davanstrien HF Staff commited on
Commit
c228666
·
verified ·
1 Parent(s): d243c48

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +60 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  viewer: false
3
- tags: [uv-script, ocr, vision-language-model, document-processing]
4
  ---
5
 
6
  # OCR UV Scripts
@@ -70,6 +70,50 @@ hf jobs uv run --flavor l4x1 \
70
  --batch-size 32
71
  ```
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  ### LightOnOCR (`lighton-ocr.py`) ⚡ Good one to test first since it's small and fast!
74
 
75
  Fast and compact OCR using [lightonai/LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025):
@@ -319,6 +363,14 @@ hf jobs uv run --flavor l4x1 \
319
  --task-mode formula \
320
  --batch-size 32
321
 
 
 
 
 
 
 
 
 
322
  # DeepSeek-OCR - Real-world example (National Library of Scotland handbooks)
323
  hf jobs uv run --flavor a100-large \
324
  -s HF_TOKEN \
@@ -482,6 +534,13 @@ Any HuggingFace dataset containing images - documents, forms, receipts, books, h
482
  - `--output-column`: Override default column name (default: `paddleocr_[task_mode]`)
483
  - Ultra-compact 0.9B model - fastest initialization!
484
 
 
 
 
 
 
 
 
485
  **DeepSeek-OCR**:
486
 
487
  - `--resolution-mode`: Quality level - `tiny`, `small`, `base`, `large`, or `gundam` (default)
 
1
  ---
2
  viewer: false
3
+ tags: [uv-script, ocr, vision-language-model, document-processing, hf-jobs]
4
  ---
5
 
6
  # OCR UV Scripts
 
70
  --batch-size 32
71
  ```
72
 
73
+ ### GLM-OCR (`glm-ocr.py`) 🏆 SOTA on OmniDocBench V1.5!
74
+
75
+ Compact high-performance OCR using [zai-org/GLM-OCR](https://huggingface.co/zai-org/GLM-OCR) with 0.9B parameters:
76
+
77
+ - 🏆 **94.62% on OmniDocBench V1.5** - #1 overall ranking
78
+ - 🧠 **Multi-Token Prediction** - MTP loss + stable full-task RL for quality
79
+ - 📝 **Text recognition** - Clean markdown output
80
+ - 📐 **Formula recognition** - LaTeX mathematical notation
81
+ - 📊 **Table recognition** - Structured table extraction
82
+ - 🌍 **Multilingual** - zh, en, fr, es, ru, de, ja, ko
83
+ - ⚡ **Compact** - Only 0.9B parameters, MIT licensed
84
+ - 🔧 **CogViT + GLM** - Visual encoder with efficient token downsampling
85
+
86
+ **Task Modes:**
87
+
88
+ - `ocr`: Text recognition (default)
89
+ - `formula`: LaTeX formula recognition
90
+ - `table`: Table extraction
91
+
92
+ **Quick start:**
93
+
94
+ ```bash
95
+ # Basic OCR
96
+ hf jobs uv run --flavor a100-large \
97
+ -s HF_TOKEN \
98
+ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \
99
+ your-input-dataset your-output-dataset \
100
+ --max-samples 100
101
+
102
+ # Formula recognition
103
+ hf jobs uv run --flavor a100-large \
104
+ -s HF_TOKEN \
105
+ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \
106
+ scientific-papers formulas-extracted \
107
+ --task formula
108
+
109
+ # Table extraction
110
+ hf jobs uv run --flavor a100-large \
111
+ -s HF_TOKEN \
112
+ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \
113
+ documents tables-extracted \
114
+ --task table
115
+ ```
116
+
117
  ### LightOnOCR (`lighton-ocr.py`) ⚡ Good one to test first since it's small and fast!
118
 
119
  Fast and compact OCR using [lightonai/LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025):
 
363
  --task-mode formula \
364
  --batch-size 32
365
 
366
+ # GLM-OCR - SOTA 0.9B model (94.62% OmniDocBench)
367
+ hf jobs uv run --flavor a100-large \
368
+ -s HF_TOKEN \
369
+ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \
370
+ your-input-dataset your-output-dataset \
371
+ --batch-size 16 \
372
+ --max-samples 100
373
+
374
  # DeepSeek-OCR - Real-world example (National Library of Scotland handbooks)
375
  hf jobs uv run --flavor a100-large \
376
  -s HF_TOKEN \
 
534
  - `--output-column`: Override default column name (default: `paddleocr_[task_mode]`)
535
  - Ultra-compact 0.9B model - fastest initialization!
536
 
537
+ **GLM-OCR**:
538
+
539
+ - `--task`: Task type - `ocr` (default), `formula`, or `table`
540
+ - `--repetition-penalty`: Repetition penalty (default: 1.1, from official SDK)
541
+ - Near-greedy sampling by default (temperature=0.01, top_p=0.00001) matching official SDK
542
+ - Requires vLLM nightly + transformers from git (handled automatically)
543
+
544
  **DeepSeek-OCR**:
545
 
546
  - `--resolution-mode`: Quality level - `tiny`, `small`, `base`, `large`, or `gundam` (default)