testargilla / README.md
vegeta's picture
Upload README.md with huggingface_hub
ec5f177
---
size_categories: n<1K
tags:
- rlfh
- argilla
- human-feedback
dataset_info:
features:
- name: metadata
dtype: string
- name: text
dtype: string
id: field
- name: label
dtype: string
id: field
- name: question-1
sequence:
- name: user_id
dtype: string
- name: value
dtype: string
- name: status
dtype: string
id: question
- name: question-2
sequence:
- name: user_id
dtype: string
- name: value
dtype: int32
- name: status
dtype: string
id: question
- name: external_id
dtype: string
id: external_id
splits:
- name: train
num_bytes: 148
num_examples: 1
download_size: 0
dataset_size: 148
---
# Dataset Card for testargilla
This dataset has been created with [Argilla](https://docs.argilla.io).
As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
## Dataset Description
- **Homepage:** https://argilla.io
- **Repository:** https://github.com/argilla-io/argilla
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset contains:
* A dataset configuration file conforming to the Argilla dataset format named `argilla.cfg`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.
* Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.
* The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
### Load with Argilla
To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:
```python
import argilla as rg
ds = rg.FeedbackDataset.from_huggingface("vegeta/testargilla")
```
### Load with `datasets`
To load this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
```python
from datasets import load_dataset
ds = load_dataset("vegeta/testargilla")
```
### Supported Tasks and Leaderboards
This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/guides/llms/conceptual_guides/data_model.html) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure).
There are no leaderboards associated with this dataset.
### Languages
[More Information Needed]
## Dataset Structure
### Data in Argilla
The dataset is created in Argilla with: **fields**, **questions**, and **guidelines**.
The **fields** are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
| Field Name | Title | Type | Required | Markdown |
| ---------- | ----- | ---- | -------- | -------- |
| text | Text | TextField | True | False |
| label | Label | TextField | True | False |
The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, single choice, or multiple choice.
| Question Name | Title | Type | Required | Description | Values/Labels |
| ------------- | ----- | ---- | -------- | ----------- | ------------- |
| question-1 | Question-1 | TextQuestion | True | This is the first question | N/A |
| question-2 | Question-2 | RatingQuestion | True | This is the second question | [1, 2, 3, 4, 5] |
Finally, the **guidelines** are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
### Data Instances
An example of a dataset instance in Argilla looks as follows:
```json
{
"external_id": "entry-1",
"fields": {
"label": "positive",
"text": "This is the first record"
},
"metadata": null,
"responses": [
{
"status": "submitted",
"user_id": null,
"values": {
"question-1": {
"value": "This is the first answer"
},
"question-2": {
"value": 5
}
}
}
]
}
```
While the same record in HuggingFace `datasets` looks as follows:
```json
{
"external_id": "entry-1",
"label": "positive",
"metadata": null,
"question-1": {
"status": [
"submitted"
],
"user_id": [
null
],
"value": [
"This is the first answer"
]
},
"question-2": {
"status": [
"submitted"
],
"user_id": [
null
],
"value": [
5
]
},
"text": "This is the first record"
}
```
### Data Fields
Among the dataset fields, we differentiate between the following:
* **Fields:** These are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
* **text** is of type `TextField`.
* **label** is of type `TextField`.
* **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as rating, text, single choice, or multiple choice.
* **question-1** is of type `TextQuestion`, and description "This is the first question".
* **question-2** is of type `RatingQuestion` with the following allowed values [1, 2, 3, 4, 5], and description "This is the second question".
Additionally, we also have one more field which is optional and is the following:
* **external_id:** This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file.
### Data Splits
The dataset contains a single split, which is `train`.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation guidelines
These are the annotation guidelines.
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]