licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1100 | using CompScienceMeshes, BEAST, LinearAlgebra
Γ = readmesh(joinpath(@__DIR__,"sphere2.in"))
Γ = meshsphere(radius=1.0, h=0.25)
X = raviartthomas(Γ)
Δt = 0.1
Nt = 200
T = timebasisshiftedlagrange(Δt, Nt, 3)
U = timebasisdelta(Δt, Nt)
V = X ⊗ T
W = X ⊗ U
duration = 2 * 20 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ, x̂
E = planewave(polarisation, direction, derive(gaussian), 1.0)
@hilbertspace j
@hilbertspace j′
SL = TDMaxwell3D.singlelayer(speedoflight=1.0, numdiffs=1)
# BEAST.@defaultquadstrat (SL, W, V) BEAST.OuterNumInnerAnalyticQStrat(7)
tdefie = @discretise SL[j′,j] == -1.0E[j′] j∈V j′∈W
xefie = BEAST.motsolve(tdefie)
import Plots
Plots.plot(xefie[1,:])
import Plotly
fcr, geo = facecurrents(xefie[:,125], X)
Plotly.plot(patch(geo, norm.(fcr)))
Xefie, Δω, ω0 = fouriertransform(xefie, Δt, 0.0, 2)
ω = collect(ω0 .+ (0:Nt-1)*Δω)
_, i1 = findmin(abs.(ω.-1.0))
ω1 = ω[i1]
ue = Xefie[:,i1] / fouriertransform(gaussian)(ω1)
fcr, geo = facecurrents(ue, X)
Plotly.plot(patch(geo, norm.(fcr))) | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 693 | using CompScienceMeshes, BEAST, StaticArrays, LinearAlgebra, Plots
Γ = meshsphere(radius=1.0, h=0.45)
X = raviartthomas(Γ)
sol = 1.0
Δt, Nt = 10.0, 200
(A, b, c) = butcher_tableau_radau_3stages()
T = StagedTimeStep(Δt, Nt, c, A, b, 10, 1.0001)
V = X ⊗ T
duration = 2 * 20 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ , x̂
E = planewave(polarisation, direction, derive(gaussian), sol)
T = TDMaxwell3D.singlelayer(speedoflight=1.0, numdiffs=1)
@hilbertspace j
@hilbertspace j′
tdefie_irk = @discretise T[j′,j] == -1E[j′] j∈V j′∈V
xefie_irk = solve(tdefie_irk)
import Plots
Plots.plot(xefie_irk[1,:])
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1415 | using CompScienceMeshes, BEAST
o, x, y, z = euclidianbasis(3)
sol = 5.0
#Δt, Nt = 0.08/sol,400
Δt, Nt = 0.120000123/sol,400
#D, Δx = 1.0, 0.25
D, Δx = 1.0, 0.1
#Γ = meshsphere(D, Δx)
Γ = meshrectangle(D,D,Δx,3)
#γ = boundary(Γ)
γ1 = meshsegment(D,D,3)
γ2 = CompScienceMeshes.translate(γ1, point(0,D,0))
#X = raviartthomas(Γ,weld(γ1,γ2))
X = rt_ports(Γ,(γ1,γ2))
X.fns = X.fns[1:281]
numfunctions(X)
T = timebasisshiftedlagrange(Δt, Nt, 3)
U = timebasisdelta(Δt, Nt)
V = X ⊗ T
W = X ⊗ U
duration, delay, amplitude = 8.0/sol, 12.0/sol, 1.0
gaussian = creategaussian(duration, delay, duration)
direction, polarisation = z, x
E = planewave(polarisation, direction, derive(gaussian), sol)
T = MWSingleLayerTDIO(sol,-1/sol,-sol,2,0)
#Z = assemble(T,W,V);
@hilbertspace j
@hilbertspace j′
tdefie = @discretise T[j′,j] == -1E[j′] j∈V j′∈W
xefie = solve(tdefie)
using Plotly
# include(Pkg.dir("CompScienceMeshes","examples","matlab_patches.jl"))
Xefie, Δω, ω0 = fouriertransform(xefie, Δt, 0.0, 2)
ω = collect(ω0 .+ (0:Nt-1)*Δω)
_, i1 = findmin(abs.(ω.-sol))
ω1 = ω[i1]
ue = Xefie[:,i1] / fouriertransform(gaussian)(ω1)
using LinearAlgebra
fcre, geo = facecurrents(ue, X)
t2 = patch(geo, real.(norm.(fcre)))
Plotly.plot(t2)
fcr_td, geo = facecurrents(xefie[:,end], X)
# fcr_ch, geo = facecurrents(xefie[:,end], divergence(X))
t3 = patch(Γ,real.(norm.(fcr_td)))
Plotly.plot(t3)
# jmatlab_quiver(Γ, fcr_td)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 882 | using CompScienceMeshes, BEAST
# Γ = readmesh(joinpath(@__DIR__,"sphere2.in"))
Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in"))
# Γ = meshsphere(radius=1.0, h=0.4)
X = raviartthomas(Γ)
Δt, Nt = 0.1, 200
T = timebasisshiftedlagrange(Δt, Nt, 1)
U = timebasisdelta(Δt, Nt)
V = X ⊗ T
W = X ⊗ U
duration = 20 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ, x̂
E = BEAST.planewave(polarisation, direction, gaussian, 1.0)
SL = TDMaxwell3D.singlelayer(speedoflight=1.0)
@hilbertspace j
@hilbertspace j′
efie_nodot = @discretise SL[j′,j] == E[j′] j∈V j′∈W
# error()
xefie_nodot = solve(efie_nodot)
Xefie, Δω, ω0 = fouriertransform(xefie_nodot, Δt, 0.0, 2)
ω = collect(ω0 .+ (0:Nt-1)*Δω)
_, i1 = findmin(abs.(ω.-1.0))
ω1 = ω[i1]
ue = Xefie[:,i1] / fouriertransform(gaussian)(ω1)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1063 | # This script solved the TD-EFIE and TD-MFIE 'at the same time'. It verifies
# the code dealing with systems of time domain equations in the special case
# of a block diagonal system.
using CompScienceMeshes, BEAST
Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in"))
X = raviartthomas(Γ)
Y = buffachristiansen(Γ)
Δt, Nt = 0.6, 200
δ = timebasisdelta(Δt, Nt)
T0 = timebasiscxd0(Δt, Nt)
T1 = timebasisshiftedlagrange(Δt,Nt,1)
T2 = timebasisshiftedlagrange(Δt, Nt, 2)
T3 = timebasisshiftedlagrange(Δt, Nt, 3)
duration = 20 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ, x̂
E = BEAST.planewave(polarisation, direction, gaussian, 1.0)
H = direction × E
SL = TDMaxwell3D.singlelayer(speedoflight=1.0, numdiffs=0)
DL = TDMaxwell3D.doublelayer(speedoflight=1.0)
I = Identity()
N = NCross()
@hilbertspace k l
@hilbertspace j m
emfie = @discretise(
(0.5(N⊗I) + 1.0DL)[k,j] + SL[l,m] == -1.0H[k] - E[l],
k∈Y⊗δ, l∈X⊗δ, j∈X⊗T1, m∈X⊗T1)
xemfie = motsolve(emfie)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 989 | using CompScienceMeshes, BEAST
Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in"))
Γ = meshsphere(radius=1.0, h=0.25)
X = raviartthomas(Γ)
Y = buffachristiansen(Γ)
Δt, Nt = 0.1, 200
T = timebasisshiftedlagrange(Δt, Nt, 2)
δ = timebasisdelta(Δt, Nt)
V = X ⊗ T
W = Y ⊗ δ
duration = 2 * 20 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ, x̂
E = BEAST.planewave(polarisation, direction, gaussian, 1.0)
H = direction × E
DL = TDMaxwell3D.doublelayer(speedoflight=1.0)
I = Identity()
N = NCross()
@hilbertspace k
@hilbertspace j
mfie = @discretise ((0.5*N)⊗I)[k,j] + 1.0DL[k,j] == -1.0H[k] k∈W j∈V
xmfie = BEAST.motsolve(mfie)
Xmfie, Δω, ω0 = fouriertransform(xmfie, Δt, 0.0, 2)
ω = collect(ω0 .+ (0:Nt-1)*Δω)
_, i1 = findmin(abs.(ω .- 1.0))
ω1 = ω[i1]
um = Xmfie[:,i1] / fouriertransform(gaussian)(ω1)
import Plotly
fcr, geo = facecurrents(um, X)
Plotly.plot(patch(geo, norm.(fcr)))
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1312 | using CompScienceMeshes, BEAST
# Γ = readmesh(joinpath(@__DIR__,"sphere2.in"))
Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in"))
# Γ = meshsphere(1.0, 0.4)
@show length(Γ)
X = raviartthomas(Γ)
Y = buffachristiansen(Γ)
Δt, Nt = 0.6, 200
T0 = timebasisshiftedlagrange(Δt, Nt, 0)
T1 = timebasisshiftedlagrange(Δt, Nt, 1)
iT0 = integrate(T0)
iT1 = integrate(T1)
δ = timebasisdelta(Δt, Nt)
# V = X ⊗ T
# iV = X ⊗ iT
# W = Y ⊗ δ
duration = 20 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
int_gaussian = integrate(gaussian)
direction, polarisation = ẑ, x̂
E = BEAST.planewave(polarisation, direction, gaussian, 1.0)
iE = BEAST.planewave(polarisation, direction, int_gaussian, 1.0)
H = direction × E
iH = direction × iE
DL = TDMaxwell3D.doublelayer(speedoflight=1.0)
I = Identity()
N = NCross()
M = 0.5*N⊗I + 1.0*DL
iM = integrate(M)
NI = N ⊗ I
iNI = integrate(NI)
# error()
@hilbertspace k
@hilbertspace j
# mfie = @discretise (0.5(N⊗I) + 1.0DL)[k,j] == -1.0H[k] k∈W j∈V
mfie = @discretise iM[k,j] == -1.0iH[k] k∈(Y⊗δ) j∈(X⊗T0)
xmfie_int = solve(mfie)
Xmfie, Δω, ω0 = fouriertransform(xmfie_int, Δt, 0.0, 2)
ω = collect(ω0 .+ (0:Nt-1)*Δω)
_, i1 = findmin(abs.(ω .- 1.0))
ω1 = ω[i1]
um = Xmfie[:,i1] / fouriertransform(gaussian)(ω1)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 972 | using CompScienceMeshes, BEAST
Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in"))
# Γ = meshsphere(1.0, 0.4)
X = raviartthomas(Γ)
Y = BEAST.nedelec(Γ)
Δt, Nt = 0.1, 200
T = timebasisshiftedlagrange(Δt, Nt, 2)
δ = timebasisdelta(Δt, Nt)
V = X ⊗ T
W = Y ⊗ δ
duration = 20 * Δt * 2
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ, x̂
E = BEAST.planewave(polarisation, direction, gaussian, 1.0)
H = direction × E
DL = TDMaxwell3D.doublelayer(speedoflight=1.0)
I = Identity()
N = NCross()
@hilbertspace k
@hilbertspace j
mfie = @discretise (0.5(N⊗I) + 1.0DL)[k,j] == -1.0H[k] k∈W j∈V
# Kyx = assemble(DL, W, V)
# Nyx = assemble(N⊗I, W, V)
xmfie_sym = solve(mfie)
# xmfie_sym = xmfie
Xmfie_sym, Δω, ω0 = fouriertransform(xmfie_sym, Δt, 0.0, 2)
ω = collect(ω0 .+ (0:Nt-1)*Δω)
_, i1 = findmin(abs.(ω .- 1.0))
ω1 = ω[i1]
um = Xmfie_sym[:,i1] / fouriertransform(gaussian)(ω1)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2945 | # using Pkg
# Pkg.activate(@__DIR__)
# Pkg.instantiate()
using CompScienceMeshes, BEAST
using LinearAlgebra
# Γ = meshcuboid(1.0, 1.0, 1.0, 0.25)
# h = 0.3
# fn = joinpath(dirname(pathof(CompScienceMeshes)),"geos/torus.geo")
# Γ = CompScienceMeshes.meshgeo(fn; dim=2, h=1.0)
Γ = meshsphere(radius=1.0, h=0.25)
X = raviartthomas(Γ)
Y = buffachristiansen(Γ)
sol = 1.0
T = TDMaxwell3D.singlelayer(speedoflight=sol, numdiffs=1)
K = TDMaxwell3D.doublelayer(speedoflight=sol, numdiffs=1)
Δt, Nt = 0.1, 300
δ = timebasisdelta(Δt, Nt)
T0 = timebasiscxd0(Δt, Nt)
T1 = timebasisshiftedlagrange(Δt,Nt,1)
T2 = timebasisshiftedlagrange(Δt, Nt, 2)
T3 = timebasisshiftedlagrange(Δt, Nt, 3)
duration = 40 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ, x̂
E = BEAST.planewave(polarisation, direction, derive(gaussian), 1.0)
H = direction × E
@hilbertspace j m
@hilbertspace k l
# pmchwt = @discretise(
# 2.0T[k,j] + 2.0K[k,m] -
# 2.0K[l,j] + 2.0T[l,m] == H[k] + E[l],
# j∈X⊗T2, m∈Y⊗T2, k∈X⊗δ, l∈Y⊗δ)
BEAST.@defaultquadstrat (T, X⊗δ, X⊗T2) BEAST.OuterNumInnerAnalyticQStrat(7)
BEAST.@defaultquadstrat (K, X⊗δ, X⊗T2) BEAST.OuterNumInnerAnalyticQStrat(7)
pmchwt = @discretise(
2.0T[k,j] + 2.0K[k,m] -
2.0K[l,j] + 2.0T[l,m] == H[k] + E[l],
j∈X⊗T2, m∈X⊗T2, k∈X⊗δ, l∈X⊗δ)
# Z = BEAST.td_assemble(pmchwt.equation.lhs, pmchwt.test_space_dict, pmchwt.trial_space_dict);
# w = BEAST.ConvolutionOperators.polyvals(Z)
# error()
u = BEAST.motsolve(pmchwt)
Z = BEAST.sysmatrix(pmchwt)
using Plots
scatter!(u[1,:])
nothing
# nX = numfunctions(X)
# uj = u[1:nX]
# um = u[nX+1:end]
# Θ, Φ = range(0.0,stop=2π,length=100), 0.0
# ffpoints = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for θ in Θ for ϕ in Φ]
#
# # Don't forgt the far field comprises two contributions
# κ, η = 1.0, 1.0
# ffm = potential(MWFarField3D(κ*im), ffpoints, um, X)
# ffj = potential(MWFarField3D(κ*im), ffpoints, uj, X)
# ff = η*im*κ*ffj + im*κ*cross.(ffpoints, ffm)
#
# using Plots
# plot(xlabel="theta")
# plot!(Θ,norm.(ffm),label="far field")
#
# import PlotlyJS
# using LinearAlgebra
# fcrj, _ = facecurrents(uj,X)
# PlotlyJS.plot(patch(Γ, norm.(fcrj)))
# Study the pmchwt static nullspace
# pmchwt = @discretise(
# 2.0T[k,j] + 2.0K[k,m] -
# 2.0K[l,j] + 2.0T[l,m] == H[k] + E[l],
# j∈X⊗T2, m∈X⊗T2, k∈X⊗δ, l∈X⊗δ)
# Z = BEAST.td_assemble(pmchwt.equation.lhs, pmchwt.test_space_dict, pmchwt.trial_space_dict)
# function cast(Z)
# # kmax = maximum(length.(Z))
# kmax = size(Z,3)
# Q = zeros(eltype(eltype(Z)), size(Z)..., kmax)
# for m in axes(Q,1)
# for n in axes(Q,2)
# for k in eachindex(Z[m,n])
# Q[m,n,k] = Z[m,n][k]
# end
# end
# end
# return Q
# end
# Q = cast(Z)
# C = companion(Q)
# w = eigvals(C)
# using Plots
# plotly()
# plot(exp.(im*range(0,2pi,length=200)))
# scatter!(w) | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3060 | # using Pkg
# Pkg.activate(@__DIR__)
# Pkg.instantiate()
using CompScienceMeshes, BEAST
using LinearAlgebra
# Γ = meshcuboid(1.0, 1.0, 1.0, 0.25)
# h = 0.3
fn = joinpath(dirname(pathof(CompScienceMeshes)),"geos/torus.geo")
Γ = CompScienceMeshes.meshgeo(fn; dim=2, h=1.0)
Γ = meshsphere(radius=1.0, h=0.25)
X = raviartthomas(Γ)
Y = buffachristiansen(Γ, ibscaled=false)
sol = 1.0
T = TDMaxwell3D.singlelayer(speedoflight=sol, numdiffs=0)
K = TDMaxwell3D.doublelayer(speedoflight=sol, numdiffs=0)
Δt, Nt = 0.1, 300
δ = timebasisdelta(Δt, Nt)
T0 = timebasiscxd0(Δt, Nt)
T1 = timebasisshiftedlagrange(Δt,Nt,1)
T2 = timebasisshiftedlagrange(Δt, Nt, 2)
T3 = timebasisshiftedlagrange(Δt, Nt, 3)
duration = 40 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ, x̂
E = BEAST.planewave(polarisation, direction, gaussian, 1.0)
H = direction × E
@hilbertspace j m
@hilbertspace k l
