seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
with sess.graph.device("/cpu:0"):
v0 = tf.Variable(111, name="v0")
| tensorflow.Variable | 2,000 |
import tensorflow as tf
out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)]
with tf.variable_scope("root"):
_, losses = SampleGRUSeq2Seq(inp, out, weights)
| tensorflow.variable_scope | 2,001 |
import tensorflow as tf
'worker': self.worker_hosts})
self.server = None
if not self.server:
self.server = tf.train.Server(self.cluster, job_name=self.job_name,
task_index=self.task_index,
config=create_config_proto(),
protocol=FLAGS.server_protocol)
worker_prefix = '/job:worker/task:%s' % self.task_index
self.param_server_device = tf.train.replica_device_setter(
worker_device=worker_prefix + '/cpu:0', cluster=self.cluster)
# This device on which the queues for managing synchronization between
# servers should be stored.
num_ps = len(self.ps_hosts)
self.sync_queue_devices = ['/job:ps/task:%s/cpu:0' % i
for i in range(num_ps)]
else:
self.task_index = 0
| tensorflow.train.replica_device_setter | 2,002 |
from tensorflow.python.ops import array_ops
e = (-1,) if self._event_ndims_is_0 else ()
x = array_ops.squeeze(x, squeeze_dims=b + e)
_, batch_shape, event_shape = self.get_shape(x)
else:
s = (x.get_shape().as_list() if x.get_shape().is_fully_defined()
else array_ops.shape(x))
batch_shape = array_ops.slice(s, (1,), (self.batch_ndims,))
# Since sample_dims=1 and is left-most, we add 1 to the number of
# batch_ndims to get the event start dim.
event_start = array_ops.where(
self._batch_ndims_is_0, 2, 1 + self.batch_ndims)
event_shape = array_ops.slice(s, (event_start,), (self.event_ndims,))
| tensorflow.python.ops.array_ops.slice | 2,003 |
import tensorflow as tf
dataset = tf.data.TFRecordDataset(["./data/train.tfrecord"])
dataset = dataset.map(decode)
dataset = dataset.map(normalize)
dataset = dataset.repeat()
dataset = dataset.batch(self.BATCH_SIZE)
iterator = dataset.make_one_shot_iterator()
return iterator.get_next()
def compute_gradient(self):
with tf.name_scope('data_loading'):
x, y = self._build_data_pipeline()
with tf.name_scope('gradient_computation'):
grads = self._build_training_model(x, y)
return grads
model_owner = ModelOwner('model-owner')
data_owners = [
DataOwner('data-owner-0', model_owner.build_training_model),
DataOwner('data-owner-1', model_owner.build_training_model),
DataOwner('data-owner-2', model_owner.build_training_model),
]
model_grads = zip(*(
| tensorflow.name_scope | 2,004 |
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
# self.glimpses = tf.concat([glimpse1,glimpse2,glimpse3],axis=-1)
# Block 1
conv1a = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[8, 8], strides=4, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(self.inputs)
conv1b = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv1a)
conv1c = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv1b)
pool1 = MaxPool2D(pool_size=[2,2])(conv1c)
# Block 2
conv2a = Conv2D(padding="same", filters=RNN_SIZE//4, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(pool1)
conv2b = Conv2D(padding="same", filters=RNN_SIZE//4, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv2a)
conv2c = Conv2D(padding="same", filters=RNN_SIZE//4, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv2b)
pool2 = MaxPool2D(pool_size=[2,2])(conv2c)
# Block 3
conv3a = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(pool2)
conv3b = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv3a)
conv3c = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv3b)
pool3 = MaxPool2D(pool_size=[2,2])(conv3c)
# final convolutional layer
| tensorflow.keras.layers.Conv2D | 2,005 |
from tensorflow.python.framework import tensor_util
normal = dists.Normal([mu], [sigma],
validate_args=True)
self.assertTrue(tensor_util.constant_value(normal.is_scalar_event))
self.assertFalse(tensor_util.constant_value(normal.is_scalar_batch))
mvn = dists.MultivariateNormalDiag([mu], [sigma],
validate_args=True)
| tensorflow.python.framework.tensor_util.constant_value | 2,006 |
import tensorflow as tf
inputdata = (inputdata - mean) / tf.sqrt(var + esp)
# 每个通道的gamma和beta
gamma = tf.Variable(tf.constant(1.0, shape=[c]), dtype=tf.float32, name='gamma')
beta = tf.Variable(tf.constant(0.0, shape=[c]), dtype=tf.float32, name='beta')
gamma = tf.reshape(gamma, [1, c, 1, 1])
beta = tf.reshape(beta, [1, c, 1, 1])
# 根据论文进行转换 [n, c, h, w, c] 到 [n, h, w, c]
output = tf.reshape(inputdata, [-1, c, h, w])
output = output * gamma + beta
output = tf.transpose(output, [0, 2, 3, 1])
| tensorflow.reshape | 2,007 |
import tensorflow as tf
width: an int32 scalar tensor indicating the current width.
smallest_side: A python integer or scalar `Tensor` indicating the size of
the smallest side after resize.
Returns:
new_height: an int32 scalar tensor indicating the new height.
new_width: and int32 scalar tensor indicating the new width.
"""
smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)
height = tf.to_float(height)
width = tf.to_float(width)
smallest_side = tf.to_float(smallest_side)
scale = tf.cond(tf.greater(height, width),
lambda: smallest_side / width,
lambda: smallest_side / height)
new_height = tf.to_int32(height * scale)
new_width = tf.to_int32(width * scale)
return new_height, new_width
| tensorflow.to_float | 2,008 |
import tensorflow as tf
seg_id = _transform_features(features["segment_ids"])
inp_mask = _transform_features(features["input_mask"])
label = tf.reshape(features["label_ids"], [bsz_per_core])
| tensorflow.reshape | 2,009 |
import tensorflow as tf
def guard_nan(x):
return x if not math.isnan(x) else -1.
def _blur_expand(input):
k_size = 9
kernels = [2, 4, 6]
channels = [input] + [nut.blur_gaussian(input, k, k_size)[0] for k in kernels]
res = tf.concat(channels, axis=3)
return res
class Autoencoder:
train_set, test_set = None, None
permutation = None
batch_shape = None
| tensorflow.concat | 2,010 |
import tensorflow as tf
self.y = tf.placeholder(tf.float32,
[batch_size, max_sequence_len, out_vocab_size],
name='y')
# The bidirectional rnn code requires seq_lens as int64
self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens')
self.example_weights = tf.placeholder(tf.float32, [batch_size],
name='example_weights')
embeddings = c2v.GetEmbeddings(self.x)
self._inputs = [tf.squeeze(input_, [1]) for input_ in
tf.split(1, max_sequence_len, embeddings)]
# Need to prepare a mask to zero out the padding symbols.
# Make a batch_size x max_sequence_len matrix where each
# row contains the length repeated max_sequence_len times.
lengths_transposed = tf.expand_dims(tf.to_int32(self.seq_lens), 1)
lengths_tiled = tf.tile(lengths_transposed, [1, max_sequence_len])
| tensorflow.squeeze | 2,011 |
import tensorflow as tf
total_accuracy1, total_accuracy5 = (0.0, 0.0)
num_processed_images = 0
num_remaining_images = 5000
top1 = 0
with tf.compat.v1.Session() as sess:
sess_graph = tf.compat.v1.Session(graph=graph, config=config)
while num_remaining_images >= batch_size:
# Reads and preprocess data
| tensorflow.compat.v1.Session | 2,012 |
import tensorflow as tf
# We now test every codepath within the underlying is_scalar_helper
# function.
# Test case 1, 2.
x = tf.placeholder(dtype=tf.int32, shape=[])
# None would fire an exception were it actually executed.
self.assertTrue(normal._is_scalar_helper(x.get_shape, lambda: None))
self.assertTrue(normal._is_scalar_helper(lambda: tf.TensorShape(None),
lambda: tf.shape(x)))
x = tf.placeholder(dtype=tf.int32, shape=[1])
# None would fire an exception were it actually executed.
self.assertFalse(normal._is_scalar_helper(x.get_shape, lambda: None))
self.assertFalse(normal._is_scalar_helper(lambda: tf.TensorShape(None),
lambda: tf.shape(x)))
# Test case 3.
x = tf.placeholder(dtype=tf.int32)
is_scalar = normal._is_scalar_helper(x.get_shape, lambda: tf.shape(x))
self.assertTrue(is_scalar.eval(feed_dict={x: 1}))
| tensorflow.placeholder | 2,013 |
import tensorflow as tf
if self._max_diffusion_step == 0:
pass
else:
for support in self._supports:
x1 = tf.sparse_tensor_dense_matmul(support, x0)
x = self._concat(x, x1)
for _ in range(2, self._max_diffusion_step + 1):
x2 = 2 * tf.sparse_tensor_dense_matmul(support, x1) - x0
x = self._concat(x, x2)
x1, x0 = x2, x1
num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself.
