Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
1K - 10K
License:
annotations_creators: | |
- crowdsourced | |
- found | |
language_creators: | |
- crowdsourced | |
- found | |
language: | |
- en | |
license: | |
- unknown | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 1K<n<10K | |
source_datasets: | |
- extended|other-nus-sms-corpus | |
task_categories: | |
- text-classification | |
task_ids: | |
- intent-classification | |
paperswithcode_id: sms-spam-collection-data-set | |
pretty_name: SMS Spam Collection Data Set | |
dataset_info: | |
config_name: plain_text | |
features: | |
- name: sms | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': ham | |
'1': spam | |
splits: | |
- name: train | |
num_bytes: 521752 | |
num_examples: 5574 | |
download_size: 358869 | |
dataset_size: 521752 | |
configs: | |
- config_name: plain_text | |
data_files: | |
- split: train | |
path: plain_text/train-* | |
default: true | |
train-eval-index: | |
- config: plain_text | |
task: text-classification | |
task_id: binary_classification | |
splits: | |
train_split: train | |
col_mapping: | |
sms: text | |
label: target | |
metrics: | |
- type: accuracy | |
name: Accuracy | |
- type: f1 | |
name: F1 macro | |
args: | |
average: macro | |
- type: f1 | |
name: F1 micro | |
args: | |
average: micro | |
- type: f1 | |
name: F1 weighted | |
args: | |
average: weighted | |
- type: precision | |
name: Precision macro | |
args: | |
average: macro | |
- type: precision | |
name: Precision micro | |
args: | |
average: micro | |
- type: precision | |
name: Precision weighted | |
args: | |
average: weighted | |
- type: recall | |
name: Recall macro | |
args: | |
average: macro | |
- type: recall | |
name: Recall micro | |
args: | |
average: micro | |
- type: recall | |
name: Recall weighted | |
args: | |
average: weighted | |
# Dataset Card for [Dataset Name] | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection | |
- **Repository:** | |
- **Paper:** Almeida, T.A., Gomez Hidalgo, J.M., Yamakami, A. Contributions to the study of SMS Spam Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium on Document Engineering (ACM DOCENG'11), Mountain View, CA, USA, 2011. | |
- **Leaderboard:** | |
- **Point of Contact:** | |
### Dataset Summary | |
The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research. | |
It has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam. | |
### Supported Tasks and Leaderboards | |
[More Information Needed] | |
### Languages | |
English | |
## Dataset Structure | |
### Data Instances | |
[More Information Needed] | |
### Data Fields | |
- sms: the sms message | |
- label: indicating if the sms message is ham or spam, ham means it is not spam | |
### Data Splits | |
[More Information Needed] | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed] | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed] | |
#### Who are the source language producers? | |
[More Information Needed] | |
### Annotations | |
#### Annotation process | |
[More Information Needed] | |
#### Who are the annotators? | |
[More Information Needed] | |
### Personal and Sensitive Information | |
[More Information Needed] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed] | |
### Discussion of Biases | |
[More Information Needed] | |
### Other Known Limitations | |
[More Information Needed] | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed] | |
### Licensing Information | |
[More Information Needed] | |
### Citation Information | |
@inproceedings{Almeida2011SpamFiltering, | |
title={Contributions to the Study of SMS Spam Filtering: New Collection and Results}, | |
author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami}, | |
year={2011}, | |
booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)", | |
} | |
### Contributions | |
Thanks to [@czabo](https://github.com/czabo) for adding this dataset. |