# pmchwt = @discretise(
# 2.0T[k,j] + 2.0K[k,m] -
# 2.0K[l,j] + 2.0T[l,m] == H[k] + E[l],
# j∈X⊗T2, m∈Y⊗T2, k∈X⊗δ, l∈Y⊗δ)
pmchwt = @discretise(
2.0T[k,j] + 2.0K[k,m] -
2.0K[l,j] + 2.0T[l,m] == H[k] + E[l],
j∈X⊗T1, m∈X⊗T1, k∈X⊗δ, l∈X⊗δ)
# Z = BEAST.td_assemble(pmchwt.equation.lhs, pmchwt.test_space_dict, pmchwt.trial_space_dict);
# error()
function cones(mesh, arrows; sizeref=2)
centers = [cartesian(CompScienceMeshes.center(chart(mesh,cell))) for cell in mesh]
x = getindex.(centers,1)
y = getindex.(centers,2)
z = getindex.(centers,3)
u = getindex.(arrows,1)
v = getindex.(arrows,2)
w = getindex.(arrows,3)
Plotly.cone(x=x,y=y,z=z,u=u,v=v,w=w,sizemode="absolute", sizeref=sizeref)
end
u = solve(pmchwt)
error()
# nX = numfunctions(X)
# uj = u[1:nX]
# um = u[nX+1:end]
# Θ, Φ = range(0.0,stop=2π,length=100), 0.0
# ffpoints = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for θ in Θ for ϕ in Φ]
#
# # Don't forgt the far field comprises two contributions
# κ, η = 1.0, 1.0
# ffm = potential(MWFarField3D(κ*im), ffpoints, um, X)
# ffj = potential(MWFarField3D(κ*im), ffpoints, uj, X)
# ff = η*im*κ*ffj + im*κ*cross.(ffpoints, ffm)
#
# using Plots
# plot(xlabel="theta")
# plot!(Θ,norm.(ffm),label="far field")
#
# import PlotlyJS
# using LinearAlgebra
# fcrj, _ = facecurrents(uj,X)
# PlotlyJS.plot(patch(Γ, norm.(fcrj)))
# Study the pmchwt static nullspace
pmchwt = @discretise(
2.0T[k,j] + 2.0K[k,m] -
2.0K[l,j] + 2.0T[l,m] == H[k] + E[l],
j∈X⊗T2, m∈X⊗T2, k∈X⊗δ, l∈X⊗δ)
# Z = BEAST.td_assemble(pmchwt.equation.lhs, pmchwt.test_space_dict, pmchwt.trial_space_dict)
# function cast(Z)
# # kmax = maximum(length.(Z))
# kmax = size(Z,3)
# Q = zeros(eltype(eltype(Z)), size(Z)..., kmax)
# for m in axes(Q,1)
# for n in axes(Q,2)
# for k in eachindex(Z[m,n])
# Q[m,n,k] = Z[m,n][k]
# end
# end
# end
# return Q
# end
# Q = cast(Z)
# C = companion(Q)
# w = eigvals(C)
# using Plots
# plotly()
# plot(exp.(im*range(0,2pi,length=200)))
# scatter!(w) | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 878 | using BEAST, CompScienceMeshes, MieSeries
Θ = range(0, stop=π, length=100)
Φ = 0.0
P = [ [cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)] for θ in Θ for ϕ in Φ]
## Solve the scatering problem using BEM
Γ = readmesh(joinpath(dirname(@__FILE__),"sphere2.in"))
X = raviartthomas(Γ)
ϵ = μ = 1.0
ω = 1.0; κ = ω * √(ϵ*μ)
t = Maxwell3D.singlelayer(wavenumber=κ)
E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ)
e = (n × E) × n
@hilbertspace j; @hilbertspace k
efie = @discretise t[k,j]==e[k] j∈X k∈X
u = gmres(efie)
A = Maxwell3D.farfield(wavenumber=κ)
farbem = 1/(4pi)* norm.(potential(A, P, u, X))
## Solve the scattering problem by computing the Mie series
radius = 1.0; ϵ = μ = 1.0
sphere = PECSphere(radius, ϵ, μ)
exc = excite(sphere, ω, :x)
farmie = [norm(collect(farfield(sphere, exc, p)[1:3])) for p in P]
# Compare
@show norm(farmie - farbem) / norm(farmie)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1135 | using CompScienceMeshes
using BEAST
Γ1 = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in"))
Γ2 = CompScienceMeshes.SComplex2D(Γ1)
# Y = raviartthomas(Γ1)
Nd1 = BEAST.nedelec(Γ1)
Nd2 = BEAST.nedelec(Γ2)
RT1 = n × Nd1
RT2 = n × Nd2
N1 = skeleton(Γ1,0)
N2 = skeleton(Γ2,0)
for (n1,n2) in zip(N1.faces, N2.nodes) @assert n1[1] == n2[1] end
E1 = skeleton(Γ1,1)
E2 = skeleton(Γ2,1)
using LinearAlgebra
for (e1,e2) in zip(E1.faces, E2.edges)
q = getindex.(Ref(E2.nodes), e2)
@assert q[1][1] == e1[1]
@assert q[2][1] == e1[2]
ctr1 = cartesian(CompScienceMeshes.center(chart(E1, e1)))
ctr2 = cartesian(CompScienceMeshes.center(chart(E2, e2)))
if norm(ctr1-ctr2) > 1e-8
@show ctr1
@show ctr2
error("stop")
end
end
κ = 1.0
t = Maxwell3D.singlelayer(wavenumber=κ)
E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ)
e = (n × E) × n
Z1 = assemble(t,RT1,RT1)
Z2 = assemble(t,RT2,RT2)
@hilbertspace j
@hilbertspace k
efie = @discretise t[k,j]==e[k] j∈RT2 k∈RT2
u = gmres(efie)
Γ = Γ2
X = RT2
include("utils/postproc.jl")
include("utils/plotresults.jl")
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1048 | using CompScienceMeshes
using BEAST
G = meshsphere(1.0, 0.25)
c = 1.0
S = BEAST.HH3DSingleLayerTDBIO(c)
width, delay, scaling = 8.0, 12.0, 1.0
gaussian = creategaussian(width, delay, scaling)
e = BEAST.planewave(point(0,0,1), c, gaussian)
X = lagrangecxd0(G)
Δt, Nt = 0.08, 300
#T = timebasisshiftedlagrange(Δt, Nt, 0)
#T = timebasiscxd0(Δt, Nt)
T = timebasisc0d1(Δt, Nt)
U = timebasisdelta(Δt, Nt)
V = X ⊗ T # trial space
W = X ⊗ U # test space
b = assemble(e, W)
Z = assemble(S, W, V)
iZ1 = inv(Z[:,:,1])
u = marchonintime(iZ1,Z,-b,Nt)
U, Δω, ω0 = fouriertransform(u, Δt, 0.0, 2)
ω = collect(ω0 .+ (0:Nt-1)*Δω)
_, i1 = findmin(abs.(ω.-1.0)); ω1 = ω[i1]
U1 = U[:,i1]
fgaussian = fouriertransform(gaussian)
U1 /= fgaussian(ω1)
Fcr, geo = facecurrents(U1, X)
#A = [real(norm(f)) for f in Fcr]
d = joinpath(dirname(pathof(CompScienceMeshes)),"..","examples","plotlyjs_patches.jl")
include(d)
# include(Pkg.dir("CompScienceMeshes","examples","plotlyjs_patches.jl"))
using LinearAlgebra
p = patch(geo, real.(norm.(Fcr)))
#PlotlyJS.plot([p])
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1060 | using CompScienceMeshes
using BEAST
G = meshsphere(1.0, 0.25)
c = 1.0
# S = BEAST.HH3DSingleLayerTDBIO(c)
S = BEAST.HH3DHyperSingularTDBIO(speed_of_light=c, numdiffs=1)
width, delay, scaling = 8.0, 12.0, 1.0
gaussian = creategaussian(width, delay, scaling)
e = BEAST.planewave(point(0,0,1), c, gaussian)
# X = lagrangecxd0(G)
X = lagrangec0d1(G)
Δt, Nt = 0.08, 300
T = timebasisc0d1(Δt, Nt)
U = timebasiscxd0(Δt, Nt)
V = X ⊗ T # trial space
W = X ⊗ U # test space
nbd = center(chart(G, first(cells(G))))
refs = refspace(X)
vals = refs(nbd)
Z = assemble(S, W, V)
h = dot(n,BEAST.gradient(e))
b = assemble(h, W)
iZ1 = inv(Z[:,:,1])
u = marchonintime(iZ1,Z,-b,Nt)
U, Δω, ω0 = fouriertransform(u, Δt, 0.0, 2)
ω = collect(ω0 .+ (0:Nt-1)*Δω)
_, i1 = findmin(abs.(ω.-1.0)); ω1 = ω[i1]
U1 = U[:,i1]
fgaussian = fouriertransform(gaussian)
U1 /= fgaussian(ω1)
Fcr, geo = facecurrents(U1, X)
include(joinpath(dirname(pathof(CompScienceMeshes)),"..","examples","plotlyjs_patches.jl"))
using LinearAlgebra
p = patch(geo, real.(norm.(Fcr)))
#PlotlyJS.plot([p])
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1952 | using CompScienceMeshes
using BEAST
using LinearAlgebra
# G = meshsphere(1.0, 0.25)
G = meshsphere(1.0, 0.30)
c = 1.0
S = BEAST.HH3DSingleLayerTDBIO(c)
D = BEAST.HH3DDoubleLayerTDBIO(speed_of_light=c)
Id = BEAST.Identity()
# width, delay, scaling = 24.0, 36.0, 1.0
width, delay, scaling = 16.0, 24.0, 1.0
gaussian = creategaussian(width, delay, scaling)
fgaussian = fouriertransform(gaussian)
e = BEAST.planewave(point(0,0,1), c, gaussian)
de = BEAST.planewave(point(0,0,1), c, derive(gaussian))
h = BEAST.gradient(e)
# X = lagrangecxd0(G)
X = lagrangecxd0(G)
Y = duallagrangec0d1(G)
# Y = lagrangecxd0(G)
# X = duallagrangecxd0(G, boundary(G))
# Y = lagrangec0d1(G)
# Δt, Nt = 0.9032321, 301
# Δt, Nt = 1.2032321, 301
Δt, Nt = 0.16, 300
# T = timebasisc0d1(Δt, Nt)
P = timebasiscxd0(Δt, Nt)
H = timebasisc0d1(Δt, Nt)
δ = timebasisdelta(Δt, Nt)
# assemble the right hand side
bd = assemble(n⋅h, X ⊗ P)
Z1d = assemble(Id ⊗ Id, X ⊗ P, X ⊗ P, Val{:bandedstorage})
Z0d = assemble(D, X ⊗ P, X ⊗ P, Val{:bandedstorage})
Zd = Z0d + (-0.5)*Z1d
u = marchonintime(inv(Zd[:,:,1]), Zd, bd, Nt)
bs = assemble(e, X ⊗ δ)
Zs = assemble(S, X ⊗ δ, X ⊗ P, Val{:bandedstorage})
v = marchonintime(inv(Zs[:,:,1]), Zs, -bs, Nt)
U, Δω, ω0 = fouriertransform(u, Δt, 0.0, 2)
V, Δω, ω0 = fouriertransform(v, Δt, 0.0, 2)
ω = collect(ω0 .+ (0:Nt-1)*Δω)
_, i1 = findmin(abs.(ω.-1.0)); ω1 = ω[i1]
U_td = U[:,i1] / fgaussian(ω1)
V_td = V[:,i1] / fgaussian(ω1)
fd_S = Helmholtz3D.singlelayer(wavenumber=1.0)
fd_e = Helmholtz3D.planewave(wavenumber=1.0, direction=ẑ)
fd_eh = assemble(strace(fd_e,G), X)
fd_Sh = assemble(fd_S, X, X)
U_fd = fd_Sh \ fd_eh
fcru_td, _ = facecurrents(U_td, X)
fcrv_td, _ = facecurrents(V_td, X)
fcru_fd, _ = facecurrents(U_fd, X)
using Plots
plot()
plot!(u[1,:])
plot!(v[1,:])
# import PlotlyJS
# ptch = patch(G, norm.(fcru_fd))
# PlotlyJS.plot(ptch)
Sstatic = Helmholtz3D.singlelayer(gamma=0.0)
Zstatic = assemble(Sstatic, X, X)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 889 | using BEAST
Δt, Nt = 1.0, 200
T0 = timebasisshiftedlagrange(Δt, Nt, 0)
T1 = timebasisshiftedlagrange(Δt, Nt, 1)
T2 = timebasisshiftedlagrange(Δt, Nt, 2)
T3 = timebasisshiftedlagrange(Δt, Nt, 3)
iT0 = integrate(T0)
iT1 = integrate(T1)
iT2 = integrate(T2)
iT3 = integrate(T3)
δ = timebasisdelta(Δt, Nt)
Id = BEAST.Identity()
Z = assemble(Id, δ, iT1)
Z = reshape(Z,1,1,length(Z))
taxis = range(0, step=Δt, length=Nt)
width, delay = 2.0, 6.0
f(t) = -2*(t-delay)/width^2*exp(-((t-delay)/width)^2)
F(t) = exp(-((t-delay)/width)^2)
b = F.(taxis)'
u = marchonintime(inv(Z[:,:,1]), Z, b, Nt)
plot(taxis, u[1,:])
taxis2 = range(-3Δt, 5Δt, length=200)
plot()
plot!(taxis2, iT3.(taxis2))
kmax = 2
cv = BEAST.ConvOp(
reshape(Z[1,1,1:kmax],kmax,1,1),
fill(1,(1,1)),
fill(kmax,(1,1)),
fill(1.0,(1,1)),
Nt)
w, Q = BEAST.polyeig(cv)
u2 = marchonintime(inv(Z[:,:,1]), cv, b, Nt) | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1771 | using CompScienceMeshes, BEAST
fn = joinpath(dirname(pathof(BEAST)),"../examples/assets/torus.msh")
m = CompScienceMeshes.read_gmsh_mesh(fn)
@show numcells(m)
X = raviartthomas(m)
@show numfunctions(X)
Y = buffachristiansen(m)
@show numfunctions(Y)
verts = skeleton(m,0)
edges = skeleton(m,1)
faces = skeleton(m,2)
Λ = connectivity(verts, edges)
Σᵀ = connectivity(edges, faces)
@assert all(sum(Σᵀ,dims=1) .== 0)
κ = 1.0e-5
S = Maxwell3D.singlelayer(wavenumber=κ)
D = Maxwell3D.doublelayer(wavenumber=κ)
C = BEAST.DoubleLayerRotatedMW3D(im*κ)
J = BEAST.Identity()
N = BEAST.NCross()
# Sxx = assemble(S,X,X)
# Myx = assemble(D+0.5N,Y,X)
# Mxx = assemble(C-0.5J,X,X)
using JLD2
@load "temp/matrices.jld2"
using LinearAlgebra
norm(Σᵀ*Myx*Λ)
ϵ, μ = 1.0, 1.0
ω = κ / √(ϵ*μ)
E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ)
H = -1/(im*μ*ω)*curl(E)
e = (n × E) × n
h = (n × H) × n
ex = assemble(e, X)
hy = assemble(h, Y)
hx = assemble(n × H,X)
u1 = Sxx \ ex
u2 = Myx \ hy
u3 = Mxx \ hx
Φ, Θ = [0.0], range(0,stop=π,length=100)
pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for ϕ in Φ for θ in Θ]
ff1 = potential(MWFarField3D(wavenumber=κ), pts, u1, X)
ff2 = potential(MWFarField3D(wavenumber=κ), pts, u2, X)
ff3 = potential(MWFarField3D(wavenumber=κ), pts, u3, X)
#Why: projectors
Σ = copy(transpose(Σᵀ))
Ps = Σ*pinv(Array(Σᵀ*Σ))*Σᵀ
Pl = I - Ps
u1s = Ps*u1
u2s = Ps*u2
u3s = Ps*u3
u1l = Pl*u1
u2l = Pl*u2
u3l = Pl*u3
# s = svdvals(M)
# h = nullspace(M,s[end]*1.0001)
#
# fcr, geo = facecurrents(h[:,end],X)
#
# V,F = vertexarray(m), cellarray(m)
# B = [real(f[i]) for f in fcr, i in 1:3]
# using MATLAB
# mat"mesh = Mesh($V,$F)"
# mat"[C,N] = faceNormals(mesh)"
# mat"figure; hold on"
# mat"patch(mesh,$(norm.(fcr)))"
# mat"quiver3x(C,$B)"
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1078 | using SparseArrays
function edge_values(space, m)
rs = refspace(space)
supp = geometry(space)
edgs = skeleton(supp,1)
Conn = copy(transpose(connectivity(edgs, supp, identity)))
Vals = zeros(scalartype(space), length(supp), length(edgs))
for (i,sh) in enumerate(space.fns[m])
tet_id = sh.cellid
tet = chart(supp, tet_id)
for k in nzrange(Conn, tet_id)
edg_id = rowvals(Conn)[k]
edge = chart(edgs, edg_id)
ctr = CompScienceMeshes.center(edge)
tgt = tangents(ctr,1)
ctr1 = neighborhood(tet, carttobary(tet, cartesian(ctr)))
vals = rs(ctr1)
val = vals[sh.refid].value
Vals[tet_id, edg_id] += dot(sh.coeff * val, tgt)
end
end
return Vals
end
function check_edge_values(EV)
for i in axes(EV,2)
ev = [x for x in EV[:,i] if abs(x) > 1e-8]
uev = unique(x -> round(x, digits=5), ev)
if !(length(uev) <= 1)
@show i
@show uev
error("stop")
end
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 473 | @isdefined(plotresults) || (plotresults = false)
if plotresults
postproc || error("Cannot plot results without going through post-processing.")
