masks_per_image' to properly unpad
the tensors from the batch.
Returns:
a dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
update ops must be run together and similarly all value ops must be run
together to guarantee correct behaviour.
"""
def update_op(image_id_batched, groundtruth_classes_batched,
groundtruth_instance_masks_batched,
groundtruth_is_crowd_batched, num_gt_masks_per_image,
detection_classes_batched, detection_masks_batched,
num_det_masks_per_image):
"""Update op for metrics."""
for (image_id, groundtruth_classes, groundtruth_instance_masks,
groundtruth_is_crowd, num_gt_mask, detection_classes,
detection_masks, num_det_mask) in zip(
image_id_batched, groundtruth_classes_batched,
groundtruth_instance_masks_batched, groundtruth_is_crowd_batched,
num_gt_masks_per_image, detection_classes_batched,
detection_masks_batched, num_det_masks_per_image):
self.add_single_ground_truth_image_info(
image_id, {
'groundtruth_classes':
groundtruth_classes[:num_gt_mask],
'groundtruth_instance_masks':
groundtruth_instance_masks[:num_gt_mask],
'groundtruth_is_crowd':
groundtruth_is_crowd[:num_gt_mask]
})
self.add_single_detected_image_info(
image_id, {
'detection_classes': detection_classes[:num_det_mask],
'detection_masks': detection_masks[:num_det_mask]
})
# Unpack items from the evaluation dictionary.
(image_id, groundtruth_classes, groundtruth_instance_masks,
groundtruth_is_crowd, num_gt_masks_per_image, detection_classes,
detection_masks, num_det_masks_per_image
) = self._unpack_evaluation_dictionary_items(eval_dict)
update_op = tf.py_func(update_op, [
image_id, groundtruth_classes, groundtruth_instance_masks,
groundtruth_is_crowd, num_gt_masks_per_image, detection_classes,
detection_masks, num_det_masks_per_image
], [])
metric_names = [
'PanopticQuality@%.2fIOU' % self._iou_threshold,
'SegmentationQuality@%.2fIOU' % self._iou_threshold,
'RecognitionQuality@%.2fIOU' % self._iou_threshold
]
if self._include_metrics_per_category:
for category_dict in self._categories:
metric_names.append('PanopticQuality@%.2fIOU_ByCategory/%s' %
(self._iou_threshold, category_dict['name']))
def first_value_func():
self._metrics = self.evaluate()
self.clear()
return np.float32(self._metrics[metric_names[0]])
def value_func_factory(metric_name):
def value_func():
return np.float32(self._metrics[metric_name])
return value_func
# Ensure that the metrics are only evaluated once.
first_value_op = tf.py_func(first_value_func, [], tf.float32)
eval_metric_ops = {metric_names[0]: (first_value_op, update_op)}
with tf.control_dependencies([first_value_op]):
for metric_name in metric_names[1:]:
eval_metric_ops[metric_name] = (tf.py_func(
value_func_factory(metric_name), [], np.float32), update_op)
return eval_metric_ops
def _evaluate_all_masks(self):
"""Evaluate all masks and compute sum iou/TP/FP/FN."""
sum_num_tp = {category['id']: 0 for category in self._categories}
sum_num_fp = sum_num_tp.copy()
sum_num_fn = sum_num_tp.copy()
sum_tp_iou = sum_num_tp.copy()
for image_id in self._groundtruth_class_labels:
# Separate normal and is_crowd groundtruth
crowd_gt_indices = self._groundtruth_is_crowd.get(image_id)
(normal_gt_masks, normal_gt_classes, crowd_gt_masks,
crowd_gt_classes) = self._separate_normal_and_crowd_labels(
crowd_gt_indices, self._groundtruth_masks[image_id],
self._groundtruth_class_labels[image_id])
# Mask matching to normal GT.
predicted_masks = self._predicted_masks[image_id]
predicted_class_labels = self._predicted_class_labels[image_id]
(overlaps, pred_matched,
gt_matched) = self._match_predictions_to_groundtruths(
predicted_masks,
predicted_class_labels,
normal_gt_masks,
normal_gt_classes,
self._iou_threshold,
is_crowd=False,
with_replacement=False)
# Accumulate true positives.
for (class_id, is_matched, overlap) in zip(predicted_class_labels,
pred_matched, overlaps):
if is_matched:
sum_num_tp[class_id] += 1
sum_tp_iou[class_id] += overlap
# Accumulate false negatives.
for (class_id, is_matched) in zip(normal_gt_classes, gt_matched):
if not is_matched:
sum_num_fn[class_id] += 1
# Match remaining predictions to crowd gt.
remained_pred_indices = np.logical_not(pred_matched)
remained_pred_masks = predicted_masks[remained_pred_indices, :, :]
remained_pred_classes = predicted_class_labels[remained_pred_indices]
_, pred_matched, _ = self._match_predictions_to_groundtruths(
remained_pred_masks,
remained_pred_classes,
crowd_gt_masks,
crowd_gt_classes,
self._ioa_threshold,
is_crowd=True,
with_replacement=True)
# Accumulate false positives
for (class_id, is_matched) in zip(remained_pred_classes, pred_matched):
if not is_matched:
sum_num_fp[class_id] += 1
return sum_tp_iou, sum_num_tp, sum_num_fp, sum_num_fn
def _compute_panoptic_metrics(self, sum_tp_iou, sum_num_tp, sum_num_fp,
sum_num_fn):
"""Compute PQ metric for each category and average over all classes.
Args:
sum_tp_iou: dict, summed true positive intersection-over-union (IoU) for
each class, keyed by class_id.
sum_num_tp: the total number of true positives for each class, keyed by
class_id.
sum_num_fp: the total number of false positives for each class, keyed by
class_id.
sum_num_fn: the total number of false negatives for each class, keyed by
class_id.
Returns:
mask_metrics: a dictionary containing averaged metrics over all classes,
and per-category metrics if required.
"""
mask_metrics = {}
sum_pq = 0
sum_sq = 0
sum_rq = 0
num_valid_classes = 0
for category in self._categories:
class_id = category['id']
(panoptic_quality, segmentation_quality,
recognition_quality) = self._compute_panoptic_metrics_single_class(
sum_tp_iou[class_id], sum_num_tp[class_id], sum_num_fp[class_id],
sum_num_fn[class_id])
if panoptic_quality is not None:
sum_pq += panoptic_quality
sum_sq += segmentation_quality
sum_rq += recognition_quality
num_valid_classes += 1
if self._include_metrics_per_category:
mask_metrics['PanopticQuality@%.2fIOU_ByCategory/%s' %
(self._iou_threshold,
category['name'])] = panoptic_quality
mask_metrics['PanopticQuality@%.2fIOU' %
self._iou_threshold] = sum_pq / num_valid_classes
mask_metrics['SegmentationQuality@%.2fIOU' %
self._iou_threshold] = sum_sq / num_valid_classes
mask_metrics['RecognitionQuality@%.2fIOU' %
self._iou_threshold] = sum_rq / num_valid_classes
mask_metrics['NumValidClasses'] = num_valid_classes
mask_metrics['NumTotalClasses'] = len(self._categories)
return mask_metrics
def _compute_panoptic_metrics_single_class(self, sum_tp_iou, num_tp, num_fp,
num_fn):
"""Compute panoptic metrics: panoptic/segmentation/recognition quality.
More computation details in https://arxiv.org/pdf/1801.00868.pdf.
Args:
sum_tp_iou: summed true positive intersection-over-union (IoU) for a
specific class.
num_tp: the total number of true positives for a specific class.
num_fp: the total number of false positives for a specific class.
num_fn: the total number of false negatives for a specific class.
Returns:
panoptic_quality: sum_tp_iou / (num_tp + 0.5*num_fp + 0.5*num_fn).
segmentation_quality: sum_tp_iou / num_tp.
recognition_quality: num_tp / (num_tp + 0.5*num_fp + 0.5*num_fn).
"""
denominator = num_tp + 0.5 * num_fp + 0.5 * num_fn
# Calculate metric only if there is at least one GT or one prediction.
if denominator > 0:
recognition_quality = num_tp / denominator
if num_tp > 0:
segmentation_quality = sum_tp_iou / num_tp
else:
# If there is no TP for this category.
segmentation_quality = 0
panoptic_quality = segmentation_quality * recognition_quality
return panoptic_quality, segmentation_quality, recognition_quality
else:
return None, None, None
def _separate_normal_and_crowd_labels(self, crowd_gt_indices,
groundtruth_masks, groundtruth_classes):
"""Separate normal and crowd groundtruth class_labels and masks.
Args:
crowd_gt_indices: None or array of shape [num_groundtruths]. If None, all
groundtruths are treated as normal ones.
groundtruth_masks: array of shape [num_groundtruths, height, width].
groundtruth_classes: array of shape [num_groundtruths].
Returns:
normal_gt_masks: array of shape [num_normal_groundtruths, height, width].
normal_gt_classes: array of shape [num_normal_groundtruths].
crowd_gt_masks: array of shape [num_crowd_groundtruths, height, width].
crowd_gt_classes: array of shape [num_crowd_groundtruths].
Raises:
ValueError: if the shape of groundtruth classes doesn't match groundtruth
masks or if the shape of crowd_gt_indices.
"""
if groundtruth_masks.shape[0] != groundtruth_classes.shape[0]:
raise ValueError(
"The number of masks doesn't match the number of labels.")
if crowd_gt_indices is None:
# All gts are treated as normal
crowd_gt_indices = np.zeros(groundtruth_masks.shape, dtype=np.bool)
else:
if groundtruth_masks.shape[0] != crowd_gt_indices.shape[0]:
raise ValueError(
"The number of masks doesn't match the number of is_crowd labels.")
crowd_gt_indices = crowd_gt_indices.astype(np.bool)
normal_gt_indices = np.logical_not(crowd_gt_indices)
if normal_gt_indices.size:
normal_gt_masks = groundtruth_masks[normal_gt_indices, :, :]
normal_gt_classes = groundtruth_classes[normal_gt_indices]
crowd_gt_masks = groundtruth_masks[crowd_gt_indices, :, :]
crowd_gt_classes = groundtruth_classes[crowd_gt_indices]
else:
# No groundtruths available, groundtruth_masks.shape = (0, h, w)
normal_gt_masks = groundtruth_masks
normal_gt_classes = groundtruth_classes
crowd_gt_masks = groundtruth_masks
crowd_gt_classes = groundtruth_classes
return normal_gt_masks, normal_gt_classes, crowd_gt_masks, crowd_gt_classes
def _match_predictions_to_groundtruths(self,
predicted_masks,
predicted_classes,
groundtruth_masks,
groundtruth_classes,
matching_threshold,
is_crowd=False,
with_replacement=False):
"""Match the predicted masks to groundtruths.
Args:
predicted_masks: array of shape [num_predictions, height, width].
predicted_classes: array of shape [num_predictions].
groundtruth_masks: array of shape [num_groundtruths, height, width].
groundtruth_classes: array of shape [num_groundtruths].
matching_threshold: if the overlap between a prediction and a groundtruth
is larger than this threshold, the prediction is true positive.
is_crowd: whether the groundtruths are crowd annotation or not. If True,
use intersection over area (IoA) as the overlapping metric; otherwise
use intersection over union (IoU).
with_replacement: whether a groundtruth can be matched to multiple
predictions. By default, for normal groundtruths, only 1-1 matching is
allowed for normal groundtruths; for crowd groundtruths, 1-to-many must
be allowed.
Returns:
best_overlaps: array of shape [num_predictions]. Values representing the
IoU
or IoA with best matched groundtruth.
pred_matched: array of shape [num_predictions]. Boolean value representing
whether the ith prediction is matched to a groundtruth.
gt_matched: array of shape [num_groundtruth]. Boolean value representing
whether the ith groundtruth is matched to a prediction.
Raises:
ValueError: if the shape of groundtruth/predicted masks doesn't match
groundtruth/predicted classes.
"""
if groundtruth_masks.shape[0] != groundtruth_classes.shape[0]:
raise ValueError(
"The number of GT masks doesn't match the number of labels.")
if predicted_masks.shape[0] != predicted_classes.shape[0]:
raise ValueError(
"The number of predicted masks doesn't match the number of labels.")
gt_matched = np.zeros(groundtruth_classes.shape, dtype=np.bool)
pred_matched = np.zeros(predicted_classes.shape, dtype=np.bool)
best_overlaps = np.zeros(predicted_classes.shape)
for pid in range(predicted_classes.shape[0]):
best_overlap = 0
matched_gt_id = -1
for gid in range(groundtruth_classes.shape[0]):
if predicted_classes[pid] == groundtruth_classes[gid]:
if (not with_replacement) and gt_matched[gid]:
continue
if not is_crowd:
overlap = np_mask_ops.iou(predicted_masks[pid:pid + 1],
groundtruth_masks[gid:gid + 1])[0, 0]
else:
overlap = np_mask_ops.ioa(groundtruth_masks[gid:gid + 1],
predicted_masks[pid:pid + 1])[0, 0]
if overlap >= matching_threshold and overlap > best_overlap:
matched_gt_id = gid
best_overlap = overlap
if matched_gt_id >= 0:
gt_matched[matched_gt_id] = True
pred_matched[pid] = True
best_overlaps[pid] = best_overlap
return best_overlaps, pred_matched, gt_matched
def _unpack_evaluation_dictionary_items(self, eval_dict):
"""Unpack items from the evaluation dictionary."""
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
image_id = eval_dict[input_data_fields.key]
groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
groundtruth_instance_masks = eval_dict[
input_data_fields.groundtruth_instance_masks]
groundtruth_is_crowd = eval_dict.get(input_data_fields.groundtruth_is_crowd,
None)
num_gt_masks_per_image = eval_dict.get(
input_data_fields.num_groundtruth_boxes, None)
detection_classes = eval_dict[detection_fields.detection_classes]
detection_masks = eval_dict[detection_fields.detection_masks]
num_det_masks_per_image = eval_dict.get(detection_fields.num_detections,
None)
if groundtruth_is_crowd is None:
groundtruth_is_crowd = tf.zeros_like(groundtruth_classes, dtype=tf.bool)
if not image_id.shape.as_list():
# Apply a batch dimension to all tensors.
image_id = tf.expand_dims(image_id, 0)
groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
groundtruth_instance_masks = tf.expand_dims(groundtruth_instance_masks, 0)
groundtruth_is_crowd = tf.expand_dims(groundtruth_is_crowd, 0)
detection_classes = tf.expand_dims(detection_classes, 0)
detection_masks = tf.expand_dims(detection_masks, 0)
if num_gt_masks_per_image is None:
num_gt_masks_per_image = tf.shape(groundtruth_classes)[1:2]
else:
num_gt_masks_per_image = tf.expand_dims(num_gt_masks_per_image, 0)
if num_det_masks_per_image is None:
num_det_masks_per_image = tf.shape(detection_classes)[1:2]
else:
num_det_masks_per_image = tf.expand_dims(num_det_masks_per_image, 0)
else:
if num_gt_masks_per_image is None:
num_gt_masks_per_image = tf.tile(
tf.shape(groundtruth_classes)[1:2],
multiples=tf.shape(groundtruth_classes)[0:1])
if num_det_masks_per_image is None:
num_det_masks_per_image = tf.tile(
tf.shape(detection_classes)[1:2],
multiples=tf.shape(detection_classes)[0:1])
return (image_id, groundtruth_classes, groundtruth_instance_masks,
groundtruth_is_crowd, num_gt_masks_per_image, detection_classes,
detection_masks, num_det_masks_per_image) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/coco_evaluation.py | coco_evaluation.py |
"""Class for evaluating object detections with LVIS metrics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import re
from lvis import results as lvis_results
import numpy as np
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.core import standard_fields as fields
from object_detection.metrics import lvis_tools
from object_detection.utils import object_detection_evaluation
def convert_masks_to_binary(masks):
"""Converts masks to 0 or 1 and uint8 type."""
return (masks > 0).astype(np.uint8)
class LVISMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
"""Class to evaluate LVIS mask metrics."""
def __init__(self,
categories,
include_metrics_per_category=False,
export_path=None):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
include_metrics_per_category: Additionally include per-category metrics
(this option is currently unsupported).
export_path: Path to export detections to LVIS compatible JSON format.
"""
super(LVISMaskEvaluator, self).__init__(categories)
self._image_ids_with_detections = set([])
self._groundtruth_list = []
self._detection_masks_list = []
self._category_id_set = set([cat['id'] for cat in self._categories])
self._annotation_id = 1
self._image_id_to_mask_shape_map = {}
self._image_id_to_verified_neg_classes = {}
self._image_id_to_not_exhaustive_classes = {}
if include_metrics_per_category:
raise ValueError('include_metrics_per_category not yet supported '
'for LVISMaskEvaluator.')
self._export_path = export_path
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
self._image_id_to_mask_shape_map.clear()
self._image_ids_with_detections.clear()
self._image_id_to_verified_neg_classes.clear()
self._image_id_to_not_exhaustive_classes.clear()
self._groundtruth_list = []
self._detection_masks_list = []
def add_single_ground_truth_image_info(self,
image_id,
groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
If the image has already been added, a warning is logged, and groundtruth is
ignored.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
InputDataFields.groundtruth_boxes: float32 numpy array of shape
[num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
[ymin, xmin, ymax, xmax] in absolute image coordinates.
InputDataFields.groundtruth_classes: integer numpy array of shape
[num_boxes] containing 1-indexed groundtruth classes for the boxes.
InputDataFields.groundtruth_instance_masks: uint8 numpy array of shape
[num_masks, image_height, image_width] containing groundtruth masks.
The elements of the array must be in {0, 1}.
InputDataFields.groundtruth_verified_neg_classes: [num_classes + 1]
float indicator vector with values in {0, 1}. The length is
num_classes + 1 so as to be compatible with the 1-indexed groundtruth
classes.
InputDataFields.groundtruth_not_exhaustive_classes: [num_classes + 1]
float indicator vector with values in {0, 1}. The length is
num_classes + 1 so as to be compatible with the 1-indexed groundtruth
classes.
InputDataFields.groundtruth_area (optional): float numpy array of
shape [num_boxes] containing the area (in the original absolute
coordinates) of the annotated object.
Raises:
ValueError: if groundtruth_dict is missing a required field
"""
if image_id in self._image_id_to_mask_shape_map:
tf.logging.warning('Ignoring ground truth with image id %s since it was '
'previously added', image_id)
return
for key in [fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
fields.InputDataFields.groundtruth_instance_masks,
fields.InputDataFields.groundtruth_verified_neg_classes,
fields.InputDataFields.groundtruth_not_exhaustive_classes]:
if key not in groundtruth_dict.keys():
raise ValueError('groundtruth_dict missing entry: {}'.format(key))
groundtruth_instance_masks = groundtruth_dict[
fields.InputDataFields.groundtruth_instance_masks]
groundtruth_instance_masks = convert_masks_to_binary(
groundtruth_instance_masks)
verified_neg_classes_shape = groundtruth_dict[
fields.InputDataFields.groundtruth_verified_neg_classes].shape
not_exhaustive_classes_shape = groundtruth_dict[
fields.InputDataFields.groundtruth_not_exhaustive_classes].shape
if verified_neg_classes_shape != (len(self._category_id_set) + 1,):
raise ValueError('Invalid shape for verified_neg_classes_shape.')
if not_exhaustive_classes_shape != (len(self._category_id_set) + 1,):
raise ValueError('Invalid shape for not_exhaustive_classes_shape.')
self._image_id_to_verified_neg_classes[image_id] = np.flatnonzero(
groundtruth_dict[
fields.InputDataFields.groundtruth_verified_neg_classes]
== 1).tolist()
self._image_id_to_not_exhaustive_classes[image_id] = np.flatnonzero(
groundtruth_dict[
fields.InputDataFields.groundtruth_not_exhaustive_classes]
== 1).tolist()
# Drop optional fields if empty tensor.
groundtruth_area = groundtruth_dict.get(
fields.InputDataFields.groundtruth_area)
if groundtruth_area is not None and not groundtruth_area.shape[0]:
groundtruth_area = None
self._groundtruth_list.extend(
lvis_tools.ExportSingleImageGroundtruthToLVIS(
image_id=image_id,
next_annotation_id=self._annotation_id,
category_id_set=self._category_id_set,
groundtruth_boxes=groundtruth_dict[
fields.InputDataFields.groundtruth_boxes],
groundtruth_classes=groundtruth_dict[
fields.InputDataFields.groundtruth_classes],
groundtruth_masks=groundtruth_instance_masks,
groundtruth_area=groundtruth_area)
)
self._annotation_id += groundtruth_dict[fields.InputDataFields.
groundtruth_boxes].shape[0]
self._image_id_to_mask_shape_map[image_id] = groundtruth_dict[
fields.InputDataFields.groundtruth_instance_masks].shape
def add_single_detected_image_info(self,
image_id,
detections_dict):
"""Adds detections for a single image to be used for evaluation.
If a detection has already been added for this image id, a warning is
logged, and the detection is skipped.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
DetectionResultFields.detection_scores: float32 numpy array of shape
[num_boxes] containing detection scores for the boxes.
DetectionResultFields.detection_classes: integer numpy array of shape
[num_boxes] containing 1-indexed detection classes for the boxes.
DetectionResultFields.detection_masks: optional uint8 numpy array of
shape [num_boxes, image_height, image_width] containing instance
masks corresponding to the boxes. The elements of the array must be
in {0, 1}.
Raises:
ValueError: If groundtruth for the image_id is not available.
"""
if image_id not in self._image_id_to_mask_shape_map:
raise ValueError('Missing groundtruth for image id: {}'.format(image_id))
if image_id in self._image_ids_with_detections:
tf.logging.warning('Ignoring detection with image id %s since it was '
'previously added', image_id)
return
groundtruth_masks_shape = self._image_id_to_mask_shape_map[image_id]
detection_masks = detections_dict[fields.DetectionResultFields.
detection_masks]
if groundtruth_masks_shape[1:] != detection_masks.shape[1:]:
raise ValueError('Spatial shape of groundtruth masks and detection masks '
'are incompatible: {} vs {}'.format(
groundtruth_masks_shape,
detection_masks.shape))
detection_masks = convert_masks_to_binary(detection_masks)
self._detection_masks_list.extend(
lvis_tools.ExportSingleImageDetectionMasksToLVIS(
image_id=image_id,
category_id_set=self._category_id_set,
detection_masks=detection_masks,
detection_scores=detections_dict[
fields.DetectionResultFields.detection_scores],
detection_classes=detections_dict[
fields.DetectionResultFields.detection_classes]))
self._image_ids_with_detections.update([image_id])
def evaluate(self):
"""Evaluates the detection boxes and returns a dictionary of coco metrics.
Returns:
A dictionary holding
"""
if self._export_path:
tf.logging.info('Dumping detections to json.')
self.dump_detections_to_json_file(self._export_path)
tf.logging.info('Performing evaluation on %d images.',
len(self._image_id_to_mask_shape_map.keys()))
# pylint: disable=g-complex-comprehension
groundtruth_dict = {
'annotations': self._groundtruth_list,
'images': [
{
'id': int(image_id),
'height': shape[1],
'width': shape[2],
'neg_category_ids':
self._image_id_to_verified_neg_classes[image_id],
'not_exhaustive_category_ids':
self._image_id_to_not_exhaustive_classes[image_id]
} for image_id, shape in self._image_id_to_mask_shape_map.items()],
'categories': self._categories
}
# pylint: enable=g-complex-comprehension
lvis_wrapped_groundtruth = lvis_tools.LVISWrapper(groundtruth_dict)
detections = lvis_results.LVISResults(lvis_wrapped_groundtruth,
self._detection_masks_list)
mask_evaluator = lvis_tools.LVISEvalWrapper(
lvis_wrapped_groundtruth, detections, iou_type='segm')
mask_metrics = mask_evaluator.ComputeMetrics()
mask_metrics = {'DetectionMasks_'+ key: value
for key, value in iter(mask_metrics.items())}
return mask_metrics
def add_eval_dict(self, eval_dict):
"""Observes an evaluation result dict for a single example.
When executing eagerly, once all observations have been observed by this
method you can use `.evaluate()` to get the final metrics.
When using `tf.estimator.Estimator` for evaluation this function is used by
`get_estimator_eval_metric_ops()` to construct the metric update op.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
None when executing eagerly, or an update_op that can be used to update
the eval metrics in `tf.estimator.EstimatorSpec`.
"""
def update_op(image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched,
groundtruth_instance_masks_batched,
groundtruth_verified_neg_classes_batched,
groundtruth_not_exhaustive_classes_batched,
num_gt_boxes_per_image,
detection_scores_batched, detection_classes_batched,
detection_masks_batched, num_det_boxes_per_image,
original_image_spatial_shape):
"""Update op for metrics."""
for (image_id, groundtruth_boxes, groundtruth_classes,
groundtruth_instance_masks, groundtruth_verified_neg_classes,
groundtruth_not_exhaustive_classes, num_gt_box,
detection_scores, detection_classes,
detection_masks, num_det_box, original_image_shape) in zip(
image_id_batched, groundtruth_boxes_batched,
groundtruth_classes_batched, groundtruth_instance_masks_batched,
groundtruth_verified_neg_classes_batched,
groundtruth_not_exhaustive_classes_batched,
num_gt_boxes_per_image,
detection_scores_batched, detection_classes_batched,
detection_masks_batched, num_det_boxes_per_image,
original_image_spatial_shape):
self.add_single_ground_truth_image_info(
image_id, {
input_data_fields.groundtruth_boxes:
groundtruth_boxes[:num_gt_box],
input_data_fields.groundtruth_classes:
groundtruth_classes[:num_gt_box],
input_data_fields.groundtruth_instance_masks:
groundtruth_instance_masks[
:num_gt_box,
:original_image_shape[0],
:original_image_shape[1]],
input_data_fields.groundtruth_verified_neg_classes:
groundtruth_verified_neg_classes,
input_data_fields.groundtruth_not_exhaustive_classes:
groundtruth_not_exhaustive_classes
})
self.add_single_detected_image_info(
image_id, {
'detection_scores': detection_scores[:num_det_box],
'detection_classes': detection_classes[:num_det_box],
'detection_masks': detection_masks[
:num_det_box,
:original_image_shape[0],
:original_image_shape[1]]
})
# Unpack items from the evaluation dictionary.
input_data_fields = fields.InputDataFields
detection_fields = fields.DetectionResultFields
image_id = eval_dict[input_data_fields.key]
original_image_spatial_shape = eval_dict[
input_data_fields.original_image_spatial_shape]
groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
groundtruth_instance_masks = eval_dict[
input_data_fields.groundtruth_instance_masks]
groundtruth_verified_neg_classes = eval_dict[
input_data_fields.groundtruth_verified_neg_classes]
groundtruth_not_exhaustive_classes = eval_dict[
input_data_fields.groundtruth_not_exhaustive_classes]
num_gt_boxes_per_image = eval_dict.get(
input_data_fields.num_groundtruth_boxes, None)
detection_scores = eval_dict[detection_fields.detection_scores]
detection_classes = eval_dict[detection_fields.detection_classes]
detection_masks = eval_dict[detection_fields.detection_masks]
num_det_boxes_per_image = eval_dict.get(detection_fields.num_detections,
None)
if not image_id.shape.as_list():
# Apply a batch dimension to all tensors.
image_id = tf.expand_dims(image_id, 0)
groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
groundtruth_instance_masks = tf.expand_dims(groundtruth_instance_masks, 0)
groundtruth_verified_neg_classes = tf.expand_dims(
groundtruth_verified_neg_classes, 0)
groundtruth_not_exhaustive_classes = tf.expand_dims(
groundtruth_not_exhaustive_classes, 0)
detection_scores = tf.expand_dims(detection_scores, 0)
detection_classes = tf.expand_dims(detection_classes, 0)
detection_masks = tf.expand_dims(detection_masks, 0)
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
else:
num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.shape(detection_scores)[1:2]
else:
num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)
else:
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.tile(
tf.shape(groundtruth_boxes)[1:2],
multiples=tf.shape(groundtruth_boxes)[0:1])
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.tile(
tf.shape(detection_scores)[1:2],
multiples=tf.shape(detection_scores)[0:1])
return tf.py_func(update_op, [
image_id, groundtruth_boxes, groundtruth_classes,
groundtruth_instance_masks, groundtruth_verified_neg_classes,
groundtruth_not_exhaustive_classes,
num_gt_boxes_per_image, detection_scores, detection_classes,
detection_masks, num_det_boxes_per_image, original_image_spatial_shape
], [])
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns a dictionary of eval metric ops.
Note that once value_op is called, the detections and groundtruth added via
update_op are cleared.
Args:
eval_dict: A dictionary that holds tensors for evaluating object detection
performance. For single-image evaluation, this dictionary may be
produced from eval_util.result_dict_for_single_example(). If multi-image
evaluation, `eval_dict` should contain the fields
'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
properly unpad the tensors from the batch.
Returns:
a dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
update ops must be run together and similarly all value ops must be run
together to guarantee correct behaviour.
"""
update_op = self.add_eval_dict(eval_dict)
metric_names = ['DetectionMasks_Precision/mAP',
'DetectionMasks_Precision/mAP@.50IOU',
'DetectionMasks_Precision/mAP@.75IOU',
'DetectionMasks_Precision/mAP (small)',
'DetectionMasks_Precision/mAP (medium)',
'DetectionMasks_Precision/mAP (large)',
'DetectionMasks_Recall/AR@1',
'DetectionMasks_Recall/AR@10',
'DetectionMasks_Recall/AR@100',
'DetectionMasks_Recall/AR@100 (small)',
'DetectionMasks_Recall/AR@100 (medium)',
'DetectionMasks_Recall/AR@100 (large)']
if self._include_metrics_per_category:
for category_dict in self._categories:
metric_names.append('DetectionMasks_PerformanceByCategory/mAP/' +
category_dict['name'])
def first_value_func():
self._metrics = self.evaluate()
self.clear()
return np.float32(self._metrics[metric_names[0]])
def value_func_factory(metric_name):
def value_func():
return np.float32(self._metrics[metric_name])
return value_func
# Ensure that the metrics are only evaluated once.
first_value_op = tf.py_func(first_value_func, [], tf.float32)
eval_metric_ops = {metric_names[0]: (first_value_op, update_op)}
with tf.control_dependencies([first_value_op]):
for metric_name in metric_names[1:]:
eval_metric_ops[metric_name] = (tf.py_func(
value_func_factory(metric_name), [], np.float32), update_op)
return eval_metric_ops
def dump_detections_to_json_file(self, json_output_path):
"""Saves the detections into json_output_path in the format used by MS COCO.
Args:
json_output_path: String containing the output file's path. It can be also
None. In that case nothing will be written to the output file.
"""
if json_output_path and json_output_path is not None:
pattern = re.compile(r'\d+\.\d{8,}')
def mround(match):
return '{:.2f}'.format(float(match.group()))
with tf.io.gfile.GFile(json_output_path, 'w') as fid:
json_string = json.dumps(self._detection_masks_list)
fid.write(re.sub(pattern, mround, json_string))
tf.logging.info('Dumping detections to output json file: %s',
json_output_path) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/lvis_evaluation.py | lvis_evaluation.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
import copy
import time
import numpy as np
from pycocotools import coco
from pycocotools import cocoeval
from pycocotools import mask
import six
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.utils import json_utils
class COCOWrapper(coco.COCO):
"""Wrapper for the pycocotools COCO class."""
def __init__(self, dataset, detection_type='bbox'):
"""COCOWrapper constructor.
See http://mscoco.org/dataset/#format for a description of the format.
By default, the coco.COCO class constructor reads from a JSON file.
This function duplicates the same behavior but loads from a dictionary,
allowing us to perform evaluation without writing to external storage.
Args:
dataset: a dictionary holding bounding box annotations in the COCO format.
detection_type: type of detections being wrapped. Can be one of ['bbox',
'segmentation']
Raises:
ValueError: if detection_type is unsupported.
"""
supported_detection_types = ['bbox', 'segmentation']
if detection_type not in supported_detection_types:
raise ValueError('Unsupported detection type: {}. '
'Supported values are: {}'.format(
detection_type, supported_detection_types))
self._detection_type = detection_type
coco.COCO.__init__(self)
self.dataset = dataset
self.createIndex()
def LoadAnnotations(self, annotations):
"""Load annotations dictionary into COCO datastructure.
See http://mscoco.org/dataset/#format for a description of the annotations
format. As above, this function replicates the default behavior of the API
but does not require writing to external storage.
Args:
annotations: python list holding object detection results where each
detection is encoded as a dict with required keys ['image_id',
'category_id', 'score'] and one of ['bbox', 'segmentation'] based on
`detection_type`.
Returns:
a coco.COCO datastructure holding object detection annotations results
Raises:
ValueError: if annotations is not a list
ValueError: if annotations do not correspond to the images contained
in self.
"""
results = coco.COCO()
results.dataset['images'] = [img for img in self.dataset['images']]
tf.logging.info('Loading and preparing annotation results...')
tic = time.time()
if not isinstance(annotations, list):
raise ValueError('annotations is not a list of objects')
annotation_img_ids = [ann['image_id'] for ann in annotations]
if (set(annotation_img_ids) != (set(annotation_img_ids)
& set(self.getImgIds()))):
raise ValueError('Results do not correspond to current coco set')
results.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
if self._detection_type == 'bbox':
for idx, ann in enumerate(annotations):
bb = ann['bbox']
ann['area'] = bb[2] * bb[3]
ann['id'] = idx + 1
ann['iscrowd'] = 0
elif self._detection_type == 'segmentation':
for idx, ann in enumerate(annotations):
ann['area'] = mask.area(ann['segmentation'])
ann['bbox'] = mask.toBbox(ann['segmentation'])
ann['id'] = idx + 1
ann['iscrowd'] = 0
tf.logging.info('DONE (t=%0.2fs)', (time.time() - tic))
results.dataset['annotations'] = annotations
results.createIndex()
return results
COCO_METRIC_NAMES_AND_INDEX = (
('Precision/mAP', 0),
('Precision/mAP@.50IOU', 1),
('Precision/mAP@.75IOU', 2),
('Precision/mAP (small)', 3),
('Precision/mAP (medium)', 4),
('Precision/mAP (large)', 5),
('Recall/AR@1', 6),
('Recall/AR@10', 7),
('Recall/AR@100', 8),
('Recall/AR@100 (small)', 9),
('Recall/AR@100 (medium)', 10),
('Recall/AR@100 (large)', 11)
)
COCO_KEYPOINT_METRIC_NAMES_AND_INDEX = (
('Precision/mAP', 0),
('Precision/mAP@.50IOU', 1),
('Precision/mAP@.75IOU', 2),
('Precision/mAP (medium)', 3),
('Precision/mAP (large)', 4),
('Recall/AR@1', 5),
('Recall/AR@10', 6),
('Recall/AR@100', 7),
('Recall/AR@100 (medium)', 8),
('Recall/AR@100 (large)', 9)
)
class COCOEvalWrapper(cocoeval.COCOeval):
"""Wrapper for the pycocotools COCOeval class.
To evaluate, create two objects (groundtruth_dict and detections_list)
using the conventions listed at http://mscoco.org/dataset/#format.
Then call evaluation as follows:
groundtruth = coco_tools.COCOWrapper(groundtruth_dict)
detections = groundtruth.LoadAnnotations(detections_list)
evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections,
agnostic_mode=False)
metrics = evaluator.ComputeMetrics()
"""
def __init__(self, groundtruth=None, detections=None, agnostic_mode=False,
iou_type='bbox', oks_sigmas=None):
"""COCOEvalWrapper constructor.
Note that for the area-based metrics to be meaningful, detection and
groundtruth boxes must be in image coordinates measured in pixels.
Args:
groundtruth: a coco.COCO (or coco_tools.COCOWrapper) object holding
groundtruth annotations
detections: a coco.COCO (or coco_tools.COCOWrapper) object holding
detections
agnostic_mode: boolean (default: False). If True, evaluation ignores
class labels, treating all detections as proposals.
iou_type: IOU type to use for evaluation. Supports `bbox', `segm`,
`keypoints`.
oks_sigmas: Float numpy array holding the OKS variances for keypoints.
"""
cocoeval.COCOeval.__init__(self, groundtruth, detections, iouType=iou_type)
if oks_sigmas is not None:
self.params.kpt_oks_sigmas = oks_sigmas
if agnostic_mode:
self.params.useCats = 0
self._iou_type = iou_type
def GetCategory(self, category_id):
"""Fetches dictionary holding category information given category id.
Args:
category_id: integer id
Returns:
dictionary holding 'id', 'name'.
"""
return self.cocoGt.cats[category_id]
def GetAgnosticMode(self):
"""Returns true if COCO Eval is configured to evaluate in agnostic mode."""
return self.params.useCats == 0
def GetCategoryIdList(self):
"""Returns list of valid category ids."""
return self.params.catIds
def ComputeMetrics(self,
include_metrics_per_category=False,
all_metrics_per_category=False,
super_categories=None):
"""Computes detection/keypoint metrics.
Args:
include_metrics_per_category: If True, will include metrics per category.
all_metrics_per_category: If true, include all the summery metrics for
each category in per_category_ap. Be careful with setting it to true if
you have more than handful of categories, because it will pollute
your mldash.
super_categories: None or a python dict mapping super-category names
(strings) to lists of categories (corresponding to category names
in the label_map). Metrics are aggregated along these super-categories
and added to the `per_category_ap` and are associated with the name
`PerformanceBySuperCategory/<super-category-name>`.
Returns:
1. summary_metrics: a dictionary holding:
'Precision/mAP': mean average precision over classes averaged over IOU
thresholds ranging from .5 to .95 with .05 increments
'Precision/mAP@.50IOU': mean average precision at 50% IOU
'Precision/mAP@.75IOU': mean average precision at 75% IOU
'Precision/mAP (small)': mean average precision for small objects
(area < 32^2 pixels). NOTE: not present for 'keypoints'
'Precision/mAP (medium)': mean average precision for medium sized
objects (32^2 pixels < area < 96^2 pixels)
'Precision/mAP (large)': mean average precision for large objects
(96^2 pixels < area < 10000^2 pixels)
'Recall/AR@1': average recall with 1 detection
'Recall/AR@10': average recall with 10 detections
'Recall/AR@100': average recall with 100 detections
'Recall/AR@100 (small)': average recall for small objects with 100
detections. NOTE: not present for 'keypoints'
'Recall/AR@100 (medium)': average recall for medium objects with 100
detections
'Recall/AR@100 (large)': average recall for large objects with 100
detections
2. per_category_ap: a dictionary holding category specific results with
keys of the form: 'Precision mAP ByCategory/category'
(without the supercategory part if no supercategories exist).
For backward compatibility 'PerformanceByCategory' is included in the
output regardless of all_metrics_per_category.
If evaluating class-agnostic mode, per_category_ap is an empty
dictionary.
If super_categories are provided, then this will additionally include
metrics aggregated along the super_categories with keys of the form:
`PerformanceBySuperCategory/<super-category-name>`
Raises:
ValueError: If category_stats does not exist.
"""
self.evaluate()
self.accumulate()
self.summarize()
summary_metrics = {}
if self._iou_type in ['bbox', 'segm']:
summary_metrics = OrderedDict(
[(name, self.stats[index]) for name, index in
COCO_METRIC_NAMES_AND_INDEX])
elif self._iou_type == 'keypoints':
category_id = self.GetCategoryIdList()[0]
category_name = self.GetCategory(category_id)['name']
summary_metrics = OrderedDict([])
for metric_name, index in COCO_KEYPOINT_METRIC_NAMES_AND_INDEX:
value = self.stats[index]
summary_metrics['{} ByCategory/{}'.format(
metric_name, category_name)] = value
if not include_metrics_per_category:
return summary_metrics, {}
if not hasattr(self, 'category_stats'):
raise ValueError('Category stats do not exist')
per_category_ap = OrderedDict([])
super_category_ap = OrderedDict([])
if self.GetAgnosticMode():
return summary_metrics, per_category_ap
if super_categories:
for key in super_categories:
super_category_ap['PerformanceBySuperCategory/{}'.format(key)] = 0
if all_metrics_per_category:
for metric_name, _ in COCO_METRIC_NAMES_AND_INDEX:
metric_key = '{} BySuperCategory/{}'.format(metric_name, key)
super_category_ap[metric_key] = 0
for category_index, category_id in enumerate(self.GetCategoryIdList()):
category = self.GetCategory(category_id)['name']
# Kept for backward compatilbility
per_category_ap['PerformanceByCategory/mAP/{}'.format(
category)] = self.category_stats[0][category_index]
if all_metrics_per_category:
for metric_name, index in COCO_METRIC_NAMES_AND_INDEX:
metric_key = '{} ByCategory/{}'.format(metric_name, category)
per_category_ap[metric_key] = self.category_stats[index][
category_index]
if super_categories:
for key in super_categories:
if category in super_categories[key]:
metric_key = 'PerformanceBySuperCategory/{}'.format(key)
super_category_ap[metric_key] += self.category_stats[0][
category_index]
if all_metrics_per_category:
for metric_name, index in COCO_METRIC_NAMES_AND_INDEX:
metric_key = '{} BySuperCategory/{}'.format(metric_name, key)
super_category_ap[metric_key] += (
self.category_stats[index][category_index])
if super_categories:
for key in super_categories:
length = len(super_categories[key])
super_category_ap['PerformanceBySuperCategory/{}'.format(
key)] /= length
if all_metrics_per_category:
for metric_name, _ in COCO_METRIC_NAMES_AND_INDEX:
super_category_ap['{} BySuperCategory/{}'.format(
metric_name, key)] /= length
per_category_ap.update(super_category_ap)
return summary_metrics, per_category_ap
def _ConvertBoxToCOCOFormat(box):
"""Converts a box in [ymin, xmin, ymax, xmax] format to COCO format.
This is a utility function for converting from our internal
[ymin, xmin, ymax, xmax] convention to the convention used by the COCO API
i.e., [xmin, ymin, width, height].
Args:
box: a [ymin, xmin, ymax, xmax] numpy array
Returns:
a list of floats representing [xmin, ymin, width, height]
"""
return [float(box[1]), float(box[0]), float(box[3] - box[1]),
float(box[2] - box[0])]
def _RleCompress(masks):
"""Compresses mask using Run-length encoding provided by pycocotools.
Args:
masks: uint8 numpy array of shape [mask_height, mask_width] with values in
{0, 1}.
Returns:
A pycocotools Run-length encoding of the mask.
"""
rle = mask.encode(np.asfortranarray(masks))
rle['counts'] = six.ensure_str(rle['counts'])
return rle
def ExportSingleImageGroundtruthToCoco(image_id,
next_annotation_id,
category_id_set,
groundtruth_boxes,
groundtruth_classes,
groundtruth_keypoints=None,
groundtruth_keypoint_visibilities=None,
groundtruth_masks=None,
groundtruth_is_crowd=None,
groundtruth_area=None):
"""Export groundtruth of a single image to COCO format.
This function converts groundtruth detection annotations represented as numpy
arrays to dictionaries that can be ingested by the COCO evaluation API. Note
that the image_ids provided here must match the ones given to
ExportSingleImageDetectionsToCoco. We assume that boxes and classes are in
correspondence - that is: groundtruth_boxes[i, :], and
groundtruth_classes[i] are associated with the same groundtruth annotation.
In the exported result, "area" fields are always set to the area of the
groundtruth bounding box.
Args:
image_id: a unique image identifier either of type integer or string.
next_annotation_id: integer specifying the first id to use for the
groundtruth annotations. All annotations are assigned a continuous integer
id starting from this value.
category_id_set: A set of valid class ids. Groundtruth with classes not in
category_id_set are dropped.
groundtruth_boxes: numpy array (float32) with shape [num_gt_boxes, 4]
groundtruth_classes: numpy array (int) with shape [num_gt_boxes]
groundtruth_keypoints: optional float numpy array of keypoints
with shape [num_gt_boxes, num_keypoints, 2].
groundtruth_keypoint_visibilities: optional integer numpy array of keypoint
visibilities with shape [num_gt_boxes, num_keypoints]. Integer is treated
as an enum with 0=not labels, 1=labeled but not visible and 2=labeled and
visible.
groundtruth_masks: optional uint8 numpy array of shape [num_detections,
image_height, image_width] containing detection_masks.
groundtruth_is_crowd: optional numpy array (int) with shape [num_gt_boxes]
indicating whether groundtruth boxes are crowd.
groundtruth_area: numpy array (float32) with shape [num_gt_boxes]. If
provided, then the area values (in the original absolute coordinates) will
be populated instead of calculated from bounding box coordinates.
Returns:
a list of groundtruth annotations for a single image in the COCO format.
Raises:
ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the
right lengths or (2) if each of the elements inside these lists do not
have the correct shapes or (3) if image_ids are not integers
"""
if len(groundtruth_classes.shape) != 1:
raise ValueError('groundtruth_classes is '
'expected to be of rank 1.')
if len(groundtruth_boxes.shape) != 2:
raise ValueError('groundtruth_boxes is expected to be of '
'rank 2.')
if groundtruth_boxes.shape[1] != 4:
raise ValueError('groundtruth_boxes should have '
'shape[1] == 4.')
num_boxes = groundtruth_classes.shape[0]
if num_boxes != groundtruth_boxes.shape[0]:
raise ValueError('Corresponding entries in groundtruth_classes, '
'and groundtruth_boxes should have '
'compatible shapes (i.e., agree on the 0th dimension).'
'Classes shape: %d. Boxes shape: %d. Image ID: %s' % (
groundtruth_classes.shape[0],
groundtruth_boxes.shape[0], image_id))
has_is_crowd = groundtruth_is_crowd is not None
if has_is_crowd and len(groundtruth_is_crowd.shape) != 1:
raise ValueError('groundtruth_is_crowd is expected to be of rank 1.')
has_keypoints = groundtruth_keypoints is not None
has_keypoint_visibilities = groundtruth_keypoint_visibilities is not None
if has_keypoints and not has_keypoint_visibilities:
groundtruth_keypoint_visibilities = np.full(
(num_boxes, groundtruth_keypoints.shape[1]), 2)
groundtruth_list = []
for i in range(num_boxes):
if groundtruth_classes[i] in category_id_set:
iscrowd = groundtruth_is_crowd[i] if has_is_crowd else 0
if groundtruth_area is not None and groundtruth_area[i] > 0:
area = float(groundtruth_area[i])
else:
area = float((groundtruth_boxes[i, 2] - groundtruth_boxes[i, 0]) *
(groundtruth_boxes[i, 3] - groundtruth_boxes[i, 1]))
export_dict = {
'id':
next_annotation_id + i,
'image_id':
image_id,
'category_id':
int(groundtruth_classes[i]),
'bbox':
list(_ConvertBoxToCOCOFormat(groundtruth_boxes[i, :])),
'area': area,
'iscrowd':
iscrowd
}
if groundtruth_masks is not None:
export_dict['segmentation'] = _RleCompress(groundtruth_masks[i])
if has_keypoints:
keypoints = groundtruth_keypoints[i]
visibilities = np.reshape(groundtruth_keypoint_visibilities[i], [-1])
coco_keypoints = []
num_valid_keypoints = 0
for keypoint, visibility in zip(keypoints, visibilities):
# Convert from [y, x] to [x, y] as mandated by COCO.
coco_keypoints.append(float(keypoint[1]))
coco_keypoints.append(float(keypoint[0]))
coco_keypoints.append(int(visibility))
if int(visibility) > 0:
num_valid_keypoints = num_valid_keypoints + 1
export_dict['keypoints'] = coco_keypoints
export_dict['num_keypoints'] = num_valid_keypoints
groundtruth_list.append(export_dict)
return groundtruth_list
def ExportGroundtruthToCOCO(image_ids,
groundtruth_boxes,
groundtruth_classes,
categories,
output_path=None):
"""Export groundtruth detection annotations in numpy arrays to COCO API.
This function converts a set of groundtruth detection annotations represented
as numpy arrays to dictionaries that can be ingested by the COCO API.
Inputs to this function are three lists: image ids for each groundtruth image,
groundtruth boxes for each image and groundtruth classes respectively.
Note that the image_ids provided here must match the ones given to the
ExportDetectionsToCOCO function in order for evaluation to work properly.
We assume that for each image, boxes, scores and classes are in
correspondence --- that is: image_id[i], groundtruth_boxes[i, :] and
groundtruth_classes[i] are associated with the same groundtruth annotation.
In the exported result, "area" fields are always set to the area of the
groundtruth bounding box and "iscrowd" fields are always set to 0.
TODO(jonathanhuang): pass in "iscrowd" array for evaluating on COCO dataset.
Args:
image_ids: a list of unique image identifier either of type integer or
string.
groundtruth_boxes: list of numpy arrays with shape [num_gt_boxes, 4]
(note that num_gt_boxes can be different for each entry in the list)
groundtruth_classes: list of numpy arrays (int) with shape [num_gt_boxes]
(note that num_gt_boxes can be different for each entry in the list)
categories: a list of dictionaries representing all possible categories.
Each dict in this list has the following keys:
'id': (required) an integer id uniquely identifying this category
'name': (required) string representing category name
e.g., 'cat', 'dog', 'pizza'
'supercategory': (optional) string representing the supercategory
e.g., 'animal', 'vehicle', 'food', etc
output_path: (optional) path for exporting result to JSON
Returns:
dictionary that can be read by COCO API
Raises:
ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the
right lengths or (2) if each of the elements inside these lists do not
have the correct shapes or (3) if image_ids are not integers
"""
category_id_set = set([cat['id'] for cat in categories])
groundtruth_export_list = []
image_export_list = []
if not len(image_ids) == len(groundtruth_boxes) == len(groundtruth_classes):
raise ValueError('Input lists must have the same length')
# For reasons internal to the COCO API, it is important that annotation ids
# are not equal to zero; we thus start counting from 1.
annotation_id = 1
for image_id, boxes, classes in zip(image_ids, groundtruth_boxes,
groundtruth_classes):
image_export_list.append({'id': image_id})
groundtruth_export_list.extend(ExportSingleImageGroundtruthToCoco(
image_id,
annotation_id,
category_id_set,
boxes,
classes))
num_boxes = classes.shape[0]
annotation_id += num_boxes
groundtruth_dict = {
'annotations': groundtruth_export_list,
'images': image_export_list,
'categories': categories
}
if output_path:
with tf.gfile.GFile(output_path, 'w') as fid:
json_utils.Dump(groundtruth_dict, fid, float_digits=4, indent=2)
return groundtruth_dict
def ExportSingleImageDetectionBoxesToCoco(image_id,
category_id_set,
detection_boxes,
detection_scores,
detection_classes,
detection_keypoints=None,
detection_keypoint_visibilities=None):
"""Export detections of a single image to COCO format.
