seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
return weighted_average, weights
def no_attention(state, hidden_states, *args, **kwargs):
batch_size = tf.shape(state)[0]
weighted_average = tf.zeros(shape=tf.stack([batch_size, 0]))
weights = tf.zeros(shape=[batch_size, tf.shape(hidden_states)[1]])
return weighted_average, weights
def average_attention(hidden_states, encoder_input_length, *args, **kwargs):
# attention with fixed weights (average of all hidden states)
| tensorflow.shape | 2,100 |
import tensorflow as tf
self.rel_embedding_vars = tf.Variable(rel_init)
# Embedding layer for each (head, rel, tail) triple being fed in as input
head_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.head_input)
tail_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.tail_input)
rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input)
# Relationship vector acts as a translation in entity embedding space
diff_vec = tail_embed - (head_embed + rel_embed)
# negative dist so higher scores are better (important for pairwise loss)
| tensorflow.nn.embedding_lookup | 2,101 |
import tensorflow as tf
optimizer = 'adam',
metrics = ['mae', 'mape']) # mean absolute [percentage] error
return keras.estimator.model_to_estimator(model, model_dir=output_dir)
# Create the inference model
def simple_rnn(features, labels, mode):
# 0. Reformat input shape to become a sequence
x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1)
# 1. Configure the RNN
lstm_cell = rnn.BasicLSTMCell(LSTM_SIZE, forget_bias = 1.0)
outputs, _ = rnn.static_rnn(lstm_cell, x, dtype = tf.float32)
# Slice to keep only the last cell of the RNN
| tensorflow.split | 2,102 |
import tensorflow as tf
hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32)
loss = tf.reshape(loss, [-1])
hard_loss, _ = tf.math.top_k(loss, k=hard_num)
return hard_loss
return loss
def sample_pair(batch):
num_sam = tools.shape(batch)[0]
index = tf.range(num_sam)
tgt1 = tf.slice(batch, [0, 1], [num_sam, 1])
pred1 = tf.slice(batch, [0, 0], [num_sam, 1])
def uniform():
batch2 = tf.gather(batch, tf.random.shuffle(index))
pred2 = tf.slice(batch2, [0, 0], [num_sam, 1])
tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1])
return pred1, pred2, tgt1, tgt2
return uniform
def contra_traj_lossV5(pred, tgt, horizon=12, resample=1, hard_ratio=1.0):
horizon_pred = horizon_sumV1(pred, horizon)
horizon_tgt = horizon_sumV1(tgt, horizon)
pred_flat = tf.reshape(horizon_pred, [-1])
tgt_flat = tf.reshape(horizon_tgt, [-1])
batch = tf.stack([pred_flat, tgt_flat], 1)
sample_func = sample_pair(batch)
| tensorflow.slice | 2,103 |
import tensorflow as tf
perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func")
kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1)
mean_kl = tf.reduce_mean(kl)
def update_scale():
with tf.control_dependencies([perturb_for_adaption]):
update_scale_expr = tf.cond(mean_kl < param_noise_threshold,
lambda: param_noise_scale.assign(param_noise_scale * 1.01),
lambda: param_noise_scale.assign(param_noise_scale / 1.01),
| tensorflow.control_dependencies | 2,104 |
import tensorflow as tf
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
| tensorflow.to_int32 | 2,105 |
import tensorflow as tf
:param strides: [list] List of 4 int, convolution strides.
:param padding: [string] `VALID` or `SAME`, padding method for sparse convolution.
:return [Tensor] [N, H', W', C]. Convolution results.
"""
blk_shape = tf.shape(blk_indices)
blk_indices_ = tf.reshape(blk_indices, [-1, 3])
ksize = tf.shape(w)
# Calculate the block strides.
bstrides = _calc_block_strides(blk_shape, ksize, strides)
# Calculate the output size.
x_shape = tf.shape(x)
| tensorflow.shape | 2,106 |
import tensorflow as tf
# If the input is a 2D tensor of shape [batch_size, seq_length], we
# reshape to [batch_size, seq_length, 1].
if input_ids.shape.ndims == 2:
input_ids = tf.expand_dims(input_ids, axis=[-1])
embedding_table = tf.get_variable(
name=word_embedding_name,
shape=[vocab_size, embedding_size],
initializer=create_initializer(initializer_range))
if use_one_hot_embeddings:
flat_input_ids = tf.reshape(input_ids, [-1])
one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
output = tf.matmul(one_hot_input_ids, embedding_table)
else:
output = tf.nn.embedding_lookup(embedding_table, input_ids)
input_shape = get_shape_list(input_ids)
output = tf.reshape(output,
input_shape[0:-1] + [input_shape[-1] * embedding_size])
return (output, embedding_table)
def embedding_postprocessor(input_tensor,
use_token_type=False,
token_type_ids=None,
token_type_vocab_size=16,
token_type_embedding_name="token_type_embeddings",
use_position_embeddings=True,
| tensorflow.nn.embedding_lookup | 2,107 |
import tensorflow as tf
self.assertEqual(set(six.iterkeys(losses)),
{"extra", "extra_loss", "latent_pred"})
self.evaluate(tf.global_variables_initializer())
decoder_output_, extra_loss_, latent_pred_ = self.evaluate(
[decoder_output, losses["extra_loss"], losses["latent_pred"]])
self.assertEqual(decoder_output_.shape, (batch_size,
| tensorflow.global_variables_initializer | 2,108 |
import tensorflow as tf
'rpn_score_loss', tf.reduce_mean(rpn_score_loss),
step=global_step)
tf.contrib.summary.scalar(
'rpn_box_loss', tf.reduce_mean(rpn_box_loss), step=global_step)
tf.contrib.summary.scalar(
'total_fast_rcnn_loss', tf.reduce_mean(total_fast_rcnn_loss),
step=global_step)
tf.contrib.summary.scalar(
'fast_rcnn_class_loss', tf.reduce_mean(fast_rcnn_class_loss),
step=global_step)
tf.contrib.summary.scalar(
'fast_rcnn_box_loss', tf.reduce_mean(fast_rcnn_box_loss),
step=global_step)
if params['include_mask']:
tf.contrib.summary.scalar(
'mask_loss', tf.reduce_mean(mask_loss), step=global_step)
tf.contrib.summary.scalar(
'learning_rate', tf.reduce_mean(learning_rate),
step=global_step)
return tf.contrib.summary.all_summary_ops()