x = tf.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size])
x = tf.transpose(x, perm=[3, 1, 2, 0]) # (batch_size, num_nodes, input_size, order)
x = tf.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
weights = tf.get_variable(
'weights', [input_size * num_matrices, output_size],
dtype=dtype,
initializer=tf.contrib.layers.xavier_initializer())
x = tf.matmul(
x, weights) # (batch_size * self._num_nodes, output_size)
biases = tf.get_variable("biases", [output_size],
dtype=dtype,
initializer=tf.constant_initializer(
bias_start, dtype=dtype))
x = tf.nn.bias_add(x, biases)
| tensorflow.transpose | 2,014 |
import tensorflow as tf
for layer_idx in range(num_hidden_layers):
group_idx = int(layer_idx / num_hidden_layers * num_hidden_groups)
with tf.variable_scope("group_%d" % group_idx):
with tf.name_scope("layer_%d" % layer_idx):
| tensorflow.variable_scope | 2,015 |
from tensorflow.python.framework import tensor_shape
reduction_indices = tensor_util.ConstantValue(op.inputs[1])
keep_dims = op.get_attr("keep_dims")
if reduction_indices is None or input_shape.ndims is None:
if keep_dims:
return [tensor_shape.unknown_shape(ndims=input_shape.ndims)]
else:
return [tensor_shape.unknown_shape()]
| tensorflow.python.framework.tensor_shape.unknown_shape | 2,016 |
import tensorflow as tf
q_online_tp1 = q_online(obs_tp1_float)
q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='online_q_func')
q_target = q_func(obs_tp1_float,num_actions,scope="target_q_func",reuse=False)
target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='target_q_func')
# Bellman training error
if double_q:
| tensorflow.get_collection | 2,017 |
import tensorflow as tf
name=name), dropout_prob)
def softmax_N(tensor, name=None):
"""Apply softmax across last dimension of a tensor.
Args:
tensor: Input tensor.
name: Name for this op. If None, defaults to 'softmax_N'.
Returns:
A tensor with softmax-normalized values on the last dimension.
"""
with tf.name_scope(name, 'softmax_N', [tensor]):
exp_tensor = tf.exp(tensor)
reduction_indices = [tensor.get_shape().ndims - 1]
return tf.div(exp_tensor,
tf.reduce_sum(
exp_tensor, axis=reduction_indices, keep_dims=True))
def optimizer(optimizer="adam", learning_rate=.001, momentum=.9):
"""Create model optimizer.
Parameters
----------
| tensorflow.name_scope | 2,018 |
import tensorflow as tf
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
| tensorflow.global_variables_initializer | 2,019 |
from tensorflow.contrib.learn.python.learn.estimators import tensor_signature
self._features_info = tensor_signature.create_signatures(features)
if self._targets_info is not None:
if not tensor_signature.tensors_compatible(targets, self._targets_info):
raise ValueError('Targets are incompatible with given information. '
| tensorflow.contrib.learn.python.learn.estimators.tensor_signature.tensors_compatible | 2,020 |
import tensorflow as tf
Returns:
"""
with tf.variable_scope('anchor_generator'):
if offset is None:
offset = [stride[0]/2, stride[1]/2]
features_width = tf.cast(features_width, tf.int32)
features_height = tf.cast(features_height, tf.int32)
scales = tf.convert_to_tensor(scales, dtype=tf.float32)
ratios = tf.convert_to_tensor(ratios, dtype=tf.float32)
offset = tf.convert_to_tensor(offset, dtype=tf.float32)
scales_grid, ratios_grid = tf.meshgrid(scales,
ratios)
| tensorflow.cast | 2,021 |
import tensorflow as tf
class IoOpsTest(tf.test.TestCase):
def testReadFile(self):
cases = ['', 'Some contents', 'Неки садржаји на српском']
for contents in cases:
contents = tf.compat.as_bytes(contents)
temp = tempfile.NamedTemporaryFile(prefix='ReadFileTest')
open(temp.name, 'wb').write(contents)
with self.test_session():
read = tf.read_file(temp.name)
self.assertEqual([], read.get_shape())
self.assertEqual(read.eval(), contents)
def _subset(self, files, indices):
return set(tf.compat.as_bytes(files[i].name)
for i in range(len(files)) if i in indices)
def testMatchingFiles(self):
| tensorflow.read_file | 2,022 |
import tensorflow as tf
if FLAGS.input_file is not None:
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
if FLAGS.input_dir is not None:
for filename in tf.gfile.ListDirectory(FLAGS.input_dir):
input_files.extend(tf.gfile.Glob(os.path.join(FLAGS.input_dir, filename)))
tf.logging.info("*** Input Files ***")
| tensorflow.gfile.ListDirectory | 2,023 |
import tensorflow as tf
worker_replicas=1,
clone_on_cpu=True,
ps_tasks=0,
worker_job_name='worker',
is_chief=True,
train_dir=train_dir)
if __name__ == '__main__':
tf.test.main()
| tensorflow.test.main | 2,024 |
import tensorflow as tf
def train(train_num=64,test_num=32,lr=1e-4,loop_count=10000,report_step=100,save_step=1000,restore=False):
with tf.Session(config=config) as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
if restore:
tf.train.Saver().restore(sess,path)
feed_dict={
| tensorflow.train.start_queue_runners | 2,025 |
import tensorflow as tf
image = tf.placeholder(tf.float32, shape=[hps.batch_size, image_size, image_size,
num_channel]) ############MNIST and CIFAR10 are different ar here
adv_image = tf.placeholder(tf.float32, shape=[hps.batch_size, image_size, image_size,
num_channel]) ############MNIST and CIFAR10 are different ar here
| tensorflow.placeholder | 2,026 |
import tensorflow as tf
# TODO: should i normalize?
@layer
def word_dropout_layer(tensor, keep_prob=1.0, **opts):
keep_prob = _global_keep_prob(keep_prob)
rank = _rank(tensor)
assert rank == 3, "Use embedding lookup layer"
binary_mask = _apply_dropout_mask(tf.shape(tensor)[:2], keep_prob, normalize=False)
binary_mask = tf.expand_dims(binary_mask, axis=-1) # proper broadcasting to zero out entire word vectors
out = tensor * binary_mask
return out
@layer
def relu_layer(tensor):
out = tf.nn.relu(tensor)
return out
| tensorflow.expand_dims | 2,027 |
import tensorflow as tf
assert hparams.wavenet_test_batches == self.test_steps
#Get conditioning status
self.local_condition, self.global_condition = self._check_conditions()
with tf.device('/cpu:0'):
