seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
else:
term2 = 0.5 * (param_eta + param_omega) * tf.log(tf.matrix_determinant(2 * np.pi * (param_eta + param_omega) * HaaInv))
dual = param_eta * self.epsilon - param_omega * beta + \
term1 + term2 + tf.reduce_mean(
0.5 * (tf.reduce_sum(tf.matmul(ha, HaaInv) * ha, axis=1) - hss))
# Symbolic dual gradient
dual_grad = tf.gradients(xs=[param_eta, param_omega], ys=dual)
# Eval functions.
f_dual = U.function(
inputs=[varphis, Kt, prec, Waa, Wsa, wa] + [param_eta, param_omega, old_entropy],
outputs=dual,
# mode='DebugMode' # TEST
)
| tensorflow.gradients | 2,200 |
from tensorflow.python.ops import nn_ops
w_c: [1,1, attention_vec_size]
coverage: [batch_size, passage_len]
'''
with variable_scope.variable_scope("Attention"):
# Equation (11) in the paper
state_features = linear(decoder_state, attention_vec_size, True) # [batch_size, attention_vec_size]
state_features = tf.expand_dims(state_features, 1) # [batch_size, 1, attention_vec_size]
all_features = encoder_features + state_features # [batch_size,passage_len,attention_vec_size]
if use_coverage and coverage is not None:
coverage_features = tf.expand_dims(coverage, axis=-1) * w_c # [batch_size, passage_len, attention_vec_size]
all_features += coverage_features
e = tf.reduce_sum(v * tf.tanh(all_features), axis=-1) # [batch_size, passage_len]
attn_dist = nn_ops.softmax(e) # [batch_size, passage_len]
attn_dist *= passage_mask
if coverage is not None: # Update coverage vector
coverage += attn_dist
else: # first step of training
coverage = attn_dist
# Calculate the context vector from attn_dist and encoder_states
# shape (batch_size, attn_size).
context_vector = tf.reduce_sum(tf.expand_dims(attn_dist, axis=-1) * encoder_states, axis=1) # [batch_size, encoder_dim]
return context_vector, attn_dist, coverage
| tensorflow.python.ops.nn_ops.softmax | 2,201 |
import tensorflow as tf
tf.greater(vx.lookup(u), -1),
true_fn=lambda: (vx_keys, tf.add(vx.lookup(u), 1)),
false_fn=lambda: (tf.concat([vx_keys, tf.reshape(u, (-1, 1))], axis=0),
tf.constant(1, dtype=tf.int64, name='constant'))
)
vx.insert(u, r)
for i in tf.range(start=0, limit=z_t_len - self._p + 1, delta=1, dtype=None, name='range'):
u = tf.string_join(z_t[i:i + self._p], '')
vz_keys, r = tf.cond(
tf.greater(vz.lookup(u), -1),
true_fn=lambda: (vz_keys, tf.add(vz.lookup(u), 1)),
false_fn=lambda: (
tf.concat([vz_keys, tf.reshape(u, (-1, 1))], axis=0), tf.constant(1, dtype=tf.int64))
| tensorflow.range | 2,202 |
import tensorflow as tf
ury = y1 + .5 * height
return width, height, urx, ury
def encode(bboxes, gt_boxes, variances=None):
with tf.name_scope('BoundingBoxTransform/encode'):
(bboxes_width, bboxes_height,
bboxes_urx, bboxes_ury) = get_width_upright(bboxes)
(gt_boxes_width, gt_boxes_height,
gt_boxes_urx, gt_boxes_ury) = get_width_upright(gt_boxes)
| tensorflow.name_scope | 2,203 |
import tensorflow as tf
has_nan_or_inf, grad_scale, final_var_grads = task.ScaleGradients(var_grads)
with self.session():
tf.global_variables_initializer().run()
self.assertTrue(has_nan_or_inf.eval())
self.assertEqual(0., grad_scale.eval())
| tensorflow.global_variables_initializer | 2,204 |
import tensorflow as tf
self.x_preprocessed = (self.x_preprocessed - self.resnet_mean) #/ self.resnet_std
# red, green, blue = tf.split(self.x_preprocessed, num_or_size_splits=3, axis=3)
# self.x_preprocessed = tf.concat([blue,green,red], 3)
# These variables to keep track of what i do
# filters = [64, 64, 128, 256, 512]
# kernels = [7, 3, 3, 3, 3]
# strides = [2, 0, 2, 2, 2]
tf.add_to_collection('debug_layers', self.x_preprocessed)
with tf.variable_scope('conv1_x'):
print('Building unit: conv1')
self.conv1 = self._conv('conv1', self.x_preprocessed, padding= [[0,0],[3,3],[3,3],[0,0]],
num_filters=64, kernel_size=(7, 7), stride=(2, 2), l2_strength=self.wd,
bias=self.bias)
self.conv1 = self._bn('bn1', self.conv1)
self.conv1 = self._relu('relu1', self.conv1)
_debug(self.conv1)
| tensorflow.variable_scope | 2,205 |
import tensorflow as tf
out = tf.nn.relu(self._normalize(x, self.mean, self.mean_sq, "reference"))
return out
def _normalize(self, x, mean, mean_sq, message):
# make sure this is called with a variable scope
shape = x.get_shape().as_list()
assert len(shape) == 4
self.gamma = safe_get("gamma", [shape[-1]],
initializer=tf.random_normal_initializer(1., 0.02))
gamma = tf.reshape(self.gamma, [1, 1, 1, -1])
self.beta = safe_get("beta", [shape[-1]],
initializer=tf.constant_initializer(0.))
beta = tf.reshape(self.beta, [1, 1, 1, -1])
assert self.epsilon is not None
assert mean_sq is not None
assert mean is not None
std = tf.sqrt(self.epsilon + mean_sq - tf.square(mean))
out = x - mean
| tensorflow.reshape | 2,206 |
import tensorflow as tf
# number of steps.
if FLAGS.use_tpu:
assert len(eval_examples) % FLAGS.eval_batch_size == 0
eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)
eval_drop_remainder = True if FLAGS.use_tpu else False
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=eval_drop_remainder)
result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if FLAGS.do_predict:
predict_examples = processor.get_test_examples(FLAGS.data_dir)
num_actual_predict_examples = len(predict_examples)
if FLAGS.use_tpu:
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on.
while len(predict_examples) % FLAGS.predict_batch_size != 0:
| tensorflow.gfile.GFile | 2,207 |
import tensorflow as tf
dim = inputs.get_shape().as_list()[-1]
out_shape = [shape[idx] for idx in range(
len(inputs.get_shape().as_list()) - 1)] + [hidden]
flat_inputs = tf.reshape(inputs, [-1, dim])
W = tf.get_variable("W", [dim, hidden])
res = tf.matmul(flat_inputs, W)
if use_bias:
b = tf.get_variable(
"b", [hidden], initializer=tf.constant_initializer(0.))
res = tf.nn.bias_add(res, b)
| tensorflow.matmul | 2,208 |
from tensorflow.python.ops import math_ops
vstar = self.get_slot(var, "vstar")
gold = self.get_slot(var, "gold")
var_update = state_ops.assign_sub(var, lr_t*(grad + gold + mu_t*(var-vstar))) #Update 'ref' by subtracting 'value
#Create an op that groups multiple operations.
#When this op finishes, all ops in input have finished
return control_flow_ops.group(*[var_update,])
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype)
vstar = self.get_slot(var, "vstar")
gold = self.get_slot(var, "gold") # glod is not sparse
v_diff = state_ops.assign(vstar, mu_t * (var - vstar), use_locking=self._use_locking)
with ops.control_dependencies([v_diff]): # run v_diff operation before scatter_add
scaled_grad = scatter_add(vstar, indices, grad)
var_update = state_ops.assign_sub(var, lr_t * (scaled_grad + gold))
return control_flow_ops.group(*[var_update, ])
| tensorflow.python.ops.math_ops.cast | 2,209 |
import tensorflow as tf
#self.dataset_dir = '/home/santanu/Downloads/DiscoGAN/edges2handbags/train/'
self.writer = tf.summary.FileWriter("./logs", self.sess.graph)
| tensorflow.summary.FileWriter | 2,210 |
import tensorflow as tf
capacity=1000 + 3 * batch_size,
# Ensures a minimum amount of shuffling of examples.
min_after_dequeue=1000)
return images, sparse_labels
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv_scale(x, W):
return tf.nn.conv3d(x, W, strides=[1,1,1,1,1], padding='VALID')
def inference(x):
""" Creates a model with pooling across space and scales.
Always we have a conv-relu-spatial_pool-scale_pool x N layers structure
with one fully connected layer on top.
