seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
def testProblemHparamsTargetOnlyModality(self):
class TargetOnlyProblem(problem_module.Problem):
def hparams(self, defaults, model_hparams):
hp = defaults
hp.modality = {"targets": modalities.SymbolModality}
hp.vocab_size = {"targets": 3}
problem = TargetOnlyProblem(False, False)
p_hparams = problem.get_hparams()
self.assertIsInstance(p_hparams.modality["targets"],
modalities.SymbolModality)
self.assertLen(p_hparams.modality, 1)
if __name__ == "__main__":
tf.test.main()
| tensorflow.test.main | 1,800 |
import tensorflow as tf
with tf.variable_scope(self.name):
# ------------------ all inputs ------------------------
self.S = tf.placeholder(tf.float32, [None, self.num_global_s], name='S') # input Global State
self.s = tf.placeholder(tf.float32, [None, self.num_s], name='s1') # input state for agent1
self.S_ = tf.placeholder(tf.float32, [None, self.num_global_s], name='S_') # input Next Global State
self.s_ = tf.placeholder(tf.float32, [None, self.num_s], name='s1_') # input next state for agent1
| tensorflow.placeholder | 1,801 |
from tensorflow.contrib.learn.python.learn.estimators import run_config
model.evaluate(input_fn=_ranking_train_input_fn, steps=1)
model.predict(input_fn=_infer_ranking_train_input_fn)
class CoreGradientBoostedDecisionTreeEstimator(test_util.TensorFlowTestCase):
def testTrainEvaluateInferDoesNotThrowError(self):
head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(
loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)
learner_config = learner_pb2.LearnerConfig()
learner_config.num_classes = 2
learner_config.constraints.max_tree_depth = 1
model_dir = tempfile.mkdtemp()
config = run_config.RunConfig()
est = estimator.CoreGradientBoostedDecisionTreeEstimator(
head=head_fn,
learner_config=learner_config,
num_trees=1,
examples_per_layer=3,
model_dir=model_dir,
config=config,
feature_columns=[core_feature_column.numeric_column("x")])
# Train for a few steps.
est.train(input_fn=_train_input_fn, steps=1000)
est.evaluate(input_fn=_eval_input_fn, steps=1)
| tensorflow.contrib.learn.python.learn.estimators.run_config.RunConfig | 1,802 |
import tensorflow as tf
if self.config["use_features"]:
span_width_index = span_width - 1 # [k]
span_width_emb = tf.gather(tf.get_variable("span_width_embeddings", [self.config["max_span_width"], self.config["feature_size"]]), span_width_index) # [k, emb]
span_width_emb = tf.nn.dropout(span_width_emb, self.dropout)
span_emb_list.append(span_width_emb)
if self.config["model_heads"]:
span_indices = tf.expand_dims(tf.range(self.config["max_span_width"]), 0) + tf.expand_dims(span_starts, 1) # [k, max_span_width]
span_indices = tf.minimum(util.shape(context_outputs, 0) - 1, span_indices) # [k, max_span_width]
span_text_emb = tf.gather(head_emb, span_indices) # [k, max_span_width, emb]
with tf.variable_scope("head_scores"):
self.head_scores = util.projection(context_outputs, 1) # [num_words, 1]
span_head_scores = tf.gather(self.head_scores, span_indices) # [k, max_span_width, 1]
span_mask = tf.expand_dims(tf.sequence_mask(span_width, self.config["max_span_width"], dtype=tf.float32), 2) # [k, max_span_width, 1]
span_head_scores += tf.log(span_mask) # [k, max_span_width, 1]
span_attention = tf.nn.softmax(span_head_scores, 1) # [k, max_span_width, 1]
span_head_emb = tf.reduce_sum(span_attention * span_text_emb, 1) # [k, emb]
span_emb_list.append(span_head_emb)
span_emb = tf.concat(span_emb_list, 1) # [k, emb]
return span_emb # [k, emb]
def get_mention_scores(self, span_emb):
with tf.variable_scope("mention_scores"):
return util.ffnn(span_emb, self.config["ffnn_depth"], self.config["ffnn_size"], 1, self.dropout) # [k, 1]
def softmax_loss(self, antecedent_scores, antecedent_labels):
| tensorflow.sequence_mask | 1,803 |
import tensorflow as tf
# Embedding variables
entity_var_shape = [entity_cnt, self.embedding_size]
rel_var_shape = [rel_cnt, self.embedding_size]
entity_init = tf.truncated_normal(entity_var_shape, stddev=init_sd)
rel_init = tf.truncated_normal(rel_var_shape, stddev=init_sd)
# Ensure maxnorm constraints are initially satisfied
| tensorflow.truncated_normal | 1,804 |
import tensorflow as tf
'img_raw' : tf.FixedLenFeature([], tf.string),
})
image=tf.decode_raw(features['img_raw'],tf.uint8)
label=tf.cast(features['label'],tf.int32)
image=tf.reshape(image,[4096,1])
return image,label
def get_batch(image,label,batch_size,crop_size):
#print(image.shape)
#print(label.shape)
images,labels=tf.train.shuffle_batch([image,label],
batch_size=batch_size,num_threads=10,capacity=10000,min_after_dequeue=200)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
def get_test_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
def get_valid_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
class trainwork(object):
def __init__(self):
| tensorflow.reshape | 1,805 |
import tensorflow as tf
grl = fc(grl, 100, True, None, activation=relu, name='fc1')
logits = fc(grl, 1, True, None, activation=None, name='fc2')
domain_predictions = tf.sigmoid(logits)
domain_loss = tf.losses.log_loss(domain_selection_mask, domain_predictions, weights=weight)
domain_accuracy = util.accuracy_tf(domain_selection_mask, tf.round(domain_predictions))
assert_op = tf.Assert(tf.is_finite(domain_loss), [domain_loss])
with tf.control_dependencies([assert_op]):
tag_loss = 'losses/domain_loss'
barrier = tf.no_op(tag_loss)
return domain_loss
def difference_loss(private_samples, shared_samples, weight=1.0, name='difference_loss'):
"""Adds the difference loss between the private and shared representations.
Args:
private_samples: a tensor of shape [num_samples, num_features].
shared_samples: a tensor of shape [num_samples, num_features].
weight: the weight of the incoherence loss.
name: the name of the tf summary.
| tensorflow.no_op | 1,806 |
import tensorflow as tf
self._subset(files, [1]))
self.assertEqual(set(tf.matching_files(pattern % '?').eval()),
self._subset(files, [0, 1, 3, 4]))
self.assertEqual(set(tf.matching_files(pattern % '*').eval()),
self._subset(files, [0, 1, 2, 3, 4, 5]))
self.assertEqual(set(tf.matching_files(pattern % '[cxz]').eval()),
self._subset(files, [0, 1]))
self.assertEqual(set(tf.matching_files(pattern % '[0-9]').eval()),
self._subset(files, [3, 4]))
| tensorflow.matching_files | 1,807 |
from tensorflow.python.ops import array_ops
result is undefined. When `False`, an exception is raised if one or
more of the statistic's batch members are undefined.
name: `String` name prefixed to Ops created by this class.
"""
parameters = locals()
with ops.name_scope(name, values=[rate]) as ns:
with ops.control_dependencies([check_ops.assert_positive(rate)] if
validate_args else []):
self._rate = array_ops.identity(rate, name="rate")
super(Poisson, self).__init__(
dtype=self._rate.dtype,
is_continuous=False,
reparameterization_type=distribution.NOT_REPARAMETERIZED,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
parameters=parameters,
| tensorflow.python.ops.array_ops.identity | 1,808 |
import tensorflow as tf
self.saver = tf.train.Saver()
def train_network(self):
self.learning_rate = tf.placeholder(tf.float32)
self.d_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.discriminator_loss,var_list=self.d_variables)
self.g_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.generator_loss,var_list=self.g_variables)
self.init_op = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(self.init_op)
| tensorflow.train.AdamOptimizer | 1,809 |
from tensorflow.python.framework import ops
ops.RegisterShape("IsInf")(common_shapes.unchanged_shape)
ops.RegisterShape("IsNan")(common_shapes.unchanged_shape)
ops.RegisterShape("Log")(common_shapes.unchanged_shape)
ops.RegisterShape("LogicalNot")(common_shapes.unchanged_shape)
| tensorflow.python.framework.ops.RegisterShape | 1,810 |
import tensorflow as tf
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
def export_ops(self, name):
"""Exports ops to collections."""
self._name = name
ops = {util.with_prefix(self._name, "cost"): self._cost}
if self._is_training:
ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
if self._rnn_params:
ops.update(rnn_params=self._rnn_params)
for name, op in ops.iteritems():
tf.add_to_collection(name, op)
self._initial_state_name = util.with_prefix(self._name, "initial")
self._final_state_name = util.with_prefix(self._name, "final")
util.export_state_tuples(self._initial_state, self._initial_state_name)
util.export_state_tuples(self._final_state, self._final_state_name)
def import_ops(self):
"""Imports ops from collections."""