@eval begin
import Plots
using LinearAlgebra
p1 = Plots.scatter(Θ, real.(norm.(ffd)))
p2 = Plots.heatmap(clamp.(real.(norm.(nfd)), 0.0, 2.0), clims=(0,2))
p3 = Plots.contour(clamp.(real.(norm.(nfd)), 0.0, 2.0), clims=(0,2))
Plots.plot(p1,p2,p3,layout=(3,1))
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 650 | @isdefined(postproc) || (postproc = false)
@isdefined(plotresults) || (plotresults = false)
plotresults && (postproc = true)
if postproc
Φ, Θ = [0.0], range(0,stop=π,length=100)
pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for ϕ in Φ for θ in Θ]
ffd = potential(MWFarField3D(wavenumber=κ), pts, u, X)
fcr, geo = facecurrents(u, X)
nx, nz = 50, 100
x = 0.0
ys, zs = range(-2,stop=2,length=nx), range(-4,stop=4,length=nz)
gridpoints = [point(x,y,z) for y in ys, z in zs]
nfd = potential(MWSingleLayerField3D(wavenumber = κ), gridpoints, u, X)
nfd = reshape(nfd, (nx,nz))
nfd .-= E.(gridpoints)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1464 | import Plotly
function showfn(space,i)
geo = geometry(space)
T = coordtype(geo)
X = Dict{Int,T}()
Y = Dict{Int,T}()
Z = Dict{Int,T}()
U = Dict{Int,T}()
V = Dict{Int,T}()
W = Dict{Int,T}()
for sh in space.fns[i]
chrt = chart(geo, cells(geo)[sh.cellid])
nbd = CompScienceMeshes.center(chrt)
vals = refspace(space)(nbd)
x,y,z = cartesian(nbd)
# @show vals[sh.refid].value
u,v,w = vals[sh.refid].value
# @show x, y, z
# @show u, v, w
X[sh.cellid] = x
Y[sh.cellid] = y
Z[sh.cellid] = z
U[sh.cellid] = get(U,sh.cellid,zero(T)) + sh.coeff * u
V[sh.cellid] = get(V,sh.cellid,zero(T)) + sh.coeff * v
W[sh.cellid] = get(W,sh.cellid,zero(T)) + sh.coeff * w
end
X = collect(values(X))
Y = collect(values(Y))
Z = collect(values(Z))
U = collect(values(U))
V = collect(values(V))
W = collect(values(W))
Plotly.cone(x=X,y=Y,z=Z,u=U,v=V,w=W)
end
function compress!(space)
T = scalartype(space)
for (i,fn) in pairs(space.fns)
shapes = Dict{Tuple{Int,Int},T}()
for shape in fn
v = get(shapes, (shape.cellid, shape.refid), zero(T))
shapes[(shape.cellid, shape.refid)] = v + shape.coeff
# set!(shapes, (shape.cellid, shape.refid), v + shape.coeff)
end
space.fns[i] = [BEAST.Shape(k[1], k[2], v) for (k,v) in shapes]
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1006 | import Plotly
function showfn(space,i)
geo = geometry(space)
T = coordtype(geo)
X = Dict{Int,T}()
Y = Dict{Int,T}()
Z = Dict{Int,T}()
U = Dict{Int,T}()
V = Dict{Int,T}()
W = Dict{Int,T}()
for sh in space.fns[i]
chrt = chart(geo, cells(geo)[sh.cellid])
nbd = CompScienceMeshes.center(chrt)
vals = refspace(space)(nbd)
x,y,z = cartesian(nbd)
@show vals[sh.refid].value
u,v,w = vals[sh.refid].value
# @show x, y, z
# @show u, v, w
X[sh.cellid] = x
Y[sh.cellid] = y
Z[sh.cellid] = z
U[sh.cellid] = get(U,sh.cellid,zero(T)) + sh.coeff * u
V[sh.cellid] = get(V,sh.cellid,zero(T)) + sh.coeff * v
W[sh.cellid] = get(W,sh.cellid,zero(T)) + sh.coeff * w
end
X = collect(values(X))
Y = collect(values(Y))
Z = collect(values(Z))
U = collect(values(U))
V = collect(values(V))
W = collect(values(W))
Plotly.cone(x=X,y=Y,z=Z,u=U,v=V,w=W)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 7097 | module BEAST
using Distributed
using LinearAlgebra
using SharedArrays
using SparseArrays
using FillArrays
using BlockArrays
using ExtendableSparse
using ConvolutionOperators
using SauterSchwabQuadrature
using SauterSchwab3D
using FastGaussQuadrature
using LinearMaps
using LiftedMaps
using AbstractTrees
using NestedUnitRanges
using Infiltrator
using TestItems
import LinearAlgebra: cross, dot
import LinearAlgebra: ×, ⋅
import SharedArrays: sdata
export dot
export planewave
export RefSpace, numfunctions, coordtype, scalartype, assemblydata, geometry, refspace, valuetype
export lagrangecxd0, lagrangec0d1, duallagrangec0d1, unitfunctioncxd0, unitfunctionc0d1
export duallagrangecxd0
export lagdimension
export restrict
export raviartthomas, raowiltonglisson, positions
export brezzidouglasmarini
export brezzidouglasmarini3d
export nedelecd3d
export nedelecc3d
export portcells, rt_ports, getindex_rtg, subset
export StagedTimeStep, numstages
export subdsurface, subdBasis, assemblydata, refspace
export spatialbasis, temporalbasis
export ⊗
export timebasisc0d1
export timebasiscxd0
export timebasisdelta
export timebasisshiftedlagrange
export TimeBasisDeltaShifted
export ntrace
export strace
export ttrace
export SingleLayer
export DoubleLayer
export DoubleLayerTransposed
export HyperSingular
export HH3DSingleLayerTDBIO
export HH3DDoubleLayerTDBIO
export ∂n, grad
export HH3DHyperSingularFDBIO
export DirichletTrace
export HH3DMonopole, gradHH3DMonopole
export HH3DLinearPotential
export HH3DSingleLayerNear
export HH3DDoubleLayerNear
export HH3DDoubleLayerTransposedNear
export HH3DHyperSingularNear
export NitscheHH3
export MWSingleLayerTDIO
export MWDoubleLayerTDIO
export MWFarField3DTD
export MWFarField3D
export MWSingleLayer3D, MWHyperSingular, MWWeaklySingular
export MWDoubleLayer3D
export PlaneWaveMW
export dipolemw3d, DipoleMW
export TangTraceMW, CrossTraceMW
export curl
export gradient
export MWSingleLayerField3D
export SingleLayerTrace
export DoubleLayerRotatedMW3D, MWDoubleLayerRotatedFarField3D
export MWSingleLayerPotential3D
export VIEOperator
export gmres
export @hilbertspace, @varform, @discretise
export solve
export convolve
export marchonintime
export RungeKuttaConvolutionQuadrature
export laplace_to_z, inverse_z_transform, real_inverse_z_transform
export butcher_tableau_radau_2stages
export butcher_tableau_radau_3stages
export creategaussian
export derive, integrate
export fouriertransform
export assemble
export Identity
export shapevals
export NCross
export quadrule, elements
export blockassembler
export localoperator
export localoperator2
export assemble
export facecurrents
export potential
export get_scatter_parameters
export quaddata
export DofInterpolate
export kernelvals
export integrand
export shapevals
export ScalarTrace
export PlaneWaveDirichlet
export PlaneWaveNeumann
struct NormalVector end
using CompScienceMeshes
using Combinatorics
using FFTW
using SparseArrays
function convolve end
include("utils/polynomial.jl")
include("utils/specialfns.jl")
include("utils/combinatorics.jl")
include("utils/linearspace.jl")
include("utils/zeromap.jl")
include("utils/rank1map.jl")
include("bases/basis.jl")
include("bases/lincomb.jl")
include("bases/trace.jl")
include("bases/restrict.jl")
include("bases/divergence.jl")
include("bases/local/laglocal.jl")
include("bases/local/rtlocal.jl")
include("bases/local/rt2local.jl")
include("bases/local/ndlocal.jl")
include("bases/local/nd2local.jl")
include("bases/local/bdmlocal.jl")
include("bases/local/ncrossbdmlocal.jl")
include("bases/local/ndlcclocal.jl")
include("bases/local/ndlcdlocal.jl")
include("bases/local/bdm3dlocal.jl")
include("bases/local/rtqlocal.jl")
include("bases/lagrange.jl")
include("bases/rtspace.jl")
include("bases/rt2space.jl")
include("bases/rtxspace.jl")
include("bases/bcspace.jl")
include("bases/ndspace.jl")
include("bases/nd2space.jl")
include("bases/bdmdiv.jl")
include("bases/ncrossbdmspace.jl")
include("bases/ndlccspace.jl")
include("bases/ndlcdspace.jl")
include("bases/dual3d.jl")
include("bases/bdm3dspace.jl")
include("bases/rtqspace.jl")
include("bases/subdbasis.jl")
include("bases/stagedtimestep.jl")
include("bases/timebasis.jl")
include("bases/tensorbasis.jl")
include("operator.jl")
include("quadrature/quadstrats.jl")
include("excitation.jl")
include("localop.jl")
include("multiplicativeop.jl")
include("identityop.jl")
include("integralop.jl")
include("dyadicop.jl")
include("interpolation.jl")
include("quadrature/doublenumqstrat.jl")
include("quadrature/doublenumsauterqstrat.jl")
include("quadrature/doublenumwiltonsauterqstrat.jl")
include("quadrature/doublenumwiltonbogaertqstrat.jl")
include("quadrature/selfsauterdnumotherwiseqstrat.jl")
include("quadrature/nonconformingintegralopqstrat.jl")
include("quadrature/commonfaceoverlappingedgeqstrat.jl")
include("quadrature/strategies/cfcvsautercewiltonpdnumqstrat.jl")
include("quadrature/doublenumints.jl")
include("quadrature/singularityextractionints.jl")
include("quadrature/sauterschwabints.jl")
include("quadrature/nonconformingoverlapqrule.jl")
include("quadrature/nonconformingtouchqrule.jl")
include("postproc.jl")
include("postproc/segcurrents.jl")
include("postproc/farfield.jl")
include("timedomain/tdintegralop.jl")
include("timedomain/tdexcitation.jl")
include("timedomain/motlu.jl")
include("timedomain/tdtimeops.jl")
include("timedomain/rkcq.jl")
include("timedomain/zdomain.jl")
include("timedomain/td_symmetric_quadstrat.jl")
# Support for Maxwell equations
include("maxwell/mwexc.jl")
include("maxwell/mwops.jl")
include("maxwell/nxdbllayer.jl")
include("maxwell/wiltonints.jl")
include("maxwell/nitsche.jl")
include("maxwell/farfield.jl")
include("maxwell/nearfield.jl")
include("maxwell/spotential.jl")
include("maxwell/maxwell.jl")
include("maxwell/sourcefield.jl")
# Support for the Helmholtz equation
include("helmholtz2d/helmholtzop.jl")
include("helmholtz3d/hh3dexc.jl")
include("helmholtz3d/hh3dops.jl")
include("helmholtz3d/nitsche.jl")
include("helmholtz3d/hh3dnear.jl")
include("helmholtz3d/hh3dfar.jl")
include("helmholtz3d/hh3d_sauterschwabqr.jl")
include("helmholtz3d/helmholtz3d.jl")
include("helmholtz3d/wiltonints.jl")
#suport for Volume Integral equation
include("volumeintegral/vie.jl")
include("volumeintegral/vieexc.jl")
include("volumeintegral/vieops.jl")
include("volumeintegral/farfield.jl")
include("volumeintegral/sauterschwab_ints.jl")
include("decoupled/dpops.jl")
include("decoupled/potentials.jl")
include("helmholtz3d/timedomain/tdhh3dops.jl")
include("helmholtz3d/timedomain/tdhh3dexc.jl")
include("helmholtz3d/timedomain/tdhh3dpp.jl")
include("maxwell/timedomain/mwtdops.jl")
include("maxwell/timedomain/mwtdexc.jl")
include("maxwell/timedomain/tdfarfield.jl")
include("utils/butchertableau.jl")
include("utils/variational.jl")
include("solvers/solver.jl")
include("solvers/lusolver.jl")
include("solvers/itsolver.jl")
include("utils/plotlyglue.jl")
const x̂ = point(1, 0, 0)
const ŷ = point(0, 1, 0)
const ẑ = point(0, 0, 1)
export x̂, ŷ, ẑ
const n = NormalVector()
export n
end # module
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1052 | struct DyadicOp{T,F,G} <: Operator
α::T
f::F
g::G
end
function DyadicOp(f::F, g::G) where {F,G}
T = scalartype(f,g)
DyadicOp{T,F,G}(one(T), f, g)
end
Base.:*(b::Number, op::DyadicOp) = DyadicOp(b * op.α, op.f, op.g)
scalartype(op::DyadicOp) = promote_type(scalartype(op.α), scalartype(op.f), scalartype(op.g))
defaultquadstrat(op::DyadicOp, testspace, refspace) = nothing
function allocatestorage(op::DyadicOp, test_functions, trial_functions,
storage_trait, longdelays_trait)
T = scalartype(op, test_functions, trial_functions)
M = length(test_functions)
N = length(trial_functions)
u = zeros(T,M)
v = zeros(T,N)
A = BEAST.Rank1Map{T}(u,v)
store() = A
freeze() = A
return freeze, store
end
function assemble!(biop::DyadicOp, tfs::Space, bfs::Space, store,
threading::Type{BEAST.Threading{:multi}};
quadstrat=defaultquadstrat(biop, tfs, bfs))
u = assemble(biop.f, tfs)
v = assemble(biop.g, bfs)
A = store()
A.u .= biop.α * u
A.v .= adjoint.(v)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3241 |
abstract type Functional end
defaultquadstrat(fn::Functional, basis) = SingleNumQStrat(8)
quaddata(fn::Functional, refs, cells, qs::SingleNumQStrat) =
quadpoints(refs, cells, [qs.quad_rule])
quadrule(fn::Functional, refs, p, cell, qd, qs::SingleNumQStrat) = qd[1,p]
"""
assemble(fn, tfs)
Assemble the vector of test coefficients corresponding to functional
`fn` and test functions `tfs`.
