| import os | |
| import cv2 | |
| import json | |
| import time | |
| import boto3 | |
| import argparse | |
| from utils import read_file_paths, validate_json_save_path, load_json_file | |
| CATEGORY_MAP = { | |
| "LAYOUT_TEXT": "paragraph", | |
| "LAYOUT_LIST": "list", | |
| "LAYOUT_HEADER": "header", | |
| "LAYOUT_FOOTER": "footer", | |
| "LAYOUT_PAGE_NUMBER": "paragraph", | |
| "LAYOUT_FIGURE": "figure", | |
| "LAYOUT_TABLE": "table", | |
| "LAYOUT_TITLE": "heading1", | |
| "LAYOUT_SECTION_HEADER": "heading1", | |
| "TABLE": "table" | |
| } | |
| class AWSInference: | |
| def __init__( | |
| self, | |
| save_path, | |
| input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] | |
| ): | |
| """Initialize the AWSInference class | |
| Args: | |
| save_path (str): the json path to save the results | |
| input_formats (list, optional): the supported file formats. | |
| """ | |
| AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") or "" | |
| AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") or "" | |
| AWS_REGION = os.getenv("AWS_REGION") or "" | |
| AWS_S3_BUCKET_NAME = os.getenv("AWS_S3_BUCKET_NAME") or "" | |
| if not all([AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION, AWS_S3_BUCKET_NAME]): | |
| raise ValueError("Please set the environment variables for AWS") | |
| self.client = boto3.client( | |
| "textract", | |
| region_name=AWS_REGION, | |
| aws_access_key_id=AWS_ACCESS_KEY_ID, | |
| aws_secret_access_key=AWS_SECRET_ACCESS_KEY | |
| ) | |
| self.s3 = boto3.resource("s3") | |
| self.s3_bucket_name = AWS_S3_BUCKET_NAME | |
| validate_json_save_path(save_path) | |
| self.save_path = save_path | |
| self.processed_data = load_json_file(save_path) | |
| self.formats = input_formats | |
| def post_process(self, data): | |
| def get_text(result, blocks_map): | |
| text = "" | |
| if "Relationships" in result: | |
| for relationship in result["Relationships"]: | |
| if relationship["Type"] == "CHILD": | |
| for child_id in relationship["Ids"]: | |
| word = blocks_map[child_id] | |
| if word["BlockType"] == "WORD": | |
| text += " " + word["Text"] | |
| return text[1:] | |
| processed_dict = {} | |
| for input_key in data.keys(): | |
| output_data = data[input_key] | |
| processed_dict[input_key] = { | |
| "elements": [] | |
| } | |
| all_elems = {} | |
| for page_data in output_data: | |
| for elem in page_data["Blocks"]: | |
| _id = elem["Id"] | |
| all_elems[_id] = elem | |
| for page_data in output_data: | |
| for idx, elem in enumerate(page_data["Blocks"]): | |
| if elem["BlockType"] == "LAYOUT_LIST": | |
| continue | |
| if "LAYOUT" in elem["BlockType"] and elem["BlockType"] != "LAYOUT_TABLE": | |
| bbox = elem["Geometry"]["BoundingBox"] | |
| x = bbox["Left"] | |
| y = bbox["Top"] | |
| w = bbox["Width"] | |
| h = bbox["Height"] | |
| coord = [ | |
| [x, y], | |
| [x + w, y], | |
| [x + w, y + h], | |
| [x, y + h] | |
| ] | |
| xy_coord = [{"x": x, "y": y} for x, y in coord] | |
| category = CATEGORY_MAP.get(elem["BlockType"], "paragraph") | |
| transcription = "" | |
| if elem["BlockType"] != "LAYOUT_FIGURE": | |
| for item in all_elems[elem["Id"]]["Relationships"]: | |
| for id_ in item["Ids"]: | |
| if all_elems[id_]["BlockType"] == "LINE": | |
| word = all_elems[id_]["Text"] | |
| transcription += word + "\n" | |
| data_dict = { | |
| "coordinates": xy_coord, | |
| "category": category, | |
| "id": idx, | |
| "content": { | |
| "text": transcription, | |
| "html": "", | |
| "markdown": "" | |
| } | |
| } | |
| processed_dict[input_key]["elements"].append(data_dict) | |