This function converts detections represented as numpy arrays to dictionaries
that can be ingested by the COCO evaluation API. Note that the image_ids
provided here must match the ones given to the
ExporSingleImageDetectionBoxesToCoco. We assume that boxes, and classes are in
correspondence - that is: boxes[i, :], and classes[i]
are associated with the same groundtruth annotation.
Args:
image_id: unique image identifier either of type integer or string.
category_id_set: A set of valid class ids. Detections with classes not in
category_id_set are dropped.
detection_boxes: float numpy array of shape [num_detections, 4] containing
detection boxes.
detection_scores: float numpy array of shape [num_detections] containing
scored for the detection boxes.
detection_classes: integer numpy array of shape [num_detections] containing
the classes for detection boxes.
detection_keypoints: optional float numpy array of keypoints
with shape [num_detections, num_keypoints, 2].
detection_keypoint_visibilities: optional integer numpy array of keypoint
visibilities with shape [num_detections, num_keypoints]. Integer is
treated as an enum with 0=not labels, 1=labeled but not visible and
2=labeled and visible.
Returns:
a list of detection annotations for a single image in the COCO format.
Raises:
ValueError: if (1) detection_boxes, detection_scores and detection_classes
do not have the right lengths or (2) if each of the elements inside these
lists do not have the correct shapes or (3) if image_ids are not integers.
"""
if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
if len(detection_boxes.shape) != 2:
raise ValueError('All entries in detection_boxes expected to be of '
'rank 2.')
if detection_boxes.shape[1] != 4:
raise ValueError('All entries in detection_boxes should have '
'shape[1] == 4.')
num_boxes = detection_classes.shape[0]
if not num_boxes == detection_boxes.shape[0] == detection_scores.shape[0]:
raise ValueError('Corresponding entries in detection_classes, '
'detection_scores and detection_boxes should have '
'compatible shapes (i.e., agree on the 0th dimension). '
'Classes shape: %d. Boxes shape: %d. '
'Scores shape: %d' % (
detection_classes.shape[0], detection_boxes.shape[0],
detection_scores.shape[0]
))
detections_list = []
for i in range(num_boxes):
if detection_classes[i] in category_id_set:
export_dict = {
'image_id':
image_id,
'category_id':
int(detection_classes[i]),
'bbox':
list(_ConvertBoxToCOCOFormat(detection_boxes[i, :])),
'score':
float(detection_scores[i]),
}
if detection_keypoints is not None:
keypoints = detection_keypoints[i]
num_keypoints = keypoints.shape[0]
if detection_keypoint_visibilities is None:
detection_keypoint_visibilities = np.full((num_boxes, num_keypoints),
2)
visibilities = np.reshape(detection_keypoint_visibilities[i], [-1])
coco_keypoints = []
for keypoint, visibility in zip(keypoints, visibilities):
# Convert from [y, x] to [x, y] as mandated by COCO.
coco_keypoints.append(float(keypoint[1]))
coco_keypoints.append(float(keypoint[0]))
coco_keypoints.append(int(visibility))
export_dict['keypoints'] = coco_keypoints
export_dict['num_keypoints'] = num_keypoints
detections_list.append(export_dict)
return detections_list
def ExportSingleImageDetectionMasksToCoco(image_id,
category_id_set,
detection_masks,
detection_scores,
detection_classes):
"""Export detection masks of a single image to COCO format.
This function converts detections represented as numpy arrays to dictionaries
that can be ingested by the COCO evaluation API. We assume that
detection_masks, detection_scores, and detection_classes are in correspondence
- that is: detection_masks[i, :], detection_classes[i] and detection_scores[i]
are associated with the same annotation.
Args:
image_id: unique image identifier either of type integer or string.
category_id_set: A set of valid class ids. Detections with classes not in
category_id_set are dropped.
detection_masks: uint8 numpy array of shape [num_detections, image_height,
image_width] containing detection_masks.
detection_scores: float numpy array of shape [num_detections] containing
scores for detection masks.
detection_classes: integer numpy array of shape [num_detections] containing
the classes for detection masks.
Returns:
a list of detection mask annotations for a single image in the COCO format.
Raises:
ValueError: if (1) detection_masks, detection_scores and detection_classes
do not have the right lengths or (2) if each of the elements inside these
lists do not have the correct shapes or (3) if image_ids are not integers.
"""
if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
num_boxes = detection_classes.shape[0]
if not num_boxes == len(detection_masks) == detection_scores.shape[0]:
raise ValueError('Corresponding entries in detection_classes, '
'detection_scores and detection_masks should have '
'compatible lengths and shapes '
'Classes length: %d. Masks length: %d. '
'Scores length: %d' % (
detection_classes.shape[0], len(detection_masks),
detection_scores.shape[0]
))
detections_list = []
for i in range(num_boxes):
if detection_classes[i] in category_id_set:
detections_list.append({
'image_id': image_id,
'category_id': int(detection_classes[i]),
'segmentation': _RleCompress(detection_masks[i]),
'score': float(detection_scores[i])
})
return detections_list
def ExportDetectionsToCOCO(image_ids,
detection_boxes,
detection_scores,
detection_classes,
categories,
output_path=None):
"""Export detection annotations in numpy arrays to COCO API.
This function converts a set of predicted detections represented
as numpy arrays to dictionaries that can be ingested by the COCO API.
Inputs to this function are lists, consisting of boxes, scores and
classes, respectively, corresponding to each image for which detections
have been produced. Note that the image_ids provided here must
match the ones given to the ExportGroundtruthToCOCO function in order
for evaluation to work properly.
We assume that for each image, boxes, scores and classes are in
correspondence --- that is: detection_boxes[i, :], detection_scores[i] and
detection_classes[i] are associated with the same detection.
Args:
image_ids: a list of unique image identifier either of type integer or
string.
detection_boxes: list of numpy arrays with shape [num_detection_boxes, 4]
detection_scores: list of numpy arrays (float) with shape
[num_detection_boxes]. Note that num_detection_boxes can be different
for each entry in the list.
detection_classes: list of numpy arrays (int) with shape
[num_detection_boxes]. Note that num_detection_boxes can be different
for each entry in the list.
categories: a list of dictionaries representing all possible categories.
Each dict in this list must have an integer 'id' key uniquely identifying
this category.
output_path: (optional) path for exporting result to JSON
Returns:
list of dictionaries that can be read by COCO API, where each entry
corresponds to a single detection and has keys from:
['image_id', 'category_id', 'bbox', 'score'].
Raises:
ValueError: if (1) detection_boxes and detection_classes do not have the
right lengths or (2) if each of the elements inside these lists do not
have the correct shapes or (3) if image_ids are not integers.
"""
category_id_set = set([cat['id'] for cat in categories])
detections_export_list = []
if not (len(image_ids) == len(detection_boxes) == len(detection_scores) ==
len(detection_classes)):
raise ValueError('Input lists must have the same length')
for image_id, boxes, scores, classes in zip(image_ids, detection_boxes,
detection_scores,
detection_classes):
detections_export_list.extend(ExportSingleImageDetectionBoxesToCoco(
image_id,
category_id_set,
boxes,
scores,
classes))
if output_path:
with tf.gfile.GFile(output_path, 'w') as fid:
json_utils.Dump(detections_export_list, fid, float_digits=4, indent=2)
return detections_export_list
def ExportSegmentsToCOCO(image_ids,
detection_masks,
detection_scores,
detection_classes,
categories,
output_path=None):
"""Export segmentation masks in numpy arrays to COCO API.
This function converts a set of predicted instance masks represented
as numpy arrays to dictionaries that can be ingested by the COCO API.
Inputs to this function are lists, consisting of segments, scores and
classes, respectively, corresponding to each image for which detections
have been produced.
Note this function is recommended to use for small dataset.
For large dataset, it should be used with a merge function
(e.g. in map reduce), otherwise the memory consumption is large.
We assume that for each image, masks, scores and classes are in
correspondence --- that is: detection_masks[i, :, :, :], detection_scores[i]
and detection_classes[i] are associated with the same detection.
Args:
image_ids: list of image ids (typically ints or strings)
detection_masks: list of numpy arrays with shape [num_detection, h, w, 1]
and type uint8. The height and width should match the shape of
corresponding image.
detection_scores: list of numpy arrays (float) with shape
[num_detection]. Note that num_detection can be different
for each entry in the list.
detection_classes: list of numpy arrays (int) with shape
[num_detection]. Note that num_detection can be different
for each entry in the list.
categories: a list of dictionaries representing all possible categories.
Each dict in this list must have an integer 'id' key uniquely identifying
this category.
output_path: (optional) path for exporting result to JSON
Returns:
list of dictionaries that can be read by COCO API, where each entry
corresponds to a single detection and has keys from:
['image_id', 'category_id', 'segmentation', 'score'].
Raises:
ValueError: if detection_masks and detection_classes do not have the
right lengths or if each of the elements inside these lists do not
have the correct shapes.
"""
if not (len(image_ids) == len(detection_masks) == len(detection_scores) ==
len(detection_classes)):
raise ValueError('Input lists must have the same length')
segment_export_list = []
for image_id, masks, scores, classes in zip(image_ids, detection_masks,
detection_scores,
detection_classes):
if len(classes.shape) != 1 or len(scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
if len(masks.shape) != 4:
raise ValueError('All entries in masks expected to be of '
'rank 4. Given {}'.format(masks.shape))
num_boxes = classes.shape[0]
if not num_boxes == masks.shape[0] == scores.shape[0]:
raise ValueError('Corresponding entries in segment_classes, '
'detection_scores and detection_boxes should have '
'compatible shapes (i.e., agree on the 0th dimension).')
category_id_set = set([cat['id'] for cat in categories])
segment_export_list.extend(ExportSingleImageDetectionMasksToCoco(
image_id, category_id_set, np.squeeze(masks, axis=3), scores, classes))
if output_path:
with tf.gfile.GFile(output_path, 'w') as fid:
json_utils.Dump(segment_export_list, fid, float_digits=4, indent=2)
return segment_export_list
def ExportKeypointsToCOCO(image_ids,
detection_keypoints,
detection_scores,
detection_classes,
categories,
output_path=None):
"""Exports keypoints in numpy arrays to COCO API.
This function converts a set of predicted keypoints represented
as numpy arrays to dictionaries that can be ingested by the COCO API.
Inputs to this function are lists, consisting of keypoints, scores and
classes, respectively, corresponding to each image for which detections
have been produced.
We assume that for each image, keypoints, scores and classes are in
correspondence --- that is: detection_keypoints[i, :, :, :],
detection_scores[i] and detection_classes[i] are associated with the same
detection.
Args:
image_ids: list of image ids (typically ints or strings)
detection_keypoints: list of numpy arrays with shape
[num_detection, num_keypoints, 2] and type float32 in absolute
x-y coordinates.
detection_scores: list of numpy arrays (float) with shape
[num_detection]. Note that num_detection can be different
for each entry in the list.
detection_classes: list of numpy arrays (int) with shape
[num_detection]. Note that num_detection can be different
for each entry in the list.
categories: a list of dictionaries representing all possible categories.
Each dict in this list must have an integer 'id' key uniquely identifying
this category and an integer 'num_keypoints' key specifying the number of
keypoints the category has.
output_path: (optional) path for exporting result to JSON
Returns:
list of dictionaries that can be read by COCO API, where each entry
corresponds to a single detection and has keys from:
['image_id', 'category_id', 'keypoints', 'score'].
Raises:
ValueError: if detection_keypoints and detection_classes do not have the
right lengths or if each of the elements inside these lists do not
have the correct shapes.
"""
if not (len(image_ids) == len(detection_keypoints) ==
len(detection_scores) == len(detection_classes)):
raise ValueError('Input lists must have the same length')
keypoints_export_list = []
for image_id, keypoints, scores, classes in zip(
image_ids, detection_keypoints, detection_scores, detection_classes):
if len(classes.shape) != 1 or len(scores.shape) != 1:
raise ValueError('All entries in detection_classes and detection_scores'
'expected to be of rank 1.')
if len(keypoints.shape) != 3:
raise ValueError('All entries in keypoints expected to be of '
'rank 3. Given {}'.format(keypoints.shape))
num_boxes = classes.shape[0]
if not num_boxes == keypoints.shape[0] == scores.shape[0]:
raise ValueError('Corresponding entries in detection_classes, '
'detection_keypoints, and detection_scores should have '
'compatible shapes (i.e., agree on the 0th dimension).')
category_id_set = set([cat['id'] for cat in categories])
category_id_to_num_keypoints_map = {
cat['id']: cat['num_keypoints'] for cat in categories
if 'num_keypoints' in cat}
for i in range(num_boxes):
if classes[i] not in category_id_set:
raise ValueError('class id should be in category_id_set\n')
if classes[i] in category_id_to_num_keypoints_map:
num_keypoints = category_id_to_num_keypoints_map[classes[i]]
# Adds extra ones to indicate the visibility for each keypoint as is
# recommended by MSCOCO.
instance_keypoints = np.concatenate(
[keypoints[i, 0:num_keypoints, :],
np.expand_dims(np.ones(num_keypoints), axis=1)],
axis=1).astype(int)
instance_keypoints = instance_keypoints.flatten().tolist()
keypoints_export_list.append({
'image_id': image_id,
'category_id': int(classes[i]),
'keypoints': instance_keypoints,
'score': float(scores[i])
})
if output_path:
with tf.gfile.GFile(output_path, 'w') as fid:
json_utils.Dump(keypoints_export_list, fid, float_digits=4, indent=2)
return keypoints_export_list | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/coco_tools.py | coco_tools.py |
r"""Runs evaluation using OpenImages groundtruth and predictions.
Uses Open Images Challenge 2018, 2019 metrics
Example usage:
python models/research/object_detection/metrics/oid_od_challenge_evaluation.py \
--input_annotations_boxes=/path/to/input/annotations-human-bbox.csv \
--input_annotations_labels=/path/to/input/annotations-label.csv \
--input_class_labelmap=/path/to/input/class_labelmap.pbtxt \
--input_predictions=/path/to/input/predictions.csv \
--output_metrics=/path/to/output/metric.csv \
--input_annotations_segm=[/path/to/input/annotations-human-mask.csv] \
If optional flag has_masks is True, Mask column is also expected in CSV.
CSVs with bounding box annotations, instance segmentations and image label
can be downloaded from the Open Images Challenge website:
https://storage.googleapis.com/openimages/web/challenge.html
The format of the input csv and the metrics itself are described on the
challenge website as well.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
from absl import app
from absl import flags
import pandas as pd
from google.protobuf import text_format
from object_detection.metrics import io_utils
from object_detection.metrics import oid_challenge_evaluation_utils as utils
from object_detection.protos import string_int_label_map_pb2
from object_detection.utils import object_detection_evaluation
flags.DEFINE_string('input_annotations_boxes', None,
'File with groundtruth boxes annotations.')
flags.DEFINE_string('input_annotations_labels', None,
'File with groundtruth labels annotations.')
flags.DEFINE_string(
'input_predictions', None,
"""File with detection predictions; NOTE: no postprocessing is applied in the evaluation script."""
)
flags.DEFINE_string('input_class_labelmap', None,
'Open Images Challenge labelmap.')
flags.DEFINE_string('output_metrics', None, 'Output file with csv metrics.')
flags.DEFINE_string(
'input_annotations_segm', None,
'File with groundtruth instance segmentation annotations [OPTIONAL].')
FLAGS = flags.FLAGS
def _load_labelmap(labelmap_path):
"""Loads labelmap from the labelmap path.
Args:
labelmap_path: Path to the labelmap.
Returns:
A dictionary mapping class name to class numerical id
A list with dictionaries, one dictionary per category.
"""
label_map = string_int_label_map_pb2.StringIntLabelMap()
with open(labelmap_path, 'r') as fid:
label_map_string = fid.read()
text_format.Merge(label_map_string, label_map)
labelmap_dict = {}
categories = []
for item in label_map.item:
labelmap_dict[item.name] = item.id
categories.append({'id': item.id, 'name': item.name})
return labelmap_dict, categories
def main(unused_argv):
flags.mark_flag_as_required('input_annotations_boxes')
flags.mark_flag_as_required('input_annotations_labels')
flags.mark_flag_as_required('input_predictions')
flags.mark_flag_as_required('input_class_labelmap')
flags.mark_flag_as_required('output_metrics')
all_location_annotations = pd.read_csv(FLAGS.input_annotations_boxes)
all_label_annotations = pd.read_csv(FLAGS.input_annotations_labels)
all_label_annotations.rename(
columns={'Confidence': 'ConfidenceImageLabel'}, inplace=True)
is_instance_segmentation_eval = False
if FLAGS.input_annotations_segm:
is_instance_segmentation_eval = True
all_segm_annotations = pd.read_csv(FLAGS.input_annotations_segm)
# Note: this part is unstable as it requires the float point numbers in both
# csvs are exactly the same;
# Will be replaced by more stable solution: merge on LabelName and ImageID
# and filter down by IoU.
all_location_annotations = utils.merge_boxes_and_masks(
all_location_annotations, all_segm_annotations)
all_annotations = pd.concat([all_location_annotations, all_label_annotations])
class_label_map, categories = _load_labelmap(FLAGS.input_class_labelmap)
challenge_evaluator = (
object_detection_evaluation.OpenImagesChallengeEvaluator(
categories, evaluate_masks=is_instance_segmentation_eval))
all_predictions = pd.read_csv(FLAGS.input_predictions)
images_processed = 0
for _, groundtruth in enumerate(all_annotations.groupby('ImageID')):
logging.info('Processing image %d', images_processed)
image_id, image_groundtruth = groundtruth
groundtruth_dictionary = utils.build_groundtruth_dictionary(
image_groundtruth, class_label_map)
challenge_evaluator.add_single_ground_truth_image_info(
image_id, groundtruth_dictionary)
prediction_dictionary = utils.build_predictions_dictionary(
all_predictions.loc[all_predictions['ImageID'] == image_id],
class_label_map)
challenge_evaluator.add_single_detected_image_info(image_id,
prediction_dictionary)
images_processed += 1
metrics = challenge_evaluator.evaluate()
with open(FLAGS.output_metrics, 'w') as fid:
io_utils.write_csv(fid, metrics)
if __name__ == '__main__':
app.run(main) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/oid_challenge_evaluation.py | oid_challenge_evaluation.py |
import numpy as np
from object_detection.core import data_parser
from object_detection.core import standard_fields as fields
class FloatParser(data_parser.DataToNumpyParser):
"""Tensorflow Example float parser."""
def __init__(self, field_name):
self.field_name = field_name
def parse(self, tf_example):
return np.array(
tf_example.features.feature[self.field_name].float_list.value,
dtype=np.float).transpose() if tf_example.features.feature[
self.field_name].HasField("float_list") else None
class StringParser(data_parser.DataToNumpyParser):
"""Tensorflow Example string parser."""
def __init__(self, field_name):
self.field_name = field_name
def parse(self, tf_example):
return b"".join(tf_example.features.feature[
self.field_name].bytes_list.value) if tf_example.features.feature[
self.field_name].HasField("bytes_list") else None
class Int64Parser(data_parser.DataToNumpyParser):
"""Tensorflow Example int64 parser."""
def __init__(self, field_name):
self.field_name = field_name
def parse(self, tf_example):
return np.array(
tf_example.features.feature[self.field_name].int64_list.value,
dtype=np.int64).transpose() if tf_example.features.feature[
self.field_name].HasField("int64_list") else None
class BoundingBoxParser(data_parser.DataToNumpyParser):
"""Tensorflow Example bounding box parser."""
def __init__(self, xmin_field_name, ymin_field_name, xmax_field_name,
ymax_field_name):
self.field_names = [
ymin_field_name, xmin_field_name, ymax_field_name, xmax_field_name
]
def parse(self, tf_example):
result = []
parsed = True
for field_name in self.field_names:
result.append(tf_example.features.feature[field_name].float_list.value)
parsed &= (
tf_example.features.feature[field_name].HasField("float_list"))
return np.array(result).transpose() if parsed else None
class TfExampleDetectionAndGTParser(data_parser.DataToNumpyParser):
"""Tensorflow Example proto parser."""
def __init__(self):
self.items_to_handlers = {
fields.DetectionResultFields.key:
StringParser(fields.TfExampleFields.source_id),
# Object ground truth boxes and classes.
fields.InputDataFields.groundtruth_boxes: (BoundingBoxParser(
fields.TfExampleFields.object_bbox_xmin,
fields.TfExampleFields.object_bbox_ymin,
fields.TfExampleFields.object_bbox_xmax,
fields.TfExampleFields.object_bbox_ymax)),
fields.InputDataFields.groundtruth_classes: (
Int64Parser(fields.TfExampleFields.object_class_label)),
# Object detections.
fields.DetectionResultFields.detection_boxes: (BoundingBoxParser(
fields.TfExampleFields.detection_bbox_xmin,
fields.TfExampleFields.detection_bbox_ymin,
fields.TfExampleFields.detection_bbox_xmax,
fields.TfExampleFields.detection_bbox_ymax)),
fields.DetectionResultFields.detection_classes: (
Int64Parser(fields.TfExampleFields.detection_class_label)),
fields.DetectionResultFields.detection_scores: (
FloatParser(fields.TfExampleFields.detection_score)),
}
self.optional_items_to_handlers = {
fields.InputDataFields.groundtruth_difficult:
Int64Parser(fields.TfExampleFields.object_difficult),
fields.InputDataFields.groundtruth_group_of:
Int64Parser(fields.TfExampleFields.object_group_of),
fields.InputDataFields.groundtruth_image_classes:
Int64Parser(fields.TfExampleFields.image_class_label),
}
def parse(self, tf_example):
"""Parses tensorflow example and returns a tensor dictionary.
Args:
tf_example: a tf.Example object.
Returns:
A dictionary of the following numpy arrays:
fields.DetectionResultFields.source_id - string containing original image
id.
fields.InputDataFields.groundtruth_boxes - a numpy array containing
groundtruth boxes.
fields.InputDataFields.groundtruth_classes - a numpy array containing
groundtruth classes.
fields.InputDataFields.groundtruth_group_of - a numpy array containing
groundtruth group of flag (optional, None if not specified).
fields.InputDataFields.groundtruth_difficult - a numpy array containing
groundtruth difficult flag (optional, None if not specified).
fields.InputDataFields.groundtruth_image_classes - a numpy array
containing groundtruth image-level labels.
fields.DetectionResultFields.detection_boxes - a numpy array containing
detection boxes.
fields.DetectionResultFields.detection_classes - a numpy array containing
detection class labels.
fields.DetectionResultFields.detection_scores - a numpy array containing
detection scores.
Returns None if tf.Example was not parsed or non-optional fields were not
found.
"""
results_dict = {}
parsed = True
for key, parser in self.items_to_handlers.items():
results_dict[key] = parser.parse(tf_example)
parsed &= (results_dict[key] is not None)
for key, parser in self.optional_items_to_handlers.items():
results_dict[key] = parser.parse(tf_example)
return results_dict if parsed else None | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/tf_example_parser.py | tf_example_parser.py |
r"""Runs evaluation using OpenImages groundtruth and predictions.
Example usage:
python \
models/research/object_detection/metrics/oid_vrd_challenge_evaluation.py \
--input_annotations_vrd=/path/to/input/annotations-human-bbox.csv \
--input_annotations_labels=/path/to/input/annotations-label.csv \
--input_class_labelmap=/path/to/input/class_labelmap.pbtxt \
--input_relationship_labelmap=/path/to/input/relationship_labelmap.pbtxt \
--input_predictions=/path/to/input/predictions.csv \
--output_metrics=/path/to/output/metric.csv \
CSVs with bounding box annotations and image label (including the image URLs)
can be downloaded from the Open Images Challenge website:
https://storage.googleapis.com/openimages/web/challenge.html
The format of the input csv and the metrics itself are described on the
challenge website.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import pandas as pd
from google.protobuf import text_format
from object_detection.metrics import io_utils
from object_detection.metrics import oid_vrd_challenge_evaluation_utils as utils
from object_detection.protos import string_int_label_map_pb2
from object_detection.utils import vrd_evaluation
def _load_labelmap(labelmap_path):
"""Loads labelmap from the labelmap path.
Args:
labelmap_path: Path to the labelmap.
Returns:
A dictionary mapping class name to class numerical id.
"""
label_map = string_int_label_map_pb2.StringIntLabelMap()
with open(labelmap_path, 'r') as fid:
label_map_string = fid.read()
text_format.Merge(label_map_string, label_map)
labelmap_dict = {}
for item in label_map.item:
labelmap_dict[item.name] = item.id
return labelmap_dict
def _swap_labelmap_dict(labelmap_dict):
"""Swaps keys and labels in labelmap.
Args:
labelmap_dict: Input dictionary.
Returns:
A dictionary mapping class name to class numerical id.
"""
return dict((v, k) for k, v in labelmap_dict.iteritems())
def main(parsed_args):
all_box_annotations = pd.read_csv(parsed_args.input_annotations_boxes)
all_label_annotations = pd.read_csv(parsed_args.input_annotations_labels)
all_annotations = pd.concat([all_box_annotations, all_label_annotations])
class_label_map = _load_labelmap(parsed_args.input_class_labelmap)
relationship_label_map = _load_labelmap(
parsed_args.input_relationship_labelmap)
relation_evaluator = vrd_evaluation.VRDRelationDetectionEvaluator()
phrase_evaluator = vrd_evaluation.VRDPhraseDetectionEvaluator()
for _, groundtruth in enumerate(all_annotations.groupby('ImageID')):
image_id, image_groundtruth = groundtruth
groundtruth_dictionary = utils.build_groundtruth_vrd_dictionary(
image_groundtruth, class_label_map, relationship_label_map)
relation_evaluator.add_single_ground_truth_image_info(
image_id, groundtruth_dictionary)
phrase_evaluator.add_single_ground_truth_image_info(image_id,
groundtruth_dictionary)
all_predictions = pd.read_csv(parsed_args.input_predictions)
for _, prediction_data in enumerate(all_predictions.groupby('ImageID')):
image_id, image_predictions = prediction_data
prediction_dictionary = utils.build_predictions_vrd_dictionary(
image_predictions, class_label_map, relationship_label_map)
relation_evaluator.add_single_detected_image_info(image_id,
prediction_dictionary)
phrase_evaluator.add_single_detected_image_info(image_id,
prediction_dictionary)
relation_metrics = relation_evaluator.evaluate(
relationships=_swap_labelmap_dict(relationship_label_map))
phrase_metrics = phrase_evaluator.evaluate(
relationships=_swap_labelmap_dict(relationship_label_map))
with open(parsed_args.output_metrics, 'w') as fid:
io_utils.write_csv(fid, relation_metrics)
io_utils.write_csv(fid, phrase_metrics)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=
'Evaluate Open Images Visual Relationship Detection predictions.')
parser.add_argument(
'--input_annotations_vrd',
required=True,
help='File with groundtruth vrd annotations.')
parser.add_argument(
'--input_annotations_labels',
required=True,
help='File with groundtruth labels annotations')
parser.add_argument(
'--input_predictions',
required=True,
help="""File with detection predictions; NOTE: no postprocessing is
applied in the evaluation script.""")
parser.add_argument(
'--input_class_labelmap',
required=True,
help="""OpenImages Challenge labelmap; note: it is expected to include
attributes.""")
parser.add_argument(
'--input_relationship_labelmap',
required=True,
help="""OpenImages Challenge relationship labelmap.""")
parser.add_argument(
'--output_metrics', required=True, help='Output file with csv metrics')
args = parser.parse_args()
main(args) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/metrics/oid_vrd_challenge_evaluation.py | oid_vrd_challenge_evaluation.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import enum
import numpy as np
from six.moves import zip
import tensorflow.compat.v1 as tf
from tf_slim import tfexample_decoder as slim_example_decoder
from object_detection.core import data_decoder
from object_detection.core import standard_fields as fields
from object_detection.protos import input_reader_pb2
from object_detection.utils import label_map_util
from object_detection.utils import shape_utils
# pylint: disable=g-import-not-at-top
try:
from tensorflow.contrib import lookup as contrib_lookup
except ImportError:
# TF 2.0 doesn't ship with contrib.
pass
# pylint: enable=g-import-not-at-top
_LABEL_OFFSET = 1
class Visibility(enum.Enum):
"""Visibility definitions.
This follows the MS Coco convention (http://cocodataset.org/#format-data).
"""
# Keypoint is not labeled.
UNLABELED = 0
# Keypoint is labeled but falls outside the object segment (e.g. occluded).
NOT_VISIBLE = 1
# Keypoint is labeled and visible.
VISIBLE = 2
class _ClassTensorHandler(slim_example_decoder.Tensor):
"""An ItemHandler to fetch class ids from class text."""
def __init__(self,
tensor_key,
label_map_proto_file,
shape_keys=None,
shape=None,
default_value=''):
"""Initializes the LookupTensor handler.
Simply calls a vocabulary (most often, a label mapping) lookup.
Args:
tensor_key: the name of the `TFExample` feature to read the tensor from.
label_map_proto_file: File path to a text format LabelMapProto message
mapping class text to id.
shape_keys: Optional name or list of names of the TF-Example feature in
which the tensor shape is stored. If a list, then each corresponds to
one dimension of the shape.
shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is
reshaped accordingly.
default_value: The value used when the `tensor_key` is not found in a
particular `TFExample`.
Raises:
ValueError: if both `shape_keys` and `shape` are specified.
"""
name_to_id = label_map_util.get_label_map_dict(
label_map_proto_file, use_display_name=False)
# We use a default_value of -1, but we expect all labels to be contained
# in the label map.
try:
# Dynamically try to load the tf v2 lookup, falling back to contrib
lookup = tf.compat.v2.lookup
hash_table_class = tf.compat.v2.lookup.StaticHashTable
except AttributeError:
lookup = contrib_lookup
hash_table_class = contrib_lookup.HashTable
name_to_id_table = hash_table_class(
initializer=lookup.KeyValueTensorInitializer(
keys=tf.constant(list(name_to_id.keys())),
values=tf.constant(list(name_to_id.values()), dtype=tf.int64)),
default_value=-1)
display_name_to_id = label_map_util.get_label_map_dict(
label_map_proto_file, use_display_name=True)
# We use a default_value of -1, but we expect all labels to be contained
# in the label map.
display_name_to_id_table = hash_table_class(
initializer=lookup.KeyValueTensorInitializer(
keys=tf.constant(list(display_name_to_id.keys())),
values=tf.constant(
list(display_name_to_id.values()), dtype=tf.int64)),
default_value=-1)
self._name_to_id_table = name_to_id_table
self._display_name_to_id_table = display_name_to_id_table
super(_ClassTensorHandler, self).__init__(tensor_key, shape_keys, shape,
default_value)
def tensors_to_item(self, keys_to_tensors):
unmapped_tensor = super(_ClassTensorHandler,
self).tensors_to_item(keys_to_tensors)
return tf.maximum(self._name_to_id_table.lookup(unmapped_tensor),
self._display_name_to_id_table.lookup(unmapped_tensor))
class TfExampleDecoder(data_decoder.DataDecoder):
"""Tensorflow Example proto decoder."""
def __init__(self,
load_instance_masks=False,
instance_mask_type=input_reader_pb2.NUMERICAL_MASKS,
label_map_proto_file=None,
use_display_name=False,
dct_method='',
num_keypoints=0,
num_additional_channels=0,
load_multiclass_scores=False,
load_context_features=False,
expand_hierarchy_labels=False,
load_dense_pose=False,
load_track_id=False,
load_keypoint_depth_features=False):
"""Constructor sets keys_to_features and items_to_handlers.
Args:
load_instance_masks: whether or not to load and handle instance masks.
instance_mask_type: type of instance masks. Options are provided in
input_reader.proto. This is only used if `load_instance_masks` is True.
label_map_proto_file: a file path to a
object_detection.protos.StringIntLabelMap proto. If provided, then the
mapped IDs of 'image/object/class/text' will take precedence over the
existing 'image/object/class/label' ID. Also, if provided, it is
assumed that 'image/object/class/text' will be in the data.
use_display_name: whether or not to use the `display_name` for label
mapping (instead of `name`). Only used if label_map_proto_file is
provided.
dct_method: An optional string. Defaults to None. It only takes
effect when image format is jpeg, used to specify a hint about the
algorithm used for jpeg decompression. Currently valid values
are ['INTEGER_FAST', 'INTEGER_ACCURATE']. The hint may be ignored, for
example, the jpeg library does not have that specific option.
num_keypoints: the number of keypoints per object.
num_additional_channels: how many additional channels to use.
load_multiclass_scores: Whether to load multiclass scores associated with
boxes.
load_context_features: Whether to load information from context_features,
to provide additional context to a detection model for training and/or
inference.
expand_hierarchy_labels: Expands the object and image labels taking into
account the provided hierarchy in the label_map_proto_file. For positive
classes, the labels are extended to ancestor. For negative classes,
the labels are expanded to descendants.
load_dense_pose: Whether to load DensePose annotations.
load_track_id: Whether to load tracking annotations.
load_keypoint_depth_features: Whether to load the keypoint depth features
including keypoint relative depths and weights. If this field is set to
True but no keypoint depth features are in the input tf.Example, then
default values will be populated.
Raises:
ValueError: If `instance_mask_type` option is not one of
input_reader_pb2.DEFAULT, input_reader_pb2.NUMERICAL, or
input_reader_pb2.PNG_MASKS.
ValueError: If `expand_labels_hierarchy` is True, but the
`label_map_proto_file` is not provided.
"""
# TODO(rathodv): delete unused `use_display_name` argument once we change
# other decoders to handle label maps similarly.
del use_display_name
self.keys_to_features = {
'image/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/format':
tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/filename':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/key/sha256':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/source_id':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/height':
tf.FixedLenFeature((), tf.int64, default_value=1),
'image/width':
tf.FixedLenFeature((), tf.int64, default_value=1),
# Image-level labels.
'image/class/text':
tf.VarLenFeature(tf.string),
'image/class/label':
tf.VarLenFeature(tf.int64),
'image/neg_category_ids':
tf.VarLenFeature(tf.int64),
'image/not_exhaustive_category_ids':
tf.VarLenFeature(tf.int64),
'image/class/confidence':
tf.VarLenFeature(tf.float32),
# Object boxes and classes.
'image/object/bbox/xmin':
tf.VarLenFeature(tf.float32),
'image/object/bbox/xmax':
tf.VarLenFeature(tf.float32),
'image/object/bbox/ymin':
tf.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.VarLenFeature(tf.float32),
'image/object/class/label':
tf.VarLenFeature(tf.int64),
'image/object/class/text':
tf.VarLenFeature(tf.string),
'image/object/area':
tf.VarLenFeature(tf.float32),
'image/object/is_crowd':
tf.VarLenFeature(tf.int64),
'image/object/difficult':
tf.VarLenFeature(tf.int64),
'image/object/group_of':
tf.VarLenFeature(tf.int64),
'image/object/weight':
tf.VarLenFeature(tf.float32),
}
# We are checking `dct_method` instead of passing it directly in order to
# ensure TF version 1.6 compatibility.
if dct_method:
image = slim_example_decoder.Image(
image_key='image/encoded',
format_key='image/format',
channels=3,
dct_method=dct_method)
additional_channel_image = slim_example_decoder.Image(
image_key='image/additional_channels/encoded',
format_key='image/format',
channels=1,
repeated=True,
dct_method=dct_method)
else:
image = slim_example_decoder.Image(
image_key='image/encoded', format_key='image/format', channels=3)
additional_channel_image = slim_example_decoder.Image(
image_key='image/additional_channels/encoded',
format_key='image/format',
channels=1,
repeated=True)
self.items_to_handlers = {
fields.InputDataFields.image:
image,
fields.InputDataFields.source_id: (
slim_example_decoder.Tensor('image/source_id')),
fields.InputDataFields.key: (
slim_example_decoder.Tensor('image/key/sha256')),
fields.InputDataFields.filename: (
slim_example_decoder.Tensor('image/filename')),
# Image-level labels.
fields.InputDataFields.groundtruth_image_confidences: (
slim_example_decoder.Tensor('image/class/confidence')),
fields.InputDataFields.groundtruth_verified_neg_classes: (
slim_example_decoder.Tensor('image/neg_category_ids')),
fields.InputDataFields.groundtruth_not_exhaustive_classes: (
slim_example_decoder.Tensor('image/not_exhaustive_category_ids')),
# Object boxes and classes.
fields.InputDataFields.groundtruth_boxes: (
slim_example_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
'image/object/bbox/')),
fields.InputDataFields.groundtruth_area:
slim_example_decoder.Tensor('image/object/area'),
fields.InputDataFields.groundtruth_is_crowd: (
slim_example_decoder.Tensor('image/object/is_crowd')),
fields.InputDataFields.groundtruth_difficult: (
slim_example_decoder.Tensor('image/object/difficult')),
fields.InputDataFields.groundtruth_group_of: (
slim_example_decoder.Tensor('image/object/group_of')),
fields.InputDataFields.groundtruth_weights: (
slim_example_decoder.Tensor('image/object/weight')),
}
if load_multiclass_scores:
self.keys_to_features[
'image/object/class/multiclass_scores'] = tf.VarLenFeature(tf.float32)
self.items_to_handlers[fields.InputDataFields.multiclass_scores] = (
slim_example_decoder.Tensor('image/object/class/multiclass_scores'))
if load_context_features:
self.keys_to_features[
'image/context_features'] = tf.VarLenFeature(tf.float32)
self.items_to_handlers[fields.InputDataFields.context_features] = (
slim_example_decoder.ItemHandlerCallback(
['image/context_features', 'image/context_feature_length'],
self._reshape_context_features))
self.keys_to_features[
'image/context_feature_length'] = tf.FixedLenFeature((), tf.int64)
self.items_to_handlers[fields.InputDataFields.context_feature_length] = (
slim_example_decoder.Tensor('image/context_feature_length'))
if num_additional_channels > 0:
self.keys_to_features[
'image/additional_channels/encoded'] = tf.FixedLenFeature(
(num_additional_channels,), tf.string)
self.items_to_handlers[
fields.InputDataFields.
image_additional_channels] = additional_channel_image
self._num_keypoints = num_keypoints
if num_keypoints > 0:
self.keys_to_features['image/object/keypoint/x'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/keypoint/y'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/keypoint/visibility'] = (
tf.VarLenFeature(tf.int64))
self.items_to_handlers[fields.InputDataFields.groundtruth_keypoints] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/y', 'image/object/keypoint/x'],
self._reshape_keypoints))
kpt_vis_field = fields.InputDataFields.groundtruth_keypoint_visibilities
self.items_to_handlers[kpt_vis_field] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/x', 'image/object/keypoint/visibility'],
self._reshape_keypoint_visibilities))
if load_keypoint_depth_features:
self.keys_to_features['image/object/keypoint/z'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/keypoint/z/weights'] = (
tf.VarLenFeature(tf.float32))
self.items_to_handlers[
fields.InputDataFields.groundtruth_keypoint_depths] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/x', 'image/object/keypoint/z'],
self._reshape_keypoint_depths))
self.items_to_handlers[
fields.InputDataFields.groundtruth_keypoint_depth_weights] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/x',
'image/object/keypoint/z/weights'],
self._reshape_keypoint_depth_weights))
if load_instance_masks:
if instance_mask_type in (input_reader_pb2.DEFAULT,
input_reader_pb2.NUMERICAL_MASKS):
self.keys_to_features['image/object/mask'] = (
tf.VarLenFeature(tf.float32))
self.items_to_handlers[
fields.InputDataFields.groundtruth_instance_masks] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/mask', 'image/height', 'image/width'],
self._reshape_instance_masks))
elif instance_mask_type == input_reader_pb2.PNG_MASKS:
self.keys_to_features['image/object/mask'] = tf.VarLenFeature(tf.string)
self.items_to_handlers[
fields.InputDataFields.groundtruth_instance_masks] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/mask', 'image/height', 'image/width'],
self._decode_png_instance_masks))
else:
raise ValueError('Did not recognize the `instance_mask_type` option.')
self.keys_to_features['image/object/mask/weight'] = (
tf.VarLenFeature(tf.float32))
self.items_to_handlers[
fields.InputDataFields.groundtruth_instance_mask_weights] = (
slim_example_decoder.Tensor('image/object/mask/weight'))
if load_dense_pose:
self.keys_to_features['image/object/densepose/num'] = (
tf.VarLenFeature(tf.int64))
self.keys_to_features['image/object/densepose/part_index'] = (
tf.VarLenFeature(tf.int64))
self.keys_to_features['image/object/densepose/x'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/densepose/y'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/densepose/u'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/densepose/v'] = (
tf.VarLenFeature(tf.float32))
self.items_to_handlers[
fields.InputDataFields.groundtruth_dp_num_points] = (
slim_example_decoder.Tensor('image/object/densepose/num'))
self.items_to_handlers[fields.InputDataFields.groundtruth_dp_part_ids] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/densepose/part_index',
'image/object/densepose/num'], self._dense_pose_part_indices))
self.items_to_handlers[
fields.InputDataFields.groundtruth_dp_surface_coords] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/densepose/x', 'image/object/densepose/y',
'image/object/densepose/u', 'image/object/densepose/v',
'image/object/densepose/num'],
self._dense_pose_surface_coordinates))
if load_track_id:
self.keys_to_features['image/object/track/label'] = (
tf.VarLenFeature(tf.int64))
self.items_to_handlers[
fields.InputDataFields.groundtruth_track_ids] = (
slim_example_decoder.Tensor('image/object/track/label'))
if label_map_proto_file:
# If the label_map_proto is provided, try to use it in conjunction with
# the class text, and fall back to a materialized ID.
label_handler = slim_example_decoder.BackupHandler(
_ClassTensorHandler(
'image/object/class/text', label_map_proto_file,
default_value=''),
slim_example_decoder.Tensor('image/object/class/label'))
image_label_handler = slim_example_decoder.BackupHandler(
_ClassTensorHandler(
fields.TfExampleFields.image_class_text,
label_map_proto_file,
default_value=''),
slim_example_decoder.Tensor(fields.TfExampleFields.image_class_label))
else:
label_handler = slim_example_decoder.Tensor('image/object/class/label')
image_label_handler = slim_example_decoder.Tensor(
fields.TfExampleFields.image_class_label)
self.items_to_handlers[
fields.InputDataFields.groundtruth_classes] = label_handler
self.items_to_handlers[
fields.InputDataFields.groundtruth_image_classes] = image_label_handler
self._expand_hierarchy_labels = expand_hierarchy_labels
self._ancestors_lut = None
self._descendants_lut = None
if expand_hierarchy_labels:
if label_map_proto_file:
ancestors_lut, descendants_lut = (
label_map_util.get_label_map_hierarchy_lut(label_map_proto_file,
True))
self._ancestors_lut = tf.constant(ancestors_lut, dtype=tf.int64)
self._descendants_lut = tf.constant(descendants_lut, dtype=tf.int64)
else:
raise ValueError('In order to expand labels, the label_map_proto_file '
'has to be provided.')
def decode(self, tf_example_string_tensor):
"""Decodes serialized tensorflow example and returns a tensor dictionary.
Args:
tf_example_string_tensor: a string tensor holding a serialized tensorflow
example proto.
Returns:
A dictionary of the following tensors.
fields.InputDataFields.image - 3D uint8 tensor of shape [None, None, 3]
containing image.
fields.InputDataFields.original_image_spatial_shape - 1D int32 tensor of
shape [2] containing shape of the image.
fields.InputDataFields.source_id - string tensor containing original
image id.
fields.InputDataFields.key - string tensor with unique sha256 hash key.
fields.InputDataFields.filename - string tensor with original dataset
filename.
fields.InputDataFields.groundtruth_boxes - 2D float32 tensor of shape
[None, 4] containing box corners.
fields.InputDataFields.groundtruth_classes - 1D int64 tensor of shape
[None] containing classes for the boxes.
fields.InputDataFields.groundtruth_weights - 1D float32 tensor of
shape [None] indicating the weights of groundtruth boxes.
fields.InputDataFields.groundtruth_area - 1D float32 tensor of shape
[None] containing containing object mask area in pixel squared.
fields.InputDataFields.groundtruth_is_crowd - 1D bool tensor of shape
[None] indicating if the boxes enclose a crowd.
Optional:
fields.InputDataFields.groundtruth_image_confidences - 1D float tensor of
shape [None] indicating if a class is present in the image (1.0) or
a class is not present in the image (0.0).
fields.InputDataFields.image_additional_channels - 3D uint8 tensor of
shape [None, None, num_additional_channels]. 1st dim is height; 2nd dim
is width; 3rd dim is the number of additional channels.
fields.InputDataFields.groundtruth_difficult - 1D bool tensor of shape
[None] indicating if the boxes represent `difficult` instances.
fields.InputDataFields.groundtruth_group_of - 1D bool tensor of shape
[None] indicating if the boxes represent `group_of` instances.
fields.InputDataFields.groundtruth_keypoints - 3D float32 tensor of
shape [None, num_keypoints, 2] containing keypoints, where the
coordinates of the keypoints are ordered (y, x).
fields.InputDataFields.groundtruth_keypoint_visibilities - 2D bool
tensor of shape [None, num_keypoints] containing keypoint visibilites.
fields.InputDataFields.groundtruth_instance_masks - 3D float32 tensor of
shape [None, None, None] containing instance masks.
fields.InputDataFields.groundtruth_instance_mask_weights - 1D float32
tensor of shape [None] containing weights. These are typically values
in {0.0, 1.0} which indicate whether to consider the mask related to an
object.
fields.InputDataFields.groundtruth_image_classes - 1D int64 of shape
[None] containing classes for the boxes.
fields.InputDataFields.multiclass_scores - 1D float32 tensor of shape
[None * num_classes] containing flattened multiclass scores for
groundtruth boxes.
fields.InputDataFields.context_features - 1D float32 tensor of shape
[context_feature_length * num_context_features]
fields.InputDataFields.context_feature_length - int32 tensor specifying
the length of each feature in context_features
"""
serialized_example = tf.reshape(tf_example_string_tensor, shape=[])
decoder = slim_example_decoder.TFExampleDecoder(self.keys_to_features,
self.items_to_handlers)
keys = decoder.list_items()
tensors = decoder.decode(serialized_example, items=keys)
tensor_dict = dict(zip(keys, tensors))
is_crowd = fields.InputDataFields.groundtruth_is_crowd
tensor_dict[is_crowd] = tf.cast(tensor_dict[is_crowd], dtype=tf.bool)
tensor_dict[fields.InputDataFields.image].set_shape([None, None, 3])
tensor_dict[fields.InputDataFields.original_image_spatial_shape] = tf.shape(
tensor_dict[fields.InputDataFields.image])[:2]
if fields.InputDataFields.image_additional_channels in tensor_dict:
channels = tensor_dict[fields.InputDataFields.image_additional_channels]
channels = tf.squeeze(channels, axis=3)
channels = tf.transpose(channels, perm=[1, 2, 0])
tensor_dict[fields.InputDataFields.image_additional_channels] = channels
def default_groundtruth_weights():
return tf.ones(
[tf.shape(tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]],
dtype=tf.float32)
tensor_dict[fields.InputDataFields.groundtruth_weights] = tf.cond(
tf.greater(
tf.shape(
tensor_dict[fields.InputDataFields.groundtruth_weights])[0],
0), lambda: tensor_dict[fields.InputDataFields.groundtruth_weights],
default_groundtruth_weights)
if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
gt_instance_masks = tensor_dict[
fields.InputDataFields.groundtruth_instance_masks]
num_gt_instance_masks = tf.shape(gt_instance_masks)[0]
gt_instance_mask_weights = tensor_dict[
fields.InputDataFields.groundtruth_instance_mask_weights]
num_gt_instance_mask_weights = tf.shape(gt_instance_mask_weights)[0]
def default_groundtruth_instance_mask_weights():
return tf.ones([num_gt_instance_masks], dtype=tf.float32)
tensor_dict[fields.InputDataFields.groundtruth_instance_mask_weights] = (
tf.cond(tf.greater(num_gt_instance_mask_weights, 0),
lambda: gt_instance_mask_weights,
default_groundtruth_instance_mask_weights))
if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
# Set all keypoints that are not labeled to NaN.
gt_kpt_fld = fields.InputDataFields.groundtruth_keypoints
gt_kpt_vis_fld = fields.InputDataFields.groundtruth_keypoint_visibilities
visibilities_tiled = tf.tile(
tf.expand_dims(tensor_dict[gt_kpt_vis_fld], -1),
[1, 1, 2])
tensor_dict[gt_kpt_fld] = tf.where(
visibilities_tiled,
tensor_dict[gt_kpt_fld],
np.nan * tf.ones_like(tensor_dict[gt_kpt_fld]))
if self._expand_hierarchy_labels:
input_fields = fields.InputDataFields
image_classes, image_confidences = self._expand_image_label_hierarchy(
tensor_dict[input_fields.groundtruth_image_classes],
tensor_dict[input_fields.groundtruth_image_confidences])
tensor_dict[input_fields.groundtruth_image_classes] = image_classes
tensor_dict[input_fields.groundtruth_image_confidences] = (
image_confidences)
box_fields = [
fields.InputDataFields.groundtruth_group_of,
fields.InputDataFields.groundtruth_is_crowd,
fields.InputDataFields.groundtruth_difficult,
fields.InputDataFields.groundtruth_area,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_weights,
]
def expand_field(field_name):
return self._expansion_box_field_labels(
tensor_dict[input_fields.groundtruth_classes],
tensor_dict[field_name])
# pylint: disable=cell-var-from-loop
for field in box_fields:
if field in tensor_dict:
tensor_dict[field] = tf.cond(
tf.size(tensor_dict[field]) > 0, lambda: expand_field(field),
lambda: tensor_dict[field])
# pylint: enable=cell-var-from-loop
tensor_dict[input_fields.groundtruth_classes] = (
self._expansion_box_field_labels(
tensor_dict[input_fields.groundtruth_classes],
tensor_dict[input_fields.groundtruth_classes], True))
if fields.InputDataFields.groundtruth_group_of in tensor_dict:
group_of = fields.InputDataFields.groundtruth_group_of
tensor_dict[group_of] = tf.cast(tensor_dict[group_of], dtype=tf.bool)
if fields.InputDataFields.groundtruth_dp_num_points in tensor_dict:
tensor_dict[fields.InputDataFields.groundtruth_dp_num_points] = tf.cast(
tensor_dict[fields.InputDataFields.groundtruth_dp_num_points],
dtype=tf.int32)
tensor_dict[fields.InputDataFields.groundtruth_dp_part_ids] = tf.cast(
tensor_dict[fields.InputDataFields.groundtruth_dp_part_ids],
dtype=tf.int32)
if fields.InputDataFields.groundtruth_track_ids in tensor_dict:
tensor_dict[fields.InputDataFields.groundtruth_track_ids] = tf.cast(
tensor_dict[fields.InputDataFields.groundtruth_track_ids],
dtype=tf.int32)
return tensor_dict
def _reshape_keypoints(self, keys_to_tensors):
"""Reshape keypoints.