"""
function assemble(field::Functional, tfs;
quadstrat=defaultquadstrat(field, tfs))
R = scalartype(tfs)
b = zeros(Complex{R}, numfunctions(tfs))
store(v,m) = (b[m] += v)
assemble!(field, tfs, store; quadstrat)
return b
end
function assemble!(field::Functional, tfs::DirectProductSpace, store;
quadstrat=defaultquadstrat(field, tfs))
I = Int[0]
for s in tfs.factors push!(I, last(I) + numfunctions(s)) end
for (i,s) in enumerate(tfs.factors)
store1(v,m) = store(v, m + I[i])
assemble!(field, s, store1; quadstrat)
end
end
function assemble!(field::Functional, tfs::Space, store;
quadstrat=defaultquadstrat(field, tfs))
tels, tad = assemblydata(tfs)
trefs = refspace(tfs)
qd = quaddata(field, trefs, tels, quadstrat)
for (t, tcell) in enumerate(tels)
# compute the testing with the reference elements
qr = quadrule(field, trefs, t, tcell, qd, quadstrat)
blocal = celltestvalues(trefs, tcell, field, qr)
for i in 1 : numfunctions(trefs)
for (m,a) in tad[t,i]
store(a*blocal[i], m)
end
end
end
end
function assemble!(field::Functional, tfs::subdBasis, store;
quadstrat=defaultquadstrat(field, tfs))
tels, tad = assemblydata(tfs)
trefs = refspace(tfs)
qd = quaddata(field, trefs, tels)
for (t, tcell) in enumerate(tels)
# compute the testing with the reference elements
qr = quadrule(field, trefs, t, tcell, qd, quadstrat)
blocal = celltestvalues(trefs, tcell, field, qr, quadstrat)
for i in 1 : length(tad[t])
for (m,a) in tad[t][i]
store(a*blocal[i], m)
end
end
end
end
function celltestvalues(tshs::RefSpace{T,NF}, tcell, field, qr) where {T,NF}
num_tshs = numfunctions(tshs)
interactions = zeros(Complex{T}, num_tshs)
num_oqp = length(qr)
for p in 1 : num_oqp
mp = qr[p].point
dx =qr[p].weight
fval = field(mp)
tvals = qr[p].value
for m in 1 : num_tshs
tval = tvals[m]
igd = integrand(field, tval, fval)
interactions[m] += igd * dx
end
end
return interactions
end
function celltestvalues(tshs::subReferenceSpace{T,D}, tcell, field, qr) where {T,D}
num_oqp = length(qr)
num_tshs = length(qr[1].value[1])
interactions = (Complex{T}, num_tshs)
for p in 1 : num_oqp
mp = qr[p].point
dx =qr[p].weight
fval = field(mp)
tvals = qr[p].value
interactions = zeros(Complex{T}, num_tshs)
for m in 1 : num_tshs
tval = tvals[1][m]
igd = integrand(field, tval, fval)
interactions[m] += igd * dx
end
end
return interactions
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3691 | struct Identity <: LocalOperator
end
kernelvals(biop::Identity, x) = nothing
integrand(op::Identity, kernel, x, g, f) = dot(f[1], g[1])
scalartype(op::Identity) = Union{}
struct NCross <: LocalOperator
end
kernelvals(op::NCross, mp) = nothing
integrand(op::NCross, kernel, x, g, f) = dot(g[1], normal(x) × f[1])
scalartype(op::NCross) = Union{}
function _alloc_workspace(qd, g, f, tels, bels)
q = qd[1]
τ = tels[1]
w, p = q[1], neighborhood(τ,q[2])
a = (w, p, g(p), f(p))
A = Vector{typeof(a)}(undef,length(qd))
end
const LinearRefSpaceTriangle = Union{RTRefSpace, RT2RefSpace, NDRefSpace, ND2RefSpace, BDMRefSpace, NCrossBDMRefSpace}
defaultquadstrat(::LocalOperator, ::LinearRefSpaceTriangle, ::LinearRefSpaceTriangle) = SingleNumQStrat(6)
function quaddata(op::LocalOperator, g::LinearRefSpaceTriangle, f::LinearRefSpaceTriangle, tels, bels,
qs::SingleNumQStrat)
u, w = trgauss(qs.quad_rule)
qd = [(w[i],SVector(u[1,i],u[2,i])) for i in 1:length(w)]
A = _alloc_workspace(qd, g, f, tels, bels)
return qd, A
end
defaultquadstrat(::LocalOperator, ::subReferenceSpace, ::subReferenceSpace) = SingleNumQStrat(6)
function quaddata(op::LocalOperator, g::subReferenceSpace, f::subReferenceSpace, tels, bels,
qs::SingleNumQStrat)
u, w = trgauss(qs.quad_rule)
qd = [(w[i],SVector(u[1,i],u[2,i])) for i in 1:length(w)]
A = _alloc_workspace(qd, g, f, tels, bels)
return qd, A
end
const LinearRefSpaceTetr = Union{NDLCCRefSpace, NDLCDRefSpace, BDM3DRefSpace}
defaultquadstrat(::LocalOperator, ::LinearRefSpaceTetr, ::LinearRefSpaceTetr) = SingleNumQStrat(3)
function quaddata(op::LocalOperator, g::LinearRefSpaceTetr, f::LinearRefSpaceTetr, tels, bels, qs::SingleNumQStrat)
o, x, y, z = CompScienceMeshes.euclidianbasis(3)
reftet = simplex(x,y,z,o)
qps = quadpoints(reftet, qs.quad_rule)
qd = [(w, parametric(p)) for (p,w) in qps]
A = _alloc_workspace(qd, g, f, tels, bels)
return qd, A
end
defaultquadstrat(::LocalOperator, ::LagrangeRefSpace{T,D1,2}, ::LagrangeRefSpace{T,D2,2}) where {T,D1,D2} = SingleNumQStrat(6)
function quaddata(op::LocalOperator, g::LagrangeRefSpace{T,Deg,2} where {T,Deg},
f::LagrangeRefSpace, tels::Vector, bels::Vector, qs::SingleNumQStrat)
U = typeof(tels[1].volume)
u, w = legendre(qs.quad_rule, 0.0, 1.0)
qd = [(w[i],u[i]) for i in eachindex(w)]
A = _alloc_workspace(Tuple{U,U}.(qd), g, f, tels, bels)
return qd, A
end
defaultquadstrat(::LocalOperator, ::LagrangeRefSpace{T,D1,3}, ::LagrangeRefSpace{T,D2,3}) where {T,D1,D2} = SingleNumQStrat(6)
function quaddata(op::LocalOperator, g::LagrangeRefSpace{T,Deg,3} where {T,Deg},
f::LagrangeRefSpace, tels::Vector, bels::Vector, qs::SingleNumQStrat)
u, w = trgauss(qs.quad_rule)
qd = [(w[i], SVector(u[1,i], u[2,i])) for i in 1:length(w)]
A = _alloc_workspace(qd, g, f, tels, bels)
return qd, A
end
defaultquadstrat(::LocalOperator, ::LagrangeRefSpace{T,D1,4}, ::LagrangeRefSpace{T,D2,4}) where {T,D1,D2} = SingleNumQStrat(6)
function quaddata(op::LocalOperator, g::LagrangeRefSpace{T,Deg,4} where {T,Deg},
f::LagrangeRefSpace, tels::Vector, bels::Vector, qs::SingleNumQStrat)
o, x, y, z = CompScienceMeshes.euclidianbasis(3)
reftet = simplex(x,y,z,o)
qps = quadpoints(reftet, qs.quad_rule)
qd = [(w, parametric(p)) for (p,w) in qps]
A = _alloc_workspace(qd, g, f, tels, bels)
return qd, A
end
function quadrule(op::LocalOperator, ψ::RefSpace, ϕ::RefSpace, τ, (qd,A), qs::SingleNumQStrat)
for i in eachindex(qd)
q = qd[i]
w, p = q[1], neighborhood(τ,q[2])
A[i] = (w, p, ψ(p), ϕ(p))
end
return A
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 24223 | abstract type IntegralOperator <: Operator end
defaultquadstrat(op::IntegralOperator, tfs::RefSpace, bfs::RefSpace) =
DoubleNumSauterQstrat(2,3,5,5,4,3)
"""
blockassembler(operator, test_space, trial_space) -> assembler
Return a callable object for the creation of blocks within a BEM matrix.
This function performs all tasks common to the assembly of several blocks within
a single boundary element matrix. The return value can be used to generate blocks
by calling it as follows:
assembler(I,J,storefn)
where `I` and `J` are arrays of indices in `test_space` and `trial_space`, respectively,
corresponding to the rows and columns of the desired block.
Note that the block will be constructed in compressed form, i.e. the rows and columns
of the store that are written into are the positions within `I` and `J` (as opposed
to the positions within `1:numfunctions(test_space)` and `1:numfunctions(trial_space)`).
In particular the size of the constructed block will be `(length(I), length(J))`.
This last property allows the assembly of permutations of the BEM matrix by supplying
for `I` and `J` permutations of `1:numfunctions(test_space)` and
`1:numfunctions(trial_space)`.
"""
function blockassembler end
# """
# quadrule(operator,test_refspace,trial_refspace,p,test_element,q_trial_element, qd)
# Returns an object that contains all the dynamic (runtime) information that
# defines the integration strategy that will be used by `momintegrals!` to compute
# the interactions between the local test/trial functions defined on the specified
# geometric elements. The indices `p` and `q` refer to the position of the test
# and trial elements as encountered during iteration over the output of
# `geometry`.
# The last argument `qd` provides access to all precomputed data required for
# quadrature. For example it might be desirable to precompute all the quadrature
# points for all possible numerical quadrature schemes that can potentially be
# required during matrix assembly. This makes sense, since the number of point is
# order N (where N is the number of faces) but these points will appear in N^2
# computations. Precomputation requires some extra memory but can save a lot on
# computation time.
# """
# function quadrule end
"""
elements(geo)
Create an iterable collection of the elements stored in `geo`. The order in which
this collection produces the elements determines the index used for lookup in the
data structures returned by `assemblydata` and `quaddata`.
"""
elements(geo) = [chart(geo,cl) for cl in geo]
elements(sp::Space) = elements(geometry(sp))
"""
assemblechunk!(biop::IntegralOperator, tfs, bfs, store)
Computes the matrix of operator biop wrt the finite element spaces tfs and bfs
"""
function assemblechunk!(biop::IntegralOperator, tfs::Space, bfs::Space, store;
quadstrat=defaultquadstrat(biop, tfs, bfs))
# test_elements, tad, tcells = assemblydata(tfs)
# bsis_elements, bad, bcells = assemblydata(bfs)
tr = assemblydata(tfs); tr == nothing && return
br = assemblydata(bfs); br == nothing && return
test_elements, tad, tcells = tr
bsis_elements, bad, bcells = br
tshapes = refspace(tfs); num_tshapes = numfunctions(tshapes)
bshapes = refspace(bfs); num_bshapes = numfunctions(bshapes)
tgeo = geometry(tfs)
bgeo = geometry(bfs)
qd = quaddata(biop, tshapes, bshapes, test_elements, bsis_elements, quadstrat)
zlocal = zeros(scalartype(biop, tfs, bfs), 2num_tshapes, 2num_bshapes)
if CompScienceMeshes.refines(tgeo, bgeo)
assemblechunk_body_test_refines_trial!(biop,
tfs, test_elements, tad, tcells,
bfs, bsis_elements, bad, bcells,
qd, zlocal, store; quadstrat)
elseif CompScienceMeshes.refines(bgeo, tgeo)
assemblechunk_body_trial_refines_test!(biop,
tfs, test_elements, tad, tcells,
bfs, bsis_elements, bad, bcells,
qd, zlocal, store; quadstrat)
else
assemblechunk_body!(biop,
tshapes, test_elements, tad,
bshapes, bsis_elements, bad,
qd, zlocal, store; quadstrat)
end
end
function assemblechunk_body!(biop,
test_shapes, test_elements, test_assembly_data,
trial_shapes, trial_elements, trial_assembly_data,
qd, zlocal, store; quadstrat)
myid = Threads.threadid()
myid == 1 && print("dots out of 10: ")
todo, done, pctg = length(test_elements), 0, 0
for (p,tcell) in enumerate(test_elements)
for (q,bcell) in enumerate(trial_elements)
fill!(zlocal, 0)
qrule = quadrule(biop, test_shapes, trial_shapes, p, tcell, q, bcell, qd, quadstrat)
# @show "integralop" qrule
momintegrals!(biop, test_shapes, trial_shapes, tcell, bcell, zlocal, qrule)
I = length(test_assembly_data[p])
J = length(trial_assembly_data[q])
for j in 1 : J, i in 1 : I
zij = zlocal[i,j]
for (n,b) in trial_assembly_data[q][j]
zb = zij*b
for (m,a) in test_assembly_data[p][i]
store(a*zb, m, n)
end end end end
done += 1
new_pctg = round(Int, done / todo * 100)
if new_pctg > pctg + 9
myid == 1 && print(".")
pctg = new_pctg
end end
myid == 1 && println("")
end
function assemblechunk_body_test_refines_trial!(biop,
test_functions, test_charts, test_assembly_data, test_cells,
trial_functions, trial_charts, trial_assembly_data, trial_cells,
qd, zlocal, store; quadstrat)
test_shapes = refspace(test_functions)
trial_shapes = refspace(trial_functions)
myid = Threads.threadid()
myid == 1 && print("dots out of 10: ")
todo, done, pctg = length(test_charts), 0, 0
for (p,(tcell,tchart)) in enumerate(zip(test_cells, test_charts))
for (q,(bcell,bchart)) in enumerate(zip(trial_cells, trial_charts))
fill!(zlocal, 0)
qrule = quadrule(biop, test_shapes, trial_shapes, p, tchart, q, bchart, qd, quadstrat)
# @show ("1", qrule)
momintegrals_test_refines_trial!(zlocal, biop,
test_functions, tcell, tchart,
trial_functions, bcell, bchart,
qrule, quadstrat)
I = length(test_assembly_data[p])
J = length(trial_assembly_data[q])
for j in 1 : J, i in 1 : I
zij = zlocal[i,j]
for (n,b) in trial_assembly_data[q][j]
zb = zij*b
for (m,a) in test_assembly_data[p][i]
store(a*zb, m, n)
end end end end
done += 1
new_pctg = round(Int, done / todo * 100)
if new_pctg > pctg + 9
myid == 1 && print(".")
pctg = new_pctg
end end
myid == 1 && println("")
end
function assemblechunk_body_trial_refines_test!(biop,
test_functions, test_charts, test_assembly_data, test_cells,
trial_functions, trial_charts, trial_assembly_data, trial_cells,
qd, zlocal, store; quadstrat)
test_shapes = refspace(test_functions)
trial_shapes = refspace(trial_functions)
myid = Threads.threadid()
myid == 1 && print("dots out of 10: ")
todo, done, pctg = length(test_charts), 0, 0
for (p,(tcell,tchart)) in enumerate(zip(test_cells, test_charts))
for (q,(bcell,bchart)) in enumerate(zip(trial_cells, trial_charts))
fill!(zlocal, 0)
qrule = quadrule(biop, test_shapes, trial_shapes, p, tchart, q, bchart, qd, quadstrat)
momintegrals_trial_refines_test!(zlocal, biop,
test_functions, tcell, tchart,
trial_functions, bcell, bchart,
qrule, quadstrat)
I = length(test_assembly_data[p])
J = length(trial_assembly_data[q])
for j in 1 : J, i in 1 : I
zij = zlocal[i,j]
for (n,b) in trial_assembly_data[q][j]
zb = zij*b
for (m,a) in test_assembly_data[p][i]
store(a*zb, m, n)
end end end end
done += 1
new_pctg = round(Int, done / todo * 100)
if new_pctg > pctg + 9
myid == 1 && print(".")