if self._is_training:
self._train_op = tf.get_collection_ref("train_op")[0]
self._lr = tf.get_collection_ref("lr")[0]
self._new_lr = tf.get_collection_ref("new_lr")[0]
| tensorflow.add_to_collection | 1,811 |
import tensorflow as tf
w_c: [1,1, attention_vec_size]
coverage: [batch_size, passage_len]
'''
with variable_scope.variable_scope("Attention"):
# Equation (11) in the paper
state_features = linear(decoder_state, attention_vec_size, True) # [batch_size, attention_vec_size]
state_features = tf.expand_dims(state_features, 1) # [batch_size, 1, attention_vec_size]
all_features = encoder_features + state_features # [batch_size,passage_len,attention_vec_size]
if use_coverage and coverage is not None:
coverage_features = tf.expand_dims(coverage, axis=-1) * w_c # [batch_size, passage_len, attention_vec_size]
all_features += coverage_features
e = tf.reduce_sum(v * tf.tanh(all_features), axis=-1) # [batch_size, passage_len]
attn_dist = nn_ops.softmax(e) # [batch_size, passage_len]
attn_dist *= passage_mask
if coverage is not None: # Update coverage vector
coverage += attn_dist
else: # first step of training
| tensorflow.expand_dims | 1,812 |
import tensorflow as tf
masked_lm_positions=masked_lm_positions,
masked_lm_ids=masked_lm_labels)
features.append(feature)
i += mask_count
return features
def parse_result(result, all_tokens, output_file=None):
with tf.gfile.GFile(output_file, "w") as writer:
tf.logging.info("***** Predict results *****")
i = 0
sentences = []
for word_loss in result:
# start of a sentence
if all_tokens[i] == "[CLS]":
sentence = {}
| tensorflow.gfile.GFile | 1,813 |
import tensorflow as tf
export_feat_tensors[layer_name] = last_layer
dnn_output = last_layer
dnn_output_size = last_layer_size
# Logistic regression
with tf.variable_scope('logit') as scope:
logit_w = tf.get_variable('W', shape=[dnn_output_size, 1], initializer=tf.truncated_normal_initializer(stddev=1.0 / dnn_output_size, dtype=dtype), dtype=dtype)
logit_b = tf.get_variable('b', shape=[1], initializer=tf.constant_initializer(0.0), dtype=dtype)
logits = tf.squeeze(tf.nn.bias_add(tf.matmul(dnn_output, logit_w), logit_b), squeeze_dims=[1])
prediction = tf.nn.sigmoid(logits)
prediction_inspect = tf.reshape(prediction, [batch_size, rnn_nunroll])
prediction_final = tf.squeeze(tf.slice(prediction_inspect, [0, rnn_nunroll - 1], [-1, 1]), squeeze_dims=[1])
print('logit: {}'.format(logits.get_shape()))
# Compute loss
| tensorflow.constant_initializer | 1,814 |
import tensorflow as tf
mean, var = tf.nn.moments(x, [1, 2], keep_dims=True)
scale = tf.get_variable('scale',[x.get_shape()[-1]],
initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02))
offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0))
out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset
return out
def d_layer(layer_input,filters,f_size=4,stride=2,norm=True,name='d_layer'):
"""Discriminator layer"""
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
d = tf.contrib.layers.conv2d(layer_input,filters,kernel_size=f_size,stride=2, padding='SAME')
if norm:
d = tf.contrib.layers.batch_norm(d)
d = lrelu(d,alpha=0.2)
return d
down1 = d_layer(image,self.df, norm=False,name='down1') #256x256 -> 128x128
#rint('down1',np.shape(down1))
down2 = d_layer(down1,self.df*2,name='down2') #128x128 -> 64x64
#rint('down2',np.shape(down2))
down3 = d_layer(down2,self.df*4,name='down3') #64x64 -> 32x32
| tensorflow.get_variable_scope | 1,815 |
import tensorflow as tf
with tf.device(self._test_device):
batch_size = 3
size = 10
tracker_size = 8
reducer = spinn.Reducer(size, tracker_size=tracker_size)
left_in = []
right_in = []
tracking = []
for _ in range(batch_size):
left_in.append(tf.random_normal((1, size * 2)))
right_in.append(tf.random_normal((1, size * 2)))
tracking.append(tf.random_normal((1, tracker_size * 2)))
out = reducer(left_in, right_in, tracking=tracking)
self.assertEqual(batch_size, len(out))
self.assertEqual(tf.float32, out[0].dtype)
self.assertEqual((1, size * 2), out[0].shape)
def testReduceTreeLSTM(self):
with tf.device(self._test_device):
size = 10
tracker_size = 8
reducer = spinn.Reducer(size, tracker_size=tracker_size)
| tensorflow.random_normal | 1,816 |
import tensorflow as tf
# click_feature[list_size:]=[tf.expand_dims(tf.zeros_like(self.labels[i]) , -1) for _ in range(3*list_size)]
click_feature[list_size:list_size+i] =[tf.expand_dims(self.labels[k] , -1) for k in range(i-1,-1,-1)]
click_feature[2*list_size:2*list_size+i+1]=[tf.expand_dims(self.types[k] , -1) for k in range(i,-1,-1)]
click_feature[3*list_size:3*list_size+list_size-i-1]=[tf.expand_dims(self.types[k] , -1) for k in range(i+1,list_size)]
# Predict propensity with a simple network
output_propensity_list.append(propensity_network(tf.concat(click_feature, 1), i))
| tensorflow.expand_dims | 1,817 |
from tensorflow.contrib import framework as contrib_framework
time.sleep(sleep_secs)
# Device allocation
device_fn = device_fn or self._device_fn
with ops.Graph().as_default() as g, g.device(device_fn):
random_seed.set_random_seed(self._config.tf_random_seed)
global_step = contrib_framework.create_global_step(g)
features, targets = input_fn()
self._check_inputs(features, targets)
train_op, loss_op = self._get_train_ops(features, targets)
return train(
graph=g,
output_dir=self._model_dir,
| tensorflow.contrib.framework.create_global_step | 1,818 |
import tensorflow as tf
out = tf.gradients(Omega, self.W_rec)
| tensorflow.gradients | 1,819 |
import tensorflow as tf
opti=work.optimer(loss,learnrate)
test_image_batch,test_label_batch=get_test_batch(test_image,test_label,testnum)
test_inf=work.test_inference(test_image_batch)
test_labels=tf.one_hot(test_label_batch,classnum)
test_pre = tf.reshape(test_inf, [testnum, classnum])
correct_prediction=tf.equal(tf.argmax(test_inf,1),tf.argmax(test_labels,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
test_pre = tf.argmax(test_pre, 1)
test_true = tf.argmax(test_labels, 1)
valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum)
valid_inf=work.valid_inference(valid_image_batch)
valid_labels=tf.one_hot(valid_label_batch,classnum)
#train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
valid_pre = tf.reshape(valid_inf, [validnum, classnum])
valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1))
valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32))
| tensorflow.argmax | 1,820 |
import tensorflow as tf
tf.train.Saver().save(sess, path)
tf.train.Saver().save(sess, path)
| tensorflow.train.Saver | 1,821 |
import tensorflow as tf
return True
else:
return self._optimistic_restore_model(sess)
def _optimistic_restore_model(self, sess):
"""
restore weights of same names with model.
:param sess:
:return:
"""
if self.restore_ckpt_file is None:
logger.warn(Color.yellow('No ckpt file for restore vars, ckpt file is None'))
return False
reader = tf.train.NewCheckpointReader(self.restore_ckpt_file)
saved_shapes = reader.get_variable_to_shape_map()
if self._var_list is None:
restore_key2vars = {var.name.split(':')[0]: var for var in tf.global_variables()}
elif isinstance(self._var_list, list):
restore_key2vars = {var.name.split(':')[0]: var for var in self._var_list}
elif isinstance(self._var_list, dict):
restore_key2vars = self._var_list
else:
raise RuntimeError('type error {}'.format(self._var_list))
assert len(restore_key2vars) > 0
restore_key2vars = sorted([(k, v) for k, v in restore_key2vars.items() if k in saved_shapes])
msg = []
| tensorflow.train.NewCheckpointReader | 1,822 |
import tensorflow as tf
predict = tf.placeholder(tf.float32,shape=[hps.batch_size, 10])
logit_nor,tsne_logit_nor = model_carlini_adv.predict(image,tsne_logits=True)
logit_adv,tsne_logit_adv = model_carlini_adv.predict(adv_image,tsne_logits=True)
predict_nor = tf.nn.softmax(logit_nor)
predict_adv = tf.nn.softmax(logit_adv)
# Calculate entropy
argmax_y_onehot = tf.one_hot(tf.argmax(predict, 1), 10, on_value=0.0, off_value=1.0, axis=-1)
normalized_y_nonmaximal = tf.reduce_sum(predict * argmax_y_onehot, 1)
entropy = tf.reduce_sum(-tf.log(predict) * predict * argmax_y_onehot,1) / normalized_y_nonmaximal + tf.log(normalized_y_nonmaximal)
for k in range(1):
result_dict = loadmat('kernel_para_'+FLAGS.dataset+'/kernel1000_for_attack_' + f1 + '.mat')
result_dict_median = loadmat('kernel_para_'+FLAGS.dataset+'/kernel1000_median_for_attack_' + f1 + '.mat')
| tensorflow.argmax | 1,823 |
import tensorflow as tf
if num_classes == 2:
q = tf.nn.sigmoid(q_logits)
| tensorflow.nn.sigmoid | 1,824 |
import tensorflow as tf
return grid
def _transform(theta, input_dim, out_size, z_near, z_far):
with tf.variable_scope('_transform'):
num_batch = input_dim.get_shape().as_list()[0]
num_channels = input_dim.get_shape().as_list()[4]
theta = tf.reshape(theta, (-1, 4, 4))
theta = tf.cast(theta, 'float32')
out_depth = out_size[0]
out_height = out_size[1]
out_width = out_size[2]
grid = _meshgrid(out_depth, out_height, out_width, z_near, z_far)
grid = tf.expand_dims(grid, 0)
grid = tf.reshape(grid, [-1])
grid = tf.tile(grid, tf.stack([num_batch]))
grid = tf.reshape(grid, tf.stack([num_batch, 4, -1]))
