#!/usr/bin/env python """ Submit Unsloth VLM fine-tuning job to HF Jobs. This script submits a training job using the Unsloth Docker image with UV script execution. Simplifies the process of running iconclass-vlm-sft.py on cloud GPUs. """ import os from huggingface_hub import HfApi from dotenv import load_dotenv load_dotenv() # Load environment variables from .env file if present # ============================================================================= # CONFIGURATION # ============================================================================= # Model and dataset configuration BASE_MODEL = "Qwen/Qwen3-VL-8B-Instruct" DATASET = "davanstrien/iconclass-vlm-sft" OUTPUT_MODEL = "davanstrien/Qwen3-VL-8B-iconclass-vlm" # Training hyperparameters BATCH_SIZE = 2 GRADIENT_ACCUMULATION = 8 MAX_STEPS = None # Set to None to use full dataset (1 epoch) NUM_EPOCHS = 1.0 # Only used if MAX_STEPS is None LEARNING_RATE = 2e-5 # LoRA configuration LORA_R = 16 LORA_ALPHA = 32 LORA_DROPOUT = 0.1 # Training infrastructure GPU_FLAVOR = "a100-large" # Options: a100-large, a100, a10g-large TIMEOUT = "12h" # Adjust based on dataset size # Script location SCRIPT_URL = "https://huggingface.co/datasets/uv-scripts/training/raw/main/iconclass-vlm-sft.py" # For local testing, you can also use a local path: # SCRIPT_PATH = "/path/to/iconclass-vlm-sft.py" # Optional: Calculate max_steps for full dataset if MAX_STEPS is None: from datasets import load_dataset print("Calculating max_steps for full dataset...") dataset = load_dataset(DATASET, split="train") steps_per_epoch = len(dataset) // (BATCH_SIZE * GRADIENT_ACCUMULATION) MAX_STEPS = int(steps_per_epoch * NUM_EPOCHS) print(f"Dataset size: {len(dataset):,} samples") print(f"Steps per epoch: {steps_per_epoch:,}") print(f"Total steps ({NUM_EPOCHS} epoch(s)): {MAX_STEPS:,}") print() # ============================================================================= # SUBMISSION FUNCTION # ============================================================================= def submit_training_job(): """Submit VLM training job using HF Jobs with Unsloth Docker image.""" # Verify HF token is available HF_TOKEN = os.environ.get("HF_TOKEN") if not HF_TOKEN: print("āš ļø HF_TOKEN not found in environment") print("Please set: export HF_TOKEN=your_token_here") print("Or add it to a .env file in this directory") return api = HfApi(token=HF_TOKEN) # Build the script arguments script_args = [ "--base-model", BASE_MODEL, "--dataset", DATASET, "--output-model", OUTPUT_MODEL, "--lora-r", str(LORA_R), "--lora-alpha", str(LORA_ALPHA), "--lora-dropout", str(LORA_DROPOUT), "--learning-rate", str(LEARNING_RATE), "--batch-size", str(BATCH_SIZE), "--gradient-accumulation", str(GRADIENT_ACCUMULATION), "--max-steps", str(MAX_STEPS), "--logging-steps", "10", "--save-steps", "100", "--eval-steps", "100", ] print("=" * 80) print("Submitting Unsloth VLM Fine-tuning Job to HF Jobs") print("=" * 80) print(f"\nšŸ“¦ Configuration:") print(f" Base Model: {BASE_MODEL}") print(f" Dataset: {DATASET}") print(f" Output: {OUTPUT_MODEL}") print(f"\nšŸŽ›ļø Training Settings:") print(f" Max Steps: {MAX_STEPS:,}") print(f" Batch Size: {BATCH_SIZE}") print(f" Grad Accum: {GRADIENT_ACCUMULATION}") print(f" Effective BS: {BATCH_SIZE * GRADIENT_ACCUMULATION}") print(f" Learning Rate: {LEARNING_RATE}") print(f"\nšŸ”§ LoRA Settings:") print(f" Rank (r): {LORA_R}") print(f" Alpha: {LORA_ALPHA}") print(f" Dropout: {LORA_DROPOUT}") print(f"\nšŸ’» Infrastructure:") print(f" GPU: {GPU_FLAVOR}") print(f" Timeout: {TIMEOUT}") print(f"\nšŸš€ Submitting job...") # Submit the job using run_uv_job job = api.run_uv_job( script=SCRIPT_URL, # Can also be a local path script_args=script_args, dependencies=[], # UV handles all dependencies from script header flavor=GPU_FLAVOR, timeout=TIMEOUT, env={ "HF_HUB_ENABLE_HF_TRANSFER": "1", # Fast downloads }, secrets={ "HF_TOKEN": HF_TOKEN, }, ) print("\nāœ… Job submitted successfully!") print("\nšŸ“Š Job Details:") print(f" Job ID: {job.id}") print(f" Status: {job.status}") print(f" URL: https://huggingface.co/jobs/{job.id}") print("\nšŸ’” Monitor your job:") print(f" • Web: https://huggingface.co/jobs/{job.id}") print(f" • CLI: hfjobs status {job.id}") print(f" • Logs: hfjobs logs {job.id} --follow") print("\nšŸŽÆ Your model will be available at:") print(f" https://huggingface.co/{OUTPUT_MODEL}") print("\n" + "=" * 80) return job # ============================================================================= # MAIN # ============================================================================= def main(): """Main entry point.""" job = submit_training_job() if job: # Optional: Show Python code to monitor the job print("\nšŸ“ To monitor this job programmatically:") print(""" from huggingface_hub import HfApi api = HfApi() job = api.get_job("{}") print(job.status) # Check status print(job.logs()) # View logs """.format(job.id)) if __name__ == "__main__": main()