pctg = new_pctg
end end
myid == 1 && println("")
end
function blockassembler(biop::IntegralOperator, tfs::Space, bfs::Space;
quadstrat=defaultquadstrat(biop, tfs, bfs))
test_elements, test_assembly_data,
trial_elements, trial_assembly_data,
quadrature_data, zlocals = assembleblock_primer(biop, tfs, bfs; quadstrat)
tgeo = geometry(tfs)
bgeo = geometry(bfs)
if CompScienceMeshes.refines(tgeo, bgeo)
return (test_ids, trial_ids, store) -> begin
assembleblock_body_test_refines_trial!(biop,
tfs, test_ids, test_elements, test_assembly_data,
bfs, trial_ids, trial_elements, trial_assembly_data,
quadrature_data, zlocals, store; quadstrat)
end
elseif CompScienceMeshes.refines(bgeo, tgeo)
return (test_ids, trial_ids, store) -> begin
assembleblock_body_trial_refines_test!(biop,
tfs, test_ids, test_elements, test_assembly_data,
bfs, trial_ids, trial_elements, trial_assembly_data,
quadrature_data, zlocals, store; quadstrat)
end
else
return (test_ids, trial_ids, store) -> begin
assembleblock_body!(biop,
tfs, test_ids, test_elements, test_assembly_data,
bfs, trial_ids, trial_elements, trial_assembly_data,
quadrature_data, zlocals, store; quadstrat)
end
end
end
function assembleblock(operator::AbstractOperator, test_functions, trial_functions;
quadstrat=defaultquadstrat(operator, test_functions, trial_functions))
Z, store = allocatestorage(operator, test_functions, trial_functions)
assembleblock!(operator, test_functions, trial_functions, store; quadstrat)
sdata(Z)
end
function assembleblock!(biop::IntegralOperator, tfs::Space, bfs::Space, store;
quadstrat=defaultquadstrat(biop, tfs, bfs))
test_elements, tad, trial_elements, bad, quadrature_data, zlocals =
assembleblock_primer(biop, tfs, bfs; quadstrat)
active_test_dofs = collect(1:numfunctions(tfs))
active_trial_dofs = collect(1:numfunctions(bfs))
assembleblock_body!(biop,
tfs, active_test_dofs, test_elements, tad,
bfs, active_trial_dofs, trial_elements, bad,
quadrature_data, zlocals, store; quadstrat)
end
function assembleblock_primer(biop, tfs, bfs;
quadstrat=defaultquadstrat(biop, tfs, bfs))
test_elements, tad = assemblydata(tfs; onlyactives=false)
bsis_elements, bad = assemblydata(bfs; onlyactives=false)
tshapes = refspace(tfs); num_tshapes = numfunctions(tshapes)
bshapes = refspace(bfs); num_bshapes = numfunctions(bshapes)
qd = quaddata(biop, tshapes, bshapes, test_elements, bsis_elements, quadstrat)
zlocals = Matrix{scalartype(biop, tfs, bfs)}[]
for i in 1:Threads.nthreads()
push!(zlocals, zeros(scalartype(biop, tfs, bfs), num_tshapes, num_bshapes))
end
return test_elements, tad, bsis_elements, bad, qd, zlocals
end
function assembleblock_body!(biop::IntegralOperator,
tfs, test_ids, test_elements, test_assembly_data,
bfs, trial_ids, bsis_elements, trial_assembly_data,
quadrature_data, zlocals, store; quadstrat)
test_shapes = refspace(tfs)
trial_shapes = refspace(bfs)
# Enumerate all the active test elements
active_test_el_ids = Vector{Int}()
active_trial_el_ids = Vector{Int}()
test_id_in_blk = Dict{Int,Int}()
trial_id_in_blk = Dict{Int,Int}()
for (i,m) in enumerate(test_ids); test_id_in_blk[m] = i; end
for (i,m) in enumerate(trial_ids); trial_id_in_blk[m] = i; end
for m in test_ids, sh in tfs.fns[m]; push!(active_test_el_ids, sh.cellid); end
for m in trial_ids, sh in bfs.fns[m]; push!(active_trial_el_ids, sh.cellid); end
active_test_el_ids = unique!(sort!(active_test_el_ids))
active_trial_el_ids = unique!(sort!(active_trial_el_ids))
@assert length(active_test_el_ids) <= length(test_elements)
@assert length(active_trial_el_ids) <= length(bsis_elements)
@assert maximum(active_test_el_ids) <= length(test_elements) "$(maximum(active_test_el_ids)), $(length(test_elements))"
@assert maximum(active_trial_el_ids) <= length(bsis_elements) "$(maximum(active_trial_el_ids)), $(length(bsis_elements))"
for p in active_test_el_ids
tcell = test_elements[p]
for q in active_trial_el_ids
bcell = bsis_elements[q]
fill!(zlocals[Threads.threadid()], 0)
qrule = quadrule(biop, test_shapes, trial_shapes, p, tcell, q, bcell, quadrature_data, quadstrat)
momintegrals!(biop, test_shapes, trial_shapes, tcell, bcell, zlocals[Threads.threadid()], qrule)
for j in 1 : size(zlocals[Threads.threadid()],2)
for i in 1 : size(zlocals[Threads.threadid()],1)
for (n,b) in trial_assembly_data[q,j]
n′ = get(trial_id_in_blk, n, 0)
n′ == 0 && continue
for (m,a) in test_assembly_data[p,i]
m′ = get(test_id_in_blk, m, 0)
m′ == 0 && continue
store(a*zlocals[Threads.threadid()][i,j]*b, m′, n′)
end end end end end end end
function assembleblock_body_trial_refines_test!(biop::IntegralOperator,
tfs, test_ids, test_elements, test_assembly_data,
bfs, trial_ids, bsis_elements, trial_assembly_data,
quadrature_data, zlocals, store; quadstrat)
test_shapes = refspace(tfs)
trial_shapes = refspace(bfs)
# Enumerate all the active test elements
active_test_el_ids = Vector{Int}()
active_trial_el_ids = Vector{Int}()
test_id_in_blk = Dict{Int,Int}()
trial_id_in_blk = Dict{Int,Int}()
for (i,m) in enumerate(test_ids); test_id_in_blk[m] = i; end
for (i,m) in enumerate(trial_ids); trial_id_in_blk[m] = i; end
for m in test_ids, sh in tfs.fns[m]; push!(active_test_el_ids, sh.cellid); end
for m in trial_ids, sh in bfs.fns[m]; push!(active_trial_el_ids, sh.cellid); end
active_test_el_ids = unique!(sort!(active_test_el_ids))
active_trial_el_ids = unique!(sort!(active_trial_el_ids))
@assert length(active_test_el_ids) <= length(test_elements)
@assert length(active_trial_el_ids) <= length(bsis_elements)
@assert maximum(active_test_el_ids) <= length(test_elements) "$(maximum(active_test_el_ids)), $(length(test_elements))"
@assert maximum(active_trial_el_ids) <= length(bsis_elements) "$(maximum(active_trial_el_ids)), $(length(bsis_elements))"
for p in active_test_el_ids
tcell = test_elements[p]
for q in active_trial_el_ids
bcell = bsis_elements[q]
fill!(zlocals[Threads.threadid()], 0)
qrule = quadrule(biop, test_shapes, trial_shapes, p, tcell, q, bcell, quadrature_data, quadstrat)
momintegrals_trial_refines_test!(zlocals[Threads.threadid()], biop,
tfs, p, tcell,
bfs, q, bcell,
qrule, quadstrat)
for j in 1 : size(zlocals[Threads.threadid()],2)
for i in 1 : size(zlocals[Threads.threadid()],1)
for (n,b) in trial_assembly_data[q,j]
n′ = get(trial_id_in_blk, n, 0)
n′ == 0 && continue
for (m,a) in test_assembly_data[p,i]
m′ = get(test_id_in_blk, m, 0)
m′ == 0 && continue
store(a*zlocals[Threads.threadid()][i,j]*b, m′, n′)
end end end end end end end
function assembleblock_body_test_refines_trial!(biop::IntegralOperator,
tfs, test_ids, test_elements, test_assembly_data,
bfs, trial_ids, bsis_elements, trial_assembly_data,
quadrature_data, zlocals, store; quadstrat)
test_shapes = refspace(tfs)
trial_shapes = refspace(bfs)
# Enumerate all the active test elements
active_test_el_ids = Vector{Int}()
active_trial_el_ids = Vector{Int}()
test_id_in_blk = Dict{Int,Int}()
trial_id_in_blk = Dict{Int,Int}()
for (i,m) in enumerate(test_ids); test_id_in_blk[m] = i; end
for (i,m) in enumerate(trial_ids); trial_id_in_blk[m] = i; end
for m in test_ids, sh in tfs.fns[m]; push!(active_test_el_ids, sh.cellid); end
for m in trial_ids, sh in bfs.fns[m]; push!(active_trial_el_ids, sh.cellid); end
active_test_el_ids = unique!(sort!(active_test_el_ids))
active_trial_el_ids = unique!(sort!(active_trial_el_ids))
@assert length(active_test_el_ids) <= length(test_elements)
@assert length(active_trial_el_ids) <= length(bsis_elements)
@assert maximum(active_test_el_ids) <= length(test_elements) "$(maximum(active_test_el_ids)), $(length(test_elements))"
@assert maximum(active_trial_el_ids) <= length(bsis_elements) "$(maximum(active_trial_el_ids)), $(length(bsis_elements))"
for p in active_test_el_ids
tcell = test_elements[p]
for q in active_trial_el_ids
bcell = bsis_elements[q]
fill!(zlocals[Threads.threadid()], 0)
qrule = quadrule(biop, test_shapes, trial_shapes, p, tcell, q, bcell, quadrature_data, quadstrat)
momintegrals_test_refines_trial!(zlocals[Threads.threadid()], biop,
tfs, p, tcell,
bfs, q, bcell,
qrule, quadstrat)
for j in 1 : size(zlocals[Threads.threadid()],2)
for i in 1 : size(zlocals[Threads.threadid()],1)
for (n,b) in trial_assembly_data[q,j]
n′ = get(trial_id_in_blk, n, 0)
n′ == 0 && continue
for (m,a) in test_assembly_data[p,i]
m′ = get(test_id_in_blk, m, 0)
m′ == 0 && continue
store(a*zlocals[Threads.threadid()][i,j]*b, m′, n′)
end end end end end end end
# function assembleblock_body_nested!(biop::IntegralOperator,
# tfs, test_ids, test_elements, test_assembly_data,
# bfs, trial_ids, bsis_elements, trial_assembly_data,
# quadrature_data, zlocals, store; quadstrat)
# test_shapes = refspace(tfs)
# trial_shapes = refspace(bfs)
# # Enumerate all the active test elements
# active_test_el_ids = Vector{Int}()
# active_trial_el_ids = Vector{Int}()
# test_id_in_blk = Dict{Int,Int}()
# trial_id_in_blk = Dict{Int,Int}()
# for (i,m) in enumerate(test_ids); test_id_in_blk[m] = i; end
# for (i,m) in enumerate(trial_ids); trial_id_in_blk[m] = i; end
# for m in test_ids, sh in tfs.fns[m]; push!(active_test_el_ids, sh.cellid); end
# for m in trial_ids, sh in bfs.fns[m]; push!(active_trial_el_ids, sh.cellid); end
# active_test_el_ids = unique(sort(active_test_el_ids))
# active_trial_el_ids = unique(sort(active_trial_el_ids))
# for p in active_test_el_ids
# tcell = test_elements[p]
# for q in active_trial_el_ids
# bcell = bsis_elements[q]
# fill!(zlocals[Threads.threadid()], 0)
# qrule = quadrule(biop, test_shapes, trial_shapes, p, tcell, q, bcell, quadrature_data, quadstrat)
# momintegrals_test_refines_trial!(zlocals[Threads.threadid()], biop,
# tfs, p, tcell,
# bfs, q, bcell,
# qrule, quadstrat)
# # momintegrals_test_refines_trial!(biop, test_shapes, trial_shapes, tcell, bcell, zlocals[Threads.threadid()], qrule, quadstrat)
# for j in 1 : size(zlocals[Threads.threadid()],2)
# for i in 1 : size(zlocals[Threads.threadid()],1)
# for (n,b) in trial_assembly_data[q,j]
# n′ = get(trial_id_in_blk, n, 0)
# n′ == 0 && continue
# for (m,a) in test_assembly_data[p,i]
# m′ = get(test_id_in_blk, m, 0)
# m′ == 0 && continue
# store(a*zlocals[Threads.threadid()][i,j]*b, m′, n′)
# end end end end end end end
function assemblerow!(biop::IntegralOperator, test_functions::Space, trial_functions::Space, store;
quadstrat=defaultquadstrat(biop, test_functions, trial_functions))
test_elements = elements(geometry(test_functions))
trial_elements, trial_assembly_data = assemblydata(trial_functions)
test_shapes = refspace(test_functions)
trial_shapes = refspace(trial_functions)
num_test_shapes = numfunctions(test_shapes)
num_trial_shapes = numfunctions(trial_shapes)
quadrature_data = quaddata(biop, test_shapes, trial_shapes, test_elements, trial_elements,
quadstrat)
zlocal = zeros(scalartype(biop, test_functions, trial_functions),
num_test_shapes, num_trial_shapes)
@assert length(trial_elements) == numcells(geometry(trial_functions))
@assert numfunctions(test_functions) == 1
assemblerow_body!(biop,
test_functions, test_elements, test_shapes,
trial_assembly_data, trial_elements, trial_shapes,
zlocal, quadrature_data, store; quadstrat)
end
function assemblerow_body!(biop,
test_functions, test_elements, test_shapes,
trial_assembly_data, trial_elements, trial_shapes,
zlocal, quadrature_data, store; quadstrat)
test_function = test_functions.fns[1]
for shape in test_function
p = shape.cellid
i = shape.refid
a = shape.coeff
tcell = test_elements[p]
for (q,bcell) in enumerate(trial_elements)
fill!(zlocal, 0)
qrule = quadrule(biop, test_shapes, trial_shapes, p, tcell, q, bcell, quadrature_data, quadstrat)
momintegrals!(biop, test_shapes, trial_shapes, tcell, bcell, zlocal, qrule)
for j in 1:size(zlocal,2)
for (n,b) in trial_assembly_data[q,j]
store(a*zlocal[i,j]*b, 1, n)
end end end end end
function assemblecol!(biop::IntegralOperator, test_functions::Space, trial_functions::Space, store;
quadstrat=defaultquadstrat(biop, test_functions, trial_functions))
test_elements, test_assembly_data = assemblydata(test_functions)
trial_elements = elements(geometry(trial_functions))
test_shapes = refspace(test_functions)
trial_shapes = refspace(trial_functions)
num_test_shapes = numfunctions(test_shapes)
num_trial_shapes = numfunctions(trial_shapes)
quadrature_data = quaddata(biop, test_shapes, trial_shapes, test_elements, trial_elements, quadstrat)
zlocal = zeros(
scalartype(biop, test_functions, trial_functions),
num_test_shapes, num_trial_shapes)
@assert length(test_elements) == numcells(geometry(test_functions))
@assert numfunctions(trial_functions) == 1
assemblecol_body!(biop,
test_assembly_data, test_elements, test_shapes,
trial_functions, trial_elements, trial_shapes,
zlocal, quadrature_data, store; quadstrat)
end
function assemblecol_body!(biop,
test_assembly_data, test_elements, test_shapes,
trial_functions, trial_elements, trial_shapes,
zlocal, quadrature_data, store; quadstrat)
trial_function = trial_functions.fns[1]
for shape in trial_function
q = shape.cellid
j = shape.refid
b = shape.coeff
bcell = trial_elements[q]
for (p,tcell) in enumerate(test_elements)
fill!(zlocal, 0)
qrule = quadrule(biop, test_shapes, trial_shapes, p, tcell, q, bcell, quadrature_data, quadstrat)
momintegrals!(biop, test_shapes, trial_shapes, tcell, bcell, zlocal, qrule)
for i in 1:size(zlocal,1)
for (m,a) in test_assembly_data[p,i]
store(a*zlocal[i,j]*b, m, 1)
end end end end end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 7036 |
function DofInterpolate(basis::LagrangeBasis, field)
T = promote_type(scalartype(basis), scalartype(field))
num_bfs = numfunctions(basis)
res = Vector{T}(undef, num_bfs)
for b in 1 : num_bfs
bfs = basis.fns[b]
shape = bfs[1]
cellid = shape.cellid
refid = shape.refid
cell = cells(basis.geo)[cellid]
tria = chart(basis.geo, cellid)
vid = cell[refid]
if refid == 1
v = neighborhood(tria, [1, 0])
elseif refid == 2
v = neighborhood(tria, [0, 1])
else
v = neighborhood(tria, [0, 0])
end
res[b] = field(v)
end
return res
end
### Piecewise constant elements require separate treatment
### TODO: Probably a rewrite is advisable to also take into account
### dual elements properly.
function DofInterpolate(basis::LagrangeBasis{0,-1,M,T,NF,P}, field) where {M, T, NF, P}
TT = promote_type(scalartype(basis), scalartype(field))
num_bfs = numfunctions(basis)
res = Vector{TT}(undef, num_bfs)
for b in 1 : num_bfs
bfs = basis.fns[b]
basis.pos[b]
shape = bfs[1]
cellid = shape.cellid
tria = chart(basis.geo, cellid)
v = neighborhood(tria, [1/3, 1/3])
res[b] = field(v)
end
return res
end
function DofInterpolate(basis::RTBasis, field)
T = promote_type(scalartype(basis), scalartype(field))
num_bfs = numfunctions(basis)
res = Vector{T}(undef, num_bfs)
for b in 1 : num_bfs
bfs = basis.fns[b]
shape = bfs[1]
cellid = shape.cellid
refid = shape.refid
coeff = shape.coeff
cell = cells(basis.geo)[cellid]
e = refid
v1 = cell[mod1(e+1,3)]
v2 = cell[mod1(e+2,3)]
edge = simplex(basis.geo.vertices[[v1,v2]]...)