"""
if '-' in FLAGS.pm:
FLAGS.pm= FLAGS.pm.split('-')
num_layers = len(FLAGS.pm) - 1
print(num_layers)
for l in range(num_layers):
| tensorflow.nn.conv3d | 2,211 |
import tensorflow as tf
# Trainable parameters
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
| tensorflow.shape | 2,212 |
import tensorflow as tf
# What are the average Q values of the original tasks?
if batch_size == num_tasks:
indices = tf.transpose(tf.stack([orig_indices, orig_indices], axis=0))
orig_q_vals = tf.gather_nd(logits_vec, indices)
tf.compat.v2.summary.scalar(
name="orig_q_vals",
data=tf.reduce_mean(orig_q_vals),
step=global_step,
)
# What are the average Q values of the relabelled tasks?
indices = tf.transpose(
| tensorflow.reduce_mean | 2,213 |
import tensorflow as tf
mask = tf.equal(mask, tf.ones_like(mask))
hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
input_size = query.get_shape().as_list()[-1]
# Trainable parameters
w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
b = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
with tf.name_scope('v'):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
tmp1 = tf.tensordot(facts, w1, axes=1)
| tensorflow.random_normal | 2,214 |
import tensorflow as tf
(exp_coupling, self.hparams.coupling))
if self.is_training:
init_features = self.create_init_batch(features)
init_op = self.objective_tower(init_features, init=True)
init_op = tf.Print(
init_op, [init_op], message="Triggering data-dependent init.",
first_n=20)
tf.add_to_collection("glow_init_op", init_op)
train_op = self.objective_tower(features, init=False)
return tf.zeros_like(features["targets"]), {"training": train_op}
def objective_tower(self, features, init=True):
"""Objective in terms of bits-per-pixel.
| tensorflow.add_to_collection | 2,215 |
import tensorflow as tf
L= len(activation) #number of layers
m = Y.shape[1] #number of training examples
last = activation[L-1]
labels= tf.transpose(Y)
if last == 'sigmoid' or last == 'softmax': #use cross entropy loss function
logits= tf.transpose(betan*zn[1])
cost = tf.reduce_mean(tf.losses.sigmoid_cross_entropy(logits = logits, multi_class_labels=labels))
| tensorflow.transpose | 2,216 |
import tensorflow as tf
gfile.MakeDirs(save_dir)
with self.test_session() as sess:
v = tf.Variable([10.0], name="v")
# Run the initializer NOW to avoid the 0.5s overhead of the first Run()
# call, which throws the test timing off in fastbuild mode.
| tensorflow.Variable | 2,217 |
import tensorflow as tf
tf.app.flags.DEFINE_integer('input_size', 512, '')
tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '')
tf.app.flags.DEFINE_integer('num_readers', 16, '')
tf.app.flags.DEFINE_float('learning_rate', 0.0001, '')
tf.app.flags.DEFINE_integer('max_steps', 100000, '')
tf.app.flags.DEFINE_integer('loss_scale', 1024, '')
tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '')
tf.app.flags.DEFINE_string('gpu_list', '1', '')
tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '')
tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint')
tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '')
tf.app.flags.DEFINE_integer('save_summary_steps', 100, '')
tf.app.flags.DEFINE_string('pretrained_model_path', None, '')
tf.app.flags.DEFINE_boolean('allow_mix_precision', False, 'whether to allow mix precision')
tf.app.flags.DEFINE_boolean('auto_tune', False, 'whether to autotune')
tf.app.flags.DEFINE_boolean('use_processed_data', False, 'whether to use processed data')
tf.app.flags.DEFINE_string('processed_data', './processed_dataset/', 'where to save preprocessed datasets')
import model
import icdar
FLAGS = tf.app.flags.FLAGS
gpus = list(range(len(FLAGS.gpu_list.split(','))))
def tower_loss(images, score_maps, geo_maps, training_masks, reuse_variables=None):
# Build inference graph
| tensorflow.app.flags.DEFINE_boolean | 2,218 |
import tensorflow as tf
batch_nums = tf.range(0, limit=batch_size) # shape (batch_size)
batch_nums = tf.expand_dims(batch_nums, axis=1) # shape (batch_size, 1)
batch_nums = tf.tile(batch_nums, [1, passage_length]) # shape (batch_size, passage_length)
step_nums = tf.range(0, limit=passage_length) # [passage_length]
step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length)
step_nums = tf.tile(step_nums, [batch_size, 1]) # shape (batch_size, passage_length)
indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3)
indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3]
indices = tf.cast(indices, tf.int64)
shape = [batch_size, passage_length, extended_vsize]
shape = tf.cast(shape, tf.int64)
attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize]
if passage_mask is not None:
passage_mask = tf.expand_dims(passage_mask, axis=-1)
one_hot_spare_rep = one_hot_spare_rep * passage_mask
one_hot_spare_rep = tf.sparse_reduce_sum(one_hot_spare_rep, axis=1) # [batch_size, extended_vsize]
vocab_dist = tf.add(vocab_dist, one_hot_spare_rep)
if self.options.add_first_word_prob_for_phrase:
vocab_dist = tf.nn.softmax(vocab_dist) # normalize
| tensorflow.reshape | 2,219 |
import tensorflow as tf
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.PREDICT:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, predictions=masked_lm_example_loss, scaffold_fn=scaffold_fn) # 输出mask_word的score
return output_spec
| tensorflow.contrib.tpu.TPUEstimatorSpec | 2,220 |
import tensorflow as tf
q_sqrt_r = tf.matrix_band_part(q_sqrt, -1, 0) # D x M x M
eKuf = tf.transpose(expectation(pXnew, (kern, feat))) # M x N (psi1)
if Luu is None:
Kuu = feat.Kuu(kern, jitter=settings.numerics.jitter_level) # M x M
Luu = tf.cholesky(Kuu) # M x M
if not white:
q_mu = tf.matrix_triangular_solve(Luu, q_mu, lower=True)
Luu_tiled = tf.tile(Luu[None, :, :], [num_func, 1, 1]) # remove line once issue 216 is fixed
q_sqrt_r = tf.matrix_triangular_solve(Luu_tiled, q_sqrt_r, lower=True)
Li_eKuf = tf.matrix_triangular_solve(Luu, eKuf, lower=True) # M x N
fmean = tf.matmul(Li_eKuf, q_mu, transpose_a=True)
eKff = expectation(pXnew, kern) # N (psi0)
eKuffu = expectation(pXnew, (kern, feat), (kern, feat)) # N x M x M (psi2)
| tensorflow.matrix_triangular_solve | 2,221 |
import tensorflow as tf
"""
with tf.variable_scope(scope) as sc:
kernel_d, kernel_h, kernel_w = kernel_size
num_in_channels = inputs.get_shape()[-1].value
kernel_shape = [kernel_d, kernel_h, kernel_w,
num_in_channels, num_output_channels]
kernel = _variable_with_weight_decay('weights',
shape=kernel_shape,
use_xavier=use_xavier,
stddev=stddev,
wd=weight_decay)
stride_d, stride_h, stride_w = stride
outputs = tf.nn.conv3d(inputs, kernel,
[1, stride_d, stride_h, stride_w, 1],
padding=padding)
biases = _variable_on_cpu('biases', [num_output_channels],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases)
if bn:
outputs = batch_norm_for_conv3d(outputs, is_training,
bn_decay=bn_decay, scope='bn')
if activation_fn is not None:
| tensorflow.nn.conv3d | 2,222 |
import tensorflow as tf
self._lr = tf.Variable(0., trainable=False)
| tensorflow.Variable | 2,223 |
import tensorflow as tf
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
def get_valid_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
class trainwork(object):
def __init__(self):
with tf.variable_scope('scop'):
self.w1=tf.get_variable('w1', [4096,1024],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w2=tf.get_variable('w2', [1024,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.b1 = tf.get_variable('b1', [1024],initializer=tf.constant_initializer(0.0))
self.b2 = tf.get_variable('b2', [classnum],initializer=tf.constant_initializer(0.0))
def inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
out = tf.matmul(l1, self.w2)+self.b2
return out
def test_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
| tensorflow.constant_initializer | 2,224 |
import tensorflow as tf
# Structured numpy arrays aren't supported.
return np.array([], dtype=[("foo", np.float32)])
def bad2():
