metadata
title: Llama2-7B Fine-tuning
description: Fine-tune Llama2-7B with a code instructions dataset
version: EN
Try out this model on VESSL Hub.
This example fine-tunes Llama 2 on a code instruction dataset. The code instruction dataset is consisted of 1.6K samples and follows the format of Stanford's Alpaca dataset. To optimize the training process into a single GPU with moderate memory, the model uses 8 bit quantization and LoRA (Low-Rank Adaptation).
In the code we are referencing under /code/
, we added our Python SDK for logging key metrics like loss and learning rate. You can check these values in real-time under Plots. The run completes by uploading the model checkpoint to VESSL AI model registry, as defined under export
.
Running the model
You can run the model with our quick command.
vessl run create -f llama2_fine-tuning.yaml
Here's a rundown of the llama2_fine-tuning.yaml
file.
name: llama2-finetuning
description: finetune llama2 with code instruction alpaca dataset
resources:
cluster: vessl-gcp-oregon
preset: v1.l4-1.mem-27
image: quay.io/vessl-ai/hub:torch2.1.0-cuda12.2-202312070053
import:
/model/: vessl-model://vessl-ai/llama2/1
/code/:
git:
url: https://github.com/vessl-ai/hub-model
ref: main
/dataset/: vessl-dataset://vessl-ai/code_instructions_small_alpaca
export:
/trained_model/: vessl-model://vessl-ai/llama2-finetuned
/artifacts/: vessl-artifact://
run:
- command: |-
pip install -r requirements.txt
mkdir /model_
cd /model
mv llama_2_7b_hf.zip /model_
cd /model_
unzip llama_2_7b_hf.zip
cd /code/llama2-finetuning
python finetuning.py
workdir: /code/llama2-finetuning