davanstrien HF Staff commited on
Commit
7b5ba6c
·
verified ·
1 Parent(s): c228666

Upload glm-ocr.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. glm-ocr.py +12 -6
glm-ocr.py CHANGED
@@ -6,7 +6,6 @@
6
  # "huggingface-hub",
7
  # "pillow",
8
  # "vllm",
9
- # "tqdm",
10
  # "toolz",
11
  # "torch",
12
  # ]
@@ -58,7 +57,6 @@ from datasets import load_dataset
58
  from huggingface_hub import DatasetCard, login
59
  from PIL import Image
60
  from toolz import partition_all
61
- from tqdm.auto import tqdm
62
  from vllm import LLM, SamplingParams
63
 
64
  logging.basicConfig(level=logging.INFO)
@@ -291,15 +289,20 @@ def main(
291
  logger.info(f"Output will be written to column: {output_column}")
292
 
293
  all_outputs = []
 
 
294
 
295
- for batch_indices in tqdm(
296
- partition_all(batch_size, range(len(dataset))),
297
- total=(len(dataset) + batch_size - 1) // batch_size,
298
- desc="GLM-OCR processing",
299
  ):
300
  batch_indices = list(batch_indices)
301
  batch_images = [dataset[i][image_column] for i in batch_indices]
302
 
 
 
 
 
 
303
  try:
304
  batch_messages = [
305
  make_ocr_message(img, task=task)
@@ -312,9 +315,12 @@ def main(
312
  text = output.outputs[0].text.strip()
313
  all_outputs.append(text)
314
 
 
 
315
  except Exception as e:
316
  logger.error(f"Error processing batch: {e}")
317
  all_outputs.extend(["[OCR ERROR]"] * len(batch_images))
 
318
 
319
  processing_duration = datetime.now() - start_time
320
  processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"
 
6
  # "huggingface-hub",
7
  # "pillow",
8
  # "vllm",
 
9
  # "toolz",
10
  # "torch",
11
  # ]
 
57
  from huggingface_hub import DatasetCard, login
58
  from PIL import Image
59
  from toolz import partition_all
 
60
  from vllm import LLM, SamplingParams
61
 
62
  logging.basicConfig(level=logging.INFO)
 
289
  logger.info(f"Output will be written to column: {output_column}")
290
 
291
  all_outputs = []
292
+ total_batches = (len(dataset) + batch_size - 1) // batch_size
293
+ processed = 0
294
 
295
+ for batch_num, batch_indices in enumerate(
296
+ partition_all(batch_size, range(len(dataset))), 1
 
 
297
  ):
298
  batch_indices = list(batch_indices)
299
  batch_images = [dataset[i][image_column] for i in batch_indices]
300
 
301
+ logger.info(
302
+ f"Batch {batch_num}/{total_batches} "
303
+ f"({processed}/{len(dataset)} images done)"
304
+ )
305
+
306
  try:
307
  batch_messages = [
308
  make_ocr_message(img, task=task)
 
315
  text = output.outputs[0].text.strip()
316
  all_outputs.append(text)
317
 
318
+ processed += len(batch_images)
319
+
320
  except Exception as e:
321
  logger.error(f"Error processing batch: {e}")
322
  all_outputs.extend(["[OCR ERROR]"] * len(batch_images))
323
+ processed += len(batch_images)
324
 
325
  processing_duration = datetime.now() - start_time
326
  processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"