# Non-string python objects aren't supported.
return tf.float32
y, = tf.py_func(bad1, [], [tf.string])
z, = tf.py_func(bad2, [], [tf.float64])
with self.assertRaisesRegexp(errors.UnimplementedError,
"Unsupported numpy type"):
y.eval()
with self.assertRaisesRegexp(errors.UnimplementedError,
"Unsupported object type"):
z.eval()
| tensorflow.py_func | 2,225 |
import tensorflow as tf
ch_emb = tf.reshape(tf.nn.embedding_lookup(
self.char_mat, self.ch), [N * PL * self.max_p_num, CL, dc])
qh_emb = tf.reshape(tf.nn.embedding_lookup(
self.char_mat, self.qh), [N * QL * self.max_p_num, CL, dc])
ch_emb = tf.nn.dropout(ch_emb, 1.0 - 0.5 * self.dropout)
qh_emb = tf.nn.dropout(qh_emb, 1.0 - 0.5 * self.dropout)
ch_emb = conv(ch_emb, d,
bias=True, activation=tf.nn.relu, kernel_size=5, name="char_conv", reuse=None)
qh_emb = conv(qh_emb, d,
bias=True, activation=tf.nn.relu, kernel_size=5, name="char_conv", reuse=True)
ch_emb = tf.reduce_max(ch_emb, axis=1)
qh_emb = tf.reduce_max(qh_emb, axis=1)
ch_emb = tf.reshape(ch_emb, [N * self.max_p_num, PL, -1])
qh_emb = tf.reshape(qh_emb, [N * self.max_p_num, QL, -1])
c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout)
q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout)
c_emb = tf.concat([c_emb, ch_emb], axis=2)
q_emb = tf.concat([q_emb, qh_emb], axis=2)
self.c_emb = highway(c_emb, size=d, scope="highway", dropout=self.dropout, reuse=None)
self.q_emb = highway(q_emb, size=d, scope="highway", dropout=self.dropout, reuse=True)
def _encode(self):
N, PL, QL, CL, d, dc, nh = self._params()
if self.config.fix_pretrained_vector:
| tensorflow.reshape | 2,226 |
import tensorflow as tf
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
res1 = sess.run(d1)
res2 = sess.run(d2)
res3 = sess.run(d3)
self.assertAllClose(res1, res2)
self.assertAllClose(res1, res3)
def testEmbeddingTiedRNNSeq2Seq(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)]
dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
dec, mem = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
| tensorflow.constant | 2,227 |
import tensorflow as tf
y_true: tensor, observations.
y_pred: tensor, output of network.
Returns:
loss value, means negative log-likelihood.
"""
logL = 0
# pre-calculate cumsum
cumsum_y_pred = tf.cumsum(y_pred)
hazard_ratio = tf.exp(y_pred)
cumsum_hazard_ratio = tf.cumsum(hazard_ratio)
if self.train_data['ties'] == 'noties':
log_risk = tf.log(cumsum_hazard_ratio)
likelihood = y_pred - log_risk
# dimension for E: np.array -> [None, 1]
uncensored_likelihood = likelihood * y_true
| tensorflow.cumsum | 2,228 |
import tensorflow as tf
from utility import train_helper
from dataset import dataset_factory
from preprocessing import preprocessing_factory
from preprocessing import anchor_manipulator
# hardware related configuration
tf.app.flags.DEFINE_integer(
'num_readers', 16,
'The number of parallel readers that read data from the dataset.')
tf.app.flags.DEFINE_integer(
'num_preprocessing_threads', 48,
'The number of threads used to create the batches.')
tf.app.flags.DEFINE_integer(
'num_cpu_threads', 0,
'The number of cpu cores used to train.')
tf.app.flags.DEFINE_float(
'gpu_memory_fraction', 1., 'GPU memory fraction to use.')
# scaffold related configuration
tf.app.flags.DEFINE_string(
'data_dir', '../PASCAL/VOC_TF/VOC0712TF/',
| tensorflow.app.flags.DEFINE_integer | 2,229 |
import tensorflow as tf
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
cls_accuracy = tf.metrics.accuracy(glabels, predictions['classes'])
metrics = {'cls_accuracy': cls_accuracy}
# Create a tensor named train_accuracy for logging purposes.
tf.identity(cls_accuracy[1], name='cls_accuracy')
tf.summary.scalar('cls_accuracy', cls_accuracy[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
| tensorflow.metrics.accuracy | 2,230 |
from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils
'precision/positive_threshold_0.500000_mean',
'recall/positive_threshold_0.500000_mean',
}
class DNNLinearCombinedClassifierBenchmark(test.Benchmark):
def _assertSingleClassMetrics(self, metrics):
estimator_test_utils.assert_in_range(0.9, 1.0, 'auc', metrics)
estimator_test_utils.assert_in_range(0.9, 1.0,
'accuracy/threshold_0.500000_mean',
metrics)
estimator_test_utils.assert_in_range(
0.9, 1.0, 'precision/positive_threshold_0.500000_mean', metrics)
estimator_test_utils.assert_in_range(
0.9, 1.0, 'recall/positive_threshold_0.500000_mean', metrics)
self._assertCommonMetrics(metrics)
| tensorflow.contrib.learn.python.learn.estimators.estimator_test_utils.assert_in_range | 2,231 |
from tensorflow.python.ops import array_ops
loss_vec = array_ops.reshape(loss_vec, shape=(-1,))
loss_vec = math_ops.mul(
loss_vec, array_ops.reshape(weight_tensor, shape=(-1,)))
return math_ops.div(
| tensorflow.python.ops.array_ops.reshape | 2,232 |
import tensorflow as tf
name="label{0}".format(i)))
self.types.append(tf.placeholder(tf.float32, shape=[None],
name="type{0}".format(i)))
self.global_step = tf.Variable(0, trainable=False)
# Select logits to prob function
self.logits_to_prob = tf.nn.softmax
if self.hparams.logits_to_prob == 'sigmoid':
self.logits_to_prob = sigmoid_prob
self.output = self.ranking_model(self.max_candidate_num, scope='ranking_model')
pad_removed_output = self.remove_padding_for_metric_eval(self.docid_inputs, self.output)
reshaped_labels = tf.transpose(tf.convert_to_tensor(self.labels)) # reshape from [max_candidate_num, ?] to [?, max_candidate_num]
for metric in self.exp_settings['metrics']:
for topn in self.exp_settings['metrics_topn']:
metric_value = utils.make_ranking_metric_fn(metric, topn)(reshaped_labels, pad_removed_output, None)
tf.summary.scalar('%s_%d' % (metric, topn), metric_value, collections=['eval'])
if not forward_only:
# Build model
self.rank_list_size = exp_settings['train_list_cutoff']
train_output = self.ranking_model(self.rank_list_size, scope='ranking_model')
self.propensity = self.DenoisingNet(self.rank_list_size, forward_only)
| tensorflow.convert_to_tensor | 2,233 |
import tensorflow as tf
add = tf.add(in0, in1, "ADD")
sub = tf.subtract(in0, in1, "SUB")
# Cast or convert result to the output dtype.
if tf_output0_dtype == tf.string:
cast0 = tf.dtypes.as_string(add if not swap else sub, name="TOSTR0")
else:
cast0 = tf.cast(add if not swap else sub, tf_output0_dtype, "CAST0")
if tf_output1_dtype == tf.string:
cast1 = tf.dtypes.as_string(sub if not swap else add, name="TOSTR1")
else:
cast1 = tf.cast(sub if not swap else add, tf_output1_dtype, "CAST1")
| tensorflow.cast | 2,234 |
import tensorflow as tf
tf.get_default_session().run(sync_model_to_lazymodel)
tf.get_default_session().run(copy_normalizers)
logger.info('Loaded normalizers:')
load_norm = tf.get_default_session().run(normalizers_parameters)
logger.info(load_norm)
| tensorflow.get_default_session | 2,235 |
import tensorflow as tf
# fc2
with tf.variable_scope('fc2'):
w = tf.get_variable('w', [self.fc1.get_shape()[1], 2048], initializer=he_normal,
regularizer=regularizer)
b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0))
out = tf.matmul(self.fc1, w) + b
self.fc2 = tf.nn.relu(out)
# fc3
| tensorflow.constant_initializer | 2,236 |
import tensorflow as tf
def MultiBoxLoss(num_class=2, neg_pos_ratio=3):
"""multi-box loss"""
def multi_box_loss(y_true, y_pred):
num_batch = tf.shape(y_true)[0]
num_prior = tf.shape(y_true)[1]
loc_pred = tf.reshape(y_pred[0], [num_batch * num_prior, 4])
landm_pred = tf.reshape(y_pred[1], [num_batch * num_prior, 10])
class_pred = tf.reshape(y_pred[2], [num_batch * num_prior, num_class])
loc_true = tf.reshape(y_true[..., :4], [num_batch * num_prior, 4])
landm_true = tf.reshape(y_true[..., 4:14], [num_batch * num_prior, 10])
landm_valid = tf.reshape(y_true[..., 14], [num_batch * num_prior, 1])
class_true = tf.reshape(y_true[..., 15], [num_batch * num_prior, 1])
# define filter mask: class_true = 1 (pos), 0 (neg), -1 (ignore)
# landm_valid = 1 (w landm), 0 (w/o landm)
mask_pos = tf.equal(class_true, 1)
mask_neg = tf.equal(class_true, 0)
mask_landm = tf.logical_and(tf.equal(landm_valid, 1), mask_pos)
| tensorflow.reshape | 2,237 |
import tensorflow as tf
def compile_data(tmp_dir, datasets, filename):
"""Concatenate all `datasets` and save to `filename`."""