The keypoints are reshaped to [num_instances, num_keypoints, 2].
Args:
keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
'image/object/keypoint/x'
'image/object/keypoint/y'
Returns:
A 3-D float tensor of shape [num_instances, num_keypoints, 2] with values
in [0, 1].
"""
y = keys_to_tensors['image/object/keypoint/y']
if isinstance(y, tf.SparseTensor):
y = tf.sparse_tensor_to_dense(y)
y = tf.expand_dims(y, 1)
x = keys_to_tensors['image/object/keypoint/x']
if isinstance(x, tf.SparseTensor):
x = tf.sparse_tensor_to_dense(x)
x = tf.expand_dims(x, 1)
keypoints = tf.concat([y, x], 1)
keypoints = tf.reshape(keypoints, [-1, self._num_keypoints, 2])
return keypoints
def _reshape_keypoint_depths(self, keys_to_tensors):
"""Reshape keypoint depths.
The keypoint depths are reshaped to [num_instances, num_keypoints]. The
keypoint depth tensor is expected to have the same shape as the keypoint x
(or y) tensors. If not (usually because the example does not have the depth
groundtruth), then default depth values (zero) are provided.
Args:
keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
'image/object/keypoint/x'
'image/object/keypoint/z'
Returns:
A 2-D float tensor of shape [num_instances, num_keypoints] with values
representing the keypoint depths.
"""
x = keys_to_tensors['image/object/keypoint/x']
z = keys_to_tensors['image/object/keypoint/z']
if isinstance(z, tf.SparseTensor):
z = tf.sparse_tensor_to_dense(z)
if isinstance(x, tf.SparseTensor):
x = tf.sparse_tensor_to_dense(x)
default_z = tf.zeros_like(x)
# Use keypoint depth groundtruth if provided, otherwise use the default
# depth value.
z = tf.cond(tf.equal(tf.size(x), tf.size(z)),
true_fn=lambda: z,
false_fn=lambda: default_z)
z = tf.reshape(z, [-1, self._num_keypoints])
return z
def _reshape_keypoint_depth_weights(self, keys_to_tensors):
"""Reshape keypoint depth weights.
The keypoint depth weights are reshaped to [num_instances, num_keypoints].
The keypoint depth weights tensor is expected to have the same shape as the
keypoint x (or y) tensors. If not (usually because the example does not have
the depth weights groundtruth), then default weight values (zero) are
provided.
Args:
keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
'image/object/keypoint/x'
'image/object/keypoint/z/weights'
Returns:
A 2-D float tensor of shape [num_instances, num_keypoints] with values
representing the keypoint depth weights.
"""
x = keys_to_tensors['image/object/keypoint/x']
z = keys_to_tensors['image/object/keypoint/z/weights']
if isinstance(z, tf.SparseTensor):
z = tf.sparse_tensor_to_dense(z)
if isinstance(x, tf.SparseTensor):
x = tf.sparse_tensor_to_dense(x)
default_z = tf.zeros_like(x)
# Use keypoint depth weights if provided, otherwise use the default
# values.
z = tf.cond(tf.equal(tf.size(x), tf.size(z)),
true_fn=lambda: z,
false_fn=lambda: default_z)
z = tf.reshape(z, [-1, self._num_keypoints])
return z
def _reshape_keypoint_visibilities(self, keys_to_tensors):
"""Reshape keypoint visibilities.
The keypoint visibilities are reshaped to [num_instances,
num_keypoints].
The raw keypoint visibilities are expected to conform to the
MSCoco definition. See Visibility enum.
The returned boolean is True for the labeled case (either
Visibility.NOT_VISIBLE or Visibility.VISIBLE). These are the same categories
that COCO uses to evaluate keypoint detection performance:
http://cocodataset.org/#keypoints-eval
If image/object/keypoint/visibility is not provided, visibilities will be
set to True for finite keypoint coordinate values, and 0 if the coordinates
are NaN.
Args:
keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
'image/object/keypoint/x'
'image/object/keypoint/visibility'
Returns:
A 2-D bool tensor of shape [num_instances, num_keypoints] with values
in {0, 1}. 1 if the keypoint is labeled, 0 otherwise.
"""
x = keys_to_tensors['image/object/keypoint/x']
vis = keys_to_tensors['image/object/keypoint/visibility']
if isinstance(vis, tf.SparseTensor):
vis = tf.sparse_tensor_to_dense(vis)
if isinstance(x, tf.SparseTensor):
x = tf.sparse_tensor_to_dense(x)
default_vis = tf.where(
tf.math.is_nan(x),
Visibility.UNLABELED.value * tf.ones_like(x, dtype=tf.int64),
Visibility.VISIBLE.value * tf.ones_like(x, dtype=tf.int64))
# Use visibility if provided, otherwise use the default visibility.
vis = tf.cond(tf.equal(tf.size(x), tf.size(vis)),
true_fn=lambda: vis,
false_fn=lambda: default_vis)
vis = tf.math.logical_or(
tf.math.equal(vis, Visibility.NOT_VISIBLE.value),
tf.math.equal(vis, Visibility.VISIBLE.value))
vis = tf.reshape(vis, [-1, self._num_keypoints])
return vis
def _reshape_instance_masks(self, keys_to_tensors):
"""Reshape instance segmentation masks.
The instance segmentation masks are reshaped to [num_instances, height,
width].
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 3-D float tensor of shape [num_instances, height, width] with values
in {0, 1}.
"""
height = keys_to_tensors['image/height']
width = keys_to_tensors['image/width']
to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
masks = keys_to_tensors['image/object/mask']
if isinstance(masks, tf.SparseTensor):
masks = tf.sparse_tensor_to_dense(masks)
masks = tf.reshape(
tf.cast(tf.greater(masks, 0.0), dtype=tf.float32), to_shape)
return tf.cast(masks, tf.float32)
def _reshape_context_features(self, keys_to_tensors):
"""Reshape context features.
The instance context_features are reshaped to
[num_context_features, context_feature_length]
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 2-D float tensor of shape [num_context_features, context_feature_length]
"""
context_feature_length = keys_to_tensors['image/context_feature_length']
to_shape = tf.cast(tf.stack([-1, context_feature_length]), tf.int32)
context_features = keys_to_tensors['image/context_features']
if isinstance(context_features, tf.SparseTensor):
context_features = tf.sparse_tensor_to_dense(context_features)
context_features = tf.reshape(context_features, to_shape)
return context_features
def _decode_png_instance_masks(self, keys_to_tensors):
"""Decode PNG instance segmentation masks and stack into dense tensor.
The instance segmentation masks are reshaped to [num_instances, height,
width].
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 3-D float tensor of shape [num_instances, height, width] with values
in {0, 1}.
"""
def decode_png_mask(image_buffer):
image = tf.squeeze(
tf.image.decode_image(image_buffer, channels=1), axis=2)
image.set_shape([None, None])
image = tf.cast(tf.greater(image, 0), dtype=tf.float32)
return image
png_masks = keys_to_tensors['image/object/mask']
height = keys_to_tensors['image/height']
width = keys_to_tensors['image/width']
if isinstance(png_masks, tf.SparseTensor):
png_masks = tf.sparse_tensor_to_dense(png_masks, default_value='')
return tf.cond(
tf.greater(tf.size(png_masks), 0),
lambda: tf.map_fn(decode_png_mask, png_masks, dtype=tf.float32),
lambda: tf.zeros(tf.cast(tf.stack([0, height, width]), dtype=tf.int32)))
def _dense_pose_part_indices(self, keys_to_tensors):
"""Creates a tensor that contains part indices for each DensePose point.
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 2-D int32 tensor of shape [num_instances, num_points] where each element
contains the DensePose part index (0-23). The value `num_points`
corresponds to the maximum number of sampled points across all instances
in the image. Note that instances with less sampled points will be padded
with zeros in the last dimension.
"""
num_points_per_instances = keys_to_tensors['image/object/densepose/num']
part_index = keys_to_tensors['image/object/densepose/part_index']
if isinstance(num_points_per_instances, tf.SparseTensor):
num_points_per_instances = tf.sparse_tensor_to_dense(
num_points_per_instances)
if isinstance(part_index, tf.SparseTensor):
part_index = tf.sparse_tensor_to_dense(part_index)
part_index = tf.cast(part_index, dtype=tf.int32)
max_points_per_instance = tf.cast(
tf.math.reduce_max(num_points_per_instances), dtype=tf.int32)
num_points_cumulative = tf.concat([
[0], tf.math.cumsum(num_points_per_instances)], axis=0)
def pad_parts_tensor(instance_ind):
points_range_start = num_points_cumulative[instance_ind]
points_range_end = num_points_cumulative[instance_ind + 1]
part_inds = part_index[points_range_start:points_range_end]
return shape_utils.pad_or_clip_nd(part_inds,
output_shape=[max_points_per_instance])
return tf.map_fn(pad_parts_tensor,
tf.range(tf.size(num_points_per_instances)),
dtype=tf.int32)
def _dense_pose_surface_coordinates(self, keys_to_tensors):
"""Creates a tensor that contains surface coords for each DensePose point.
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 3-D float32 tensor of shape [num_instances, num_points, 4] where each
point contains (y, x, v, u) data for each sampled DensePose point. The
(y, x) coordinate has normalized image locations for the point, and (v, u)
contains the surface coordinate (also normalized) for the part. The value
`num_points` corresponds to the maximum number of sampled points across
all instances in the image. Note that instances with less sampled points
will be padded with zeros in dim=1.
"""
num_points_per_instances = keys_to_tensors['image/object/densepose/num']
dp_y = keys_to_tensors['image/object/densepose/y']
dp_x = keys_to_tensors['image/object/densepose/x']
dp_v = keys_to_tensors['image/object/densepose/v']
dp_u = keys_to_tensors['image/object/densepose/u']
if isinstance(num_points_per_instances, tf.SparseTensor):
num_points_per_instances = tf.sparse_tensor_to_dense(
num_points_per_instances)
if isinstance(dp_y, tf.SparseTensor):
dp_y = tf.sparse_tensor_to_dense(dp_y)
if isinstance(dp_x, tf.SparseTensor):
dp_x = tf.sparse_tensor_to_dense(dp_x)
if isinstance(dp_v, tf.SparseTensor):
dp_v = tf.sparse_tensor_to_dense(dp_v)
if isinstance(dp_u, tf.SparseTensor):
dp_u = tf.sparse_tensor_to_dense(dp_u)
max_points_per_instance = tf.cast(
tf.math.reduce_max(num_points_per_instances), dtype=tf.int32)
num_points_cumulative = tf.concat([
[0], tf.math.cumsum(num_points_per_instances)], axis=0)
def pad_surface_coordinates_tensor(instance_ind):
"""Pads DensePose surface coordinates for each instance."""
points_range_start = num_points_cumulative[instance_ind]
points_range_end = num_points_cumulative[instance_ind + 1]
y = dp_y[points_range_start:points_range_end]
x = dp_x[points_range_start:points_range_end]
v = dp_v[points_range_start:points_range_end]
u = dp_u[points_range_start:points_range_end]
# Create [num_points_i, 4] tensor, where num_points_i is the number of
# sampled points for instance i.
unpadded_tensor = tf.stack([y, x, v, u], axis=1)
return shape_utils.pad_or_clip_nd(
unpadded_tensor, output_shape=[max_points_per_instance, 4])
return tf.map_fn(pad_surface_coordinates_tensor,
tf.range(tf.size(num_points_per_instances)),
dtype=tf.float32)
def _expand_image_label_hierarchy(self, image_classes, image_confidences):
"""Expand image level labels according to the hierarchy.
Args:
image_classes: Int64 tensor with the image level class ids for a sample.
image_confidences: Float tensor signaling whether a class id is present in
the image (1.0) or not present (0.0).
Returns:
new_image_classes: Int64 tensor equal to expanding image_classes.
new_image_confidences: Float tensor equal to expanding image_confidences.
"""
def expand_labels(relation_tensor, confidence_value):
"""Expand to ancestors or descendants depending on arguments."""
mask = tf.equal(image_confidences, confidence_value)
target_image_classes = tf.boolean_mask(image_classes, mask)
expanded_indices = tf.reduce_any((tf.gather(
relation_tensor, target_image_classes - _LABEL_OFFSET, axis=0) > 0),
axis=0)
expanded_indices = tf.where(expanded_indices)[:, 0] + _LABEL_OFFSET
new_groundtruth_image_classes = (
tf.concat([
tf.boolean_mask(image_classes, tf.logical_not(mask)),
expanded_indices,
],
axis=0))
new_groundtruth_image_confidences = (
tf.concat([
tf.boolean_mask(image_confidences, tf.logical_not(mask)),
tf.ones([tf.shape(expanded_indices)[0]],
dtype=image_confidences.dtype) * confidence_value,
],
axis=0))
return new_groundtruth_image_classes, new_groundtruth_image_confidences
image_classes, image_confidences = expand_labels(self._ancestors_lut, 1.0)
new_image_classes, new_image_confidences = expand_labels(
self._descendants_lut, 0.0)
return new_image_classes, new_image_confidences
def _expansion_box_field_labels(self,
object_classes,
object_field,
copy_class_id=False):
"""Expand the labels of a specific object field according to the hierarchy.
Args:
object_classes: Int64 tensor with the class id for each element in
object_field.
object_field: Tensor to be expanded.
copy_class_id: Boolean to choose whether to use class id values in the
output tensor instead of replicating the original values.
Returns:
A tensor with the result of expanding object_field.
"""
expanded_indices = tf.gather(
self._ancestors_lut, object_classes - _LABEL_OFFSET, axis=0)
if copy_class_id:
new_object_field = tf.where(expanded_indices > 0)[:, 1] + _LABEL_OFFSET
else:
new_object_field = tf.repeat(
object_field, tf.reduce_sum(expanded_indices, axis=1), axis=0)
return new_object_field | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/data_decoders/tf_example_decoder.py | tf_example_decoder.py |
"""Sequence example decoder for object detection."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import zip
import tensorflow.compat.v1 as tf
from tf_slim import tfexample_decoder as slim_example_decoder
from object_detection.core import data_decoder
from object_detection.core import standard_fields as fields
from object_detection.utils import label_map_util
# pylint: disable=g-import-not-at-top
try:
from tensorflow.contrib import lookup as contrib_lookup
except ImportError:
# TF 2.0 doesn't ship with contrib.
pass
# pylint: enable=g-import-not-at-top
class _ClassTensorHandler(slim_example_decoder.Tensor):
"""An ItemHandler to fetch class ids from class text."""
def __init__(self,
tensor_key,
label_map_proto_file,
shape_keys=None,
shape=None,
default_value=''):
"""Initializes the LookupTensor handler.
Simply calls a vocabulary (most often, a label mapping) lookup.
Args:
tensor_key: the name of the `TFExample` feature to read the tensor from.
label_map_proto_file: File path to a text format LabelMapProto message
mapping class text to id.
shape_keys: Optional name or list of names of the TF-Example feature in
which the tensor shape is stored. If a list, then each corresponds to
one dimension of the shape.
shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is
reshaped accordingly.
default_value: The value used when the `tensor_key` is not found in a
particular `TFExample`.
Raises:
ValueError: if both `shape_keys` and `shape` are specified.
"""
name_to_id = label_map_util.get_label_map_dict(
label_map_proto_file, use_display_name=False)
# We use a default_value of -1, but we expect all labels to be contained
# in the label map.
try:
# Dynamically try to load the tf v2 lookup, falling back to contrib
lookup = tf.compat.v2.lookup
hash_table_class = tf.compat.v2.lookup.StaticHashTable
except AttributeError:
lookup = contrib_lookup
hash_table_class = contrib_lookup.HashTable
name_to_id_table = hash_table_class(
initializer=lookup.KeyValueTensorInitializer(
keys=tf.constant(list(name_to_id.keys())),
values=tf.constant(list(name_to_id.values()), dtype=tf.int64)),
default_value=-1)
self._name_to_id_table = name_to_id_table
super(_ClassTensorHandler, self).__init__(tensor_key, shape_keys, shape,
default_value)
def tensors_to_item(self, keys_to_tensors):
unmapped_tensor = super(_ClassTensorHandler,
self).tensors_to_item(keys_to_tensors)
return self._name_to_id_table.lookup(unmapped_tensor)
class TfSequenceExampleDecoder(data_decoder.DataDecoder):
"""Tensorflow Sequence Example proto decoder for Object Detection.
Sequence examples contain sequences of images which share common
features. The structure of TfSequenceExamples can be seen in
dataset_tools/seq_example_util.py
For the TFODAPI, the following fields are required:
Shared features:
'image/format'
'image/height'
'image/width'
Features with an entry for each image, where bounding box features can
be empty lists if the image does not contain any objects:
'image/encoded'
'image/source_id'
'region/bbox/xmin'
'region/bbox/xmax'
'region/bbox/ymin'
'region/bbox/ymax'
'region/label/string'
Optionally, the sequence example can include context_features for use in
Context R-CNN (see https://arxiv.org/abs/1912.03538):
'image/context_features'
'image/context_feature_length'
'image/context_features_image_id_list'
"""
def __init__(self,
label_map_proto_file,
load_context_features=False,
load_context_image_ids=False,
use_display_name=False,
fully_annotated=False):
"""Constructs `TfSequenceExampleDecoder` object.
Args:
label_map_proto_file: a file path to a
object_detection.protos.StringIntLabelMap proto. The
label map will be used to map IDs of 'region/label/string'.
It is assumed that 'region/label/string' will be in the data.
load_context_features: Whether to load information from context_features,
to provide additional context to a detection model for training and/or
inference
load_context_image_ids: Whether to load the corresponding image ids for
the context_features in order to visualize attention.
use_display_name: whether or not to use the `display_name` for label
mapping (instead of `name`). Only used if label_map_proto_file is
provided.
fully_annotated: If True, will assume that every frame (whether it has
boxes or not), has been fully annotated. If False, a
'region/is_annotated' field must be provided in the dataset which
indicates which frames have annotations. Default False.
"""
# Specifies how the tf.SequenceExamples are decoded.
self._context_keys_to_features = {
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/height': tf.FixedLenFeature((), tf.int64),
'image/width': tf.FixedLenFeature((), tf.int64),
}
self._sequence_keys_to_feature_lists = {
'image/encoded': tf.FixedLenSequenceFeature([], dtype=tf.string),
'image/source_id': tf.FixedLenSequenceFeature([], dtype=tf.string),
'region/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'region/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'region/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'region/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'region/label/string': tf.VarLenFeature(dtype=tf.string),
'region/label/confidence': tf.VarLenFeature(dtype=tf.float32),
}
self._items_to_handlers = {
# Context.
fields.InputDataFields.image_height:
slim_example_decoder.Tensor('image/height'),
fields.InputDataFields.image_width:
slim_example_decoder.Tensor('image/width'),
# Sequence.
fields.InputDataFields.num_groundtruth_boxes:
slim_example_decoder.NumBoxesSequence('region/bbox/xmin'),
fields.InputDataFields.groundtruth_boxes:
slim_example_decoder.BoundingBoxSequence(
prefix='region/bbox/', default_value=0.0),
fields.InputDataFields.groundtruth_weights:
slim_example_decoder.Tensor('region/label/confidence'),
}
# If the dataset is sparsely annotated, parse sequence features which
# indicate which frames have been labeled.
if not fully_annotated:
self._sequence_keys_to_feature_lists['region/is_annotated'] = (
tf.FixedLenSequenceFeature([], dtype=tf.int64))
self._items_to_handlers[fields.InputDataFields.is_annotated] = (
slim_example_decoder.Tensor('region/is_annotated'))
self._items_to_handlers[fields.InputDataFields.image] = (
slim_example_decoder.Tensor('image/encoded'))
self._items_to_handlers[fields.InputDataFields.source_id] = (
slim_example_decoder.Tensor('image/source_id'))
label_handler = _ClassTensorHandler(
'region/label/string', label_map_proto_file, default_value='')
self._items_to_handlers[
fields.InputDataFields.groundtruth_classes] = label_handler
if load_context_features:
self._context_keys_to_features['image/context_features'] = (
tf.VarLenFeature(dtype=tf.float32))
self._items_to_handlers[fields.InputDataFields.context_features] = (
slim_example_decoder.ItemHandlerCallback(
['image/context_features', 'image/context_feature_length'],
self._reshape_context_features))
self._context_keys_to_features['image/context_feature_length'] = (
tf.FixedLenFeature((), tf.int64))
self._items_to_handlers[fields.InputDataFields.context_feature_length] = (
slim_example_decoder.Tensor('image/context_feature_length'))
if load_context_image_ids:
self._context_keys_to_features['image/context_features_image_id_list'] = (
tf.VarLenFeature(dtype=tf.string))
self._items_to_handlers[
fields.InputDataFields.context_features_image_id_list] = (
slim_example_decoder.Tensor(
'image/context_features_image_id_list',
default_value=''))
self._fully_annotated = fully_annotated
def decode(self, tf_seq_example_string_tensor):
"""Decodes serialized `tf.SequenceExample`s and returns a tensor dictionary.
Args:
tf_seq_example_string_tensor: a string tensor holding a serialized
`tf.SequenceExample`.
Returns:
A list of dictionaries with (at least) the following tensors:
fields.InputDataFields.source_id: a [num_frames] string tensor with a
unique ID for each frame.
fields.InputDataFields.num_groundtruth_boxes: a [num_frames] int32 tensor
specifying the number of boxes in each frame.
fields.InputDataFields.groundtruth_boxes: a [num_frames, num_boxes, 4]
float32 tensor with bounding boxes for each frame. Note that num_boxes
is the maximum boxes seen in any individual frame. Any frames with fewer
boxes are padded with 0.0.
fields.InputDataFields.groundtruth_classes: a [num_frames, num_boxes]
int32 tensor with class indices for each box in each frame.
fields.InputDataFields.groundtruth_weights: a [num_frames, num_boxes]
float32 tensor with weights of the groundtruth boxes.
fields.InputDataFields.is_annotated: a [num_frames] bool tensor specifying
whether the image was annotated or not. If False, the corresponding
entries in the groundtruth tensor will be ignored.
fields.InputDataFields.context_features - 1D float32 tensor of shape
[context_feature_length * num_context_features]
fields.InputDataFields.context_feature_length - int32 tensor specifying
the length of each feature in context_features
fields.InputDataFields.image: a [num_frames] string tensor with
the encoded images.
fields.inputDataFields.context_features_image_id_list: a 1D vector
of shape [num_context_features] containing string tensors.
"""
serialized_example = tf.reshape(tf_seq_example_string_tensor, shape=[])
decoder = slim_example_decoder.TFSequenceExampleDecoder(
self._context_keys_to_features, self._sequence_keys_to_feature_lists,
self._items_to_handlers)
keys = decoder.list_items()
tensors = decoder.decode(serialized_example, items=keys)
tensor_dict = dict(list(zip(keys, tensors)))
tensor_dict[fields.InputDataFields.groundtruth_boxes].set_shape(
[None, None, 4])
tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.cast(
tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
dtype=tf.int32)
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.cast(
tensor_dict[fields.InputDataFields.groundtruth_classes], dtype=tf.int32)
tensor_dict[fields.InputDataFields.original_image_spatial_shape] = tf.cast(
tf.stack([
tensor_dict[fields.InputDataFields.image_height],
tensor_dict[fields.InputDataFields.image_width]
]),
dtype=tf.int32)
tensor_dict.pop(fields.InputDataFields.image_height)
tensor_dict.pop(fields.InputDataFields.image_width)
def default_groundtruth_weights():
"""Produces weights of 1.0 for each valid box, and 0.0 otherwise."""
num_boxes_per_frame = tensor_dict[
fields.InputDataFields.num_groundtruth_boxes]
max_num_boxes = tf.reduce_max(num_boxes_per_frame)
num_boxes_per_frame_tiled = tf.tile(
tf.expand_dims(num_boxes_per_frame, axis=-1),
multiples=tf.stack([1, max_num_boxes]))
range_tiled = tf.tile(
tf.expand_dims(tf.range(max_num_boxes), axis=0),
multiples=tf.stack([tf.shape(num_boxes_per_frame)[0], 1]))
return tf.cast(
tf.greater(num_boxes_per_frame_tiled, range_tiled), tf.float32)
tensor_dict[fields.InputDataFields.groundtruth_weights] = tf.cond(
tf.greater(
tf.size(tensor_dict[fields.InputDataFields.groundtruth_weights]),
0), lambda: tensor_dict[fields.InputDataFields.groundtruth_weights],
default_groundtruth_weights)
if self._fully_annotated:
tensor_dict[fields.InputDataFields.is_annotated] = tf.ones_like(
tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
dtype=tf.bool)
else:
tensor_dict[fields.InputDataFields.is_annotated] = tf.cast(
tensor_dict[fields.InputDataFields.is_annotated], dtype=tf.bool)
return tensor_dict
def _reshape_context_features(self, keys_to_tensors):
"""Reshape context features.
The instance context_features are reshaped to
[num_context_features, context_feature_length]
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 2-D float tensor of shape [num_context_features, context_feature_length]
"""
context_feature_length = keys_to_tensors['image/context_feature_length']
to_shape = tf.cast(tf.stack([-1, context_feature_length]), tf.int32)
context_features = keys_to_tensors['image/context_features']
if isinstance(context_features, tf.SparseTensor):
context_features = tf.sparse_tensor_to_dense(context_features)
context_features = tf.reshape(context_features, to_shape)
return context_features | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/data_decoders/tf_sequence_example_decoder.py | tf_sequence_example_decoder.py |
"""Generates grid anchors on the fly corresponding to multiple CNN layers."""
import tensorflow.compat.v1 as tf
from object_detection.anchor_generators import grid_anchor_generator
from object_detection.core import anchor_generator
from object_detection.core import box_list_ops
class FlexibleGridAnchorGenerator(anchor_generator.AnchorGenerator):
"""Generate a grid of anchors for multiple CNN layers of different scale."""
def __init__(self, base_sizes, aspect_ratios, anchor_strides, anchor_offsets,
normalize_coordinates=True):
"""Constructs a FlexibleGridAnchorGenerator.
This generator is more flexible than the multiple_grid_anchor_generator
and multiscale_grid_anchor_generator, and can generate any of the anchors
that they can generate, plus additional anchor configurations. In
particular, it allows the explicit specification of scale and aspect ratios
at each layer without making any assumptions between the relationship
between scales and aspect ratios between layers.
Args:
base_sizes: list of tuples of anchor base sizes. For example, setting
base_sizes=[(1, 2, 3), (4, 5)] means that we want 3 anchors at each
grid point on the first layer with the base sizes of 1, 2, and 3, and 2
anchors at each grid point on the second layer with the base sizes of
4 and 5.
aspect_ratios: list or tuple of aspect ratios. For example, setting
aspect_ratios=[(1.0, 2.0, 0.5), (1.0, 2.0)] means that we want 3 anchors
at each grid point on the first layer with aspect ratios of 1.0, 2.0,
and 0.5, and 2 anchors at each grid point on the sercond layer with the
base sizes of 1.0 and 2.0.
anchor_strides: list of pairs of strides in pixels (in y and x directions
respectively). For example, setting anchor_strides=[(25, 25), (50, 50)]
means that we want the anchors corresponding to the first layer to be
strided by 25 pixels and those in the second layer to be strided by 50
pixels in both y and x directions.
anchor_offsets: list of pairs of offsets in pixels (in y and x directions
respectively). The offset specifies where we want the center of the
(0, 0)-th anchor to lie for each layer. For example, setting
anchor_offsets=[(10, 10), (20, 20)]) means that we want the
(0, 0)-th anchor of the first layer to lie at (10, 10) in pixel space
and likewise that we want the (0, 0)-th anchor of the second layer to
lie at (25, 25) in pixel space.
normalize_coordinates: whether to produce anchors in normalized
coordinates. (defaults to True).
"""
self._base_sizes = base_sizes
self._aspect_ratios = aspect_ratios
self._anchor_strides = anchor_strides
self._anchor_offsets = anchor_offsets
self._normalize_coordinates = normalize_coordinates
def name_scope(self):
return 'FlexibleGridAnchorGenerator'
def num_anchors_per_location(self):
"""Returns the number of anchors per spatial location.
Returns:
a list of integers, one for each expected feature map to be passed to
the Generate function.
"""
return [len(size) for size in self._base_sizes]
def _generate(self, feature_map_shape_list, im_height=1, im_width=1):
"""Generates a collection of bounding boxes to be used as anchors.
Currently we require the input image shape to be statically defined. That
is, im_height and im_width should be integers rather than tensors.
Args:
feature_map_shape_list: list of pairs of convnet layer resolutions in the
format [(height_0, width_0), (height_1, width_1), ...]. For example,
setting feature_map_shape_list=[(8, 8), (7, 7)] asks for anchors that
correspond to an 8x8 layer followed by a 7x7 layer.
im_height: the height of the image to generate the grid for. If both
im_height and im_width are 1, anchors can only be generated in
absolute coordinates.
im_width: the width of the image to generate the grid for. If both
im_height and im_width are 1, anchors can only be generated in
absolute coordinates.
Returns:
boxes_list: a list of BoxLists each holding anchor boxes corresponding to
the input feature map shapes.
Raises:
ValueError: if im_height and im_width are 1, but normalized coordinates
were requested.
"""
anchor_grid_list = []
for (feat_shape, base_sizes, aspect_ratios, anchor_stride, anchor_offset
) in zip(feature_map_shape_list, self._base_sizes, self._aspect_ratios,
self._anchor_strides, self._anchor_offsets):
anchor_grid = grid_anchor_generator.tile_anchors(
feat_shape[0],
feat_shape[1],
tf.cast(tf.convert_to_tensor(base_sizes), dtype=tf.float32),
tf.cast(tf.convert_to_tensor(aspect_ratios), dtype=tf.float32),
tf.constant([1.0, 1.0]),
tf.cast(tf.convert_to_tensor(anchor_stride), dtype=tf.float32),
tf.cast(tf.convert_to_tensor(anchor_offset), dtype=tf.float32))
num_anchors = anchor_grid.num_boxes_static()
if num_anchors is None:
num_anchors = anchor_grid.num_boxes()
anchor_indices = tf.zeros([num_anchors])
anchor_grid.add_field('feature_map_index', anchor_indices)
if self._normalize_coordinates:
if im_height == 1 or im_width == 1:
raise ValueError(
'Normalized coordinates were requested upon construction of the '
'FlexibleGridAnchorGenerator, but a subsequent call to '
'generate did not supply dimension information.')
anchor_grid = box_list_ops.to_normalized_coordinates(
anchor_grid, im_height, im_width, check_range=False)
anchor_grid_list.append(anchor_grid)
return anchor_grid_list | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/anchor_generators/flexible_grid_anchor_generator.py | flexible_grid_anchor_generator.py |
import tensorflow.compat.v1 as tf
from object_detection.core import anchor_generator
from object_detection.core import box_list
from object_detection.utils import ops
class GridAnchorGenerator(anchor_generator.AnchorGenerator):
"""Generates a grid of anchors at given scales and aspect ratios."""
def __init__(self,
scales=(0.5, 1.0, 2.0),
aspect_ratios=(0.5, 1.0, 2.0),
base_anchor_size=None,
anchor_stride=None,
anchor_offset=None):
"""Constructs a GridAnchorGenerator.
Args:
scales: a list of (float) scales, default=(0.5, 1.0, 2.0)
aspect_ratios: a list of (float) aspect ratios, default=(0.5, 1.0, 2.0)
base_anchor_size: base anchor size as height, width (
(length-2 float32 list or tensor, default=[256, 256])
anchor_stride: difference in centers between base anchors for adjacent
grid positions (length-2 float32 list or tensor,
default=[16, 16])
anchor_offset: center of the anchor with scale and aspect ratio 1 for the
upper left element of the grid, this should be zero for
feature networks with only VALID padding and even receptive
field size, but may need additional calculation if other
padding is used (length-2 float32 list or tensor,
default=[0, 0])
"""
# Handle argument defaults
if base_anchor_size is None:
base_anchor_size = [256, 256]
if anchor_stride is None:
anchor_stride = [16, 16]
if anchor_offset is None:
anchor_offset = [0, 0]
self._scales = scales
self._aspect_ratios = aspect_ratios
self._base_anchor_size = base_anchor_size
self._anchor_stride = anchor_stride
self._anchor_offset = anchor_offset
def name_scope(self):
return 'GridAnchorGenerator'
def num_anchors_per_location(self):
"""Returns the number of anchors per spatial location.
Returns:
a list of integers, one for each expected feature map to be passed to
the `generate` function.
"""
return [len(self._scales) * len(self._aspect_ratios)]
def _generate(self, feature_map_shape_list):
"""Generates a collection of bounding boxes to be used as anchors.
Args:
feature_map_shape_list: list of pairs of convnet layer resolutions in the
format [(height_0, width_0)]. For example, setting
feature_map_shape_list=[(8, 8)] asks for anchors that correspond
to an 8x8 layer. For this anchor generator, only lists of length 1 are
allowed.
Returns:
boxes_list: a list of BoxLists each holding anchor boxes corresponding to
the input feature map shapes.
Raises:
ValueError: if feature_map_shape_list, box_specs_list do not have the same
length.
ValueError: if feature_map_shape_list does not consist of pairs of
integers
"""
if not (isinstance(feature_map_shape_list, list)
and len(feature_map_shape_list) == 1):
raise ValueError('feature_map_shape_list must be a list of length 1.')
if not all([isinstance(list_item, tuple) and len(list_item) == 2
for list_item in feature_map_shape_list]):
raise ValueError('feature_map_shape_list must be a list of pairs.')
# Create constants in init_scope so they can be created in tf.functions
# and accessed from outside of the function.
with tf.init_scope():
self._base_anchor_size = tf.cast(tf.convert_to_tensor(
self._base_anchor_size), dtype=tf.float32)
self._anchor_stride = tf.cast(tf.convert_to_tensor(
self._anchor_stride), dtype=tf.float32)
self._anchor_offset = tf.cast(tf.convert_to_tensor(
self._anchor_offset), dtype=tf.float32)
grid_height, grid_width = feature_map_shape_list[0]
scales_grid, aspect_ratios_grid = ops.meshgrid(self._scales,
self._aspect_ratios)
scales_grid = tf.reshape(scales_grid, [-1])
aspect_ratios_grid = tf.reshape(aspect_ratios_grid, [-1])
anchors = tile_anchors(grid_height,
grid_width,
scales_grid,
aspect_ratios_grid,
self._base_anchor_size,
self._anchor_stride,
self._anchor_offset)
num_anchors = anchors.num_boxes_static()
if num_anchors is None:
num_anchors = anchors.num_boxes()
anchor_indices = tf.zeros([num_anchors])
anchors.add_field('feature_map_index', anchor_indices)
return [anchors]
def tile_anchors(grid_height,
grid_width,
scales,
aspect_ratios,
base_anchor_size,
anchor_stride,
anchor_offset):
"""Create a tiled set of anchors strided along a grid in image space.
This op creates a set of anchor boxes by placing a "basis" collection of
boxes with user-specified scales and aspect ratios centered at evenly
distributed points along a grid. The basis collection is specified via the
scale and aspect_ratios arguments. For example, setting scales=[.1, .2, .2]
and aspect ratios = [2,2,1/2] means that we create three boxes: one with scale
.1, aspect ratio 2, one with scale .2, aspect ratio 2, and one with scale .2
and aspect ratio 1/2. Each box is multiplied by "base_anchor_size" before
placing it over its respective center.
Grid points are specified via grid_height, grid_width parameters as well as
the anchor_stride and anchor_offset parameters.
Args:
grid_height: size of the grid in the y direction (int or int scalar tensor)
grid_width: size of the grid in the x direction (int or int scalar tensor)
scales: a 1-d (float) tensor representing the scale of each box in the
basis set.
aspect_ratios: a 1-d (float) tensor representing the aspect ratio of each
box in the basis set. The length of the scales and aspect_ratios tensors
must be equal.
base_anchor_size: base anchor size as [height, width]
(float tensor of shape [2])
anchor_stride: difference in centers between base anchors for adjacent grid
positions (float tensor of shape [2])
anchor_offset: center of the anchor with scale and aspect ratio 1 for the
upper left element of the grid, this should be zero for
feature networks with only VALID padding and even receptive
field size, but may need some additional calculation if other
padding is used (float tensor of shape [2])
Returns:
a BoxList holding a collection of N anchor boxes
"""
ratio_sqrts = tf.sqrt(aspect_ratios)
heights = scales / ratio_sqrts * base_anchor_size[0]
widths = scales * ratio_sqrts * base_anchor_size[1]
# Get a grid of box centers
y_centers = tf.cast(tf.range(grid_height), dtype=tf.float32)
y_centers = y_centers * anchor_stride[0] + anchor_offset[0]
x_centers = tf.cast(tf.range(grid_width), dtype=tf.float32)
x_centers = x_centers * anchor_stride[1] + anchor_offset[1]
x_centers, y_centers = ops.meshgrid(x_centers, y_centers)
widths_grid, x_centers_grid = ops.meshgrid(widths, x_centers)
heights_grid, y_centers_grid = ops.meshgrid(heights, y_centers)
bbox_centers = tf.stack([y_centers_grid, x_centers_grid], axis=3)
bbox_sizes = tf.stack([heights_grid, widths_grid], axis=3)
bbox_centers = tf.reshape(bbox_centers, [-1, 2])
bbox_sizes = tf.reshape(bbox_sizes, [-1, 2])
bbox_corners = _center_size_bbox_to_corners_bbox(bbox_centers, bbox_sizes)
return box_list.BoxList(bbox_corners)
def _center_size_bbox_to_corners_bbox(centers, sizes):
"""Converts bbox center-size representation to corners representation.
Args:
centers: a tensor with shape [N, 2] representing bounding box centers
sizes: a tensor with shape [N, 2] representing bounding boxes
Returns:
corners: tensor with shape [N, 4] representing bounding boxes in corners
representation
"""
return tf.concat([centers - .5 * sizes, centers + .5 * sizes], 1) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/anchor_generators/grid_anchor_generator.py | grid_anchor_generator.py |
import tensorflow.compat.v1 as tf
from object_detection.anchor_generators import grid_anchor_generator
from object_detection.core import anchor_generator
from object_detection.core import box_list_ops
class MultiscaleGridAnchorGenerator(anchor_generator.AnchorGenerator):
"""Generate a grid of anchors for multiple CNN layers of different scale."""
def __init__(self, min_level, max_level, anchor_scale, aspect_ratios,
scales_per_octave, normalize_coordinates=True):
"""Constructs a MultiscaleGridAnchorGenerator.
To construct anchors, at multiple scale resolutions, one must provide a
the minimum level and maximum levels on a scale pyramid. To define the size
of anchor, the anchor scale is provided to decide the size relatively to the
stride of the corresponding feature map. The generator allows one pixel
location on feature map maps to multiple anchors, that have different aspect
ratios and intermediate scales.
Args:
min_level: minimum level in feature pyramid.
max_level: maximum level in feature pyramid.
anchor_scale: anchor scale and feature stride define the size of the base
anchor on an image. For example, given a feature pyramid with strides
[2^3, ..., 2^7] and anchor scale 4. The base anchor size is
4 * [2^3, ..., 2^7].
aspect_ratios: list or tuple of (float) aspect ratios to place on each
grid point.
scales_per_octave: integer number of intermediate scales per scale octave.
normalize_coordinates: whether to produce anchors in normalized
coordinates. (defaults to True).
"""
self._anchor_grid_info = []
self._aspect_ratios = aspect_ratios
self._scales_per_octave = scales_per_octave
self._normalize_coordinates = normalize_coordinates
scales = [2**(float(scale) / scales_per_octave)
for scale in range(scales_per_octave)]
aspects = list(aspect_ratios)
for level in range(min_level, max_level + 1):
anchor_stride = [2**level, 2**level]
base_anchor_size = [2**level * anchor_scale, 2**level * anchor_scale]
self._anchor_grid_info.append({
'level': level,
'info': [scales, aspects, base_anchor_size, anchor_stride]
})
def name_scope(self):
return 'MultiscaleGridAnchorGenerator'
def num_anchors_per_location(self):
"""Returns the number of anchors per spatial location.
Returns:
a list of integers, one for each expected feature map to be passed to
the Generate function.
"""
return len(self._anchor_grid_info) * [
len(self._aspect_ratios) * self._scales_per_octave]
def _generate(self, feature_map_shape_list, im_height=1, im_width=1):
"""Generates a collection of bounding boxes to be used as anchors.
For training, we require the input image shape to be statically defined.
That is, im_height and im_width should be integers rather than tensors.
For inference, im_height and im_width can be either integers (for fixed
image size), or tensors (for arbitrary image size).
Args:
feature_map_shape_list: list of pairs of convnet layer resolutions in the
format [(height_0, width_0), (height_1, width_1), ...]. For example,
setting feature_map_shape_list=[(8, 8), (7, 7)] asks for anchors that
correspond to an 8x8 layer followed by a 7x7 layer.
im_height: the height of the image to generate the grid for. If both
im_height and im_width are 1, anchors can only be generated in
absolute coordinates.
im_width: the width of the image to generate the grid for. If both
im_height and im_width are 1, anchors can only be generated in
absolute coordinates.
Returns:
boxes_list: a list of BoxLists each holding anchor boxes corresponding to
the input feature map shapes.
Raises:
ValueError: if im_height and im_width are not integers.
ValueError: if im_height and im_width are 1, but normalized coordinates
were requested.
"""
anchor_grid_list = []
for feat_shape, grid_info in zip(feature_map_shape_list,
self._anchor_grid_info):
# TODO(rathodv) check the feature_map_shape_list is consistent with
# self._anchor_grid_info
level = grid_info['level']
stride = 2**level
scales, aspect_ratios, base_anchor_size, anchor_stride = grid_info['info']
feat_h = feat_shape[0]
feat_w = feat_shape[1]
anchor_offset = [0, 0]
if isinstance(im_height, int) and isinstance(im_width, int):
if im_height % 2.0**level == 0 or im_height == 1:
anchor_offset[0] = stride / 2.0
if im_width % 2.0**level == 0 or im_width == 1:
anchor_offset[1] = stride / 2.0
if tf.is_tensor(im_height) and tf.is_tensor(im_width):
anchor_offset[0] = stride / 2.0
anchor_offset[1] = stride / 2.0
ag = grid_anchor_generator.GridAnchorGenerator(
scales,
aspect_ratios,
base_anchor_size=base_anchor_size,
anchor_stride=anchor_stride,
anchor_offset=anchor_offset)
(anchor_grid,) = ag.generate(feature_map_shape_list=[(feat_h, feat_w)])
if self._normalize_coordinates:
if im_height == 1 or im_width == 1:
raise ValueError(
'Normalized coordinates were requested upon construction of the '
'MultiscaleGridAnchorGenerator, but a subsequent call to '
'generate did not supply dimension information.')
anchor_grid = box_list_ops.to_normalized_coordinates(
anchor_grid, im_height, im_width, check_range=False)
anchor_grid_list.append(anchor_grid)
return anchor_grid_list | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/anchor_generators/multiscale_grid_anchor_generator.py | multiscale_grid_anchor_generator.py |
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection.anchor_generators import grid_anchor_generator
from object_detection.core import anchor_generator
from object_detection.core import box_list_ops
class MultipleGridAnchorGenerator(anchor_generator.AnchorGenerator):
"""Generate a grid of anchors for multiple CNN layers."""
def __init__(self,
box_specs_list,
base_anchor_size=None,
anchor_strides=None,
anchor_offsets=None,
clip_window=None):
"""Constructs a MultipleGridAnchorGenerator.
To construct anchors, at multiple grid resolutions, one must provide a
list of feature_map_shape_list (e.g., [(8, 8), (4, 4)]), and for each grid
size, a corresponding list of (scale, aspect ratio) box specifications.
For example:
box_specs_list = [[(.1, 1.0), (.1, 2.0)], # for 8x8 grid
[(.2, 1.0), (.3, 1.0), (.2, 2.0)]] # for 4x4 grid
To support the fully convolutional setting, we pass grid sizes in at
generation time, while scale and aspect ratios are fixed at construction
time.
Args:
box_specs_list: list of list of (scale, aspect ratio) pairs with the
outside list having the same number of entries as feature_map_shape_list
(which is passed in at generation time).
base_anchor_size: base anchor size as [height, width]
(length-2 float numpy or Tensor, default=[1.0, 1.0]).
The height and width values are normalized to the
minimum dimension of the input height and width, so that
when the base anchor height equals the base anchor
width, the resulting anchor is square even if the input
image is not square.
anchor_strides: list of pairs of strides in pixels (in y and x directions
respectively). For example, setting anchor_strides=[(25, 25), (50, 50)]
means that we want the anchors corresponding to the first layer to be
strided by 25 pixels and those in the second layer to be strided by 50
pixels in both y and x directions. If anchor_strides=None, they are set
to be the reciprocal of the corresponding feature map shapes.
anchor_offsets: list of pairs of offsets in pixels (in y and x directions
respectively). The offset specifies where we want the center of the
(0, 0)-th anchor to lie for each layer. For example, setting
anchor_offsets=[(10, 10), (20, 20)]) means that we want the
(0, 0)-th anchor of the first layer to lie at (10, 10) in pixel space
and likewise that we want the (0, 0)-th anchor of the second layer to
lie at (25, 25) in pixel space. If anchor_offsets=None, then they are
set to be half of the corresponding anchor stride.
clip_window: a tensor of shape [4] specifying a window to which all
anchors should be clipped. If clip_window is None, then no clipping
is performed.
Raises:
ValueError: if box_specs_list is not a list of list of pairs
ValueError: if clip_window is not either None or a tensor of shape [4]
"""
if isinstance(box_specs_list, list) and all(
[isinstance(list_item, list) for list_item in box_specs_list]):
self._box_specs = box_specs_list
else:
raise ValueError('box_specs_list is expected to be a '
'list of lists of pairs')
if base_anchor_size is None:
base_anchor_size = [256, 256]
self._base_anchor_size = base_anchor_size
self._anchor_strides = anchor_strides
self._anchor_offsets = anchor_offsets
if clip_window is not None and clip_window.get_shape().as_list() != [4]:
raise ValueError('clip_window must either be None or a shape [4] tensor')
self._clip_window = clip_window
self._scales = []
self._aspect_ratios = []
for box_spec in self._box_specs:
if not all([isinstance(entry, tuple) and len(entry) == 2
for entry in box_spec]):
raise ValueError('box_specs_list is expected to be a '
'list of lists of pairs')
scales, aspect_ratios = zip(*box_spec)
self._scales.append(scales)
self._aspect_ratios.append(aspect_ratios)
for arg, arg_name in zip([self._anchor_strides, self._anchor_offsets],
['anchor_strides', 'anchor_offsets']):
if arg and not (isinstance(arg, list) and
len(arg) == len(self._box_specs)):
raise ValueError('%s must be a list with the same length '
'as self._box_specs' % arg_name)
if arg and not all([
isinstance(list_item, tuple) and len(list_item) == 2
for list_item in arg
]):
raise ValueError('%s must be a list of pairs.' % arg_name)
def name_scope(self):
return 'MultipleGridAnchorGenerator'
def num_anchors_per_location(self):
"""Returns the number of anchors per spatial location.
Returns:
a list of integers, one for each expected feature map to be passed to
the Generate function.
"""
return [len(box_specs) for box_specs in self._box_specs]
def _generate(self, feature_map_shape_list, im_height=1, im_width=1):
"""Generates a collection of bounding boxes to be used as anchors.
The number of anchors generated for a single grid with shape MxM where we
place k boxes over each grid center is k*M^2 and thus the total number of
anchors is the sum over all grids. In our box_specs_list example
(see the constructor docstring), we would place two boxes over each grid
point on an 8x8 grid and three boxes over each grid point on a 4x4 grid and
thus end up with 2*8^2 + 3*4^2 = 176 anchors in total. The layout of the
output anchors follows the order of how the grid sizes and box_specs are
specified (with box_spec index varying the fastest, followed by width
index, then height index, then grid index).
Args:
feature_map_shape_list: list of pairs of convnet layer resolutions in the
format [(height_0, width_0), (height_1, width_1), ...]. For example,
setting feature_map_shape_list=[(8, 8), (7, 7)] asks for anchors that
correspond to an 8x8 layer followed by a 7x7 layer.
im_height: the height of the image to generate the grid for. If both
im_height and im_width are 1, the generated anchors default to
absolute coordinates, otherwise normalized coordinates are produced.
im_width: the width of the image to generate the grid for. If both
im_height and im_width are 1, the generated anchors default to
absolute coordinates, otherwise normalized coordinates are produced.
Returns:
boxes_list: a list of BoxLists each holding anchor boxes corresponding to
the input feature map shapes.
Raises:
ValueError: if feature_map_shape_list, box_specs_list do not have the same
length.