# Create placeholders for inputs and targets. Don't specify batch size because we want
# to be able to feed different batch sizes at eval time.
if is_scalar_input(hparams.input_type):
input_placeholder = tf.placeholder(tf.float32, shape=(None, 1, None), name='audio_inputs')
target_placeholder = tf.placeholder(tf.float32, shape=(None, None, 1), name='audio_targets')
target_type = tf.float32
else:
input_placeholder = tf.placeholder(tf.float32, shape=(None, hparams.quantize_channels, None), name='audio_inputs')
target_placeholder = tf.placeholder(tf.int32, shape=(None, None, 1), name='audio_targets')
target_type = tf.int32
self._placeholders = [
input_placeholder,
target_placeholder,
tf.placeholder(tf.int32, shape=(None, ), name='input_lengths'),
]
queue_types = [tf.float32, target_type, tf.int32]
if self.local_condition:
self._placeholders.append(tf.placeholder(tf.float32, shape=(None, hparams.num_mels, None), name='local_condition_features'))
queue_types.append(tf.float32)
| tensorflow.placeholder | 2,028 |
import tensorflow as tf
with tf.variable_scope("input_info", reuse=False):
tf.summary.scalar('rewards', tf.reduce_mean(self.reward_ph))
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate))
tf.summary.scalar('advantage', tf.reduce_mean(adv))
tf.summary.scalar('action_probability', tf.reduce_mean(self.mu_ph))
if self.full_tensorboard_log:
tf.summary.histogram('rewards', self.reward_ph)
tf.summary.histogram('learning_rate', self.learning_rate)
tf.summary.histogram('advantage', adv)
tf.summary.histogram('action_probability', self.mu_ph)
if tf_util.is_image(self.observation_space):
tf.summary.image('observation', train_model.obs_ph)
else:
tf.summary.histogram('observation', train_model.obs_ph)
trainer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_ph, decay=self.rprop_alpha,
| tensorflow.summary.histogram | 2,029 |
import tensorflow as tf
# Prepare train dataset
def _preprocess_train(image, clazz):
# Do random crop + horizontal flip for each train image
image = tf.pad(image, [[4, 4], [4, 4], [0, 0]])
image = tf.image.random_crop(image, (w, h, in_ch))
image = tf.image.random_flip_left_right(image)
if cutout_size > 0:
image = self._do_cutout(image, w, h, cutout_size)
| tensorflow.image.random_crop | 2,030 |
import tensorflow as tf
span_head_scores += tf.log(span_mask) # [k, max_span_width, 1]
span_attention = tf.nn.softmax(span_head_scores, 1) # [k, max_span_width, 1]
span_head_emb = tf.reduce_sum(span_attention * span_text_emb, 1) # [k, emb]
span_emb_list.append(span_head_emb)
span_emb = tf.concat(span_emb_list, 1) # [k, emb]
return span_emb # [k, emb]
def get_mention_scores(self, span_emb):
with tf.variable_scope("mention_scores"):
return util.ffnn(span_emb, self.config["ffnn_depth"], self.config["ffnn_size"], 1, self.dropout) # [k, 1]
def softmax_loss(self, antecedent_scores, antecedent_labels):
gold_scores = antecedent_scores + tf.log(tf.to_float(antecedent_labels)) # [k, max_ant + 1]
marginalized_gold_scores = tf.reduce_logsumexp(gold_scores, [1]) # [k]
log_norm = tf.reduce_logsumexp(antecedent_scores, [1]) # [k]
return log_norm - marginalized_gold_scores # [k]
def bucket_distance(self, distances):
"""
Places the given values (designed for distances) into 10 semi-logscale buckets:
[0, 1, 2, 3, 4, 5-7, 8-15, 16-31, 32-63, 64+].
"""
logspace_idx = tf.to_int32(tf.floor(tf.log(tf.to_float(distances))/math.log(2))) + 3
use_identity = tf.to_int32(distances <= 4)
combined_idx = use_identity * distances + (1 - use_identity) * logspace_idx
| tensorflow.to_float | 2,031 |
import tensorflow as tf
def clip_logits(logits, config):
logits_clip = getattr(config, "logits_clip", 0.)
if logits_clip > 0:
min_logit = tf.reduce_min(logits)
return tf.minimum(logits - min_logit, logits_clip)
else:
| tensorflow.reduce_min | 2,032 |
import tensorflow as tf
Li_eKuf = tf.matrix_triangular_solve(Luu, eKuf, lower=True) # M x N
fmean = tf.matmul(Li_eKuf, q_mu, transpose_a=True)
eKff = expectation(pXnew, kern) # N (psi0)
eKuffu = expectation(pXnew, (kern, feat), (kern, feat)) # N x M x M (psi2)
Luu_tiled = tf.tile(Luu[None, :, :], [num_data, 1, 1]) # remove this line, once issue 216 is fixed
Li_eKuffu = tf.matrix_triangular_solve(Luu_tiled, eKuffu, lower=True)
Li_eKuffu_Lit = tf.matrix_triangular_solve(Luu_tiled, tf.matrix_transpose(Li_eKuffu), lower=True) # N x M x M
cov = tf.matmul(q_sqrt_r, q_sqrt_r, transpose_b=True) # D x M x M
if mean_function is None or isinstance(mean_function, mean_functions.Zero):
e_related_to_mean = tf.zeros((num_data, num_func, num_func), dtype=settings.float_type)
else:
# Update mean: \mu(x) + m(x)
| tensorflow.matrix_transpose | 2,033 |
import tensorflow as tf
# Agent目標替換率
EPSILON = 0.3
# Reward discount factor
GAMMA = 0.7
# Actor 學習率
# A_LR = 0.0001
A_LR = 0.001
# Critic 學習率
# C_LR = 0.0002
C_LR = 0.002
class MODEL(object):
def __init__(self):
self.sess = tf.Session()
self.tfs = tf.placeholder(tf.float32, [None, 84, 84, 3], 'state')
c0 = tf.cast(self.tfs, tf.float32) / 255.
c1 = tf.nn.relu(self.conv(c0,
'c1',
nf=32,
rf=8,
stride=4,
init_scale=np.sqrt(2)))
c2 = tf.nn.relu(
self.conv(
c1,
'c2',
nf=64,
rf=4,
stride=2,
| tensorflow.placeholder | 2,034 |
import tensorflow as tf
tf.app.flags.DEFINE_integer('loss_scale', 1024, '')
tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '')
tf.app.flags.DEFINE_string('gpu_list', '1', '')
tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '')
tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint')
tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '')
tf.app.flags.DEFINE_integer('save_summary_steps', 100, '')
tf.app.flags.DEFINE_string('pretrained_model_path', None, '')
tf.app.flags.DEFINE_boolean('allow_mix_precision', False, 'whether to allow mix precision')
tf.app.flags.DEFINE_boolean('auto_tune', False, 'whether to autotune')
tf.app.flags.DEFINE_boolean('use_processed_data', False, 'whether to use processed data')
tf.app.flags.DEFINE_string('processed_data', './processed_dataset/', 'where to save preprocessed datasets')
| tensorflow.app.flags.DEFINE_integer | 2,035 |
import tensorflow as tf
try:
src_path, dst_path = sess.run(dequeue_op)
except tf.errors.OutOfRangeError:
coord.request_stop()
break
process(src_path, dst_path)
complete()
# init epoch counter for the queue
local_init_op = tf.local_variables_initializer()
with tf.Session() as sess:
sess.run(local_init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(a.workers):
t = threading.Thread(target=worker, args=(coord,))
t.start()
threads.append(t)
| tensorflow.local_variables_initializer | 2,036 |
from tensorflow.python.ops import variable_scope
raise ValueError('`sensitivity` must be in the range [0, 1].')
with variable_scope.variable_scope(name, 'specificity_at_sensitivity',
[predictions, labels]):
| tensorflow.python.ops.variable_scope.variable_scope | 2,037 |
import tensorflow as tf
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# Group all updates to into a single train op.