filename = os.path.join(tmp_dir, filename)
# lang1_fname = filename + ".lang1"
# lang2_fname = filename + ".lang2"
lang1_fname = filename + ".source"
lang2_fname = filename + ".target"
if tf.gfile.Exists(lang1_fname) and tf.gfile.Exists(lang2_fname):
tf.logging.info("Skipping compile data, found files:\n%s\n%s", lang1_fname,
lang2_fname)
return filename
with tf.gfile.GFile(lang1_fname, mode="w") as lang1_resfile:
with tf.gfile.GFile(lang2_fname, mode="w") as lang2_resfile:
for dataset in datasets:
url = dataset[0]
compressed_filename = os.path.basename(url)
compressed_filepath = os.path.join(tmp_dir, compressed_filename)
if url.startswith("http"):
generator_utils.maybe_download(tmp_dir, compressed_filename, url)
if dataset[1][0] == "tsv":
_, src_column, trg_column, glob_pattern = dataset[1]
filenames = tf.gfile.Glob(os.path.join(tmp_dir, glob_pattern))
if not filenames:
| tensorflow.gfile.GFile | 2,238 |
import tensorflow as tf
'bounding_box_samples': _float_feature(d['bounding_box_samples']),
'depth_renders': _float_feature(d['depth_renders']),
'mesh_name': _bytes_feature(d['mesh_name']),
'near_surface_samples': _float_feature(d['near_surface_samples']),
'grid': _float_feature(d['grid']),
'world2grid': _float_feature(d['world2grid']),
'surface_point_samples': _float_feature(d['surface_point_samples'])
}
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
def full_featurespec():
return {
'bounding_box_samples': tf.io.FixedLenFeature([100000, 4], tf.float32),
'depth_renders': tf.io.FixedLenFeature([20, 224, 224, 1], tf.float32),
'mesh_name': tf.io.FixedLenFeature([], tf.string),
'near_surface_samples': tf.io.FixedLenFeature([100000, 4], tf.float32),
'grid': tf.io.FixedLenFeature([32, 32, 32], tf.float32),
'world2grid': tf.io.FixedLenFeature([4, 4], tf.float32),
'surface_point_samples': tf.io.FixedLenFeature([10000, 6], tf.float32)
}
def parse_tf_example(example_proto):
d = tf.io.parse_single_example(example_proto, full_featurespec())
return (d['bounding_box_samples'], d['depth_renders'], d['mesh_name'],
d['near_surface_samples'], d['grid'], d['world2grid'],
d['surface_point_samples'])
| tensorflow.io.FixedLenFeature | 2,239 |
import tensorflow.contrib as contrib
test_y_1 = to_categorical(test_y_1, n_class_1)
train_y_2 = to_categorical(train_y_2, n_class_2)
test_y_2 = to_categorical(test_y_2, n_class_2)
return train_X, train_y_1, train_y_2, test_X, test_y_1, test_y_2
def apply_cross_stitch(input1, input2):
input1_reshaped = contrib.layers.flatten(input1)
input2_reshaped = contrib.layers.flatten(input2)
input = tf.concat((input1_reshaped, input2_reshaped), axis=1)
# initialize with identity matrix
cross_stitch = tf.get_variable("cross_stitch", shape=(input.shape[1], input.shape[1]), dtype=tf.float32,
collections=['cross_stitches', tf.GraphKeys.GLOBAL_VARIABLES],
initializer=tf.initializers.identity())
output = tf.matmul(input, cross_stitch)
| tensorflow.contrib.layers.flatten | 2,240 |
import tensorflow as tf
Returns:
If `image_tensor` has dynamic size, return `image_tensor` with a Assert
control dependency. Otherwise returns image_tensor.
Raises:
ValueError: if `image_tensor`'s' width or height is smaller than `min_dim`.
"""
image_shape = image_tensor.get_shape()
image_height = static_shape.get_height(image_shape)
image_width = static_shape.get_width(image_shape)
if image_height is None or image_width is None:
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(image_tensor)[1], min_dim),
tf.greater_equal(tf.shape(image_tensor)[2], min_dim)),
['image size must be >= {} in both height and width.'.format(min_dim)])
with tf.control_dependencies([shape_assert]):
return tf.identity(image_tensor)
if image_height < min_dim or image_width < min_dim:
raise ValueError(
'image size must be >= %d in both height and width; image dim = %d,%d' %
(min_dim, image_height, image_width))
return image_tensor
| tensorflow.shape | 2,241 |
import tensorflow as tf
def net_U1(self, x):
lambda_1 = self.lambda_1
lambda_2 = tf.exp(self.lambda_2)
U = self.neural_net(x, self.weights, self.biases)
U_x = self.fwd_gradients_1(U, x)
| tensorflow.exp | 2,242 |
import tensorflow as tf
fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")
shape = tf.shape(image)
deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSESS])
| tensorflow.shape | 2,243 |
import tensorflow as tf
# here because it performs better than AveragePooling2D.
axes = [2, 3] if self.data_format == 'channels_first' else [1, 2]
inputs = tf.reduce_mean(inputs, axes, keepdims=True)
inputs = tf.identity(inputs, 'final_reduce_mean')
inputs = tf.reshape(inputs, [-1, self.final_size])
inputs = tf.layers.dense(inputs=inputs, units=self.num_classes)
inputs = tf.identity(inputs, 'final_dense')
return inputs
| tensorflow.reshape | 2,244 |
import tensorflow as tf
self._final_state_name = self.with_prefix(self._name, 'final')
for state_tuple in self._initial_state:
tf.add_to_collection(self._initial_state_name, state_tuple.c)
tf.add_to_collection(self._initial_state_name, state_tuple.h)
for state_tuple in self._final_state:
tf.add_to_collection(self._final_state_name, state_tuple.c)
| tensorflow.add_to_collection | 2,245 |
from tensorflow.python.framework import ops
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
| tensorflow.python.framework.ops.add_to_collections | 2,246 |
from tensorflow.python.framework import tensor_util
"""Helper which ensures that input is a non-negative, int32, scalar."""
x = ops.convert_to_tensor(x, name="x")
if x.dtype.base_dtype != dtypes.int32.base_dtype:
raise TypeError("%s.dtype=%s is not %s" % (x.name, x.dtype, dtypes.int32))
x_value_static = tensor_util.constant_value(x)
if x.get_shape().ndims is not None and x_value_static is not None:
if x.get_shape().ndims != 0:
raise ValueError("%s.ndims=%d is not 0 (scalar)" %
| tensorflow.python.framework.tensor_util.constant_value | 2,247 |
import tensorflow as tf
a_indices = op.inputs[0:numTensors]
a_values = op.inputs[numTensors:numTensors*2]
a_shape = op.inputs[numTensors*2:numTensors*3]
b = op.inputs[numTensors*3]
adj_a = op.get_attr("adjoint_a")
adj_b = op.get_attr("adjoint_b")
# gradient w.r.t. dense
a_values_grads = []
b_list = [b[i] for i in range(numTensors)]
b_grads = b_module.bspmm(a_indices, a_values, a_shape, grad, adjoint_a=True, adjoint_b=False)
bg_row=tf.shape(b_grads[0])[0]
bg_col=tf.shape(b_grads[0])[1]
b_grads = tf.reshape(b_grads, (numTensors * bg_row, bg_col))
if adj_b:
b_grads = [array_ops.transpose(b_g) for b_g in b_grads]
for t in range(numTensors):
rows = a_indices[t][:, 0]
cols = a_indices[t][:, 1]
parts_a = array_ops.gather(grad[t], rows if not adj_a else cols)
parts_b = array_ops.gather(b_list[t] if not adj_b else array_ops.transpose(b_list[t]), cols if not adj_a else rows)
a_values_grads.append(math_ops.reduce_sum(parts_a * parts_b, reduction_indices=1))
return_val = [None for _ in range(numTensors)] + a_values_grads + [None for _ in range(numTensors)] + [b_grads]
| tensorflow.shape | 2,248 |
from tensorflow.python.platform import gfile
from tensorflow.contrib.learn.python.learn.datasets import base
from tensorflow.python.framework import dtypes
from tensorflow.python.platform import gfile
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes):
| tensorflow.python.platform.gfile.Open | 2,249 |
import tensorflow as tf
gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2)
self.loss_d_rot += lam * gradient_penalty
train_vars = tf.trainable_variables()
d_params = [v for v in train_vars if v.name.startswith(name + '/discriminator/')]
g_params = [v for v in train_vars if v.name.startswith(name + '/generator/')]
| tensorflow.trainable_variables | 2,250 |
import tensorflow as tf
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature(feature.label_ids)
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder):
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
}
def _decode_record(record, name_to_features):
example = tf.parse_single_example(record, name_to_features)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
batch_size = params["batch_size"]
| tensorflow.FixedLenFeature | 2,251 |
import tensorflow as tf
if labels is not None and not labels.dtype.is_integer:
raise ValueError('expected integer labels but got %r' % labels.dtype)
if (frequency_threshold is None and labels is None and key_fn is None and
not fingerprint_shuffle and top_k is not None and
top_k <= LARGE_VOCAB_TOP_K):
logging.info('If the number of unique tokens is smaller than the provided '
'top_k or approximation error is acceptable, consider using '
'tft.experimental.approximate_vocabulary for a potentially '
'more efficient implementation.')