# Transform A x (x_t', y_t', 1, d_t)^T -> (x_s, y_s, z_s, 1).
t_g = tf.matmul(theta, grid)
z_s = tf.slice(t_g, [0, 0, 0], [-1, 1, -1])
y_s = tf.slice(t_g, [0, 1, 0], [-1, 1, -1])
x_s = tf.slice(t_g, [0, 2, 0], [-1, 1, -1])
z_s_flat = tf.reshape(z_s, [-1])
y_s_flat = tf.reshape(y_s, [-1])
x_s_flat = tf.reshape(x_s, [-1])
| tensorflow.reshape | 1,825 |
import tensorflow as tf
analyzer_nodes.TensorInfo(
tf.as_dtype(self._output_numpy_dtype), self._output_shape, None)
] * 2
else:
return [
analyzer_nodes.TensorInfo(
tf.as_dtype(np.int64), self._output_shape, None),
analyzer_nodes.TensorInfo(
tf.as_dtype(self._output_numpy_dtype), self._output_shape, None),
analyzer_nodes.TensorInfo(
tf.as_dtype(self._output_numpy_dtype), self._output_shape, None),
analyzer_nodes.TensorInfo(
tf.as_dtype(self._output_numpy_dtype), self._output_shape, None)
]
def _combine_mean_and_var_accumulators(
| tensorflow.as_dtype | 1,826 |
import tensorflow as tf
stride=1,
init_scale=np.sqrt(2)))
nh = np.prod([v.value for v in c3.get_shape()[1:]])
h3 = tf.reshape(c3, [-1, nh])
pre_s = tf.nn.relu(self.fc(h3,
'fc1',
nh=512,
init_scale=np.sqrt(2)))
l1 = tf.layers.dense(inputs=pre_s,
units=200, # number of hidden units
activation=tf.nn.relu,
name='l1',
trainable=trainable
)
mu = 2 * tf.layers.dense(inputs=l1,
units=action_dim, # number of hidden units
activation=tf.nn.tanh,
name='mu',
trainable=trainable
)
sigma = tf.layers.dense(inputs=l1,
units=action_dim, # output units
activation=tf.nn.softplus, # get action probabilities
name='sigma',
trainable=trainable
)
norm_dist = tf.distributions.Normal(loc=mu, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
| tensorflow.layers.dense | 1,827 |
import tensorflow as tf
with tf.device(device):
(chars, length) = (tf.identity(chars), tf.identity(length))
chars = tf.expand_dims(chars, 0)
length = tf.expand_dims(length, 0)
preds = tf.unstack(model((chars, length), training=False)[0])
| tensorflow.expand_dims | 1,828 |
from tensorflow.python.framework import tensor_shape
reduction_indices = tensor_util.ConstantValue(op.inputs[1])
keep_dims = op.get_attr("keep_dims")
if reduction_indices is None or input_shape.ndims is None:
if keep_dims:
return [tensor_shape.unknown_shape(ndims=input_shape.ndims)]
else:
return [tensor_shape.unknown_shape()]
# Turn reduction_indices from scalar to vector if necessary
reduction_indices = np.ravel(reduction_indices)
for reduction_index in reduction_indices:
| tensorflow.python.framework.tensor_shape.unknown_shape | 1,829 |
import tensorflow as tf
def construct_placeholders(edge_types):
placeholders = {
'batch': tf.placeholder(tf.int32, name='batch'),
'batch_neg': tf.placeholder(tf.int32, name='batch_neg'),
'batch_node':tf.placeholder(tf.int32,name = 'batch_node'),
'adj_min_batch': tf.placeholder(tf.float32,name='adj_min_batch'),
'sim_min_batch': tf.placeholder(tf.float32,name='sim_min_batch'),
'batch_edge_type_idx': tf.placeholder(tf.int32, shape=(), name='batch_edge_type_idx'),
'batch_row_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_row_edge_type'),
'batch_col_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_col_edge_type'),
'degrees': tf.placeholder(tf.int32),
'dropout': tf.placeholder_with_default(0., shape=()),
}
placeholders.update({
'adj_mats_%d,%d,%d' % (i, j, k): tf.sparse_placeholder(tf.float32)
for i, j in edge_types for k in range(edge_types[i,j])})
placeholders.update({
'feat_%d' % i: tf.sparse_placeholder(tf.float32)
for i, _ in edge_types})
return placeholders
###########################################################
test_size = 0.20
val_size = 0.05
num_drugs = 2926
n_drugdrug_rel_types =11
| tensorflow.sparse_placeholder | 1,830 |
import tensorflow as tf
self.is_training_pl = tf.placeholder(tf.bool, shape=(), name='is_training_pl')
self.bn_decay = train_rotation_prediction.get_bn_decay(batch)
self.get_pred = partial(self.model_pred.get_model,
is_training=self.is_training_pl,
bn_decay=self.bn_decay,
num_angles=self.num_angles,
use_input_trans=self.use_input_trans,
use_feature_trans=self.use_feature_trans)
self.get_loss = partial(self.model_pred.get_loss, use_trans_loss=self.use_trans_loss)
with tf.variable_scope(name):
self.noise = tf.placeholder(tf.float32, shape=[self.batch_size, self.noise_dim], name='noise') # Noise vector.
self.real_pc = tf.placeholder(tf.float32, shape=[self.batch_size] + self.n_output, name='real_pc') # Ground-truth.
with tf.variable_scope('rotation'):
self.rot_label_pl = tf.placeholder(tf.int32, shape=self.batch_size, name='rot_label_pl')
self.real_pc_rotated = self.rotate_n_angles(self.real_pc, self.rot_label_pl)
self.real_pc_pred, real_pc_end_points = self.get_pred(self.real_pc_rotated)
self.real_pc_rot_loss = self.get_loss(self.real_pc_pred, self.rot_label_pl, real_pc_end_points)
with tf.variable_scope('generator'):
self.generator_out = self.generator(self.noise, self.n_output, **gen_kwargs)
self.gen_out_rotated = self.rotate_n_angles(self.generator_out, self.rot_label_pl)
self.gen_out_pred, gen_out_end_points = self.get_pred(self.gen_out_rotated)
| tensorflow.placeholder | 1,831 |
from tensorflow.contrib.rnn import BasicLSTMCell, RNNCell, DropoutWrapper, MultiRNNCell
noise_shape = [1, size] if decoder.pervasive_dropout else [tf.shape(input_)[0], size]
embedded_input = tf.nn.dropout(embedded_input, keep_prob=decoder.embedding_keep_prob,
noise_shape=noise_shape)
return embedded_input
def get_cell(input_size=None, reuse=False):
cells = []
for j in range(decoder.layers):
input_size_ = input_size if j == 0 else cell_output_size
if decoder.cell_type.lower() == 'lstm':
cell = CellWrapper(BasicLSTMCell(decoder.cell_size, reuse=reuse))
elif decoder.cell_type.lower() == 'plstm':
cell = PLSTM(decoder.cell_size, reuse=reuse, fact_size=decoder.lstm_fact_size,
proj_size=decoder.lstm_proj_size)
elif decoder.cell_type.lower() == 'dropoutgru':
cell = DropoutGRUCell(decoder.cell_size, reuse=reuse, layer_norm=decoder.layer_norm,
input_size=input_size_, input_keep_prob=decoder.rnn_input_keep_prob,
state_keep_prob=decoder.rnn_state_keep_prob)
else:
cell = GRUCell(decoder.cell_size, reuse=reuse, layer_norm=decoder.layer_norm)
if decoder.use_dropout and decoder.cell_type.lower() != 'dropoutgru':
cell = DropoutWrapper(cell, input_keep_prob=decoder.rnn_input_keep_prob,
| tensorflow.contrib.rnn.BasicLSTMCell | 1,832 |
import tensorflow as tf
xs = x.get_shape().as_list()
if pad=='SAME':
target_shape = [tf.shape(x)[0], xs[1]*stride[0], xs[2]*stride[1], num_filters]
else:
target_shape = [tf.shape(x)[0], xs[1]*stride[0] + filter_size[0]-1, xs[2]*stride[1] + filter_size[1]-1, num_filters]
with tf.variable_scope(scope):
V = tf.get_variable("V", shape=list(filter_size) + [num_filters, int(x.get_shape()[-1])], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
g = tf.get_variable("g", shape=[num_filters], dtype=tf.float32, initializer=tf.constant_initializer(1.), trainable=True)
b = tf.get_variable("b", shape=[num_filters], dtype=tf.float32, initializer=bias_initializer, trainable=True)
def maybe_avg(v):
if ema is not None and not init:
v = tf.cond(training, lambda: v, lambda: ema.average(v))
return v
if init:
x = tf.nn.conv2d_transpose(x, tf.nn.l2_normalize(V.initialized_value(), [0, 1, 3]), target_shape, [1] + list(stride) + [1], padding=pad)
| tensorflow.get_variable | 1,833 |
import tensorflow as tf
# strides = [2, 0, 2, 2, 2]
tf.add_to_collection('debug_layers', self.x_preprocessed)
| tensorflow.add_to_collection | 1,834 |
import tensorflow as tf
outputs = {
'foo': tf.RaggedTensor.from_row_splits(
values=tf.constant([3, 1, 4, 1, 5, 9, 2, 6], tf.int64),
row_splits=[0, 4, 4, 7, 8, 8]),
| tensorflow.constant | 1,835 |
import tensorflow as tf
predicts=tf.nn.softmax(predicts)
labels=tf.one_hot(labels,classnum)
loss=-tf.reduce_sum(labels*tf.log(predicts))
return loss
| tensorflow.log | 1,836 |
import tensorflow as tf
elif mode == tf.estimator.ModeKeys.PREDICT:
print(logits.get_shape(), "===logits shape===")
pred_label = tf.argmax(logits, axis=-1, output_type=tf.int32)
prob = tf.nn.softmax(logits)
| tensorflow.argmax | 1,837 |
import tensorflow as tf
stddev=1e-2,
strides=[1, 1, 1, 1],
padding="SAME",
nonlinearity=None,
bias=False,
weight_norm=False,
scale=False):
"""Convolutional layer."""