t = tangents(center(edge),1)
tria = chart(basis.geo, cellid)
n = normal(center(tria))
bn = normalize(cross(n,t))
v = center(edge)
res[b] = volume(edge)*coeff*dot(field(v),bn)
end
return [r for r in res]
end
function DofInterpolate(basis::BDMBasis, field)
T = promote_type(scalartype(basis), scalartype(field))
num_bfs = numfunctions(basis)
res = Vector{T}(undef, num_bfs)
for b in 1 : num_bfs
bfs = basis.fns[b]
shape = bfs[2]
cellid = shape.cellid
refid = shape.refid
coeff = shape.coeff
cell = cells(basis.geo)[cellid]
e = (refid-1)÷2+1
v1 = cell[mod1(e+1,3)]
v2 = cell[mod1(e+2,3)]
edge = simplex(basis.geo.vertices[[v1,v2]]...)
t = tangents(center(edge),1)
tria = chart(basis.geo, cellid)
n = normal(center(tria))
bn = normalize(cross(n,t))
if refid == 1
v = neighborhood(tria, [0, 1])
elseif refid == 2
v = neighborhood(tria, [0, 0])
elseif refid == 3
v = neighborhood(tria, [0, 0])
elseif refid == 4
v = neighborhood(tria, [1, 0])
elseif refid == 5
v = neighborhood(tria, [1, 0])
else
v = neighborhood(tria, [0, 1])
end
res[b] = volume(edge)*coeff*dot(field(v),bn)
end
return res
end
function DofInterpolate(basis::NDLCDBasis, field)
T = promote_type(scalartype(basis), scalartype(field))
num_bfs = numfunctions(basis)
res = Vector{T}(undef, num_bfs)
for b in 1 : num_bfs
bfs = basis.fns[b]
shape = bfs[1]
cellid = shape.cellid
refid = shape.refid
coeff = shape.coeff
cell = cells(basis.geo)[cellid]
f = refid
v1 = cell[mod1(f+1,4)]
v2 = cell[mod1(f+2,4)]
v3 = cell[mod1(f+3,4)]
v4 = cell[mod1(f,4)]
face = simplex(basis.geo.vertices[[v1,v2,v3]]...)
n = normal(center(face))
inside = dot(n, basis.geo.vertices[v4]-basis.geo.vertices[v1])
n *= -sign(inside)
v = center(face)
res[b] = volume(face)*coeff*dot(field(v),n)
end
return res
end
function DofInterpolate(basis::BEAST.BDM3DBasis, field)
T = promote_type(scalartype(basis), scalartype(field))
num_bfs = numfunctions(basis)
res = Vector{T}(undef, num_bfs)
for b in 1 : num_bfs
bfs = basis.fns[b]
shape = bfs[1]
cellid = shape.cellid
refid = shape.refid
coeff = shape.coeff
cell = cells(basis.geo)[cellid]
f = (refid-1)÷3+1
v1 = cell[mod1(f+1,4)]
v2 = cell[mod1(f+2,4)]
v3 = cell[mod1(f+3,4)]
v4 = cell[mod1(f,4)]
face = simplex(basis.geo.vertices[[v1,v2,v3]]...)
n = normal(center(face))
inside = dot(n, basis.geo.vertices[v4]-basis.geo.vertices[v1])
n *= -sign(inside)
tet = simplex(basis.geo.vertices[cell]...)
if refid == 1
v = neighborhood(tet, [0, 1, 0])
elseif refid == 2
v = neighborhood(tet, [0, 0, 1])
elseif refid == 3
v = neighborhood(tet, [0, 0, 0])
elseif refid == 4
v = neighborhood(tet, [0, 0, 1])
elseif refid == 5
v = neighborhood(tet, [0, 0, 0])
elseif refid == 6
v = neighborhood(tet, [1, 0, 0])
elseif refid == 7
v = neighborhood(tet, [0, 0, 0])
elseif refid == 8
v = neighborhood(tet, [1, 0, 0])
elseif refid == 9
v = neighborhood(tet, [0, 1, 0])
elseif refid == 10
v = neighborhood(tet, [1, 0, 0])
elseif refid == 11
v = neighborhood(tet, [0, 1, 0])
else
v = neighborhood(tet, [0, 0, 1])
end
res[b] = volume(face)*coeff*dot(field(v),n)
end
return res
end
function Centervalues(mesh::Mesh,f::Functional)
num_cells = numcells(mesh)
T = coordtype(mesh)
res = Vector{SVector{3,Complex{T}}}(undef, num_cells)
for i in 1:num_cells
cell = cells(mesh)[i]
tet = chart(mesh, cell)
v = center(tet)
res[i] = f(v)
end
return res
end
function EvalCenter(basis::Space, coeff)
mesh = basis.geo
T = coordtype(mesh)
num_cells = numcells(mesh)
num_bfs = numfunctions(basis)
ref_space = refspace(basis)
res = Vector{SVector{3,Complex{T}}}(undef, num_cells)
for i in 1:num_cells
res[i] = [0,0,0]
end
for b in 1 : num_bfs
bfs = basis.fns[b]
for shape in bfs
cellid = shape.cellid
refid = shape.refid
a = shape.coeff
cell = cells(mesh)[cellid]
tet = chart(mesh, cell)
v = center(tet)
local_bfs = ref_space(v)
res[cellid] += a*coeff[b]*local_bfs[refid].value
end
end
return res
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 10385 |
using CollisionDetection
abstract type LocalOperator <: Operator end
function allocatestorage(op::LocalOperator, test_functions, trial_functions,
storage_trait::Type{Val{:bandedstorage}})
T = scalartype(op, test_functions, trial_functions)
M = Int[]
N = Int[]
V = T[]
function store(v,m,n)
push!(M,m)
push!(N,n)
push!(V,v)
end
function freeze()
nrows = numfunctions(test_functions)
ncols = numfunctions(trial_functions)
return sparse(M,N,V, nrows, ncols)
end
return freeze, store
end
function allocatestorage(op::LocalOperator, testfunctions, trialfunctions,
storage_trait::Type{Val{:sparsedicts}})
T = scalartype(op, testfunctions, trialfunctions)
m = numfunctions(testfunctions)
n = numfunctions(trialfunctions)
Z = ExtendableSparseMatrix(T,m,n)
store(v,m,n) = (Z[m,n] += v)
freeze() = SparseArrays.SparseMatrixCSC(Z)
return freeze, store
end
function allocatestorage(op::LocalOperator, test_functions, trial_functions,
storage_trait::Type{Val{:densestorage}})
T = scalartype(op, test_functions, trial_functions)
Z = zeros(T, numfunctions(test_functions), numfunctions(trial_functions))
store(v,m,n) = (Z[m,n] += v)
freeze() = Z
return freeze, store
end
function assemble!(biop::LocalOperator, tfs::Space, bfs::Space, store,
threading::Type{Threading{:multi}};
quadstrat=defaultquadstrat(biop, tfs, bfs))
if geometry(tfs) == geometry(bfs)
return assemble_local_matched!(biop, tfs, bfs, store; quadstrat)
end
if CompScienceMeshes.refines(geometry(tfs), geometry(bfs))
return assemble_local_refines!(biop, tfs, bfs, store; quadstrat)
end
return assemble_local_mixed!(biop, tfs, bfs, store; quadstrat)
end
function assemble!(biop::LocalOperator, tfs::Space, bfs::Space, store,
threading::Type{Threading{:single}};
quadstrat=defaultquadstrat(biop, tfs, bfs))
if geometry(tfs) == geometry(bfs)
return assemble_local_matched!(biop, tfs, bfs, store; quadstrat)
end
if CompScienceMeshes.refines(geometry(tfs), geometry(bfs))
return assemble_local_refines!(biop, tfs, bfs, store; quadstrat)
end
return assemble_local_mixed!(biop, tfs, bfs, store; quadstrat)
end
function assemble_local_matched!(biop::LocalOperator, tfs::Space, bfs::Space, store;
quadstrat=defaultquadstrat(biop, tfs, bfs))
tels, tad, ta2g = assemblydata(tfs)
bels, bad, ba2g = assemblydata(bfs)
bg2a = zeros(Int, length(geometry(bfs)))
for (i,j) in enumerate(ba2g) bg2a[j] = i end
trefs = refspace(tfs)
brefs = refspace(bfs)
qd = quaddata(biop, trefs, brefs, tels, bels, quadstrat)
verbose = length(tels) > 10_000
verbose && print("dots out of 20: ")
todo, done, pctg = length(tels), 0, 0
locmat = zeros(scalartype(biop, trefs, brefs), numfunctions(trefs), numfunctions(brefs))
for (p,cell) in enumerate(tels)
P = ta2g[p]
q = bg2a[P]
q == 0 && continue
qr = quadrule(biop, trefs, brefs, cell, qd, quadstrat)
fill!(locmat, 0)
cellinteractions_matched!(locmat, biop, trefs, brefs, cell, qr)
for i in 1 : size(locmat, 1), j in 1 : size(locmat, 2)
for (m,a) in tad[p,i], (n,b) in bad[q,j]
store(a * locmat[i,j] * b, m, n)
end end
new_pctg = round(Int, (done += 1) / todo * 100)
verbose && new_pctg > pctg + 4 && (print("."); pctg = new_pctg)
end
end
function assemble_local_refines!(biop::LocalOperator, tfs::Space, bfs::Space, store;
quadstrat=defaultquadstrat(biop, tfs, bfs))
println("Using 'refines' algorithm for local assembly:")
tgeo = geometry(tfs)
bgeo = geometry(bfs)
@assert CompScienceMeshes.refines(tgeo, bgeo)
trefs = refspace(tfs)
brefs = refspace(bfs)
tels, tad, ta2g = assemblydata(tfs)
bels, bad, ba2g = assemblydata(bfs)
bg2a = zeros(Int, length(geometry(bfs)))
for (i,j) in enumerate(ba2g) bg2a[j] = i end
qd = quaddata(biop, trefs, brefs, tels, bels, quadstrat)
print("dots out of 10: ")
todo, done, pctg = length(tels), 0, 0
for (p,tcell) in enumerate(tels)
P = ta2g[p]
Q = CompScienceMeshes.parent(tgeo, P)
q = bg2a[Q]
bcell = bels[q]
@assert overlap(tcell, bcell)
isct = intersection(tcell, bcell)
for cell in isct
P = restrict(brefs, bcell, cell)
Q = restrict(trefs, tcell, cell)
qr = quadrule(biop, trefs, brefs, cell, qd, quadstrat)
zlocal = cellinteractions(biop, trefs, brefs, cell, qr)
zlocal = Q * zlocal * P'
for i in 1 : numfunctions(trefs)
for j in 1 : numfunctions(brefs)
for (m,a) in tad[p,i]
for (n,b) in bad[q,j]
store(a * zlocal[i,j] * b, m, n)
end # next basis function this cell supports
end # next test function this cell supports
end # next refshape on basis side
end # next refshape on test side
end # next cell in intersection
done += 1
new_pctg = round(Int, done / todo * 100)
if new_pctg > pctg + 9
print(".")
pctg = new_pctg
end
end # next cell in the test geometry
println("")
end
function assemble_local_matched!(biop::LocalOperator, tfs::subdBasis, bfs::subdBasis, store;
quadstrat=defaultquadstrat(biop, tfs, bfs))
tels, tad = assemblydata(tfs)
bels, bad = assemblydata(bfs)
trefs = refspace(tfs)
brefs = refspace(bfs)
qd = quaddata(biop, trefs, brefs, tels, bels, quadstrat)
for (p,cell) in enumerate(tels)
qr = quadrule(biop, trefs, brefs, cell, qd, quadstrat)
locmat = cellinteractions(biop, trefs, brefs, cell, qr)
for i in 1 : size(locmat, 1), j in 1 : size(locmat, 2)
for (m,a) in tad[p][i], (n,b) in bad[p][j]
store(a * locmat[i,j] * b, m, n)
end end end end
function elementstree(elements)
nverts = dimension(eltype(elements)) + 1
ncells = length(elements)
@assert !isempty(elements)
P = eltype(elements[1].vertices)
T = coordtype(eltype(elements))
points = zeros(P, ncells)
radii = zeros(T, ncells)
for i in 1 : ncells
verts = elements[i].vertices
bary = verts[1]
for j in 2:length(verts)
bary += verts[j]
end
points[i] = bary / nverts
for j in 1 : nverts
radii[i] = max(radii[i], norm(verts[j]-points[i]))
end
end
return Octree(points, radii)
end
"""
assemble_local_mixed(biop::LocalOperator, tfs, bfs)
For use when basis and test functions are defined on different meshes
"""
function assemble_local_mixed!(biop::LocalOperator, tfs::Space{T}, bfs::Space{T}, store;
quadstrat=defaultquadstrat(biop, tfs, bfs)) where {T}
tol = sqrt(eps(T))
trefs = refspace(tfs)
brefs = refspace(bfs)
tels, tad = assemblydata(tfs)
bels, bad = assemblydata(bfs)
qd = quaddata(biop, trefs, brefs, tels, bels, quadstrat)
# store the bcells in an octree
tree = elementstree(bels)
print("dots out of 10: ")
todo, done, pctg = length(tels), 0, 0
for (p,tcell) in enumerate(tels)
tc, ts = boundingbox(tcell.vertices)
pred = (c,s) -> boxesoverlap(c,s,tc,ts)
for box in boxes(tree, pred)
for q in box
bcell = bels[q]
if overlap(tcell, bcell)
isct = intersection(tcell, bcell)
for cell in isct
volume(cell) < tol && continue
P = restrict(brefs, bcell, cell)
Q = restrict(trefs, tcell, cell)
qr = quadrule(biop, trefs, brefs, cell, qd, quadstrat)
zlocal = cellinteractions(biop, trefs, brefs, cell, qr)
zlocal = Q * zlocal * P'
for i in 1 : numfunctions(trefs)
for j in 1 : numfunctions(brefs)
for (m,a) in tad[p,i]
for (n,b) in bad[q,j]
store(a * zlocal[i,j] * b, m, n)
end # next basis function this cell supports
end # next test function this cell supports
end # next refshape on basis side
end # next refshape on test side
end # next cell in intersection
end # if overlap
end # next cell in the basis geometry
end # next box in the octree
done += 1
new_pctg = round(Int, done / todo * 100)
if new_pctg > pctg + 9
print(".")