with tf.compat.v1.name_scope(name, 'vocabulary'):
vocabulary_key = vocab_filename
vocab_filename = _get_vocab_filename(vocab_filename, store_frequency)
informativeness_threshold = float('-inf')
coverage_informativeness_threshold = float('-inf')
if labels is not None:
if weights is not None:
vocab_ordering_type = _VocabOrderingType.WEIGHTED_MUTUAL_INFORMATION
else:
vocab_ordering_type = _VocabOrderingType.MUTUAL_INFORMATION
# Correct for the overloaded `frequency_threshold` API.
| tensorflow.compat.v1.name_scope | 2,252 |
import tensorflow as tf
data_dir=algorithmic.TinyAlgo.data_dir,
shuffle_files=False)
tensor1 = dataset.make_one_shot_iterator().get_next()["targets"]
tensor2 = dataset.make_one_shot_iterator().get_next()["targets"]
with tf.Session() as sess:
self.assertTrue(assert_tensors_equal(sess, tensor1, tensor2, 20))
@test_utils.run_in_graph_mode_only()
def testNoShufflePreprocess(self):
| tensorflow.Session | 2,253 |
import tensorflow as tf
path_ckpt_input = os.path.join(FLAGS.output_dir, "checkpoint_input")
if FLAGS.ckpt_no is not None and not tf.gfile.Exists(path_ckpt):
with tf.gfile.GFile(path_ckpt, "w") as writer:
writer.write('model_checkpoint_path: "%s-%s"\n' % (os.path.join(FLAGS.recover_dir, "model.ckpt"), str(FLAGS.ckpt_no)))
writer.write('all_model_checkpoint_paths: "%s-%s"\n' % (os.path.join(FLAGS.recover_dir, "model.ckpt"), str(FLAGS.ckpt_no)))
if FLAGS.ckpt_no_input is not None and not tf.gfile.Exists(path_ckpt_input):
with tf.gfile.GFile(path_ckpt_input, "w") as writer:
writer.write('model_checkpoint_path: "%s-%s"\n' % (os.path.join(FLAGS.recover_dir, "input.ckpt"), str(FLAGS.ckpt_no_input)))
writer.write('all_model_checkpoint_paths: "%s-%s"\n' % (os.path.join(FLAGS.recover_dir, "input.ckpt"), str(FLAGS.ckpt_no_input)))
if FLAGS.use_hvd and hvd.rank() == 0 and (FLAGS.do_train or FLAGS.do_train_eval):
(cpath, cname) = os.path.split(FLAGS.bert_config_file)
tf.gfile.Copy(FLAGS.bert_config_file, os.path.join(FLAGS.output_dir, cname), True)
| tensorflow.gfile.GFile | 2,254 |
import tensorflow as tf
# Trainable parameters
w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
b = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
with tf.name_scope('v'):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
tmp1 = tf.tensordot(facts, w1, axes=1)
tmp2 = tf.tensordot(query, w2, axes=1)
tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tmp = tf.tanh((tmp1 + tmp2) + b)
# For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector
v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape
key_masks = mask # [B, 1, T]
# key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1)
v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T]
| tensorflow.tensordot | 2,255 |
from tensorflow.python.platform import gfile
checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
if not gfile.Exists(FLAGS.train_dir):
| tensorflow.python.platform.gfile.Exists | 2,256 |
import tensorflow as tf
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
tf.gfile.MakeDirs(FLAGS.output_dir)
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
| tensorflow.gfile.MakeDirs | 2,257 |
import tensorflow as tf
save_dir = self._TestDir("update_checkpoint_state")
os.chdir(save_dir)
# Make a temporary train directory.
train_dir = "train"
os.mkdir(train_dir)
abs_path = os.path.join(save_dir, "model-0")
rel_path = "train/model-2"
tf.train.update_checkpoint_state(
train_dir,
rel_path,
all_model_checkpoint_paths=[abs_path, rel_path])
ckpt = tf.train.get_checkpoint_state(train_dir)
self.assertEqual(ckpt.model_checkpoint_path, rel_path)
self.assertEqual(len(ckpt.all_model_checkpoint_paths), 2)
self.assertEqual(ckpt.all_model_checkpoint_paths[-1], rel_path)
self.assertEqual(ckpt.all_model_checkpoint_paths[0], abs_path)
class MetaGraphTest(tf.test.TestCase):
def _TestDir(self, test_name):
test_dir = os.path.join(self.get_temp_dir(), test_name)
| tensorflow.train.get_checkpoint_state | 2,258 |
import tensorflow as tf
# tf.zeros_like(tf.cast(n_neg_to_select, tf.float32)),
# name='rand_select_negtive')
# include both selected negtive and all positive examples
final_mask = tf.stop_gradient(tf.logical_or(tf.logical_and(negtive_mask, selected_neg_mask), positive_mask))
total_examples = tf.reduce_sum(tf.cast(final_mask, tf.float32))
# add mask for glabels and cls_pred here
glabels = tf.boolean_mask(tf.clip_by_value(glabels, 0, FLAGS.num_classes), tf.stop_gradient(final_mask))
cls_pred = tf.boolean_mask(cls_pred, tf.stop_gradient(final_mask))
location_pred = tf.boolean_mask(location_pred, tf.stop_gradient(positive_mask))
gtargets = tf.boolean_mask(gtargets, tf.stop_gradient(positive_mask))
predictions = {
'classes': tf.argmax(cls_pred, axis=-1),
'probabilities': tf.reduce_max(tf.nn.softmax(cls_pred, name='softmax_tensor'), axis=-1),
'bboxes_predict': tf.reshape(bboxes_pred, [-1, 4]) }
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.cond(n_positives > 0., lambda: tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred), lambda: 0.)
| tensorflow.stop_gradient | 2,259 |
import tensorflow as tf
alpha = tf.nn.softmax(
tf.reshape(tf.matmul(atten_hidden, V), [-1, shape[1], 1]), axis=1)
output = tf.reshape(output, [-1, shape[1], 2 * self.config.hidden_size])
C = tf.multiply(alpha, output)
| tensorflow.reshape | 2,260 |
import tensorflow as tf
if not isinstance(feat, InducingPoints):
raise NotImplementedError
if full_cov:
# TODO(VD): ``full_cov`` True would return a ``fvar`` of shape N x N x D x D,
# encoding the covariance between input datapoints as well.
# This is not implemented as this feature is only used for plotting purposes.
raise NotImplementedError
pXnew = Gaussian(Xnew_mu, Xnew_var)
num_data = tf.shape(Xnew_mu)[0] # number of new inputs (N)
num_ind = tf.shape(q_mu)[0] # number of inducing points (M)
num_func = tf.shape(q_mu)[1] # output dimension (D)
q_sqrt_r = tf.matrix_band_part(q_sqrt, -1, 0) # D x M x M
eKuf = tf.transpose(expectation(pXnew, (kern, feat))) # M x N (psi1)
if Luu is None:
Kuu = feat.Kuu(kern, jitter=settings.numerics.jitter_level) # M x M
Luu = tf.cholesky(Kuu) # M x M
if not white:
q_mu = tf.matrix_triangular_solve(Luu, q_mu, lower=True)
Luu_tiled = tf.tile(Luu[None, :, :], [num_func, 1, 1]) # remove line once issue 216 is fixed
q_sqrt_r = tf.matrix_triangular_solve(Luu_tiled, q_sqrt_r, lower=True)
| tensorflow.shape | 2,261 |
from tensorflow.python.framework import ops
value: A `Tensor` with type `float`, `double`, `int64`, `int32`, `uint8`,
`int16`, `int8`, or `complex64`.
bias: A 1-D `Tensor` with size matching the last dimension of `value`.
Must be the same type as `value` unless `value` is a quantized type,
in which case a different quantized type may be used.
data_format: A string. 'NHWC' and 'NCHW" are supported.
name: A name for the operation (optional).
Returns:
A `Tensor` with the same type as `value`.