with tf.variable_scope(name) as scope:
weights = variable_on_cpu(
"weights",
filter_size + [dim_in, dim_out],
tf.random_uniform_initializer(
minval=-stddev, maxval=stddev))
# weight normalization
if weight_norm:
weights /= tf.sqrt(tf.reduce_sum(tf.square(weights), [0, 1, 2]))
if scale:
magnitude = variable_on_cpu(
"magnitude", [dim_out],
tf.constant_initializer(
stddev * numpy.sqrt(dim_in * numpy.prod(filter_size) / 12.)))
weights *= magnitude
res = input_
| tensorflow.random_uniform_initializer | 1,838 |
import tensorflow as tf
filename_queue=tf.train.string_input_producer([path])
reader=tf.TFRecordReader()
_,serialized_example=reader.read(filename_queue)
features=tf.parse_single_example(serialized_example,
features={
'label':tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})
image=tf.decode_raw(features['img_raw'],tf.uint8)
label=tf.cast(features['label'],tf.int32)
| tensorflow.FixedLenFeature | 1,839 |
from tensorflow.python.ops import math_ops
Returns:
The specificity using the aggregated values.
"""
sensitivities = math_ops.div(tp, tp + fn + kepsilon)
# We'll need to use this trick until tf.argmax allows us to specify
# whether we should use the first or last index in case of ties.
min_val = math_ops.reduce_min(math_ops.abs(sensitivities - sensitivity))
indices_at_minval = math_ops.equal(
math_ops.abs(sensitivities - sensitivity), min_val)
indices_at_minval = math_ops.to_int64(indices_at_minval)
indices_at_minval = math_ops.cumsum(indices_at_minval)
tf_index = math_ops.argmax(indices_at_minval, 0)
tf_index = math_ops.cast(tf_index, dtypes.int32)
# Now, we have the implicit threshold, so compute the specificity:
return math_ops.div(tn[tf_index],
tn[tf_index] + fp[tf_index] + kepsilon,
name)
| tensorflow.python.ops.math_ops.abs | 1,840 |
from tensorflow.python.ops import array_ops
0, (array_ops.slice(tensor.shape, [0], expand_dims), [1],
array_ops.slice(tensor.shape, expand_dims, [-1])),
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
tensor, shape=expanded_shape, name='expand')
if multiple == 1:
return expanded
return sparse_ops.sparse_concat(
dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)
# Dense.
expanded = array_ops.expand_dims(
tensor, dim if (dim >= 0) else (dim - 1), name='expand')
if multiple == 1:
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
tile_multiples = array_ops.concat(
0, (ones[:dim], (multiple,), ones[dim:]), name='multiples')
return array_ops.tile(expanded, tile_multiples, name=scope)
def sparse_average_precision_at_k(predictions, labels, k):
| tensorflow.python.ops.array_ops.expand_dims | 1,841 |
import tensorflow as tf
else:
act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse)
with tf.variable_scope(scope, reuse=reuse):
# set up placeholders
obs_t_input = make_obs_ph("obs_t")
| tensorflow.variable_scope | 1,842 |
from tensorflow.contrib.rnn.python.ops import lstm_ops
(config_name, self._GetConfigDesc(config)))
def benchmarkTfRNNLSTMBlockCellTraining(self):
test_configs = self._GetTestConfig()
for config_name, config in test_configs.items():
num_layers = config["num_layers"]
num_units = config["num_units"]
batch_size = config["batch_size"]
seq_length = config["seq_length"]
with ops.Graph().as_default(), ops.device("/device:GPU:0"):
inputs = seq_length * [
array_ops.zeros([batch_size, num_units], dtypes.float32)
]
cell = lambda: lstm_ops.LSTMBlockCell(num_units=num_units) # pylint: disable=cell-var-from-loop
multi_cell = rnn_cell.MultiRNNCell(
[cell() for _ in range(num_layers)])
outputs, final_state = core_rnn.static_rnn(
multi_cell, inputs, dtype=dtypes.float32)
trainable_variables = ops.get_collection(
ops.GraphKeys.TRAINABLE_VARIABLES)
gradients = gradients_impl.gradients([outputs, final_state],
trainable_variables)
training_op = control_flow_ops.group(*gradients)
self._BenchmarkOp(training_op, "tf_rnn_lstm_block_cell %s %s" %
(config_name, self._GetConfigDesc(config)))
| tensorflow.contrib.rnn.python.ops.lstm_ops.LSTMBlockCell | 1,843 |
import tensorflow as tf
# patches = tf.gather(patches, rand_idx, axis=0)
rows = tf.split(patches,n_col//self.size,axis=0)
rows = [tf.concat(tf.unstack(x),axis=1) for x in rows]
x_aug = tf.concat(rows,axis=0)
x_aug = tf.convert_to_tensor(x_aug)
return tf.concat([x, x_aug],axis=2)
def mix_scramble(self,x):
# assume square patch
| tensorflow.convert_to_tensor | 1,844 |
import tensorflow as tf
"""
sum_grads = []
for grad_and_vars in zip(*clone_grads):
# Note that each grad_and_vars looks like the following:
# ((grad_var0_clone0, var0), ... (grad_varN_cloneN, varN))
grads = []
var = grad_and_vars[0][1]
for g, v in grad_and_vars:
assert v == var
if g is not None:
grads.append(g)
if grads:
if len(grads) > 1:
sum_grad = tf.add_n(grads, name=var.op.name + '/sum_grads')
else:
sum_grad = grads[0]
sum_grads.append((sum_grad, var))
return sum_grads
def _add_gradients_summaries(grads_and_vars):
"""Add histogram summaries to gradients.
Note: The summaries are also added to the SUMMARIES collection.
Args:
| tensorflow.add_n | 1,845 |
import tensorflow as tf
# First convolutional layer - maps one image to 32 feature maps.
with tf.variable_scope('Conv_1'):
conv1 = tf.layers.conv2d(
inputs=x_image,
| tensorflow.layers.conv2d | 1,846 |
import tensorflow as tf
print('feats_other: {}'.format(feats_other_nunroll.get_shape()))
if mode != 'gen':
targets_nunroll = tf.placeholder(dtype, shape=[batch_size, rnn_nunroll])
# TODO: tf.ones acts as an overridable placeholder but this is still awkward
target_weights_nunroll = tf.ones([batch_size, rnn_nunroll], dtype)
# Reshape input tensors to remove nunroll dim; will briefly restore later during RNN if necessary
if cnn_rnn_zack:
feats_audio = tf.reshape(feats_audio_nunroll, shape=[batch_size, rnn_nunroll + zack_hack, audio_nbands, audio_nchannels])
else:
feats_audio = tf.reshape(feats_audio_nunroll, shape=[batch_size * rnn_nunroll, audio_context_len, audio_nbands, audio_nchannels])
feats_other = tf.reshape(feats_other_nunroll, shape=[batch_size * rnn_nunroll, nfeats])
if mode != 'gen':
targets = tf.reshape(targets_nunroll, shape=[batch_size * rnn_nunroll])
target_weights = tf.reshape(target_weights_nunroll, shape=[batch_size * rnn_nunroll])
# CNN
cnn_output = feats_audio
if do_cnn:
layer_last = feats_audio
nfilt_last = audio_nchannels
for i, ((ntime, nband, nfilt), (ptime, pband)) in enumerate(zip(cnn_filter_shapes, cnn_pool)):
layer_name = 'cnn_{}'.format(i)
with tf.variable_scope(layer_name):
filters = tf.get_variable('filters', [ntime, nband, nfilt_last, nfilt], initializer=cnn_init, dtype=dtype)
biases = tf.get_variable('biases', [nfilt], initializer=tf.constant_initializer(0.1), dtype=dtype)
if cnn_rnn_zack:
| tensorflow.reshape | 1,847 |
import tensorflow as tf
tf.summary.scalar('qf2_loss', qf2_loss)
tf.summary.scalar('value_loss', value_loss)
tf.summary.scalar("Imitation_loss",self.actor_loss_di)
tf.summary.scalar('entropy', self.entropy)
tf.summary.scalar('importance weight',tf.reduce_mean(self.weight_ph))
if ent_coef_loss is not None:
tf.summary.scalar('ent_coef_loss', ent_coef_loss)
tf.summary.scalar('ent_coef', self.ent_coef)
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph))
# Retrieve parameters that must be saved
self.params = tf_util.get_trainable_vars("model")
self.target_params = tf_util.get_trainable_vars("target/values_fn/vf")
# Initialize Variables and target network
with self.sess.as_default():
self.sess.run(tf.global_variables_initializer())
| tensorflow.reduce_mean | 1,848 |
import tensorflow as tf
Yp = tf.greater(an , 0.5)
accuracy = tf.reduce_mean(tf.cast(tf.equal(Yp, tf.equal(Y,1.0)), "float"))
elif actL == 'esp' or actL == 'relu': #r2 score
norm= tf.reduce_mean( tf.squared_difference(Y,tf.reduce_mean(Y)) )
accuracy = 1 - tf.divide( tf.reduce_mean(tf.squared_difference(an, Y)), norm)
elif actL == 'softmax': #accuracy score for multiclass classification
Yp = tf.sigmoid(betan*hn)
correct = tf.equal(tf.argmax(Yp), tf.argmax(Y))
accuracy= tf.reduce_mean(tf.cast(correct, "float"))
#-----------------Initialize the graph and start the session-------------------------------------------------
init = tf.global_variables_initializer()
with tf.Session() as sess:
# Run the initialization
sess.run(init)
jj=0
| tensorflow.argmax | 1,849 |
import tensorflow as tf
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1_trans_shine' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, facts_size, activation=tf.nn.sigmoid, name='f1_shine_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, facts_size, activation=tf.nn.sigmoid, name='f2_shine_att' + stag)
d_layer_2_all = tf.reshape(d_layer_2_all, tf.shape(facts))
output = d_layer_2_all
return output
| tensorflow.shape | 1,850 |
import tensorflow as tf
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
| tensorflow.logging.info | 1,851 |
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
# FC layers for goal_pos input
# goal_layer1 = Dense(units=GOAL_SIZE)(goal_pos)
# goal_layer2 = Dense(units=GOAL_SIZE)(goal_layer1)
# FC layers to find next location
loc_layer1 = Dense(units=loc_layer_size)(prev_loc)
loc_layer2 = Dense(units=loc_layer_size)(loc_layer1)
# Concatenationation of above layers, followed by FC layer
concat = tf.concat([flat1b, loc_layer2],1) # goal_layer2
h1 = Dense(units=RNN_SIZE)(concat)
h2 = Dense(units=RNN_SIZE)(h1)
self.h3 = tf.nn.relu(h2+concat)
#Recurrent network for temporal dependencies
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(RNN_SIZE,state_is_tuple=True)
c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
state_init = [c_init, h_init]
c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c])
h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h])
| tensorflow.keras.layers.Dense | 1,852 |
import tensorflow as tf
_,serialized_example=reader.read(filename_queue)
features=tf.parse_single_example(serialized_example,
features={
'label':tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})
image=tf.decode_raw(features['img_raw'],tf.uint8)
label=tf.cast(features['label'],tf.int32)
image=tf.reshape(image,[4096,1])
return image,label
def get_batch(image,label,batch_size,crop_size):
#print(image.shape)
#print(label.shape)
| tensorflow.cast | 1,853 |
import tensorflow as tf
min_x = tf.cast(0.0 - labeled_sizes[i][0] / 2.0, dtype=tf.float32)
max_x = tf.cast(0.0 + labeled_sizes[i][0] / 2.0, dtype=tf.float32)
# min_y = tf.cast(0.0 - labeled_sizes[i][1] / 2.0, dtype=tf.float32)
# max_y = tf.cast(0.0 + labeled_sizes[i][1] / 2.0, dtype=tf.float32)
min_z = tf.cast(0.0 - labeled_sizes[i][2] / 2.0, dtype=tf.float32)
max_z = tf.cast(0.0 + labeled_sizes[i][2] / 2.0, dtype=tf.float32)
translation = tf.reshape([labeled_translations[i][0],
labeled_translations[i][2]], [2, 1])
pt_0 = rot @ tf.reshape([min_x, min_z], [2, 1]) + translation
pt_1 = rot @ tf.reshape([min_x, max_z], [2, 1]) + translation
pt_2 = rot @ tf.reshape([max_x, min_z], [2, 1]) + translation
pt_3 = rot @ tf.reshape([max_x, max_z], [2, 1]) + translation
for pt in [pt_0, pt_1, pt_2, pt_3]:
if pt[0] < box_limits_x[0]:
box_limits_x[0] = pt[0]
if pt[0] > box_limits_x[1]:
box_limits_x[1] = pt[0]
if pt[1] < box_limits_z[0]:
| tensorflow.reshape | 1,854 |
import tensorflow as tf
loss_f = -tf.reduce_mean(gain_f)
# Bias correction for the truncation
adv_bc = (q_value - tf.reshape(value, [self.n_envs * self.n_steps, 1])) # [n_envs * n_steps, n_act]
# check_shape([adv_bc, log_f_bc], [[self.n_envs * self.n_steps, self.n_act]] * 2)
| tensorflow.reshape | 1,855 |
import tensorflow as tf
with tf.name_scope("Test"):
test_input = PTBInput(
config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config,
input_=test_input)
models = {"Train": m, "Valid": mvalid, "Test": mtest}
for name, model in models.items():
model.export_ops(name)
metagraph = tf.train.export_meta_graph()
if tf.__version__ < "1.1.0" and FLAGS.num_gpus > 1:
raise ValueError("num_gpus > 1 is not supported for TensorFlow versions "
"below 1.1.0")
soft_placement = False
if FLAGS.num_gpus > 1:
soft_placement = True
util.auto_parallel(metagraph, m)
with tf.Graph().as_default():
| tensorflow.train.export_meta_graph | 1,856 |
import tensorflow as tf
centers = tf.get_variable(
'centers', [num_classes, num_features],
dtype=tf.float32,
initializer=tf.constant_initializer(0),
trainable=False)
label = tf.reshape(label, [-1])
centers_batch = tf.gather(centers, label)
diff = (1 - alpha) * (centers_batch - features)
centers = tf.scatter_sub(centers, label, diff)
loss = tf.nn.l2_loss(features - centers_batch)
| tensorflow.reshape | 1,857 |
import tensorflow as tf
convf = sc_module.direct_sparse_filter_conversion(t2ind, t2val, t2sh, t1sh)
with tf.Session(config=config) as sess:
pd = sess.run(convd)
pf = sess.run(convf)
tf.reset_default_graph()
ts = 0
with tf.device("/gpu:0"):
approx_scskconv = sc_module.direct_sparse_conv_kd(pd.out_indices, pd.out_values, pd.out_shape, pd.out_block_channel_mapping, pf.out_indices, pf.out_values, pf.out_shape, pf.out_channel_mapping, bias, strides, padding, out_entry_count, dim, max_density, filter_type);
with tf.Session(config=config) as sess:
t6 = time.time()
sv3 = sess.run(approx_scskconv)
t5 = time.time()
for i in range(0, num_trials):
sess.run(approx_scskconv)
t6 = time.time()
ts = abs(t6 - t5) / max(num_trials,1)
print("time approx sparse: ", ts)
tf.reset_default_graph()
| tensorflow.Session | 1,858 |
import tensorflow as tf
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
is_real_example=True)
return feature
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file):
| tensorflow.logging.info | 1,859 |
import tensorflow as tf
correct_prediction = tf.equal(tf.argmax(pred_Y, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32))
| tensorflow.cast | 1,860 |
import tensorflow as tf
if pairwise_reduction == common.DISTANCE_REDUCTION_NEG_LOG_MEAN:
return lambda x: -tf.math.log(tf.math.reduce_mean(x, axis=[-2, -1]))
| tensorflow.math.reduce_mean | 1,861 |
import tensorflow as tf
class CharSeqModel(object): #formerly TweetSeqModel
"""
Treats each document (tweet) as a single "word," which is fed through c2v,
and the output "embedding" sized to be a vector of language predictions.
