vdivyasharma commited on
Commit
5bc5ad7
·
verified ·
1 Parent(s): 8e4c3a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -6
README.md CHANGED
@@ -258,31 +258,49 @@ For more details, please see the Table 1 and Section 3 of our paper: https://acl
258
  ## 📦 Access the Dataset
259
 
260
  You can load data in a specific target language using the following code:
 
261
  ```python
262
 
263
  import os
264
  import soundfile as sf
265
  from datasets import load_dataset
 
 
266
 
267
  language = "Hindi" # Specify the target language here
268
 
269
  # Load Dataset
270
  dataset = load_dataset("vdivyasharma/IndicSynth", name=language, split="train")
271
 
272
- # Output directory
273
  output_dir = language
274
- os.makedirs(output_dir, exist_ok=True)
 
 
 
 
275
 
276
  # Loop through dataset and save each clip
277
- for example in dataset:
278
  audio_array = example["audio"]["array"]
279
  sampling_rate = example["audio"]["sampling_rate"]
280
 
281
- # Extract original filename
282
  original_name = example.get("file") or example.get("path") or example["audio"]["path"].split("/")[-1]
283
 
284
- # Save to disk
285
- sf.write(os.path.join(output_dir, original_name), audio_array, sampling_rate)
 
 
 
 
 
 
 
 
 
 
 
286
 
287
  ```
288
  ## License
 
258
  ## 📦 Access the Dataset
259
 
260
  You can load data in a specific target language using the following code:
261
+
262
  ```python
263
 
264
  import os
265
  import soundfile as sf
266
  from datasets import load_dataset
267
+ from tqdm import tqdm
268
+ import pandas as pd
269
 
270
  language = "Hindi" # Specify the target language here
271
 
272
  # Load Dataset
273
  dataset = load_dataset("vdivyasharma/IndicSynth", name=language, split="train")
274
 
275
+ # Create target directory structure
276
  output_dir = language
277
+ audio_dir = os.path.join(output_dir, "audio")
278
+ os.makedirs(audio_dir, exist_ok=True)
279
+
280
+ # Store metadata rows here
281
+ metadata_rows = []
282
 
283
  # Loop through dataset and save each clip
284
+ for example in tqdm(dataset):
285
  audio_array = example["audio"]["array"]
286
  sampling_rate = example["audio"]["sampling_rate"]
287
 
288
+ # Get filename
289
  original_name = example.get("file") or example.get("path") or example["audio"]["path"].split("/")[-1]
290
 
291
+ # Save audio to audio/ subfolder
292
+ audio_path = os.path.join("audio", original_name) # relative path for metadata
293
+ sf.write(os.path.join(output_dir, audio_path), audio_array, sampling_rate)
294
+
295
+ # Store metadata row
296
+ row = {k: v for k, v in example.items() if k != "audio"}
297
+ row["path"] = audio_path
298
+ metadata_rows.append(row)
299
+
300
+ # Save metadata to CSV
301
+ df = pd.DataFrame(metadata_rows)
302
+ df.to_csv(os.path.join(output_dir, "metadata.csv"), index=False)
303
+
304
 
305
  ```
306
  ## License