pctg = new_pctg
end
end # next cell in the test geometry
println("")
end
function cellinteractions_matched!(zlocal, biop, trefs, brefs, cell, qr)
num_tshs = length(qr[1][3])
num_bshs = length(qr[1][4])
# zlocal = zeros(Float64, num_tshs, num_bshs)
for q in qr
w, mp, tvals, bvals = q[1], q[2], q[3], q[4]
j = w * jacobian(mp)
kernel = kernelvals(biop, mp)
for n in 1 : num_bshs
bval = bvals[n]
for m in 1 : num_tshs
tval = tvals[m]
igd = integrand(biop, kernel, mp, tval, bval)
zlocal[m,n] += j * igd
end
end
end
return zlocal
end
function cellinteractions(biop, trefs::U, brefs::V, cell, qr) where {U<:RefSpace{T},V<:RefSpace{T}} where {T}
num_tshs = length(qr[1][3])
num_bshs = length(qr[1][4])
zlocal = zeros(T, num_tshs, num_bshs)
for q in qr
w, mp, tvals, bvals = q[1], q[2], q[3], q[4]
j = w * jacobian(mp)
kernel = kernelvals(biop, mp)
for m in 1 : num_tshs
tval = tvals[m]
for n in 1 : num_bshs
bval = bvals[n]
igd = integrand(biop, kernel, mp, tval, bval)
zlocal[m,n] += j * igd
end
end
end
return zlocal
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 235 | struct Multiplicative{f} <: LocalOperator
field::f
end
kernelvals(biop::Multiplicative, x) = nothing
integrand(op::Multiplicative, kernel, x, g, f) = dot(f[1], op.field(cartesian(x))*g[1])
scalartype(op::Multiplicative) = Float64
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 10228 | using .LinearSpace
struct LongDelays{T} end
struct Threading{T} end
import Base: transpose, +, -, *
abstract type AbstractOperator end
#@linearspace AbstractOperator{T} T
"""
*Atomic operator*: one that assemblechunk can deal with
"""
abstract type Operator <: AbstractOperator end
mutable struct TransposedOperator <: AbstractOperator
op::AbstractOperator
end
scalartype(op::TransposedOperator) = scalartype(op.op)
defaultquadstrat(op::TransposedOperator, tfs::Space, bfs::Space) = defaultquadstrat(op.op, tfs, bfs)
mutable struct LinearCombinationOfOperators{T} <: AbstractOperator
coeffs::Vector{T}
ops::Vector
end
function scalartype(op::LinearCombinationOfOperators{T}) where T
W = promote_type(T, scalartype(op.ops[1]))
for i in 2:length(op.ops)
W = promote_type(W, scalartype(op.ops[i]))
end
W
end
function derive(a::LinearCombinationOfOperators)
coeffs = copy(a.coeffs)
ops = [derive(op) for op in a.ops]
return LinearCombinationOfOperators(coeffs, ops)
end
function +(a::LinearCombinationOfOperators, b::AbstractOperator)
LinearCombinationOfOperators(
[a.coeffs;[1.0]],
[a.ops;[b]]
)
end
function +(a::LinearCombinationOfOperators, b::LinearCombinationOfOperators)
LinearCombinationOfOperators(
[a.coeffs; b.coeffs],
[a.ops; b.ops]
)
end
+(a::AbstractOperator, b::LinearCombinationOfOperators) = b + a
+(a::AbstractOperator, b::Number) = a + (b * Identity())
+(a::Number, b::AbstractOperator) = b + a
*(a::Number, b::AbstractOperator) = LinearCombinationOfOperators([a], [b])
*(a::Number, b::LinearCombinationOfOperators) = LinearCombinationOfOperators(a * b.coeffs, b.ops)
-(a::AbstractOperator, b::AbstractOperator) = a + (-1.0) * b
-(a::AbstractOperator) = (-1.0) * a
function +(a::AbstractOperator, b::AbstractOperator)
LinearCombinationOfOperators(
[1.0, 1.0],
[a, b]
)
end
transpose(op::TransposedOperator) = op.op
transpose(op::Operator) = TransposedOperator(op)
defaultquadstrat(lc::LinearCombinationOfOperators, tfs, bfs) =
[defaultquadstrat(op,tfs,bfs) for op in lc.ops]
function assemble(operator::AbstractOperator, test_functions, trial_functions;
storage_policy = Val{:bandedstorage},
# long_delays_policy = LongDelays{:compress},
threading = Threading{:multi},
quadstrat=defaultquadstrat(operator, test_functions, trial_functions))
Z, store = allocatestorage(operator, test_functions, trial_functions,
storage_policy)
assemble!(operator, test_functions, trial_functions, store, threading; quadstrat)
return Z()
end
function assemble(A::Matrix, testfns, trialfns)
@assert numfunctions(testfns) == size(A,1)
@assert numfunctions(trialfns) == size(A,2)
return A
end
function assemblerow(operator::AbstractOperator, test_functions, trial_functions,
storage_policy = Val{:bandedstorage},
long_delays_policy = LongDelays{:ignore};
quadstrat=defaultquadstrat(operator, test_functions, trial_functions))
Z, store = allocatestorage(operator, test_functions, trial_functions,
storage_policy, long_delays_policy)
assemblerow!(operator, test_functions, trial_functions, store; quadstrat)
Z()
end
function assemblecol(operator::AbstractOperator, test_functions, trial_functions,
storage_policy = Val{:bandestorage},
long_delays_policy = LongDelays{:ignore};
quadstrat=defaultquadstrat(operator, test_functions, trial_functions))
Z, store = allocatestorage(operator, test_functions, trial_functions,
storage_policy, long_delays_policy)
assemblecol!(operator, test_functions, trial_functions, store; quadstrat)
Z()
end
function allocatestorage(operator::AbstractOperator, test_functions, trial_functions,
storage_trait=nothing, longdelays_trait=nothing)
T = promote_type(
scalartype(operator) ,
scalartype(test_functions) ,
scalartype(trial_functions),
)
Z = Matrix{T}(undef,
numfunctions(test_functions),
numfunctions(trial_functions),
)
fill!(Z, 0)
store(v,m,n) = (Z[m,n] += v)
return ()->Z, store
end
function allocatestorage(operator::LinearCombinationOfOperators,
test_functions::SpaceTimeBasis, trial_functions::SpaceTimeBasis,
storage_policy::Type{Val{:bandedstorage}},
long_delays_policy::Type{LongDelays{:ignore}})
# This works when are terms in the LC can share storage
return allocatestorage(operator.ops[end], test_functions, trial_functions,
storage_policy, long_delays_policy)
end
function allocatestorage(operator::LinearCombinationOfOperators,
test_functions::SpaceTimeBasis, trial_functions::SpaceTimeBasis,
storage_policy::Type{Val{S}},
long_delays_policy::Type{LongDelays{L}}) where {L,S}
# This works when are terms in the LC can share storage
return allocatestorage(operator.ops[end], test_functions, trial_functions,
storage_policy, long_delays_policy)
end
struct _OffsetStore{F}
store::F
row_offset::Int
col_offset::Int
end
(f::_OffsetStore)(v,m,n) = f.store(v,m + f.row_offset, n + f.col_offset)
function assemble!(operator::Operator, test_functions::Space, trial_functions::Space,
store, threading::Type{Threading{:multi}};
quadstrat=defaultquadstrat(operator, test_functions, trial_functions))
P = Threads.nthreads()
numchunks = P
@assert numchunks >= 1
splits = [round(Int,s) for s in range(0, stop=numfunctions(test_functions), length=numchunks+1)]
Threads.@threads for i in 1:P
lo, hi = splits[i]+1, splits[i+1]
lo <= hi || continue
test_functions_p = subset(test_functions, lo:hi)
store1 = _OffsetStore(store, lo-1, 0)
assemblechunk!(operator, test_functions_p, trial_functions, store1, quadstrat=quadstrat)
end end
function assemble!(operator::Operator, test_functions::Space, trial_functions::Space,
store, threading::Type{Threading{:single}};
quadstrat=defaultquadstrat(operator, test_functions, trial_functions))
assemblechunk!(operator, test_functions, trial_functions, store; quadstrat)
end
function assemble!(op::TransposedOperator, tfs::Space, bfs::Space,
store, threading = Threading{:multi};
quadstrat=defaultquadstrat(op, tfs, bfs))
store1(v,m,n) = store(v,n,m)
assemble!(op.op, bfs, tfs, store1, threading; quadstrat)
end
function assemble!(op::LinearCombinationOfOperators, tfs::AbstractSpace, bfs::AbstractSpace,
store, threading = Threading{:multi};
quadstrat=defaultquadstrat(op, tfs, bfs))
for (a,A,qs) in zip(op.coeffs, op.ops, quadstrat)
store1(v,m,n) = store(a*v,m,n)
assemble!(A, tfs, bfs, store1, threading; quadstrat=qs)
end
end
# Support for direct product spaces
function assemble!(op::AbstractOperator, tfs::DirectProductSpace, bfs::Space,
store, threading = Threading{:multi};
quadstrat=defaultquadstrat(op, tfs[1], bfs))
I = Int[0]
for s in tfs.factors push!(I, last(I) + numfunctions(s)) end
for (i,s) in enumerate(tfs.factors)
store1(v,m,n) = store(v,m + I[i], n)
assemble!(op, s, bfs, store1, threading; quadstrat)
end
end
function assemble!(op::AbstractOperator, tfs::Space, bfs::DirectProductSpace,
store, threading=Threading{:multi};
quadstrat=defaultquadstrat(op, tfs, bfs[1]))
J = Int[0]
for s in bfs.factors push!(J, last(J) + numfunctions(s)) end
for (j,s) in enumerate(bfs.factors)
store1(v,m,n) = store(v,m,n + J[j])
assemble!(op, tfs, s, store1, threading; quadstrat)
end
end
function assemble!(op::AbstractOperator, tfs::DirectProductSpace, bfs::DirectProductSpace,
store, threading=Threading{:multi};
quadstrat=defaultquadstrat(op, tfs[1], bfs[1]))
I = Int[0]
for s in tfs.factors push!(I, last(I) + numfunctions(s)) end
for (i,s) in enumerate(tfs.factors)
store1(v,m,n) = store(v,m + I[i],n)
assemble!(op, s, bfs, store1, threading; quadstrat)
end
end
# TODO: Remove BlockDiagonalOperator in favour of manipulations
# on the level of bilinear forms.
# Discretisation and assembly of these operators
# will respect the direct product structure of the
# HilbertSpace/FiniteElmeentSpace
struct BlockDiagonalOperator <: AbstractOperator
op::AbstractOperator
end
diag(op::AbstractOperator) = BlockDiagonalOperator(op)
scalartype(op::BlockDiagonalOperator) = scalartype(op.op)
defaultquadstrat(op::BlockDiagonalOperator, U::DirectProductSpace, V::DirectProductSpace) = defaultquadstrat(op.op, U, V)
allocatestorage(op::BlockDiagonalOperator, X, Y, storage_trait, longdelays_trait) =
allocatestorage(op.op, X, Y, storage_trait, longdelays_trait)
function assemble!(op::BlockDiagonalOperator, U::DirectProductSpace, V::DirectProductSpace,
store, threading=Threading{:multi};
quadstrat = defaultquadstrat(op, U, V))
@assert length(U.factors) == length(V.factors)
I = Int[0]; for u in U.factors push!(I, last(I) + numfunctions(u)) end
J = Int[0]; for v in V.factors push!(J, last(J) + numfunctions(v)) end
for (k,(u,v)) in enumerate(zip(U.factors, V.factors))
store1(v,m,n) = store(v, I[k] + m, J[k] + n)
assemble!(op.op, u, v, store1, threading; quadstrat)
end
end
# BlockFull is default so not sure when this exists -> remove
struct BlockFullOperators <: AbstractOperator
op::AbstractOperator
end
blocks(op::AbstractOperator) = BlockFullOperators(op)
scalartype(op::BlockFullOperators) = scalartype(op.op)
defaultquadstrat(op::BlockFullOperators, U::DirectProductSpace, V::DirectProductSpace) = defaultquadstrat(op.op, U, V)
function assemble!(op::BlockFullOperators, U::DirectProductSpace, V::DirectProductSpace,
store, threading;
quadstrat = defaultquadstrat(op, U, V))
I = Int[0]; for u in U.factors push!(I, last(I) + numfunctions(u)) end
J = Int[0]; for v in V.factors push!(J, last(J) + numfunctions(v)) end
for (k,u) in enumerate(U.factors)
for (l,v) in enumerate(V.factors)
store1(x,m,n) = store(x, I[k]+m, J[l]+n)
assemble!(op.op, u, v, store1, threading; quadstrat)
end
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 6385 |
"""
fcr, geo = facecurrents(coeffs, basis)
Compute the value of the function with the given collection of coeffient in the provided basis in all the centroids of the mesh underlying the basis. The mesh is returned together with the currents.
"""
function facecurrents(coeffs, basis)
T = eltype(coeffs)
RT = real(T)
refs = refspace(basis)
numrefs = numfunctions(refs)
cells, tad, a2g = assemblydata(basis)
mesh = geometry(basis)
D = dimension(mesh)
# U = D+1
U = 3
# TODO: remove ugliness
vals = refs(center(first(cells)))
PT = typeof(first(coeffs)*vals[1][1])
fcr = zeros(PT, numcells(mesh))
for (t,cell) in enumerate(cells)
mps = neighborhood(cell, ones(RT,D)/(D+1))
vals = refs(mps)
# assemble in the right hand side vector
for i in 1 : numrefs
fx = vals[i][1]
for (m,a) in tad[t,i]
# fcr[t] += coeffs[m] * a * fx
fcr[a2g[t]] += coeffs[m] * a * fx
end
end
end
return fcr, geometry(basis)
end
function facecurrents(coeffs, basis::SpaceTimeBasis)
space_basis = basis.space
time_basis = basis.time
Nt = numfunctions(time_basis)
Δt = timestep(time_basis)
refs = refspace(space_basis)
trefs = refspace(time_basis)
numrefs = numfunctions(refs)
tnumrefs = numfunctions(trefs)
cells, ad = assemblydata(space_basis)
tcells, tad = assemblydata(time_basis)
mesh = geometry(space_basis)
T = eltype(coeffs)
D = dimension(mesh)
U = D+1
# TODO: express relative to input types
PT = SVector{U, T}
fcr = zeros(PT, numcells(mesh), Nt)
for (k,tcell) in enumerate(tcells)
tmps = neighborhood(tcell,1)
tvals = trefs(tmps)
for (p,cell) in enumerate(cells)
mps = center(cell)
vals = refs(mps)
# assemble
for i in 1:numrefs
fx = vals[i][1]
for j in 1:tnumrefs
tfx = tvals[j]
for (m,a) in ad[p,i]
for (n,b) in tad[k,j]
fcr[p,k] += (coeffs[m,n] * tfx * b) * a * fx
end
end
end
end
end
end
return fcr, geometry(space_basis)
end
function facecurrents(u, X1, Xs...)
offset = 0
n = numfunctions(X1)
fcrs = [ facecurrents(u[offset .+ (1:n)], X1)[1] ]
offset += n
for i in 1:length(Xs)
n = numfunctions(Xs[i])
push!(fcrs, facecurrents(u[offset .+ (1:n)], Xs[i])[1])
offset += n
end
fcrs
end
function facecurrents(u, X::DirectProductSpace)
if length(X.factors) == 1
return facecurrents(u, X.factors[1]), geometry(X.factors[1])[1]
end
fcrs = facecurrents(u, X.factors...)
#fcr = append!(fcrs...)
fcr = vcat(fcrs...)
m = weld([geometry(x) for x in X.factors]...)
fcr, m
end
function potential(op, points, coeffs, basis;
type=SVector{3,ComplexF64},
quadstrat=defaultquadstrat(op, basis))
ff = zeros(type, size(points))
store(v,m,n) = (ff[m] += v*coeffs[n])
potential!(store, op, points, basis; type, quadstrat)
return ff
end
function potential(op, points,coeffs, basis::SpaceTimeBasis)
T = SVector{3,eltype(coeffs)}
ff = zeros(T, length(points), size(coeffs)[2])
store(v,m,n,k,o) = (ff[m,k] += v*coeffs[n,o])
potential!(store, op, points, basis)
return ff
end
function potential(op, points, coeffs, space::DirectProductSpace;
type=SVector{3,ComplexF64},
quadstrat=defaultquadstrat(op,space))
ff = zeros(type, size(points))
@assert length(coeffs) == numfunctions(space)
offset = 0
for fct in space.factors
store(v,m,n) = (ff[m] += v*coeffs[offset+n])
potential!(store, op, points, fct; type, quadstrat)
offset += numfunctions(fct)
end
ff
end
function potential!(store, op, points, basis;
type=SVector{3,ComplexF64},
quadstrat=defaultquadstrat(op, basis))
z = zeros(type,length(points))
els, ad = assemblydata(basis)
rs = refspace(basis)
zlocal = Array{type}(undef,numfunctions(rs))
qdata = quaddata(op,rs,els,quadstrat)
print("dots out of 10: ")
todo, done, pctg = length(points), 0, 0
for (p,y) in enumerate(points)
for (q,el) in enumerate(els)
fill!(zlocal,zero(type))
qr = quadrule(op,rs,p,y,q,el,qdata,quadstrat)
farfieldlocal!(zlocal,op,rs,y,el,qr)
# assemble from local contributions
for (r,z) in enumerate(zlocal)
for (n,b) in ad[q,r]
store(z*b,p,n)
end
end
end
done += 1
new_pctg = round(Int, done / todo * 100)
if new_pctg > pctg + 9
#println(todo," ",done," ",new_pctg)
print(".")
pctg = new_pctg
end
end
println("")
end
function potential!(store, op, points, basis::SpaceTimeBasis)
space_basis = basis.space
tb = time_basis = basis.time
Nt = numfunctions(time_basis)
Δt = timestep(time_basis)
T = SVector{3,Complex{eltype(eltype(points))}}
refs = refspace(space_basis)
trefs = refspace(time_basis)
numrefs = numfunctions(refs)
tnumrefs = numfunctions(trefs)
els, ad = assemblydata(space_basis)
tels, tad = assemblydata(time_basis)
zlocal = Array{T}(numrefs,Nt)
qdata = quaddata(op,refs,trefs,els,tels)
#println("Computing nearfield.")
print("dots out of 10: ")
todo, done, pctg = Nt, 0, 0
for (k,tel) in enumerate(tels)
for (p,y) in enumerate(points)
for (q,el) in enumerate(els)
fill!(zlocal,zero(T))
qr = quadrule(op,refs,trefs,p,y,q,el,k,tel,qdata)
farfieldlocal!(zlocal,op,refs,trefs,p,y,q,el,k,tel,tb,qr)
# assemble from local contributions
for r in 1:numrefs
for s in 1:Nt
for (n,b) in ad[q,r]
store(zlocal[r,s]*b,p,n,k,s)
# end
end
end
end
end
end
done += 1
new_pctg = round(Int, done / todo * 100)
if new_pctg > pctg + 9
#println(todo," ",done," ",new_pctg)
print(".")
pctg = new_pctg
end
end
println("")
end
function farfieldlocal!(zlocal,op,refspace,y,el,qr)
for q in qr
x = q.point
F = q.value
dx = q.weight
krn = kernelvals(op, y, x)
for r in 1 : length(zlocal)
zlocal[r] += integrand(op,krn,y,F[r],x) * dx
end
end
end
function farfieldlocal!(zlocal,op,trialrefs, timerefs,
p, testel, q, trialel, k, timeel, tb,quadrule)
M,N = size(zlocal)
Δt = tb.timestep
for qr in quadrule[1]
x = qr.point
F = qr.value
dx = qr.weight
krn = kernelvals(op, testel, x)
for r = 1:M
for l = 1:N
t = (k - l)*Δt
zlocal[r,l] += integrand(op,krn,testel,F[r], t, tb) * dx
end
end
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 10318 | abstract type RefSpace{T,D} end
abstract type DivRefSpace{T,D} <: RefSpace{T,D} end
abstract type AbstractSpace end
abstract type Space{T} <: AbstractSpace end
Base.length(s::AbstractSpace) = numfunctions(s)
Base.in(x, s::AbstractSpace) = (x => s)
"""
scalartype(s)
The scalar field over which the argument to a basis function or operator's integration
kernel are defined. This is always a salar data type, even if the function or kernel
is defined over a multi-dimensional space.