# To log the loss, current learning rate, and epoch for Tensorboard, the
# summary op needs to be run on the host CPU via host_call. host_call
# expects [batch_size, ...] Tensors, thus reshape to introduce a batch
# dimension. These Tensors are implicitly concatenated to
# [params['batch_size']].
global_step_t = tf.reshape(global_step, [1])
total_loss_t = tf.reshape(total_loss, [1])
total_rpn_loss_t = tf.reshape(total_rpn_loss, [1])
| tensorflow.reduce_mean | 2,109 |
import tensorflow as tf
X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse)
elif norm == 'B':
X = tf.layers.batch_normalization(X, reuse=reuse, training=is_train, name=name)
elif norm == 'G':
X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse)
if dropout > 0.0:
X = tf.layers.dropout(X, dropout, training=is_train)
if slope < 1.0:
| tensorflow.contrib.layers.group_norm | 2,110 |
import tensorflow as tf
raw_data = reader.ptb_raw_data(FLAGS.data_path)
train_data, valid_data, test_data, _ = raw_data
config = get_config()
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input)
tf.summary.scalar("Training Loss", m.cost)
tf.summary.scalar("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
| tensorflow.name_scope | 2,111 |
import tensorflow as tf
dims = tf.reduce_prod(tf.shape(input_var)[1:])
input_var = tf.reshape(input_var,[-1,dims])
def _init():
v_norm = tf.nn.l2_normalize(self.v,axis=0)
t = tf.matmul(input_var,v_norm)
mu,var = tf.nn.moments(t,axes=[0])
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
require_init = tf.reduce_any(tf.is_nan(self.g))
init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b])
with tf.control_dependencies(init_ops):
| tensorflow.sqrt | 2,112 |
import tensorflow as tf
#w=[-1,head,n_ctx,n_ctx]
w = tf.matmul(q, k)
if scale:
n_state = shape_list(v)[-1]
w = w*tf.rsqrt(tf.cast(n_state, tf.float32))
w = mask_attn_weights(w)
w = tf.nn.softmax(w)
w = dropout(w, attn_pdrop, train)
#w=[-1,head,n_ctx,n_ctx],v=[-1,head,n_ctx,emb]
a = tf.matmul(w, v)
return a
| tensorflow.nn.softmax | 2,113 |
import tensorflow as tf
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
| tensorflow.flags.DEFINE_string | 2,114 |
import tensorflow as tf
attn_dists.append(attn_dist_t)
p_gens.append(p_gen_t)
vocab_scores.append(output_t) # The vocabulary distributions.
state_t_1 = state_t
context_t_1 = context_t
coverage_t_1 = coverage_t
if mode_gen == 'greedy':
wordidx_t = tf.argmax(output_t, 1) # [batch_size]
wordidx_t = tf.reshape(wordidx_t, [-1]) # [batch_size]
elif mode_gen == 'sample':
log_score_t = tf.log(output_t) # [batch_size, vsize]
wordidx_t = tf.multinomial(log_score_t, 1) # [batch_size, 1]
wordidx_t = tf.reshape(wordidx_t, [-1]) # [batch_size]
elif mode_gen in ('ce_train', 'loss',):
wordidx_t = answer_batch_unstack[i]
else:
| tensorflow.argmax | 2,115 |
import tensorflow as tf
else:
X = self.t_conv(name + '_deconf', X, filter, f_size, 1, (not norm) and use_bias, "VALID", stddev)
if norm == 'I':
X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse)
elif norm == 'B':
X = tf.layers.batch_normalization(X, reuse=reuse, training=is_train, name=name)
elif norm == 'G':
X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse)
if dropout > 0.0:
X = tf.layers.dropout(X, dropout, training=is_train)
if slope < 1.0:
X = tf.nn.leaky_relu(X, slope) if slope > 0.0 else tf.nn.relu(X)
return X
F = 3
norm = self.args.norm
# print('norm', norm)
# print('skip cons', self.args.skip_connections)
# print('VNET In:', I.get_shape().as_list())
if adaption_net:
# print('ada scope T/R', is_train, reuse_ada)
| tensorflow.nn.leaky_relu | 2,116 |
import tensorflow as tf
step_size=step_size,
scale_fn=lambda x: 1.0,
scale_mode=scale_mode,
name=name,
)
@tf.keras.utils.register_keras_serializable(package="Addons")
class Triangular2CyclicalLearningRate(CyclicalLearningRate):
def __init__(
self,
initial_learning_rate,
maximal_learning_rate,
step_size,
| tensorflow.keras.utils.register_keras_serializable | 2,117 |
import tensorflow as tf
x = inputs
x0 = tf.transpose(x, perm=[1, 2,0]) # (num_nodes, total_arg_size, batch_size)
x0 = tf.reshape(x0, shape=[self._num_nodes, input_size * batch_size])
x = tf.expand_dims(x0, axis=0)
scope = tf.get_variable_scope()
with tf.variable_scope(scope):
if self._max_diffusion_step == 0:
pass
else:
for support in self._supports:
x1 = tf.sparse_tensor_dense_matmul(support, x0)
| tensorflow.variable_scope | 2,118 |
from tensorflow.contrib import metrics as metrics_lib
def _predictions_streaming_mean(predictions, unused_targets):
return metrics_lib.streaming_mean(predictions)
| tensorflow.contrib.metrics.streaming_mean | 2,119 |
import tensorflow as tf
to create a local gradient computation on their machine.
"""
_, _, grads = self._build_model(x, y)
return grads
def _build_validation_model(self, x, y):
predictions, loss, _ = self._build_model(x, y)
most_likely = tf.argmax(predictions, axis=1)
return most_likely, loss
def _build_data_pipeline(self):
def normalize(image, label):
image = tf.cast(image, tf.float32) / 255.0
return image, label
dataset = tf.data.TFRecordDataset(["./data/train.tfrecord"])
dataset = dataset.map(decode)
dataset = dataset.map(normalize)
dataset = dataset.batch(50)
dataset = dataset.take(1) # keep validating on the same items
dataset = dataset.repeat()
iterator = dataset.make_one_shot_iterator()
return iterator.get_next()
| tensorflow.cast | 2,120 |
import tensorflow as tf
def get_session():
tf.reset_default_graph()
tf_config = tf.ConfigProto(
inter_op_parallelism_threads=1,
intra_op_parallelism_threads=1)
| tensorflow.ConfigProto | 2,121 |
import tensorflow as tf
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
with tf.name_scope('v'):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
tmp1 = tf.tensordot(facts, w1, axes=1)
tmp2 = tf.tensordot(query, w2, axes=1)
tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tmp = tf.tanh((tmp1 + tmp2) + b)
# For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector
v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape
key_masks = mask # [B, 1, T]
# key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1)
v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T]
alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape
# Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
#output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1)
output = facts * tf.expand_dims(alphas, -1)
output = tf.reshape(output, tf.shape(facts))
# output = output / (facts.get_shape().as_list()[-1] ** 0.5)
if not return_alphas:
return output
else:
return output, alphas
def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False):
| tensorflow.where | 2,122 |
import tensorflow as tf
ckpt: Path to existing checkpoint. If present, returns only the subset of
variables that exist in given checkpoint.
Returns:
List of all variables that need to be saved/restored.
