Datasets:

Size:
n>1T
ArXiv:
License:
pseshadri9 commited on
Commit
afc1613
1 Parent(s): ce8101a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -0
README.md CHANGED
@@ -1,3 +1,53 @@
1
  ---
2
  license: cc-by-4.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
+ task_categories:
4
+ - audio-classification
5
+ size_categories:
6
+ - n>1T
7
  ---
8
+ # ASPED: An Audio Dataset for Detecting Pedestrians
9
+
10
+ This repo contains the data for the ASPED dataset, presented at ICASSP 2024.
11
+ - [Paper Link](https://arxiv.org/abs/2309.06531), [Project Homepage](https://urbanaudiosensing.github.io/ASPED.html)
12
+
13
+ - Pavan Seshadri, Chaeyeon Han, Bon-Woo Koo, Noah Posner, Suhbrajit Guhathakurta, Alexander Lerch
14
+
15
+ ## Usage
16
+ This dataset contains audio and video recordings of pedestrian activity collected at various locations in and around Georgia Tech.
17
+
18
+ Labels of pedestrian counts per each second of audio/video are provided as well, calculated via a computer vision model (Mask2Former trained on msft-coco) using the video recordings.
19
+ ### Access
20
+ It is recommended to use the huggingface_hub library to download the dataset from this location. [Info on downloading with huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/download).
21
+
22
+ Downloading the entire dataset can be done with the following code:
23
+ ```
24
+ from huggingface_hub import snapshot_download
25
+ snapshot_download(repo_id="pseshadri9/ASPED", repo_type="dataset")
26
+ ```
27
+ Alternatively if you would like to download only the audio or video, pass the ignore_patterns flag to snapshot_download to avoid downloading the entire set.
28
+
29
+ **Audio Only**
30
+ ```
31
+ from huggingface_hub import snapshot_download
32
+ snapshot_download(repo_id="pseshadri9/ASPED", repo_type="dataset", ignore_patterns="*.mp4")
33
+ ```
34
+
35
+ **Video Only**
36
+
37
+ ```
38
+ from huggingface_hub import snapshot_download
39
+ snapshot_download(repo_id="pseshadri9/ASPED", repo_type="dataset", ignore_patterns="*.flac")
40
+ ```
41
+
42
+
43
+ ## Citation
44
+ ```
45
+ @inproceedings{Seshadri24,
46
+ title={ASPED: An Audio Dataset for Detecting Pedestrians},
47
+ author={Seshadri, Pavan and Han, Chaeyeon and Koo, Bon-Woo and Posner, Noah and Guhathakurta, Suhbrajit and Lerch, Alexander},
48
+ booktitle={Proc. of ICASSP 2024},
49
+ pages={1--5},
50
+ year={2024},
51
+ organization={IEEE}
52
+ }
53
+ ```