ValueError: if feature_map_shape_list does not consist of pairs of
integers
"""
if not (isinstance(feature_map_shape_list, list)
and len(feature_map_shape_list) == len(self._box_specs)):
raise ValueError('feature_map_shape_list must be a list with the same '
'length as self._box_specs')
if not all([isinstance(list_item, tuple) and len(list_item) == 2
for list_item in feature_map_shape_list]):
raise ValueError('feature_map_shape_list must be a list of pairs.')
im_height = tf.cast(im_height, dtype=tf.float32)
im_width = tf.cast(im_width, dtype=tf.float32)
if not self._anchor_strides:
anchor_strides = [(1.0 / tf.cast(pair[0], dtype=tf.float32),
1.0 / tf.cast(pair[1], dtype=tf.float32))
for pair in feature_map_shape_list]
else:
anchor_strides = [(tf.cast(stride[0], dtype=tf.float32) / im_height,
tf.cast(stride[1], dtype=tf.float32) / im_width)
for stride in self._anchor_strides]
if not self._anchor_offsets:
anchor_offsets = [(0.5 * stride[0], 0.5 * stride[1])
for stride in anchor_strides]
else:
anchor_offsets = [(tf.cast(offset[0], dtype=tf.float32) / im_height,
tf.cast(offset[1], dtype=tf.float32) / im_width)
for offset in self._anchor_offsets]
for arg, arg_name in zip([anchor_strides, anchor_offsets],
['anchor_strides', 'anchor_offsets']):
if not (isinstance(arg, list) and len(arg) == len(self._box_specs)):
raise ValueError('%s must be a list with the same length '
'as self._box_specs' % arg_name)
if not all([isinstance(list_item, tuple) and len(list_item) == 2
for list_item in arg]):
raise ValueError('%s must be a list of pairs.' % arg_name)
anchor_grid_list = []
min_im_shape = tf.minimum(im_height, im_width)
scale_height = min_im_shape / im_height
scale_width = min_im_shape / im_width
if not tf.is_tensor(self._base_anchor_size):
base_anchor_size = [
scale_height * tf.constant(self._base_anchor_size[0],
dtype=tf.float32),
scale_width * tf.constant(self._base_anchor_size[1],
dtype=tf.float32)
]
else:
base_anchor_size = [
scale_height * self._base_anchor_size[0],
scale_width * self._base_anchor_size[1]
]
for feature_map_index, (grid_size, scales, aspect_ratios, stride,
offset) in enumerate(
zip(feature_map_shape_list, self._scales,
self._aspect_ratios, anchor_strides,
anchor_offsets)):
tiled_anchors = grid_anchor_generator.tile_anchors(
grid_height=grid_size[0],
grid_width=grid_size[1],
scales=scales,
aspect_ratios=aspect_ratios,
base_anchor_size=base_anchor_size,
anchor_stride=stride,
anchor_offset=offset)
if self._clip_window is not None:
tiled_anchors = box_list_ops.clip_to_window(
tiled_anchors, self._clip_window, filter_nonoverlapping=False)
num_anchors_in_layer = tiled_anchors.num_boxes_static()
if num_anchors_in_layer is None:
num_anchors_in_layer = tiled_anchors.num_boxes()
anchor_indices = feature_map_index * tf.ones([num_anchors_in_layer])
tiled_anchors.add_field('feature_map_index', anchor_indices)
anchor_grid_list.append(tiled_anchors)
return anchor_grid_list
def create_ssd_anchors(num_layers=6,
min_scale=0.2,
max_scale=0.95,
scales=None,
aspect_ratios=(1.0, 2.0, 3.0, 1.0 / 2, 1.0 / 3),
interpolated_scale_aspect_ratio=1.0,
base_anchor_size=None,
anchor_strides=None,
anchor_offsets=None,
reduce_boxes_in_lowest_layer=True):
"""Creates MultipleGridAnchorGenerator for SSD anchors.
This function instantiates a MultipleGridAnchorGenerator that reproduces
``default box`` construction proposed by Liu et al in the SSD paper.
See Section 2.2 for details. Grid sizes are assumed to be passed in
at generation time from finest resolution to coarsest resolution --- this is
used to (linearly) interpolate scales of anchor boxes corresponding to the
intermediate grid sizes.
Anchors that are returned by calling the `generate` method on the returned
MultipleGridAnchorGenerator object are always in normalized coordinates
and clipped to the unit square: (i.e. all coordinates lie in [0, 1]x[0, 1]).
Args:
num_layers: integer number of grid layers to create anchors for (actual
grid sizes passed in at generation time)
min_scale: scale of anchors corresponding to finest resolution (float)
max_scale: scale of anchors corresponding to coarsest resolution (float)
scales: As list of anchor scales to use. When not None and not empty,
min_scale and max_scale are not used.
aspect_ratios: list or tuple of (float) aspect ratios to place on each
grid point.
interpolated_scale_aspect_ratio: An additional anchor is added with this
aspect ratio and a scale interpolated between the scale for a layer
and the scale for the next layer (1.0 for the last layer).
This anchor is not included if this value is 0.
base_anchor_size: base anchor size as [height, width].
The height and width values are normalized to the minimum dimension of the
input height and width, so that when the base anchor height equals the
base anchor width, the resulting anchor is square even if the input image
is not square.
anchor_strides: list of pairs of strides in pixels (in y and x directions
respectively). For example, setting anchor_strides=[(25, 25), (50, 50)]
means that we want the anchors corresponding to the first layer to be
strided by 25 pixels and those in the second layer to be strided by 50
pixels in both y and x directions. If anchor_strides=None, they are set to
be the reciprocal of the corresponding feature map shapes.
anchor_offsets: list of pairs of offsets in pixels (in y and x directions
respectively). The offset specifies where we want the center of the
(0, 0)-th anchor to lie for each layer. For example, setting
anchor_offsets=[(10, 10), (20, 20)]) means that we want the
(0, 0)-th anchor of the first layer to lie at (10, 10) in pixel space
and likewise that we want the (0, 0)-th anchor of the second layer to lie
at (25, 25) in pixel space. If anchor_offsets=None, then they are set to
be half of the corresponding anchor stride.
reduce_boxes_in_lowest_layer: a boolean to indicate whether the fixed 3
boxes per location is used in the lowest layer.
Returns:
a MultipleGridAnchorGenerator
"""
if base_anchor_size is None:
base_anchor_size = [1.0, 1.0]
box_specs_list = []
if scales is None or not scales:
scales = [min_scale + (max_scale - min_scale) * i / (num_layers - 1)
for i in range(num_layers)] + [1.0]
else:
# Add 1.0 to the end, which will only be used in scale_next below and used
# for computing an interpolated scale for the largest scale in the list.
scales += [1.0]
for layer, scale, scale_next in zip(
range(num_layers), scales[:-1], scales[1:]):
layer_box_specs = []
if layer == 0 and reduce_boxes_in_lowest_layer:
layer_box_specs = [(0.1, 1.0), (scale, 2.0), (scale, 0.5)]
else:
for aspect_ratio in aspect_ratios:
layer_box_specs.append((scale, aspect_ratio))
# Add one more anchor, with a scale between the current scale, and the
# scale for the next layer, with a specified aspect ratio (1.0 by
# default).
if interpolated_scale_aspect_ratio > 0.0:
layer_box_specs.append((np.sqrt(scale*scale_next),
interpolated_scale_aspect_ratio))
box_specs_list.append(layer_box_specs)
return MultipleGridAnchorGenerator(box_specs_list, base_anchor_size,
anchor_strides, anchor_offsets) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/anchor_generators/multiple_grid_anchor_generator.py | multiple_grid_anchor_generator.py |
# 12306-booking
12306订票工具
## 12306booking vs 12306 vs 第三方订票平台
为什么要写一个订票工具?
1. 12306订票体验太差。验证码识别太逆天,人眼无法识别。刷新、刷新、刷新,刷到手疼。票就在那里,你就是定不上
2. 第三方订票平台太流氓。收集用户数据,还收不可接受的手续费(美其名曰技术服务费,其实就是 CPU和 RAM),最恐怖的是还要将用户数据拿到市场交易
解决了什么问题,有什么优点?
1. 两次扫码就完成了登录、查询余票、下单到支付的所有流程
2. 本地运行,不收集任何用户数据,不用输入用户密码,不用担心任何数据泄露、交易行为
3. 完全开源,没有任何黑箱操作
4. 刷新、订票流程快,先人一步抢到票
5. 支持多车次、多席别、多乘客抢票
## 使用说明
安装
```sh
pip install 12306-booking -U --user;
```
>如果使用MacOS,使用虚拟环境安装`virtualenv venv; source venv/bin/activate; pip install 12306-booking -U`
订票
```sh
12306-booking --train-date 2020-01-01 --train-names K571 --seat-types 硬卧 --from-station 北京 --to-station 麻城 --pay-channel 微信 --passengers 任正非,王石
```
> 多车次、多席别、多乘客之间用英文的','分割
## 订票流程
![订票流程](https://processon.com/chart_image/5c372ce1e4b08a7683a2798f.png)
## 订票状态机
![订票状态机](http://processon.com/chart_image/5c371a11e4b0641c83d6eb3f.png)
## 赞助
如果有帮助到你订到票,请扫描二维码赞赏我们,你的鼓励是我们持续改进优化的动力。
<img src="https://share-static.oss-cn-hangzhou.aliyuncs.com/wx/%E5%BE%AE%E4%BF%A1%E8%B5%9E%E8%B5%8F.jpg" width="50%" height="50%" />
| 12306-booking | /12306-booking-0.1.18.tar.gz/12306-booking-0.1.18/README.md | README.md |
import re
import json
import click
import logging
import datetime
import requests
import prettytable
from .run import initialize, run as booking_run_loop
from .utils import check_seat_types, time_to_str
from .query import query_station_code_map, query_code_station_map
from hack12306.constants import BANK_ID_WX, BANK_ID_ALIPAY
from hack12306.query import TrainInfoQueryAPI
_logger = logging.getLogger('booking')
@click.group()
def cli():
pass
def do_booking(train_date, train_names, seat_types, from_station, to_station, pay_channel, passengers):
initialize()
date_pattern = re.compile(r'^\d{4}-\d{2}-\d{2}$')
assert date_pattern.match(train_date), '乘车日期无效. %s' % train_date
today = datetime.date.today()
train_date_time = datetime.datetime.strptime(train_date, '%Y-%m-%d').date()
assert train_date_time >= today, u'无效的乘车日期,乘车日期必须大于今天. %s' % train_date
train_names = train_names.split(',')
assert check_seat_types(seat_types.split(',')), u'无效的座席. %s' % seat_types
seat_types = seat_types.split(',')
station_code_map = query_station_code_map()
assert from_station in station_code_map.keys(), u'未找到车站. %s' % from_station
assert to_station in station_code_map.keys(), u'未找到车站. %s' % to_station
from_station = station_code_map[from_station]
to_station = station_code_map[to_station]
assert pay_channel in (u'微信', u'支付宝'), u'不支持的支付通道. %s' % pay_channel
if pay_channel == u'微信':
pay_channel = BANK_ID_WX
elif pay_channel == u'支付宝':
pay_channel = BANK_ID_ALIPAY
else:
assert False
if passengers:
passengers = passengers.split(',')
_logger.info(u'订票信息。乘车日期:%s 车次:%s 座席:%s 始发站:%s to_station:%s 支付通道:%s' %
(train_date, json.dumps(train_names, ensure_ascii=False),
json.dumps(seat_types, ensure_ascii=False),
from_station, to_station, pay_channel))
booking_run_loop(train_date, train_names, seat_types, from_station, to_station, pay_channel, passengers=passengers)
@cli.command('booking')
@click.option('--train-date', required=True, help=u'乘车日期,格式:YYYY-mm-dd')
@click.option('--train-names', required=True, help=u'车次')
@click.option('--seat-types', required=True, help=u'座位席别, 例如:硬卧,硬座')
@click.option('--from-station', required=True, help=u'始发站')
@click.option('--to-station', required=True, help=u'到达站')
@click.option('--pay-channel', type=click.Choice([u'微信', u'支付宝']), default=u'微信', help=u'支付通道,微信,支付宝')
@click.option('--passengers', help=u'乘客,例如:任正非,王石')
def booking_sub_cmd(train_date, train_names, seat_types, from_station, to_station, pay_channel, passengers):
"""
定火车票
"""
do_booking(train_date, train_names, seat_types, from_station, to_station, pay_channel, passengers)
@cli.command('qtrain')
@click.argument('train-code', metavar=u'<车次>')
def query_train(train_code):
"""
查询车次
"""
def _query_train_code(train_code):
resp = requests.get('http://trip.kdreader.com/api/v1/train/%s/' % train_code)
return json.loads(resp.content)
def _query_train_schedule(train_code):
resp = requests.get('http://trip.kdreader.com/api/v1/train/schedule/%s/' % train_code)
return json.loads(resp.content)
train_code = train_code.encode('utf8')
# train_info = _query_train_code(train_code)
train_schedule = _query_train_schedule(train_code)
pt = prettytable.PrettyTable(
field_names=['车次', '站次', '站名', '到达时间', '开车时间', '停车时间', '运行时间'],
border=True,)
for station in train_schedule:
duration_time = time_to_str(station['duration_time'])
pt.add_row([station['train_code'], station['station_no'], station['station_name'], station['arrive_time'][:5],
station['start_time'][:5], station['stopover_time'], duration_time])
print '%s车次,%s从【%s】出发,运行%s, %s到达【%s】' % (
train_code,
train_schedule[0]['start_time'][:5].encode('utf8'),
train_schedule[0]['station_name'].encode('utf8'),
time_to_str(train_schedule[-1]['duration_time']),
train_schedule[-1]['start_time'][:5].encode('utf8'),
train_schedule[-1]['station_name'].encode('utf8'))
print '途径车站列表:'
print pt
@cli.command('qticket')
@click.option('--date', help=u'乘车日期,格式:YYYY-mm-dd')
@click.argument('from_station', metavar=u'<始发站>')
@click.argument('to_station', metavar=u'<终点站>')
def query_left_ticket(from_station, to_station, date):
"""
查询余票
"""
print '正在查询【%s】到【%s】的车票信息,请稍等...' % (from_station.encode('utf8'), to_station.encode('utf8'))
station_code_map = query_station_code_map()
if from_station not in station_code_map.keys():
print '未找到【%s】车站' % from_station
return
from_station = station_code_map[from_station]
if to_station not in station_code_map.keys():
print u'未找到【%s】车站' % to_station
return
to_station = station_code_map[to_station]
if date:
date_pattern = re.compile(r'^\d{4}-\d{2}-\d{2}$')
assert date_pattern.match(date), '乘车日期无效. %s' % date
else:
date = (datetime.date.today() + datetime.timedelta(days=1)).strftime('%Y-%m-%d')
try_times = 3
while try_times > 0:
try:
trains = TrainInfoQueryAPI().info_query_left_tickets(date, from_station, to_station)
break
except Exception as e:
pass
try_times -= 1
else:
print '网络请求失败,请重试...'
return
pt = prettytable.PrettyTable(
field_names=['车次', '始发站', '目的站', '运行时间', '发车时间', '到达时间',
'商务座', '一等座', '二等座', '软卧', '硬卧', '软座', '硬座', '无座', '备注'],
border=True)
code_station_map = query_code_station_map()
for train in trains:
from_station = code_station_map[train['from_station']]
to_station = code_station_map[train['to_station']]
pt.add_row([train['train_name'], from_station, to_station,
train['duration'], train['departure_time'], train['arrival_time'],
train[u'商务座'] or '--', train[u'一等座'] or '--', train[u'二等座'] or '--',
train[u'软卧'] or '--', train[u'硬卧'] or '---', train[u'软座'] or '--',
train[u'硬座'] or '--', train[u'无座'] or '--', train[u'remark'] or '--'])
print pt
@click.command('booking')
@click.option('--train-date', required=True, help=u'乘车日期,格式:YYYY-mm-dd')
@click.option('--train-names', required=True, help=u'车次')
@click.option('--seat-types', required=True, help=u'座位席别, 例如:硬卧,硬座')
@click.option('--from-station', required=True, help=u'始发站')
@click.option('--to-station', required=True, help=u'到达站')
@click.option('--pay-channel', type=click.Choice([u'微信', u'支付宝']), default=u'微信', help=u'支付通道,微信,支付宝')
@click.option('--passengers', help=u'乘客,例如:任正非,王石')
def booking(train_date, train_names, seat_types, from_station, to_station, pay_channel, passengers):
"""
定火车票
"""
do_booking(train_date, train_names, seat_types, from_station, to_station, pay_channel, passengers) | 12306-booking | /12306-booking-0.1.18.tar.gz/12306-booking-0.1.18/booking/command.py | command.py |
import os
import time
import uuid
import json
import base64
import logging
from hack12306.auth import TrainAuthAPI
from hack12306.user import TrainUserAPI
from hack12306.exceptions import TrainUserNotLogin
from . import settings
from .remind import remind_login_qr
_logger = logging.getLogger('booking')
__all__ = ('auth_qr', 'auth_reauth', 'auth_is_login')
LOGIN_QR_HTML_TPL = """
<html>
<head>
<title>12306-booking 扫码登录</title>
<meta charset="utf8">
</head>
<body>
<h1>12306订票助手</h1>
<img src="{filepath}", alt="12306登录二维码"><br>
<b>请用12306 APP 扫码二维码登录</b>
</body>
<script>
setTimeout("window.close()", 30000)
</script>
</html>
"""
def _uamtk_set(uamtk):
settings.AUTH_UAMTK = uamtk
def _uamtk_get():
return settings.AUTH_UAMTK
def auth_is_login(cookies=None):
"""
检查用户是否登录
:param cookies JSON对象
:return True已登录, False未登录
"""
result = TrainAuthAPI().auth_check_login(cookies=cookies)
if not result:
_logger.debug('会话已过期,请重新登录!')
return result
def auth_reauth(uamtk, cookie_dict):
"""
重新认证
:param aumtk
:param cookie_dict
:return JSON对象
"""
assert uamtk is not None
assert isinstance(cookie_dict, dict)
train_auth_api = TrainAuthAPI()
uamtk_result = train_auth_api.auth_uamtk(uamtk, cookies=cookie_dict)
_logger.debug('4. auth uamtk result. %s' % json.dumps(uamtk_result, ensure_ascii=False))
uamauth_result = train_auth_api.auth_uamauth(uamtk_result['newapptk'], cookies=cookie_dict)
_logger.debug('5. auth uamauth result. %s' % json.dumps(uamauth_result, ensure_ascii=False))
return uamauth_result
def auth_qr():
"""
认证-二维码登录
"""
try:
qr_img_path = '/tmp/12306/booking/login-qr-%s.jpeg' % uuid.uuid1().hex
login_html_path = '/tmp/12306/booking/login-qr-%s.html' % uuid.uuid1().hex
train_auth_api = TrainAuthAPI()
_logger.debug('1. auth init')
cookie_dict = train_auth_api.auth_init()
_logger.debug('2. auth get qr')
result = train_auth_api.auth_qr_get(cookies=cookie_dict)
assert isinstance(result, dict)
qr_uuid = result['uuid']
if not os.path.exists(os.path.dirname(qr_img_path)):
os.makedirs(os.path.dirname(qr_img_path))
with open(qr_img_path, 'wb') as f:
f.write(base64.b64decode(result['image']))
with open(login_html_path, 'w+') as f:
f.write(LOGIN_QR_HTML_TPL.format(filepath=qr_img_path))
# open qr image with browser
cmd = 'open %s' % login_html_path
os.system(cmd)
_logger.debug('3. auth check qr')
for _ in range(10):
_logger.info('请扫描二维码登录!')
remind_login_qr()
qr_check_result = train_auth_api.auth_qr_check(qr_uuid, cookies=cookie_dict)
_logger.debug('check qr result. %s' % json.dumps(qr_check_result, ensure_ascii=False))
if qr_check_result['result_code'] == "2":
_logger.debug('qr check success result. %s' % json.dumps(qr_check_result, ensure_ascii=False))
_logger.info('二维码扫描成功!')
break
time.sleep(3)
else:
_logger.error('二维码扫描失败,重新生成二维码')
raise TrainUserNotLogin('扫描述二维码失败')
_uamtk_set(qr_check_result['uamtk'])
uamauth_result = auth_reauth(_uamtk_get(), cookie_dict)
_logger.info('%s 登录成功。' % uamauth_result['username'].encode('utf8'))
cookies = {
'tk': uamauth_result['apptk']
}
cookies.update(**cookie_dict)
_logger.debug('cookies. %s' % json.dumps(cookies, ensure_ascii=False,))
# user_info_result = TrainUserAPI().user_info(cookies=cookies)
# _logger.debug('%s login successfully.' % user_info_result['name'])
return cookies
finally:
if os.path.exists(qr_img_path):
os.remove(qr_img_path)
if os.path.exists(login_html_path):
os.remove(login_html_path) | 12306-booking | /12306-booking-0.1.18.tar.gz/12306-booking-0.1.18/booking/auth.py | auth.py |
import os
import re
import time
import json
import fcntl
import logging
import platform
import logging.config
from hack12306.constants import (BANK_ID_WX, BANK_ID_MAP, SEAT_TYPE_CODE_MAP,)
from hack12306.exceptions import TrainUserNotLogin, TrainBaseException
from . import settings
from . import exceptions
from .pay import pay_order
from .user import user_passengers
from .auth import auth_qr, auth_is_login, auth_reauth
from .order import order_submit, order_check_no_complete
from .query import query_left_tickets, query_station_code_map
from .remind import remind_left_ticket
_logger = logging.getLogger('booking')
__all__ = ('initialize', 'run')
BOOKING_STATUS_QUERY_LEFT_TICKET = 2
BOOKING_STATUS_ORDER_SUBMIT = 3
BOOKING_STATUS_PAY_ORDER = 4
BOOKING_STATUS_MAP = [
(BOOKING_STATUS_QUERY_LEFT_TICKET, '查询余票'),
(BOOKING_STATUS_ORDER_SUBMIT, '提交订单'),
(BOOKING_STATUS_PAY_ORDER, '支付订单'),
]
def initialize():
"""
Initialization.
"""
if settings.INIT_DONE:
return
station_list = []
station_code_map = {}
with open(settings.STATION_LIST_FILE) as f:
station_list = json.loads(f.read())
for station in station_list:
station_code_map[station['name']] = station['code']
settings.STATION_CODE_MAP = station_code_map
del station_list
logging.config.dictConfig(settings.LOGGING)
if platform.system() == "Windows":
settings.CHROME_APP_OPEN_CMD = settings.CHROME_APP_OPEN_CMD_WINDOWS
elif platform.system() == 'Linux':
settings.CHROME_APP_OPEN_CMD = settings.CHROME_APP_OPEN_CMD_LINUX
elif platform.mac_ver()[0]:
settings.CHROME_APP_OPEN_CMD = settings.CHROME_APP_OPEN_CMD_MacOS
else:
settings.CHROME_APP_OPEN_CMD = settings.CHROME_APP_OPEN_CMD_MacOS
settings.INIT_DONE = True
def _query_left_ticket_counter_get():
if not os.path.exists(settings.QUERY_LEFT_TICKET_COUNTER_FILE):
return 0
with open(settings.QUERY_LEFT_TICKET_COUNTER_FILE) as f:
flag = fcntl.fcntl(f.fileno(), fcntl.F_GETFD)
fcntl.fcntl(f, fcntl.F_SETFD, flag | os.O_NONBLOCK)
flag = fcntl.fcntl(f, fcntl.F_GETFD)
counter = f.read()
return int(counter)
def _query_left_ticket_counter_inc():
counter = _query_left_ticket_counter_get() + 1
if not os.path.exists(settings.QUERY_LEFT_TICKET_COUNTER_FILE):
os.makedirs(os.path.dirname(settings.QUERY_LEFT_TICKET_COUNTER_FILE))
with open(settings.QUERY_LEFT_TICKET_COUNTER_FILE, 'w') as f:
f.write(str(counter))
def run(train_date, train_names, seat_types, from_station, to_station, pay_channel=BANK_ID_WX, passengers=None, **kwargs):
"""
Booking entry point.
"""
initialize()
assert settings.INIT_DONE is True, 'No Initialization'
date_patten = re.compile(r'^\d{4}-\d{2}-\d{2}$')
assert date_patten.match(train_date), 'Invalid train_date param. %s' % train_date
assert isinstance(seat_types, (list, tuple)), u'Invalid seat_types param. %s' % seat_types
assert frozenset(seat_types) <= frozenset(dict(SEAT_TYPE_CODE_MAP).keys()
), u'Invalid seat_types param. %s' % seat_types
assert from_station in settings.STATION_CODE_MAP.values(), 'Invalid from_station param. %s' % from_station
assert to_station in settings.STATION_CODE_MAP.values(), 'Invalid to_station param. %s' % to_station
assert pay_channel in dict(BANK_ID_MAP).keys(), 'Invalid pay_channel param. %s' % pay_channel
train_info = {}
order_no = None
check_passengers = False
passenger_id_nos = []
booking_status = BOOKING_STATUS_QUERY_LEFT_TICKET
last_auth_time = int(time.time())
while True:
try:
# auth
if booking_status != BOOKING_STATUS_QUERY_LEFT_TICKET and(
not settings.COOKIES or not auth_is_login(settings.COOKIES)):
cookies = auth_qr()
settings.COOKIES = cookies
# reauth
if booking_status != BOOKING_STATUS_QUERY_LEFT_TICKET and settings.AUTH_UAMTK and settings.COOKIES:
if int(time.time()) - last_auth_time >= settings.AUTH_REAUTH_INTERVAL:
uamauth_result = auth_reauth(settings.AUTH_UAMTK, settings.COOKIES)
settings.COOKIES.update(tk=uamauth_result['apptk'])
last_auth_time = int(time.time())
_logger.info('%s 重新认证成功' % uamauth_result['username'].encode('utf8'))
# check passengers
if booking_status != BOOKING_STATUS_QUERY_LEFT_TICKET and not check_passengers:
passenger_infos = user_passengers()
if passengers:
passenger_name_id_map = {}
for passenger_info in passenger_infos:
passenger_name_id_map[passenger_info['passenger_name']] = passenger_info['passenger_id_no']
assert frozenset(passengers) <= frozenset(passenger_name_id_map.keys()), u'无效的乘客. %s' % json.dumps(
list(frozenset(passengers) - frozenset(passenger_name_id_map.keys())), ensure_ascii=False)
for passenger in passengers:
_logger.info(u'订票乘客信息。姓名:%s 身份证号:%s' % (passenger, passenger_name_id_map[passenger]))
passenger_id_nos.append(passenger_name_id_map[passenger])
else:
passenger_id_nos = [passenger_infos[0]['passenger_id_no']]
_logger.info(
u'订票乘客信息。姓名:%s 身份证号:%s' %
(passenger_infos[0]['passenger_name'],
passenger_info['passenger_id_no']))
check_passengers = True
# order not complete
if booking_status != BOOKING_STATUS_QUERY_LEFT_TICKET and order_check_no_complete():
booking_status = BOOKING_STATUS_PAY_ORDER
_logger.debug('booking status. %s' % dict(BOOKING_STATUS_MAP).get(booking_status, '未知状态'))
# query left tickets
if booking_status == BOOKING_STATUS_QUERY_LEFT_TICKET:
_query_left_ticket_counter_inc()
_logger.info('查询余票, 已查询%s次!' % _query_left_ticket_counter_get())
train_info = query_left_tickets(train_date, from_station, to_station, seat_types, train_names)
booking_status = BOOKING_STATUS_ORDER_SUBMIT
remind_left_ticket()
# subit order
elif booking_status == BOOKING_STATUS_ORDER_SUBMIT:
try:
_logger.info('提交订单')
order_no = order_submit(passenger_id_nos, **train_info)
except (TrainBaseException, exceptions.BookingBaseException) as e:
_logger.info('提交订单失败')
booking_status = BOOKING_STATUS_QUERY_LEFT_TICKET
_logger.exception(e)
continue
else:
# submit order successfully
if order_no:
_logger.info('提交订单成功')
booking_status = BOOKING_STATUS_PAY_ORDER
# pay
elif booking_status == BOOKING_STATUS_PAY_ORDER:
_logger.info('支付订单')
pay_order(pay_channel)
# pay success and exit
return
else:
assert 'Unkown booking status. %s' % booking_status
except TrainUserNotLogin:
_logger.warn('用户未登录,请重新扫码登录')
continue
except TrainBaseException as e:
_logger.error(e)
_logger.exception(e)
except exceptions.BookingTrainNoLeftTicket as e:
_logger.debug(e)
except Exception as e:
if isinstance(e, AssertionError):
_logger.exception(e)
_logger.error('系统内部运行异常,请重新执行程序!')
os._exit(-1)
elif isinstance(e, exceptions.BookingOrderCancelExceedLimit):
_logger.exception(e)
_logger.error('用户今日订单取消次数超限,请明天再重新抢票!')
os._exit(-2)
else:
_logger.exception(e)
time.sleep(settings.SLEEP_INTERVAL) | 12306-booking | /12306-booking-0.1.18.tar.gz/12306-booking-0.1.18/booking/run.py | run.py |
import os
import json
import platform
import requests
# def qr_terminal_draw(filepath):
# from PIL import Image
# assert isinstance(filepath, (str))
# if not os.path.exists(filepath):
# raise Exception('file not exists. %s' % filepath)
# if platform.system() == "Windows":
# white_block = '▇'
# black_block = ' '
# new_line = '\n'
# else:
# white_block = '\033[1;37;47m '
# black_block = '\033[1;37;40m '
# new_line = '\033[0m\n'
# output = ''
# im = Image.open(filepath)
# im = im.resize((21, 21))
# pixels = im.load()
# output += white_block * (im.width + 2) + new_line
# for h in range(im.height):
# output += white_block
# for w in range(im.width):
# pixel = pixels[w,h] # NOQA
# if pixel[0] == 0:
# output += black_block
# elif pixel[0] == 255:
# output += white_block
# else:
# assert 'Unsupported pixel. %s' % pixel
# else:
# output += white_block + new_line
# output += white_block * (im.width + 2) + new_line
# return output
def get_public_ip():
resp = requests.get('http://httpbin.org/ip')
if resp.status_code != 200:
raise Exception('Network error')
return json.loads(resp.content)['origin'].encode('utf8')
def check_seat_types(seat_types):
from hack12306.constants import SEAT_TYPE_CODE_MAP
assert isinstance(seat_types, (list, tuple))
if not frozenset(seat_types) <= frozenset(dict(SEAT_TYPE_CODE_MAP).keys()):
return False
return True
def time_to_str(tm_sec, inc_seconds=False):
days = tm_sec / (3600*12)
hours = (tm_sec % (3600*12)) / 3600
mins = (tm_sec % (3600*12)) % 3600 / 60
seconds = tm_sec % 60
msg = ''
if days:
msg += '%s天' % days
if hours:
msg += '%s小时' % hours
if mins:
msg += '%s分钟' % mins
if seconds:
msg += '%s秒' % seconds
return msg | 12306-booking | /12306-booking-0.1.18.tar.gz/12306-booking-0.1.18/booking/utils.py | utils.py |
import re
import json
import copy
import time
import logging
from hack12306 import constants
from hack12306.order import TrainOrderAPI
from hack12306.query import TrainInfoQueryAPI
from hack12306.user import TrainUserAPI
from hack12306.utils import (tomorrow, JSONEncoder,
gen_old_passenge_tuple, gen_passenger_ticket_tuple)
from . import settings
from . import exceptions
_logger = logging.getLogger('booking')
__all__ = ('order_check_no_complete', 'order_submit', 'order_no_complete')
def order_no_complete():
"""
订单-未支付订单
"""
orders = TrainOrderAPI().order_query_no_complete(cookies=settings.COOKIES)
_logger.debug('order no complete orders. %s' % json.dumps(orders, ensure_ascii=False))
if not orders:
return None
return orders[0]['sequence_no']
def order_check_no_complete():
"""
订单-检查是有未支付订单
:return True:有支付订单 False:没有未支付订单
"""
if order_no_complete():
return True
else:
return False
def order_submit(passenger_id_nos, **train_info):
"""
订单-提交订单
:param passenger_id_nos 乘客身份证列表
:param **train_info 乘车信息
:return order_no 订单号
"""
assert isinstance(
passenger_id_nos, (list, tuple)), 'Invalid passenger_id_nos param. %s' % json.dumps(
passenger_id_nos, ensure_ascii=False)
assert passenger_id_nos, 'Invalid passenger_id_nos param. %s' % json.dumps(passenger_id_nos, ensure_ascii=False)
train_order_api = TrainOrderAPI()
# 1. 下单-提交订单
submit_order_result = train_order_api.order_submit_order(
train_info['secret'],
train_info['train_date'],
cookies=settings.COOKIES)
_logger.debug('order submit order result. %s' % submit_order_result)
# 2. 下单-确认乘客
confirm_passenger_result = train_order_api.order_confirm_passenger(cookies=settings.COOKIES)
_logger.debug('order confirm passenger result. %s' % json.dumps(
confirm_passenger_result, ensure_ascii=False, cls=JSONEncoder))
# 3. 下单-检查订单信息
passengers = TrainUserAPI().user_passengers(cookies=settings.COOKIES)
select_passengers = []
for passenger in passengers:
if passenger['passenger_id_no'] in passenger_id_nos:
select_passengers.append(copy.deepcopy(passenger))
assert select_passengers, '乘客不存在. %s' % json.dumps(passenger_id_nos, ensure_ascii=False)
passenger_ticket_list = []
old_passenger_list = []
for passenger_info in select_passengers:
passenger_ticket_list.append(gen_passenger_ticket_tuple(
train_info['seat_type_code'],
passenger_info['passenger_flag'],
passenger_info['passenger_type'],
passenger_info['passenger_name'],
passenger_info['passenger_id_type_code'],
passenger_info['passenger_id_no'],
passenger_info['mobile_no']))
old_passenger_list.append(
gen_old_passenge_tuple(
passenger_info['passenger_name'],
passenger_info['passenger_id_type_code'],
passenger_info['passenger_id_no'],
passenger_info['passenger_type']))
passenger_ticket_str = '_'.join([','.join(p) for p in passenger_ticket_list])
old_passenger_str = ''.join([','.join(p) for p in old_passenger_list])
check_order_result = train_order_api.order_confirm_passenger_check_order(
confirm_passenger_result['token'],
passenger_ticket_str, old_passenger_str, cookies=settings.COOKIES)
_logger.debug('order check order result. %s' % json.dumps(check_order_result, ensure_ascii=False, cls=JSONEncoder))
if not check_order_result['submitStatus']:
raise exceptions.BookingSubmitOrderError(check_order_result.get('errMsg', u'提交订单失败').encode('utf8'))
# 4. 下单-获取排队数量
queue_count_result = train_order_api.order_confirm_passenger_get_queue_count(
train_info['train_date'],
train_info['train_num'],
train_info['seat_type_code'],
train_info['from_station'],
train_info['to_station'],
confirm_passenger_result['ticket_info']['leftTicketStr'],
confirm_passenger_result['token'],
confirm_passenger_result['order_request_params']['station_train_code'],
confirm_passenger_result['ticket_info']['queryLeftTicketRequestDTO']['purpose_codes'],
confirm_passenger_result['ticket_info']['train_location'],
cookies=settings.COOKIES,
)
_logger.debug('order confirm passenger get queue count result. %s' % json.dumps(
queue_count_result, ensure_ascii=False, cls=JSONEncoder))
# 5. 下单-确认车票
confirm_ticket_result = train_order_api.order_confirm_passenger_confirm_single_for_queue(
passenger_ticket_str, old_passenger_str,
confirm_passenger_result['ticket_info']['queryLeftTicketRequestDTO']['purpose_codes'],
confirm_passenger_result['ticket_info']['key_check_isChange'],
confirm_passenger_result['ticket_info']['leftTicketStr'],
confirm_passenger_result['ticket_info']['train_location'],
confirm_passenger_result['token'], cookies=settings.COOKIES)
_logger.debug('order confirm passenger confirm ticket result. %s' % json.dumps(
confirm_ticket_result, ensure_ascii=False, cls=JSONEncoder))
# 6. 下单-查询订单
try_times = 4
while try_times > 0:
query_order_result = train_order_api.order_confirm_passenger_query_order(
confirm_passenger_result['token'], cookies=settings.COOKIES)
_logger.debug('order confirm passenger query order result. %s' % json.dumps(
query_order_result, ensure_ascii=False, cls=JSONEncoder))
if query_order_result['orderId']:
# order submit successfully
break
else:
# 今日订单取消次数超限,无法继续订票
error_code = query_order_result.get('errorcode')
error_msg = query_order_result.get('msg', '').encode('utf8')
order_cancel_exceed_limit_pattern = re.compile(r'取消次数过多')
if error_code == '0' and order_cancel_exceed_limit_pattern.search(error_msg):
raise exceptions.BookingOrderCancelExceedLimit(query_order_result['msg'].encode('utf8'))
time.sleep(0.5)
try_times -= 1
else:
raise exceptions.BookingOrderQueryTimeOut()
# 7. 下单-订单结果查询
order_result = train_order_api.order_confirm_passenger_result_order(
query_order_result['orderId'], confirm_passenger_result['token'], cookies=settings.COOKIES)
_logger.debug('order result. %s' % json.dumps(order_result, ensure_ascii=False))
_logger.info(
'恭喜你!抢票成功。订单号:%s 车次:%s 座位席别:%s 乘车日期:%s 出发站:%s 到达站:%s 历时:%s' %
(query_order_result['orderId'],
train_info['train_name'],
train_info['seat_type'],
train_info['train_date'],
train_info['from_station'],
train_info['to_station'],
train_info['duration']))
return query_order_result['orderId'] | 12306-booking | /12306-booking-0.1.18.tar.gz/12306-booking-0.1.18/booking/order.py | order.py |
import re
import copy
import json
import logging
from hack12306.constants import SEAT_TYPE_CODE_MAP
from hack12306.query import TrainInfoQueryAPI
from hack12306.constants import SEAT_TYPE_CODE_MAP
from . import exceptions
_logger = logging.getLogger('booking')
__all__ = ('query_left_tickets', 'query_station_code_map',)
def _check_seat_type_is_booking(left_ticket):
if left_ticket and left_ticket != u'无' and left_ticket != u'*':
return True
else:
return False
def _select_train_and_seat_type(train_names, seat_types, query_trains):
"""
选择订票车次、席别
:param train_names 预定的车次列表
:param seat_types 预定席别列表
:param query_trains 查询到火车车次列表
:return select_train, select_seat_type
"""
def _select_trains(query_trains, train_names=None):
if train_names:
select_trains = []
# 根据订票车次次序,选择车次
for train_name in train_names:
for train in query_trains:
if train['train_name'] == train_name:
select_trains.append(copy.deepcopy(train))
return select_trains
else:
return query_trains
def _select_types(trains, seat_types):
select_train = None
select_seat_type = None
for train in trains:
for seat_type in seat_types:
seat_type_left_ticket = train.get(seat_type, '')
if _check_seat_type_is_booking(seat_type_left_ticket):
select_seat_type = seat_type
select_train = copy.deepcopy(train)
return select_train, select_seat_type
else:
return None, None
_logger.debug('train_names:%s seat_types:%s' % (json.dumps(train_names, ensure_ascii=False),
json.dumps(seat_types, ensure_ascii=False)))
trains = _select_trains(query_trains, train_names)
# debug trains
for i in range(min(len(trains), len(train_names or ['']))):
_logger.debug('query left tickets train info. %s' % json.dumps(trains[i], ensure_ascii=False))
return _select_types(trains, seat_types)
def query_left_tickets(train_date, from_station, to_station, seat_types, train_names=None):
"""
信息查询-剩余车票
:param train_date
:param from_station
:param to_station
:param seat_types
:param train_names
:return JSON 对象
"""
date_pattern = re.compile(r'^\d{4}-\d{2}-\d{2}$')
assert date_pattern.match(train_date), 'Invalid train_date param. %s' % train_date
assert isinstance(seat_types, list), u'Invalid seat_types param. %s' % seat_types
assert frozenset(seat_types) <= frozenset(dict(SEAT_TYPE_CODE_MAP).keys()
), u'Invalid seat_types param. %s' % seat_types
train_info = {}
trains = TrainInfoQueryAPI().info_query_left_tickets(train_date, from_station, to_station)
train_info, select_seat_type = _select_train_and_seat_type(train_names, seat_types, trains)
if not train_info or not select_seat_type:
raise exceptions.BookingTrainNoLeftTicket('无票')
_logger.debug('select train info. %s' % json.dumps(train_info, ensure_ascii=False))
result = {
'train_date': train_date,
'from_station': train_info['from_station'],
'to_station': train_info['to_station'],
'seat_type': select_seat_type,
'seat_type_code': dict(SEAT_TYPE_CODE_MAP)[select_seat_type],
'departure_time': train_info['departure_time'],
'arrival_time': train_info['arrival_time'],
'secret': train_info['secret'],
'train_name': train_info['train_name'],
'duration': train_info['duration'],
'train_num': train_info['train_num']
}
return result
def query_station_code_map():
"""
信息查询-查询车站编码列表
:return JSON对象
"""
station_code_map = {}
stations = TrainInfoQueryAPI().info_query_station_list()
for station in stations:
station_code_map[station['name']] = station['code']
return station_code_map
def query_code_station_map():
"""
信息查询-查询车站编码列表
:return JSON对象
"""
code_station_map = {}
stations = TrainInfoQueryAPI().info_query_station_list()
for station in stations:
code_station_map[station['code']] = station['name']
return code_station_map | 12306-booking | /12306-booking-0.1.18.tar.gz/12306-booking-0.1.18/booking/query.py | query.py |
import os
import json
import copy
import logging
import datetime
import platform
from hack12306 import constants
from hack12306.pay import TrainPayAPI
from hack12306.utils import tomorrow, JSONEncoder
from . import settings
from . import exceptions
from .order import order_no_complete
from .utils import get_public_ip
_logger = logging.getLogger('booking')
__all__ = ('pay_order', )
def pay_order(bank_id=constants.BANK_ID_WX, **kwargs):
"""
支付订单
:param sequence_no 订单后
:bank_id 支付渠道ID
:return None
"""
train_pay_api = TrainPayAPI()
# 0.查询未支付订单
sequence_no = order_no_complete()
if not sequence_no:
raise exceptions.BookingOrderNoExists('')
# 1.支付未完成订单
pay_no_complete_order_result = train_pay_api.pay_no_complete_order(sequence_no, cookies=settings.COOKIES)
_logger.debug('pay no complete order result. %s' % json.dumps(pay_no_complete_order_result, ensure_ascii=False,))
if pay_no_complete_order_result['existError'] != 'N':
raise exceptions.BookingOrderNoExists('%s订单不存在' % sequence_no)
# 2.支付初始化
train_pay_api.pay_init(cookies=settings.COOKIES)
# 3.发起支付
pay_check_new_result = train_pay_api.pay_check_new(cookies=settings.COOKIES)
_logger.debug('pay check new result. %s' % json.dumps(pay_check_new_result, ensure_ascii=False))
# 4.交易
pay_business_result = train_pay_api.pay_web_business(
pay_check_new_result['payForm']['tranData'],
pay_check_new_result['payForm']['merSignMsg'],
pay_check_new_result['payForm']['transType'],
get_public_ip(), pay_check_new_result['payForm']['tranDataParsed']['order_timeout_date'],
bank_id, cookies=settings.COOKIES)
_logger.debug('pay business result. %s' % json.dumps(pay_business_result, ensure_ascii=False))
# 5.跳转第三方支付
pay_business_third_pay_resp = train_pay_api.submit(
pay_business_result['url'],
pay_business_result['params'],
method=pay_business_result['method'],
parse_resp=False,
cookies=settings.COOKIES,
allow_redirects=True)
_logger.debug('pay third resp status code. %s' % pay_business_third_pay_resp.status_code)
_logger.debug('pay third resp. %s' % pay_business_third_pay_resp.content)
# 6.打开浏览器扫码完成支付
try:
pay_filepath = settings.PAY_FILEPATH.format(date=datetime.date.today().strftime('%Y%m%d'),
order_no=sequence_no, bank_id=bank_id)
if not os.path.exists(os.path.dirname(pay_filepath)):
os.makedirs(os.path.dirname(pay_filepath))
with open(pay_filepath, 'w') as f:
f.write(pay_business_third_pay_resp.content)
_logger.info('请用浏览器打开%s,完成支付!' % pay_filepath)
finally:
if os.path.exists(pay_filepath):
if platform.mac_ver()[0]:
os.system('open %s' % pay_filepath)
os.remove(pay_filepath) | 12306-booking | /12306-booking-0.1.18.tar.gz/12306-booking-0.1.18/booking/pay.py | pay.py |
import argparse
import asyncio
import base64
import binascii
import functools
import hashlib
import io
import json
import logging
import pathlib
import re
import sys
import textwrap
import time
from typing import Any, Awaitable, Callable, Dict, List, Optional
import aiohttp
import netifaces
import pyaes
from aiohttp import web
from furl import furl
from pyaes.util import strip_PKCS7_padding
from tqdm.asyncio import tqdm
if sys.version_info >= (3, 8):
from typing import TypedDict
else:
from typing_extensions import TypedDict
Channel = TypedDict('Channel', {'id': int, 'stream_id': str, 'tvguide_id': str,
'name': str, 'category': str, 'language': str,
'stream_url': furl, 'referer_url': str,
'refresh_lock': asyncio.Lock, 'last_time_refreshed': float})
# Fix for https://github.com/pyinstaller/pyinstaller/issues/1113
''.encode('idna')
# Usage:
# $ ./123tv_iptv.py
# $ ./123tv_iptv.py --icons-for-light-bg
# $ ./123tv_iptv.py --access-logs --port 1234
#
# Install / uninstall service (Linux only)
# $ sudo -E ./123tv_iptv.py --icons-for-light-bg install-service
# $ sudo -E ./123tv_iptv.py uninstall-service
# $ sudo -E env "PATH=$PATH" 123tv-iptv --port 1234 install-service
# $ sudo -E env "PATH=$PATH" 123tv-iptv uninstall-service
#
# Run:
# mpv http://127.0.0.1:6464/123tv.m3u8
# vlc http://127.0.0.1:6464
VERSION = '0.1.3'
USER_AGENT = ('Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 '
'(KHTML, like Gecko) Chrome/102.0.5005.63 Safari/537.36')
HEADERS = {'User-Agent': USER_AGENT}
logging.basicConfig(
level=logging.INFO, format='%(asctime)s :: %(levelname)s :: %(message)s',
datefmt='%H:%M:%S'
)
logger = logging.getLogger(__name__)
def root_dir() -> pathlib.Path:
"""Root directory."""
if hasattr(sys, '_MEIPASS'):
return pathlib.Path(sys._MEIPASS) # type: ignore
else:
return pathlib.Path(__file__).parent
def load_dict(filename: str) -> Any:
"""Load root dictionary."""
filepath = root_dir() / filename
with open(filepath, encoding='utf-8') as f:
return json.load(f)
def local_ip_addresses() -> List[str]:
"""Finding all local IP addresses."""
ip_addresses: List[str] = []
interfaces = netifaces.interfaces()
for i in interfaces:
iface = netifaces.ifaddresses(i).get(netifaces.AF_INET, [])
ip_addresses.extend(x['addr'] for x in iface)
return ip_addresses
async def gather_with_concurrency(n: int, *tasks: Awaitable[Any],
show_progress: bool = True,
progress_title: Optional[str] = None) -> Any:
"""Gather tasks with concurrency."""
semaphore = asyncio.Semaphore(n)
async def sem_task(task: Awaitable[Any]) -> Any:
async with semaphore:
return await task
gather = functools.partial(tqdm.gather, desc=progress_title) if show_progress \
else asyncio.gather
return await gather(*[sem_task(x) for x in tasks]) # type: ignore
def extract_obfuscated_link(content: str) -> str:
"""Extract and decode obfuscated stream URL from 123TV channel page."""
start_text = textwrap.dedent(
"""
var post_id = parseInt($('#'+'v'+'i'+'d'+'eo'+'-i'+'d').val());
$(document).ready(function(){
"""
)
data_part, key = '', ''
ob_line = content[content.index(start_text) + len(start_text):].splitlines()[0]
try:
a, b, c = ob_line.split('};')
except ValueError:
return ''
# Parse data
arr = re.search(r'(?<=\[)[^\]]+(?=\])', a)
if arr:
for part in arr.group().split(','):
data_part += part.strip('\'')
try:
data = json.loads(base64.b64decode(data_part))
except (binascii.Error, json.JSONDecodeError):
return ''
# Parse key
for arr in re.findall(r'(?<=\[)[\d+\,]+(?=\])', b):
for dig in arr.split(','): # type: ignore
key = chr(int(dig)) + key
# Decode playlist data
data['iterations'] = 999 if data['iterations'] <= 0 else data['iterations']
dec_key = hashlib.pbkdf2_hmac('sha512', key.encode('utf8'), bytes.fromhex(data['salt']),
data['iterations'], dklen=256 // 8)
aes = pyaes.AESModeOfOperationCBC(dec_key, iv=bytes.fromhex(data['iv']))
ciphertext = base64.b64decode(data['ciphertext'])
decrypted = b''
for idx in range(0, len(ciphertext), 16):
decrypted += aes.decrypt(ciphertext[idx: idx + 16])
target_link: str = strip_PKCS7_padding(decrypted).decode('utf8')
path = re.search(r'(?<=\')\S+(?=\';}$)', c)
if path:
target_link += path.group()
return target_link
def ensure_absolute_url(url: str, relative_url: str) -> str:
"""Ensure url is absolute. Makes it absolute if it's relative."""
if not url.startswith('http'):
url = furl(relative_url).origin + '/' + \
'/'.join(furl(relative_url).path.segments[:-1] + [url])
return url
async def retrieve_stream_url(channel: Channel, max_retries: int = 5) -> Optional[Channel]:
"""Retrieve stream URL from web player with retries."""
