|
|
|
|
|
""" |
|
|
Submit Unsloth VLM fine-tuning job to HF Jobs. |
|
|
|
|
|
This script submits a training job using the Unsloth Docker image with UV script execution. |
|
|
Simplifies the process of running iconclass-vlm-sft.py on cloud GPUs. |
|
|
""" |
|
|
|
|
|
import os |
|
|
from huggingface_hub import HfApi |
|
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BASE_MODEL = "Qwen/Qwen3-VL-8B-Instruct" |
|
|
DATASET = "davanstrien/iconclass-vlm-sft" |
|
|
OUTPUT_MODEL = "davanstrien/Qwen3-VL-8B-iconclass-vlm" |
|
|
|
|
|
|
|
|
BATCH_SIZE = 2 |
|
|
GRADIENT_ACCUMULATION = 8 |
|
|
MAX_STEPS = None |
|
|
NUM_EPOCHS = 1.0 |
|
|
LEARNING_RATE = 2e-5 |
|
|
|
|
|
|
|
|
LORA_R = 16 |
|
|
LORA_ALPHA = 32 |
|
|
LORA_DROPOUT = 0.1 |
|
|
|
|
|
|
|
|
GPU_FLAVOR = "a100-large" |
|
|
TIMEOUT = "12h" |
|
|
|
|
|
|
|
|
SCRIPT_URL = "https://huggingface.co/datasets/uv-scripts/training/raw/main/iconclass-vlm-sft.py" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if MAX_STEPS is None: |
|
|
from datasets import load_dataset |
|
|
|
|
|
print("Calculating max_steps for full dataset...") |
|
|
dataset = load_dataset(DATASET, split="train") |
|
|
steps_per_epoch = len(dataset) // (BATCH_SIZE * GRADIENT_ACCUMULATION) |
|
|
MAX_STEPS = int(steps_per_epoch * NUM_EPOCHS) |
|
|
print(f"Dataset size: {len(dataset):,} samples") |
|
|
print(f"Steps per epoch: {steps_per_epoch:,}") |
|
|
print(f"Total steps ({NUM_EPOCHS} epoch(s)): {MAX_STEPS:,}") |
|
|
print() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def submit_training_job(): |
|
|
"""Submit VLM training job using HF Jobs with Unsloth Docker image.""" |
|
|
|
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
if not HF_TOKEN: |
|
|
print("⚠️ HF_TOKEN not found in environment") |
|
|
print("Please set: export HF_TOKEN=your_token_here") |
|
|
print("Or add it to a .env file in this directory") |
|
|
return |
|
|
|
|
|
api = HfApi(token=HF_TOKEN) |
|
|
|
|
|
|
|
|
script_args = [ |
|
|
"--base-model", |
|
|
BASE_MODEL, |
|
|
"--dataset", |
|
|
DATASET, |
|
|
"--output-model", |
|
|
OUTPUT_MODEL, |
|
|
"--lora-r", |
|
|
str(LORA_R), |
|
|
"--lora-alpha", |
|
|
str(LORA_ALPHA), |
|
|
"--lora-dropout", |
|
|
str(LORA_DROPOUT), |
|
|
"--learning-rate", |
|
|
str(LEARNING_RATE), |
|
|
"--batch-size", |
|
|
str(BATCH_SIZE), |
|
|
"--gradient-accumulation", |
|
|
str(GRADIENT_ACCUMULATION), |
|
|
"--max-steps", |
|
|
str(MAX_STEPS), |
|
|
"--logging-steps", |
|
|
"10", |
|
|
"--save-steps", |
|
|
"100", |
|
|
"--eval-steps", |
|
|
"100", |
|
|
] |
|
|
|
|
|
print("=" * 80) |
|
|
print("Submitting Unsloth VLM Fine-tuning Job to HF Jobs") |
|
|
print("=" * 80) |
|
|
print(f"\n📦 Configuration:") |
|
|
print(f" Base Model: {BASE_MODEL}") |
|
|
print(f" Dataset: {DATASET}") |
|
|
print(f" Output: {OUTPUT_MODEL}") |
|
|
print(f"\n🎛️ Training Settings:") |
|
|
print(f" Max Steps: {MAX_STEPS:,}") |
|
|
print(f" Batch Size: {BATCH_SIZE}") |
|
|
print(f" Grad Accum: {GRADIENT_ACCUMULATION}") |
|
|
print(f" Effective BS: {BATCH_SIZE * GRADIENT_ACCUMULATION}") |
|
|
print(f" Learning Rate: {LEARNING_RATE}") |
|
|
print(f"\n🔧 LoRA Settings:") |
|
|
print(f" Rank (r): {LORA_R}") |
|
|
print(f" Alpha: {LORA_ALPHA}") |
|
|
print(f" Dropout: {LORA_DROPOUT}") |
|
|
print(f"\n💻 Infrastructure:") |
|
|
print(f" GPU: {GPU_FLAVOR}") |
|
|
print(f" Timeout: {TIMEOUT}") |
|
|
print(f"\n🚀 Submitting job...") |
|
|
|
|
|
|
|
|
job = api.run_uv_job( |
|
|
script=SCRIPT_URL, |
|
|
script_args=script_args, |
|
|
dependencies=[], |
|
|
flavor=GPU_FLAVOR, |
|
|
timeout=TIMEOUT, |
|
|
env={ |
|
|
"HF_HUB_ENABLE_HF_TRANSFER": "1", |
|
|
}, |
|
|
secrets={ |
|
|
"HF_TOKEN": HF_TOKEN, |
|
|
}, |
|
|
) |
|
|
|
|
|
print("\n✅ Job submitted successfully!") |
|
|
print("\n📊 Job Details:") |
|
|
print(f" Job ID: {job.id}") |
|
|
print(f" Status: {job.status}") |
|
|
print(f" URL: https://huggingface.co/jobs/{job.id}") |
|
|
print("\n💡 Monitor your job:") |
|
|
print(f" • Web: https://huggingface.co/jobs/{job.id}") |
|
|
print(f" • CLI: hfjobs status {job.id}") |
|
|
print(f" • Logs: hfjobs logs {job.id} --follow") |
|
|
print("\n🎯 Your model will be available at:") |
|
|
print(f" https://huggingface.co/{OUTPUT_MODEL}") |
|
|
print("\n" + "=" * 80) |
|
|
|
|
|
return job |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
"""Main entry point.""" |
|
|
job = submit_training_job() |
|
|
|
|
|
if job: |
|
|
|
|
|
print("\n📝 To monitor this job programmatically:") |
|
|
print(""" |
|
|
from huggingface_hub import HfApi |
|
|
|
|
|
api = HfApi() |
|
|
job = api.get_job("{}") |
|
|
print(job.status) # Check status |
|
|
print(job.logs()) # View logs |
|
|
""".format(job.id)) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|