"""
def __init__(self, out_vocab_size=None,
batch_size=10, model_params=None, c2v=None,
max_sequence_len=None,
dropout_keep_prob=None,
weights=None):
self.params = model_params
self._out_vocab_size = out_vocab_size # num. of languages
self.weights = tf.constant(weights, dtype=tf.float32, name='class_weights')
with tf.variable_scope("tweetff"):
hidden = tf.get_variable("ff_hidden",
[c2v.embedding_dims, out_vocab_size])
bias = tf.get_variable('ff_bias', [out_vocab_size])
#probably useless. at least I don't want to use it
self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens')
self.x = tf.placeholder(tf.int32, [batch_size, max_sequence_len],
name='x')
| tensorflow.constant | 1,862 |
import tensorflow as tf
output_1 = contrib.layers.fully_connected(dropout3_1, n_output_1, activation_fn=None, scope="output_1")
output_2 = contrib.layers.fully_connected(dropout3_2, n_output_2, activation_fn=None, scope="output_2")
with tf.variable_scope("loss"):
loss_base_1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_1, logits=output_1))
loss_base_2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_2, logits=output_2))
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss_total = loss_base_1 + loss_base_2 + tf.reduce_sum(reg_losses)
with tf.variable_scope("evaluation"):
accuracy_1 = tf.reduce_mean(tf.cast(tf.equal(
tf.argmax(output_1, axis=-1),
tf.argmax(y_1, axis=-1)), tf.float32), name="accuracy_1")
accuracy_2 = tf.reduce_mean(tf.cast(tf.equal(
tf.argmax(output_2, axis=-1),
tf.argmax(y_2, axis=-1)), tf.float32), name="accuracy_2")
accuracy = tf.divide(accuracy_1 + accuracy_2, 2.0, name="accuracy")
with tf.variable_scope("train"):
global_step = tf.get_variable("global_step", shape=(), dtype=tf.int32, trainable=False)
train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss_total, global_step=global_step)
| tensorflow.argmax | 1,863 |
import tensorflow as tf
def _do_cutout(self, image, im_width, im_height, cutout_size):
mask = tf.ones([cutout_size, cutout_size], dtype=tf.int32)
start_x = tf.random.uniform(shape=(1,), minval=0, maxval=im_width, dtype=tf.int32)
start_y = tf.random.uniform(shape=(1,), minval=0, maxval=im_height, dtype=tf.int32)
mask = tf.pad(mask, [[cutout_size + start_y[0], im_height - start_y[0]],
[cutout_size + start_x[0], im_width - start_x[0]]])
mask = mask[cutout_size: cutout_size + im_height,
cutout_size: cutout_size + im_width]
mask = tf.tile(tf.reshape(mask, (im_height, im_width, 1)), (1, 1, 3))
image = tf.where(tf.equal(mask, 0), x=image, y=tf.zeros_like(image))
return image
def _add_drop_path(self, X, keep_prob):
with tf.variable_scope('drop_path'):
batch_size = tf.shape(X)[0]
noise_shape = (batch_size, 1, 1, 1)
random_tensor = keep_prob + tf.random_uniform(noise_shape, dtype=tf.float32)
binary_tensor = tf.floor(random_tensor)
X = (X / keep_prob) * binary_tensor
return X
def _do_conv(self, X, w, h, in_ch, out_ch, filter_size=1, no_relu=False, no_reg=False, is_train=False):
W = self._make_var('W', (filter_size, filter_size, in_ch, out_ch), no_reg=no_reg)
if not no_relu:
X = tf.nn.relu(X)
X = tf.nn.conv2d(X, W, (1, 1, 1, 1), padding='SAME')
| tensorflow.variable_scope | 1,864 |
import tensorflow as tf
self.assertAllEqual(labels_0_n.numpy(), expected_labels_0_n.numpy())
def test_map_labels_to_0_to_n2(self):
labels = tf.constant([[-1, 1, 2],
[1, 1, 2]], dtype=tf.int32)
labels_0_n = isu.map_labels_to_0_to_n(labels)
expected_labels_0_n = tf.constant([[-1, 0, 1],
[0, 0, 1]], dtype=tf.int32)
self.assertAllEqual(labels_0_n.numpy(), expected_labels_0_n.numpy())
def test_randomly_select_one_point_per_segment(self):
instance_labels = tf.constant([[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 2, 2, 2, 2, 2, 2],
[1, 2, 2, 2, 2, 2, 2, 2],
[0, 0, 0, 0, 2, 2, 2, 2],
[0, 0, 0, 0, 2, 2, 2, 2]],
dtype=tf.int32)
instance_labels = tf.reshape(instance_labels, [-1])
(indices,
masks_t) = isu.randomly_select_one_point_per_segment(instance_labels)
masks = tf.transpose(masks_t)
masks = tf.reshape(masks, [3, 5, 8])
| tensorflow.constant | 1,865 |
import tensorflow as tf
else:
self.c = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len],
"context")
self.q = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len],
"question")
self.ch = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len,
self.config.max_ch_len], "context_char")
self.qh = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len,
self.config.max_ch_len], "question_char")
self.start_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label1")
self.end_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label2")
self.position_emb = position_embedding(self.c, 2 * self.config.hidden_size)
self.c_mask = tf.cast(self.c, tf.bool) # index 0 is padding symbol N x self.max_p_num, max_p_len
self.q_mask = tf.cast(self.q, tf.bool)
self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1)
self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1)
self.dropout = tf.placeholder(tf.float32, name="dropout")
| tensorflow.placeholder | 1,866 |
import tensorflow as tf
- responsible_next_loc is NOW policy
'''
self.value, self.next_loc_mean, self.loc_std, self.next_loc, self.state_out, self.state_in, self.state_init = self._build_net(self.inputs, self.prev_loc, RNN_SIZE, TRAINING, a_size) # self.goal_pos
if TRAINING:
self.target_v = tf.placeholder(tf.float32, [None], 'Vtarget')
self.advantages = tf.placeholder(shape=[None], dtype=tf.float32)
self.sampled_next_locs = tf.placeholder(tf.float32, [None,2]) # sampled action is stored here
self.policy = gaussian_pdf(self.next_loc_mean, self.loc_std, self.sampled_next_locs) # Distribution == Policy
# Loss Functions
self.value_loss = 0.5*tf.reduce_sum(tf.square(self.target_v - tf.reshape(self.value, shape=[-1])))
# H(x) = Sum[p(x)*log(p(x))]
self.entropy = - 0.01 * tf.reduce_sum(self.policy * tf.log(tf.clip_by_value(self.policy,1e-10,1.0)))
self.policy_loss = - 0.2 * tf.reduce_sum( tf.log(tf.clip_by_value(self.policy[:,0],1e-15,1.0)) * self.advantages + tf.log(tf.clip_by_value(self.policy[:,1],1e-15,1.0)) * self.advantages)
#For Normal RL Part
self.loss = self.value_loss + self.policy_loss - self.entropy # removed self.blocking_loss, valid_loss, discrete_policy _loss #+ 0.5*self.mypos_loss + 0.5*self.goalpos_loss
#For Imitation Learning Part
# self.bc_loss = 0.5 * tf.reduce_mean(tf.contrib.keras.backend.categorical_crossentropy(self.optimal_actions_onehot,self.policy))
# self.next_loc_loss_il = 0.2 * tf.reduce_sum(tf.sqrt(tf.square(self.next_loc_mean[:-1,:] - self.il_nextloc)))
# self.imitation_loss = self.bc_loss #+ self.next_loc_loss_il
| tensorflow.reshape | 1,867 |
import tensorflow as tf
distance_fn=embedding_sample_distance_fn)
if anchor_mining_embeddings is None and match_mining_embeddings is None:
anchor_match_mining_distance_matrix = anchor_match_distance_matrix
else:
anchor_match_mining_distance_matrix = distance_utils.compute_distance_matrix(
anchor_embeddings if anchor_mining_embeddings is None else
maybe_expand_sample_dim(anchor_mining_embeddings),
match_embeddings if match_mining_embeddings is None else
maybe_expand_sample_dim(match_mining_embeddings),
distance_fn=embedding_sample_distance_fn)
num_total_triplets = tf.cast(tf.shape(anchor_embeddings)[0], dtype=tf.float32)
def compute_loss_and_create_summaries(use_semi_hard):
"""Computes loss and creates summaries."""
(loss, num_active_triplets, negative_distances, mining_loss,
num_active_mining_triplets, negative_mining_distances) = (
compute_hard_negative_triplet_loss(
anchor_positive_distances,
anchor_match_distance_matrix,
anchor_match_negative_indicator_matrix,
margin=margin,
use_semi_hard=use_semi_hard,
| tensorflow.shape | 1,868 |
import tensorflow as tf
# load pretrained model
vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = []
for var in vars_list:
vname = var.name
from_name = vname
var_value = tf.contrib.framework.load_variable(MODEL_DIR, from_name)
assign_ops.append(tf.assign(var, var_value))
sess.run(assign_ops)
print('Model loaded.')
result = sess.run(output)
cv2.imwrite("output.png", result[0])
tf.reset_default_graph()
#return FileResponse("output.png", media_type="image/png")
| tensorflow.assign | 1,869 |
import tensorflow as tf
def full_featurespec():
return {
'bounding_box_samples': tf.io.FixedLenFeature([100000, 4], tf.float32),
'depth_renders': tf.io.FixedLenFeature([20, 224, 224, 1], tf.float32),
'mesh_name': tf.io.FixedLenFeature([], tf.string),
'near_surface_samples': tf.io.FixedLenFeature([100000, 4], tf.float32),
'grid': tf.io.FixedLenFeature([32, 32, 32], tf.float32),
'world2grid': tf.io.FixedLenFeature([4, 4], tf.float32),
'surface_point_samples': tf.io.FixedLenFeature([10000, 6], tf.float32)
}
def parse_tf_example(example_proto):
d = tf.io.parse_single_example(example_proto, full_featurespec())
return (d['bounding_box_samples'], d['depth_renders'], d['mesh_name'],
| tensorflow.io.FixedLenFeature | 1,870 |
from tensorflow.python.framework import tensor_shape as _tensor_shape
defined shape for TPUs.
send_device: A fully-specified tensorflow device.
recv_device: A fully-specified tensorflow device.
name: A name for the channel (optional).