| elif elem["BlockType"] == "TABLE": | |
| bbox = elem["Geometry"]["BoundingBox"] | |
| x = bbox["Left"] | |
| y = bbox["Top"] | |
| w = bbox["Width"] | |
| h = bbox["Height"] | |
| coord = [ | |
| [x, y], | |
| [x + w, y], | |
| [x + w, y + h], | |
| [x, y + h] | |
| ] | |
| xy_coord = [{"x": x, "y": y} for x, y in coord] | |
| category = CATEGORY_MAP.get(elem["BlockType"], "paragraph") | |
| table_cells = {} | |
| for relationship in elem["Relationships"]: | |
| if relationship["Type"] == "CHILD": | |
| for cell_id in relationship["Ids"]: | |
| cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None) | |
| if cell_block is not None and cell_block["BlockType"] == "CELL": | |
| row_index = cell_block["RowIndex"] - 1 | |
| column_index = cell_block["ColumnIndex"] - 1 | |
| row_span = cell_block["RowSpan"] | |
| column_span = cell_block["ColumnSpan"] | |
| table_cells[(row_index, column_index)] = { | |
| "block": cell_block, | |
| "span": (row_span, column_span), | |
| "text": get_text(cell_block, all_elems), | |
| } | |
| max_row_index = max(cell[0] for cell in table_cells.keys()) | |
| max_column_index = max(cell[1] for cell in table_cells.keys()) | |
| for relationship in elem["Relationships"]: | |
| if relationship["Type"] == "MERGED_CELL": | |
| for cell_id in relationship["Ids"]: | |
| cell_block = next((block for block in page_data["Blocks"] if block["Id"] == cell_id), None) | |
| if cell_block is not None and cell_block["BlockType"] == "MERGED_CELL": | |
| row_index = cell_block["RowIndex"] - 1 | |
| column_index = cell_block["ColumnIndex"] - 1 | |
| row_span = cell_block["RowSpan"] | |
| column_span = cell_block["ColumnSpan"] | |
| for i in range(row_span): | |
| for j in range(column_span): | |
| del table_cells[(row_index + i, column_index + j)] | |
| text = "" | |
| for child_ids in cell_block["Relationships"][0]["Ids"]: | |
| child_cell_block = next((block for block in page_data["Blocks"] if block["Id"] == child_ids), None) | |
| text += " " + get_text(child_cell_block, all_elems) | |
| table_cells[(row_index, column_index)] = { | |
| "block": cell_block, | |
| "span": (row_span, column_span), | |
| "text": text[1:], | |
| } | |
| html_table = "<table>" | |
| for row_index in range(max_row_index + 1): | |
| html_table += "<tr>" | |
| for column_index in range(max_column_index + 1): | |
| cell_data = table_cells.get((row_index, column_index)) | |
| if cell_data: | |
| cell_block = cell_data["block"] | |
| row_span, column_span = cell_data["span"] | |
| cell_text = cell_data["text"] | |
| html_table += f"<td rowspan='{row_span}' colspan='{column_span}''>{cell_text}</td>" | |
| html_table += "</tr>" | |
| html_table += "</table>" | |
| data_dict = { | |
| "coordinates": xy_coord, | |
| "category": category, | |
| "id": idx, | |
| "content": { | |
| "text": "", | |
| "html": html_table, | |
| "markdown": "" | |
| } | |
| } | |
| processed_dict[input_key]["elements"].append(data_dict) | |
| for key in self.processed_data: | |
| processed_dict[key] = self.processed_data[key] | |
| return processed_dict | |
| def start_job(self, object_name): | |
| filename_with_ext = os.path.basename(object_name) | |
| print(f"uploading {filename_with_ext} to s3") | |
| self.s3.Bucket(self.s3_bucket_name).upload_file(object_name, filename_with_ext) | |
| response = None | |
| response = self.client.start_document_analysis( | |
| DocumentLocation={ | |
| "S3Object": { | |
| "Bucket": self.s3_bucket_name, | |
| "Name": filename_with_ext | |
| } | |
| }, | |
| FeatureTypes = ["LAYOUT", "TABLES"] | |
| ) | |