url = 'http://123tv.live/watch/' + channel['stream_id']
timeout, max_timeout = 2, 10
exceptions = (asyncio.TimeoutError, aiohttp.ClientConnectionError,
aiohttp.ClientResponseError, aiohttp.ServerDisconnectedError)
async def is_valid_playlist_url(url: str, headers: Dict[str, str],
session: aiohttp.ClientSession) -> bool:
async with session.get(url=url, timeout=timeout,
headers=headers) as response:
m3u8_content = await response.text()
return m3u8_content.startswith('#EXTM3U') # type: ignore
async def retrieve_regular_channel(html_content: str, session: aiohttp.ClientSession) -> bool:
iframe_match = re.search(r'"(?P<iframe_url>https?://.*?\.m3u8\?embed=true)"', html_content)
if not iframe_match:
return False
# Get channel playlist URL
headers = {**HEADERS, 'Referer': url}
embed_url = iframe_match.group('iframe_url')
async with session.get(url=embed_url, timeout=timeout, headers=headers) as response:
html_frame = await response.text()
playlist_match = re.search(r'\'(?P<playlist_url>https?://.*?\.m3u8)\'', html_frame)
if not playlist_match:
return False
# Check if it's a valid playlist
playlist_url = playlist_match.group('playlist_url')
referer_url = 'http://azureedge.xyz/'
headers = {**HEADERS, 'Referer': referer_url}
if await is_valid_playlist_url(playlist_url, headers, session):
channel['stream_url'] = furl(playlist_url)
channel['referer_url'] = referer_url
return True
return False
async def retrieve_obfuscated_channel(html_content: str, session: aiohttp.ClientSession) -> bool:
decoded_url = extract_obfuscated_link(html_content)
if not decoded_url:
return False
referer_url = url.rstrip('/') + '/'
headers = {**HEADERS, 'Referer': referer_url}
async with session.get(url=decoded_url, timeout=timeout, headers=headers) as response:
master_playlist_obj = await response.json()
master_playlist_url = master_playlist_obj[0]['file']
async with session.get(url=master_playlist_url, timeout=timeout, headers=headers) as response:
master_playlist_content = await response.text()
playlist_match = re.search(r'(?P<playlist_url>^[^#].*\.m3u8.*$)',
master_playlist_content, re.M)
if playlist_match:
playlist_url = ensure_absolute_url(playlist_match.group('playlist_url'),
master_playlist_url)
if await is_valid_playlist_url(playlist_url, headers, session):
channel['stream_url'] = furl(playlist_url)
channel['referer_url'] = referer_url
return True
return False
for key in ('stream_url', 'referer_url'):
channel.pop(key, None) # type: ignore
while True:
try:
async with aiohttp.TCPConnector(ssl=False) as connector:
async with aiohttp.ClientSession(raise_for_status=True, connector=connector) as session:
async with session.get(url=url, timeout=timeout) as response:
html_content = await response.text()
for retriever in (retrieve_regular_channel, retrieve_obfuscated_channel):
if await retriever(html_content, session):
return channel
logger.info('No stream URL found for channel "%s".', channel['name'])
return None
except Exception as e:
is_exc_valid = any(isinstance(e, exc) for exc in exceptions)
if not is_exc_valid:
raise
timeout = min(timeout + 1, max_timeout)
max_retries -= 1
if max_retries <= 0:
logger.debug('Failed to retrieve channel "%s" (%s).', channel['name'], url)
return None
def render_playlist(channels: List[Channel], host: str, use_uncompressed_tvguide: bool) -> str:
"""Render master playlist."""
with io.StringIO() as f:
base_url = furl(netloc=host, scheme='http')
tvg_compressed_ext = '' if use_uncompressed_tvguide else '.gz'
tvg_url = base_url / f'tvguide.xml{tvg_compressed_ext}'
f.write('#EXTM3U url-tvg="%s" refresh="3600"\n\n' % tvg_url)
for channel in channels:
tvg_logo = base_url / 'logos' / (channel['stream_id'] + '.png')
stream_url = base_url / (channel['stream_id'] + '.m3u8')
f.write(('#EXTINF:-1 tvg-id="{0[stream_id]}" tvg-logo="{1}" '
'group-title="{0[category]}",{0[name]}\n'.format(channel, tvg_logo)))
f.write(f'{stream_url}\n\n')
return f.getvalue()
async def collect_urls(channels: List[Channel], parallel: int,
keep_all_channels: bool) -> List[Channel]:
"""Collect channel stream URLs from 123tv.live web players."""
logger.info('Extracting stream URLs from 123TV. Parallel requests: %d.', parallel)
retrieve_tasks = [retrieve_stream_url(channel) for channel in channels]
retrieved_channels = await gather_with_concurrency(parallel, *retrieve_tasks,
progress_title='Collect URLs')
channels_ok = channels if keep_all_channels else \
[x for x in retrieved_channels if x]
report_msg = 'Extracted %d channels out of %d.'
logger.info(report_msg, len(channels_ok), len(channels))
return channels_ok
def preprocess_playlist(content: str, referer_url: str, response_url: Optional[str] = None) -> str:
"""Augment playlist with referer argument, make relative URLs absolute
if `response_url` is specified, add chunks prefix path for absolute URLs."""
if content.startswith('#EXTM3U'):
content_lines = []
for line in content.splitlines():
if not line.startswith('#'):
# Ensure URL is absolute
if response_url:
line = ensure_absolute_url(line, response_url)
# Add referer argument
line = furl(line).add(args={'referer': referer_url}).url
content_lines.append(line)
content = '\n'.join(content_lines)
# Add chunks redirect prefix path
content = re.sub(r'(?<=\n)(https?)://', r'/chunks/\1/', content)
return content
async def playlist_server(port: int, parallel: bool, tvguide_base_url: str,
access_logs: bool, icons_for_light_bg: bool,
use_uncompressed_tvguide: bool,
keep_all_channels: bool) -> None:
async def refresh_auth_key(channel: Channel) -> None:
"""Refresh auth key for the channel."""
async with channel['refresh_lock']:
if time.time() - channel['last_time_refreshed'] > 5:
logger.info('Refreshing auth key for channel %s.', channel['name'])
await retrieve_stream_url(channel, 2)
channel['last_time_refreshed'] = time.time()
"""Run proxying server with keys rotation."""
async def master_handler(request: web.Request) -> web.Response:
"""Master playlist handler."""
return web.Response(
text=render_playlist(channels, request.host, use_uncompressed_tvguide)
)
async def logos_handler(request: web.Request) -> web.Response:
"""Channel logos handler."""
color_scheme = 'for-light-bg' if icons_for_light_bg else 'for-dark-bg'
logo_url = (furl(tvguide_base_url) / 'images/icons/channels' /
color_scheme / request.match_info.get('filename')).url
async with aiohttp.TCPConnector(ssl=False, force_close=True) as connector:
async with aiohttp.request(method=request.method, url=logo_url,
connector=connector) as response:
content = await response.read()
return web.Response(
body=content, status=response.status,
content_type='image/png'
)
async def keys_handler(request: web.Request) -> web.Response:
"""AES keys handler."""
url = furl('http://hls.123tv.live/key/').add(path=request.match_info.get('keypath')).url
async with aiohttp.TCPConnector(ssl=False, force_close=True) as connector:
headers = {**HEADERS, 'Referer': 'http://azureedge.xyz/'}
async with aiohttp.request(
method=request.method, url=url,
headers=headers, connector=connector
) as response:
content = await response.read()
return web.Response(
body=content, status=response.status
)
async def tvguide_handler(request: web.Request) -> web.Response:
"""TV Guide handler."""
is_compressed = request.path.endswith('.gz')
compressed_ext = '.gz' if is_compressed else ''
color_scheme = 'for-light-bg' if icons_for_light_bg else 'for-dark-bg'
tvguide_filename = f'123tv.{color_scheme}.xml{compressed_ext}'
tvguide_url = furl(tvguide_base_url).add(path=tvguide_filename).url
async with aiohttp.TCPConnector(ssl=False, force_close=True) as connector:
async with aiohttp.request(method=request.method, url=tvguide_url,
connector=connector) as response:
content = await response.read()
content_type = 'application/gzip' if is_compressed else 'application/xml'
return web.Response(
body=content, status=response.status,
content_type=content_type
)
async def playlist_handler(request: web.Request) -> web.Response:
"""Channel playlist handler."""
stream_id = request.match_info.get('stream_id')
if stream_id not in streams:
return web.Response(text='Stream not found!', status=404)
channel = streams[stream_id]
# If you specified --do-not-filter-channels
# you could meet a channel without stream_url
if 'stream_url' not in channel:
# Try to refresh empty channel
await refresh_auth_key(channel)
if 'stream_url' in channel:
headers = {name: value for name, value in request.headers.items()
if name not in (aiohttp.hdrs.HOST, aiohttp.hdrs.USER_AGENT)}
headers = {**headers, **HEADERS, 'Referer': channel['referer_url']}
max_retries = 2 # Second retry for auth keys refreshing
for _ in range(max_retries):
async with aiohttp.TCPConnector(ssl=False, force_close=True) as connector:
async with aiohttp.request(
method=request.method, url=channel['stream_url'].url,
headers=headers, connector=connector
) as response:
# Get playlist content
content = await response.text()
# Check if the channel's key is expired
if not content.startswith('#EXTM3U'):
# Lazy auth key update
await refresh_auth_key(channel)
continue
# Preprocess playlist content
content = preprocess_playlist(content, channel['referer_url'],
channel['stream_url'].url)
# OK
return web.Response(text=content, status=200)
# Empty channel, not a valid playlist, failed to get new auth key
logger.warning('Channel "%s" returned invalid playlist.', channel['name'])
notfound_segment_url = furl(tvguide_base_url) / 'assets/404.ts'
return web.Response(text=(
'#EXTM3U\n#EXT-X-VERSION:3\n#EXT-X-TARGETDURATION:10\n'
f'#EXTINF:10.000\n{notfound_segment_url}\n#EXT-X-ENDLIST'
))
async def chunks_handler(request: web.Request) -> web.Response:
"""Chunks handler."""
upstream_url = '{0[schema]}://{0[chunk_url]}'.format(request.match_info)
upstream_query = {**request.query}
referer_url = upstream_query.pop('referer', 'http://123tv.live/')
headers = {name: value for name, value in request.headers.items()
if name not in (aiohttp.hdrs.HOST, aiohttp.hdrs.USER_AGENT)}
headers = {**headers, **HEADERS, 'Referer': referer_url}
max_retries = 2 # Second retry for response payload errors recovering
for retry in range(1, max_retries + 1):
try:
async with aiohttp.TCPConnector(ssl=False, force_close=True) as connector:
async with aiohttp.request(
method=request.method, url=upstream_url, params=upstream_query,
headers=headers, raise_for_status=True, connector=connector
) as response:
content = await response.read()
headers = {name: value for name, value in response.headers.items()
if name not in
(aiohttp.hdrs.CONTENT_ENCODING, aiohttp.hdrs.CONTENT_LENGTH,
aiohttp.hdrs.TRANSFER_ENCODING, aiohttp.hdrs.CONNECTION)}
return web.Response(
body=content, status=response.status,
headers=headers
)
except aiohttp.ClientResponseError as e:
if retry >= max_retries:
return web.Response(text=e.message, status=e.status)
except aiohttp.ClientPayloadError as e:
if retry >= max_retries:
return web.Response(text=str(e), status=500)
except aiohttp.ClientError as e:
logger.error('[Retry %d/%d] Error occured during handling request: %s',
retry, max_retries, e, exc_info=True)
if retry >= max_retries:
return web.Response(text=str(e), status=500)
return web.Response(text='', status=500)
# Load channels info
channels = load_dict('channels.json')
# Retrieve available channels with their stream urls
channels = await collect_urls(channels, parallel, keep_all_channels)
if not channels:
logger.error('No channels were retrieved!')
return
# Add channels sync tools
for channel in channels:
channel['refresh_lock'] = asyncio.Lock() # Lock on a key refresh
channel['last_time_refreshed'] = .0 # Time of the last key refresh
# Transform list into a map for better accessibility
streams = {x['stream_id']: x for x in channels}
# Setup access logging
access_logger = logging.getLogger('aiohttp.access')
if access_logs:
access_logger.setLevel('INFO')
else:
access_logger.setLevel('ERROR')
# Run server
for ip_address in local_ip_addresses():
logger.info(f'Serving http://{ip_address}:{port}/123tv.m3u8')
logger.info(f'Serving http://{ip_address}:{port}/tvguide.xml')
app = web.Application()
app.router.add_get('/', master_handler) # master shortcut
app.router.add_get('/123tv.m3u8', master_handler) # master
app.router.add_get('/tvguide.xml', tvguide_handler) # tvguide
app.router.add_get('/tvguide.xml.gz', tvguide_handler) # tvguide compressed
app.router.add_get('/logos/{filename:[^/]+}', logos_handler) # logos
app.router.add_get('/{stream_id}.m3u8', playlist_handler) # playlist
app.router.add_get('/chunks/{schema}/{chunk_url:.+}', chunks_handler) # chunks
app.router.add_get('/key/{keypath:.+}', keys_handler) # AES
runner = web.AppRunner(app)
try:
await runner.setup()
site = web.TCPSite(runner, port=port)
await site.start()
# Sleep forever by 1 hour intervals,
# on Windows before Python 3.8 wake up every 1 second to handle
# Ctrl+C smoothly.
if sys.platform == 'win32' and sys.version_info < (3, 8):
delay = 1
else:
delay = 3600
while True:
await asyncio.sleep(delay)
finally:
await runner.cleanup() # Cleanup used resources, release port
def service_command_handler(command: str, *exec_args: str) -> bool:
"""Linux service command handler."""
import os
import subprocess
import textwrap
service_path = '/etc/systemd/system/123tv-iptv.service'
service_name = os.path.basename(service_path)
ret_failed = True
def run_shell_commands(*commands: str) -> None:
for command in commands:
subprocess.run(command, shell=True)
def install_service() -> bool:
"""Install systemd service."""
service_content = textwrap.dedent(f'''
[Unit]
Description=123TV Free IPTV
After=network.target
StartLimitInterval=0
[Service]
User={os.getlogin()}
Type=simple
Restart=always
RestartSec=5
ExecStart={' '.join(exec_args)}
[Install]
WantedBy=multi-user.target
''')
if os.path.isfile(service_path):
logger.error('Service %s already exists!', service_path)
return True
with open(service_path, 'w') as f_srv:
f_srv.write(service_content.strip())
os.chmod(service_path, 0o644)
run_shell_commands(
'systemctl daemon-reload',
'systemctl enable %s' % service_name,
'systemctl start %s' % service_name
)
return False
def uninstall_service() -> bool:
"""Uninstall systemd service."""
if not os.path.isfile(service_path):
logger.error('Service %s does not exist!', service_path)
return True
run_shell_commands(
'systemctl stop %s' % service_name,
'systemctl disable %s' % service_name
)
os.remove(service_path)
run_shell_commands(
'systemctl daemon-reload',
'systemctl reset-failed'
)
return False
try:
if command == 'install-service':
ret_failed = install_service()
elif command == 'uninstall-service':
ret_failed = uninstall_service()
else:
logger.error('Unknown command "%s"', command)
except PermissionError:
logger.error(('Permission denied, try command: '
f'sudo -E {" ".join(exec_args)} {command}'))
except Exception as e:
logger.error('Error occured: %s', e)
return ret_failed
def args_parser() -> argparse.ArgumentParser:
"""Command line arguments parser."""
def int_range(min_value: int = -sys.maxsize - 1,
max_value: int = sys.maxsize) -> Callable[[str], int]:
def constrained_int(arg: str) -> int:
value = int(arg)
if not min_value <= value <= max_value:
raise argparse.ArgumentTypeError(
f'{min_value} <= {arg} <= {max_value}'
)
return value
return constrained_int
parser = argparse.ArgumentParser(
'123tv-iptv', description='123TV Free IPTV.', add_help=False
)
parser.add_argument(
'-p', '--port', metavar='PORT',
type=int_range(min_value=1, max_value=65535), default=6464,
help='Serving port (default: %(default)s)'
)
parser.add_argument(
'-t', '--parallel', metavar='N',
type=int_range(min_value=1), default=15,
help='Number of parallel parsing requests (default: %(default)s)'
)
parser.add_argument(
'--icons-for-light-bg', action='store_true',
help='Put channel icons adapted for apps with light background'
)
parser.add_argument(
'--access-logs',
action='store_true',
help='Enable access logging'
)
parser.add_argument(
'--keep-all-channels',
action='store_true',
help='Do not filter out not working channels'
),
parser.add_argument(
'--tvguide-base-url', metavar='URL',
default='https://raw.githubusercontent.com/interlark/123tv-tvguide/master',
help='Base TV Guide URL'
)
parser.add_argument(
'--use-uncompressed-tvguide',
action='store_true',
help='Use uncompressed version of TV Guide in "url-tvg" attribute'
)
parser.add_argument(
'-v', '--version', action='version', version=f'%(prog)s {VERSION}',
help='Show program\'s version number and exit'
)
parser.add_argument(
'-h', '--help', action='help', default=argparse.SUPPRESS,
help='Show this help message and exit'
)
# Linux service subcommands
if sys.platform.startswith('linux'):
subparsers = parser.add_subparsers(help='Subcommands')
install_service_parser = subparsers.add_parser(
'install-service', help='Install autostart service'
)
install_service_parser.set_defaults(
invoke_subcommand=functools.partial(service_command_handler, 'install-service')
)
uninstall_service_parser = subparsers.add_parser(
'uninstall-service', help='Uninstall autostart service'
)
uninstall_service_parser.set_defaults(
invoke_subcommand=functools.partial(service_command_handler, 'uninstall-service')
)
return parser
def main() -> None:
"""Entry point."""
# Parse CLI arguments
parser = args_parser()
args = parser.parse_args()
# Invoke subcommands
if 'invoke_subcommand' in args:
exec_args = [arg for idx, arg in enumerate(sys.argv)
if arg.startswith('-') or idx == 0]
exit(args.invoke_subcommand(*exec_args))
# Run server
try:
asyncio.run(playlist_server(**vars(args)))
except KeyboardInterrupt:
logger.info('Server shutdown.')
if __name__ == '__main__':
main() | 123tv-iptv | /123tv-iptv-0.1.3.tar.gz/123tv-iptv-0.1.3/123tv_iptv.py | 123tv_iptv.py |
<div align="center">
<h1>
<a href="#">
<img alt="123TV-IPTV Logo" width="50%" src="https://user-images.githubusercontent.com/20641837/188281506-11413220-3c65-4e26-a0d1-ed3f248ea564.svg"/>
</a>
</h1>
</div>
<div align="center">
<a href="https://github.com/interlark/123tv-tvguide/actions/workflows/tvguide.yml"><img alt="TV Guide status" src="https://github.com/interlark/123tv-tvguide/actions/workflows/tvguide.yml/badge.svg"/></a>
<a href="https://pypi.org/project/123tv-iptv"><img alt="PyPi version" src="https://badgen.net/pypi/v/123tv-iptv"/></a>
<a href="https://pypi.org/project/123tv-iptv"><img alt="Supported platforms" src="https://badgen.net/badge/platform/Linux,macOS,Windows?list=|"/></a>
</div><br>
**123TV-IPTV** is an app that allows you to watch **free IPTV**.
It **extracts stream URLs** from [123tv.live](http://123tv.live/) website, **generates master playlist** with available TV channels for IPTV players and **proxies the traffic** between your IPTV players and streaming backends.
> **Note**: This is a port of [ustvgo-iptv app](https://github.com/interlark/ustvgo-iptv) for 123TV service.
## ✨ Features
- 🔑 Auto auth-key rotation
> As server proxies the traffic it can detect if your auth key is expired and refresh it on the fly.
- 📺 Available [TV Guide](https://github.com/interlark/123tv-tvguide)
> [TV Guide](https://github.com/interlark/123tv-tvguide) repo generates EPG XML for upcoming programs of all the channels once an hour.
- [![](https://user-images.githubusercontent.com/20641837/173175879-aed31bd4-b188-4681-89df-5ffc3ea05a82.svg)](https://github.com/interlark/123tv-tvguide/tree/master/images/icons/channels)
Two iconsets for IPTV players with light and dark backgrounds
> There are 2 channel iconsets adapted for apps with light and dark UI themes.
- 🗔 Cross-platform GUI
> GUI is available for Windows, Linux and MacOS for people who are not that much into CLI.
## 🚀 Installation
- **CLI**
```bash
pip install 123tv-iptv
```
- **GUI**
You can download GUI app from [Releases](https://github.com/interlark/123tv-iptv/releases/latest) for your OS.
- **Docker**
```bash
docker run -d --name=123tv-iptv -p 6464:6464 --restart unless-stopped ghcr.io/interlark/123tv-iptv:latest
```
> For dark icons append following argument: `--icons-for-light-bg`
## ⚙️ Usage - CLI
You can run the app without any arguments.
```
123tv-iptv
```
<img alt="123TV-IPTV CLI screencast" width="666" src="https://user-images.githubusercontent.com/20641837/192028421-592d8b27-bfa0-4444-aa20-e7b1ea1f05da.gif"/>
| Optional argument | Description |
| :--- | :---- |
| --icons-for-light-bg | Switch to dark iconset for players with light UI. |
| --access-logs | Enable access logs for tracking requests activity. |
| --port 6464 | Server port. By default, the port is **6464**. |
| --parallel 10 | Number of parallel parsing requests. Default is **10**. |
| --use-uncompressed-tvguide| By default, master playlist has a link to **compressed** version of TV Guide:<br/>`url-tvg="http://127.0.0.1:6464/tvguide.xml.gz"`<br/>With this argument you can switch it to uncompressed:<br/>`url-tvg="http://127.0.0.1:6464/tvguide.xml"` |
| --keep-all-channels | Do not filter out not working channels.
<br />
**Linux** users can install **systemd service** that automatically runs 123tv-iptv on start-ups ⏰.
```bash
# Install "123tv-iptv" service
sudo -E env "PATH=$PATH" 123tv-iptv install-service
# You can specify any optional arguments you want
sudo -E env "PATH=$PATH" 123tv-iptv --port 1234 --access-logs install-service
# Uninstall "123tv-iptv" service
sudo -E env "PATH=$PATH" 123tv-iptv uninstall-service
```
## ⚙️ Usage - GUI
<img alt="123TV-IPTV GUI screenshot" width="614" src="https://user-images.githubusercontent.com/20641837/192025393-c5b089e6-8311-4f57-af78-8f125cce71cc.png"/>
If you don't like command line stuff, you can run GUI app and click "Start", simple as that.
GUI uses **config file** on following path:
* **Linux**: ~/.config/123tv-iptv/settings.cfg
* **Mac**: ~/Library/Application Support/123tv-iptv/settings.cfg
* **Windows**: C:\Users\\%USERPROFILE%\AppData\Local\123tv-iptv\settings.cfg
## 🔗 URLs
To play and enjoy your free IPTV you need 2 URLs that this app provides:
1) Your generated **master playlist**: 🔗 http://127.0.0.1:6464/123tv.m3u8
2) **TV Guide** (content updates once an hour): 🔗 http://127.0.0.1:6464/tvguide.xml
## ▶️ Players
Here is a **list** of popular IPTV players.
**123TV**'s channels have **EIA-608** embedded subtitles. In case if you're not a native speaker and use *TV*, *Cartoons*, *Movies* and *Shows* to learn English and Spanish languages I would recommend you following free open-source cross-platform IPTV players that can handle EIA-608 subtitles:
- **[VLC](https://github.com/videolan/vlc)**
This old beast could play **any subtitles**. Unfortunately it **doesn't support TV Guide**.
- **Play**
```bash
vlc http://127.0.0.1:6464/123tv.m3u8
```
- **[MPV](https://github.com/mpv-player/mpv)**
Fast and extensible player. It **supports subtitles**, but not that good as VLC, sometimes you could encounter troubles playing roll-up subtitles. Unfortunately it **doesn't suppport TV Guide**.
- **Play**
```bash
mpv http://127.0.0.1:6464/123tv.m3u8
```
- **[Jellyfin Media Player](https://github.com/jellyfin/jellyfin-media-player)**
<img alt="Jellyfin Media Player screenshot" width="49%" src="https://user-images.githubusercontent.com/20641837/173175969-cbfe5adc-1dc8-4e3b-946c-fa4e295d8b8c.jpg"/>
<img alt="Jellyfin Media Player screenshot" width="49%" src="https://user-images.githubusercontent.com/20641837/173175973-8acb076c-e1ac-4d06-96a8-b10a72b2f7d7.jpg"/>
Comfortable, handy, extensible with smooth UI player. **Supports TV Guide**, has **mpv** as a backend.
**Supports subtitles**, but there is no option to enable them via user interface. If you want to enable IPTV subtitles you have to use following "Mute" hack.
- **Enable IPTV subtitles**
I found a quick hack to force play embedded IPTV subtitles, all you need is to create one file:
> Linux: `~/.local/share/jellyfinmediaplayer/scripts/subtitles.lua`
> Linux(Flatpak): `~/.var/app/com.github.iwalton3.jellyfin-media-player/data/jellyfinmediaplayer/scripts/subtitles.lua`
> MacOS: `~/Library/Application Support/Jellyfin Media Player/scripts/subtitles.lua`
> Windows: `%LOCALAPPDATA%\JellyfinMediaPlayer\scripts\subtitles.lua`
And paste following text in there:
```lua
-- File: subtitles.lua
function on_mute_change(name, value)
if value then
local subs_id = mp.get_property("sid")
if subs_id == "1" then
mp.osd_message("Subtitles off")
mp.set_property("sid", "0")
else
mp.osd_message("Subtitles on")
mp.set_property("sid", "1")
end
end
end
mp.observe_property("mute", "bool", on_mute_change)
```
After that every time you mute a video *(🅼 key pressed)*, you toggle subtitles on/off as a side effect.
- **Play**
```
1) Settings -> Dashboard -> Live TV -> Tuner Devices -> Add -> M3U Tuner -> URL -> http://127.0.0.1:6464/123tv.m3u8
2) Settings -> Dashboard -> Live TV -> TV Guide Data Providers -> Add -> XMLTV -> URL -> http://127.0.0.1:6464/tvguide.xml
3) Settings -> Dashboard -> Scheduled Tasks -> Live TV -> Refresh Guide -> Task Triggers -> "Every 30 minutes"
```
- **Note**
```
Some versions does not support compressed (*.xml.gz) TV Guides.
```
- **[IPTVnator](https://github.com/4gray/iptvnator)**
<img alt="IPTVnator screenshot" width="666" src="https://user-images.githubusercontent.com/20641837/173176009-a2e86f74-46ef-464a-bbdf-9137f1d48201.jpg"/>
Player built with [Electron](https://github.com/electron/electron) so you can run it even in browser, has light and dark themes.
**Support subtitles and TV Guide.**
- **Play**
```
1) Add via URL -> http://127.0.0.1:6464/123tv.m3u8
2) Settings -> EPG Url -> http://127.0.0.1:6464/tvguide.xml.gz
```
## 👍 Support
- [123tv.live](http://123tv.live/) is wonderful project which can offer you a free IPTV, please support these guys buying VPN with their referral link.
- Also I would highly appreciate your support on this project ⠀<a href="https://www.buymeacoffee.com/interlark" target="_blank"><img alt="Buy Me A Coffee" src="https://cdn.buymeacoffee.com/buttons/default-orange.png" width="178" height="41"></a>
| 123tv-iptv | /123tv-iptv-0.1.3.tar.gz/123tv-iptv-0.1.3/README.md | README.md |
import numpy as np
# from bert_serving.client import BertClient
# bc = BertClient(ip='localhost',check_version=False,port=5555, port_out=5556, check_length=False,timeout=10000)
# topk = 3
#
# sentences = ['逍遥派掌门人无崖子为寻找一个色艺双全、聪明伶俐的徒弟,设下“珍珑”棋局,为少林寺虚字辈弟子虚竹误撞解开。',
# '慕容复为应召拒绝王语嫣的爱情;众人救起伤心自杀的王语嫣,后段誉终于获得她的芳心。',
# '鸠摩智贪练少林武功,走火入魔,幸被段誉吸去全身功力,保住性命,大彻大悟,成为一代高僧。',
# '张无忌历尽艰辛,备受误解,化解恩仇,最终也查明了丐帮史火龙之死乃是成昆、陈友谅师徒所为',
# '武氏与柯镇恶带着垂死的陆氏夫妇和几个小孩相聚,不料李莫愁尾随追来,打伤武三通',
# '人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。',
# '人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。',
# '自然语言认知和理解是让计算机把输入的语言变成有意思的符号和关系,然后根据目的再处理。']
#
# sentences_vec = bc.encode(sentences)
# print(type(sentences_vec))
# test_vec = bc.encode(['自然语言处理与人工智能'])
# score = np.sum(test_vec * sentences_vec, axis=1) / np.linalg.norm(sentences_vec, axis=1)
# topk_idx = np.argsort(score)[::-1][:topk]
# for idx in topk_idx:
# print('> 相似度:%s\t相似句子:%s' % (score[idx], sentences[idx]))
from pysoftNLP.bert.extract_feature import BertVector
import pandas as pd
def similar(sentences,test_vec,args,topk):
bert_model = BertVector(pooling_strategy="REDUCE_MEAN", max_seq_len=args['sentence_length']) # bert词向量
f = lambda text: bert_model.encode([text])["encodes"][0]
sentences_vec = pd.Series(sentences).apply(f)
test_vec = pd.Series(test_vec).apply(f)
sentences_vec = np.array([vec for vec in sentences_vec])
test_vec = np.array([vec for vec in test_vec])
score = np.sum(test_vec * sentences_vec, axis=1) / np.linalg.norm(sentences_vec, axis=1)
topk_idx = np.argsort(score)[::-1][:topk]
for idx in topk_idx:
print('> 相似度:%s\t相似句子:%s' % (score[idx], sentences[idx]))
if __name__ == '__main__':
test_vec = '自然语言处理与人工智能'
sentences = ['逍遥派掌门人无崖子为寻找一个色艺双全、聪明伶俐的徒弟,设下“珍珑”棋局,为少林寺虚字辈弟子虚竹误撞解开。',
'慕容复为应召拒绝王语嫣的爱情;众人救起伤心自杀的王语嫣,后段誉终于获得她的芳心。',
'鸠摩智贪练少林武功,走火入魔,幸被段誉吸去全身功力,保住性命,大彻大悟,成为一代高僧。',
'张无忌历尽艰辛,备受误解,化解恩仇,最终也查明了丐帮史火龙之死乃是成昆、陈友谅师徒所为',
'武氏与柯镇恶带着垂死的陆氏夫妇和几个小孩相聚,不料李莫愁尾随追来,打伤武三通',
'人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。',
'人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。',
'自然语言认知和理解是让计算机把输入的语言变成有意思的符号和关系,然后根据目的再处理。']
args = {'encode': 'bert', 'sentence_length': 50, 'num_classes': 9, 'batch_size': 128, 'epochs': 100}
similar(sentences,test_vec,args,3) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/similarities/similar.py | similar.py |
import os
import logging
import pandas as pd
from pysoftNLP.kashgari import macros as k
from typing import Tuple, List
from tensorflow.python.keras.utils import get_file
from pysoftNLP.kashgari import utils
CORPUS_PATH = os.path.join(k.DATA_PATH, 'corpus')
class DataReader(object):
@staticmethod
def read_conll_format_file(file_path: str,
text_index: int = 0,
label_index: int = 1) -> Tuple[List[List[str]], List[List[str]]]:
"""
Read conll format data_file
Args:
file_path: path of target file
text_index: index of text data, default 0
label_index: index of label data, default 1
Returns:
"""
x_data, y_data = [], []
with open(file_path, 'r', encoding='utf-8') as f:
lines = f.read().splitlines()
x, y = [], []
for line in lines:
rows = line.split(' ')
if len(rows) == 1:
x_data.append(x)
y_data.append(y)
x = []
y = []
else:
x.append(rows[text_index])
y.append(rows[label_index])
return x_data, y_data
class ChineseDailyNerCorpus(object):
"""
Chinese Daily New New Corpus
https://github.com/zjy-ucas/ChineseNER/
"""
# __corpus_name__ = 'china-people-daily-ner-corpus'
__corpus_name__ ='D:\pysoftNLP_resources\ner\china-people-daily-ner-corpus'
__zip_file__name = 'http://s3.bmio.net/kashgari/china-people-daily-ner-corpus.tar.gz'
@classmethod
def load_data(cls,
subset_name: str = 'train',
shuffle: bool = True) -> Tuple[List[List[str]], List[List[str]]]:
"""
Load dataset as sequence labeling format, char level tokenized
features: ``[['海', '钓', '比', '赛', '地', '点', '在', '厦', '门', ...], ...]``
labels: ``[['O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', ...], ...]``
Sample::
train_x, train_y = ChineseDailyNerCorpus.load_data('train')
test_x, test_y = ChineseDailyNerCorpus.load_data('test')
Args:
subset_name: {train, test, valid}
shuffle: should shuffle or not, default True.
Returns:
dataset_features and dataset labels
"""
corpus_path = get_file(cls.__corpus_name__,
cls.__zip_file__name,
cache_dir=k.DATA_PATH,
untar=True)
corpus_path = 'D:\pysoftNLP_resources\entity_recognition\china-people-daily-ner-corpus'
print(corpus_path)
if subset_name == 'train':
file_path = os.path.join(corpus_path, 'example.train')
elif subset_name == 'test':
file_path = os.path.join(corpus_path, 'example.test')
else:
file_path = os.path.join(corpus_path, 'example.dev')
x_data, y_data = DataReader.read_conll_format_file(file_path)
if shuffle:
x_data, y_data = utils.unison_shuffled_copies(x_data, y_data)
logging.debug(f"loaded {len(x_data)} samples from {file_path}. Sample:\n"
f"x[0]: {x_data[0]}\n"
f"y[0]: {y_data[0]}")
return x_data, y_data
class CONLL2003ENCorpus(object):
__corpus_name__ = 'conll2003_en'
__zip_file__name = 'http://s3.bmio.net/kashgari/conll2003_en.tar.gz'
@classmethod
def load_data(cls,
subset_name: str = 'train',
task_name: str = 'ner',
shuffle: bool = True) -> Tuple[List[List[str]], List[List[str]]]:
"""
"""
corpus_path = get_file(cls.__corpus_name__,
cls.__zip_file__name,
cache_dir=k.DATA_PATH,
untar=True)
if subset_name not in {'train', 'test', 'valid'}:
raise ValueError()
file_path = os.path.join(corpus_path, f'{subset_name}.txt')
if task_name not in {'pos', 'chunking', 'ner'}:
raise ValueError()
data_index = ['pos', 'chunking', 'ner'].index(task_name) + 1
x_data, y_data = DataReader.read_conll_format_file(file_path, label_index=data_index)
if shuffle:
x_data, y_data = utils.unison_shuffled_copies(x_data, y_data)
logging.debug(f"loaded {len(x_data)} samples from {file_path}. Sample:\n"
f"x[0]: {x_data[0]}\n"
f"y[0]: {y_data[0]}")
return x_data, y_data
class SMP2018ECDTCorpus(object):
"""
https://worksheets.codalab.org/worksheets/0x27203f932f8341b79841d50ce0fd684f/
This dataset is released by the Evaluation of Chinese Human-Computer Dialogue Technology (SMP2018-ECDT)
task 1 and is provided by the iFLYTEK Corporation, which is a Chinese human-computer dialogue dataset.
sample::
label query
0 weather 今天东莞天气如何
1 map 从观音桥到重庆市图书馆怎么走
2 cookbook 鸭蛋怎么腌?
3 health 怎么治疗牛皮癣
4 chat 唠什么
"""
__corpus_name__ = 'SMP2018ECDTCorpus'
__zip_file__name = 'http://s3.bmio.net/kashgari/SMP2018ECDTCorpus.tar.gz'
@classmethod
def load_data(cls,
subset_name: str = 'train',
shuffle: bool = True,
cutter: str = 'char') -> Tuple[List[List[str]], List[str]]:
"""
Load dataset as sequence classification format, char level tokenized
features: ``[['听', '新', '闻', '。'], ['电', '视', '台', '在', '播', '什', '么'], ...]``
labels: ``['news', 'epg', ...]``
Samples::
train_x, train_y = SMP2018ECDTCorpus.load_data('train')
test_x, test_y = SMP2018ECDTCorpus.load_data('test')
Args:
subset_name: {train, test, valid}
shuffle: should shuffle or not, default True.
cutter: sentence cutter, {char, jieba}
Returns:
dataset_features and dataset labels
"""
corpus_path = get_file(cls.__corpus_name__,
cls.__zip_file__name,
cache_dir=k.DATA_PATH,
untar=True)
if cutter not in ['char', 'jieba', 'none']:
raise ValueError('cutter error, please use one onf the {char, jieba}')
df_path = os.path.join(corpus_path, f'{subset_name}.csv')
df = pd.read_csv(df_path)
if cutter == 'jieba':
try:
import jieba
except ModuleNotFoundError:
raise ModuleNotFoundError(
"please install jieba, `$ pip install jieba`")
x_data = [list(jieba.cut(item)) for item in df['query'].to_list()]
elif 'char':
x_data = [list(item) for item in df['query'].to_list()]
y_data = df['label'].to_list()
if shuffle:
x_data, y_data = utils.unison_shuffled_copies(x_data, y_data)
logging.debug(f"loaded {len(x_data)} samples from {df_path}. Sample:\n"
f"x[0]: {x_data[0]}\n"
f"y[0]: {y_data[0]}")
return x_data, y_data
if __name__ == "__main__":
a, b = CONLL2003ENCorpus.load_data()
print(a[:2])
print(b[:2])
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/corpus.py | corpus.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: callbacks.py
# time: 2019-05-22 15:00
from sklearn import metrics
from pysoftNLP.kashgari import macros
from tensorflow.python import keras
from pysoftNLP.kashgari.tasks.base_model import BaseModel
from seqeval import metrics as seq_metrics
class EvalCallBack(keras.callbacks.Callback):
def __init__(self, kash_model: BaseModel, valid_x, valid_y,
step=5, batch_size=256, average='weighted'):
"""
Evaluate callback, calculate precision, recall and f1
Args:
kash_model: the kashgari model to evaluate
valid_x: feature data
valid_y: label data
step: step, default 5
batch_size: batch size, default 256
"""
super(EvalCallBack, self).__init__()
self.kash_model = kash_model
self.valid_x = valid_x
self.valid_y = valid_y
self.step = step
self.batch_size = batch_size
self.average = average
self.logs = []
def on_epoch_end(self, epoch, logs=None):
if (epoch + 1) % self.step == 0:
y_pred = self.kash_model.predict(self.valid_x, batch_size=self.batch_size)
if self.kash_model.task == macros.TaskType.LABELING:
y_true = [seq[:len(y_pred[index])] for index, seq in enumerate(self.valid_y)]
precision = seq_metrics.precision_score(y_true, y_pred)
recall = seq_metrics.recall_score(y_true, y_pred)
f1 = seq_metrics.f1_score(y_true, y_pred)
else:
y_true = self.valid_y
precision = metrics.precision_score(y_true, y_pred, average=self.average)
recall = metrics.recall_score(y_true, y_pred, average=self.average)
f1 = metrics.f1_score(y_true, y_pred, average=self.average)
self.logs.append({
'precision': precision,
'recall': recall,
'f1': f1
})
print(f"\nepoch: {epoch} precision: {precision:.6f}, recall: {recall:.6f}, f1: {f1:.6f}")
if __name__ == "__main__":
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/callbacks.py | callbacks.py |
import json
import os
import pathlib
import pydoc
import random
import time
from typing import List, Optional, Dict, Union
import tensorflow as tf
from tensorflow.python import keras, saved_model
from pysoftNLP.kashgari import custom_objects
from pysoftNLP.kashgari.embeddings.base_embedding import Embedding
from pysoftNLP.kashgari.layers.crf import CRF
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
from pysoftNLP.kashgari.tasks.base_model import BaseModel
from pysoftNLP.kashgari.tasks.classification.base_model import BaseClassificationModel
from pysoftNLP.kashgari.tasks.labeling.base_model import BaseLabelingModel
def unison_shuffled_copies(a, b):
assert len(a) == len(b)
c = list(zip(a, b))
random.shuffle(c)
a, b = zip(*c)
return list(a), list(b)
def get_list_subset(target: List, index_list: List[int]) -> List:
return [target[i] for i in index_list if i < len(target)]
def custom_object_scope():
return tf.keras.utils.custom_object_scope(custom_objects)
def load_model(model_path: str, load_weights: bool = True) -> Union[BaseClassificationModel, BaseLabelingModel]:
"""
Load saved model from saved model from `model.save` function
Args:
model_path: model folder path
load_weights: only load model structure and vocabulary when set to False, default True.
Returns:
"""
with open(os.path.join(model_path, 'model_info.json'), 'r') as f:
model_info = json.load(f)
model_class = pydoc.locate(f"{model_info['module']}.{model_info['class_name']}")
model_json_str = json.dumps(model_info['tf_model'])
model = model_class()
model.tf_model = tf.keras.models.model_from_json(model_json_str, custom_objects)
if load_weights:
model.tf_model.load_weights(os.path.join(model_path, 'model_weights.h5'))
embed_info = model_info['embedding']
embed_class = pydoc.locate(f"{embed_info['module']}.{embed_info['class_name']}")
embedding: Embedding = embed_class._load_saved_instance(embed_info,
model_path,
model.tf_model)
model.embedding = embedding
if type(model.tf_model.layers[-1]) == CRF:
model.layer_crf = model.tf_model.layers[-1]
return model
def load_processor(model_path: str) -> BaseProcessor:
"""
Load processor from model
When we using tf-serving, we need to use model's processor to pre-process data
Args:
model_path:
Returns:
"""
with open(os.path.join(model_path, 'model_info.json'), 'r') as f:
model_info = json.load(f)
processor_info = model_info['embedding']['processor']
processor_class = pydoc.locate(f"{processor_info['module']}.{processor_info['class_name']}")
processor: BaseProcessor = processor_class(**processor_info['config'])
return processor
def convert_to_saved_model(model: BaseModel,
model_path: str,
version: str = None,
inputs: Optional[Dict] = None,
outputs: Optional[Dict] = None):
"""
Export model for tensorflow serving
Args:
model: Target model
model_path: The path to which the SavedModel will be stored.
version: The model version code, default timestamp
inputs: dict mapping string input names to tensors. These are added
to the SignatureDef as the inputs.
outputs: dict mapping string output names to tensors. These are added
to the SignatureDef as the outputs.
"""
pathlib.Path(model_path).mkdir(exist_ok=True, parents=True)
if version is None:
version = round(time.time())
export_path = os.path.join(model_path, str(version))
if inputs is None:
inputs = {i.name: i for i in model.tf_model.inputs}
if outputs is None:
outputs = {o.name: o for o in model.tf_model.outputs}
sess = keras.backend.get_session()
saved_model.simple_save(session=sess,
export_dir=export_path,
inputs=inputs,
outputs=outputs)
with open(os.path.join(export_path, 'model_info.json'), 'w') as f:
f.write(json.dumps(model.info(), indent=2, ensure_ascii=True))
f.close()
if __name__ == "__main__":
path = '/Users/brikerman/Desktop/python/Kashgari/tests/classification/saved_models/' \
'kashgari.tasks.classification.models/BiLSTM_Model'
p = load_processor(path)
print(p.process_x_dataset([list('语言模型')]))
print(p.label2idx)
print(p.token2idx) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/utils.py | utils.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: bert_tokenizer.py
# time: 11:33 上午
# flake8: noqa: E127
import codecs
import os
import unicodedata
from pysoftNLP.kashgari.tokenizer.base_tokenizer import Tokenizer
TOKEN_PAD = '' # Token for padding
TOKEN_UNK = '[UNK]' # Token for unknown words
TOKEN_CLS = '[CLS]' # Token for classification
TOKEN_SEP = '[SEP]' # Token for separation
TOKEN_MASK = '[MASK]' # Token for masking
class BertTokenizer(Tokenizer):
"""
Bert Like Tokenizer, ref: https://github.com/CyberZHG/keras-bert/blob/master/keras_bert/tokenizer.py
"""
def __init__(self,
token_dict=None,
token_cls=TOKEN_CLS,
token_sep=TOKEN_SEP,
token_unk=TOKEN_UNK,
pad_index=0,
cased=False):
"""Initialize tokenizer.
:param token_dict: A dict maps tokens to indices.
:param token_cls: The token represents classification.
:param token_sep: The token represents separator.
:param token_unk: The token represents unknown token.
:param pad_index: The index to pad.
:param cased: Whether to keep the case.
"""
self._token_dict = token_dict
if self._token_dict:
self._token_dict_inv = {v: k for k, v in token_dict.items()}
else:
self._token_dict_inv = {}
self._token_cls = token_cls
self._token_sep = token_sep
self._token_unk = token_unk
self._pad_index = pad_index
self._cased = cased
@classmethod
def load_from_model(cls, model_path: str):
dict_path = os.path.join(model_path, 'vocab.txt')
token2idx = {}
with codecs.open(dict_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token2idx[token] = len(token2idx)
return BertTokenizer(token_dict=token2idx)
@classmethod
def load_from_vacab_file(cls, vacab_path: str):
token2idx = {}
with codecs.open(vacab_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token2idx[token] = len(token2idx)
return BertTokenizer(token_dict=token2idx)
def tokenize(self, first):
"""Split text to tokens.
:param first: First text.
:param second: Second text.
:return: A list of strings.
"""
tokens = self._tokenize(first)
return tokens
def _tokenize(self, text):
if not self._cased:
text = unicodedata.normalize('NFD', text)
text = ''.join([ch for ch in text if unicodedata.category(ch) != 'Mn'])
text = text.lower()
spaced = ''
for ch in text:
if self._is_punctuation(ch) or self._is_cjk_character(ch):
spaced += ' ' + ch + ' '
elif self._is_space(ch):
spaced += ' '
elif ord(ch) == 0 or ord(ch) == 0xfffd or self._is_control(ch):
continue
else:
spaced += ch
if self._token_dict:
tokens = []
for word in spaced.strip().split():
tokens += self._word_piece_tokenize(word)
return tokens
else:
return spaced.strip().split()
def _word_piece_tokenize(self, word):
if word in self._token_dict:
return [word]
tokens = []
start, stop = 0, 0
while start < len(word):
stop = len(word)
while stop > start:
sub = word[start:stop]
if start > 0:
sub = '##' + sub
if sub in self._token_dict:
break
stop -= 1
if start == stop:
stop += 1
tokens.append(sub)
start = stop
return tokens
@staticmethod
def _is_punctuation(ch): # noqa: E127
code = ord(ch)
return 33 <= code <= 47 or \
58 <= code <= 64 or \
91 <= code <= 96 or \
123 <= code <= 126 or \
unicodedata.category(ch).startswith('P')
@staticmethod
def _is_cjk_character(ch):
code = ord(ch)
return 0x4E00 <= code <= 0x9FFF or \
0x3400 <= code <= 0x4DBF or \
0x20000 <= code <= 0x2A6DF or \
0x2A700 <= code <= 0x2B73F or \
0x2B740 <= code <= 0x2B81F or \
0x2B820 <= code <= 0x2CEAF or \
0xF900 <= code <= 0xFAFF or \
0x2F800 <= code <= 0x2FA1F
@staticmethod
def _is_space(ch):
return ch == ' ' or ch == '\n' or ch == '\r' or ch == '\t' or unicodedata.category(ch) == 'Zs'
@staticmethod
def _is_control(ch):
return unicodedata.category(ch) in ('Cc', 'Cf') | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/tokenizer/bert_tokenizer.py | bert_tokenizer.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_model.py
# time: 2019-05-22 11:21
import os
import json
import logging
import warnings
import pathlib
from typing import Dict, Any, List, Optional, Union, Tuple
import numpy as np
import tensorflow as tf
from tensorflow import keras
import pysoftNLP.kashgari as kashgari
from pysoftNLP.kashgari import utils
from pysoftNLP.kashgari.embeddings import BareEmbedding
from pysoftNLP.kashgari.embeddings.base_embedding import Embedding
L = keras.layers
class BaseModel(object):
"""Base Sequence Labeling Model"""
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
raise NotImplementedError
def info(self):
model_json_str = self.tf_model.to_json()
return {
'config': {
'hyper_parameters': self.hyper_parameters,
},
'tf_model': json.loads(model_json_str),
'embedding': self.embedding.info(),
'class_name': self.__class__.__name__,
'module': self.__class__.__module__,
'tf_version': tf.__version__,
'kashgari_version': kashgari.__version__
}
@property
def task(self):
return self.embedding.task
@property
def token2idx(self) -> Dict[str, int]:
return self.embedding.token2idx
@property
def label2idx(self) -> Dict[str, int]:
return self.embedding.label2idx
@property
def pre_processor(self):
warnings.warn("The 'pre_processor' property is deprecated, "
"use 'processor' instead", DeprecationWarning, 2)
"""Deprecated. Use `self.processor` instead."""
return self.embedding.processor
@property
def processor(self):
return self.embedding.processor
def __init__(self,
embedding: Optional[Embedding] = None,
hyper_parameters: Optional[Dict[str, Dict[str, Any]]] = None):
"""
Args:
embedding: model embedding
hyper_parameters: a dict of hyper_parameters.
Examples:
You could change customize hyper_parameters like this::
# get default hyper_parameters
hyper_parameters = BLSTMModel.get_default_hyper_parameters()
# change lstm hidden unit to 12
hyper_parameters['layer_blstm']['units'] = 12
# init new model with customized hyper_parameters
labeling_model = BLSTMModel(hyper_parameters=hyper_parameters)
labeling_model.fit(x, y)
"""
if embedding is None:
self.embedding = BareEmbedding(task=self.__task__)
else:
self.embedding = embedding
self.tf_model: keras.Model = None
self.hyper_parameters = self.get_default_hyper_parameters()
self.model_info = {}
if hyper_parameters:
self.hyper_parameters.update(hyper_parameters)
def build_model(self,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None):
"""
Build model with corpus
Args:
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
Returns:
"""
if x_validate is not None and not isinstance(x_validate, tuple):
self.embedding.analyze_corpus(x_train + x_validate, y_train + y_validate)
else:
self.embedding.analyze_corpus(x_train, y_train)
if self.tf_model is None:
self.build_model_arc()
self.compile_model()
def build_multi_gpu_model(self,
gpus: int,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
cpu_merge: bool = True,
cpu_relocation: bool = False,
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None):
"""
Build multi-GPU model with corpus
Args:
gpus: Integer >= 2, number of on GPUs on which to create model replicas.
cpu_merge: A boolean value to identify whether to force merging model weights
under the scope of the CPU or not.
cpu_relocation: A boolean value to identify whether to create the model's weights
under the scope of the CPU. If the model is not defined under any preceding device
scope, you can still rescue it by activating this option.