"""
model_vars = tf.trainable_variables()
# Add batchnorm variables.
bn_vars = [v for v in tf.global_variables()
if 'moving_mean' in v.op.name or 'moving_variance' in v.op.name or
'mu' in v.op.name or 'sigma' in v.op.name or
'global_scale_var' in v.op.name]
| tensorflow.trainable_variables | 2,123 |
import tensorflow as tf
tf.app.flags.DEFINE_string('postfix', '', 'Postfix for the training folder')
tf.app.flags.DEFINE_float('alpha', 10, 'Predictive reconstruction loss weight')
tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight')
tf.app.flags.DEFINE_float('epsilon', 0.000001,
'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5')
| tensorflow.app.flags.DEFINE_float | 2,124 |
import tensorflow as tf
# Add a summary to track the learning rate.
summaries.append(tf.summary.scalar('learning_rate', lr))
| tensorflow.summary.scalar | 2,125 |
import tensorflow as tf
# for summary
with tf.name_scope('accuracy') as scope:
correct = tf.equal(tf.arg_max(logits,1), tf.arg_max(labels,1))
correct = tf.cast(correct, tf.float32)
accuracy = tf.reduce_mean(correct)*100.0
tf.summary.scalar(scope+'accuracy',accuracy)
return accuracy
| tensorflow.reduce_mean | 2,126 |
import tensorflow as tf
[per_example_loss, label_ids, logits, is_real_example])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
# The code to modify out_put nodes
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={"probabilities": probabilities},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
| tensorflow.contrib.tpu.TPUEstimatorSpec | 2,127 |
import tensorflow as tf
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
| tensorflow.nn.bias_add | 2,128 |
import tensorflow as tf
"""Convert indices to one-hot."""
shape = input_.get_shape().as_list()
n_elem = numpy.prod(shape)
indices = tf.range(n_elem)
indices = tf.cast(indices, tf.int64)
indices_input = tf.concat(axis=0, values=[indices, tf.reshape(input_, [-1])])
indices_input = tf.reshape(indices_input, [2, -1])
indices_input = tf.transpose(indices_input)
| tensorflow.cast | 2,129 |
from tensorflow.python.layers import convolutional as conv_layers
padding = [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]
if self.data_format == 'NCHW':
padding = [padding[0], padding[3], padding[1], padding[2]]
input_layer = tf.pad(input_layer, padding)
conv = conv_layers.conv2d(
input_layer,
num_out_channels, [k_height, k_width],
strides=[d_height, d_width],
| tensorflow.python.layers.convolutional.conv2d | 2,130 |
from tensorflow.python.framework import ops as _ops
tensor=tensor,
tensor_name=tensor_name,
send_device=send_device,
send_device_incarnation=0,
recv_device=recv_device,
client_terminated=False,
name=name if name else "Send")
return result
_ops.RegisterShape("_Send")(None)
def _XlaSend(tensor, tensor_name, name=None):
r"""Sends the named tensor from send_device to recv_device.
Args:
tensor: A `Tensor`. The tensor to send.
tensor_name: A `string`. The name of the tensor to send.
name: A name for the operation (optional).
| tensorflow.python.framework.ops.RegisterShape | 2,131 |
from tensorflow.python.ops import gen_state_ops
shape = shape.merge_with(input_tensor.get_shape())
if not shape.is_fully_defined():
# TODO(pbar): Make a version of assign_add that accepts an uninitialized
# lvalue, and takes its shape from that? This would allow accumulate_n to
# work in all situations that add_n currently works.
raise ValueError("Cannot infer the shape of the accumulator for "
"accumulate_n. Pass the shape argument, or set the shape "
"of at least one of the inputs.")
with ops.op_scope(inputs, name, "AccumulateN") as name:
var = gen_state_ops._temporary_variable(shape=shape, dtype=tensor_dtype)
var_name = var.op.name
var = state_ops.assign(var, array_ops.zeros_like(inputs[0]))
update_ops = []
for input_tensor in inputs:
op = state_ops.assign_add(var, input_tensor, use_locking=True)
update_ops.append(op)
with ops.control_dependencies(update_ops):
return gen_state_ops._destroy_temporary_variable(var,
| tensorflow.python.ops.gen_state_ops._temporary_variable | 2,132 |
import tensorflow as tf
e_related_to_mean = tf.zeros((num_data, num_func, num_func), dtype=settings.float_type)
else:
# Update mean: \mu(x) + m(x)
fmean = fmean + expectation(pXnew, mean_function)
# Calculate: m(x) m(x)^T + m(x) \mu(x)^T + \mu(x) m(x)^T,
# where m(x) is the mean_function and \mu(x) is fmean
e_mean_mean = expectation(pXnew, mean_function, mean_function) # N x D x D
Lit_q_mu = tf.matrix_triangular_solve(Luu, q_mu, adjoint=True)
e_mean_Kuf = expectation(pXnew, mean_function, (kern, feat)) # N x D x M
# einsum isn't able to infer the rank of e_mean_Kuf, hence we explicitly set the rank of the tensor:
e_mean_Kuf = tf.reshape(e_mean_Kuf, [num_data, num_func, num_ind])
e_fmean_mean = tf.einsum("nqm,mz->nqz", e_mean_Kuf, Lit_q_mu) # N x D x D
e_related_to_mean = e_fmean_mean + tf.matrix_transpose(e_fmean_mean) + e_mean_mean
if full_output_cov:
| tensorflow.matrix_triangular_solve | 2,133 |
import tensorflow as tf
else:
mean_loss = tf.reduce_mean(all_shards)
losses[loss_name] = mean_loss
return losses
def summarize_features(features, num_shards=1):
with tf.name_scope("input_stats"):
for (k, v) in six.iteritems(features):
if isinstance(v, tf.Tensor) and v.get_shape().ndims > 1:
tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards)
tf.summary.scalar("%s_length" % k, tf.shape(v)[1])
nonpadding = tf.to_float(tf.not_equal(v, 0))
nonpadding_tokens = tf.reduce_sum(nonpadding)
tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens)
tf.summary.scalar("%s_nonpadding_fraction" % k,
tf.reduce_mean(nonpadding))
_already_logged = set()
def _eager_log(level, *args):
| tensorflow.shape | 2,134 |
from tensorflow.contrib.distributions.python.ops import distribution_util
(1. + self.alpha) * math_ops.digamma(self.alpha))
@distribution_util.AppendDocstring(
"""The mean of an inverse gamma distribution is `beta / (alpha - 1)`,
| tensorflow.contrib.distributions.python.ops.distribution_util.AppendDocstring | 2,135 |
import tensorflow as tf
self.y2 = tf.argmax(tf.slice(self.y2, [0, 0], [N, self.c_maxlen]),axis=-1)
else:
self.c_maxlen, self.q_maxlen = config.para_limit, config.ques_limit
self.ch_len = tf.reshape(tf.reduce_sum(
tf.cast(tf.cast(self.ch, tf.bool), tf.int32), axis=2), [-1])
self.qh_len = tf.reshape(tf.reduce_sum(
tf.cast(tf.cast(self.qh, tf.bool), tf.int32), axis=2), [-1])
self.forward()
total_params()
if trainable:
self.lr = tf.minimum(config.learning_rate, 0.001 / tf.log(999.) * tf.log(tf.cast(self.global_step, tf.float32) + 1))
self.opt = tf.train.AdamOptimizer(learning_rate = self.lr, beta1 = 0.8, beta2 = 0.999, epsilon = 1e-7)
grads = self.opt.compute_gradients(self.loss)
gradients, variables = zip(*grads)
capped_grads, _ = tf.clip_by_global_norm(
gradients, config.grad_clip)
self.train_op = self.opt.apply_gradients(
zip(capped_grads, variables), global_step=self.global_step)
def forward(self):
config = self.config