"""
with ops.op_scope([value, bias], name, "BiasAdd") as name:
value = ops.convert_to_tensor(value, name="input")
bias = ops.convert_to_tensor(bias, dtype=value.dtype, name="bias")
return gen_nn_ops._bias_add(value, bias, data_format=data_format, name=name)
ops.RegisterShape("BiasAdd")(common_shapes.bias_add_shape)
ops.RegisterShape("BiasAddGrad")(common_shapes.bias_add_grad_shape)
# pylint: disable=protected-access
def bias_add_v1(value, bias, name=None):
| tensorflow.python.framework.ops.convert_to_tensor | 2,262 |
from tensorflow.python.ops import check_ops
return array_ops.identity(self.rate)
def _variance(self):
return array_ops.identity(self.rate)
@distribution_util.AppendDocstring(
"""Note: when `rate` is an integer, there are actually two modes: `rate`
and `rate - 1`. In this case we return the larger, i.e., `rate`.""")
def _mode(self):
return math_ops.floor(self.rate)
def _assert_valid_sample(self, x, check_integer=True):
if not self.validate_args:
return x
dependencies = [check_ops.assert_non_negative(x)]
if check_integer:
dependencies += [distribution_util.assert_integer_form(
x, message="x has non-integer components.")]
return control_flow_ops.with_dependencies(dependencies, x)
| tensorflow.python.ops.check_ops.assert_non_negative | 2,263 |
import tensorflow as tf
# Verifies that collection where item type does not match expected
# type will not be added.
tf.add_to_collection("int_collection", 3)
tf.add_to_collection("int_collection", 3.5)
| tensorflow.add_to_collection | 2,264 |
import tensorflow as tf
self.translated_z = trans_z
s_h, s_w = self.output_height, self.output_width
s_h0, s_h1, s_h2, s_h3 = \
int(s_h/ns0), int(s_h/ns0/ns1), int(s_h/ns0/ns1/ns2), int(s_h/ns0/ns1/ns2/ns3)
s_w0, s_w1, s_w2, s_w3 = \
int(s_w/ns0), int(s_w/ns0/ns1), int(s_w/ns0/ns1/ns2), int(s_w/ns0/ns1/ns2/ns3)
def decode(z, skip_h3, skip_h2, skip_h1, skip_h0):
z_ = lrelu(linear(tf.nn.dropout(z, keep_prob), nf3*s_h3*s_w3, 'd_h0_lin'))
h0 = tf.nn.dropout(tf.reshape(z_, [-1, s_h3, s_w3, nf3]), keep_prob)
import IPython
IPython.embed()
h1 = lrelu(deconv2d(tf.concat([h0, skip_h3], 3),
[self.batch_size, s_h2, s_w2, nf2], name='d_h1', d_h=ns3, d_w=ns3))
h2 = lrelu(deconv2d(tf.concat([h1, skip_h2], 3),
[self.batch_size, s_h1, s_w1, nf1], name='d_h2', d_h=ns2, d_w=ns2))
h3 = lrelu(deconv2d(tf.concat([h2, skip_h1], 3),
| tensorflow.nn.dropout | 2,265 |
import tensorflow as tf
init: float
Bias initializer. Defaults to zero.
name: str
Name for this op. Defaults to tensor.op.name.
Returns
-------
tf.Tensor
A biased tensor with the same shape as the input tensor.
"""
if init is None:
init = tf.zeros([tensor.get_shape()[-1].value])
with tf.name_scope(name, tensor.op.name, [tensor]):
b = tf.Variable(init, name='b')
return tf.nn.bias_add(tensor, b)
def dropout(tensor, dropout_prob, training=True, training_only=True):
"""Random dropout.
This implementation supports "always-on" dropout (training_only=False), which
can be used to calculate model uncertainty. See Gal and Ghahramani,
http://arxiv.org/abs/1506.02142.
NOTE(user): To simplify the implementation, I have chosen not to reverse
the scaling that occurs in tf.nn.dropout when using dropout during
inference. This shouldn't be an issue since the activations will be scaled
by the same constant in both training and inference. This means that there
| tensorflow.nn.bias_add | 2,266 |
import tensorflow as tf
#TODO: self.v should be l2-normalized or not? / currently not.
return {'v':self.v,'b':self.b,'g':self.g}
class SymPadConv2d(object): #Resize and Convolution(upsacle by 2)
def __init__(self,name,input_dim,output_dim,
k_h=3,k_w=3,stddev=0.02) :
assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size'
with tf.variable_scope(name) :
self.w = tf.get_variable('w', [k_h, k_w, input_dim, output_dim],
initializer=tf.random_normal_initializer(stddev=stddev))
self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0))
self.padding = [ [0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0] ]
def __call__(self,input_var,name=None,**kwargs):
_,h,w,c = input_var.shape.as_list()
_t = tf.image.resize_nearest_neighbor(input_var, [h*2, w*2])
_t = tf.pad(_t,self.padding, mode='SYMMETRIC')
return tf.nn.bias_add(
tf.nn.conv2d(_t, self.w,
| tensorflow.constant_initializer | 2,267 |
import tensorflow as tf
seq_axis=1,
batch_axis=0,
)
mask_wo_bos_eos = mask_wo_bos_eos[:, 1:]
mask_wo_bos_eos = tf.reverse_sequence(
mask_wo_bos_eos,
sequence_length_wo_bos_eos,
seq_axis=1,
batch_axis=0,
)
mask_wo_bos_eos = tf.cast(mask_wo_bos_eos, 'bool')
return {
'lm_embeddings': lm_embeddings,
'lengths': sequence_length_wo_bos_eos,
'token_embeddings': lm_graph.embedding,
'mask': mask_wo_bos_eos,
}
| tensorflow.cast | 2,268 |
import tensorflow as tf
tf.greater_equal(
matched_iou, self._config_dict['background_iou_low_threshold']),
tf.less(
matched_iou, self._config_dict['background_iou_high_threshold']))
ignored_matches = tf.logical_and(
tf.less(matched_iou, 0.0),
tf.greater_equal(
matched_iou, self._config_dict['background_iou_high_threshold']))
ignored_matches = tf.logical_and(
ignored_matches,
tf.less(
matched_iou, self._config_dict['foreground_iou_threshold']))
| tensorflow.greater_equal | 2,269 |
from tensorflow.python.ops import array_ops
start_sum = start_sum if start_sum else (
array_ops.zeros((), dtype=dtypes.int32, name="zero"),)
| tensorflow.python.ops.array_ops.zeros | 2,270 |
import tensorflow as tf
if slope < 1.0:
X = tf.nn.leaky_relu(X, slope) if slope > 0.0 else tf.nn.relu(X)
| tensorflow.nn.relu | 2,271 |
import tensorflow as tf
if mode == 'eval':
for checkpoint in _get_next_checkpoint():
tf.logging.info('Starting to evaluate.')
try:
eval_results = image_classifier.evaluate(
input_fn=imagenet_eval.input_fn,
steps=eval_steps,
hooks=eval_hooks,
checkpoint_path=checkpoint)
tf.logging.info('Evaluation results: %s' % eval_results)
except tf.errors.NotFoundError:
# skip checkpoint if it gets deleted prior to evaluation
tf.logging.info('Checkpoint %s no longer exists ... skipping')
elif mode == 'train_and_eval':
current_step = _load_global_step_from_checkpoint_dir(model_dir)
tf.logging.info('Starting training at step=%d.' % current_step)
train_steps_per_eval = int(
hparams.num_epochs_per_eval * train_steps_per_epoch)
# Final Evaluation if training is finished.
| tensorflow.logging.info | 2,272 |
from tensorflow.python.ops import math_ops
# avoid division by zero
epsilon = 1e-7
def compute_precision(name):
precision = math_ops.div(true_positives,
epsilon + true_positives + false_positives,
name='precision_' + name)
| tensorflow.python.ops.math_ops.div | 2,273 |
from tensorflow.python.framework import random_seed
embed_np = embeds[ids]
embed_tf = ops.embedding_lookup(embeds, ids).eval()
self.assertEqual(embed_np.shape, embed_tf.shape)
self.assertAllClose(embed_np, embed_tf)
def test_categorical_variable(self):
random_seed.set_random_seed(42)
with self.cached_session() as sess:
cat_var_idx = array_ops.placeholder(dtypes.int64, [2, 2])
embeddings = ops.categorical_variable(
cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var")
sess.run(variables.global_variables_initializer())
| tensorflow.python.framework.random_seed.set_random_seed | 2,274 |
import tensorflow as tf
model = MyModel(vocab_size, embedding_dim, units, BATCH_SIZE)
optimizer = tf.optimizers.Adam()
checkpoint_dir = "./models/new_out"
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)).expect_partial()
@app.route("/summary", methods=["POST"])
@cross_origin(headers=['Content-Type'])
def summary():
res = requests.post("https://turkcemetinozetleme.teaddict.net/ozetle/api/new", data={
"contextOfText":request.data.decode()
| tensorflow.train.latest_checkpoint | 2,275 |
import tensorflow as tf
}
"""
if not features:
features = {}
inputs_old = None
if "inputs" in features and len(features["inputs"].shape) < 4:
inputs_old = features["inputs"]
features["inputs"] = tf.expand_dims(features["inputs"], 2)
if not self.has_input:
features["partial_targets"] = tf.to_int64(features["inputs"])