train_op = tf.group(apply_gradient_op, variables_averages_op)
# Create a saver.
saver = tf.train.Saver(tf.global_variables())
# Build the summary operation from the last tower summaries.
summary_op = tf.summary.merge(summaries)
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU
# implementations.
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement))
sess.run(init)
| tensorflow.summary.merge | 2,038 |
import tensorflow as tf
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.gfile.Open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
| tensorflow.gfile.Open | 2,039 |
import tensorflow as tf
tf.add_to_collection("user_defined_bytes_collection",
queue_runner.SerializeToString())
any_buf = Any()
any_buf.Pack(queue_runner)
tf.add_to_collection("user_defined_any_collection", any_buf)
# Generates MetaGraphDef.
meta_graph_def = save.export_meta_graph(filename)
self.assertTrue(meta_graph_def.HasField("saver_def"))
self.assertTrue(meta_graph_def.HasField("graph_def"))
collection_def = meta_graph_def.collection_def
self.assertEqual(len(collection_def), 10)
with tf.Graph().as_default():
# Restores from MetaGraphDef.
new_saver = tf.train.import_meta_graph(filename)
# Generates a new MetaGraphDef.
new_meta_graph_def = new_saver.export_meta_graph()
# It should be the same as the original.
self.assertProtoEquals(meta_graph_def, new_meta_graph_def)
def testAddCollectionDefFails(self):
with self.test_session():
# Creates a graph.
v0 = tf.Variable(10.0, name="v0")
# Creates a saver.
| tensorflow.Graph | 2,040 |
import tensorflow as tf
dataset,
bucket_fn=lambda a, b, c, y: tf.size(a),
| tensorflow.size | 2,041 |
import tensorflow as tf
def _compute(self, x, y):
self._dim = x._rank()
kernel = np.zeros((tf.size(x), tf.size(y)))
for l in tf.range(start=0, limit=tf.size(x), delta=1, dtype=None, name='l_range'):
for m in tf.range(start=0, limit=tf.size(y), delta=1, dtype=None, name='m_range'):
vx = tf.contrib.lookup.MutableHashTable(key_dtype=tf.string,
value_dtype=tf.int64,
| tensorflow.size | 2,042 |
import tensorflow as tf
elif validate_args:
assertions += [
tf.compat.v1.assert_equal(
tf.sort(perm), tf.range(tf.size(input=perm)), message=msg)
]
| tensorflow.size | 2,043 |
import tensorflow as tf
fn_loss: A callable returning the loss of the current model.
**kwargs: Additional arguments, not used.
Returns:
List of delta tensors corresponding to the updates for each optimized variable.
"""
learning_rate = self.learning_rate.value()
unperturbed_loss = fn_loss(**arguments)
deltas = [tf.zeros_like(tensor=variable) for variable in variables]
previous_perturbations = [tf.zeros_like(tensor=variable) for variable in variables]
if self.unroll_loop:
# Unrolled for loop
for sample in range(self.num_samples):
with tf.control_dependencies(control_inputs=deltas):
perturbations = [
tf.random_normal(shape=util.shape(variable)) * learning_rate
| tensorflow.zeros_like | 2,044 |
import tensorflow as tf
variable_summaries(bias)
output = tf.nn.bias_add(tf.matmul(x, w), bias)
return output
def _bn(self, name, x):
with tf.variable_scope(name):
moving_average_decay = 0.9
decay = moving_average_decay
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2])
mu = tf.get_variable('mu', batch_mean.shape, dtype=tf.float32,
initializer=tf.zeros_initializer(), trainable=False)
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, mu)
tf.add_to_collection('mu_sigma_bn', mu)
sigma = tf.get_variable('sigma', batch_var.shape, dtype=tf.float32,
initializer=tf.ones_initializer(), trainable=False)
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, sigma)
tf.add_to_collection('mu_sigma_bn', sigma)
beta = tf.get_variable('beta', batch_mean.shape, dtype=tf.float32,
initializer=tf.zeros_initializer())
gamma = tf.get_variable('gamma', batch_var.shape, dtype=tf.float32,
initializer=tf.ones_initializer())
# BN when training
update = 1.0 - decay
| tensorflow.zeros_initializer | 2,045 |
import tensorflow as tf
schedule.ContinuousLearningRateSchedule.Params().Set(
start_step=350000, half_life_steps=45000))
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
mdl.BProp()
tf.global_variables_initializer().run()
test_utils.CompareToGoldenSingleFloat(self, 4.472597, mdl.loss.eval())
mdl.train_op.run()
def testAllLayerParams(self):
with self.session(use_gpu=False, graph=tf.Graph()):
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
lps = base_layer.RecursiveFindLayerParams(mdl.params)
l_names = sorted([p.cls.__name__ for p in lps])
expected_layers = sorted([
'Adam',
'AdditiveAttention',
'AsciiTokenizer',
| tensorflow.Graph | 2,046 |
import tensorflow as tf
self.loss_GBAB_sum = tf.summary.scalar("g_loss_b2a", self.loss_GBAB)
self.g_total_loss_sum = tf.summary.scalar("g_loss", self.generator_loss)
self.g_sum = tf.summary.merge([self.loss_GABA_sum,self.loss_GBAB_sum,self.g_total_loss_sum])
| tensorflow.summary.merge | 2,047 |
import tensorflow as tf
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
| tensorflow.matmul | 2,048 |
import tensorflow as tf
# need to call .value to convert Dimension objects to normal value
input1_shape = list(-1 if s.value is None else s.value for s in input1.shape)
input2_shape = list(-1 if s.value is None else s.value for s in input2.shape)
output1 = tf.reshape(output[:, :input1_reshaped.shape[1]], shape=input1_shape)
output2 = tf.reshape(output[:, input1_reshaped.shape[1]:], shape=input2_shape)
return output1, output2
| tensorflow.reshape | 2,049 |
import tensorflow as tf
Args:
inputs (tensor): data to be processed
Returns:
tensor: output data
"""
if len(tf.shape(inputs)) > 1:
# If the input size is not 1-dimensional, unstack the input along its first dimension,
# recursively call the forward pass on each of the yielded tensors, and then stack the
# outputs back into the correct shape
reconstructor = []
for x in tf.unstack(inputs):
| tensorflow.shape | 2,050 |
import tensorflow as tf
from scipy.io import loadmat
from scipy.misc import imsave
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('dataset', '', 'cifar10 or cifar100.')
tf.app.flags.DEFINE_string('mode', 'train', 'train or eval.')
tf.app.flags.DEFINE_string('train_data_path', '',
'Filepattern for training data.')
tf.app.flags.DEFINE_string('eval_data_path', '',
'Filepattern for eval data')
tf.app.flags.DEFINE_string('train_dir', '',
'Directory to keep training outputs.')
tf.app.flags.DEFINE_string('eval_dir', '',
'Directory to keep eval outputs.')
tf.app.flags.DEFINE_integer('eval_batch_count', 10,
'Number of batches to eval.')
tf.app.flags.DEFINE_bool('eval_once', False,
'Whether evaluate the model only once.')
tf.app.flags.DEFINE_string('log_root', '',
'Directory to keep the checkpoints. Should be a '
| tensorflow.app.flags.DEFINE_string | 2,051 |
import tensorflow as tf
def _build_rnn_graph(self, inputs, config, is_training):
if config.rnn_mode == CUDNN:
return self._build_rnn_graph_cudnn(inputs, config, is_training)
else:
return self._build_rnn_graph_lstm(inputs, config, is_training)
def _build_rnn_graph_cudnn(self, inputs, config, is_training):
"""Build the inference graph using CUDNN cell."""
