Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Faroese
Size:
1K<n<10K
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# Modified by Vésteinn Snæbjarnarson 2021 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
LABELS = [ | |
] | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@misc{sosialurin-ner, | |
title = {}, | |
author = {}, | |
url = {}, | |
year = {2022} } | |
""" | |
_DESCRIPTION = """\ | |
The corpus that has been created consists of ca. 100.000 words of text from the [Faroese] newspaper Sosialurin. Each word is tagged with named entity information | |
""" | |
_URL = "https://huggingface.co/datasets/vesteinn/sosialurin-faroese-ner/raw/main/" | |
_TRAINING_FILE = "sosialurin.faroese.ner.train.txt" | |
class SosialurinNERConfig(datasets.BuilderConfig): | |
"""BuilderConfig for sosialurin-faroese-ner""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for sosialurin-faroese-ner. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(SosialurinNERConfig, self).__init__(**kwargs) | |
class SosialurinNER(datasets.GeneratorBasedBuilder): | |
"""sosialurin-faroese-ner dataset.""" | |
BUILDER_CONFIGS = [ | |
SosialurinNERConfig(name="sosialurin-faroese-ner", version=datasets.Version("0.1.0"), description="sosialurin-faroese-ner dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=LABELS | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
# tokens are tab separated | |
splits = line.split("\t") | |
tokens.append(splits[0]) | |
try: | |
ner_tags.append(splits[1].rstrip()) | |
except: | |
print(splits) | |
raise | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |