Datasets:

Modalities:
Text
Formats:
json
Languages:
German
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
tellarin commited on
Commit
099ec57
1 Parent(s): e90a2fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -0
README.md CHANGED
@@ -1,3 +1,42 @@
1
  ---
2
  license: cc-by-sa-4.0
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-sa-4.0
3
+ language:
4
+ - de
5
+ task_categories:
6
+ - token-classification
7
+ dataset_info:
8
+ - config_name: de_pud
9
+ splits:
10
+ - name: test
11
+ num_examples: 999
12
  ---
13
+
14
+ # Dataset Card for Universal NER v1 in the Aya format - German subset
15
+
16
+ This dataset is a format conversion for the German data in the original Universal NER v1 into the Aya instruction format and it's released here under the same CC-BY-SA 4.0 license and conditions.
17
+
18
+ The dataset contains different subsets and their dev/test/train splits, depending on language. For more details, please refer to:
19
+
20
+ ## Dataset Details
21
+
22
+ For the original Universal NER dataset v1 and more details, please check https://huggingface.co/datasets/universalner/universal_ner.
23
+
24
+ For details on the conversion to the Aya instructions format, please see the complete version: https://huggingface.co/datasets/universalner/uner_llm_instructions
25
+
26
+
27
+ ## Citation
28
+
29
+ If you utilize this dataset version, feel free to cite/footnote the complete version at https://huggingface.co/datasets/universalner/uner_llm_instructions, but please also cite the *original dataset publication*.
30
+
31
+ **BibTeX:**
32
+
33
+ ```
34
+ @preprint{mayhew2023universal,
35
+ title={{Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark}},
36
+ author={Stephen Mayhew and Terra Blevins and Shuheng Liu and Marek Šuppa and Hila Gonen and Joseph Marvin Imperial and Börje F. Karlsson and Peiqin Lin and Nikola Ljubešić and LJ Miranda and Barbara Plank and Arij Riabi and Yuval Pinter},
37
+ year={2023},
38
+ eprint={2311.09122},
39
+ archivePrefix={arXiv},
40
+ primaryClass={cs.CL}
41
+ }
42
+ ```