N, PL, QL, CL, d, dc, nh = config.batch_size if not self.demo else config.batch_size, self.c_maxlen, self.q_maxlen, config.char_limit, config.hidden, config.char_dim, config.num_heads
| tensorflow.log | 2,136 |
import tensorflow as tf
scope.reuse_variables()
print('D in:', X.get_shape().as_list())
X = self.conv('DZ1', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ2', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ3', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ4', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = discrim_conv('d_out', X, 1, 1, norm=False, nonlin=False, init_stddev=0.02)
| tensorflow.nn.leaky_relu | 2,137 |
import tensorflow as tf
attended_span_emb = tf.reduce_sum(tf.expand_dims(top_antecedent_weights, 2) * top_antecedent_emb, 1) # [k, emb]
with tf.variable_scope("f"):
f = tf.sigmoid(util.projection(tf.concat([top_span_emb, attended_span_emb], 1), util.shape(top_span_emb, -1))) # [k, emb]
top_span_emb = f * attended_span_emb + (1 - f) * top_span_emb # [k, emb]
| tensorflow.concat | 2,138 |
import tensorflow as tf
if decoder.pred_deep_layer:
deep_layer_size = decoder.pred_deep_layer_size or decoder.embedding_size
if decoder.layer_norm:
output_ = dense(output_, deep_layer_size, use_bias=False, name='deep_output')
output_ = tf.contrib.layers.layer_norm(output_, activation_fn=tf.nn.tanh, scope='output_layer_norm')
else:
output_ = dense(output_, deep_layer_size, activation=tf.tanh, use_bias=True, name='deep_output')
if decoder.use_dropout:
size = tf.shape(output_)[1]
noise_shape = [1, size] if decoder.pervasive_dropout else None
output_ = tf.nn.dropout(output_, keep_prob=decoder.deep_layer_keep_prob, noise_shape=noise_shape)
else:
if decoder.pred_maxout_layer:
maxout_size = decoder.maxout_size or cell_output_size
output_ = dense(output_, maxout_size, use_bias=True, name='maxout')
if decoder.old_maxout: # for back-compatibility with old models
output_ = tf.nn.pool(tf.expand_dims(output_, axis=2), window_shape=[2], pooling_type='MAX',
padding='SAME', strides=[2])
| tensorflow.shape | 2,139 |
import tensorflow as tf
with tf.variable_scope("loss", reuse=reuse):
# set up placeholders
act_t_ph = tf.placeholder(tf.int32, [None], name="action")
rew_t_ph = tf.placeholder(tf.float32, [None], name="reward")
done_mask_ph = tf.placeholder(tf.float32, [None], name="done")
importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight")
| tensorflow.placeholder | 2,140 |
import tensorflow as tf
# data processing
inputs_list = []
for i in range(num_gpu):
img = tf.expand_dims(img_batch[i], axis=0)
pretrain_zoo = PretrainModelZoo()
if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo:
img = img / tf.constant([cfgs.PIXEL_STD])
gtboxes_and_label_r = tf.py_func(backward_convert,
inp=[gtboxes_and_label_batch[i]],
Tout=tf.float32)
gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6])
gtboxes_and_label_h = get_horizen_minAreaRectangle(gtboxes_and_label_batch[i])
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5])
num_objects = num_objects_batch[i]
num_objects = tf.cast(tf.reshape(num_objects, [-1, ]), tf.float32)
img_h = img_h_batch[i]
img_w = img_w_batch[i]
| tensorflow.reshape | 2,141 |
import tensorflow as tf
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
| tensorflow.flags.DEFINE_string | 2,142 |
import tensorflow as tf
original_shape = labels.get_shape().as_list()
if labels.get_shape().ndims > 0:
original_shape[0] = -1
if labels.get_shape().ndims <= 1:
labels = tf.reshape(labels, [-1, 1])
logits = tf.reshape(logits, [-1, 1])
if weights.get_shape().ndims == 1:
# Weights has shape [batch_size]. Reshape to [batch_size, 1].
| tensorflow.reshape | 2,143 |
import tensorflow as tf
except ImportError:
pass
else:
tf.set_random_seed(i)
np.random.seed(i)
random.seed(i)
| tensorflow.set_random_seed | 2,144 |
import tensorflow as tf
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
| tensorflow.array_ops.transpose | 2,145 |
import tensorflow as tf
self.assertEqual((2, 5), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].c.shape)
self.assertEqual((2, 2), res[0].h.shape)
# Test with state_is_tuple=False.
with tf.variable_scope("no_tuple"):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
dec, mem = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 4), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
| tensorflow.global_variables_initializer | 2,146 |
import tensorflow as tf
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
| tensorflow.layers.dense | 2,147 |
import tensorflow as tf
except:
t_vars = tf.all_variables()
| tensorflow.all_variables | 2,148 |
import tensorflow as tf
def _anchor_component(self):
with tf.variable_scope('ANCHOR_' + 'default'):
# just to get the shape right
# 根据原始输入图片通过VGG16的conv5_3后,缩小16倍,得到RPN的输入feature map大小
height = tf.to_int32(tf.ceil(self._im_info[0, 0] / np.float32(self._feat_stride[0])))
width = tf.to_int32(tf.ceil(self._im_info[0, 1] / np.float32(self._feat_stride[0])))
#得到一张输入图片的所有anchor在原输入image上的坐标,以及anchor的数量
anchors, anchor_length = tf.py_func(generate_anchors_pre,
[height, width,
self._feat_stride, self._anchor_scales, self._anchor_ratios],
[tf.float32, tf.int32], name="generate_anchors")
anchors.set_shape([None, 4])
anchor_length.set_shape([])
self._anchors = anchors
self._anchor_length = anchor_length
| tensorflow.py_func | 2,149 |
import tensorflow as tf
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size
self.epsilon = epsilon
self.epsilon_decay = epsilon_decay
self.epsilon_min = 0.1
self.learn_step_cnt = 0 # total learning step
self.episode_cnt = 0
self.memory = []
self.memory_counter = 0
self._build_net()
t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/target_net')
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/eval_net')
e_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/eval_hyper')
t_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/target_hyper')
with tf.variable_scope('soft_replacement'):
self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = 'logs/' + current_time
self.summary_writer = tf.summary.FileWriter(train_log_dir, self.sess.graph)
def _build_net(self): # we use parameter sharing among agents
with tf.variable_scope(self.name):
| tensorflow.get_collection | 2,150 |
import tensorflow as tf
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
if mask is not None:
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
if not forCnn:
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
# Activation
| tensorflow.expand_dims | 2,151 |
import tensorflow as tf
if dropout:
h_logits = tf.nn.dropout(h_logits, 0.5)
out_logits = tf.matmul(h_logits, w_out) + b_out
return out_logits
| tensorflow.matmul | 2,152 |
import tensorflow as tf
self.assertEqual((2, 2), res[0].shape)
def testDynamicAttentionDecoder2(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
cell = tf.nn.rnn_cell.GRUCell(2)
inp = tf.constant(0.5, shape=[2, 2, 2])
enc_outputs, enc_state = tf.nn.dynamic_rnn(cell, inp, dtype=tf.float32)
attn_states = enc_outputs
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
| tensorflow.nn.rnn_cell.GRUCell | 2,153 |
import tensorflow as tf
# time-step.
dec_inp_dict2 = {}
dec_inp_dict2["0"] = [
tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
dec_inp_dict2["1"] = [
tf.constant(0, tf.int32, shape=[2]) for _ in range(4)]
| tensorflow.constant | 2,154 |
import tensorflow as tf
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
if not forCnn:
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
# Activation
| tensorflow.expand_dims | 2,155 |
import tensorflow as tf
learning_rate=config.learning_rate).minimize(cost)
correct_prediction = tf.equal(tf.argmax(pred_Y, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32))
| tensorflow.argmax | 2,156 |
from tensorflow.python.ops import sparse_ops
hashed_output=True,
num_buckets=1024,
hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY)
cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
with session.Session():
values = cross_dense.eval()
| tensorflow.python.ops.sparse_ops.sparse_tensor_to_dense | 2,157 |
import tensorflow as tf
images = tf.cast(images, data_type)
network = ConvNetBuilder(
images, input_nchan, phase_train, self.data_format, data_type)
self.model_conf.add_inference(network)
# Add the final fully-connected class layer
logits = network.affine(nclass, activation='linear')
if not phase_train:
top_1_op = tf.reduce_sum(
tf.cast(tf.nn.in_top_k(logits, labels, 1), data_type))
top_5_op = tf.reduce_sum(
tf.cast(tf.nn.in_top_k(logits, labels, 5), data_type))
return (logits, top_1_op, top_5_op)
loss = loss_function(logits, labels)
params = self.variable_mgr.trainable_variables_on_device(device_num)
l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in params])
weight_decay = FLAGS.weight_decay
| tensorflow.nn.in_top_k | 2,158 |
import tensorflow as tf
decay=self._decay_rate,
name="update_moving_mean").op
update_variance_op = moving_averages.assign_moving_average(
variable=self._moving_variance,
value=variance,
decay=self._decay_rate,
name="update_moving_variance").op
return update_mean_op, update_variance_op
def build_no_ops():
return (tf.no_op(), tf.no_op())
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
is_training_const = utils.constant_value(is_training)
if is_training_const is None or is_training_const:
update_mean_op, update_variance_op = utils.smart_cond(
is_training,
build_update_ops,
build_no_ops,
)
| tensorflow.no_op | 2,159 |
from tensorflow.python.framework import ops
"""
with ops.op_scope([x], name, "Sigmoid") as name:
| tensorflow.python.framework.ops.op_scope | 2,160 |
import tensorflow as tf
)
return params
def import_params(model_dir, model_name, params):
model_dir = os.path.abspath(model_dir)
p_name = os.path.join(model_dir, "params.json")
m_name = os.path.join(model_dir, model_name + ".json")
if not tf.gfile.Exists(p_name) or not tf.gfile.Exists(m_name):
return params
with tf.gfile.Open(p_name) as fd:
tf.logging.info("Restoring hyper parameters from %s" % p_name)
json_str = fd.readline()
params.parse_json(json_str)
with tf.gfile.Open(m_name) as fd:
tf.logging.info("Restoring model parameters from %s" % m_name)
| tensorflow.gfile.Exists | 2,161 |
import tensorflow as tf
tgt_flat = tf.reshape(tgt, [-1])
batch = tf.stack([pred_flat, tgt_flat], 1)
num_sam = tools.shape(batch)[0]
index = tf.range(num_sam)
divider = tf.constant(resample, dtype=tf.float32)
| tensorflow.range | 2,162 |
import tensorflow as tf
batch_size = tf.shape(attention_weights)[0]
src_len = tf.shape(attention_weights)[2]
trg_len = tf.shape(attention_weights)[1]
src_indices = tf.tile(tf.reshape(tf.range(src_len), shape=[1, 1, src_len]), [batch_size, trg_len, 1])
trg_indices = tf.tile(tf.reshape(tf.range(trg_len), shape=[1, trg_len, 1]), [batch_size, 1, src_len])
source_length = encoder_input_length[0]
target_length = tf.to_int32(tf.reduce_sum(trg_mask, axis=1))
true_src_len = tf.reshape(source_length, shape=[batch_size, 1, 1]) - 1
true_trg_len = tf.reshape(target_length, shape=[batch_size, 1, 1]) - 1
| tensorflow.range | 2,163 |
import tensorflow as tf
channels = shape[3]
res = tf.reshape(input_, [batch_size, height, 1, width, 1, channels])
res = tf.concat(
axis=2, values=[res, tf.zeros([batch_size, height, stride - 1, width, 1, channels])])
res = tf.concat(axis=4, values=[
res, tf.zeros([batch_size, height, stride, width, stride - 1, channels])
])
res = tf.reshape(res, [batch_size, stride * height, stride * width, channels])
return res
| tensorflow.zeros | 2,164 |
import tensorflow as tf
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
def simple_model(img_in, num_actions, scope, reuse=False, num_filters=64):
with tf.variable_scope(scope, reuse=reuse):
out = img_in
gauss_initializer = initializers.xavier_initializer(uniform=False) # stddev = 1/n
with tf.variable_scope("convnet"):
out = layers.convolution2d(
out, num_outputs=num_filters, kernel_size=8, stride=4,
activation_fn=tf.nn.relu, weights_initializer=gauss_initializer,
trainable=False)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
| tensorflow.variable_scope | 2,165 |
import tensorflow as tf
# Optimizer for Non-Variational Autoencoders
if model_name in ('gcn_ae', 'linear_ae', 'deep_gcn_ae'):
opt = OptimizerAE(preds = model.reconstructions,
labels = tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'],
validate_indices = False), [-1]),
pos_weight = pos_weight,
| tensorflow.sparse_tensor_to_dense | 2,166 |
import tensorflow as tf
def full_featurespec():
return {
'bounding_box_samples': tf.io.FixedLenFeature([100000, 4], tf.float32),
'depth_renders': tf.io.FixedLenFeature([20, 224, 224, 1], tf.float32),
'mesh_name': tf.io.FixedLenFeature([], tf.string),
'near_surface_samples': tf.io.FixedLenFeature([100000, 4], tf.float32),
'grid': tf.io.FixedLenFeature([32, 32, 32], tf.float32),
'world2grid': tf.io.FixedLenFeature([4, 4], tf.float32),
'surface_point_samples': tf.io.FixedLenFeature([10000, 6], tf.float32)
}
def parse_tf_example(example_proto):
d = tf.io.parse_single_example(example_proto, full_featurespec())
return (d['bounding_box_samples'], d['depth_renders'], d['mesh_name'],
d['near_surface_samples'], d['grid'], d['world2grid'],
d['surface_point_samples'])
| tensorflow.io.FixedLenFeature | 2,167 |
from tensorflow.python.framework import constant_op
from tensorflow.python.ops import variables
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import test
class OpsTest(test.TestCase):
"""Ops tests."""