"""
current_graph = _ops.get_default_graph()
assert current_graph, "A channel is scoped within a tf.Graph"
self._dtype = dtype
self._send_device = send_device
self._recv_device = recv_device
self._name = current_graph.unique_name(name if name else "channel")
assert shape is not None
shape = _tensor_shape.TensorShape(shape)
self._shape = shape
self._send_tpu_core = _TpuCore(send_device)
self._recv_tpu_core = _TpuCore(recv_device)
self._send_called = False
self._recv_op = None
assert ((self._send_tpu_core == -1) == (self._recv_tpu_core == -1)), (
"Mixing TPU and non-TPU: %s and %s" % (send_device, recv_device))
if self._send_tpu_core >= 0:
assert self._shape.is_fully_defined(), (
"TPU channel must have fully defined shape. Name: %s, shape: %s" %
(self._name, self._shape))
| tensorflow.python.framework.tensor_shape.TensorShape | 1,871 |
import tensorflow as tf
np.random.seed(self.seed)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
graph = tf.Graph()
with graph.as_default():
tf.set_random_seed(self.seed)
self.user_id = tf.placeholder(shape=[None, ], dtype=tf.int32, name='user_id')
| tensorflow.Graph | 1,872 |
import tensorflow as tf
grads, _ = tf.clip_by_global_norm(grads, 40.0)
# copy weights from the parameter server to the local model
self.sync = tf.group(*[v1.assign(v2) for v1, v2 in zip(pi.var_list, self.network.var_list)])
grads_and_vars = list(zip(grads, self.network.var_list))
self.inc_step = self.global_step.assign_add(tf.shape(pi.x)[0])
# each worker has a different set of adam optimizer parameters
opt = tf.train.AdamOptimizer(1e-4)
self.train_op = tf.group(opt.apply_gradients(grads_and_vars), self.inc_step)
self.summary_writer = None
| tensorflow.shape | 1,873 |
import tensorflow as tf
and then sharply drops to `learning_rate` at each cycle.
Learning rate starting from `learning_rate` then increasing.
It is computed as::
decayed_learning_rate = (max_lr - learning_rate) *
(floor(global_step / step_size) - global_step / step_size) +
learning_rate
"""
with tf.name_scope(name):
learning_rate = tf.cast(learning_rate, dtype=tf.float32)
global_step = tf.cast(global_step, dtype=tf.float32)
step_size = tf.cast(step_size, dtype=tf.float32)
max_lr = tf.cast(max_lr, dtype=tf.float32)
if mode == 'tri':
periodic_comp = tf.mod((global_step + step_size / 4) / step_size, 1)
first_factor = tf.abs(periodic_comp - 0.5)
second_factor = 2 * (max_lr - learning_rate)
second_comp = learning_rate
elif mode == 'sin':
first_factor = (learning_rate - max_lr) / 2.
second_factor = tf.sin((pi * global_step) / step_size)
second_comp = (learning_rate + max_lr) / 2.
| tensorflow.cast | 1,874 |
import tensorflow as tf
self.output_dir = paths.trial(paths.experiment(constants.EXPERIMENT_PATH, 'big_two_layer'), trial)
def train_once(self, iteration, presets=None, masks=None):
tf.reset_default_graph()
sess = tf.Session()
dataset = dataset_mnist.DatasetMnist(
| tensorflow.reset_default_graph | 1,875 |
import tensorflow as tf
pred = valid_images_masked + predicted_patch
# valid_annotations = np.squeeze(valid_annotations, axis=3)
# pred = np.squeeze(pred, axis=3)
print(valid_images.shape)
print(valid_annotations.shape)
print(pred.shape)
for itr in range(FLAGS.batch_size):
utils.save_image(valid_images_masked[itr].astype(np.uint8), FLAGS.logs_dir, name="inp_" + str(5+itr))
utils.save_image(valid_annotations[itr].astype(np.uint8), FLAGS.logs_dir, name="gt_" + str(5+itr))
utils.save_image(pred[itr].astype(np.uint8), FLAGS.logs_dir, name="predz_" + str(5+itr))
print("Saved image: %d" % itr)
if __name__ == "__main__":
tf.app.run()
| tensorflow.app.run | 1,876 |
import tensorflow as tf
self.b1 = tf.get_variable('b1', [1024],initializer=tf.constant_initializer(0.0))
self.b2 = tf.get_variable('b2', [classnum],initializer=tf.constant_initializer(0.0))
def inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
out = tf.matmul(l1, self.w2)+self.b2
return out
| tensorflow.matmul | 1,877 |
import tensorflow as tf
configs = _get_configs_for_model('ssd_inception_v2_pets')
configs['model'].ssd.num_classes = 37
eval_input_fn = inputs.create_eval_input_fn(
eval_config=configs['eval_config'],
eval_input_config=configs['eval_input_configs'][0],
model_config=configs['eval_config']) # Expecting `DetectionModel`.
with self.assertRaises(TypeError):
eval_input_fn()
def test_output_equal_in_replace_empty_string_with_random_number(self):
string_placeholder = tf.placeholder(tf.string, shape=[])
replaced_string = inputs._replace_empty_string_with_random_number(
string_placeholder)
test_string = 'hello world'
feed_dict = {string_placeholder: test_string}
with self.test_session() as sess:
out_string = sess.run(replaced_string, feed_dict=feed_dict)
| tensorflow.placeholder | 1,878 |
import tensorflow as tf
cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif activation == 'relu':
gru=tf.nn.rnn_cell.GRUCell(state_size, activation = tf.nn.relu)
cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
else:
gru=tf.nn.rnn_cell.GRUCell(state_size)
cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
else:
if activation == 'linear':
cell_basic = tf.contrib.rnn.BasicRNNCell(state_size,activation=tf.identity)
cell_drop=tf.contrib.rnn.DropoutWrapper(cell_basic,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif activation == 'relu':
cell_basic = tf.contrib.rnn.BasicRNNCell(state_size, activation=tf.nn.relu)
cell_drop = tf.contrib.rnn.DropoutWrapper(cell_basic, variational_recurrent=True, dtype=tf.float32,
input_size=num_input, input_keep_prob=input_prob,
state_keep_prob=state_prob)
else: #tanh by default
cell_basic = tf.contrib.rnn.BasicRNNCell(state_size)
cell_drop = tf.contrib.rnn.DropoutWrapper(cell_basic, variational_recurrent=True, dtype=tf.float32,
input_size=num_input, input_keep_prob=input_prob,
| tensorflow.contrib.rnn.DropoutWrapper | 1,879 |
import tensorflow as tf
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size)
if FLAGS.do_train:
train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
filed_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", len(train_examples))
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
drop_remainder=True)
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
if FLAGS.do_eval:
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
filed_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)
| tensorflow.logging.info | 1,880 |
import tensorflow as tf
def testEmbeddingAttentionDecoder(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
cell = tf.nn.rnn_cell.GRUCell(2)
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
for e in enc_outputs])
dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
dec, mem = tf.nn.seq2seq.embedding_attention_decoder(
dec_inp, enc_state, attn_states, cell, num_symbols=4,
embedding_size=2, output_size=3)
| tensorflow.reshape | 1,881 |
import tensorflow as tf
tf.add_to_collection(self._final_state_name, state_tuple.c)
tf.add_to_collection(self._final_state_name, state_tuple.h)
def import_state_tuples(self, state_tuples, name, num_replicas):
restored = []
for i in range(len(state_tuples) * num_replicas):
c = tf.get_collection_ref(name)[2 * i + 0]
h = tf.get_collection_ref(name)[2 * i + 1]
restored.append(tf.contrib.rnn.LSTMStateTuple(c, h))
return tuple(restored)
def import_ops(self):
if self._is_training:
self._train_op = tf.get_collection_ref('train_op')[0]
| tensorflow.get_collection_ref | 1,882 |
from tensorflow.python.ops import array_ops
with self.cached_session():
embed_np = embeds[ids]
embed_tf = ops.embedding_lookup(embeds, ids).eval()
self.assertEqual(embed_np.shape, embed_tf.shape)
self.assertAllClose(embed_np, embed_tf)
def test_categorical_variable(self):
random_seed.set_random_seed(42)
with self.cached_session() as sess:
cat_var_idx = array_ops.placeholder(dtypes.int64, [2, 2])
embeddings = ops.categorical_variable(
cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var")
sess.run(variables.global_variables_initializer())
emb1 = sess.run(embeddings,
feed_dict={cat_var_idx.name: [[0, 1], [2, 3]]})
emb2 = sess.run(embeddings,
feed_dict={cat_var_idx.name: [[0, 2], [1, 3]]})
self.assertEqual(emb1.shape, emb2.shape)
| tensorflow.python.ops.array_ops.placeholder | 1,883 |
import tensorflow as tf
class DynamicBatchingBenchmarks(tf.test.Benchmark):
def benchmark_batching_small(self):
with tf.Session() as session:
@dynamic_batching.batch_fn
def f(a, b):
return a + b
outputs = []
for _ in xrange(1000):
outputs.append(f(tf.ones([1, 10]), tf.ones([1, 10])))
op_to_benchmark = tf.group(*outputs)
tf.train.start_queue_runners()
self.run_op_benchmark(
name='batching_many_small',
sess=session,
op_or_tensor=op_to_benchmark,
burn_iters=10,
min_iters=50)
| tensorflow.ones | 1,884 |
import tensorflow as tf
return tf.matmul(tf.reshape(input_var,[-1,dims]),w) + b
else :
return tf.matmul(input_var,w)+b
def get_variables(self):
return {'w':self.w,'b':self.b}
class WeightNormLinear(object):
def __init__(self,name,input_dim,output_dim,stddev=0.02,epsilon=1e-10) :
with tf.variable_scope(name) :