inputs = tf.transpose(inputs, [1, 0, 2])
self._cell = tf.contrib.cudnn_rnn.CudnnLSTM(
num_layers=config.num_layers,
num_units=config.hidden_size,
input_size=config.hidden_size,
dropout=1 - config.keep_prob if is_training else 0)
params_size_t = self._cell.params_size()
self._rnn_params = tf.get_variable(
"lstm_params",
initializer=tf.random_uniform(
| tensorflow.contrib.cudnn_rnn.CudnnLSTM | 2,052 |
import tensorflow as tf
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = (
tf.expand_dims(tf.to_float(position), 2) * tf.expand_dims(
tf.expand_dims(inv_timescales, 0), 0))
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=2)
signal = tf.pad(signal, [[0, 0], [0, 0], [0, tf.mod(channels, 2)]])
return signal
| tensorflow.cos | 2,053 |
import tensorflow as tf
hidden_noise_shape = [1, 1, tf.shape(hidden)[2]] if encoder.pervasive_dropout else None
hidden = tf.nn.dropout(hidden, keep_prob=encoder.attn_keep_prob, noise_shape=hidden_noise_shape)
if encoder.mult_attn:
state = dense(state, encoder.attn_size, use_bias=False, name='state')
hidden = dense(hidden, encoder.attn_size, use_bias=False, name='hidden')
return tf.einsum('ijk,ik->ij', hidden, state)
y = dense(state, encoder.attn_size, use_bias=not encoder.layer_norm, name='W_a')
y = tf.expand_dims(y, axis=1)
if encoder.layer_norm:
y = tf.contrib.layers.layer_norm(y, scope='layer_norm_state')
hidden = tf.contrib.layers.layer_norm(hidden, center=False, scope='layer_norm_hidden')
y += dense(hidden, encoder.attn_size, use_bias=False, name='U_a')
if encoder.position_bias and input_length is not None and time is not None:
src_pos = tf.tile(tf.expand_dims(tf.range(time_steps), axis=0), [batch_size, 1])
trg_pos = tf.tile(tf.reshape(time, [1, 1]), [batch_size, time_steps])
src_len = tf.tile(tf.expand_dims(input_length, axis=1), [1, time_steps]) # - 1
pos_feats = tf.to_float(tf.stack([src_pos, trg_pos, src_len], axis=2))
pos_feats = tf.log(1 + pos_feats)
| tensorflow.contrib.layers.layer_norm | 2,054 |
import tensorflow as tf
bias=True, activation=tf.nn.relu, kernel_size=5, name="char_conv", reuse=True)
ch_emb = tf.reduce_max(ch_emb, axis=1)
qh_emb = tf.reduce_max(qh_emb, axis=1)
ch_emb = tf.reshape(ch_emb, [N * self.max_p_num, PL, -1])
| tensorflow.reduce_max | 2,055 |
import tensorflow as tf
def lrelu(x, leak=0.2, name="lrelu"):
return tf.maximum(x, leak*x)
def conv2d(input_, output_dim,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="conv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
# print("c", w.get_shape())
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
| tensorflow.variable_scope | 2,056 |
import tensorflow as tf
initializer=tf.ones_initializer(),
trainable=False)
self._moving_variance = tf.subtract(self._moving_second_moment,
tf.square(self._moving_mean),
name="moving_variance")
def build_batch_stats():
"""Builds the batch statistics calculation ops."""
# Copy for better stability.
# We use the moving mean as an estimate of the mean in order to perform
# a more numerically stable calculation of the batch mean.
shift = tf.add(self._moving_mean, 0)
counts, shifted_sum_x, shifted_sum_x2, _ = tf.nn.sufficient_statistics(
input_batch,
reduction_indices,
keep_dims=True,
shift=shift,
name="batch_norm_ss")
mean, variance = tf.nn.normalize_moments(counts,
shifted_sum_x,
shifted_sum_x2,
shift,
name="normalize_moments")
| tensorflow.add | 2,057 |
import tensorflow as tf
from resan.utils.nn import bn_dense_layer, dropout, linear
from resan.utils.general import exp_mask_for_high_rank, mask_for_high_rank
from resan.rl_nn import reduce_data_rep_max_len
def reinforced_self_attention(
rep_tensor, rep_mask, dep_selection, head_selection,
hn=None, keep_unselected=True,
scope=None, keep_prob=1., is_train=None, wd=0., activation='elu'
):
with tf.variable_scope(scope or 'reinforced_self_attention'):
fw_result = directional_attention_with_selections(
rep_tensor, rep_mask, dep_selection, head_selection,
'forward', hn, keep_unselected,
'forward_resa', keep_prob, is_train, wd, activation
)
bw_result = directional_attention_with_selections(
rep_tensor, rep_mask, dep_selection, head_selection,
'backward', hn, keep_unselected,
'backward_resa', keep_prob, is_train, wd, activation
| tensorflow.variable_scope | 2,058 |
from tensorflow.contrib.slim.python.slim.data import tfexample_decoder
shape=[1],
dtype=dtypes.int64,
default_value=array_ops.zeros(
[1], dtype=dtypes.int64))
}
items_to_handlers = {
'image': tfexample_decoder.Image(),
'label': tfexample_decoder.Tensor('image/class/label'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
| tensorflow.contrib.slim.python.slim.data.tfexample_decoder.Image | 2,059 |
import tensorflow as tf
ref=self.internals_memory[name],
indices=indices,
updates=internals[name]
))
for name in sorted(actions):
assignments.append(tf.scatter_update(
ref=self.actions_memory[name],
indices=indices,
updates=actions[name]
))
assignments.append(tf.scatter_update(ref=self.terminal_memory, indices=indices, updates=terminal))
assignments.append(tf.scatter_update(ref=self.reward_memory, indices=indices, updates=reward))
# Add episode indices.
with tf.control_dependencies(control_inputs=assignments):
num_episodes = tf.count_nonzero(input_tensor=terminal, axis=0, dtype=util.tf_dtype('int'))
assignment = tf.assign(
ref=self.episode_indices[self.episode_count: self.episode_count + num_episodes],
value=tf.boolean_mask(tensor=indices, mask=terminal)
)
| tensorflow.scatter_update | 2,060 |
import tensorflow as tf
return tf.nn.relu
elif nl_type == 'elu':
return tf.nn.elu
elif nl_type == 'selu':
return tf.nn.selu
elif nl_type == 'leaky_relu':
return tf.nn.leaky_relu
elif nl_type == 'hard_tanh':
return lambda z: tf.maximum(tf.minimum(z, 1), 0)
else:
raise NotImplementedError(nl_type)
def update_params(self, kwargs):
"""Update the class attributes with kwargs."""
if kwargs is not None:
for k, v in kwargs.iteritems():
| tensorflow.minimum | 2,061 |
from tensorflow.python.framework import ops
ops.RegisterShape("Relu")(common_shapes.unchanged_shape)
ops.RegisterShape("Relu6")(common_shapes.unchanged_shape)
ops.RegisterShape("Elu")(common_shapes.unchanged_shape)
ops.RegisterShape("Softplus")(common_shapes.unchanged_shape)
ops.RegisterShape("Softsign")(common_shapes.unchanged_shape)
@ops.RegisterShape("ReluGrad")
@ops.RegisterShape("Relu6Grad")
@ops.RegisterShape("EluGrad")
@ops.RegisterShape("SoftplusGrad")
@ops.RegisterShape("SoftsignGrad")
def _BinaryElementwiseShape(op):
"""Returns same shape as both inputs to op.
| tensorflow.python.framework.ops.RegisterShape | 2,062 |
import tensorflow as tf
def _MergeOneToken(tokens, i):
return tf.expand_dims(
self._MergeTokens((tokens[i], tokens[i + 1])), axis=-1)
def _MergeCandidates(tokens, candidates):
"""Merge in the reverse binary tree."""
best_id = tf.argmin(candidates, output_type=tf.int32)
# Perform the merge at position best_id.
tokens = tf.concat(
[tokens[:best_id], [candidates[best_id]], tokens[best_id + 2:]],
axis=0)
# Recompute the merge candidates.
# Only the neighbors of best_id need to be recomputed.
empty = tf.zeros([0], dtype=candidates.dtype)
def _MergeLeft():
return tf.concat(
[candidates[:best_id - 1],
_MergeOneToken(tokens, best_id - 1)],
axis=0)
left_candidates = tf.cond(tf.equal(best_id, 0), lambda: empty, _MergeLeft)
def _MergeRight():
return tf.concat(
[_MergeOneToken(tokens, best_id), candidates[best_id + 2:]], axis=0)
| tensorflow.zeros | 2,063 |
import tensorflow as tf
all_top_1_ops = tf.reduce_sum(all_top_1_ops)
all_top_5_ops = tf.reduce_sum(all_top_5_ops)
fetches = [all_top_1_ops, all_top_5_ops] + enqueue_ops
return (enqueue_ops, fetches)
extra_nccl_ops = []
apply_gradient_devices, gradient_state = (
self.variable_mgr.preprocess_device_grads(device_grads))
training_ops = []
for d, device in enumerate(apply_gradient_devices):
with tf.device(device):
total_loss = tf.reduce_mean(losses)
avg_grads = self.variable_mgr.get_gradients_to_apply(d, gradient_state)
gradient_clip = FLAGS.gradient_clip
learning_rate = self.model_conf.get_learning_rate()
if self.dataset and FLAGS.num_epochs_per_decay > 0:
num_batches_per_epoch = (
self.dataset.num_examples_per_epoch() / self.batch_size)
decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay)
# Decay the learning rate exponentially based on the number of steps.
| tensorflow.reduce_mean | 2,064 |
import tensorflow as tf
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
| tensorflow.variable_scope | 2,065 |
import tensorflow as tf
with tf.device("/cpu:0"):
embedding = tf.get_variable(
"embedding", [vocab_size, size], dtype=data_type())
inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
output, state = self._build_rnn_graph(inputs, config, is_training)
softmax_w = tf.get_variable(
"softmax_w", [size, vocab_size], dtype=data_type())
softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())
logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
# Reshape logits to be a 3-D tensor for sequence loss
logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size])
# Use the contrib sequence loss and average over the batches
loss = tf.contrib.seq2seq.sequence_loss(
logits,
input_.targets,
tf.ones([self.batch_size, self.num_steps], dtype=data_type()),
average_across_timesteps=False,
average_across_batch=True)
# Update the cost
self._cost = tf.reduce_sum(loss)
self._final_state = state
if not is_training:
| tensorflow.reshape | 2,066 |
import tensorflow as tf
Raises:
NotImplementedError: If an unsupported optimizer is requested.