def test_softmax_classifier(self):
with self.cached_session() as session:
features = array_ops.placeholder(dtypes.float32, [None, 3])
labels = array_ops.placeholder(dtypes.float32, [None, 2])
weights = constant_op.constant([[0.1, 0.1], [0.1, 0.1], [0.1, 0.1]])
biases = constant_op.constant([0.2, 0.3])
class_weight = constant_op.constant([0.1, 0.9])
prediction, loss = ops.softmax_classifier(features, labels, weights,
biases, class_weight)
self.assertEqual(prediction.get_shape()[1], 2)
self.assertEqual(loss.get_shape(), [])
value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]})
self.assertAllClose(value, 0.55180627)
def test_embedding_lookup(self):
d_embed = 5
| tensorflow.python.framework.constant_op.constant | 2,168 |
import tensorflow as tf
loss_total = loss_base_1 + loss_base_2 + tf.reduce_sum(reg_losses)
with tf.variable_scope("evaluation"):
accuracy_1 = tf.reduce_mean(tf.cast(tf.equal(
tf.argmax(output_1, axis=-1),
tf.argmax(y_1, axis=-1)), tf.float32), name="accuracy_1")
accuracy_2 = tf.reduce_mean(tf.cast(tf.equal(
tf.argmax(output_2, axis=-1),
tf.argmax(y_2, axis=-1)), tf.float32), name="accuracy_2")
accuracy = tf.divide(accuracy_1 + accuracy_2, 2.0, name="accuracy")
with tf.variable_scope("train"):
global_step = tf.get_variable("global_step", shape=(), dtype=tf.int32, trainable=False)
train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss_total, global_step=global_step)
| tensorflow.argmax | 2,169 |
import tensorflow as tf
return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \
tf.SparseTensor(*sp_returns[6:])
| tensorflow.SparseTensor | 2,170 |
import tensorflow as tf
indices.active_block_indices,
x,
dynamic_bsize=tf.constant(block_params.bsize_out, dtype=tf.int32),
dynamic_bstride=tf.constant(block_params.bstrides, dtype=tf.int32),
dynamic_boffset=tf.constant([0, 0], dtype=tf.int32),
add=False,
transpose=transpose,
atomic=atomic)
else:
y = sbnet_module.sparse_scatter(
q,
indices.bin_counts,
indices.active_block_indices,
x,
dynamic_bsize=tf.constant(block_params.bsize_out, dtype=tf.int32),
dynamic_bstride=tf.constant(block_params.bsize_out, dtype=tf.int32),
dynamic_boffset=tf.constant([0, 0], dtype=tf.int32),
add=False,
transpose=transpose,
atomic=atomic)
return y
def _batch_norm(name, x, is_training, data_format='NHWC'):
"""
Applies batch normalization.
:param name: [string] Name of the variable scope.
| tensorflow.constant | 2,171 |
import tensorflow as tf
# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope)
| tensorflow.name_scope | 2,172 |
import tensorflow as tf
features = self.features
# batch normalize feature vectors
features = self._batch_norm(features, mode='test', name='conv_features')
c, h = self._get_initial_lstm(features=features)
features_proj = self._project_features(features=features)
sampled_word_list = []
alpha_list = []
beta_list = []
lstm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=self.H, reuse=tf.get_variable_scope().reuse)
for t in range(max_len):
if t == 0:
x = self._word_embedding(inputs=tf.fill([tf.shape(features)[0]], self._start))
else:
x = self._word_embedding(inputs=sampled_word, reuse=True)
context, alpha = self._attention_layer(features, features_proj, h, reuse=(t!=0))
alpha_list.append(alpha)
if self.selector:
context, beta = self._selector(context, h, reuse=(t!=0))
beta_list.append(beta)
with tf.variable_scope('lstm', reuse=(t!=0)):
_, (c, h) = lstm_cell(inputs=tf.concat(axis=1, values=[x, context]), state=[c, h])
logits = self._decode_lstm(x, h, context, reuse=(t!=0))
| tensorflow.shape | 2,173 |
import tensorflow as tf
tf.summary.scalar('rewards', tf.reduce_mean(self.reward_ph))
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate))
tf.summary.scalar('advantage', tf.reduce_mean(adv))
tf.summary.scalar('action_probability', tf.reduce_mean(self.mu_ph))
if self.full_tensorboard_log:
tf.summary.histogram('rewards', self.reward_ph)
tf.summary.histogram('learning_rate', self.learning_rate)
tf.summary.histogram('advantage', adv)
tf.summary.histogram('action_probability', self.mu_ph)
if tf_util.is_image(self.observation_space):
tf.summary.image('observation', train_model.obs_ph)
else:
tf.summary.histogram('observation', train_model.obs_ph)
trainer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_ph, decay=self.rprop_alpha,
| tensorflow.summary.histogram | 2,174 |
import tensorflow as tf
Returns:
A 1-D tensor of length batch_size of same type as logits with softmax focal loss
"""
with tf.name_scope(scope, 'focal_loss', [cls_preds, onehot_labels]) as sc:
logits = tf.convert_to_tensor(cls_preds)
onehot_labels = tf.convert_to_tensor(onehot_labels)
precise_logits = tf.cast(logits, tf.float32) if (
logits.dtype == tf.float16) else logits
onehot_labels = tf.cast(onehot_labels, precise_logits.dtype)
predictions = tf.nn.sigmoid(logits)
predictions_pt = tf.where(tf.equal(onehot_labels, 1), predictions, 1.-predictions)
# add small value to avoid 0
epsilon = 1e-8
alpha_t = tf.scalar_mul(alpha, tf.ones_like(onehot_labels, dtype=tf.float32))
alpha_t = tf.where(tf.equal(onehot_labels, 1.0), alpha_t, 1-alpha_t)
losses = tf.reduce_sum(-alpha_t * tf.pow(1. - predictions_pt, gamma) * tf.log(predictions_pt+epsilon),
name=name, axis=1)
| tensorflow.cast | 2,175 |
import tensorflow as tf
if isinstance(k_size, list):
filter_shape = [k_size[0], k_size[1]] + [in_channel, out_dims]
else:
filter_shape = [k_size, k_size] + [in_channel, out_dims]
if w_init is None:
w_init = tf.contrib.layers.variance_scaling_initializer()
if b_init is None:
b_init = tf.constant_initializer()
w = tf.get_variable('W', filter_shape, initializer=w_init)
b = None
if use_bias:
b = tf.get_variable('b', [out_dims], initializer=b_init)
conv = tf.nn.atrous_conv2d(value=input_tensor, filters=w, rate=rate,
padding=padding, name='dilation_conv')
if use_bias:
ret = tf.add(conv, b)
else:
ret = conv
return ret
@staticmethod
def spatial_dropout(input_tensor, keep_prob, is_training, name, seed=1234):
"""
| tensorflow.get_variable | 2,176 |
import tensorflow as tf
else:
scalar = reduce_fn(args[i])
with tf.contrib.summary.record_summaries_every_n_global_steps(
100, global_step=step):
tf.contrib.summary.scalar(prefix + name, scalar, step=step)
return tf.contrib.summary.all_summary_ops()
global_step_tensor = tf.reshape(tf.train.get_or_create_global_step(), [1])
other_tensors = [tf.reshape(monitor_dict[key], [1]) for key in metric_names]
return host_call_fn, [global_step_tensor] + other_tensors
| tensorflow.contrib.summary.all_summary_ops | 2,177 |
import tensorflow as tf
is_succ = 'Fail'
print('Finish attack 2. The %d batch in total %d(%f sec) %s' % (
i, FLAGS.eval_batch_count, time.time() - time_start, is_succ))
else:
