sms_spam / README.md
albertvillanova's picture
Convert dataset to Parquet (#4)
cae486f verified
---
annotations_creators:
- crowdsourced
- found
language_creators:
- crowdsourced
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-nus-sms-corpus
task_categories:
- text-classification
task_ids:
- intent-classification
paperswithcode_id: sms-spam-collection-data-set
pretty_name: SMS Spam Collection Data Set
dataset_info:
config_name: plain_text
features:
- name: sms
dtype: string
- name: label
dtype:
class_label:
names:
'0': ham
'1': spam
splits:
- name: train
num_bytes: 521752
num_examples: 5574
download_size: 358869
dataset_size: 521752
configs:
- config_name: plain_text
data_files:
- split: train
path: plain_text/train-*
default: true
train-eval-index:
- config: plain_text
task: text-classification
task_id: binary_classification
splits:
train_split: train
col_mapping:
sms: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
- **Repository:**
- **Paper:** Almeida, T.A., Gomez Hidalgo, J.M., Yamakami, A. Contributions to the study of SMS Spam Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium on Document Engineering (ACM DOCENG'11), Mountain View, CA, USA, 2011.
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research.
It has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- sms: the sms message
- label: indicating if the sms message is ham or spam, ham means it is not spam
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
@inproceedings{Almeida2011SpamFiltering,
title={Contributions to the Study of SMS Spam Filtering: New Collection and Results},
author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami},
year={2011},
booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)",
}
### Contributions
Thanks to [@czabo](https://github.com/czabo) for adding this dataset.