"""
# TODO(user): gradient clipping (see Minimize)
if optimizer == 'adagrad':
train_op = tf.train.AdagradOptimizer(learning_rate)
elif optimizer == 'adam':
train_op = tf.train.AdamOptimizer(learning_rate)
elif optimizer == 'momentum':
train_op = tf.train.MomentumOptimizer(learning_rate, momentum)
elif optimizer == 'rmsprop':
train_op = tf.train.RMSPropOptimizer(learning_rate, momentum)
elif optimizer == 'sgd':
train_op = tf.train.GradientDescentOptimizer(learning_rate)
| tensorflow.train.AdamOptimizer | 2,067 |
from tensorflow.python.ops import control_flow_ops
self.d_losses[-1] = control_flow_ops.with_dependencies([barrier], self.d_losses[-1])
self.g_losses[-1] = control_flow_ops.with_dependencies([barrier], self.g_losses[-1])
self.d_loss_real = control_flow_ops.with_dependencies([barrier], self.d_loss_real)
self.d_loss_fake = control_flow_ops.with_dependencies([barrier], self.d_loss_fake)
self.d_loss_class = control_flow_ops.with_dependencies([barrier], self.d_loss_class)
t_vars = self._get_vars_semi_supervised()
| tensorflow.python.ops.control_flow_ops.with_dependencies | 2,068 |
import tensorflow as tf
# zero mean conv
if type(size) == int: size = [size, size]
in_ch = input.get_shape().as_list()[-1]
# init = tf.contrib.layers.variance_scaling_initializer(dtype=tf.float32)
init = tf.truncated_normal_initializer(mean=0.0, stddev=0.02)
filters = tf.get_variable('zero_conv_weights' + id, initializer=init, shape=[size[0], size[1], in_ch, channels])
filters = filters - tf.reduce_mean(filters, axis=[0, 1, 2], keepdims=True)
if padding == "PARTIAL":
with tf.variable_scope('mask'):
_, h, w, _ = input.get_shape().as_list()
slide_window = size[0] * size[1]
mask = tf.ones(shape=[1, h, w, 1])
update_mask = tf.layers.conv2d(mask, filters=1, name='mask' + id,
kernel_size=size, kernel_initializer=tf.constant_initializer(1.0),
strides=stride, padding="SAME", use_bias=False, trainable=False,
dilation_rate=(dilation, dilation))
mask_ratio = slide_window / (update_mask + 1e-8)
update_mask = tf.clip_by_value(update_mask, 0.0, 1.0)
mask_ratio = mask_ratio * update_mask
with tf.variable_scope('parconv'):
x = tf.nn.conv2d(input, filters, strides=[1, stride, stride, 1], padding="SAME", name='zero-conv_' + id,
dilations=(1, dilation, dilation, 1))
x = x * mask_ratio
if use_bias:
bias = tf.get_variable("bias" + id, [channels], initializer=tf.constant_initializer(0.0))
x = tf.nn.bias_add(x, bias)
return x * update_mask
| tensorflow.constant_initializer | 2,069 |
import tensorflow as tf
def validation():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
images = tf.convert_to_tensor(np.expand_dims(x_test/255.0, -1),dtype=tf.float32)
| tensorflow.keras.datasets.mnist.load_data | 2,070 |
import tensorflow as tf
def inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def test_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
| tensorflow.matmul | 2,071 |
import tensorflow as tf
elif actL == 'esp' or actL == 'relu': #r2 score
norm= tf.reduce_mean( tf.squared_difference(Y,tf.reduce_mean(Y)) )
accuracy = 1 - tf.divide( tf.reduce_mean(tf.squared_difference(an, Y)), norm)
elif actL == 'softmax': #accuracy score for multiclass classification
Yp = tf.sigmoid(betan*hn)
correct = tf.equal(tf.argmax(Yp), tf.argmax(Y))
accuracy= tf.reduce_mean(tf.cast(correct, "float"))
#-----------------Initialize the graph and start the session-------------------------------------------------
init = tf.global_variables_initializer()
with tf.Session() as sess:
| tensorflow.argmax | 2,072 |
import tensorflow as tf
def testGPU(self):
if not tf.test.is_built_with_cuda():
return
save_path = os.path.join(self.get_temp_dir(), "gpu")
with tf.Session("", graph=tf.Graph()) as sess:
with sess.graph.device("/gpu:0"):
v0_1 = tf.Variable(123.45)
save = tf.train.Saver({"v0": v0_1})
tf.initialize_all_variables().run()
save.save(sess, save_path)
with tf.Session("", graph=tf.Graph()) as sess:
with sess.graph.device("/gpu:0"):
v0_2 = tf.Variable(543.21)
save = tf.train.Saver({"v0": v0_2})
tf.initialize_all_variables().run()
self.assertAllClose(543.21, v0_2.eval())
save.restore(sess, save_path)
self.assertAllClose(123.45, v0_2.eval())
def testVariables(self):
save_path = os.path.join(self.get_temp_dir(), "variables")
with tf.Session("", graph=tf.Graph()) as sess:
one = tf.Variable(1.0)
twos = tf.Variable([2.0, 2.0, 2.0])
init = tf.initialize_all_variables()
save = tf.train.Saver(tf.all_variables())
init.run()
save.save(sess, save_path)
| tensorflow.train.Saver | 2,073 |
import tensorflow as tf
Args:
preprocessed_inputs: a [batch, 28, 28, channels] float32 tensor.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
prediction_dict: a dictionary holding prediction tensors to be
passed to the Loss or Postprocess functions.
"""
flattened_inputs = tf.contrib.layers.flatten(preprocessed_inputs)
class_prediction = tf.contrib.layers.fully_connected(
flattened_inputs, self._num_classes)
box_prediction = tf.contrib.layers.fully_connected(flattened_inputs, 4)
return {
'class_predictions_with_background': tf.reshape(
class_prediction, [-1, 1, self._num_classes]),
'box_encodings': tf.reshape(box_prediction, [-1, 1, 4])
}
def postprocess(self, prediction_dict, true_image_shapes, **params):
"""Convert predicted output tensors to final detections. Unused.