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
Returns:
"""
if x_validate is not None and not isinstance(x_validate, tuple):
self.embedding.analyze_corpus(x_train + x_validate, y_train + y_validate)
else:
self.embedding.analyze_corpus(x_train, y_train)
if self.tf_model is None:
with utils.custom_object_scope():
self.build_model_arc()
self.tf_model = tf.keras.utils.multi_gpu_model(self.tf_model,
gpus,
cpu_merge=cpu_merge,
cpu_relocation=cpu_relocation)
self.compile_model()
def build_tpu_model(self, strategy: tf.contrib.distribute.TPUStrategy,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None):
"""
Build TPU model with corpus
Args:
strategy: `TPUDistributionStrategy`. The strategy to use for replicating model
across multiple TPU cores.
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
Returns:
"""
if x_validate is not None and not isinstance(x_validate, tuple):
self.embedding.analyze_corpus(x_train + x_validate, y_train + y_validate)
else:
self.embedding.analyze_corpus(x_train, y_train)
if self.tf_model is None:
with utils.custom_object_scope():
self.build_model_arc()
self.tf_model = tf.contrib.tpu.keras_to_tpu_model(self.tf_model, strategy=strategy)
self.compile_model(optimizer=tf.train.AdamOptimizer())
def get_data_generator(self,
x_data,
y_data,
batch_size: int = 64,
shuffle: bool = True):
"""
data generator for fit_generator
Args:
x_data: Array of feature data (if the model has a single input),
or tuple of feature data array (if the model has multiple inputs)
y_data: Array of label data
batch_size: Number of samples per gradient update, default to 64.
shuffle:
Returns:
data generator
"""
index_list = np.arange(len(x_data))
page_count = len(x_data) // batch_size + 1
while True:
if shuffle:
np.random.shuffle(index_list)
for page in range(page_count):
start_index = page * batch_size
end_index = start_index + batch_size
target_index = index_list[start_index: end_index]
if len(target_index) == 0:
target_index = index_list[0: batch_size]
x_tensor = self.embedding.process_x_dataset(x_data,
target_index)
y_tensor = self.embedding.process_y_dataset(y_data,
target_index)
yield (x_tensor, y_tensor)
def fit(self,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None,
batch_size: int = 64,
epochs: int = 5,
callbacks: List[keras.callbacks.Callback] = None,
fit_kwargs: Dict = None,
shuffle: bool = True):
"""
Trains the model for a given number of epochs with fit_generator (iterations on a dataset).
Args:
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
batch_size: Number of samples per gradient update, default to 64.
epochs: Integer. Number of epochs to train the model. default 5.
callbacks:
fit_kwargs: fit_kwargs: additional arguments passed to ``fit_generator()`` function from
``tensorflow.keras.Model``
- https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#fit_generator
shuffle:
Returns:
"""
self.build_model(x_train, y_train, x_validate, y_validate)
train_generator = self.get_data_generator(x_train,
y_train,
batch_size,
shuffle)
if fit_kwargs is None:
fit_kwargs = {}
validation_generator = None
validation_steps = None
if x_validate:
validation_generator = self.get_data_generator(x_validate,
y_validate,
batch_size,
shuffle)
if isinstance(x_validate, tuple):
validation_steps = len(x_validate[0]) // batch_size + 1
else:
validation_steps = len(x_validate) // batch_size + 1
if isinstance(x_train, tuple):
steps_per_epoch = len(x_train[0]) // batch_size + 1
else:
steps_per_epoch = len(x_train) // batch_size + 1
with utils.custom_object_scope():
return self.tf_model.fit_generator(train_generator,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_steps,
callbacks=callbacks,
**fit_kwargs)
def fit_without_generator(self,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None,
batch_size: int = 64,
epochs: int = 5,
callbacks: List[keras.callbacks.Callback] = None,
fit_kwargs: Dict = None):
"""
Trains the model for a given number of epochs (iterations on a dataset).
Args:
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
batch_size: Number of samples per gradient update, default to 64.
epochs: Integer. Number of epochs to train the model. default 5.
callbacks:
fit_kwargs: fit_kwargs: additional arguments passed to ``fit_generator()`` function from
``tensorflow.keras.Model``
- https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#fit_generator
Returns:
"""
self.build_model(x_train, y_train, x_validate, y_validate)
tensor_x = self.embedding.process_x_dataset(x_train)
tensor_y = self.embedding.process_y_dataset(y_train)
validation_data = None
if x_validate is not None:
tensor_valid_x = self.embedding.process_x_dataset(x_validate)
tensor_valid_y = self.embedding.process_y_dataset(y_validate)
validation_data = (tensor_valid_x, tensor_valid_y)
if fit_kwargs is None:
fit_kwargs = {}
if callbacks and 'callbacks' not in fit_kwargs:
fit_kwargs['callbacks'] = callbacks
with utils.custom_object_scope():
return self.tf_model.fit(tensor_x, tensor_y,
validation_data=validation_data,
epochs=epochs,
batch_size=batch_size,
**fit_kwargs)
def compile_model(self, **kwargs):
"""Configures the model for training.
Using ``compile()`` function of ``tf.keras.Model`` -
https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#compile
Args:
**kwargs: arguments passed to ``compile()`` function of ``tf.keras.Model``
Defaults:
- loss: ``categorical_crossentropy``
- optimizer: ``adam``
- metrics: ``['accuracy']``
"""
if kwargs.get('loss') is None:
kwargs['loss'] = 'categorical_crossentropy'
if kwargs.get('optimizer') is None:
kwargs['optimizer'] = 'adam'
if kwargs.get('metrics') is None:
kwargs['metrics'] = ['accuracy']
self.tf_model.compile(**kwargs)
if not kashgari.config.disable_auto_summary:
self.tf_model.summary()
def predict(self,
x_data,
batch_size=32,
debug_info=False,
predict_kwargs: Dict = None):
"""
Generates output predictions for the input samples.
Computation is done in batches.
Args:
x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs).
batch_size: Integer. If unspecified, it will default to 32.
debug_info: Bool, Should print out the logging info.
predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model``
Returns:
array(s) of predictions.
"""
if predict_kwargs is None:
predict_kwargs = {}
with utils.custom_object_scope():
if isinstance(x_data, tuple):
lengths = [len(sen) for sen in x_data[0]]
else:
lengths = [len(sen) for sen in x_data]
tensor = self.embedding.process_x_dataset(x_data)
pred = self.tf_model.predict(tensor, batch_size=batch_size, **predict_kwargs)
if self.task == 'scoring':
t_pred = pred
else:
t_pred = pred.argmax(-1)
res = self.embedding.reverse_numerize_label_sequences(t_pred,
lengths)
if debug_info:
print('input: {}'.format(tensor))
print('output: {}'.format(pred))
print('output argmax: {}'.format(t_pred))
return res
def evaluate(self,
x_data,
y_data,
batch_size=None,
digits=4,
debug_info=False) -> Tuple[float, float, Dict]:
"""
Evaluate model
Args:
x_data:
y_data:
batch_size:
digits:
debug_info:
Returns:
"""
raise NotImplementedError
def build_model_arc(self):
raise NotImplementedError
def save(self, model_path: str):
"""
Save model
Args:
model_path:
Returns:
"""
pathlib.Path(model_path).mkdir(exist_ok=True, parents=True)
with open(os.path.join(model_path, 'model_info.json'), 'w') as f:
f.write(json.dumps(self.info(), indent=2, ensure_ascii=True))
f.close()
self.tf_model.save_weights(os.path.join(model_path, 'model_weights.h5'))
logging.info('model saved to {}'.format(os.path.abspath(model_path)))
if __name__ == "__main__":
from kashgari.tasks.labeling import CNN_LSTM_Model
from kashgari.corpus import ChineseDailyNerCorpus
train_x, train_y = ChineseDailyNerCorpus.load_data('valid')
model = CNN_LSTM_Model()
model.build_model(train_x[:100], train_y[:100])
r = model.predict_entities(train_x[:5])
model.save('./res')
import pprint
pprint.pprint(r)
model.evaluate(train_x[:20], train_y[:20])
print("Hello world")
print(model.predict(train_x[:20])) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/tasks/base_model.py | base_model.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_model.py
# time: 2019-05-20 13:07
from typing import Dict, Any, Tuple
import random
import logging
from seqeval.metrics import classification_report
from seqeval.metrics.sequence_labeling import get_entities
from pysoftNLP.kashgari.tasks.base_model import BaseModel
class BaseLabelingModel(BaseModel):
"""Base Sequence Labeling Model"""
__task__ = 'labeling'
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
raise NotImplementedError
def predict_entities(self,
x_data,
batch_size=None,
join_chunk=' ',
debug_info=False,
predict_kwargs: Dict = None):
"""Gets entities from sequence.
Args:
x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs).
batch_size: Integer. If unspecified, it will default to 32.
join_chunk: str or False,
debug_info: Bool, Should print out the logging info.
predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model``
Returns:
list: list of entity.
"""
if isinstance(x_data, tuple):
text_seq = x_data[0]
else:
text_seq = x_data
res = self.predict(x_data, batch_size, debug_info, predict_kwargs)
new_res = [get_entities(seq) for seq in res]
final_res = []
for index, seq in enumerate(new_res):
seq_data = []
for entity in seq:
if join_chunk is False:
value = text_seq[index][entity[1]:entity[2] + 1],
else:
value = join_chunk.join(text_seq[index][entity[1]:entity[2] + 1])
seq_data.append({
"entity": entity[0],
"start": entity[1],
"end": entity[2],
"value": value,
})
final_res.append({
'text': join_chunk.join(text_seq[index]),
'text_raw': text_seq[index],
'labels': seq_data
})
return final_res
def evaluate(self,
x_data,
y_data,
batch_size=None,
digits=4,
debug_info=False) -> Tuple[float, float, Dict]:
"""
Build a text report showing the main classification metrics.
Args:
x_data:
y_data:
batch_size:
digits:
debug_info:
Returns:
"""
y_pred = self.predict(x_data, batch_size=batch_size)
y_true = [seq[:len(y_pred[index])] for index, seq in enumerate(y_data)]
new_y_pred = []
for x in y_pred:
new_y_pred.append([str(i) for i in x])
new_y_true = []
for x in y_true:
new_y_true.append([str(i) for i in x])
if debug_info:
for index in random.sample(list(range(len(x_data))), 5):
logging.debug('------ sample {} ------'.format(index))
logging.debug('x : {}'.format(x_data[index]))
logging.debug('y_true : {}'.format(y_true[index]))
logging.debug('y_pred : {}'.format(y_pred[index]))
report = classification_report(y_true, y_pred, digits=digits)
print(classification_report(y_true, y_pred, digits=digits))
return report
def build_model_arc(self):
raise NotImplementedError
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
from kashgari.tasks.labeling import BiLSTM_Model
from kashgari.corpus import ChineseDailyNerCorpus
from kashgari.utils import load_model
train_x, train_y = ChineseDailyNerCorpus.load_data('train', shuffle=False)
valid_x, valid_y = ChineseDailyNerCorpus.load_data('valid')
train_x, train_y = train_x[:5120], train_y[:5120]
model = load_model('/Users/brikerman/Desktop/blstm_model')
# model.build_model(train_x[:100], train_y[:100])
# model.fit(train_x[:1000], train_y[:1000], epochs=10)
# model.evaluate(train_x[:20], train_y[:20])
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/tasks/labeling/base_model.py | base_model.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: experimental.py
# time: 2019-05-22 19:35
from typing import Dict, Any
from tensorflow import keras
import pysoftNLP.kashgari as kashgari
from pysoftNLP.kashgari.tasks.labeling.base_model import BaseLabelingModel
from pysoftNLP.kashgari.layers import L
from keras_self_attention import SeqSelfAttention
class BLSTMAttentionModel(BaseLabelingModel):
"""Bidirectional LSTM Self Attention Sequence Labeling Model"""
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
"""
Get hyper parameters of model
Returns:
hyper parameters dict
"""
return {
'layer_blstm': {
'units': 64,
'return_sequences': True
},
'layer_self_attention': {
'attention_activation': 'sigmoid'
},
'layer_dropout': {
'rate': 0.5
},
'layer_time_distributed': {},
'layer_activation': {
'activation': 'softmax'
}
}
def build_model_arc(self):
"""
build model architectural
"""
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_blstm = L.Bidirectional(L.LSTM(**config['layer_blstm']),
name='layer_blstm')
layer_self_attention = SeqSelfAttention(**config['layer_self_attention'],
name='layer_self_attention')
layer_dropout = L.Dropout(**config['layer_dropout'],
name='layer_dropout')
layer_time_distributed = L.TimeDistributed(L.Dense(output_dim,
**config['layer_time_distributed']),
name='layer_time_distributed')
layer_activation = L.Activation(**config['layer_activation'])
tensor = layer_blstm(embed_model.output)
tensor = layer_self_attention(tensor)
tensor = layer_dropout(tensor)
tensor = layer_time_distributed(tensor)
output_tensor = layer_activation(tensor)
self.tf_model = keras.Model(embed_model.inputs, output_tensor)
# Register custom layer
kashgari.custom_objects['SeqSelfAttention'] = SeqSelfAttention
if __name__ == "__main__":
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/tasks/labeling/experimental.py | experimental.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: models.py
# time: 2019-05-20 11:13
import logging
from typing import Dict, Any
from tensorflow import keras
from pysoftNLP.kashgari.tasks.labeling.base_model import BaseLabelingModel
from pysoftNLP.kashgari.layers import L
from pysoftNLP.kashgari.layers.crf import CRF
from pysoftNLP.kashgari.utils import custom_objects
custom_objects['CRF'] = CRF
class BiLSTM_Model(BaseLabelingModel):
"""Bidirectional LSTM Sequence Labeling Model"""
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
"""
Get hyper parameters of model
Returns:
hyper parameters dict
"""
return {
'layer_blstm': {
'units': 128,
'return_sequences': True
},
'layer_dropout': {
'rate': 0.4
},
'layer_time_distributed': {},
'layer_activation': {
'activation': 'softmax'
}
}
def build_model_arc(self):
"""
build model architectural
"""
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_blstm = L.Bidirectional(L.LSTM(**config['layer_blstm']),
name='layer_blstm')
layer_dropout = L.Dropout(**config['layer_dropout'],
name='layer_dropout')
layer_time_distributed = L.TimeDistributed(L.Dense(output_dim,
**config['layer_time_distributed']),
name='layer_time_distributed')
layer_activation = L.Activation(**config['layer_activation'])
tensor = layer_blstm(embed_model.output)
tensor = layer_dropout(tensor)
tensor = layer_time_distributed(tensor)
output_tensor = layer_activation(tensor)
self.tf_model = keras.Model(embed_model.inputs, output_tensor)
class BiLSTM_CRF_Model(BaseLabelingModel):
"""Bidirectional LSTM CRF Sequence Labeling Model"""
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
"""
Get hyper parameters of model
Returns:
hyper parameters dict
"""
return {
'layer_blstm': {
'units': 128,
'return_sequences': True
},
'layer_dense': {
'units': 64,
'activation': 'tanh'
}
}
def build_model_arc(self):
"""
build model architectural
"""
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_blstm = L.Bidirectional(L.LSTM(**config['layer_blstm']),
name='layer_blstm')
layer_dense = L.Dense(**config['layer_dense'], name='layer_dense')
layer_crf_dense = L.Dense(output_dim, name='layer_crf_dense')
layer_crf = CRF(output_dim, name='layer_crf')
tensor = layer_blstm(embed_model.output)
tensor = layer_dense(tensor)
tensor = layer_crf_dense(tensor)
output_tensor = layer_crf(tensor)
self.layer_crf = layer_crf
self.tf_model = keras.Model(embed_model.inputs, output_tensor)
def compile_model(self, **kwargs):
if kwargs.get('loss') is None:
kwargs['loss'] = self.layer_crf.loss
if kwargs.get('metrics') is None:
kwargs['metrics'] = [self.layer_crf.viterbi_accuracy]
super(BiLSTM_CRF_Model, self).compile_model(**kwargs)
class BiGRU_Model(BaseLabelingModel):
"""Bidirectional GRU Sequence Labeling Model"""
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
"""
Get hyper parameters of model
Returns:
hyper parameters dict
"""
return {
'layer_bgru': {
'units': 128,
'return_sequences': True
},
'layer_dropout': {
'rate': 0.4
},
'layer_time_distributed': {},
'layer_activation': {
'activation': 'softmax'
}
}
def build_model_arc(self):
"""
build model architectural
"""
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_blstm = L.Bidirectional(L.GRU(**config['layer_bgru']),
name='layer_bgru')
layer_dropout = L.Dropout(**config['layer_dropout'],
name='layer_dropout')
layer_time_distributed = L.TimeDistributed(L.Dense(output_dim,
**config['layer_time_distributed']),
name='layer_time_distributed')
layer_activation = L.Activation(**config['layer_activation'])
tensor = layer_blstm(embed_model.output)
tensor = layer_dropout(tensor)
tensor = layer_time_distributed(tensor)
output_tensor = layer_activation(tensor)
self.tf_model = keras.Model(embed_model.inputs, output_tensor)
class BiGRU_CRF_Model(BaseLabelingModel):
"""Bidirectional GRU CRF Sequence Labeling Model"""
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
"""
Get hyper parameters of model
Returns:
hyper parameters dict
"""
return {
'layer_bgru': {
'units': 128,
'return_sequences': True
},
'layer_dense': {
'units': 64,
'activation': 'tanh'
}
}
def build_model_arc(self):
"""
build model architectural
"""
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_blstm = L.Bidirectional(L.GRU(**config['layer_bgru']),
name='layer_bgru')
layer_dense = L.Dense(**config['layer_dense'], name='layer_dense')
layer_crf_dense = L.Dense(output_dim, name='layer_crf_dense')
layer_crf = CRF(output_dim, name='layer_crf')
tensor = layer_blstm(embed_model.output)
tensor = layer_dense(tensor)
tensor = layer_crf_dense(tensor)
output_tensor = layer_crf(tensor)
self.layer_crf = layer_crf
self.tf_model = keras.Model(embed_model.inputs, output_tensor)
def compile_model(self, **kwargs):
if kwargs.get('loss') is None:
kwargs['loss'] = self.layer_crf.loss
if kwargs.get('metrics') is None:
kwargs['metrics'] = [self.layer_crf.viterbi_accuracy]
super(BiGRU_CRF_Model, self).compile_model(**kwargs)
class CNN_LSTM_Model(BaseLabelingModel):
"""CNN LSTM Sequence Labeling Model"""
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
"""
Get hyper parameters of model
Returns:
hyper parameters dict
"""
return {
'layer_conv': {
'filters': 32,
'kernel_size': 3,
'padding': 'same',
'activation': 'relu'
},
'layer_lstm': {
'units': 128,
'return_sequences': True
},
'layer_dropout': {
'rate': 0.4
},
'layer_time_distributed': {},
'layer_activation': {
'activation': 'softmax'
}
}
def build_model_arc(self):
"""
build model architectural
"""
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_conv = L.Conv1D(**config['layer_conv'],
name='layer_conv')
layer_lstm = L.LSTM(**config['layer_lstm'],
name='layer_lstm')
layer_dropout = L.Dropout(**config['layer_dropout'],
name='layer_dropout')
layer_time_distributed = L.TimeDistributed(L.Dense(output_dim,
**config['layer_time_distributed']),
name='layer_time_distributed')
layer_activation = L.Activation(**config['layer_activation'])
tensor = layer_conv(embed_model.output)
tensor = layer_lstm(tensor)
tensor = layer_dropout(tensor)
tensor = layer_time_distributed(tensor)
output_tensor = layer_activation(tensor)
self.tf_model = keras.Model(embed_model.inputs, output_tensor)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
from kashgari.corpus import ChineseDailyNerCorpus
valid_x, valid_y = ChineseDailyNerCorpus.load_data('train')
model = BiLSTM_CRF_Model()
model.fit(valid_x, valid_y, epochs=50, batch_size=64)
model.evaluate(valid_x, valid_y) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/tasks/labeling/models.py | models.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_classification_model.py
# time: 2019-05-22 11:23
import random
import logging
import pysoftNLP.kashgari as kashgari
from typing import Dict, Any, Tuple, Optional, List
from pysoftNLP.kashgari.tasks.base_model import BaseModel, BareEmbedding
from pysoftNLP.kashgari.embeddings.base_embedding import Embedding
from sklearn import metrics
class BaseClassificationModel(BaseModel):
__task__ = 'classification'
def __init__(self,
embedding: Optional[Embedding] = None,
hyper_parameters: Optional[Dict[str, Dict[str, Any]]] = None):
super(BaseClassificationModel, self).__init__(embedding, hyper_parameters)
if hyper_parameters is None and \
self.embedding.processor.__getattribute__('multi_label') is True:
last_layer_name = list(self.hyper_parameters.keys())[-1]
self.hyper_parameters[last_layer_name]['activation'] = 'sigmoid'
logging.warning("Activation Layer's activate function changed to sigmoid for"
" multi-label classification question")
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
raise NotImplementedError
def build_model_arc(self):
raise NotImplementedError
def compile_model(self, **kwargs):
if kwargs.get('loss') is None and self.embedding.processor.multi_label:
kwargs['loss'] = 'binary_crossentropy'
super(BaseClassificationModel, self).compile_model(**kwargs)
def predict(self,
x_data,
batch_size=32,
multi_label_threshold: float = 0.5,
debug_info=False,
predict_kwargs: Dict = None):
"""
Generates output predictions for the input samples.
Computation is done in batches.
Args:
x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs).
batch_size: Integer. If unspecified, it will default to 32.
multi_label_threshold:
debug_info: Bool, Should print out the logging info.
predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model``
Returns:
array(s) of predictions.
"""
with kashgari.utils.custom_object_scope():
tensor = self.embedding.process_x_dataset(x_data)
pred = self.tf_model.predict(tensor, batch_size=batch_size)
if self.embedding.processor.multi_label:
if debug_info:
logging.info('raw output: {}'.format(pred))
pred[pred >= multi_label_threshold] = 1
pred[pred < multi_label_threshold] = 0
else:
pred = pred.argmax(-1)
res = self.embedding.reverse_numerize_label_sequences(pred)
if debug_info:
logging.info('input: {}'.format(tensor))
logging.info('output: {}'.format(pred))
logging.info('output argmax: {}'.format(pred.argmax(-1)))
return res
def predict_top_k_class(self,
x_data,
top_k=5,
batch_size=32,
debug_info=False,
predict_kwargs: Dict = None) -> List[Dict]:
"""
Generates output predictions with confidence for the input samples.
Computation is done in batches.
Args:
x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs).
top_k: int
batch_size: Integer. If unspecified, it will default to 32.
debug_info: Bool, Should print out the logging info.
predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model``
Returns:
array(s) of predictions.
single-label classification:
[
{
"label": "chat",
"confidence": 0.5801531,
"candidates": [
{ "label": "cookbook", "confidence": 0.1886314 },
{ "label": "video", "confidence": 0.13805099 },
{ "label": "health", "confidence": 0.013852648 },
{ "label": "translation", "confidence": 0.012913573 }
]
}
]
multi-label classification:
[
{
"candidates": [
{ "confidence": 0.9959336, "label": "toxic" },
{ "confidence": 0.9358089, "label": "obscene" },
{ "confidence": 0.6882098, "label": "insult" },
{ "confidence": 0.13540423, "label": "severe_toxic" },
{ "confidence": 0.017219543, "label": "identity_hate" }
]
}
]
"""
if predict_kwargs is None:
predict_kwargs = {}
with kashgari.utils.custom_object_scope():
tensor = self.embedding.process_x_dataset(x_data)
pred = self.tf_model.predict(tensor, batch_size=batch_size, **predict_kwargs)
new_results = []
for sample_prob in pred:
sample_res = zip(self.label2idx.keys(), sample_prob)
sample_res = sorted(sample_res, key=lambda k: k[1], reverse=True)
data = {}
for label, confidence in sample_res[:top_k]:
if 'candidates' not in data:
if self.embedding.processor.multi_label:
data['candidates'] = []
else:
data['label'] = label
data['confidence'] = confidence
data['candidates'] = []
continue
data['candidates'].append({
'label': label,
'confidence': confidence
})
new_results.append(data)
if debug_info:
logging.info('input: {}'.format(tensor))
logging.info('output: {}'.format(pred))
logging.info('output argmax: {}'.format(pred.argmax(-1)))
return new_results
def evaluate(self,
x_data,
y_data,
batch_size=None,
digits=4,
output_dict=False,
debug_info=False) -> Optional[Tuple[float, float, Dict]]:
y_pred = self.predict(x_data, batch_size=batch_size)
if debug_info:
for index in random.sample(list(range(len(x_data))), 5):
logging.debug('------ sample {} ------'.format(index))
logging.debug('x : {}'.format(x_data[index]))
logging.debug('y : {}'.format(y_data[index]))
logging.debug('y_pred : {}'.format(y_pred[index]))
if self.processor.multi_label:
y_pred_b = self.processor.multi_label_binarizer.fit_transform(y_pred)
y_true_b = self.processor.multi_label_binarizer.fit_transform(y_data)
report = metrics.classification_report(y_pred_b,
y_true_b,
target_names=self.processor.multi_label_binarizer.classes_,
output_dict=output_dict,
digits=digits)
else:
report = metrics.classification_report(y_data,
y_pred,
output_dict=output_dict,
digits=digits)
if not output_dict:
print(report)
else:
return report
if __name__ == "__main__":
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/tasks/classification/base_model.py | base_model.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: models.py
# time: 2019-05-22 11:26
import logging
import tensorflow as tf
from typing import Dict, Any
from pysoftNLP.kashgari.layers import L, AttentionWeightedAverageLayer, KMaxPoolingLayer
from pysoftNLP.kashgari.tasks.classification.base_model import BaseClassificationModel
class BiLSTM_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'layer_bi_lstm': {
'units': 128,
'return_sequences': False
},
'layer_dense': {
'activation': 'softmax'
}
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_bi_lstm = L.Bidirectional(L.LSTM(**config['layer_bi_lstm']))
layer_dense = L.Dense(output_dim, **config['layer_dense'])
tensor = layer_bi_lstm(embed_model.output)
output_tensor = layer_dense(tensor)
self.tf_model = tf.keras.Model(embed_model.inputs, output_tensor)
class BiGRU_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'layer_bi_gru': {
'units': 128,
'return_sequences': False
},
'layer_dense': {
'activation': 'softmax'
}
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_bi_gru = L.Bidirectional(L.GRU(**config['layer_bi_gru']))
layer_dense = L.Dense(output_dim, **config['layer_dense'])
tensor = layer_bi_gru(embed_model.output)
output_tensor = layer_dense(tensor)
self.tf_model = tf.keras.Model(embed_model.inputs, output_tensor)
class CNN_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'conv1d_layer': {
'filters': 128,
'kernel_size': 5,
'activation': 'relu'
},
'max_pool_layer': {},
'dense_layer': {
'units': 64,
'activation': 'relu'
},
'activation_layer': {
'activation': 'softmax'
},
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
# build model structure in sequent way
layers_seq = []
layers_seq.append(L.Conv1D(**config['conv1d_layer']))
layers_seq.append(L.GlobalMaxPooling1D(**config['max_pool_layer']))
layers_seq.append(L.Dense(**config['dense_layer']))
layers_seq.append(L.Dense(output_dim, **config['activation_layer']))
tensor = embed_model.output
for layer in layers_seq:
tensor = layer(tensor)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor)
class CNN_LSTM_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'conv_layer': {
'filters': 32,
'kernel_size': 3,
'padding': 'same',
'activation': 'relu'
},
'max_pool_layer': {
'pool_size': 2
},
'lstm_layer': {
'units': 100
},
'activation_layer': {
'activation': 'softmax'
},
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layers_seq = []
layers_seq.append(L.Conv1D(**config['conv_layer']))
layers_seq.append(L.MaxPooling1D(**config['max_pool_layer']))
layers_seq.append(L.LSTM(**config['lstm_layer']))
layers_seq.append(L.Dense(output_dim, **config['activation_layer']))
tensor = embed_model.output
for layer in layers_seq:
tensor = layer(tensor)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor)
class CNN_GRU_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'conv_layer': {
'filters': 32,
'kernel_size': 3,
'padding': 'same',
'activation': 'relu'
},
'max_pool_layer': {
'pool_size': 2
},
'gru_layer': {
'units': 100
},
'activation_layer': {
'activation': 'softmax'
},
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layers_seq = []
layers_seq.append(L.Conv1D(**config['conv_layer']))
layers_seq.append(L.MaxPooling1D(**config['max_pool_layer']))
layers_seq.append(L.GRU(**config['gru_layer']))
layers_seq.append(L.Dense(output_dim, **config['activation_layer']))
tensor = embed_model.output
for layer in layers_seq:
tensor = layer(tensor)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor)
class AVCNN_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'spatial_dropout': {
'rate': 0.25
},
'conv_0': {
'filters': 300,
'kernel_size': 1,
'kernel_initializer': 'normal',
'padding': 'valid',
'activation': 'relu'
},
'conv_1': {
'filters': 300,
'kernel_size': 2,
'kernel_initializer': 'normal',
'padding': 'valid',
'activation': 'relu'
},
'conv_2': {
'filters': 300,
'kernel_size': 3,
'kernel_initializer': 'normal',
'padding': 'valid',
'activation': 'relu'
},
'conv_3': {
'filters': 300,
'kernel_size': 4,
'kernel_initializer': 'normal',
'padding': 'valid',
'activation': 'relu'
},
# ---
'attn_0': {},
'avg_0': {},
'maxpool_0': {},
# ---
'maxpool_1': {},
'attn_1': {},
'avg_1': {},
# ---
'maxpool_2': {},
'attn_2': {},
'avg_2': {},
# ---
'maxpool_3': {},
'attn_3': {},
'avg_3': {},
# ---
'v_col3': {
# 'mode': 'concat',
'axis': 1
},
'merged_tensor': {
# 'mode': 'concat',
'axis': 1
},
'dropout': {
'rate': 0.7
},
'dense': {
'units': 144,
'activation': 'relu'
},
'activation_layer': {
'activation': 'softmax'
},
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_embed_dropout = L.SpatialDropout1D(**config['spatial_dropout'])
layers_conv = [L.Conv1D(**config[f'conv_{i}']) for i in range(4)]
layers_sensor = []
layers_sensor.append(L.GlobalMaxPooling1D())
layers_sensor.append(AttentionWeightedAverageLayer())
layers_sensor.append(L.GlobalAveragePooling1D())
layer_view = L.Concatenate(**config['v_col3'])
layer_allviews = L.Concatenate(**config['merged_tensor'])
layers_seq = []
layers_seq.append(L.Dropout(**config['dropout']))
layers_seq.append(L.Dense(**config['dense']))
layers_seq.append(L.Dense(output_dim, **config['activation_layer']))
embed_tensor = layer_embed_dropout(embed_model.output)
tensors_conv = [layer_conv(embed_tensor) for layer_conv in layers_conv]
tensors_matrix_sensor = []
for tensor_conv in tensors_conv:
tensor_sensors = []
tensor_sensors = [layer_sensor(tensor_conv) for layer_sensor in layers_sensor]
# tensor_sensors.append(L.GlobalMaxPooling1D()(tensor_conv))
# tensor_sensors.append(AttentionWeightedAverageLayer()(tensor_conv))
# tensor_sensors.append(L.GlobalAveragePooling1D()(tensor_conv))
tensors_matrix_sensor.append(tensor_sensors)
tensors_views = [layer_view(list(tensors)) for tensors in zip(*tensors_matrix_sensor)]
tensor = layer_allviews(tensors_views)
# tensors_v_cols = [L.concatenate(tensors, **config['v_col3']) for tensors
# in zip(*tensors_matrix_sensor)]
# tensor = L.concatenate(tensors_v_cols, **config['merged_tensor'])
for layer in layers_seq:
tensor = layer(tensor)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor)
class KMax_CNN_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'spatial_dropout': {
'rate': 0.2
},
'conv_0': {
'filters': 180,
'kernel_size': 1,
'kernel_initializer': 'normal',
'padding': 'valid',
'activation': 'relu'
},
'conv_1': {
'filters': 180,
'kernel_size': 2,
'kernel_initializer': 'normal',
'padding': 'valid',
'activation': 'relu'
},
'conv_2': {
'filters': 180,
'kernel_size': 3,
'kernel_initializer': 'normal',
'padding': 'valid',
'activation': 'relu'
},
'conv_3': {
'filters': 180,
'kernel_size': 4,
'kernel_initializer': 'normal',
'padding': 'valid',
'activation': 'relu'
},
'maxpool_i4': {
'k': 3
},
'merged_tensor': {
# 'mode': 'concat',
'axis': 1
},
'dropout': {
'rate': 0.6
},
'dense': {
'units': 144,
'activation': 'relu'
},
'activation_layer': {
'activation': 'softmax'
},
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layer_embed_dropout = L.SpatialDropout1D(**config['spatial_dropout'])
layers_conv = [L.Conv1D(**config[f'conv_{i}']) for i in range(4)]
layers_sensor = [KMaxPoolingLayer(**config['maxpool_i4']),
L.Flatten()]
layer_concat = L.Concatenate(**config['merged_tensor'])
layers_seq = []
layers_seq.append(L.Dropout(**config['dropout']))
layers_seq.append(L.Dense(**config['dense']))
layers_seq.append(L.Dense(output_dim, **config['activation_layer']))
embed_tensor = layer_embed_dropout(embed_model.output)
tensors_conv = [layer_conv(embed_tensor) for layer_conv in layers_conv]
tensors_sensor = []
for tensor_conv in tensors_conv:
tensor_sensor = tensor_conv
for layer_sensor in layers_sensor:
tensor_sensor = layer_sensor(tensor_sensor)
tensors_sensor.append(tensor_sensor)
tensor = layer_concat(tensors_sensor)
# tensor = L.concatenate(tensors_sensor, **config['merged_tensor'])
for layer in layers_seq:
tensor = layer(tensor)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor)
class R_CNN_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'spatial_dropout': {
'rate': 0.2
},
'rnn_0': {
'units': 64,
'return_sequences': True
},
'conv_0': {
'filters': 128,
'kernel_size': 2,
'kernel_initializer': 'normal',
'padding': 'valid',
'activation': 'relu',
'strides': 1
},
'maxpool': {},
'attn': {},
'average': {},
'concat': {
'axis': 1
},
'dropout': {
'rate': 0.5
},
'dense': {
'units': 120,
'activation': 'relu'
},
'activation_layer': {
'activation': 'softmax'
},
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layers_rcnn_seq = []
layers_rcnn_seq.append(L.SpatialDropout1D(**config['spatial_dropout']))
layers_rcnn_seq.append(L.Bidirectional(L.GRU(**config['rnn_0'])))
layers_rcnn_seq.append(L.Conv1D(**config['conv_0']))
layers_sensor = []
layers_sensor.append(L.GlobalMaxPooling1D())
layers_sensor.append(AttentionWeightedAverageLayer())
layers_sensor.append(L.GlobalAveragePooling1D())
layer_concat = L.Concatenate(**config['concat'])
layers_full_connect = []
layers_full_connect.append(L.Dropout(**config['dropout']))
layers_full_connect.append(L.Dense(**config['dense']))
layers_full_connect.append(L.Dense(output_dim, **config['activation_layer']))
tensor = embed_model.output
for layer in layers_rcnn_seq:
tensor = layer(tensor)
tensors_sensor = [layer(tensor) for layer in layers_sensor]
tensor_output = layer_concat(tensors_sensor)
# tensor_output = L.concatenate(tensor_sensors, **config['concat'])
for layer in layers_full_connect:
tensor_output = layer(tensor_output)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output)
class AVRNN_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'spatial_dropout': {
'rate': 0.25
},
'rnn_0': {
'units': 60,
'return_sequences': True
},
'rnn_1': {
'units': 60,
'return_sequences': True
},
'concat_rnn': {
'axis': 2
},
'last': {},
'maxpool': {},
'attn': {},
'average': {},
'all_views': {
'axis': 1
},
'dropout': {
'rate': 0.5
},
'dense': {
'units': 144,
'activation': 'relu'
},
'activation_layer': {
'activation': 'softmax'
},
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layers_rnn0 = []
layers_rnn0.append(L.SpatialDropout1D(**config['spatial_dropout']))
layers_rnn0.append(L.Bidirectional(L.GRU(**config['rnn_0'])))
layer_bi_rnn1 = L.Bidirectional(L.GRU(**config['rnn_1']))
layer_concat = L.Concatenate(**config['concat_rnn'])
layers_sensor = []
layers_sensor.append(L.Lambda(lambda t: t[:, -1], name='last'))
layers_sensor.append(L.GlobalMaxPooling1D())
layers_sensor.append(AttentionWeightedAverageLayer())
layers_sensor.append(L.GlobalAveragePooling1D())
layer_allviews = L.Concatenate(**config['all_views'])
layers_full_connect = []
layers_full_connect.append(L.Dropout(**config['dropout']))
layers_full_connect.append(L.Dense(**config['dense']))
layers_full_connect.append(L.Dense(output_dim, **config['activation_layer']))
tensor_rnn = embed_model.output
for layer in layers_rnn0:
tensor_rnn = layer(tensor_rnn)
tensor_concat = layer_concat([tensor_rnn, layer_bi_rnn1(tensor_rnn)])
tensor_sensors = [layer(tensor_concat) for layer in layers_sensor]
tensor_output = layer_allviews(tensor_sensors)
for layer in layers_full_connect:
tensor_output = layer(tensor_output)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output)
class Dropout_BiGRU_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'spatial_dropout': {
'rate': 0.15
},
'rnn_0': {
'units': 64,
'return_sequences': True
},
'dropout_rnn': {
'rate': 0.35
},
'rnn_1': {
'units': 64,
'return_sequences': True
},
'last': {},
'maxpool': {},
'average': {},
'all_views': {
'axis': 1
},
'dropout': {
'rate': 0.5
},
'dense': {
'units': 72,
'activation': 'relu'
},
'activation_layer': {
'activation': 'softmax'
},
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layers_rnn = []
layers_rnn.append(L.SpatialDropout1D(**config['spatial_dropout']))
layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_0'])))
layers_rnn.append(L.Dropout(**config['dropout_rnn']))
layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_1'])))
layers_sensor = []
layers_sensor.append(L.Lambda(lambda t: t[:, -1], name='last'))
layers_sensor.append(L.GlobalMaxPooling1D())
layers_sensor.append(L.GlobalAveragePooling1D())
layer_allviews = L.Concatenate(**config['all_views'])
layers_full_connect = []
layers_full_connect.append(L.Dropout(**config['dropout']))
layers_full_connect.append(L.Dense(**config['dense']))
layers_full_connect.append(L.Dense(output_dim, **config['activation_layer']))
tensor_rnn = embed_model.output
for layer in layers_rnn:
tensor_rnn = layer(tensor_rnn)
tensor_sensors = [layer(tensor_rnn) for layer in layers_sensor]
tensor_output = layer_allviews(tensor_sensors)
for layer in layers_full_connect:
tensor_output = layer(tensor_output)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output)
class Dropout_AVRNN_Model(BaseClassificationModel):
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
return {
'spatial_dropout': {
'rate': 0.25
},
'rnn_0': {
'units': 56,
'return_sequences': True
},
'rnn_dropout': {
'rate': 0.3
},
'rnn_1': {
'units': 56,
'return_sequences': True
},
'last': {},
'maxpool': {},
'attn': {},
'average': {},
'all_views': {
'axis': 1
},
'dropout_0': {
'rate': 0.5
},
'dense': {
'units': 128,
'activation': 'relu'
},
'dropout_1': {
'rate': 0.25
},
'activation_layer': {
'activation': 'softmax'
},
}
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layers_rnn = []
layers_rnn.append(L.SpatialDropout1D(**config['spatial_dropout']))
layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_0'])))
layers_rnn.append(L.SpatialDropout1D(**config['rnn_dropout']))
layers_rnn.append(L.Bidirectional(L.GRU(**config['rnn_1'])))
layers_sensor = []
layers_sensor.append(L.Lambda(lambda t: t[:, -1], name='last'))
layers_sensor.append(L.GlobalMaxPooling1D())
layers_sensor.append(AttentionWeightedAverageLayer())
layers_sensor.append(L.GlobalAveragePooling1D())
layer_allviews = L.Concatenate(**config['all_views'])
layers_full_connect = []
layers_full_connect.append(L.Dropout(**config['dropout_0']))
layers_full_connect.append(L.Dense(**config['dense']))
layers_full_connect.append(L.Dropout(**config['dropout_1']))
layers_full_connect.append(L.Dense(output_dim, **config['activation_layer']))
tensor_rnn = embed_model.output
for layer in layers_rnn:
tensor_rnn = layer(tensor_rnn)
tensor_sensors = [layer(tensor_rnn) for layer in layers_sensor]
tensor_output = layer_allviews(tensor_sensors)
for layer in layers_full_connect:
tensor_output = layer(tensor_output)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor_output)
if __name__ == "__main__":
print(BiLSTM_Model.get_default_hyper_parameters())
logging.basicConfig(level=logging.DEBUG)
from kashgari.corpus import SMP2018ECDTCorpus
x, y = SMP2018ECDTCorpus.load_data()
import kashgari
from kashgari.processors.classification_processor import ClassificationProcessor
from kashgari.embeddings import BareEmbedding
processor = ClassificationProcessor(multi_label=False)
embed = BareEmbedding(task=kashgari.CLASSIFICATION, sequence_length=30, processor=processor)
m = BiLSTM_Model(embed)
# m.build_model(x, y)
m.fit(x, y, epochs=2)
print(m.predict(x[:10]))
# m.evaluate(x, y)
print(m.predict_top_k_class(x[:10])) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/tasks/classification/models.py | models.py |
# author: Alex
# contact: ialexwwang@gmail.com
# version: 0.1
# license: Apache Licence
# file: dpcnn_model.py
# time: 2019-07-02 19:15
# Reference:
# https://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf
# https://github.com/Cheneng/DPCNN
# https://github.com/miracleyoo/DPCNN-TextCNN-Pytorch-Inception
# https://www.kaggle.com/michaelsnell/conv1d-dpcnn-in-keras
from math import log2, floor
from typing import Dict, Any
import tensorflow as tf
from pysoftNLP.kashgari.layers import L, KMaxPoolingLayer
from pysoftNLP.kashgari.tasks.classification.base_model import BaseClassificationModel
class DPCNN_Model(BaseClassificationModel):
'''
This implementation of DPCNN requires a clear declared sequence length.
So sequences input in should be padded or cut to a given length in advance.
'''
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
pool_type = 'max'
filters = 250
activation = 'linear'
return {
'region_embedding': {
'filters': filters,
'kernel_size': 3,
'strides': 1,
'padding': 'same',
'activation': activation,
'name': 'region_embedding',
},
'region_dropout': {
'rate': 0.2,
},
'conv_block': {
'filters': filters,
'kernel_size': 3,
'activation': activation,
'shortcut': True,
},
'resnet_block': {
'filters': filters,
'kernel_size': 3,
'activation': activation,
'shortcut': True,
'pool_type': pool_type,
'sorted': True,
},
'dense': {
'units': 256,
'activation': activation,
},
'dropout': {
'rate': 0.5,
},
'activation': {
'activation': 'softmax',
}
}
def downsample(self, inputs, pool_type: str = 'max',
sorted: bool = True, stage: int = 1): # noqa: A002
layers_pool = []
if pool_type == 'max':
layers_pool.append(
L.MaxPooling1D(pool_size=3,
strides=2,
padding='same',
name=f'pool_{stage}'))
elif pool_type == 'k_max':
k = int(inputs.shape[1].value / 2)
layers_pool.append(
KMaxPoolingLayer(k=k,
sorted=sorted,
name=f'pool_{stage}'))
elif pool_type == 'conv':
layers_pool.append(
L.Conv1D(filters=inputs.shape[-1].value,
kernel_size=3,
strides=2,
padding='same',
name=f'pool_{stage}'))
layers_pool.append(
L.BatchNormalization())
elif pool_type is None:
layers_pool = []
else:
raise ValueError(f'unsupported pooling type `{pool_type}`!')
tensor_out = inputs
for layer in layers_pool:
tensor_out = layer(tensor_out)
return tensor_out
def conv_block(self, inputs, filters: int, kernel_size: int = 3,
activation: str = 'linear', shortcut: bool = True):
layers_conv_unit = []
layers_conv_unit.append(
L.BatchNormalization())
layers_conv_unit.append(
L.PReLU())
layers_conv_unit.append(
L.Conv1D(filters=filters,
kernel_size=kernel_size,
strides=1,
padding='same',
activation=activation))
layers_conv_block = layers_conv_unit * 2
tensor_out = inputs
for layer in layers_conv_block:
tensor_out = layer(tensor_out)
if shortcut:
tensor_out = L.Add()([inputs, tensor_out])
return tensor_out
def resnet_block(self, inputs, filters: int, kernel_size: int = 3,
activation: str = 'linear', shortcut: bool = True,
pool_type: str = 'max', sorted: bool = True, stage: int = 1): # noqa: A002
tensor_pool = self.downsample(inputs, pool_type=pool_type, sorted=sorted, stage=stage)
tensor_out = self.conv_block(tensor_pool, filters=filters, kernel_size=kernel_size,
activation=activation, shortcut=shortcut)
return tensor_out
def build_model_arc(self):
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
layers_region = [
L.Conv1D(**config['region_embedding']),
L.BatchNormalization(),
L.PReLU(),
L.Dropout(**config['region_dropout'])
]
layers_main = [
L.GlobalMaxPooling1D(),
L.Dense(**config['dense']),
L.BatchNormalization(),
L.PReLU(),
L.Dropout(**config['dropout']),
L.Dense(output_dim, **config['activation'])
]
tensor_out = embed_model.output
# build region tensors
for layer in layers_region:
tensor_out = layer(tensor_out)
# build the base pyramid layer
tensor_out = self.conv_block(tensor_out, **config['conv_block'])
# build the above pyramid layers while `steps > 2`
seq_len = tensor_out.shape[1].value
if seq_len is None:
raise ValueError('`sequence_length` should be explicitly assigned, but it is `None`.')
for i in range(floor(log2(seq_len)) - 2):
tensor_out = self.resnet_block(tensor_out, stage=i + 1,
**config['resnet_block'])
for layer in layers_main:
tensor_out = layer(tensor_out)
self.tf_model = tf.keras.Model(embed_model.inputs, tensor_out) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/tasks/classification/dpcnn_model.py | dpcnn_model.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_model.py
# time: 11:36 上午
from typing import Callable
from typing import Dict, Any
import numpy as np
from sklearn import metrics
from pysoftNLP.kashgari.tasks.base_model import BaseModel
class BaseScoringModel(BaseModel):
"""Base Sequence Labeling Model"""
__task__ = 'scoring'
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
raise NotImplementedError
def compile_model(self, **kwargs):
if kwargs.get('loss') is None:
kwargs['loss'] = 'mse'
if kwargs.get('optimizer') is None:
kwargs['optimizer'] = 'rmsprop'
if kwargs.get('metrics') is None:
kwargs['metrics'] = ['mae']
super(BaseScoringModel, self).compile_model(**kwargs)
def evaluate(self,
x_data,
y_data,
batch_size=None,
should_round: bool = False,
round_func: Callable = None,
digits=4,
debug_info=False) -> Dict:
"""
Build a text report showing the main classification metrics.
