|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""A Swahili dataset developed specifically for language modelling task. |
|
|
|
The dataset contains 28,000 unique words with 6.84 M, 970k, and 2 M words for the train, valid and |
|
test partitions respectively which represent the ratio 80:10:10. |
|
The entire dataset is lowercased, has no punctuation marks and, |
|
the start and end of sentence markers have been incorporated to facilitate easy tokenization during language modelling.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = Language modeling data for Swahili (Version 1), |
|
authors={Shivachi Casper Shikali, & Mokhosi Refuoe. |
|
}, |
|
year={2019}, |
|
link = http://doi.org/10.5281/zenodo.3553423 |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Swahili dataset developed specifically for language modeling task. |
|
The dataset contains 28,000 unique words with 6.84M, 970k, and 2M words for the train, |
|
valid and test partitions respectively which represent the ratio 80:10:10. |
|
The entire dataset is lowercased, has no punctuation marks and, |
|
the start and end of sentence markers have been incorporated to facilitate easy tokenization during language modeling. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/3553423" |
|
|
|
_LICENSE = "Attribution 4.0 International" |
|
|
|
_URLs = "https://zenodo.org/record/3553423/files/Swahili%20data.zip?download=1" |
|
|
|
|
|
class Swahili(datasets.GeneratorBasedBuilder): |
|
"""The Swahili dataset developed specifically for language modeling task.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="swahili", version=VERSION, description="Swahili data for language modeling"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "Swahili data/train.txt"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "Swahili data/test.txt"), "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "Swahili data/valid.txt"), |
|
"split": "valid", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
""" Yields examples. """ |
|
_id = 0 |
|
with open(filepath, mode="r", encoding="utf-8") as f: |
|
for line in f: |
|
yield _id, {"text": line.strip()}, |
|
_id += 1 |
|
|