Args:
prediction_dict: a dictionary holding prediction tensors.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
| tensorflow.contrib.layers.fully_connected | 2,074 |
from tensorflow.contrib.learn.python.learn.estimators import test_data
bucketized_feature = feature_column.bucketized_column(
cont_feature, test_data.get_quantile_based_buckets(iris.data, 10))
| tensorflow.contrib.learn.python.learn.estimators.test_data.get_quantile_based_buckets | 2,075 |
import tensorflow as tf
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
"label_ids":
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
})
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
| tensorflow.constant | 2,076 |
import tensorflow as tf
else:
return mean_cost, accuracy, y_pred
def training(self, cost):
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
# train_op = optimizer.minimize(cost)
trainables = tf.trainable_variables()
grads = tf.gradients(cost, trainables)
grads, _ = tf.clip_by_global_norm(grads, clip_norm=self.clip_norm)
capped_gvs = zip(grads, trainables)
train_op = optimizer.apply_gradients(capped_gvs)
return train_op
| tensorflow.trainable_variables | 2,077 |
import tensorflow as tf
def dynamic_batching(paths):
spectrograms, max_x = [], 0
for path in paths:
spectrograms.append(np.load("spectrogram/" + path + ".npy"))
if spectrograms[-1].shape[0] > max_x:
max_x = spectrograms[-1].shape[0]
return spectrograms, max_x
# In[4]:
tf.reset_default_graph()
sess = tf.InteractiveSession()
model = Model()
sess.run(tf.global_variables_initializer())
# In[5]:
for e in range(30):
pbar = tqdm(range(0, len(text_files), batch_size), desc="minibatch loop")
total_cost, total_acc = 0, 0
for k in pbar:
index = min(k + batch_size, len(text_files))
files, max_x = dynamic_batching(paths[k:index])
max_y = max(lengths[k:index])
batch_x = np.zeros((len(files), max_x, n_mels * reduction_factor))
batch_y = np.zeros((len(files), max_y))
| tensorflow.global_variables_initializer | 2,078 |
import tensorflow as tf
tf.gfile.MakeDirs(work_directory)
filepath = os.path.join(work_directory, filename)
if not tf.gfile.Exists(filepath):
temp_file_name, _ = urllib.request.urlretrieve(source_url)
tf.gfile.Copy(temp_file_name, filepath)
with tf.gfile.GFile(filepath) as f:
size = f.size()
print("Successfully downloaded", filename, size, "bytes.")
return filepath
| tensorflow.gfile.GFile | 2,079 |
from tensorflow.python.framework import tensor_shape
input_shape = input_shape.merge_with(out_backprop_shape)
vector_dim = input_shape[3]
vector_dim = vector_dim.merge_with(mean_shape[0])
vector_dim = vector_dim.merge_with(var_shape[0])
vector_dim = vector_dim.merge_with(beta_shape[0])
return [input_shape] + ([tensor_shape.vector(vector_dim)] * 4)
ops.RegisterShape("Conv2D")(common_shapes.conv2d_shape)
ops.RegisterShape("DepthwiseConv2dNative")(
| tensorflow.python.framework.tensor_shape.vector | 2,080 |
import tensorflow as tf
# # random select negtive examples for classification
# selected_neg_mask = tf.random_uniform(tf.shape(gscores), minval=0, maxval=1.) < tf.where(
# tf.greater(n_negtives, 0),
# tf.divide(tf.cast(n_neg_to_select, tf.float32), n_negtives),
# tf.zeros_like(tf.cast(n_neg_to_select, tf.float32)),
# name='rand_select_negtive')
# include both selected negtive and all positive examples
final_mask = tf.stop_gradient(tf.logical_or(tf.logical_and(negtive_mask, selected_neg_mask), positive_mask))
total_examples = tf.reduce_sum(tf.cast(final_mask, tf.float32))
# add mask for glabels and cls_pred here
glabels = tf.boolean_mask(tf.clip_by_value(glabels, 0, FLAGS.num_classes), tf.stop_gradient(final_mask))
cls_pred = tf.boolean_mask(cls_pred, tf.stop_gradient(final_mask))
location_pred = tf.boolean_mask(location_pred, tf.stop_gradient(positive_mask))
gtargets = tf.boolean_mask(gtargets, tf.stop_gradient(positive_mask))
predictions = {
'classes': tf.argmax(cls_pred, axis=-1),
'probabilities': tf.reduce_max(tf.nn.softmax(cls_pred, name='softmax_tensor'), axis=-1),
'bboxes_predict': tf.reshape(bboxes_pred, [-1, 4]) }
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.cond(n_positives > 0., lambda: tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred), lambda: 0.)
#cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred)
| tensorflow.stop_gradient | 2,081 |
import tensorflow as tf
rep_tensor, rep_mask, dep_selection, head_selection, direction=None, hn=None, keep_unselected=True,
scope=None, keep_prob=1., is_train=None, wd=0., activation='elu'):
bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2]
org_ivec = rep_tensor.get_shape().as_list()[2]
ivec = hn or org_ivec
| tensorflow.shape | 2,082 |
from tensorflow.python.framework import ops
else array_ops.shape(x))
batch_shape = array_ops.slice(s, (1,), (self.batch_ndims,))
# Since sample_dims=1 and is left-most, we add 1 to the number of
# batch_ndims to get the event start dim.
event_start = array_ops.where(
self._batch_ndims_is_0, 2, 1 + self.batch_ndims)
event_shape = array_ops.slice(s, (event_start,), (self.event_ndims,))
new_shape = array_ops.concat(0, (sample_shape, batch_shape, event_shape))
x = array_ops.reshape(x, shape=new_shape)
return x
@contextlib.contextmanager
def _name_scope(self, name=None, values=None):
"""Helper function to standardize op scope."""
with ops.name_scope(self.name):
with ops.name_scope(name, values=(
(values or []) + [self.batch_ndims, self.event_ndims])) as scope:
yield scope
def _is_all_constant_helper(self, *args):
"""Helper which returns True if all inputs are constant_value."""
return all(tensor_util.constant_value(x) is not None for x in args)
def _assert_non_negative_int32_scalar(self, x):
"""Helper which ensures that input is a non-negative, int32, scalar."""
x = ops.convert_to_tensor(x, name="x")
if x.dtype.base_dtype != dtypes.int32.base_dtype:
raise TypeError("%s.dtype=%s is not %s" % (x.name, x.dtype, dtypes.int32))
x_value_static = tensor_util.constant_value(x)
if x.get_shape().ndims is not None and x_value_static is not None:
| tensorflow.python.framework.ops.name_scope | 2,083 |
import tensorflow as tf
to arrive at a single scalar output. If False, only collapses the batch
dimension and outputs a vector of the same shape as the input.
name: (Optional) A name for this operation.
Returns:
A `Tensor` of type int64.
"""
with tf.compat.v1.name_scope(name, 'size'):
# Note: Calling `sum` defined in this module, not the builtin.
if isinstance(x, tf.SparseTensor):
ones_like_x = tf.SparseTensor(
indices=x.indices,
values=tf.ones_like(x.values, tf.int64),
dense_shape=x.dense_shape)
| tensorflow.compat.v1.name_scope | 2,084 |
import tensorflow as tf
size = shape[1].value*shape[2].value*shape[3].value
else:
size = shape[-1].value
with tf.variable_scope(layer_name):
w = tf.get_variable(name='weight',
shape=[size, out_nodes],
initializer=tf.constant_initializer(0.0))
b = tf.get_variable(name='bias',
shape=[out_nodes],
initializer=tf.constant_initializer(0.0))
# batch?
flat_x = tf.reshape(x, [-1,size])
x = tf.nn.bias_add(tf.matmul(flat_x,w), b)
x = tf.nn.relu(x)
return x
def lstm():
'''
Build LSTM cell
'''
pass
| tensorflow.reshape | 2,085 |
import tensorflow as tf
img = img / tf.constant([cfgs.PIXEL_STD])
gtboxes_and_label_h = get_horizen_minAreaRectangle(
tf.reshape(gtboxes_and_label_batch[start:end], [-1, 9]))
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [cfgs.BATCH_SIZE, -1, 5])
gtboxes_and_label_q = tf.reshape(gtboxes_and_label_batch[start:end], [cfgs.BATCH_SIZE, -1, 9])
num_objects = num_objects_batch[start:end]
num_objects = tf.cast(tf.reshape(num_objects, [cfgs.BATCH_SIZE, -1, ]), tf.float32)
img_h = img_h_batch[start:end]
| tensorflow.reshape | 2,086 |
import tensorflow as tf
rewards_vec = tf.reshape(rewards, (batch_size, num_tasks))
dones_vec = tf.reshape(dones, (batch_size, num_tasks))
relabelled_obs = self._task_distribution.combine(states_tiled, tasks_tiled)
action_distribution = self._actor(
relabelled_obs, step_type=(), network_state=())[0]
log_pi = common.log_probability(action_distribution, actions_tiled,
action_spec)
log_pi_vec = tf.reshape(log_pi, (batch_size, num_tasks))
logits_vec = (
rewards_vec - log_pi_vec + self._gamma * (1.0 - dones_vec) * q_vals_vec)
if self._relabel_type == "random":
logits_vec = tf.ones_like(logits_vec) # Hack to make sampling random
## End new version
| tensorflow.reshape | 2,087 |
import tensorflow as tf
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
| tensorflow.truncated_normal_initializer | 2,088 |
import tensorflow as tf
ts = 0
with tf.device("/gpu:0"):
approx_scskconv = sc_module.direct_sparse_conv_kd(pd.out_indices, pd.out_values, pd.out_shape, pd.out_block_channel_mapping, pf.out_indices, pf.out_values, pf.out_shape, pf.out_channel_mapping, bias, strides, padding, out_entry_count, dim, max_density, filter_type);
| tensorflow.device | 2,089 |
import tensorflow as tf
self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3
mean, var = tf.nn.moments(tgtimg_z, axes=[0])
print(var.get_shape())
# self.simloss /= tf.reduce_mean(var)
print(tgtimg_z.get_shape())
self.out = output_h4# + contextimg#tf.nn.tanh(h4)
self.out2 = truthoutput_h4
self.recon1 = tf.nn.l2_loss(tgtimg - self.out)
self.recon2 = tf.nn.l2_loss(tgtimg - self.out2)
# self.loss = self.recon1 + self.recon2 + self.simloss
if ablation_type == "None":
self.loss = self.recon1 + self.recon2 + self.simloss
elif ablation_type == "L2":
self.loss = self.recon1 + self.recon2
elif ablation_type == "L2L3":
self.loss = self.recon1
| tensorflow.nn.l2_loss | 2,090 |
import tensorflow as tf
"""Checks that `perm` is valid."""