Args:
x_data:
y_data:
batch_size:
should_round:
round_func:
digits:
debug_info:
Returns:
"""
y_pred = self.predict(x_data, batch_size=batch_size)
if should_round:
if round_func is None:
round_func = np.round
print(self.processor.output_dim)
if self.processor.output_dim != 1:
raise ValueError('Evaluate with round function only accept 1D output')
y_pred = [round_func(i) for i in y_pred]
report = metrics.classification_report(y_data,
y_pred,
digits=digits)
report_dic = metrics.classification_report(y_data,
y_pred,
output_dict=True,
digits=digits)
print(report)
else:
mean_squared_error = metrics.mean_squared_error(y_data, y_pred)
r2_score = metrics.r2_score(y_data, y_pred)
report_dic = {
'mean_squared_error': mean_squared_error,
'r2_score': r2_score
}
print(f"mean_squared_error : {mean_squared_error}\n"
f"r2_score : {r2_score}")
return report_dic
if __name__ == "__main__":
pass | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/tasks/scoring/base_model.py | base_model.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_embedding.py
# time: 2019-05-20 17:40
import json
import logging
import pydoc
from typing import Union, List, Optional, Dict
import numpy as np
from tensorflow import keras
import pysoftNLP.kashgari as kashgari
from pysoftNLP.kashgari.processors import ClassificationProcessor, LabelingProcessor, ScoringProcessor
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
L = keras.layers
class Embedding(object):
"""Base class for Embedding Model"""
def info(self) -> Dict:
return {
'processor': self.processor.info(),
'class_name': self.__class__.__name__,
'module': self.__class__.__module__,
'config': {
'sequence_length': self.sequence_length,
'embedding_size': self.embedding_size,
'task': self.task
},
'embed_model': json.loads(self.embed_model.to_json()),
}
@classmethod
def _load_saved_instance(cls,
config_dict: Dict,
model_path: str,
tf_model: keras.Model):
processor_info = config_dict['processor']
processor_class = pydoc.locate(f"{processor_info['module']}.{processor_info['class_name']}")
processor = processor_class(**processor_info['config'])
instance = cls(processor=processor,
from_saved_model=True, **config_dict['config'])
embed_model_json_str = json.dumps(config_dict['embed_model'])
instance.embed_model = keras.models.model_from_json(embed_model_json_str,
custom_objects=kashgari.custom_objects)
# Load Weights from model
for layer in instance.embed_model.layers:
layer.set_weights(tf_model.get_layer(layer.name).get_weights())
return instance
def __init__(self,
task: str = None,
sequence_length: Union[int, str] = 'auto',
embedding_size: int = 100,
processor: Optional[BaseProcessor] = None,
from_saved_model: bool = False):
self.task = task
self.embedding_size = embedding_size
if processor is None:
if task == kashgari.CLASSIFICATION:
self.processor = ClassificationProcessor()
elif task == kashgari.LABELING:
self.processor = LabelingProcessor()
elif task == kashgari.SCORING:
self.processor = ScoringProcessor()
else:
raise ValueError('Need to set the processor param, value: {labeling, classification, scoring}')
else:
self.processor = processor
self.sequence_length: Union[int, str] = sequence_length
self.embed_model: Optional[keras.Model] = None
self._tokenizer = None
@property
def token_count(self) -> int:
"""
corpus token count
"""
return len(self.processor.token2idx)
@property
def sequence_length(self) -> Union[int, str]:
"""
model sequence length
"""
return self.processor.sequence_length
@property
def label2idx(self) -> Dict[str, int]:
"""
label to index dict
"""
return self.processor.label2idx
@property
def token2idx(self) -> Dict[str, int]:
"""
token to index dict
"""
return self.processor.token2idx
@property
def tokenizer(self):
if self._tokenizer:
return self._tokenizer
else:
raise ValueError('This embedding not support built-in tokenizer')
@sequence_length.setter
def sequence_length(self, val: Union[int, str]):
if isinstance(val, str):
if val == 'auto':
logging.warning("Sequence length will auto set at 95% of sequence length")
elif val == 'variable':
val = None
else:
raise ValueError("sequence_length must be an int or 'auto' or 'variable'")
self.processor.sequence_length = val
def _build_model(self, **kwargs):
raise NotImplementedError
def analyze_corpus(self,
x: List[List[str]],
y: Union[List[List[str]], List[str]]):
"""
Prepare embedding layer and pre-processor for labeling task
Args:
x:
y:
Returns:
"""
self.processor.analyze_corpus(x, y)
if self.sequence_length == 'auto':
self.sequence_length = self.processor.dataset_info['RECOMMEND_LEN']
self._build_model()
def embed_one(self, sentence: Union[List[str], List[int]]) -> np.array:
"""
Convert one sentence to vector
Args:
sentence: target sentence, list of str
Returns:
vectorized sentence
"""
return self.embed([sentence])[0]
def embed(self,
sentence_list: Union[List[List[str]], List[List[int]]],
debug: bool = False) -> np.ndarray:
"""
batch embed sentences
Args:
sentence_list: Sentence list to embed
debug: show debug info
Returns:
vectorized sentence list
"""
tensor_x = self.process_x_dataset(sentence_list)
if debug:
logging.debug(f'sentence tensor: {tensor_x}')
embed_results = self.embed_model.predict(tensor_x)
return embed_results
def process_x_dataset(self,
data: List[List[str]],
subset: Optional[List[int]] = None) -> np.ndarray:
"""
batch process feature data while training
Args:
data: target dataset
subset: subset index list
Returns:
vectorized feature tensor
"""
return self.processor.process_x_dataset(data, self.sequence_length, subset)
def process_y_dataset(self,
data: List[List[str]],
subset: Optional[List[int]] = None) -> np.ndarray:
"""
batch process labels data while training
Args:
data: target dataset
subset: subset index list
Returns:
vectorized feature tensor
"""
return self.processor.process_y_dataset(data, self.sequence_length, subset)
def reverse_numerize_label_sequences(self,
sequences,
lengths=None):
return self.processor.reverse_numerize_label_sequences(sequences, lengths=lengths)
def __repr__(self):
return f"<{self.__class__} seq_len: {self.sequence_length}>"
def __str__(self):
return self.__repr__()
if __name__ == "__main__":
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/embeddings/base_embedding.py | base_embedding.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_embedding.py
# time: 2019-05-26 17:40
import os
os.environ['TF_KERAS'] = '1'
import logging
from typing import Union, Optional, Any, List, Tuple
import numpy as np
import pysoftNLP.kashgari as kashgari
import pathlib
from tensorflow.python.keras.utils import get_file
from pysoftNLP.kashgari.embeddings.base_embedding import Embedding
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
import keras_gpt_2 as gpt2
class GPT2Embedding(Embedding):
"""Pre-trained BERT embedding"""
def info(self):
info = super(GPT2Embedding, self).info()
info['config'] = {
'model_folder': self.model_folder,
'sequence_length': self.sequence_length
}
return info
def __init__(self,
model_folder: str,
task: str = None,
sequence_length: Union[Tuple[int, ...], str, int] = 'auto',
processor: Optional[BaseProcessor] = None,
from_saved_model: bool = False):
"""
Args:
task:
model_folder:
sequence_length:
processor:
from_saved_model:
"""
super(GPT2Embedding, self).__init__(task=task,
sequence_length=sequence_length,
embedding_size=0,
processor=processor,
from_saved_model=from_saved_model)
if isinstance(sequence_length, tuple):
if len(sequence_length) > 2:
raise ValueError('BERT only more 2')
else:
if not all([s == sequence_length[0] for s in sequence_length]):
raise ValueError('BERT only receive all')
if sequence_length == 'variable':
self.sequence_length = None
self.processor.token_pad = 'pad'
self.processor.token_unk = 'unk'
self.processor.token_bos = 'pad'
self.processor.token_eos = 'pad'
self.model_folder = model_folder
if not from_saved_model:
self._build_token2idx_from_gpt()
self._build_model()
def _build_token2idx_from_gpt(self):
encoder_path = os.path.join(self.model_folder, 'encoder.json')
vocab_path = os.path.join(self.model_folder, 'vocab.bpe')
bpe: gpt2.BytePairEncoding = gpt2.get_bpe_from_files(encoder_path, vocab_path)
token2idx = bpe.token_dict.copy()
self.processor.token2idx = token2idx
self.processor.idx2token = dict([(value, key) for key, value in token2idx.items()])
def _build_model(self, **kwargs):
if self.embed_model is None and self.sequence_length != 'auto':
config_path = os.path.join(self.model_folder, 'hparams.json')
checkpoint_path = os.path.join(self.model_folder, 'model.ckpt')
model = gpt2.load_trained_model_from_checkpoint(config_path,
checkpoint_path,
self.sequence_length)
if not kashgari.config.disable_auto_summary:
model.summary()
self.embed_model = model
# if self.token_count == 0:
# logging.debug('need to build after build_word2idx')
# elif self.embed_model is None:
# seq_len = self.sequence_length
# if isinstance(seq_len, tuple):
# seq_len = seq_len[0]
# if isinstance(seq_len, str):
# return
# config_path = os.path.join(self.bert_path, 'bert_config.json')
# check_point_path = os.path.join(self.bert_path, 'bert_model.ckpt')
# bert_model = keras_bert.load_trained_model_from_checkpoint(config_path,
# check_point_path,
# seq_len=seq_len)
#
# self._model = tf.keras.Model(bert_model.inputs, bert_model.output)
# bert_seq_len = int(bert_model.output.shape[1])
# if bert_seq_len < seq_len:
# logging.warning(f"Sequence length limit set to {bert_seq_len} by pre-trained model")
# self.sequence_length = bert_seq_len
# self.embedding_size = int(bert_model.output.shape[-1])
# num_layers = len(bert_model.layers)
# bert_model.summary()
# target_layer_idx = [num_layers - 1 + idx * 8 for idx in range(-3, 1)]
# features_layers = [bert_model.get_layer(index=idx).output for idx in target_layer_idx]
# embedding_layer = L.concatenate(features_layers)
# output_features = NonMaskingLayer()(embedding_layer)
#
# self.embed_model = tf.keras.Model(bert_model.inputs, output_features)
# logging.warning(f'seq_len: {self.sequence_length}')
def analyze_corpus(self,
x: Union[Tuple[List[List[str]], ...], List[List[str]]],
y: Union[List[List[Any]], List[Any]]):
"""
Prepare embedding layer and pre-processor for labeling task
Args:
x:
y:
Returns:
"""
if len(self.processor.token2idx) == 0:
self._build_token2idx_from_gpt()
super(GPT2Embedding, self).analyze_corpus(x, y)
def embed(self,
sentence_list: Union[Tuple[List[List[str]], ...], List[List[str]]],
debug: bool = False) -> np.ndarray:
"""
batch embed sentences
Args:
sentence_list: Sentence list to embed
debug: show debug log
Returns:
vectorized sentence list
"""
tensor_x = self.process_x_dataset(sentence_list)
if debug:
logging.debug(f'sentence tensor: {tensor_x}')
embed_results = self.embed_model.predict(tensor_x)
return embed_results
def process_x_dataset(self,
data: Union[Tuple[List[List[str]], ...], List[List[str]]],
subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]:
"""
batch process feature data while training
Args:
data: target dataset
subset: subset index list
Returns:
vectorized feature tensor
"""
x1 = None
if isinstance(data, tuple):
if len(data) == 2:
x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset)
x1 = self.processor.process_x_dataset(data[1], self.sequence_length, subset)
else:
x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset)
else:
x0 = self.processor.process_x_dataset(data, self.sequence_length, subset)
if x1 is None:
x1 = np.zeros(x0.shape, dtype=np.int32)
return x0, x1
@classmethod
def load_data(cls, model_name):
"""
Download pretrained GPT-2 models
Args:
model_name: {117M, 345M}
Returns:
GPT-2 model folder
"""
model_folder: pathlib.Path = pathlib.Path(os.path.join(kashgari.macros.DATA_PATH,
'datasets',
f'gpt2-{model_name}'))
model_folder.mkdir(exist_ok=True, parents=True)
for filename in ['checkpoint', 'encoder.json', 'hparams.json', 'model.ckpt.data-00000-of-00001',
'model.ckpt.index', 'model.ckpt.meta', 'vocab.bpe']:
url = "https://storage.googleapis.com/gpt-2/models/" + model_name + "/" + filename
get_file(os.path.join(f'gpt2-{model_name}', filename),
url,
cache_dir=kashgari.macros.DATA_PATH)
return str(model_folder)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
# bert_model_path = os.path.join(utils.get_project_path(), 'tests/test-data/bert')
model_folder = GPT2Embedding.load_data('117M')
print(model_folder)
b = GPT2Embedding(task=kashgari.CLASSIFICATION,
model_folder=model_folder,
sequence_length=12)
# from kashgari.corpus import SMP2018ECDTCorpus
# test_x, test_y = SMP2018ECDTCorpus.load_data('valid')
# b.analyze_corpus(test_x, test_y)
data1 = 'all work and no play makes'.split(' ')
r = b.embed([data1], True)
print(r)
print(r.shape) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/embeddings/gpt_2_embedding.py | gpt_2_embedding.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: bert_embedding_v2.py
# time: 10:03 上午
import os
os.environ['TF_KERAS'] = '1'
import json
import codecs
import logging
from typing import Union, Optional
from bert4keras.models import build_transformer_model
import pysoftNLP.kashgari as kashgari
import tensorflow as tf
from pysoftNLP.kashgari.embeddings.bert_embedding import BERTEmbedding
from pysoftNLP.kashgari.layers import NonMaskingLayer
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
import keras_bert
class BERTEmbeddingV2(BERTEmbedding):
"""Pre-trained BERT embedding"""
def info(self):
info = super(BERTEmbedding, self).info()
info['config'] = {
'model_folder': self.model_folder,
'sequence_length': self.sequence_length
}
return info
def __init__(self,
vacab_path: str,
config_path: str,
checkpoint_path: str,
bert_type: str = 'bert',
task: str = None,
sequence_length: Union[str, int] = 'auto',
processor: Optional[BaseProcessor] = None,
from_saved_model: bool = False):
"""
"""
self.model_folder = ''
self.vacab_path = vacab_path
self.config_path = config_path
self.checkpoint_path = checkpoint_path
super(BERTEmbedding, self).__init__(task=task,
sequence_length=sequence_length,
embedding_size=0,
processor=processor,
from_saved_model=from_saved_model)
self.bert_type = bert_type
self.processor.token_pad = '[PAD]'
self.processor.token_unk = '[UNK]'
self.processor.token_bos = '[CLS]'
self.processor.token_eos = '[SEP]'
self.processor.add_bos_eos = True
if not from_saved_model:
self._build_token2idx_from_bert()
self._build_model()
def _build_token2idx_from_bert(self):
token2idx = {}
with codecs.open(self.vacab_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token2idx[token] = len(token2idx)
self.bert_token2idx = token2idx
self._tokenizer = keras_bert.Tokenizer(token2idx)
self.processor.token2idx = self.bert_token2idx
self.processor.idx2token = dict([(value, key) for key, value in token2idx.items()])
def _build_model(self, **kwargs):
if self.embed_model is None:
seq_len = self.sequence_length
if isinstance(seq_len, tuple):
seq_len = seq_len[0]
if isinstance(seq_len, str):
logging.warning(f"Model will be built when sequence length is determined")
return
config_path = self.config_path
config = json.load(open(config_path))
if seq_len > config.get('max_position_embeddings'):
seq_len = config.get('max_position_embeddings')
logging.warning(f"Max seq length is {seq_len}")
bert_model = build_transformer_model(config_path=self.config_path,
checkpoint_path=self.checkpoint_path,
model=self.bert_type,
application='encoder',
return_keras_model=True)
self.embed_model = bert_model
self.embedding_size = int(bert_model.output.shape[-1])
output_features = NonMaskingLayer()(bert_model.output)
self.embed_model = tf.keras.Model(bert_model.inputs, output_features)
if __name__ == "__main__":
# BERT_PATH = '/Users/brikerman/Desktop/nlp/language_models/bert/chinese_L-12_H-768_A-12'
model_folder = '/Users/brikerman/Desktop/nlp/language_models/albert_base'
checkpoint_path = os.path.join(model_folder, 'model.ckpt-best')
config_path = os.path.join(model_folder, 'albert_config.json')
vacab_path = os.path.join(model_folder, 'vocab_chinese.txt')
embed = BERTEmbeddingV2(vacab_path, config_path, checkpoint_path,
bert_type='albert',
task=kashgari.CLASSIFICATION,
sequence_length=100)
x = embed.embed_one(list('今天天气不错'))
print(x) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/embeddings/bert_embedding_v2.py | bert_embedding_v2.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: stacked_embedding.py
# time: 2019-05-23 09:18
import json
import pydoc
from typing import Union, Optional, Tuple, List, Dict
import numpy as np
import tensorflow as tf
from tensorflow.python import keras
import pysoftNLP.kashgari as kashgari
from pysoftNLP.kashgari.embeddings.base_embedding import Embedding
from pysoftNLP.kashgari.layers import L
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
class StackedEmbedding(Embedding):
"""Embedding layer without pre-training, train embedding layer while training model"""
@classmethod
def _load_saved_instance(cls,
config_dict: Dict,
model_path: str,
tf_model: keras.Model):
embeddings = []
for embed_info in config_dict['embeddings']:
embed_class = pydoc.locate(f"{embed_info['module']}.{embed_info['class_name']}")
embedding: Embedding = embed_class._load_saved_instance(embed_info,
model_path,
tf_model)
embeddings.append(embedding)
instance = cls(embeddings=embeddings,
from_saved_model=True)
print('----')
print(instance.embeddings)
embed_model_json_str = json.dumps(config_dict['embed_model'])
instance.embed_model = keras.models.model_from_json(embed_model_json_str,
custom_objects=kashgari.custom_objects)
# Load Weights from model
for layer in instance.embed_model.layers:
layer.set_weights(tf_model.get_layer(layer.name).get_weights())
return instance
def info(self):
info = super(StackedEmbedding, self).info()
info['embeddings'] = [embed.info() for embed in self.embeddings]
info['config'] = {}
return info
def __init__(self,
embeddings: List[Embedding],
processor: Optional[BaseProcessor] = None,
from_saved_model: bool = False):
"""
Args:
embeddings:
processor:
"""
task = kashgari.CLASSIFICATION
if all(isinstance(embed.sequence_length, int) for embed in embeddings):
sequence_length = [embed.sequence_length for embed in embeddings]
else:
raise ValueError('Need to set sequence length for all embeddings while using stacked embedding')
super(StackedEmbedding, self).__init__(task=task,
sequence_length=sequence_length[0],
embedding_size=100,
processor=processor,
from_saved_model=from_saved_model)
self.embeddings = embeddings
self.processor = embeddings[0].processor
if not from_saved_model:
self._build_model()
def _build_model(self, **kwargs):
if self.embed_model is None and all(embed.embed_model is not None for embed in self.embeddings):
layer_concatenate = L.Concatenate(name='layer_concatenate')
inputs = []
for embed in self.embeddings:
inputs += embed.embed_model.inputs
# inputs = [embed.embed_model.inputs for embed in self.embeddings]
outputs = layer_concatenate([embed.embed_model.output for embed in self.embeddings])
self.embed_model = tf.keras.Model(inputs, outputs)
def analyze_corpus(self,
x: Union[Tuple[List[List[str]], ...], List[List[str]]],
y: Union[List[List[str]], List[str]]):
for index in range(len(x)):
self.embeddings[index].analyze_corpus(x[index], y)
self._build_model()
def process_x_dataset(self,
data: Tuple[List[List[str]], ...],
subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]:
"""
batch process feature data while training
Args:
data: target dataset
subset: subset index list
Returns:
vectorized feature tensor
"""
result = []
for index, dataset in enumerate(data):
x = self.embeddings[index].process_x_dataset(dataset, subset)
if isinstance(x, tuple):
result += list(x)
else:
result.append(x)
return tuple(result)
def process_y_dataset(self,
data: List[List[str]],
subset: Optional[List[int]] = None) -> np.ndarray:
return self.embeddings[0].process_y_dataset(data, subset)
if __name__ == "__main__":
pass | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/embeddings/stacked_embedding.py | stacked_embedding.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_embedding.py
# time: 2019-05-25 17:40
import os
os.environ['TF_KERAS'] = '1'
import codecs
import logging
from typing import Union, Optional, Any, List, Tuple
import numpy as np
import pysoftNLP.kashgari as kashgari
import tensorflow as tf
from pysoftNLP.kashgari.layers import NonMaskingLayer
from pysoftNLP.kashgari.embeddings.base_embedding import Embedding
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
import keras_bert
class BERTEmbedding(Embedding):
"""Pre-trained BERT embedding"""
def info(self):
info = super(BERTEmbedding, self).info()
info['config'] = {
'model_folder': self.model_folder,
'sequence_length': self.sequence_length
}
return info
def __init__(self,
model_folder: str,
layer_nums: int = 4,
trainable: bool = False,
task: str = None,
sequence_length: Union[str, int] = 'auto',
processor: Optional[BaseProcessor] = None,
from_saved_model: bool = False):
"""
Args:
task:
model_folder:
layer_nums: number of layers whose outputs will be concatenated into a single tensor,
default `4`, output the last 4 hidden layers as the thesis suggested
trainable: whether if the model is trainable, default `False` and set it to `True`
for fine-tune this embedding layer during your training
sequence_length:
processor:
from_saved_model:
"""
self.trainable = trainable
# Do not need to train the whole bert model if just to use its feature output
self.training = False
self.layer_nums = layer_nums
if isinstance(sequence_length, tuple):
raise ValueError('BERT embedding only accept `int` type `sequence_length`')
if sequence_length == 'variable':
raise ValueError('BERT embedding only accept sequences in equal length')
super(BERTEmbedding, self).__init__(task=task,
sequence_length=sequence_length,
embedding_size=0,
processor=processor,
from_saved_model=from_saved_model)
self.processor.token_pad = '[PAD]'
self.processor.token_unk = '[UNK]'
self.processor.token_bos = '[CLS]'
self.processor.token_eos = '[SEP]'
self.processor.add_bos_eos = True
self.model_folder = model_folder
if not from_saved_model:
self._build_token2idx_from_bert()
self._build_model()
def _build_token2idx_from_bert(self):
dict_path = os.path.join(self.model_folder, 'vocab.txt')
token2idx = {}
with codecs.open(dict_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token2idx[token] = len(token2idx)
self.bert_token2idx = token2idx
self._tokenizer = keras_bert.Tokenizer(token2idx)
self.processor.token2idx = self.bert_token2idx
self.processor.idx2token = dict([(value, key) for key, value in token2idx.items()])
def _build_model(self, **kwargs):
if self.embed_model is None:
seq_len = self.sequence_length
if isinstance(seq_len, tuple):
seq_len = seq_len[0]
if isinstance(seq_len, str):
logging.warning(f"Model will be built until sequence length is determined")
return
config_path = os.path.join(self.model_folder, 'bert_config.json')
check_point_path = os.path.join(self.model_folder, 'bert_model.ckpt')
bert_model = keras_bert.load_trained_model_from_checkpoint(config_path,
check_point_path,
seq_len=seq_len,
output_layer_num=self.layer_nums,
training=self.training,
trainable=self.trainable)
self._model = tf.keras.Model(bert_model.inputs, bert_model.output)
bert_seq_len = int(bert_model.output.shape[1])
if bert_seq_len < seq_len:
logging.warning(f"Sequence length limit set to {bert_seq_len} by pre-trained model")
self.sequence_length = bert_seq_len
self.embedding_size = int(bert_model.output.shape[-1])
output_features = NonMaskingLayer()(bert_model.output)
self.embed_model = tf.keras.Model(bert_model.inputs, output_features)
logging.warning(f'seq_len: {self.sequence_length}')
def analyze_corpus(self,
x: Union[Tuple[List[List[str]], ...], List[List[str]]],
y: Union[List[List[Any]], List[Any]]):
"""
Prepare embedding layer and pre-processor for labeling task
Args:
x:
y:
Returns:
"""
if len(self.processor.token2idx) == 0:
self._build_token2idx_from_bert()
super(BERTEmbedding, self).analyze_corpus(x, y)
def embed(self,
sentence_list: Union[Tuple[List[List[str]], ...], List[List[str]]],
debug: bool = False) -> np.ndarray:
"""
batch embed sentences
Args:
sentence_list: Sentence list to embed
debug: show debug log
Returns:
vectorized sentence list
"""
if self.embed_model is None:
raise ValueError('need to build model for embed sentence')
tensor_x = self.process_x_dataset(sentence_list)
if debug:
logging.debug(f'sentence tensor: {tensor_x}')
embed_results = self.embed_model.predict(tensor_x)
return embed_results
def process_x_dataset(self,
data: Union[Tuple[List[List[str]], ...], List[List[str]]],
subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]:
"""
batch process feature data while training
Args:
data: target dataset
subset: subset index list
Returns:
vectorized feature tensor
"""
x1 = None
if isinstance(data, tuple):
if len(data) == 2:
x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset)
x1 = self.processor.process_x_dataset(data[1], self.sequence_length, subset)
else:
x0 = self.processor.process_x_dataset(data[0], self.sequence_length, subset)
else:
x0 = self.processor.process_x_dataset(data, self.sequence_length, subset)
if x1 is None:
x1 = np.zeros(x0.shape, dtype=np.int32)
return x0, x1
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
# bert_model_path = os.path.join(utils.get_project_path(), 'tests/test-data/bert')
b = BERTEmbedding(task=kashgari.CLASSIFICATION,
model_folder='/Users/brikerman/.kashgari/embedding/bert/chinese_L-12_H-768_A-12',
sequence_length=12)
from kashgari.corpus import SMP2018ECDTCorpus
test_x, test_y = SMP2018ECDTCorpus.load_data('valid')
b.analyze_corpus(test_x, test_y)
data1 = 'all work and no play makes'.split(' ')
data2 = '你 好 啊'.split(' ')
r = b.embed([data1], True)
tokens = b.process_x_dataset([['语', '言', '模', '型']])[0]
target_index = [101, 6427, 6241, 3563, 1798, 102]
target_index = target_index + [0] * (12 - len(target_index))
assert list(tokens[0]) == list(target_index)
print(tokens)
print(r)
print(r.shape) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/embeddings/bert_embedding.py | bert_embedding.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: w2v_embedding.py
# time: 2019-05-20 17:32
import logging
from typing import Union, Optional, Dict, Any, List, Tuple
import numpy as np
from gensim.models import KeyedVectors
from tensorflow import keras
from pysoftNLP.kashgari.embeddings.base_embedding import Embedding
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
L = keras.layers
class WordEmbedding(Embedding):
"""Pre-trained word2vec embedding"""
def info(self):
info = super(WordEmbedding, self).info()
info['config'] = {
'w2v_path': self.w2v_path,
'w2v_kwargs': self.w2v_kwargs,
'sequence_length': self.sequence_length
}
return info
def __init__(self,
w2v_path: str,
task: str = None,
w2v_kwargs: Dict[str, Any] = None,
sequence_length: Union[Tuple[int, ...], str, int] = 'auto',
processor: Optional[BaseProcessor] = None,
from_saved_model: bool = False):
"""
Args:
task:
w2v_path: word2vec file path
w2v_kwargs: params pass to the ``load_word2vec_format()`` function of ``gensim.models.KeyedVectors`` -
https://radimrehurek.com/gensim/models/keyedvectors.html#module-gensim.models.keyedvectors
sequence_length: ``'auto'``, ``'variable'`` or integer. When using ``'auto'``, use the 95% of corpus length
as sequence length. When using ``'variable'``, model input shape will set to None, which can handle
various length of input, it will use the length of max sequence in every batch for sequence length.
If using an integer, let's say ``50``, the input output sequence length will set to 50.
processor:
"""
if w2v_kwargs is None:
w2v_kwargs = {}
self.w2v_path = w2v_path
self.w2v_kwargs = w2v_kwargs
self.w2v_model_loaded = False
super(WordEmbedding, self).__init__(task=task,
sequence_length=sequence_length,
embedding_size=0,
processor=processor,
from_saved_model=from_saved_model)
if not from_saved_model:
self._build_token2idx_from_w2v()
if self.sequence_length != 'auto':
self._build_model()
def _build_token2idx_from_w2v(self):
w2v = KeyedVectors.load_word2vec_format(self.w2v_path, **self.w2v_kwargs)
token2idx = {
self.processor.token_pad: 0,
self.processor.token_unk: 1,
self.processor.token_bos: 2,
self.processor.token_eos: 3
}
for token in w2v.index2word:
token2idx[token] = len(token2idx)
vector_matrix = np.zeros((len(token2idx), w2v.vector_size))
vector_matrix[1] = np.random.rand(w2v.vector_size)
vector_matrix[4:] = w2v.vectors
self.embedding_size = w2v.vector_size
self.w2v_vector_matrix = vector_matrix
self.w2v_token2idx = token2idx
self.w2v_top_words = w2v.index2entity[:50]
self.w2v_model_loaded = True
self.processor.token2idx = self.w2v_token2idx
self.processor.idx2token = dict([(value, key) for key, value in self.w2v_token2idx.items()])
logging.debug('------------------------------------------------')
logging.debug('Loaded gensim word2vec model')
logging.debug('model : {}'.format(self.w2v_path))
logging.debug('word count : {}'.format(len(self.w2v_vector_matrix)))
logging.debug('Top 50 word : {}'.format(self.w2v_top_words))
logging.debug('------------------------------------------------')
def _build_model(self, **kwargs):
if self.token_count == 0:
logging.debug('need to build after build_word2idx')
else:
input_tensor = L.Input(shape=(self.sequence_length,),
name=f'input')
layer_embedding = L.Embedding(self.token_count,
self.embedding_size,
weights=[self.w2v_vector_matrix],
trainable=False,
name=f'layer_embedding')
embedded_tensor = layer_embedding(input_tensor)
self.embed_model = keras.Model(input_tensor, embedded_tensor)
def analyze_corpus(self,
x: Union[Tuple[List[List[str]], ...], List[List[str]]],
y: Union[List[List[Any]], List[Any]]):
"""
Prepare embedding layer and pre-processor for labeling task
Args:
x:
y:
Returns:
"""
if not self.w2v_model_loaded:
self._build_token2idx_from_w2v()
super(WordEmbedding, self).analyze_corpus(x, y)
if __name__ == "__main__":
print('hello world') | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/embeddings/word_embedding.py | word_embedding.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: bare_embedding.py
# time: 2019-05-20 10:36
import logging
from typing import Union, Optional
from tensorflow import keras
from pysoftNLP.kashgari.embeddings.base_embedding import Embedding
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
L = keras.layers
# Todo: A better name for this class
class BareEmbedding(Embedding):
"""Embedding layer without pre-training, train embedding layer while training model"""
def __init__(self,
task: str = None,
sequence_length: Union[int, str] = 'auto',
embedding_size: int = 100,
processor: Optional[BaseProcessor] = None,
from_saved_model: bool = False):
"""
Init bare embedding (embedding without pre-training)
Args:
sequence_length: ``'auto'``, ``'variable'`` or integer. When using ``'auto'``, use the 95% of corpus length
as sequence length. When using ``'variable'``, model input shape will set to None, which can handle
various length of input, it will use the length of max sequence in every batch for sequence length.
If using an integer, let's say ``50``, the input output sequence length will set to 50.
embedding_size: Dimension of the dense embedding.
"""
super(BareEmbedding, self).__init__(task=task,
sequence_length=sequence_length,
embedding_size=embedding_size,
processor=processor,
from_saved_model=from_saved_model)
if not from_saved_model:
self._build_model()
def _build_model(self, **kwargs):
if self.sequence_length == 0 or \
self.sequence_length == 'auto' or \
self.token_count == 0:
logging.debug('need to build after build_word2idx')
else:
input_tensor = L.Input(shape=(self.sequence_length,),
name=f'input')
layer_embedding = L.Embedding(self.token_count,
self.embedding_size,
name=f'layer_embedding')
embedded_tensor = layer_embedding(input_tensor)
self.embed_model = keras.Model(input_tensor, embedded_tensor)
if __name__ == "__main__":
print('hello world') | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/embeddings/bare_embedding.py | bare_embedding.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: numeric_feature_embedding.py
# time: 2019-05-23 09:04
from typing import Union, Optional, Tuple, List
import numpy as np
from tensorflow import keras
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
import pysoftNLP.kashgari as kashgari
from pysoftNLP.kashgari.embeddings.base_embedding import Embedding
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
L = keras.layers
# Todo: A better name for this class
class NumericFeaturesEmbedding(Embedding):
"""Embedding layer without pre-training, train embedding layer while training model"""
def info(self):
info = super(NumericFeaturesEmbedding, self).info()
info['config'] = {
'feature_count': self.feature_count,
'feature_name': self.feature_name,
'sequence_length': self.sequence_length,
'embedding_size': self.embedding_size
}
return info
def __init__(self,
feature_count: int,
feature_name: str,
sequence_length: Union[str, int] = 'auto',
embedding_size: int = None,
processor: Optional[BaseProcessor] = None,
from_saved_model: bool = False):
"""
Init bare embedding (embedding without pre-training)
Args:
sequence_length: ``'auto'``, ``'variable'`` or integer. When using ``'auto'``, use the 95% of corpus length
as sequence length. When using ``'variable'``, model input shape will set to None, which can handle
various length of input, it will use the length of max sequence in every batch for sequence length.
If using an integer, let's say ``50``, the input output sequence length will set to 50.
embedding_size: Dimension of the dense embedding.
"""
# Dummy Type
task = kashgari.CLASSIFICATION
if embedding_size is None:
embedding_size = feature_count * 8
super(NumericFeaturesEmbedding, self).__init__(task=task,
sequence_length=sequence_length,
embedding_size=embedding_size,
processor=processor,
from_saved_model=from_saved_model)
self.feature_count = feature_count
self.feature_name = feature_name
if not from_saved_model:
self._build_model()
def _build_model(self, **kwargs):
input_tensor = L.Input(shape=(self.sequence_length,),
name=f'input_{self.feature_name}')
layer_embedding = L.Embedding(self.feature_count + 1,
self.embedding_size,
name=f'layer_embedding_{self.feature_name}')
embedded_tensor = layer_embedding(input_tensor)
self.embed_model = keras.Model(input_tensor, embedded_tensor)
def analyze_corpus(self,
x: Union[Tuple[List[List[str]], ...], List[List[str]]],
y: Union[List[List[str]], List[str]]):
pass
def process_x_dataset(self,
data: List[List[str]],
subset: Optional[List[int]] = None) -> Tuple[np.ndarray, ...]:
"""
batch process feature data while training
Args:
data: target dataset
subset: subset index list
Returns:
vectorized feature tensor
"""
if subset is not None:
numerized_samples = kashgari.utils.get_list_subset(data, subset)
else:
numerized_samples = data
return pad_sequences(numerized_samples, self.sequence_length, padding='post', truncating='post')
if __name__ == "__main__":
e = NumericFeaturesEmbedding(2, feature_name='is_bold', sequence_length=10)
e.embed_model.summary()
print(e.embed_one([1, 2]))
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/embeddings/numeric_feature_embedding.py | numeric_feature_embedding.py |
# author: AlexWang
# contact: ialexwwang@gmail.com
# file: attention_weighted_average.py
# time: 2019-06-25 16:35
import pysoftNLP.kashgari as kashgari
import tensorflow as tf
from tensorflow.python import keras
from tensorflow.python.keras import backend as K
L = keras.layers
InputSpec = L.InputSpec
class KMaxPoolingLayer(L.Layer):
'''
K-max pooling layer that extracts the k-highest activation from a sequence (2nd dimension).
TensorFlow backend.
# Arguments
k: An int scale,
indicate k max steps of features to pool.
sorted: A bool,
if output is sorted (default) or not.
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, steps, features)` while `channels_first`
corresponds to inputs with shape
`(batch, features, steps)`.
# Input shape
- If `data_format='channels_last'`:
3D tensor with shape:
`(batch_size, steps, features)`
- If `data_format='channels_first'`:
3D tensor with shape:
`(batch_size, features, steps)`
# Output shape
3D tensor with shape:
`(batch_size, top-k-steps, features)`
'''
def __init__(self, k=1, sorted=True, data_format='channels_last', **kwargs): # noqa: A002
super(KMaxPoolingLayer, self).__init__(**kwargs)
self.input_spec = InputSpec(ndim=3)
self.k = k
self.sorted = sorted
if data_format.lower() in ['channels_first', 'channels_last']:
self.data_format = data_format.lower()
else:
self.data_format = K.image_data_format()
def compute_output_shape(self, input_shape):
if self.data_format == 'channels_first':
return (input_shape[0], self.k, input_shape[1])
else:
return (input_shape[0], self.k, input_shape[2])
def call(self, inputs):
if self.data_format == 'channels_last':
# swap last two dimensions since top_k will be applied along the last dimension
shifted_input = tf.transpose(inputs, [0, 2, 1])
# extract top_k, returns two tensors [values, indices]
top_k = tf.nn.top_k(shifted_input, k=self.k, sorted=self.sorted)[0]
else:
top_k = tf.nn.top_k(inputs, k=self.k, sorted=self.sorted)[0]
# return flattened output
return tf.transpose(top_k, [0, 2, 1])
def get_config(self):
config = {'k': self.k,
'sorted': self.sorted,
'data_format': self.data_format}
base_config = super(KMaxPoolingLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
KMaxPooling = KMaxPoolingLayer
KMaxPoolLayer = KMaxPoolingLayer
kashgari.custom_objects['KMaxPoolingLayer'] = KMaxPoolingLayer
kashgari.custom_objects['KMaxPooling'] = KMaxPooling
kashgari.custom_objects['KMaxPoolLayer'] = KMaxPoolLayer
if __name__ == '__main__':
print('Hello world, KMaxPoolLayer/KMaxPoolingLayer.') | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/layers/kmax_pool_layer.py | kmax_pool_layer.py |
# author: AlexWang
# contact: ialexwwang@gmail.com
# file: attention_weighted_average.py
# time: 2019-06-24 19:35
from tensorflow.python import keras
from tensorflow.python.keras import backend as K
import pysoftNLP.kashgari as kashgari
L = keras.layers
initializers = keras.initializers
InputSpec = L.InputSpec
class AttentionWeightedAverageLayer(L.Layer):
'''
Computes a weighted average of the different channels across timesteps.
Uses 1 parameter pr. channel to compute the attention value for a single timestep.
'''
def __init__(self, return_attention=False, **kwargs):
self.init = initializers.get('uniform')
self.supports_masking = True
self.return_attention = return_attention
super(AttentionWeightedAverageLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.input_spec = [InputSpec(ndim=3)]
assert len(input_shape) == 3
self.W = self.add_weight(shape=(input_shape[2].value, 1),
name='{}_w'.format(self.name),
initializer=self.init,
trainable=True
)
# self.trainable_weights = [self.W]
super(AttentionWeightedAverageLayer, self).build(input_shape)
def call(self, x, mask=None):
# computes a probability distribution over the timesteps
# uses 'max trick' for numerical stability
# reshape is done to avoid issue with Tensorflow
# and 1-dimensional weights
logits = K.dot(x, self.W)
x_shape = K.shape(x)
logits = K.reshape(logits, (x_shape[0], x_shape[1]))
ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True))
# masked timesteps have zero weight
if mask is not None:
mask = K.cast(mask, K.floatx())
ai = ai * mask
att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon())
weighted_input = x * K.expand_dims(att_weights)
result = K.sum(weighted_input, axis=1)
if self.return_attention:
return [result, att_weights]
return result
def get_output_shape_for(self, input_shape):
return self.compute_output_shape(input_shape)
def compute_output_shape(self, input_shape):
output_len = input_shape[2]
if self.return_attention:
return [(input_shape[0], output_len), (input_shape[0], input_shape[1])]
return (input_shape[0], output_len)
def compute_mask(self, inputs, input_mask=None):
if isinstance(input_mask, list):
return [None] * len(input_mask)
else:
return None
def get_config(self):
config = {'return_attention': self.return_attention, }
base_config = super(AttentionWeightedAverageLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
AttentionWeightedAverage = AttentionWeightedAverageLayer
AttWgtAvgLayer = AttentionWeightedAverageLayer
kashgari.custom_objects['AttentionWeightedAverageLayer'] = AttentionWeightedAverageLayer
kashgari.custom_objects['AttentionWeightedAverage'] = AttentionWeightedAverage
kashgari.custom_objects['AttWgtAvgLayer'] = AttWgtAvgLayer
if __name__ == '__main__':
print('Hello world, AttentionWeightedAverageLayer/AttWgtAvgLayer.') | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/layers/att_wgt_avg_layer.py | att_wgt_avg_layer.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: crf.py
# time: 2019-06-28 14:33
import tensorflow as tf
class CRF(tf.keras.layers.Layer):
"""
Conditional Random Field layer (tf.keras)
`CRF` can be used as the last layer in a network (as a classifier). Input shape (features)
must be equal to the number of classes the CRF can predict (a linear layer is recommended).
Note: the loss and accuracy functions of networks using `CRF` must
use the provided loss and accuracy functions (denoted as loss and viterbi_accuracy)
as the classification of sequences are used with the layers internal weights.
Args:
output_dim (int): the number of labels to tag each temporal input.
Input shape:
nD tensor with shape `(batch_size, sentence length, num_classes)`.
Output shape:
nD tensor with shape: `(batch_size, sentence length, num_classes)`.
"""
def __init__(self,
output_dim,
mode='reg',
supports_masking=False,
transitions=None,
**kwargs):
self.transitions = None
super(CRF, self).__init__(**kwargs)
self.output_dim = int(output_dim)
self.mode = mode
if self.mode == 'pad':
self.input_spec = [tf.keras.layers.InputSpec(min_ndim=3), tf.keras.layers.InputSpec(min_ndim=2)]
elif self.mode == 'reg':
self.input_spec = tf.keras.layers.InputSpec(min_ndim=3)
else:
raise ValueError
self.supports_masking = supports_masking
self.sequence_lengths = None
def get_config(self):
config = {
'output_dim': self.output_dim,
'mode': self.mode,
'supports_masking': self.supports_masking,
'transitions': tf.keras.backend.eval(self.transitions)
}
base_config = super(CRF, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
if self.mode == 'pad':
assert len(input_shape) == 2
assert len(input_shape[0]) == 3
assert len(input_shape[1]) == 2
f_shape = tf.TensorShape(input_shape[0])
input_spec = [tf.keras.layers.InputSpec(min_ndim=3, axes={-1: f_shape[-1]}),
tf.keras.layers.InputSpec(min_ndim=2, axes={-1: 1}, dtype=tf.int32)]
else:
assert len(input_shape) == 3
f_shape = tf.TensorShape(input_shape)
input_spec = tf.keras.layers.InputSpec(min_ndim=3, axes={-1: f_shape[-1]})
if f_shape[-1] is None:
raise ValueError('The last dimension of the inputs to `CRF` should be defined. Found `None`.')
if f_shape[-1] != self.output_dim:
raise ValueError('The last dimension of the input shape must be equal to output shape. '
'Use a linear layer if needed.')
self.input_spec = input_spec
self.transitions = self.add_weight(name='transitions',
shape=[self.output_dim, self.output_dim],
initializer='glorot_uniform',
trainable=True)
self.built = True
def call(self, inputs, **kwargs):
if self.mode == 'pad':
sequences = tf.convert_to_tensor(inputs[0], dtype=self.dtype)
self.sequence_lengths = tf.keras.backend.flatten(inputs[-1])
else:
sequences = tf.convert_to_tensor(inputs, dtype=self.dtype)
shape = tf.shape(inputs)
self.sequence_lengths = tf.ones(shape[0], dtype=tf.int32) * (shape[1])
viterbi_sequence, _ = tf.contrib.crf.crf_decode(sequences, self.transitions,
self.sequence_lengths)
output = tf.keras.backend.one_hot(viterbi_sequence, self.output_dim)
return tf.keras.backend.in_train_phase(sequences, output)
def loss(self, y_true, y_pred):
y_pred = tf.convert_to_tensor(y_pred, dtype=self.dtype)
log_likelihood, self.transitions = tf.contrib.crf.crf_log_likelihood(y_pred,
tf.cast(tf.keras.backend.argmax(y_true),
dtype=tf.int32),
self.sequence_lengths,
transition_params=self.transitions)
return tf.reduce_mean(-log_likelihood)
def compute_output_shape(self, input_shape):
if self.mode == 'pad':
data_shape = input_shape[0]
else:
data_shape = input_shape
tf.TensorShape(data_shape).assert_has_rank(3)
return data_shape[:2] + (self.output_dim,)
@property
def viterbi_accuracy(self):
def accuracy(y_true, y_pred):
shape = tf.shape(y_pred)
sequence_lengths = tf.ones(shape[0], dtype=tf.int32) * (shape[1])
viterbi_sequence, _ = tf.contrib.crf.crf_decode(y_pred, self.transitions, sequence_lengths)
output = tf.keras.backend.one_hot(viterbi_sequence, self.output_dim)
return tf.keras.metrics.categorical_accuracy(y_true, output)
accuracy.func_name = 'viterbi_accuracy'
return accuracy | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/layers/crf.py | crf.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: scoring_processor.py
# time: 11:10 上午
from typing import List, Optional
import numpy as np
import pysoftNLP.kashgari as kashgari
from pysoftNLP.kashgari import utils
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
def is_numeric(obj):
attrs = ['__add__', '__sub__', '__mul__', '__truediv__', '__pow__']
return all(hasattr(obj, attr) for attr in attrs)
class ScoringProcessor(BaseProcessor):
"""
Corpus Pre Processor class
"""
def __init__(self, output_dim=None, **kwargs):
super(ScoringProcessor, self).__init__(**kwargs)
self.output_dim = output_dim
def info(self):
info = super(ScoringProcessor, self).info()
info['task'] = kashgari.SCORING
return info
def _build_label_dict(self,
label_list: List[List[float]]):
"""
Build label2idx dict for sequence labeling task
Args:
label_list: corpus label list
"""
if self.output_dim is None:
label_sample = label_list[0]
if isinstance(label_sample, np.ndarray) and len(label_sample.shape) == 1:
self.output_dim = label_sample.shape[0]
elif is_numeric(label_sample):
self.output_dim = 1
elif isinstance(label_sample, list):
self.output_dim = len(label_sample)
else:
raise ValueError('Scoring Label Sample must be a float, float array or 1D numpy array')
# np_labels = np.array(label_list)
# if np_labels.max() > 1 or np_labels.min() < 0:
# raise ValueError('Scoring Label Sample must be in range[0,1]')
def process_y_dataset(self,
data: List[List[str]],
max_len: Optional[int] = None,
subset: Optional[List[int]] = None) -> np.ndarray:
if subset is not None:
target = utils.get_list_subset(data, subset)
else:
target = data[:]
y = np.array(target)
return y
def numerize_token_sequences(self,
sequences: List[List[str]]):
result = []
for seq in sequences:
if self.add_bos_eos:
seq = [self.token_bos] + seq + [self.token_eos]
unk_index = self.token2idx[self.token_unk]
result.append([self.token2idx.get(token, unk_index) for token in seq])
return result
def numerize_label_sequences(self,
sequences: List[List[str]]) -> List[List[int]]:
return sequences
def reverse_numerize_label_sequences(self,
sequences,
lengths=None):
return sequences
if __name__ == "__main__":
from kashgari.corpus import SMP2018ECDTCorpus
x, y = SMP2018ECDTCorpus.load_data()
x = x[:3]
y = [0.2, 0.3, 0.2]
p = ScoringProcessor()
p.analyze_corpus(x, y)
print(p.process_y_dataset(y)) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/processors/scoring_processor.py | scoring_processor.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_processor.py
# time: 2019-05-21 11:27
import collections
import logging
import operator
from typing import List, Optional, Union, Dict, Any
import numpy as np
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
from pysoftNLP.kashgari import utils
class BaseProcessor(object):
"""
Corpus Pre Processor class
"""
def __init__(self, **kwargs):
self.token2idx: Dict[str, int] = kwargs.get('token2idx', {})
self.idx2token: Dict[int, str] = dict([(v, k) for (k, v) in self.token2idx.items()])
self.token2count: Dict = {}
self.label2idx: Dict[str, int] = kwargs.get('label2idx', {})
self.idx2label: Dict[int, str] = dict([(v, k) for (k, v) in self.label2idx.items()])
self.token_pad: str = kwargs.get('token_pad', '<PAD>')
self.token_unk: str = kwargs.get('token_unk', '<UNK>')
self.token_bos: str = kwargs.get('token_bos', '<BOS>')
self.token_eos: str = kwargs.get('token_eos', '<EOS>')
self.dataset_info: Dict[str, Any] = kwargs.get('dataset_info', {})
self.add_bos_eos: bool = kwargs.get('add_bos_eos', False)
self.sequence_length = kwargs.get('sequence_length', None)
self.min_count = kwargs.get('min_count', 3)
def info(self):
return {
'class_name': self.__class__.__name__,
'config': {
'label2idx': self.label2idx,
'token2idx': self.token2idx,
'token_pad': self.token_pad,
'token_unk': self.token_unk,
'token_bos': self.token_bos,
'token_eos': self.token_eos,
'dataset_info': self.dataset_info,
'add_bos_eos': self.add_bos_eos,
'sequence_length': self.sequence_length
},
'module': self.__class__.__module__,
}
def analyze_corpus(self,
corpus: Union[List[List[str]]],
labels: Union[List[List[str]], List[str]],
force: bool = False):
rec_len = sorted([len(seq) for seq in corpus])[int(0.95 * len(corpus))]
self.dataset_info['RECOMMEND_LEN'] = rec_len
if len(self.token2idx) == 0 or force:
self._build_token_dict(corpus, self.min_count)
if len(self.label2idx) == 0 or force:
self._build_label_dict(labels)
def _build_token_dict(self, corpus: List[List[str]], min_count: int = 3):
"""
Build token index dictionary using corpus
Args:
corpus: List of tokenized sentences, like ``[['I', 'love', 'tf'], ...]``
min_count:
"""
token2idx = {
self.token_pad: 0,
self.token_unk: 1,
self.token_bos: 2,
self.token_eos: 3
}
token2count = {}
for sentence in corpus:
for token in sentence:
count = token2count.get(token, 0)
token2count[token] = count + 1
self.token2count = token2count
# 按照词频降序排序
sorted_token2count = sorted(token2count.items(),
key=operator.itemgetter(1),
reverse=True)
token2count = collections.OrderedDict(sorted_token2count)
for token, token_count in token2count.items():
if token not in token2idx and token_count >= min_count:
token2idx[token] = len(token2idx)
self.token2idx = token2idx
self.idx2token = dict([(value, key)
for key, value in self.token2idx.items()])
logging.debug(f"build token2idx dict finished, contains {len(self.token2idx)} tokens.")
self.dataset_info['token_count'] = len(self.token2idx)
def _build_label_dict(self, corpus: Union[List[List[str]], List[str]]):
raise NotImplementedError
def process_x_dataset(self,
data: List[List[str]],
max_len: Optional[int] = None,
subset: Optional[List[int]] = None) -> np.ndarray:
if max_len is None:
max_len = self.sequence_length
if subset is not None:
target = utils.get_list_subset(data, subset)
else:
target = data
numerized_samples = self.numerize_token_sequences(target)
return pad_sequences(numerized_samples, max_len, padding='post', truncating='post')
def process_y_dataset(self,
data: Union[List[List[str]], List[str]],
max_len: Optional[int],
subset: Optional[List[int]] = None) -> np.ndarray:
raise NotImplementedError
def numerize_token_sequences(self,
sequences: List[List[str]]):
raise NotImplementedError
def numerize_label_sequences(self,
sequences: List[List[str]]) -> List[List[int]]:
raise NotImplementedError
def reverse_numerize_label_sequences(self, sequence, **kwargs):
raise NotImplementedError
def __repr__(self):
return f"<{self.__class__}>"
def __str__(self):
return self.__repr__()
if __name__ == "__main__":
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/processors/base_processor.py | base_processor.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# version: 1.0
# license: Apache Licence
# file: corpus.py
# time: 2019-05-17 11:28
import collections
import logging
import operator
from typing import List, Dict, Optional
import numpy as np
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
from tensorflow.python.keras.utils import to_categorical
import pysoftNLP.kashgari as kashgari
from pysoftNLP.kashgari import utils
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
class LabelingProcessor(BaseProcessor):
"""
Corpus Pre Processor class
"""
def info(self):
info = super(LabelingProcessor, self).info()
info['task'] = kashgari.LABELING
return info
def _build_label_dict(self,
label_list: List[List[str]]):
"""
Build label2idx dict for sequence labeling task
Args:
label_list: corpus label list
"""
label2idx: Dict[str: int] = {
self.token_pad: 0
}
token2count = {}
for sequence in label_list:
for label in sequence:
count = token2count.get(label, 0)
token2count[label] = count + 1
sorted_token2count = sorted(token2count.items(),
key=operator.itemgetter(1),
reverse=True)
token2count = collections.OrderedDict(sorted_token2count)
for token in token2count.keys():
if token not in label2idx:
label2idx[token] = len(label2idx)
self.label2idx = label2idx
self.idx2label = dict([(value, key)
for key, value in self.label2idx.items()])
logging.debug(f"build label2idx dict finished, contains {len(self.label2idx)} labels.")