| return response["JobId"] | |
| def is_job_complete(self, job_id): | |
| time.sleep(1) | |
| response = self.client.get_document_analysis(JobId=job_id) | |
| status = response["JobStatus"] | |
| print("Job status: {}".format(status)) | |
| while(status == "IN_PROGRESS"): | |
| time.sleep(1) | |
| response = self.client.get_document_analysis(JobId=job_id) | |
| status = response["JobStatus"] | |
| print("Job status: {}".format(status)) | |
| return status | |
| def get_job_results(self, job_id): | |
| pages = [] | |
| time.sleep(1) | |
| response = self.client.get_document_analysis(JobId=job_id) | |
| pages.append(response) | |
| print("Resultset page received: {}".format(len(pages))) | |
| next_token = None | |
| if "NextToken" in response: | |
| next_token = response["NextToken"] | |
| while next_token: | |
| time.sleep(1) | |
| response = self.client.\ | |
| get_document_analysis(JobId=job_id, NextToken=next_token) | |
| pages.append(response) | |
| print("Resultset page received: {}".format(len(pages))) | |
| next_token = None | |
| if "NextToken" in response: | |
| next_token = response["NextToken"] | |
| return pages | |
| def infer(self, file_path): | |
| """Infer the layout of the documents in the given file path | |
| Args: | |
| file_path (str): the path to the file or directory containing the documents to process | |
| """ | |
| paths = read_file_paths(file_path, supported_formats=self.formats) | |
| error_files = [] | |
| result_dict = {} | |
| for idx, filepath in enumerate(paths): | |
| print("({}/{}) {}".format(idx+1, len(paths), filepath)) | |
| filename = filepath.name | |
| if filename in self.processed_data.keys(): | |
| print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") | |
| continue | |
| try: | |
| if os.path.splitext(filepath)[-1] == ".pdf": | |
| job_id = self.start_job(filepath) | |
| print("Started job with id: {}".format(job_id)) | |
| if self.is_job_complete(job_id): | |
| result = self.get_job_results(job_id) | |
| else: | |
| with open(filepath, "rb") as file: | |
| img_test = file.read() | |
| bytes_test = bytearray(img_test) | |
| result = self.client.analyze_document( | |
| Document={"Bytes": bytes_test}, | |
| FeatureTypes = ["LAYOUT", "TABLES"] | |
| ) | |
| except Exception as e: | |
| print(e) | |
| print("Error processing document..") | |
| error_files.append(filepath) | |
| continue | |
| result_dict[filename] = result | |
| result_dict = self.post_process(result_dict) | |
| with open(self.save_path, "w", encoding="utf-8") as f: | |
| json.dump(result_dict, f, ensure_ascii=False, indent=4) | |
| for error_file in error_files: | |
| print(f"Error processing file: {error_file}") | |
| print("Finished processing all documents") | |
| print("Results saved to: {}".format(self.save_path)) | |
| print("Number of errors: {}".format(len(error_files))) | |
| if __name__ == "__main__": | |
| args = argparse.ArgumentParser() | |
| args.add_argument( | |
| "--data_path", | |
| type=str, default="", required=True, | |
| help="Path containing the documents to process" | |
| ) | |
| args.add_argument( | |
| "--save_path", | |
| type=str, default="", required=True, | |
| help="Path to save the results" | |
| ) | |
| args.add_argument( | |
| "--input_formats", | |
| type=list, default=[ | |
| ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" | |
| ], | |
| help="Supported input file formats" | |
| ) | |
| args = args.parse_args() | |
| aws_inference = AWSInference( | |
| args.save_path, | |
| input_formats=args.input_formats | |
| ) | |
| aws_inference.infer(args.data_path) | |