# Save the targets in a var and reassign it after the tf.while loop to avoid
# having targets being in a 'while' frame. This ensures targets when used
# in metric functions stays in the same frame as other vars.
targets_old = features.get("targets", None)
target_modality = self._problem_hparams.target_modality
def infer_step(recent_output, recent_logits, unused_loss):
| tensorflow.to_int64 | 2,276 |
import tensorflow as tf
with tf.variable_scope("no_tuple"):
cell1 = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
dec, mem = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell1, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
| tensorflow.global_variables_initializer | 2,277 |
import tensorflow as tf
# results in a H2D copy.
images = tf.contrib.framework.local_variable(images, name='images')
labels = tf.contrib.framework.local_variable(labels, name='labels')
# Change to 0-based (don't use background class like Inception does)
labels -= 1
if num_compute_devices == 1:
images_splits = [images]
labels_splits = [labels]
else:
images_splits = tf.split(images, num_compute_devices, 0)
labels_splits = tf.split(labels, num_compute_devices, 0)
return nclass, images_splits, labels_splits
def create_config_proto():
config = tf.ConfigProto()
config.allow_soft_placement = True
config.intra_op_parallelism_threads = FLAGS.num_intra_threads
| tensorflow.split | 2,278 |
import tensorflow as tf
with self.test_session(graph=tf.Graph(), use_gpu=False) as sess:
sp_input0 = self._SparseTensorValue_5x6(np.arange(6))
sp_input1 = self._SparseTensorValue_3x4(np.arange(6))
handle0 = add_sparse_to_tensors_map(sp_input0, shared_name="a")
handle1 = add_sparse_to_tensors_map(sp_input1, shared_name="a")
self.assertEqual(handle0.get_shape(), ())
handles_concat = tf.stack([handle0, handle1])
sp_out = take_many_sparse_from_tensors_map(
sparse_map_op=handle0.op, sparse_handles=handles_concat)
combined_indices, combined_values, combined_shape = sess.run(sp_out)
| tensorflow.stack | 2,279 |
import tensorflow as tf
with tf.variable_scope("input", reuse=reuse):
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
with tf.variable_scope(scope, reuse=reuse):
if param_noise:
act_f, obs_phs = build_act_with_param_noise(q_func, ob_space, ac_space, stochastic_ph, update_eps_ph, sess,
param_noise_filter_func=param_noise_filter_func)
else:
act_f, obs_phs = build_act(q_func, ob_space, ac_space, stochastic_ph, update_eps_ph, sess, layers=layers)
# q network evaluation
with tf.variable_scope("step_model", reuse=True, custom_getter=tf_util.outer_scope_getter("step_model")):
step_model = q_func(sess, ob_space, ac_space, 1, 1, None, reuse=True, obs_phs=obs_phs, layers=layers)
q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/model")
# target q network evaluation
with tf.variable_scope("target_q_func", reuse=False):
target_policy = q_func(sess, ob_space, ac_space, 1, 1, None, reuse=False, layers=layers)
target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope=tf.get_variable_scope().name + "/target_q_func")
# compute estimate of best possible value starting from state at t + 1
double_q_values = None
double_obs_ph = target_policy.obs_ph
if double_q:
with tf.variable_scope("double_q", reuse=True, custom_getter=tf_util.outer_scope_getter("double_q")):
double_policy = q_func(sess, ob_space, ac_space, 1, 1, None, reuse=True, layers=layers)
| tensorflow.get_variable_scope | 2,280 |
import tensorflow as tf
slim.conv2d(
features,
num_classes,
kernel_size=kernel_size,
rate=rate,
activation_fn=None,
normalizer_fn=None,
scope=scope))
return tf.add_n(branch_logits)
def _split_separable_conv2d(inputs,
filters,
rate=1,
weight_decay=0.00004,
depthwise_weights_initializer_stddev=0.33,
pointwise_weights_initializer_stddev=0.06,
| tensorflow.add_n | 2,281 |
from tensorflow.python.ops import math_ops
Returns:
Masked weights if `mask` and `weights` are not `None`, weights equivalent to
`mask` if `weights` is `None`, and otherwise `weights`.
Raises:
ValueError: If `weights` and `mask` are not `None` and have mismatched
shapes.
"""
if mask is not None:
check_ops.assert_type(mask, dtypes.bool)
if weights is None:
weights = array_ops.ones_like(mask, dtype=dtypes.float32)
weights = math_ops.cast(math_ops.logical_not(mask), weights.dtype) * weights
return weights
def _safe_div(numerator, denominator, name):
"""Divides two values, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
name: Name for the returned op.
| tensorflow.python.ops.math_ops.logical_not | 2,282 |
import tensorflow as tf
beta1=beta1).minimize(generator_loss, var_list=en_var)
supervised_encoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
| tensorflow.train.AdamOptimizer | 2,283 |
import tensorflow as tf
"Adding regularization"
if lambda_l2_reg > 0 :
cell_l2 = tf.reduce_sum([tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables() if not ("noreg" in tf_var.name or "Bias" in tf_var.name)])
Predict_l2 = tf.nn.l2_loss(W) #+ tf.nn.l2_loss(b)
total_loss = tf.reduce_sum(loss + lambda_l2_reg* tf.reduce_sum(cell_l2+Predict_l2) )
else:
total_loss = loss
"Define the train_step"
| tensorflow.reduce_sum | 2,284 |
import tensorflow as tf
N = tf.cast(tf.shape(X)[0], tf.float32)
if y is None:
y = silverman_rule_of_thumb(N)
A = 1/(N*N*tf.sqrt(y))
B = 2.0/(N*tf.sqrt(y+0.5))
A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)/(4*y)
B1 = euclidean_norm_squared(X, axis=1)/(2+4*y)
return 1/tf.sqrt(1+y) + A*tf.reduce_sum(__phi(A1)) - B*tf.reduce_sum(__phi(B1))
def cw(X, y=None):
D = tf.cast(tf.shape(X)[1], tf.float32)
N = tf.cast(tf.shape(X)[0], tf.float32)
| tensorflow.expand_dims | 2,285 |
import tensorflow as tf
else:
strides = [1, stride, stride, 1] if data_format == 'NHWC' \
else [1, 1, stride, stride]
return tf.nn.max_pool(value=inputdata, ksize=kernel, strides=strides, padding=padding,
data_format=data_format, name=name)
@staticmethod
| tensorflow.nn.max_pool | 2,286 |
import tensorflow as tf
if full_cov:
fvar = Knn - tf.matmul(A, A, transpose_a=True)
fvar = tf.tile(fvar[None, :, :], [num_func, 1, 1]) # R x N x N
else:
fvar = Knn - tf.reduce_sum(tf.square(A), 0)
fvar = tf.tile(fvar[None, :], [num_func, 1]) # R x N
# another backsubstitution in the unwhitened case
| tensorflow.square | 2,287 |
from tensorflow.python.ops import math_ops
# the precision denominator.
# `precision_per_k` (float64) - Precision at each k. This is the "P_{i}"
# term from the formula above.
# `relevant_precision_per_k` (float64) - Relevant precisions; i.e.,
# precisions at all k for which relevance indicator is true.
relevant_per_k = _sparse_true_positive_at_k(
predictions_idx_per_k, labels_per_k, name='relevant_per_k')
tp_per_k = math_ops.cumsum(relevant_per_k, axis=-1, name='tp_per_k')
retrieved_per_k = math_ops.cumsum(
array_ops.ones_like(relevant_per_k), axis=-1, name='retrieved_per_k')
precision_per_k = math_ops.div(
math_ops.to_double(tp_per_k), math_ops.to_double(retrieved_per_k),
name='precision_per_k')
relevant_precision_per_k = math_ops.mul(
precision_per_k, math_ops.to_double(relevant_per_k),
name='relevant_precision_per_k')
# Reduce along k dimension to get the sum, yielding a [D1, ... DN] tensor.
precision_sum = math_ops.reduce_sum(
relevant_precision_per_k, reduction_indices=(-1,), name='precision_sum')
# Divide by number of relevant items to get average precision. These are
# the "num_relevant_items" and "AveP" terms from the formula above.
num_relevant_items = math_ops.to_double(num_relevant(labels, k))
return math_ops.div(precision_sum, num_relevant_items, name=scope)
def streaming_sparse_average_precision_at_k(predictions,
| tensorflow.python.ops.math_ops.to_double | 2,288 |
import tensorflow as tf
with tf.variable_scope('rl_controller') as rl_scope:
# It creates a `rl_scope` which will be used for ops.
pass
rl_entropy, label_weights, log_prob = rl_label_weights(rl_scope)
loss_entropy, loss_weights, loss_log_prob = get_loss_weights(rl_scope)
def gather_init_weights():
inst_weights = tf.stop_gradient(tf.gather(label_weights, src_labels))
return inst_weights
inst_weights = gather_init_weights()
bs = FLAGS.train_batch_size
hw = FLAGS.src_hw
inst_weights, indices = tf.nn.top_k(
inst_weights,
k=bs,
sorted=True,
)
src_features = tf.reshape(src_features, [
bs * FLAGS.source_train_batch_multiplier,
hw,
hw,
1,
])
src_features = tf.gather(src_features, indices, axis=0)
src_features = tf.stop_gradient(src_features)
| tensorflow.nn.top_k | 2,289 |
import tensorflow as tf
trainnum = tf.placeholder(tf.int32)
validnum = tf.placeholder(tf.int32)
learnrate = tf.placeholder(tf.float32)
def getinputs(path):
filename_queue=tf.train.string_input_producer([path])
reader=tf.TFRecordReader()
_,serialized_example=reader.read(filename_queue)
features=tf.parse_single_example(serialized_example,
features={
'label':tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})
image=tf.decode_raw(features['img_raw'],tf.uint8)
label=tf.cast(features['label'],tf.int32)
image=tf.reshape(image,[4096,1])
return image,label
def get_batch(image,label,batch_size,crop_size):
#print(image.shape)
#print(label.shape)
images,labels=tf.train.shuffle_batch([image,label],
| tensorflow.FixedLenFeature | 2,290 |
import tensorflow as tf
'adj_min_batch': tf.placeholder(tf.float32,name='adj_min_batch'),
'sim_min_batch': tf.placeholder(tf.float32,name='sim_min_batch'),
'batch_edge_type_idx': tf.placeholder(tf.int32, shape=(), name='batch_edge_type_idx'),
'batch_row_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_row_edge_type'),
'batch_col_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_col_edge_type'),
'degrees': tf.placeholder(tf.int32),
'dropout': tf.placeholder_with_default(0., shape=()),
}
placeholders.update({
'adj_mats_%d,%d,%d' % (i, j, k): tf.sparse_placeholder(tf.float32)
for i, j in edge_types for k in range(edge_types[i,j])})
placeholders.update({
'feat_%d' % i: tf.sparse_placeholder(tf.float32)
for i, _ in edge_types})
return placeholders
###########################################################
test_size = 0.20
val_size = 0.05
num_drugs = 2926
n_drugdrug_rel_types =11
| tensorflow.sparse_placeholder | 2,291 |
import tensorflow as tf
return t5_data().SentencePieceVocabulary(sentencepiece_model_file=path,
extra_ids=extra_ids)
# Makes the function accessible in gin configs, even with all args denylisted.
@gin.configurable(module='trax.data', denylist=['dataset', 'training'])
def cifar10_no_augmentation_preprocess(dataset, training):
del training
def cast_image(features, targets):
features['image'] = tf.cast(features['image'], tf.float32) / 255.0
return features, targets
dataset = dataset.map(cast_image)
return dataset
def _cifar_augment_image(image):
"""Image augmentation suitable for CIFAR-10/100.
| tensorflow.cast | 2,292 |
import tensorflow as tf
pool_width = scale_dimension(model_options.crop_size[1],
1. / model_options.output_stride)
image_feature = slim.avg_pool2d(
features, [pool_height, pool_width], [pool_height, pool_width],
padding='VALID')
else:
pool_height = tf.shape(features)[1]
pool_width = tf.shape(features)[2]
image_feature = tf.reduce_mean(features, axis=[1,2])[:, tf.newaxis, tf.newaxis, :]
image_feature = slim.conv2d(
image_feature, depth, 1, scope=_IMAGE_POOLING_SCOPE)
image_feature = tf.image.resize_bilinear(
image_feature, [pool_height, pool_width], align_corners=True)
if is_training:
image_feature.set_shape([None, pool_height, pool_width, depth])
branch_logits.append(image_feature)
| tensorflow.reduce_mean | 2,293 |
import tensorflow as tf
#else:
# self.new_logits = self.logits
self.grads = grads
self.grads_norm = tf.global_norm(grads)
#see https://www.tensorflow.org/api_docs/python/tf/train/Optimizer#processing_gradients_before_applying_them
#if clipping_method == "clip_by_global_norm":
| tensorflow.global_norm | 2,294 |
import tensorflow as tf
h, w, _ = image.shape
grid = 8
image = image[:h // grid * grid, :w // grid * grid, :]
mask = mask[:h // grid * grid, :w // grid * grid, :]
image = np.expand_dims(image, 0)
mask = np.expand_dims(mask, 0)
input_image = np.concatenate([image, mask], axis=2)
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
input_image = tf.constant(input_image, dtype=tf.float32)
output = model.build_server_graph(FLAGS, input_image)
output = (output + 1.) * 127.5
output = tf.reverse(output, [-1])
output = tf.saturate_cast(output, tf.uint8)
# load pretrained model
vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = []
for var in vars_list:
vname = var.name
from_name = vname
var_value = tf.contrib.framework.load_variable(checkpoint_dir, from_name)
assign_ops.append(tf.assign(var, var_value))
| tensorflow.constant | 2,295 |
from tensorflow.python.ops import math_ops
thresh_tiled)
pred_is_neg = math_ops.logical_not(pred_is_pos)
# Tile labels by number of thresholds
label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1])
label_is_neg = math_ops.logical_not(label_is_pos)
true_positives = _create_local('true_positives', shape=[num_thresholds])
false_negatives = _create_local('false_negatives', shape=[num_thresholds])
true_negatives = _create_local('true_negatives', shape=[num_thresholds])
false_positives = _create_local('false_positives', shape=[num_thresholds])
is_true_positive = math_ops.to_float(
math_ops.logical_and(label_is_pos, pred_is_pos))
is_false_negative = math_ops.to_float(
math_ops.logical_and(label_is_pos, pred_is_neg))
is_false_positive = math_ops.to_float(
math_ops.logical_and(label_is_neg, pred_is_pos))
is_true_negative = math_ops.to_float(
math_ops.logical_and(label_is_neg, pred_is_neg))
if weights is not None:
weights = math_ops.to_float(weights)
weights_tiled = array_ops.tile(array_ops.reshape(
_broadcast_weights(weights, predictions), [1, -1]), [num_thresholds, 1])
thresh_tiled.get_shape().assert_is_compatible_with(
| tensorflow.python.ops.math_ops.logical_and | 2,296 |
import tensorflow as tf
# Add entropy coefficient optimization operation if needed
if ent_coef_loss is not None:
with tf.control_dependencies([train_values_op]):
ent_coef_op = entropy_optimizer.minimize(ent_coef_loss, var_list=self.log_ent_coef)
self.infos_names += ['ent_coef_loss', 'ent_coef']
self.step_ops += [ent_coef_op, ent_coef_loss, self.ent_coef]
# Monitor losses and entropy in tensorboard
tf.summary.scalar('policy_loss', policy_loss)
tf.summary.scalar('qf1_loss', qf1_loss)
tf.summary.scalar('qf2_loss', qf2_loss)
tf.summary.scalar('value_loss', value_loss)
tf.summary.scalar("Imitation_loss",self.actor_loss_di)
tf.summary.scalar('entropy', self.entropy)
tf.summary.scalar('importance weight',tf.reduce_mean(self.weight_ph))
if ent_coef_loss is not None:
tf.summary.scalar('ent_coef_loss', ent_coef_loss)
tf.summary.scalar('ent_coef', self.ent_coef)
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph))
| tensorflow.summary.scalar | 2,297 |
import tensorflow as tf
num_features = tensor.get_shape()[-1].value
weight_init = tf.truncated_normal([num_features, size], stddev=0.01)
if bias_init is None:
bias_init = tf.zeros([size])
with tf.name_scope(name, 'fully_connected', [tensor]):
w = tf.Variable(weight_init, name='w', dtype=tf.float32)
b = tf.Variable(bias_init, name='b', dtype=tf.float32)
return tf.nn.xw_plus_b(tensor, w, b)
def weight_decay(penalty_type, penalty):
| tensorflow.Variable | 2,298 |
import tensorflow as tf
data = self.dropout_layer(data)
data = self.layer_normalization_layer(data)
with tf.variable_scope("task_dependent"):
logits = self.dense_layer(data, num_tags)
crf_params = tf.get_variable("crf", [num_tags, num_tags], dtype=tf.float32)
pred_ids = self.crf_decode_layer(logits, crf_params, nwords)
pred_strings = self.id2tag(pred_ids, name="predict")
| tensorflow.get_variable | 2,299 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.