def process_y_dataset(self,
data: List[List[str]],
max_len: Optional[int] = None,
subset: Optional[List[int]] = None) -> np.ndarray:
if subset is not None:
target = utils.get_list_subset(data, subset)
else:
target = data[:]
numerized_samples = self.numerize_label_sequences(target)
padded_seq = pad_sequences(
numerized_samples, max_len, padding='post', truncating='post')
return to_categorical(padded_seq, len(self.label2idx))
def numerize_token_sequences(self,
sequences: List[List[str]]):
result = []
for seq in sequences:
if self.add_bos_eos:
seq = [self.token_bos] + seq + [self.token_eos]
unk_index = self.token2idx[self.token_unk]
result.append([self.token2idx.get(token, unk_index) for token in seq])
return result
def numerize_label_sequences(self,
sequences: List[List[str]]) -> List[List[int]]:
result = []
for seq in sequences:
if self.add_bos_eos:
seq = [self.token_pad] + seq + [self.token_pad]
result.append([self.label2idx[label] for label in seq])
return result
def reverse_numerize_label_sequences(self,
sequences,
lengths=None):
result = []
for index, seq in enumerate(sequences):
labels = []
if self.add_bos_eos:
seq = seq[1:]
for idx in seq:
labels.append(self.idx2label[idx])
if lengths is not None:
labels = labels[:lengths[index]]
result.append(labels)
return result
if __name__ == "__main__":
from kashgari.corpus import ChineseDailyNerCorpus
x, y = ChineseDailyNerCorpus.load_data()
p = LabelingProcessor()
p.analyze_corpus(x, y)
r = p.process_x_dataset(x, subset=[10, 12, 20])
print(r) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/processors/labeling_processor.py | labeling_processor.py |
from typing import List, Optional
import numpy as np
from tensorflow.python.keras.utils import to_categorical
import pysoftNLP.kashgari as kashgari
from pysoftNLP.kashgari import utils
from pysoftNLP.kashgari.processors.base_processor import BaseProcessor
from sklearn.preprocessing import MultiLabelBinarizer
class ClassificationProcessor(BaseProcessor):
"""
Corpus Pre Processor class
"""
def __init__(self, multi_label=False, **kwargs):
super(ClassificationProcessor, self).__init__(**kwargs)
self.multi_label = multi_label
if self.label2idx:
self.multi_label_binarizer: MultiLabelBinarizer = MultiLabelBinarizer(classes=list(self.label2idx.keys()))
self.multi_label_binarizer.fit([])
else:
self.multi_label_binarizer: MultiLabelBinarizer = None
def info(self):
info = super(ClassificationProcessor, self).info()
info['task'] = kashgari.CLASSIFICATION
info['config']['multi_label'] = self.multi_label
return info
def _build_label_dict(self,
labels: List[str]):
if self.multi_label:
label_set = set()
for i in labels:
label_set = label_set.union(list(i))
else:
label_set = set(labels)
self.label2idx = {}
for idx, label in enumerate(sorted(label_set)):
self.label2idx[label] = len(self.label2idx)
self.idx2label = dict([(value, key) for key, value in self.label2idx.items()])
self.dataset_info['label_count'] = len(self.label2idx)
self.multi_label_binarizer = MultiLabelBinarizer(classes=list(self.label2idx.keys()))
def process_y_dataset(self,
data: List[str],
max_len: Optional[int] = None,
subset: Optional[List[int]] = None) -> np.ndarray:
if subset is not None:
target = utils.get_list_subset(data, subset)
else:
target = data
if self.multi_label:
return self.multi_label_binarizer.fit_transform(target)
else:
numerized_samples = self.numerize_label_sequences(target)
return to_categorical(numerized_samples, len(self.label2idx))
def numerize_token_sequences(self,
sequences: List[List[str]]):
result = []
for seq in sequences:
if self.add_bos_eos:
seq = [self.token_bos] + seq + [self.token_eos]
unk_index = self.token2idx[self.token_unk]
result.append([self.token2idx.get(token, unk_index) for token in seq])
return result
def numerize_label_sequences(self,
sequences: List[str]) -> List[int]:
"""
Convert label sequence to label-index sequence
``['O', 'O', 'B-ORG'] -> [0, 0, 2]``
Args:
sequences: label sequence, list of str
Returns:
label-index sequence, list of int
"""
return [self.label2idx[label] for label in sequences]
def reverse_numerize_label_sequences(self, sequences, **kwargs):
if self.multi_label:
return self.multi_label_binarizer.inverse_transform(sequences)
else:
return [self.idx2label[label] for label in sequences]
if __name__ == "__main__":
from kashgari.corpus import SMP2018ECDTCorpus
x, y = SMP2018ECDTCorpus.load_data()
p = ClassificationProcessor()
p.analyze_corpus(x, y) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/kashgari/processors/classification_processor.py | classification_processor.py |
import pysoftNLP.kashgari as kashgari
import re
import time
import os
import pandas as pd
def load_model(model_name = 'ner'):
basis = 'D:\pysoftNLP_resources\entity_recognition'
model_path = os.path.join(basis, model_name)
load_start = time.time()
loaded_model = kashgari.utils.load_model(model_path)
load_end = time.time()
print("模型加载时间:",load_end-load_start)
return loaded_model
#
def cut_text(text, lenth):
textArr = re.findall('.{' + str(lenth) + '}', text)
textArr.append(text[(len(textArr) * lenth):])
return textArr
def extract_labels(text, ners):
ner_reg_list = []
if ners:
new_ners = []
for ner in ners:
new_ners += ner
for word, tag in zip([char for char in text], new_ners):
if tag != 'O':
ner_reg_list.append((word, tag))
# 输出模型的NER识别结果
labels = {}
if ner_reg_list:
for i, item in enumerate(ner_reg_list):
if item[1].startswith('B'):
label = ""
end = i + 1
while end <= len(ner_reg_list) - 1 and ner_reg_list[end][1].startswith('I'):
end += 1
ner_type = item[1].split('-')[1]
if ner_type not in labels.keys():
labels[ner_type] = []
label += ''.join([item[0] for item in ner_reg_list[i:end]])
labels[ner_type].append(label)
return labels
#文本分段
def text_pattern(text):
list = ['集团|公司','。|,|?|!|、|;|;|:']
text = '。。' + text
text = text[::-1]
temp = []
def dfs(text, temp):
if not text:
return temp
pattern_text = re.compile(list[0][::-1]).findall(text)
if pattern_text:
text = pattern_text[0] + text.split(pattern_text[0], 1)[1]
comma = re.compile(list[1]).findall(text)[0]
res_text = text.split(comma, 1)[0]
temp.append(res_text[::-1])
text = text.split(comma, 1)[1]
else:
# res.append(temp[:]) <class 'list'>: ['中广核新能源湖南分公司']
return temp
dfs(text,temp)
dfs(text,temp)
return temp
def final_test(path,model_name):
import pandas as pd
data = pd.read_table(path, header=None, encoding='utf-8', sep='\t')
data = data[:200]
data.columns = ['标题', '内容']
data['nr'] = data['标题'] + data['内容']
data['te'] = ''
for i in range(len(data)):
first_text = data['nr'][i].replace(" ", "")
print("原始文本:",first_text)
last_text = text_pattern(first_text)
if not last_text:
continue
last = []
for text_input in last_text:
texts = cut_text(text_input, 100)
pre_start = time.time()
ners = load_model(model_name).predict([[char for char in text] for text in texts])
pre_end = time.time()
print("切割文章的预测时间:",pre_end - pre_start)
print("切割的文章内容:",text_input)
print("切割文本的BIO结果:",ners)
labels = extract_labels(text_input, ners)
res = []
if labels.__contains__('ORG') and labels.__contains__('LOC'):
entity = labels['ORG'] + labels['LOC']
elif labels.__contains__('ORG'):
entity = labels['ORG']
elif labels.__contains__('LOC'):
entity = labels['LOC']
else:
entity = []
for j in entity:
punc = '~`!#$%^&*()_+-=|\';":/.,?><~·!@#¥%……&*()——+-=“:’;、。,?》《{}'
j = re.sub(r"[%s]+" % punc, "", j)
if re.fullmatch('集团|公司|子公司|本公司|家公司|分公司|上市公司', j):# j == '公司' or j =='集团' or j == '子公司' or j =='本公司' or j == '家公司' or j =='分公司' or j =='上市公司' or j =='母公司': #re.compile('子公司|本公司|家公司|分公司|上市公司').findall(str(j)) or
break
if re.fullmatch('丰田|华为|苹果|微软|爱立信|阿里|三星|中国联通|中国移动|腾讯|联想|台机电|小米|亚马逊|甲骨文|高通|软银|特斯拉|百度|中石化|中石油', j):#j =='华为' or j =='苹果' or j =='微软' or j=='爱立信' or j=='阿里' or j =='三星' or j =='中国联通' or j =='中国移动' or j =='腾讯' or j =='联想':
res.append(j)
elif re.compile('集团|公司|科技|煤炭|医药|工厂|国际|银行|钢铁|机械').findall(str(j[-2:])): #'集团|有限公司|公司|科技|医药|苹果|华为|谷歌|河南863|富士康'
res.append(j)
res = list(set(res))
print("各个类型的实体结果:", entity)
print("集团公司:", res)
if res:
last.append('|'.join(res))
last = list(set(last))
data['te'][i] = '|'.join(last)
print('最后的公司结果:',"|".join(last))
pd.DataFrame(data).to_csv('result/a.csv', index=False)
#单句预测
def single_sentence(sentence,model_name):
first_text = sentence.replace(" ", "")
print("原始文本:", first_text)
last_text = text_pattern(first_text)
if last_text:
last = []
for text_input in last_text:
texts = cut_text(text_input, 100)
pre_start = time.time()
ners = load_model(model_name).predict([[char for char in text] for text in texts])
pre_end = time.time()
print("切割文章的预测时间:", pre_end - pre_start)
print("切割的文章内容:", text_input)
print("切割文本的BIO结果:", ners)
labels = extract_labels(text_input, ners)
res = []
if labels.__contains__('ORG') and labels.__contains__('LOC'):
entity = labels['ORG'] + labels['LOC']
elif labels.__contains__('ORG'):
entity = labels['ORG']
elif labels.__contains__('LOC'):
entity = labels['LOC']
else:
entity = []
for j in entity:
punc = '~`!#$%^&*()_+-=|\';":/.,?><~·!@#¥%……&*()——+-=“:’;、。,?》《{}'
j = re.sub(r"[%s]+" % punc, "", j)
if re.fullmatch('集团|公司|子公司|本公司|家公司|分公司|上市公司',
j): # j == '公司' or j =='集团' or j == '子公司' or j =='本公司' or j == '家公司' or j =='分公司' or j =='上市公司' or j =='母公司': #re.compile('子公司|本公司|家公司|分公司|上市公司').findall(str(j)) or
break
if re.fullmatch('丰田|华为|苹果|微软|爱立信|阿里|三星|中国联通|中国移动|腾讯|联想|台机电|小米|亚马逊|甲骨文|高通|软银|特斯拉|百度|中石化|中石油',
j): # j =='华为' or j =='苹果' or j =='微软' or j=='爱立信' or j=='阿里' or j =='三星' or j =='中国联通' or j =='中国移动' or j =='腾讯' or j =='联想':
res.append(j)
elif re.compile('集团|公司|科技|煤炭|医药|工厂|国际|银行|钢铁|机械').findall(
str(j[-2:])): # '集团|有限公司|公司|科技|医药|苹果|华为|谷歌|河南863|富士康'
res.append(j)
res = list(set(res))
print("各个类型的实体结果:", entity)
print("集团公司:", res)
if res:
last.append('|'.join(res))
last = list(set(last))
result = "|".join(last)
print('最后的公司结果:', result)
return result
#列表式预测
def multi_sentence(sentencelist,out_path,model_name):
df_data_output = pd.DataFrame()
df_data_output['text'] = sentencelist
df_data_output['ner'] = ''
for i in range(len(sentencelist)):
first_text = sentencelist[i].replace(" ", "")
last_text = text_pattern(first_text)
if not last_text:
continue
last = []
for text_input in last_text:
texts = cut_text(text_input, 100)
ners = load_model(model_name).predict([[char for char in text] for text in texts])
labels = extract_labels(text_input, ners)
res = []
if labels.__contains__('ORG') and labels.__contains__('LOC'):
entity = labels['ORG'] + labels['LOC']
elif labels.__contains__('ORG'):
entity = labels['ORG']
elif labels.__contains__('LOC'):
entity = labels['LOC']
else:
entity = []
for j in entity:
punc = '~`!#$%^&*()_+-=|\';":/.,?><~·!@#¥%……&*()——+-=“:’;、。,?》《{}'
j = re.sub(r"[%s]+" % punc, "", j)
if re.fullmatch('集团|公司|子公司|本公司|家公司|分公司|上市公司',
j): # j == '公司' or j =='集团' or j == '子公司' or j =='本公司' or j == '家公司' or j =='分公司' or j =='上市公司' or j =='母公司': #re.compile('子公司|本公司|家公司|分公司|上市公司').findall(str(j)) or
break
if re.fullmatch('丰田|华为|苹果|微软|爱立信|阿里|三星|中国联通|中国移动|腾讯|联想|台机电|小米|亚马逊|甲骨文|高通|软银|特斯拉|百度|中石化|中石油',
j): # j =='华为' or j =='苹果' or j =='微软' or j=='爱立信' or j=='阿里' or j =='三星' or j =='中国联通' or j =='中国移动' or j =='腾讯' or j =='联想':
res.append(j)
elif re.compile('集团|公司|科技|煤炭|医药|工厂|国际|银行|钢铁|机械').findall(
str(j[-2:])): # '集团|有限公司|公司|科技|医药|苹果|华为|谷歌|河南863|富士康'
res.append(j)
res = list(set(res))
# print("各个类型的实体结果:", entity)
# print("集团公司:", res)
if res:
last.append('|'.join(res))
last = list(set(last))
df_data_output['ner'][i] = '|'.join(last)
out_path = os.path.join(out_path, r'result.csv')
# print('最后的公司结果:', "|".join(last))
pd.DataFrame(df_data_output).to_csv(out_path, index=False)
path = 'C:/Users/Administrator/Desktop/a.txt'
def prdict(path):
final_test(path)
# text_input = input('句子: ').stride()x.drop('',axis = 1)
'''import re
# text_input = 'BAT:B指百度,A指阿里巴巴,T指腾讯,是中国互联网du公司百度zhi公司(Baidu),阿里巴巴集团(Alibaba),腾讯公司(Tencent)三大互联网公司首字母的缩写。BAT已经成为中国最大的三家互联网公司'
# text_input ='“新冠疫情或让印度的大国梦碎。”印度《经济时报》5日以此为题报道称,疫情正在对印度经济造成严重影响。据印度卫生部门统计,截至当地时间6日早,印度过去一天新增新冠肺炎确诊病例90633例,再创历史新高,累计确诊已超411万例,累计死亡70626例。印度即将超过巴西成为仅次于美国的全球确诊病例第二高的国家。'
# text_input = '工程机械持续火热:国内挖掘机销量连5个月同比增速超50% 当前,工程机械行业持续火热。业内人士认为,国内复工复产和基建、房地产共同带来的需求,是拉动工程机械销量在二季度实现大反弹的主要因素。预计四季度工程机械行业仍将维持高景气,增长势头有望延续。 据最新数据,2020年8月纳入统计的25家挖掘机制造企业共销售各类挖掘机20939台,同比增长51.3%。国内挖掘机销量连续5个月同比增速保持50%以上。今年前8个月销售总量已占到2019年全年销量的89.3%。'
input = ['中广核新能源湖南分公司','该公司','中广核新能源公司']
last = []
for text_input in input:
texts = cut_text(text_input, 100)
pre_start= time.time()
ners = loaded_model.predict([[char for char in text] for text in texts])
pre_end = time.time()
print("预测时间:",pre_end - pre_start)
print("文章内容:",text_input)
print("BIO结果:",ners)
labels = extract_labels(text_input, ners)
res = []
if labels.__contains__('ORG') and labels.__contains__('LOC'):
entity = labels['ORG'] + labels['LOC']
elif labels.__contains__('ORG'):
entity = labels['ORG']
elif labels.__contains__('LOC'):
entity = labels['LOC']
else:
entity = []
for j in entity:
punc = '~`!#$%^&*()_+-=|\';":/.,?><~·!@#¥%……&*()——+-=“:’;、。,?》《{}'
j = re.sub(r"[%s]+" % punc, "", j)
if re.fullmatch('集团|公司|子公司|本公司|家公司|分公司|上市公司', j):# j == '公司' or j =='集团' or j == '子公司' or j =='本公司' or j == '家公司' or j =='分公司' or j =='上市公司' or j =='母公司': #re.compile('子公司|本公司|家公司|分公司|上市公司').findall(str(j)) or
break
if re.fullmatch('丰田|华为|苹果|微软|爱立信|阿里|三星|中国联通|中国移动|腾讯|联想|台机电|小米|亚马逊|甲骨文|高通|软银|特斯拉|百度|中石化|中石油', j):#j =='华为' or j =='苹果' or j =='微软' or j=='爱立信' or j=='阿里' or j =='三星' or j =='中国联通' or j =='中国移动' or j =='腾讯' or j =='联想':
res.append(j)
# break
elif re.compile('集团|公司|科技|煤炭|医药|工厂|国际|银行|钢铁|机械').findall(str(j[-2:])): #'集团|有限公司|公司|科技|医药|苹果|华为|谷歌|河南863|富士康'
res.append(j)
res = list(set(res))
# data['te'][i] = '|'.join(res)
# print("各个类型的实体结果:", labels['ORG'])
# print(labels,type(labels))
print("各个类型的实体结果:", entity)
print("集团公司:", res)
if res:
last.append(''.join(res))
print(last)
print('最后的公司结果:',"|".join(last))''' | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/pre.py | pre.py |
import os
import logging
import pandas as pd
from kashgari import macros as k
from typing import Tuple, List
from tensorflow.python.keras.utils import get_file
from kashgari import utils
CORPUS_PATH = os.path.join(k.DATA_PATH, 'corpus')
class DataReader(object):
@staticmethod
def read_conll_format_file(file_path: str,
text_index: int = 0,
label_index: int = 1) -> Tuple[List[List[str]], List[List[str]]]:
"""
Read conll format data_file
Args:
file_path: path of target file
text_index: index of text data, default 0
label_index: index of label data, default 1
Returns:
"""
x_data, y_data = [], []
with open(file_path, 'r', encoding='utf-8') as f:
lines = f.read().splitlines()
x, y = [], []
for line in lines:
rows = line.split(' ')
if len(rows) == 1:
x_data.append(x)
y_data.append(y)
x = []
y = []
else:
x.append(rows[text_index])
y.append(rows[label_index])
return x_data, y_data
class ChineseDailyNerCorpus(object):
"""
Chinese Daily New New Corpus
https://github.com/zjy-ucas/ChineseNER/
"""
__corpus_name__ = 'china-people-daily-ner-corpus'
__zip_file__name = 'http://s3.bmio.net/kashgari/china-people-daily-ner-corpus.tar.gz'
@classmethod
def load_data(cls,
subset_name: str = 'train',
shuffle: bool = True) -> Tuple[List[List[str]], List[List[str]]]:
"""
Load dataset as sequence labeling format, char level tokenized
features: ``[['海', '钓', '比', '赛', '地', '点', '在', '厦', '门', ...], ...]``
labels: ``[['O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', ...], ...]``
Sample::
train_x, train_y = ChineseDailyNerCorpus.load_data('train')
test_x, test_y = ChineseDailyNerCorpus.load_data('test')
Args:
subset_name: {train, test, valid}
shuffle: should shuffle or not, default True.
Returns:
dataset_features and dataset labels
"""
corpus_path = get_file(cls.__corpus_name__,
cls.__zip_file__name,
cache_dir=k.DATA_PATH,
untar=True)
corpus_path = './china-people-daily-ner-corpus'
print(corpus_path)
if subset_name == 'train':
file_path = os.path.join(corpus_path, 'example.train')
elif subset_name == 'test':
file_path = os.path.join(corpus_path, 'example.test')
else:
file_path = os.path.join(corpus_path, 'example.dev')
x_data, y_data = DataReader.read_conll_format_file(file_path)
if shuffle:
x_data, y_data = utils.unison_shuffled_copies(x_data, y_data)
logging.debug(f"loaded {len(x_data)} samples from {file_path}. Sample:\n"
f"x[0]: {x_data[0]}\n"
f"y[0]: {y_data[0]}")
return x_data, y_data
class CONLL2003ENCorpus(object):
__corpus_name__ = 'conll2003_en'
__zip_file__name = 'http://s3.bmio.net/kashgari/conll2003_en.tar.gz'
@classmethod
def load_data(cls,
subset_name: str = 'train',
task_name: str = 'ner',
shuffle: bool = True) -> Tuple[List[List[str]], List[List[str]]]:
"""
"""
corpus_path = get_file(cls.__corpus_name__,
cls.__zip_file__name,
cache_dir=k.DATA_PATH,
untar=True)
if subset_name not in {'train', 'test', 'valid'}:
raise ValueError()
file_path = os.path.join(corpus_path, f'{subset_name}.txt')
if task_name not in {'pos', 'chunking', 'ner'}:
raise ValueError()
data_index = ['pos', 'chunking', 'ner'].index(task_name) + 1
x_data, y_data = DataReader.read_conll_format_file(file_path, label_index=data_index)
if shuffle:
x_data, y_data = utils.unison_shuffled_copies(x_data, y_data)
logging.debug(f"loaded {len(x_data)} samples from {file_path}. Sample:\n"
f"x[0]: {x_data[0]}\n"
f"y[0]: {y_data[0]}")
return x_data, y_data
class SMP2018ECDTCorpus(object):
"""
https://worksheets.codalab.org/worksheets/0x27203f932f8341b79841d50ce0fd684f/
This dataset is released by the Evaluation of Chinese Human-Computer Dialogue Technology (SMP2018-ECDT)
task 1 and is provided by the iFLYTEK Corporation, which is a Chinese human-computer dialogue dataset.
sample::
label query
0 weather 今天东莞天气如何
1 map 从观音桥到重庆市图书馆怎么走
2 cookbook 鸭蛋怎么腌?
3 health 怎么治疗牛皮癣
4 chat 唠什么
"""
__corpus_name__ = 'SMP2018ECDTCorpus'
__zip_file__name = 'http://s3.bmio.net/kashgari/SMP2018ECDTCorpus.tar.gz'
@classmethod
def load_data(cls,
subset_name: str = 'train',
shuffle: bool = True,
cutter: str = 'char') -> Tuple[List[List[str]], List[str]]:
"""
Load dataset as sequence classification format, char level tokenized
features: ``[['听', '新', '闻', '。'], ['电', '视', '台', '在', '播', '什', '么'], ...]``
labels: ``['news', 'epg', ...]``
Samples::
train_x, train_y = SMP2018ECDTCorpus.load_data('train')
test_x, test_y = SMP2018ECDTCorpus.load_data('test')
Args:
subset_name: {train, test, valid}
shuffle: should shuffle or not, default True.
cutter: sentence cutter, {char, jieba}
Returns:
dataset_features and dataset labels
"""
corpus_path = get_file(cls.__corpus_name__,
cls.__zip_file__name,
cache_dir=k.DATA_PATH,
untar=True)
if cutter not in ['char', 'jieba', 'none']:
raise ValueError('cutter error, please use one onf the {char, jieba}')
df_path = os.path.join(corpus_path, f'{subset_name}.csv')
df = pd.read_csv(df_path)
if cutter == 'jieba':
try:
import jieba
except ModuleNotFoundError:
raise ModuleNotFoundError(
"please install jieba, `$ pip install jieba`")
x_data = [list(jieba.cut(item)) for item in df['query'].to_list()]
elif 'char':
x_data = [list(item) for item in df['query'].to_list()]
y_data = df['label'].to_list()
if shuffle:
x_data, y_data = utils.unison_shuffled_copies(x_data, y_data)
logging.debug(f"loaded {len(x_data)} samples from {df_path}. Sample:\n"
f"x[0]: {x_data[0]}\n"
f"y[0]: {y_data[0]}")
return x_data, y_data
if __name__ == "__main__":
a, b = CONLL2003ENCorpus.load_data()
print(a[:2])
print(b[:2])
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/corpus.py | corpus.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: callbacks.py
# time: 2019-05-22 15:00
from sklearn import metrics
from kashgari import macros
from tensorflow.python import keras
from kashgari.tasks.base_model import BaseModel
from seqeval import metrics as seq_metrics
class EvalCallBack(keras.callbacks.Callback):
def __init__(self, kash_model: BaseModel, valid_x, valid_y,
step=5, batch_size=256, average='weighted'):
"""
Evaluate callback, calculate precision, recall and f1
Args:
kash_model: the kashgari model to evaluate
valid_x: feature data
valid_y: label data
step: step, default 5
batch_size: batch size, default 256
"""
super(EvalCallBack, self).__init__()
self.kash_model = kash_model
self.valid_x = valid_x
self.valid_y = valid_y
self.step = step
self.batch_size = batch_size
self.average = average
self.logs = []
def on_epoch_end(self, epoch, logs=None):
if (epoch + 1) % self.step == 0:
y_pred = self.kash_model.predict(self.valid_x, batch_size=self.batch_size)
if self.kash_model.task == macros.TaskType.LABELING:
y_true = [seq[:len(y_pred[index])] for index, seq in enumerate(self.valid_y)]
precision = seq_metrics.precision_score(y_true, y_pred)
recall = seq_metrics.recall_score(y_true, y_pred)
f1 = seq_metrics.f1_score(y_true, y_pred)
else:
y_true = self.valid_y
precision = metrics.precision_score(y_true, y_pred, average=self.average)
recall = metrics.recall_score(y_true, y_pred, average=self.average)
f1 = metrics.f1_score(y_true, y_pred, average=self.average)
self.logs.append({
'precision': precision,
'recall': recall,
'f1': f1
})
print(f"\nepoch: {epoch} precision: {precision:.6f}, recall: {recall:.6f}, f1: {f1:.6f}")
if __name__ == "__main__":
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/callbacks.py | callbacks.py |
import json
import os
import pathlib
import pydoc
import random
import time
from typing import List, Optional, Dict, Union
import tensorflow as tf
from tensorflow.python import keras, saved_model
from kashgari import custom_objects
from kashgari.embeddings.base_embedding import Embedding
from kashgari.layers.crf import CRF
from kashgari.processors.base_processor import BaseProcessor
from kashgari.tasks.base_model import BaseModel
from kashgari.tasks.classification.base_model import BaseClassificationModel
from kashgari.tasks.labeling.base_model import BaseLabelingModel
def unison_shuffled_copies(a, b):
assert len(a) == len(b)
c = list(zip(a, b))
random.shuffle(c)
a, b = zip(*c)
return list(a), list(b)
def get_list_subset(target: List, index_list: List[int]) -> List:
return [target[i] for i in index_list if i < len(target)]
def custom_object_scope():
return tf.keras.utils.custom_object_scope(custom_objects)
def load_model(model_path: str, load_weights: bool = True) -> Union[BaseClassificationModel, BaseLabelingModel]:
"""
Load saved model from saved model from `model.save` function
Args:
model_path: model folder path
load_weights: only load model structure and vocabulary when set to False, default True.
Returns:
"""
with open(os.path.join(model_path, 'model_info.json'), 'r') as f:
model_info = json.load(f)
model_class = pydoc.locate(f"{model_info['module']}.{model_info['class_name']}")
model_json_str = json.dumps(model_info['tf_model'])
model = model_class()
model.tf_model = tf.keras.models.model_from_json(model_json_str, custom_objects)
if load_weights:
model.tf_model.load_weights(os.path.join(model_path, 'model_weights.h5'))
embed_info = model_info['embedding']
embed_class = pydoc.locate(f"{embed_info['module']}.{embed_info['class_name']}")
embedding: Embedding = embed_class._load_saved_instance(embed_info,
model_path,
model.tf_model)
model.embedding = embedding
if type(model.tf_model.layers[-1]) == CRF:
model.layer_crf = model.tf_model.layers[-1]
return model
def load_processor(model_path: str) -> BaseProcessor:
"""
Load processor from model
When we using tf-serving, we need to use model's processor to pre-process data
Args:
model_path:
Returns:
"""
with open(os.path.join(model_path, 'model_info.json'), 'r') as f:
model_info = json.load(f)
processor_info = model_info['embedding']['processor']
processor_class = pydoc.locate(f"{processor_info['module']}.{processor_info['class_name']}")
processor: BaseProcessor = processor_class(**processor_info['config'])
return processor
def convert_to_saved_model(model: BaseModel,
model_path: str,
version: str = None,
inputs: Optional[Dict] = None,
outputs: Optional[Dict] = None):
"""
Export model for tensorflow serving
Args:
model: Target model
model_path: The path to which the SavedModel will be stored.
version: The model version code, default timestamp
inputs: dict mapping string input names to tensors. These are added
to the SignatureDef as the inputs.
outputs: dict mapping string output names to tensors. These are added
to the SignatureDef as the outputs.
"""
pathlib.Path(model_path).mkdir(exist_ok=True, parents=True)
if version is None:
version = round(time.time())
export_path = os.path.join(model_path, str(version))
if inputs is None:
inputs = {i.name: i for i in model.tf_model.inputs}
if outputs is None:
outputs = {o.name: o for o in model.tf_model.outputs}
sess = keras.backend.get_session()
saved_model.simple_save(session=sess,
export_dir=export_path,
inputs=inputs,
outputs=outputs)
with open(os.path.join(export_path, 'model_info.json'), 'w') as f:
f.write(json.dumps(model.info(), indent=2, ensure_ascii=True))
f.close()
if __name__ == "__main__":
path = '/Users/brikerman/Desktop/python/Kashgari/tests/classification/saved_models/' \
'kashgari.tasks.classification.models/BiLSTM_Model'
p = load_processor(path)
print(p.process_x_dataset([list('语言模型')]))
print(p.label2idx)
print(p.token2idx) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/utils.py | utils.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: bert_tokenizer.py
# time: 11:33 上午
# flake8: noqa: E127
import codecs
import os
import unicodedata
from kashgari.tokenizer.base_tokenizer import Tokenizer
TOKEN_PAD = '' # Token for padding
TOKEN_UNK = '[UNK]' # Token for unknown words
TOKEN_CLS = '[CLS]' # Token for classification
TOKEN_SEP = '[SEP]' # Token for separation
TOKEN_MASK = '[MASK]' # Token for masking
class BertTokenizer(Tokenizer):
"""
Bert Like Tokenizer, ref: https://github.com/CyberZHG/keras-bert/blob/master/keras_bert/tokenizer.py
"""
def __init__(self,
token_dict=None,
token_cls=TOKEN_CLS,
token_sep=TOKEN_SEP,
token_unk=TOKEN_UNK,
pad_index=0,
cased=False):
"""Initialize tokenizer.
:param token_dict: A dict maps tokens to indices.
:param token_cls: The token represents classification.
:param token_sep: The token represents separator.
:param token_unk: The token represents unknown token.
:param pad_index: The index to pad.
:param cased: Whether to keep the case.
"""
self._token_dict = token_dict
if self._token_dict:
self._token_dict_inv = {v: k for k, v in token_dict.items()}
else:
self._token_dict_inv = {}
self._token_cls = token_cls
self._token_sep = token_sep
self._token_unk = token_unk
self._pad_index = pad_index
self._cased = cased
@classmethod
def load_from_model(cls, model_path: str):
dict_path = os.path.join(model_path, 'vocab.txt')
token2idx = {}
with codecs.open(dict_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token2idx[token] = len(token2idx)
return BertTokenizer(token_dict=token2idx)
@classmethod
def load_from_vacab_file(cls, vacab_path: str):
token2idx = {}
with codecs.open(vacab_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token2idx[token] = len(token2idx)
return BertTokenizer(token_dict=token2idx)
def tokenize(self, first):
"""Split text to tokens.
:param first: First text.
:param second: Second text.
:return: A list of strings.
"""
tokens = self._tokenize(first)
return tokens
def _tokenize(self, text):
if not self._cased:
text = unicodedata.normalize('NFD', text)
text = ''.join([ch for ch in text if unicodedata.category(ch) != 'Mn'])
text = text.lower()
spaced = ''
for ch in text:
if self._is_punctuation(ch) or self._is_cjk_character(ch):
spaced += ' ' + ch + ' '
elif self._is_space(ch):
spaced += ' '
elif ord(ch) == 0 or ord(ch) == 0xfffd or self._is_control(ch):
continue
else:
spaced += ch
if self._token_dict:
tokens = []
for word in spaced.strip().split():
tokens += self._word_piece_tokenize(word)
return tokens
else:
return spaced.strip().split()
def _word_piece_tokenize(self, word):
if word in self._token_dict:
return [word]
tokens = []
start, stop = 0, 0
while start < len(word):
stop = len(word)
while stop > start:
sub = word[start:stop]
if start > 0:
sub = '##' + sub
if sub in self._token_dict:
break
stop -= 1
if start == stop:
stop += 1
tokens.append(sub)
start = stop
return tokens
@staticmethod
def _is_punctuation(ch): # noqa: E127
code = ord(ch)
return 33 <= code <= 47 or \
58 <= code <= 64 or \
91 <= code <= 96 or \
123 <= code <= 126 or \
unicodedata.category(ch).startswith('P')
@staticmethod
def _is_cjk_character(ch):
code = ord(ch)
return 0x4E00 <= code <= 0x9FFF or \
0x3400 <= code <= 0x4DBF or \
0x20000 <= code <= 0x2A6DF or \
0x2A700 <= code <= 0x2B73F or \
0x2B740 <= code <= 0x2B81F or \
0x2B820 <= code <= 0x2CEAF or \
0xF900 <= code <= 0xFAFF or \
0x2F800 <= code <= 0x2FA1F
@staticmethod
def _is_space(ch):
return ch == ' ' or ch == '\n' or ch == '\r' or ch == '\t' or unicodedata.category(ch) == 'Zs'
@staticmethod
def _is_control(ch):
return unicodedata.category(ch) in ('Cc', 'Cf') | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/tokenizer/bert_tokenizer.py | bert_tokenizer.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_model.py
# time: 2019-05-22 11:21
import os
import json
import logging
import warnings
import pathlib
from typing import Dict, Any, List, Optional, Union, Tuple
import numpy as np
import tensorflow as tf
from tensorflow import keras
import kashgari
from kashgari import utils
from kashgari.embeddings import BareEmbedding
from kashgari.embeddings.base_embedding import Embedding
L = keras.layers
class BaseModel(object):
"""Base Sequence Labeling Model"""
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
raise NotImplementedError
def info(self):
model_json_str = self.tf_model.to_json()
return {
'config': {
'hyper_parameters': self.hyper_parameters,
},
'tf_model': json.loads(model_json_str),
'embedding': self.embedding.info(),
'class_name': self.__class__.__name__,
'module': self.__class__.__module__,
'tf_version': tf.__version__,
'kashgari_version': kashgari.__version__
}
@property
def task(self):
return self.embedding.task
@property
def token2idx(self) -> Dict[str, int]:
return self.embedding.token2idx
@property
def label2idx(self) -> Dict[str, int]:
return self.embedding.label2idx
@property
def pre_processor(self):
warnings.warn("The 'pre_processor' property is deprecated, "
"use 'processor' instead", DeprecationWarning, 2)
"""Deprecated. Use `self.processor` instead."""
return self.embedding.processor
@property
def processor(self):
return self.embedding.processor
def __init__(self,
embedding: Optional[Embedding] = None,
hyper_parameters: Optional[Dict[str, Dict[str, Any]]] = None):
"""
Args:
embedding: model embedding
hyper_parameters: a dict of hyper_parameters.
Examples:
You could change customize hyper_parameters like this::
# get default hyper_parameters
hyper_parameters = BLSTMModel.get_default_hyper_parameters()
# change lstm hidden unit to 12
hyper_parameters['layer_blstm']['units'] = 12
# init new model with customized hyper_parameters
labeling_model = BLSTMModel(hyper_parameters=hyper_parameters)
labeling_model.fit(x, y)
"""
if embedding is None:
self.embedding = BareEmbedding(task=self.__task__)
else:
self.embedding = embedding
self.tf_model: keras.Model = None
self.hyper_parameters = self.get_default_hyper_parameters()
self.model_info = {}
if hyper_parameters:
self.hyper_parameters.update(hyper_parameters)
def build_model(self,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None):
"""
Build model with corpus
Args:
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
Returns:
"""
if x_validate is not None and not isinstance(x_validate, tuple):
self.embedding.analyze_corpus(x_train + x_validate, y_train + y_validate)
else:
self.embedding.analyze_corpus(x_train, y_train)
if self.tf_model is None:
self.build_model_arc()
self.compile_model()
def build_multi_gpu_model(self,
gpus: int,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
cpu_merge: bool = True,
cpu_relocation: bool = False,
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None):
"""
Build multi-GPU model with corpus
Args:
gpus: Integer >= 2, number of on GPUs on which to create model replicas.
cpu_merge: A boolean value to identify whether to force merging model weights
under the scope of the CPU or not.
cpu_relocation: A boolean value to identify whether to create the model's weights
under the scope of the CPU. If the model is not defined under any preceding device
scope, you can still rescue it by activating this option.
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
Returns:
"""
if x_validate is not None and not isinstance(x_validate, tuple):
self.embedding.analyze_corpus(x_train + x_validate, y_train + y_validate)
else:
self.embedding.analyze_corpus(x_train, y_train)
if self.tf_model is None:
with utils.custom_object_scope():
self.build_model_arc()
self.tf_model = tf.keras.utils.multi_gpu_model(self.tf_model,
gpus,
cpu_merge=cpu_merge,
cpu_relocation=cpu_relocation)
self.compile_model()
def build_tpu_model(self, strategy: tf.contrib.distribute.TPUStrategy,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None):
"""
Build TPU model with corpus
Args:
strategy: `TPUDistributionStrategy`. The strategy to use for replicating model
across multiple TPU cores.
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
Returns:
"""
if x_validate is not None and not isinstance(x_validate, tuple):
self.embedding.analyze_corpus(x_train + x_validate, y_train + y_validate)
else:
self.embedding.analyze_corpus(x_train, y_train)
if self.tf_model is None:
with utils.custom_object_scope():
self.build_model_arc()
self.tf_model = tf.contrib.tpu.keras_to_tpu_model(self.tf_model, strategy=strategy)
self.compile_model(optimizer=tf.train.AdamOptimizer())
def get_data_generator(self,
x_data,
y_data,
batch_size: int = 64,
shuffle: bool = True):
"""
data generator for fit_generator
Args:
x_data: Array of feature data (if the model has a single input),
or tuple of feature data array (if the model has multiple inputs)
y_data: Array of label data
batch_size: Number of samples per gradient update, default to 64.
shuffle:
Returns:
data generator
"""
index_list = np.arange(len(x_data))
page_count = len(x_data) // batch_size + 1
while True:
if shuffle:
np.random.shuffle(index_list)
for page in range(page_count):
start_index = page * batch_size
end_index = start_index + batch_size
target_index = index_list[start_index: end_index]
if len(target_index) == 0:
target_index = index_list[0: batch_size]
x_tensor = self.embedding.process_x_dataset(x_data,
target_index)
y_tensor = self.embedding.process_y_dataset(y_data,
target_index)
yield (x_tensor, y_tensor)
def fit(self,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None,
batch_size: int = 64,
epochs: int = 5,
callbacks: List[keras.callbacks.Callback] = None,
fit_kwargs: Dict = None,
shuffle: bool = True):
"""
Trains the model for a given number of epochs with fit_generator (iterations on a dataset).
Args:
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
batch_size: Number of samples per gradient update, default to 64.
epochs: Integer. Number of epochs to train the model. default 5.
callbacks:
fit_kwargs: fit_kwargs: additional arguments passed to ``fit_generator()`` function from
``tensorflow.keras.Model``
- https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#fit_generator
shuffle:
Returns:
"""
self.build_model(x_train, y_train, x_validate, y_validate)
train_generator = self.get_data_generator(x_train,
y_train,
batch_size,
shuffle)
if fit_kwargs is None:
fit_kwargs = {}
validation_generator = None
validation_steps = None
if x_validate:
validation_generator = self.get_data_generator(x_validate,
y_validate,
batch_size,
shuffle)
if isinstance(x_validate, tuple):
validation_steps = len(x_validate[0]) // batch_size + 1
else:
validation_steps = len(x_validate) // batch_size + 1
if isinstance(x_train, tuple):
steps_per_epoch = len(x_train[0]) // batch_size + 1
else:
steps_per_epoch = len(x_train) // batch_size + 1
with utils.custom_object_scope():
return self.tf_model.fit_generator(train_generator,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_steps,
callbacks=callbacks,
**fit_kwargs)
def fit_without_generator(self,
x_train: Union[Tuple[List[List[str]], ...], List[List[str]]],
y_train: Union[List[List[str]], List[str]],
x_validate: Union[Tuple[List[List[str]], ...], List[List[str]]] = None,
y_validate: Union[List[List[str]], List[str]] = None,
batch_size: int = 64,
epochs: int = 5,
callbacks: List[keras.callbacks.Callback] = None,
fit_kwargs: Dict = None):
"""
Trains the model for a given number of epochs (iterations on a dataset).
Args:
x_train: Array of train feature data (if the model has a single input),
or tuple of train feature data array (if the model has multiple inputs)
y_train: Array of train label data
x_validate: Array of validation feature data (if the model has a single input),
or tuple of validation feature data array (if the model has multiple inputs)
y_validate: Array of validation label data
batch_size: Number of samples per gradient update, default to 64.
epochs: Integer. Number of epochs to train the model. default 5.
callbacks:
fit_kwargs: fit_kwargs: additional arguments passed to ``fit_generator()`` function from
``tensorflow.keras.Model``
- https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#fit_generator
Returns:
"""
self.build_model(x_train, y_train, x_validate, y_validate)
tensor_x = self.embedding.process_x_dataset(x_train)
tensor_y = self.embedding.process_y_dataset(y_train)
validation_data = None
if x_validate is not None:
tensor_valid_x = self.embedding.process_x_dataset(x_validate)
tensor_valid_y = self.embedding.process_y_dataset(y_validate)
validation_data = (tensor_valid_x, tensor_valid_y)
if fit_kwargs is None:
fit_kwargs = {}
if callbacks and 'callbacks' not in fit_kwargs:
fit_kwargs['callbacks'] = callbacks
with utils.custom_object_scope():
return self.tf_model.fit(tensor_x, tensor_y,
validation_data=validation_data,
epochs=epochs,
batch_size=batch_size,
**fit_kwargs)
def compile_model(self, **kwargs):
"""Configures the model for training.
Using ``compile()`` function of ``tf.keras.Model`` -
https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#compile
Args:
**kwargs: arguments passed to ``compile()`` function of ``tf.keras.Model``
Defaults:
- loss: ``categorical_crossentropy``
- optimizer: ``adam``
- metrics: ``['accuracy']``
"""
if kwargs.get('loss') is None:
kwargs['loss'] = 'categorical_crossentropy'
if kwargs.get('optimizer') is None:
kwargs['optimizer'] = 'adam'
if kwargs.get('metrics') is None:
kwargs['metrics'] = ['accuracy']
self.tf_model.compile(**kwargs)
if not kashgari.config.disable_auto_summary:
self.tf_model.summary()
def predict(self,
x_data,
batch_size=32,
debug_info=False,
predict_kwargs: Dict = None):
"""
Generates output predictions for the input samples.
Computation is done in batches.
Args:
x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs).
batch_size: Integer. If unspecified, it will default to 32.
debug_info: Bool, Should print out the logging info.
predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model``
Returns:
array(s) of predictions.
"""
if predict_kwargs is None:
predict_kwargs = {}
with utils.custom_object_scope():
if isinstance(x_data, tuple):
lengths = [len(sen) for sen in x_data[0]]
else:
lengths = [len(sen) for sen in x_data]
tensor = self.embedding.process_x_dataset(x_data)
pred = self.tf_model.predict(tensor, batch_size=batch_size, **predict_kwargs)
if self.task == 'scoring':
t_pred = pred
else:
t_pred = pred.argmax(-1)
res = self.embedding.reverse_numerize_label_sequences(t_pred,
lengths)
if debug_info:
print('input: {}'.format(tensor))
print('output: {}'.format(pred))
print('output argmax: {}'.format(t_pred))
return res
def evaluate(self,
x_data,
y_data,
batch_size=None,
digits=4,
debug_info=False) -> Tuple[float, float, Dict]:
"""
Evaluate model
Args:
x_data:
y_data:
batch_size:
digits:
debug_info:
Returns:
"""
raise NotImplementedError
def build_model_arc(self):
raise NotImplementedError
def save(self, model_path: str):
"""
Save model
Args:
model_path:
Returns:
"""
pathlib.Path(model_path).mkdir(exist_ok=True, parents=True)
with open(os.path.join(model_path, 'model_info.json'), 'w') as f:
f.write(json.dumps(self.info(), indent=2, ensure_ascii=True))
f.close()
self.tf_model.save_weights(os.path.join(model_path, 'model_weights.h5'))
logging.info('model saved to {}'.format(os.path.abspath(model_path)))
if __name__ == "__main__":
from kashgari.tasks.labeling import CNN_LSTM_Model
from kashgari.corpus import ChineseDailyNerCorpus
train_x, train_y = ChineseDailyNerCorpus.load_data('valid')
model = CNN_LSTM_Model()
model.build_model(train_x[:100], train_y[:100])
r = model.predict_entities(train_x[:5])
model.save('./res')
import pprint
pprint.pprint(r)
model.evaluate(train_x[:20], train_y[:20])
print("Hello world")
print(model.predict(train_x[:20])) | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/tasks/base_model.py | base_model.py |
# author: BrikerMan
# contact: eliyar917@gmail.com
# blog: https://eliyar.biz
# file: base_model.py
# time: 2019-05-20 13:07
from typing import Dict, Any, Tuple
import random
import logging
from seqeval.metrics import classification_report
from seqeval.metrics.sequence_labeling import get_entities
from kashgari.tasks.base_model import BaseModel
class BaseLabelingModel(BaseModel):
"""Base Sequence Labeling Model"""
__task__ = 'labeling'
@classmethod
def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
raise NotImplementedError
def predict_entities(self,
x_data,
batch_size=None,
join_chunk=' ',
debug_info=False,
predict_kwargs: Dict = None):
"""Gets entities from sequence.
Args:
x_data: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs).
batch_size: Integer. If unspecified, it will default to 32.
join_chunk: str or False,
debug_info: Bool, Should print out the logging info.
predict_kwargs: arguments passed to ``predict()`` function of ``tf.keras.Model``
Returns:
list: list of entity.
"""
if isinstance(x_data, tuple):
text_seq = x_data[0]
else:
text_seq = x_data
res = self.predict(x_data, batch_size, debug_info, predict_kwargs)
new_res = [get_entities(seq) for seq in res]
final_res = []
for index, seq in enumerate(new_res):
seq_data = []
for entity in seq:
if join_chunk is False:
value = text_seq[index][entity[1]:entity[2] + 1],
else:
value = join_chunk.join(text_seq[index][entity[1]:entity[2] + 1])
seq_data.append({
"entity": entity[0],
"start": entity[1],
"end": entity[2],
"value": value,
})
final_res.append({
'text': join_chunk.join(text_seq[index]),
'text_raw': text_seq[index],
'labels': seq_data
})
return final_res
def evaluate(self,
x_data,
y_data,
batch_size=None,
digits=4,
debug_info=False) -> Tuple[float, float, Dict]:
"""
Build a text report showing the main classification metrics.
Args:
x_data:
y_data:
batch_size:
digits:
debug_info:
Returns:
"""
y_pred = self.predict(x_data, batch_size=batch_size)
y_true = [seq[:len(y_pred[index])] for index, seq in enumerate(y_data)]
new_y_pred = []
for x in y_pred:
new_y_pred.append([str(i) for i in x])
new_y_true = []
for x in y_true:
new_y_true.append([str(i) for i in x])
if debug_info:
for index in random.sample(list(range(len(x_data))), 5):
logging.debug('------ sample {} ------'.format(index))
logging.debug('x : {}'.format(x_data[index]))
logging.debug('y_true : {}'.format(y_true[index]))
logging.debug('y_pred : {}'.format(y_pred[index]))
report = classification_report(y_true, y_pred, digits=digits)
print(classification_report(y_true, y_pred, digits=digits))
return report
def build_model_arc(self):
raise NotImplementedError
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
from kashgari.tasks.labeling import BiLSTM_Model
from kashgari.corpus import ChineseDailyNerCorpus
from kashgari.utils import load_model
train_x, train_y = ChineseDailyNerCorpus.load_data('train', shuffle=False)
valid_x, valid_y = ChineseDailyNerCorpus.load_data('valid')
train_x, train_y = train_x[:5120], train_y[:5120]
model = load_model('/Users/brikerman/Desktop/blstm_model')
# model.build_model(train_x[:100], train_y[:100])
# model.fit(train_x[:1000], train_y[:1000], epochs=10)
# model.evaluate(train_x[:20], train_y[:20])
print("Hello world") | 125softNLP | /125softNLP-0.0.1-py3-none-any.whl/pysoftNLP/ner/kashgari/tasks/labeling/base_model.py | base_model.py |