self.v = tf.get_variable('v',[input_dim, output_dim],
initializer=tf.random_normal_initializer(stddev=stddev))
self.g = tf.get_variable('g',[output_dim],
initializer=tf.constant_initializer(float('nan')))
self.b = tf.get_variable('b',[output_dim],
initializer=tf.constant_initializer(float('nan')))
self.epsilon = epsilon
| tensorflow.variable_scope | 1,885 |
import tensorflow as tf
def cross_entropy_layer(tensor, target, **opts):
if _rank(tensor) > 1:
target = tf.reshape(target, shape=(-1, ))
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=tensor, labels=target)
mask = tf.cast(tf.not_equal(target, tf.zeros_like(target)), dtype=tf.float32)
out = cross_entropy * mask
return out
| tensorflow.zeros_like | 1,886 |
import tensorflow as tf
gold_spans = np.logical_and(gold_ends >= word_offset, gold_starts < word_offset + num_words)
gold_starts = gold_starts[gold_spans] - word_offset
gold_ends = gold_ends[gold_spans] - word_offset
cluster_ids = cluster_ids[gold_spans]
return tokens, context_word_emb, head_word_emb, lm_emb, char_index, text_len, speaker_ids, genre, is_training, gold_starts, gold_ends, cluster_ids
def get_candidate_labels(self, candidate_starts, candidate_ends, labeled_starts, labeled_ends, labels):
same_start = tf.equal(tf.expand_dims(labeled_starts, 1), tf.expand_dims(candidate_starts, 0)) # [num_labeled, num_candidates]
same_end = tf.equal(tf.expand_dims(labeled_ends, 1), tf.expand_dims(candidate_ends, 0)) # [num_labeled, num_candidates]
same_span = tf.logical_and(same_start, same_end) # [num_labeled, num_candidates]
candidate_labels = tf.matmul(tf.expand_dims(labels, 0), tf.to_int32(same_span)) # [1, num_candidates]
candidate_labels = tf.squeeze(candidate_labels, 0) # [num_candidates]
return candidate_labels
def get_dropout(self, dropout_rate, is_training):
return 1 - (tf.to_float(is_training) * dropout_rate)
def coarse_to_fine_pruning(self, top_span_emb, top_span_mention_scores, c):
k = util.shape(top_span_emb, 0)
top_span_range = tf.range(k) # [k]
antecedent_offsets = tf.expand_dims(top_span_range, 1) - tf.expand_dims(top_span_range, 0) # [k, k]
| tensorflow.expand_dims | 1,887 |
import tensorflow as tf
inp = [tf.constant(0.5, shape=[2, 2])] * 2
_, enc_state = tf.nn.rnn(
tf.nn.rnn_cell.GRUCell(2), inp, dtype=tf.float32)
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
| tensorflow.nn.rnn_cell.GRUCell | 1,888 |
import tensorflow as tf
flattened_image_features,
self._num_classes * self._box_code_size,
activation_fn=None,
scope='BoxEncodingPredictor')
class_predictions_with_background = slim.fully_connected(
flattened_image_features,
self._num_classes + 1,
activation_fn=None,
scope='ClassPredictor')
box_encodings = tf.reshape(
box_encodings, [-1, 1, self._num_classes, self._box_code_size])
class_predictions_with_background = tf.reshape(
class_predictions_with_background, [-1, 1, self._num_classes + 1])
predictions_dict = {
BOX_ENCODINGS: box_encodings,
CLASS_PREDICTIONS_WITH_BACKGROUND: class_predictions_with_background
}
if self._predict_instance_masks:
with slim.arg_scope(self._conv_hyperparams):
upsampled_features = tf.image.resize_bilinear(
| tensorflow.reshape | 1,889 |
import tensorflow as tf
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph],
outputs=[output_actions, update_eps_expr, eps],
| tensorflow.cond | 1,890 |
import tensorflow as tf
round(FLAGS.train_batch_size * FLAGS.target_train_batch_multiplier))
finetune_data = tfds.load(name=FLAGS.target_dataset, split='train')
finetune_data = finetune_data.shuffle(512).repeat().batch(
target_train_batch_size)
target_val_batch_size = int(
round(FLAGS.train_batch_size * FLAGS.target_val_batch_multiplier))
target_data = tfds.load(name=FLAGS.target_dataset, split='validation')
target_data = target_data.shuffle(512).repeat().batch(target_val_batch_size)
dataset = tf.data.Dataset.zip((train_data, finetune_data, target_data))
dataset = dataset.map(_merge_datasets)
dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
return dataset
max_train_steps = FLAGS.train_steps
l2tl_classifier.train(make_input_dataset, max_steps=max_train_steps)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
| tensorflow.data.Dataset.zip | 1,891 |
import tensorflow as tf
unicode strings
"""
chars_total = 0
for fname in filepaths:
chars_this_file = 0
tf.logging.info("reading file %s" % fname)
for text in self.filepath_to_unicode_strings(fname):
if (max_chars_per_file and
chars_this_file + len(text) > max_chars_per_file):
text = text[:max_chars_per_file - chars_this_file]
| tensorflow.logging.info | 1,892 |
import tensorflow as tf
tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight')
tf.app.flags.DEFINE_float('epsilon', 0.000001,
'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5')
tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances')
tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance')
tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective')
tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model')
tf.app.flags.DEFINE_float('test_max', 10000, 'max number of examples in the test set')
| tensorflow.app.flags.DEFINE_float | 1,893 |
import tensorflow as tf
from tensorflow_transform.tf_metadata import schema_utils
from google.protobuf import text_format
import unittest
from tensorflow_metadata.proto.v0 import schema_pb2
def _make_tensors_with_override():
x = tf.compat.v1.placeholder(tf.int64, (None,))
schema_inference.set_tensor_schema_override(x, tf.constant(5), tf.constant(6))
return {'x': x}
class SchemaInferenceTest(test_case.TransformTestCase):
# pylint: disable=g-long-lambda
| tensorflow.compat.v1.placeholder | 1,894 |
import tensorflow as tf
# compute optimization op (potentially with gradient clipping)
gradients = optimizer.compute_gradients(weighted_error, var_list=q_func_vars)
if grad_norm_clipping is not None:
for i, (grad, var) in enumerate(gradients):
if grad is not None:
gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var)
with tf.variable_scope("input_info", reuse=False):
tf.summary.scalar('rewards', tf.reduce_mean(rew_t_ph))
tf.summary.scalar('importance_weights', tf.reduce_mean(importance_weights_ph))
if full_tensorboard_log:
tf.summary.histogram('rewards', rew_t_ph)
tf.summary.histogram('importance_weights', importance_weights_ph)
if tf_util.is_image(obs_phs[0]):
tf.summary.image('observation', obs_phs[0])
| tensorflow.reduce_mean | 1,895 |
import tensorflow as tf
act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse)
with tf.variable_scope(scope, reuse=reuse):
# set up placeholders
obs_t_input = U.ensure_tf_input(make_obs_ph("obs_t"))
act_t_ph = tf.placeholder(tf.int32, [None], name="action")
rew_t_ph = tf.placeholder(tf.float32, [None], name="reward")
obs_tp1_input = U.ensure_tf_input(make_obs_ph("obs_tp1"))
done_mask_ph = tf.placeholder(tf.float32, [None], name="done")
importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight")
# q network evaluation
q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act
q_func_vars = U.scope_vars(U.absolute_scope_name("q_func"))
# target q network evalution
q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func")
target_q_func_vars = U.scope_vars(U.absolute_scope_name("target_q_func"))
| tensorflow.placeholder | 1,896 |
from tensorflow.python.ops import gradients_impl
initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=127)
cell = rnn_cell.LSTMCell(
num_units=num_units, initializer=initializer, state_is_tuple=True)
multi_cell = rnn_cell.MultiRNNCell(
[cell() for _ in range(num_layers)])
outputs, final_state = core_rnn.static_rnn(
multi_cell, inputs, dtype=dtypes.float32)
trainable_variables = ops.get_collection(
ops.GraphKeys.TRAINABLE_VARIABLES)
gradients = gradients_impl.gradients([outputs, final_state],
trainable_variables)
training_op = control_flow_ops.group(*gradients)
self._BenchmarkOp(training_op, "tf_rnn_lstm %s %s" %
(config_name, self._GetConfigDesc(config)))
def benchmarkTfRNNLSTMBlockCellTraining(self):
test_configs = self._GetTestConfig()
for config_name, config in test_configs.items():
num_layers = config["num_layers"]
| tensorflow.python.ops.gradients_impl.gradients | 1,897 |
import tensorflow as tf
"""Get loss and log probs for the next sentence prediction."""
# Simple binary classification. Note that 0 is "next sentence" and 1 is
# "random sentence". This weight matrix is not used after pre-training.
with tf.variable_scope("cls/seq_relationship"):
output_weights = tf.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
| tensorflow.variable_scope | 1,898 |
import tensorflow as tf
def cond(batch, output, i):
return tf.less(i, tf.shape(batch)[1])
def body(batch, output, i):
self_attention_tmp = din_fcn_attention(batch[:, i, :], batch,
ATTENTION_SIZE, mask, softmax_stag=1, stag=stag,
mode='LIST')
self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1)
output = output.write(i, self_attention_tmp)
return batch, output, i + 1
output_ta = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True,
| tensorflow.reduce_sum | 1,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.