print('The %d batch in total %d, the eps = %f (%f sec)' % (
i, FLAGS.eval_batch_count, 0.05 * k, time.time() - time_start))
#Local logits
(predict_ADV,logits_part_adv) = sess.run(
[predict_adv, tsne_logit_adv],feed_dict={adv_image:adv_img}
)
#Local entropy and confidence for nor_img
(entropy_test_nor_help,labels_nor_help,confidence_test_nor_help) = sess.run(
[entropy,tf.argmax(predict,axis=1),tf.reduce_max(predict, axis=1)],feed_dict={predict:predict_NOR}
)
# Local entropy and confidence for adv_img
(entropy_test_adv_help, labels_adv_help, confidence_test_adv_help) = sess.run(
[entropy, tf.argmax(predict, axis=1), tf.reduce_max(predict, axis=1)], feed_dict={predict: predict_ADV}
)
if FLAGS.attack_method == 'carliniL2_specific' or FLAGS.attack_method == 'carliniL2_highden':
print('Log-density-ratio in attacking function of nor/adv is %f'%np.sum(log_density_ratio))
m_tsne_logits_adv = (copy.copy(logits_part_adv)).reshape((1, 64))
m_tsne_logits_adv = np.repeat(m_tsne_logits_adv,100,axis=0)
kernel_train = (copy.copy(e_kernel_train[:,:,np.argmax(target_lab)])).reshape((100,64))
log_density_ratio2 = -np.log(1e-30+np.mean(np.exp(-np.sum(np.square(m_tsne_logits_adv
| tensorflow.argmax | 2,178 |
import tensorflow as tf
features["label_ids"] = create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
| tensorflow.train.Features | 2,179 |
import tensorflow as tf
data_format='channels_last', padding= "same",
strides=(2, 1),
activation=tf.nn.relu)
pool5 = conv5
pool5 = tf.transpose(pool5, [0, 3, 1, 2])
size = pool5.shape[-1] * pool5.shape[-2] * pool5.shape[-3]
logits = tf.layers.dense(tf.reshape(pool5,(-1, size)), units=256*amp_factor)
return logits
| tensorflow.reshape | 2,180 |
import tensorflow as tf
# Tensorboard visualization
tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss)
tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss)
tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss)
tf.summary.scalar(name='Generator Loss', tensor=generator_loss)
tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss)
tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent)
tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution)
tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label)
tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution)
tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10)
tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
summary_op = tf.summary.merge_all()
# Saving the model
| tensorflow.summary.histogram | 2,181 |
import tensorflow as tf
tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10)
tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
summary_op = tf.summary.merge_all()
# Saving the model
saver = tf.train.Saver()
step = 0
with tf.Session() as sess:
if train_model:
tensorboard_path, saved_model_path, log_path = form_results()
| tensorflow.train.Saver | 2,182 |
import tensorflow as tf
for i in range(2, 2 + len(expected_extra_dims)):
mask = tf.expand_dims(mask, axis=i)
mask = tf.tile(mask, [1, 1] + expected_extra_dims)
return tf.where(mask, expanded_tensor, if_masked_tensor)
def initial_layer(
window_feature: WindowFeatures, *, clip_magnitude=10.0, include_flux_and_time=False
) -> tf.Tensor:
features = tf.expand_dims(window_feature.dflux_dt(clip_magnitude=clip_magnitude), 2)
if include_flux_and_time:
dflux = tf.expand_dims(window_feature.dflux, 2)
dtime = tf.expand_dims(window_feature.dtime, 2)
features = tf.concat([features, dflux, dtime],
axis=2,
name="initial_layer_concat")
return features
class CutoffData:
def __init__(self, config_json: dict):
self.window_size: int = config_json["window_size"]
| tensorflow.expand_dims | 2,183 |
import tensorflow as tf
def _crop_pool_layer(self, bottom, rois, name):
with tf.variable_scope(name):
# tf.squeeze()返回一个张量,这个张量是将原始input中所有维度中为1的那些维都删掉的结果
batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1])
# Get the normalized coordinates of bboxes
bottom_shape = tf.shape(bottom)
| tensorflow.slice | 2,184 |
import tensorflow as tf
active_loss = (
loss / tf.math.maximum(1e-12, tf.stop_gradient(active_triplet_ratio)))
active_mining_loss = (
| tensorflow.stop_gradient | 2,185 |
import tensorflow as tf
metrics.append(tf.summary.histogram('point_distance', dists))
metrics.append(tf.summary.scalar('training/trajectory_length', tf.reduce_sum(dists)))
self.blur_ph = tf.placeholder(dtype=tf.float32)
metrics.append(tf.summary.scalar('training/blur_sigma', self.blur_ph))
pred = self.embedding_test[1:-1]*2 - self.embedding_test[0:-2]
pred_error = l2(pred - self.embedding_test[2:])
mean_dist, mean_pred_error = tf.reduce_mean(dists), tf.reduce_mean(pred_error)
improvement = (mean_dist-mean_pred_error)/mean_dist
pairwise_improvement = tf.nn.relu(dists[1:] - pred_error)
pairwise_improvement_bool = tf.cast(pairwise_improvement > 0, pairwise_improvement.dtype)
self.pairwise_improvement_bool = pairwise_improvement_bool
metrics.append(tf.summary.scalar('training/avg_dist', mean_dist))
metrics.append(tf.summary.scalar('training/pred_dist', mean_pred_error))
metrics.append(tf.summary.scalar('training/improvement', improvement))
metrics.append(tf.summary.scalar('training/improvement_abs', tf.nn.relu(improvement)))
metrics.append(tf.summary.histogram('training/improvement_abs_hist', nut.nan_to_zero(improvement)))
metrics.append(tf.summary.scalar('training/improvement_pairwise', tf.reduce_mean(pairwise_improvement_bool)))
metrics.append(tf.summary.histogram('training/improvement_pairwise_hist', pairwise_improvement_bool))
self.eval_summs = tf.summary.merge(metrics)
| tensorflow.cast | 2,186 |
import tensorflow as tf
self.assertAllClose(9.656628, res)
def testSequenceLossByExample(self):
with self.test_session() as sess:
output_classes = 5
logits = [tf.constant(i + 0.5, shape=[2, output_classes])
for i in range(3)]
targets = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
weights = [tf.constant(1.0, shape=[2]) for i in range(3)]
average_loss_per_example = tf.nn.seq2seq.sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=True)
res = sess.run(average_loss_per_example)
| tensorflow.constant | 2,187 |
import tensorflow as tf
A tuple of `SparseTensor` (neibors, weights).
neighbors: A `SparseTensor` of `int64`.
weights: A `SparseTensor` of `float`.
types: A `SparseTensor` of `int32`
"""
sp_returns = base._LIB_OP.get_sorted_full_neighbor(nodes, edge_types)
return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \
tf.SparseTensor(*sp_returns[6:])
def sample_fanout(nodes, edge_types, counts, default_node=-1):
"""
Sample multi-hop neighbors of nodes according to weight in graph.
| tensorflow.SparseTensor | 2,188 |
import tensorflow as tf
name='linear_projection_2_predictions_arguments_bn')
activation = tf.nn.relu(projection)