with tf.name_scope(name, 'maybe_validate_perm', [perm]):
| tensorflow.name_scope | 2,091 |
import tensorflow as tf
nsteps = len(xs)
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
for idx, x in enumerate(xs):
| tensorflow.constant_initializer | 2,092 |
import tensorflow as tf
if FLAGS.task.reset_policy:
# NOTE: reset policy and valuefunc
logger.info("Resetting Policy")
pol_params = tf.get_default_session().run([nn.utils.parameters_to_vector(policy.parameters())])
tf.get_default_session().run(tf.variables_initializer(policy.parameters()))
pol_params_after = tf.get_default_session().run([nn.utils.parameters_to_vector(policy.parameters())])
print ("pol_params:", np.linalg.norm(pol_params), "pol_params_after_reset:", np.linalg.norm(pol_params_after))
logger.info("Resetting Valuefunc")
tf.get_default_session().run(tf.variables_initializer(vfn.parameters()))
tf.get_default_session().run(tf.variables_initializer(warmup_policy.parameters()))
tf.get_default_session().run(tf.variables_initializer(warmup_vfn.parameters()))
for p in warmup_policy.parameters(): p.invalidate()
for p in warmup_vfn.parameters(): p.invalidate()
for p in policy.parameters(): p.invalidate()
for p in vfn.parameters(): p.invalidate()
last_end = None
drops = []
evaluate(settings, 'pre-warm-up')
returns_pre_warmup = testeval(policy, runners['collect'])
if test:
| tensorflow.get_default_session | 2,093 |
import tensorflow as tf
scope: string, variable scope
moments_dims: a list of ints, indicating dimensions for moments calculation
bn_decay: float or float tensor variable, controling moving average weight
Return:
normed: batch-normalized maps
"""
with tf.variable_scope(scope) as sc:
num_channels = inputs.get_shape()[-1].value
beta = tf.Variable(tf.constant(0.0, shape=[num_channels]),
name='beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=[num_channels]),
name='gamma', trainable=True)
batch_mean, batch_var = tf.nn.moments(inputs, moments_dims, name='moments')
decay = bn_decay if bn_decay is not None else 0.9
ema = tf.train.ExponentialMovingAverage(decay=decay)
# Operator that maintains moving averages of variables.
ema_apply_op = tf.cond(is_training,
lambda: ema.apply([batch_mean, batch_var]),
lambda: tf.no_op())
# Update moving average and return current batch's avg and var.
def mean_var_with_update():
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
# ema.average returns the Variable holding the average of var.
mean, var = tf.cond(is_training,
mean_var_with_update,
| tensorflow.train.ExponentialMovingAverage | 2,094 |
import tensorflow as tf
"""Model helper for creating a ResNet model for the CIFAR-10 dataset."""
import tensorflow as tf
from nets.abstract_model_helper import AbstractModelHelper
from datasets.cifar10_dataset import Cifar10Dataset
from utils.external import resnet_model as ResNet
from utils.lrn_rate_utils import setup_lrn_rate_piecewise_constant
from utils.multi_gpu_wrapper import MultiGpuWrapper as mgw
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('resnet_size', 20, '# of layers in the ResNet model')
tf.app.flags.DEFINE_float('nb_epochs_rat', 1.0, '# of training epochs\'s ratio')
tf.app.flags.DEFINE_float('lrn_rate_init', 1e-1, 'initial learning rate')
tf.app.flags.DEFINE_float('batch_size_norm', 128, 'normalization factor of batch size')
tf.app.flags.DEFINE_float('momentum', 0.9, 'momentum coefficient')
tf.app.flags.DEFINE_float('loss_w_dcy', 2e-4, 'weight decaying loss\'s coefficient')
def forward_fn(inputs, is_train, data_format):
"""Forward pass function.
Args:
* inputs: inputs to the network's forward pass
* is_train: whether to use the forward pass with training operations inserted
* data_format: data format ('channels_last' OR 'channels_first')
Returns:
| tensorflow.app.flags.DEFINE_float | 2,095 |
import tensorflow as tf
param_noise_filter_func=param_noise_filter_func)
else:
act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse)
with tf.variable_scope(scope, reuse=reuse):
# set up placeholders
obs_t_input = U.ensure_tf_input(make_obs_ph("obs_t"))
act_t_ph = tf.placeholder(tf.int32, [None], name="action")
rew_t_ph = tf.placeholder(tf.float32, [None], name="reward")
obs_tp1_input = U.ensure_tf_input(make_obs_ph("obs_tp1"))
done_mask_ph = tf.placeholder(tf.float32, [None], name="done")
importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight")
# q network evaluation
| tensorflow.placeholder | 2,096 |
import tensorflow as tf
if init:
x = tf.nn.conv2d(x, tf.nn.l2_normalize(V.initialized_value(), [0, 1, 2]), [1] + list(stride) + [1], pad)
init_scale=.01
m_init, v_init = tf.nn.moments(x, [0,1,2])
scale_init = init_scale / tf.sqrt(v_init + 1e-10)
with tf.control_dependencies([g.assign(g * scale_init), b.assign_add(-m_init * scale_init)]):
x = tf.reshape(scale_init, [1, 1, 1, num_filters]) * (x - tf.reshape(m_init, [1, 1, 1, num_filters]))
else:
V = maybe_avg(V)
g = maybe_avg(g)
b = maybe_avg(b)
# use weight normalization (Salimans & Kingma, 2016)
| tensorflow.reshape | 2,097 |
import tensorflow as tf
filter_size[1] - input_.get_shape().as_list()[2],
input_.get_shape().as_list()[3]
])
res = tf.concat(axis=1, values=[pad_1, res])
res = tf.concat(axis=2, values=[pad_2, res])
res = tf.nn.conv2d(
input=res,
filter=weights,
| tensorflow.concat | 2,098 |
import tensorflow as tf
x_data = tf.placeholder(shape=[sentence_size], dtype=tf.int32)
y_target = tf.placeholder(shape=[1, 1], dtype=tf.float32)
# Text-Vocab Embedding
x_embed = tf.nn.embedding_lookup(identity_mat, x_data)
x_col_sums = tf.reduce_sum(x_embed, 0)
# Declare model operations
x_col_sums_2D = tf.expand_dims(x_col_sums, 0)
model_output = tf.add(tf.matmul(x_col_sums_2D, A), b)
# Declare loss function (Cross Entropy loss)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target))
# Prediction operation
prediction = tf.sigmoid(model_output)
# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.001)
train_step = my_opt.minimize(loss)
# Intitialize Variables
init = tf.global_variables_initializer()
sess.run(init)
# Start Logistic Regression
print('Starting Training Over {} Sentences.'.format(len(texts_train)))
loss_vec = []
train_acc_all = []
train_acc_avg = []
| tensorflow.sigmoid | 2,099 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.