| tensorflow.nn.relu | 2,189 |
import tensorflow as tf
# Now we construct the copy model.
inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
| tensorflow.placeholder | 2,190 |
import tensorflow as tf
with tf.variable_scope(scope):
d_memory = dropout(memory, keep_prob=keep_prob, is_train=is_train)
s0 = tf.nn.tanh(dense(d_memory, hidden, scope="s0"))
s = dense(s0, 1, use_bias=False, scope="s")
s1 = softmax_mask(tf.squeeze(s, [2]), mask)
a = tf.expand_dims(tf.nn.softmax(s1), axis=2)
res = tf.reduce_sum(a * memory, axis=1)
return res
def dot_attention(inputs, memory, mask, hidden, keep_prob=1.0, is_train=None, scope="dot_attention"):
with tf.variable_scope(scope):
d_inputs = dropout(inputs, keep_prob=keep_prob, is_train=is_train)
d_memory = dropout(memory, keep_prob=keep_prob, is_train=is_train)
JX = tf.shape(inputs)[1]
with tf.variable_scope("attention"):
inputs_ = tf.nn.relu(
dense(d_inputs, hidden, use_bias=False, scope="inputs"))
memory_ = tf.nn.relu(
dense(d_memory, hidden, use_bias=False, scope="memory"))
outputs = tf.matmul(inputs_, tf.transpose(
memory_, [0, 2, 1])) / (hidden ** 0.5)
mask = tf.tile(tf.expand_dims(mask, axis=1), [1, JX, 1])
logits = tf.nn.softmax(softmax_mask(outputs, mask))
outputs = tf.matmul(logits, memory)
res = tf.concat([inputs, outputs], axis=2)
with tf.variable_scope("gate"):
| tensorflow.shape | 2,191 |
import tensorflow as tf
min_x = tf.cast(0.0 - labeled_sizes[i][0] / 2.0, dtype=tf.float32)
max_x = tf.cast(0.0 + labeled_sizes[i][0] / 2.0, dtype=tf.float32)
# min_y = tf.cast(0.0 - labeled_sizes[i][1] / 2.0, dtype=tf.float32)
# max_y = tf.cast(0.0 + labeled_sizes[i][1] / 2.0, dtype=tf.float32)
min_z = tf.cast(0.0 - labeled_sizes[i][2] / 2.0, dtype=tf.float32)
max_z = tf.cast(0.0 + labeled_sizes[i][2] / 2.0, dtype=tf.float32)
translation = tf.reshape([labeled_translations[i][0],
labeled_translations[i][2]], [2, 1])
pt_0 = rot @ tf.reshape([min_x, min_z], [2, 1]) + translation
pt_1 = rot @ tf.reshape([min_x, max_z], [2, 1]) + translation
pt_2 = rot @ tf.reshape([max_x, min_z], [2, 1]) + translation
pt_3 = rot @ tf.reshape([max_x, max_z], [2, 1]) + translation
for pt in [pt_0, pt_1, pt_2, pt_3]:
if pt[0] < box_limits_x[0]:
box_limits_x[0] = pt[0]
if pt[0] > box_limits_x[1]:
box_limits_x[1] = pt[0]
| tensorflow.reshape | 2,192 |
import tensorflow as tf
tf.summary.scalar('Training Loss', m.cost)
tf.summary.scalar('Learning rate', m.lr)
latest_ckpt = tf.train.latest_checkpoint(FLAGS.save_path)
with train_graph.as_default():
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
config_proto = tf.ConfigProto(log_device_placement=False,
allow_soft_placement=True)
with sv.managed_session(config=config_proto) as train_sess:
#with tf.Session(config=config_proto) as train_sess:
train_sess.run(tf.global_variables_initializer())
| tensorflow.train.Supervisor | 2,193 |
import tensorflow as tf
if current_step < total_step:
tf.logging.info('Starting training ...')
| tensorflow.logging.info | 2,194 |
import tensorflow as tf
'WS: pruning ratio protocol (\'uniform\' | \'heurist\' | \'optimal\')')
tf.app.flags.DEFINE_integer('ws_nb_rlouts', 200, 'WS: # of roll-outs for the RL agent')
tf.app.flags.DEFINE_integer('ws_nb_rlouts_min', 50,
'WS: minimal # of roll-outs for the RL agent to start training')
tf.app.flags.DEFINE_string('ws_reward_type', 'single-obj',
'WS: reward type (\'single-obj\' OR \'multi-obj\')')
tf.app.flags.DEFINE_float('ws_lrn_rate_rg', 3e-2, 'WS: learning rate for layerwise regression')
tf.app.flags.DEFINE_integer('ws_nb_iters_rg', 20, 'WS: # of iterations for layerwise regression')
tf.app.flags.DEFINE_float('ws_lrn_rate_ft', 3e-4, 'WS: learning rate for global fine-tuning')
tf.app.flags.DEFINE_integer('ws_nb_iters_ft', 400, 'WS: # of iterations for global fine-tuning')
tf.app.flags.DEFINE_integer('ws_nb_iters_feval', 25, 'WS: # of iterations for fast evaluation')
tf.app.flags.DEFINE_float('ws_prune_ratio_exp', 3.0, 'WS: pruning ratio\'s exponent term')
| tensorflow.app.flags.DEFINE_float | 2,195 |
import tensorflow as tf
x_min1, y_min1, x_max1, y_max1 = tf.split(boxlist1, 4, axis=1)
x_min2, y_min2, x_max2, y_max2 = tf.split(boxlist2, 4, axis=1)
all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2))
all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2))
intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin)
all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2))
| tensorflow.transpose | 2,196 |
import tensorflow as tf
# print(scope, 'out', activation.get_shape().as_list())
return activation
def self_attention(x, channels, act_func=tf.nn.relu, scope='attention'):
with tf.variable_scope(scope):
batch_size, height, width, num_channels = x.get_shape().as_list()
f = conv(x, scope='f_conv', filter_dims=[1, 1, channels//8], stride_dims=[1, 1], non_linear_fn=act_func)
f = tf.layers.max_pooling2d(f, pool_size=2, strides=2, padding='SAME')
| tensorflow.variable_scope | 2,197 |
from tensorflow.python.ops import math_ops
def _loss(self, logits, target, weight_tensor):
if self._n_classes < 2:
loss_vec = math_ops.square(logits - math_ops.to_float(target))
elif self._n_classes == 2:
loss_vec = nn.sigmoid_cross_entropy_with_logits(logits,
math_ops.to_float(target))
else:
loss_vec = nn.sparse_softmax_cross_entropy_with_logits(
logits, array_ops.reshape(target, [-1]))
if weight_tensor is None:
return math_ops.reduce_mean(loss_vec, name="loss")
else:
loss_vec = array_ops.reshape(loss_vec, shape=(-1,))
loss_vec = math_ops.mul(
loss_vec, array_ops.reshape(weight_tensor, shape=(-1,)))
return math_ops.div(
math_ops.reduce_sum(loss_vec),
math_ops.to_float(math_ops.reduce_sum(weight_tensor)),
name="loss")
def _get_linear_vars(self):
| tensorflow.python.ops.math_ops.reduce_mean | 2,198 |
import tensorflow as tf
tf.app.flags.DEFINE_float(
'momentum', 0.9,
'The momentum for the MomentumOptimizer and RMSPropOptimizer.')
tf.app.flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.')#1e-3
tf.app.flags.DEFINE_float(
'end_learning_rate', 0.000001,
'The minimal end learning rate used by a polynomial decay learning rate.')
tf.app.flags.DEFINE_float(
'warmup_learning_rate', 0.00001,
'The start warm-up learning rate to avoid NAN.')
tf.app.flags.DEFINE_integer(
'warmup_steps', 100,
'The total steps to warm-up.')
# for learning rate piecewise_constant decay
tf.app.flags.DEFINE_string(
'decay_boundaries', '2, 3',
'Learning rate decay boundaries by global_step (comma-separated list).')
tf.app.flags.DEFINE_string(
'lr_decay_factors', '1, 0.5, 0.1',
'The values of learning_rate decay factor for each segment between boundaries (comma-separated list).')
# checkpoint related configuration
tf.app.flags.DEFINE_string(
'checkpoint_path', './model',
'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_string(
'checkpoint_model_scope', '',
'Model scope in the checkpoint. None if the same as the trained model.')
tf.app.flags.DEFINE_string(
| tensorflow.app.flags.DEFINE_string | 2,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.