"""
scalartype(s::RefSpace{T}) where {T} = T
scalartype(s::Space{T}) where {T} = T
"""
refspace(basis)
Returns the ReferenceSpace of local shape functions on which the basis is built.
"""
function refspace end
"""
numfunctions(r)
Return the number of functions in a `Space` or `RefSpace`.
"""
numfunctions(rs::RefSpace{T,D}) where {T,D} = D
"""
scalartype(x)
The scalar field over which the values of a global or local basis function, or an
operator are defined. This should always be a scalar type, even if the basis or
operator takes on values in a vector or tensor space. This data type is used to
determine the `eltype` of assembled discrete operators.
"""
function scalartype end
scalartype(x1, xs...) = Base.promote_type(scalartype(x1), scalartype(xs...))
scalartype(x1::Number) = typeof(x1)
scalartype(T::Type, x) = Base.promote_type(T, scalartype(x))
"""
geometry(basis)
Returns an iterable collection of geometric elements on which the functions
in `basis` are defined. The order the elements are encountered needs correspond
to the element indices used in the data structure returned by `assemblydata`.
"""
geometry(s::Space) = s.geo
basisfunction(s::Space, i) = s.fns[i]
numfunctions(space::Space) = length(space.fns)
struct DirectProductSpace{T,S<:AbstractSpace} <: AbstractSpace
factors::Vector{S}
end
function DirectProductSpace(factors::Vector{S}) where {S<:AbstractSpace}
@assert !isempty(factors)
T = scalartype(factors...)
return DirectProductSpace{T,S}(factors)
end
Base.getindex(dps::DirectProductSpace, i) = dps.factors[i]
defaultquadstrat(op, tfs::DirectProductSpace, bfs::DirectProductSpace) = defaultquadstrat(op, tfs.factors[1], bfs.factors[1])
defaultquadstrat(op, tfs::Space, bfs::DirectProductSpace) = defaultquadstrat(op, tfs, bfs.factors[1])
defaultquadstrat(op, tfs::DirectProductSpace, bfs::Space) = defaultquadstrat(op, tfs.factors[1], bfs)
# defaultquadstrat(op, tfs::DirectProductSpace, bfs::DirectProductSpace) = defaultquadstrat(op, tfs.factors[1], bfs.factors[1])
# defaultquadstrat(op, tfs::RefSpace, bfs::DirectProductSpace) = defaultquadstrat(op, tfs, bfs.factors[1])
# defaultquadstrat(op, tfs::DirectProductSpace, bfs::RefSpace) = defaultquadstrat(op, tfs.factors[1], bfs)
# scalartype(sp::DirectProductSpace{T}) where {T} = T
# export cross, ×
export ×
function Base.:+(x::AbstractSpace...)
T = scalartype(x...)
return DirectProductSpace{T, AbstractSpace}([x...])
end
cross(a::Space{T}, b::Space{T}) where {T} = DirectProductSpace{T,Space{T}}(Space{T}[a,b])
cross(a::DirectProductSpace{T}, b::Space{T}) where {T} = DirectProductSpace{T,Space{T}}([a.factors; b])
numfunctions(S::DirectProductSpace) = sum([numfunctions(s) for s in S.factors])
Base.length(S::DirectProductSpace) = numfunctions(S)
scalartype(s::DirectProductSpace{T}) where {T} = T
geometry(x::DirectProductSpace) = weld(x.geo...)
AbstractTrees.children(x::AbstractSpace) = ()
AbstractTrees.children(x::DirectProductSpace) = x.factors
Base.iterate(x::DirectProductSpace) = iterate(x.factors)
Base.iterate(x::DirectProductSpace, state) = iterate(x.factors, state)
struct Shape{T}
cellid::Int
refid::Int
coeff::T
end
struct AssemblyData{T}
data::Array{Tuple{Int,T},3}
end
Base.getindex(ad::AssemblyData, c, r) = ADIterator(c,r,size(ad.data,1),ad)
struct AssemblyDataEl{T}
element_index::Int
ad::AssemblyData{T}
end
Base.length(adp::AssemblyDataEl) = size(adp.ad.data,2)
Base.getindex(ad::AssemblyData, c) = AssemblyDataEl(c,ad)
function Base.getindex(adp::AssemblyDataEl, r)
ad = adp.ad
ADIterator(adp.element_index,r,size(ad.data,1),ad)
end
struct ADIterator{T}
c::Int
r::Int
I::Int
ad::AssemblyData{T}
end
function Base.iterate(it::ADIterator, i = 1)
(it.I < i || it.ad.data[i,it.r,it.c][1] < 1) && return nothing
(it.ad.data[i,it.r,it.c], i+1)
end
function add!(bf::Vector{Shape{T}}, cellid, refid, coeff) where T
for (i,sh) in pairs(bf)
if sh.cellid == cellid && sh.refid == refid
bf[i] = Shape(cellid, refid, sh.coeff + T(coeff))
return nothing
end
end
push!(bf, Shape(cellid, refid, T(coeff)))
return nothing
end
"""
charts, admap = assemblydata(basis)
Given a Basis this function returns a data structure containing the information
required for matrix assemble. More precise the following expressions are valid
for the returned object `ad`:
```
ad[c,r,i].globalindex
ad[c,r,i].coefficient
```
Here, `c` and `r` are indices in the iterable set of geometric elements and the
set of local shape functions on each element. `i` ranges from 1 to the maximum
number of basis functions local shape function `r` on element `r` contributes
to.
For a triplet `(c,r,i)`, `globalindex` is the index in the Basis of the
`i`-th basis function that has a contribution from local shape function `r` on
element `r`. `coefficient` is the coefficient of that contribution in the
linear combination defining that basis function in terms of local shape
function.
*Note*: the indices `c` correspond to the position of the corresponding
element whilst iterating over `geometry(basis)`.
"""
function assemblydata(basis::Space; onlyactives=true)
@assert numfunctions(basis) != 0
T = scalartype(basis)
geo = geometry(basis)
num_cells = numcells(geo)
num_bfs = numfunctions(basis)
num_refs = numfunctions(refspace(basis))
# # determine the maximum number of function defined over a given cell
celltonum = make_celltonum(num_cells, num_refs, num_bfs, basis)
# mark the active elements, i.e. elements over which
# at least one function is defined.
if onlyactives
active, index_among_actives, num_active_cells, act_to_global =
index_actives(num_cells, celltonum)
else
active = trues(num_cells)
num_active_cells = num_cells
index_among_actives = collect(1:num_cells)
act_to_global = collect(1:num_cells)
end
num_active_cells == 0 && return nothing
elements = instantiate_charts(geo, num_active_cells, active)
max_celltonum = maximum(celltonum)
fill!(celltonum, 0)
data = fill((0,zero(T)), max_celltonum, num_refs, num_active_cells)
for b in 1 : num_bfs
for shape in basisfunction(basis, b)
c = shape.cellid
l = index_among_actives[c]
@assert 0 < l <= num_active_cells
r = shape.refid
w = shape.coeff
k = (celltonum[c,r] += 1)
data[k,r,l] = (b,w)
end
end
return elements, AssemblyData(data), act_to_global
end
function make_celltonum(num_cells, num_refs, num_bfs, basis)
celltonum = zeros(Int, num_cells, num_refs)
for b in 1 : num_bfs
basisfunc = basisfunction(basis, b)
for shape in basisfunc
c = shape.cellid
r = shape.refid
celltonum[c,r] += 1
end
end
return celltonum
end
function index_actives(num_cells, celltonum)
@assert num_cells == size(celltonum,1)
active = falses(num_cells)
index_among_actives = fill(0, num_cells)
act_to_global = fill(0, num_cells)
num_active_cells = 0
for i in 1:num_cells
if maximum(@view celltonum[i,:]) > 0
num_active_cells += 1
active[i] = true
index_among_actives[i] = num_active_cells
act_to_global[num_active_cells] = i
end
end
resize!(act_to_global, num_active_cells)
return active, index_among_actives, num_active_cells, act_to_global
end
function instantiate_charts(geo, num_active_cells, active)
@assert length(geo) != 0
E = typeof(chart(geo, first(geo)))
elements = Vector{E}(undef,num_active_cells)
j = 1
for (i,p) in enumerate(geo)
active[i] || continue
elements[j] = chart(geo, p)
j += 1
end
return elements
end
using SparseArrays
function Base.:*(space::Space, A::SparseMatrixCSC)
fns = similar(space.fns, size(A,2))
pos = similar(space.pos, size(A,2))
rows = rowvals(A)
vals = nonzeros(A)
for i in axes(A,2)
fns[i] = Shape{scalartype(space)}[]
for k in nzrange(A,i)
m = rows[k]
c = vals[k]
for (s,sh) in enumerate(space.fns[m])
add!(fns[i], sh.cellid, sh.refid, sh.coeff * c)
end
pos[i] += space.pos[m]
end
pos[i] /= length(nzrange(A,i))
end
return (typeof(space))(space.geo, fns, pos)
end
function addf!(fn::Vector{<:Shape}, x::Vector, space::Space, idcs::Vector{Int})
for (m,bf) in enumerate(space.fns)
for sh in bf
cellid = idcs[sh.cellid]
BEAST.add!(fn, cellid, sh.refid, sh.coeff * x[m])
end
end
end
function support(s::BEAST.AbstractSpace, index::Int)
geo = geometry(s)
s1 = subset(s,[index])
charts, ad, activecells = BEAST.assemblydata(s1)
return geo[activecells]
end
function functionvals(s::BEAST.Space, index::Int, n=3)
s1 = subset(s,[index])
charts, ad, a2g = BEAST.assemblydata(s1)
support = geometry(s)[a2g]
vals = Any[]
ctrs = Any[]
refs = refspace(s)
for (p,ch) in enumerate(charts)
for i in 1:n-1
for j in 1:n-1
i+j < n || continue
val = zero(BEAST.valuetype(refs, typeof(ch)))
ct = CompScienceMeshes.neighborhood(ch, (i/n,j/n))
fx = refs(ct)
for r in eachindex(fx)
for (m,a) in ad[p,r]
@assert m == 1
val += a * fx[r].value
end
end
push!(ctrs, cartesian(ct))
push!(vals, val)
end
end
end
return ctrs, vals
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 22087 | export buffachristiansen
"""
Move the s-th element right after the d-th
"""
function move_after!(p,n,s,d)
n[d] == s && return
t1 = n[d]
t2 = n[s]
t3 = p[s]
n[d] = s
n[s] = t1
p[s] == 0 || (n[p[s]] = t2)
p[s] = d
t1 == 0 || (p[t1] = s)
t2 == 0 || (p[t2] = t3)
end
function move_before!(p, n, s, d)
p[d] == s && return
t1 = p[d]
t2 = p[s]
t3 = n[s]
p[d] = s
p[s] = t1
n[s] == 0 || (p[n[s]] = t2)
n[s] = d
t1 == 0 || (n[t1] = s)
t2 == 0 || (n[t2] = t3)
end
function sortneighbors(a, pred)
n = collect(2:length(a)+1); n[end] = 0
p = collect(0:length(a)-1); p[1] = 0
last = 1
while last != 0
cand = n[last]
while cand != 0
pred(a[last], a[cand]) && break
cand = n[cand]
end
cand == 0 && break
move_after!(p, n, cand, last)
last = cand
end
first = 1
while last != 0
cand = n[last]
while cand != 0
pred(a[cand], a[first]) && break
cand = n[cand]
end
cand == 0 && break
move_before!(p, n, cand, first)
first = cand
end
b = similar(a)
i, j = last, length(n)
while true
b[j] = a[i]
i = p[i]
i == 0 && break
j -= 1
end
return b
end
isclosed(a, pred) = length(a)>2 && pred(a[end], a[1])
"""
buffachristiansen(Γ, γ)
Construct the set of Buffa-Christiansen functions subject to mesh Γ and only
enforcing zero normal components on ∂Γ ∖ γ.
"""
function buffachristiansen(Γ, γ=mesh(coordtype(Γ),1,3); ibscaled=false, sort=:spacefillingcurve, edges=:all)
@assert CompScienceMeshes.isoriented(Γ)
T = coordtype(Γ)
P = vertextype(Γ)
in_interior = interior_tpredicate(Γ)
on_junction = overlap_gpredicate(γ)
# edges = skeleton(Γ, 1; sort)
if edges == :all
edges = skeleton(Γ, 1; sort)
edges = submesh(edges) do edges, edge
ch = chart(edges, edge)
!in_interior(edges, edge) && !on_junction(ch) && return false
return true
end
end
@assert edges isa CompScienceMeshes.AbstractMesh
@assert dimension(edges) == 1
fine = if ibscaled
CompScienceMeshes.lineofsight_refinement(Γ)
else
barycentric_refinement(Γ; sort)
end
# # first pass to determine the number of functions
# numfuncs = 0
# for edge in edges
# ch = chart(edges, edge)
# !in_interior(edge) && !on_junction(ch) && continue
# numfuncs += 1
# end
vtof, vton = vertextocellmap(fine)
jct_pred = overlap_gpredicate(γ)
bcs, k = Vector{Vector{Shape{T}}}(undef,length(edges)), 1
pos = Vector{P}(undef,length(edges))
for (i,e) in enumerate(edges)
edge = CompScienceMeshes.indices(edges,e)
ch = chart(edges, e)
ln = volume(ch)
# !in_interior(edge) && !on_junction(ch) && continue
# index of edge center in fine's vertexbuffer
v = edge[1]
n = vton[v]
F = vtof[v,1:n]
supp = fine[F]
bnd = boundary(supp)
bnd_nodes = skeleton(bnd,0)
p = 0
for bn in bnd_nodes
node = CompScienceMeshes.indices(bnd_nodes, bn)
vert1 = vertices(Γ)[edge[1]]
vert2 = vertices(Γ)[edge[2]]
vert = vertices(fine)[node[1]]
dist = norm(vert-vert1)
node[1] == edge[1] && continue
if dot(vert-vert1,vert2-vert1) ≈ dist*ln
p = node[1]
break
end
end
@assert p != 0
# p = numvertices(edges) + i
pos[k] = vertices(fine)[p]
# sanity check
edge_ctr = cartesian(center(ch))
fine_vtx = vertices(fine)[p]
@assert all(carttobary(ch, edge_ctr) .≥ 0)
@assert norm(cross(edge_ctr - ch.vertices[1], fine_vtx - ch.vertices[1])) ≤ 1e-8
v = edge[1]
n = vton[v]
F = vec(vtof[v,1:n])
supp = cells(fine)[F]
bc1 = buildhalfbc(fine, F, v, p, jct_pred, ibscaled)
v = edge[2]
n = vton[v]
F = vec(vtof[v,1:n])
supp = cells(fine)[F]
bc2 = buildhalfbc(fine, F, v, p, jct_pred, ibscaled)
bc2 = Shape{T}[Shape(s.cellid, s.refid, -s.coeff) for s in bc2]
bcs[k] = [bc1; bc2]
k += 1
end
return RTBasis(fine, bcs, pos)
end
"""
buildhalfbc(fine, supp::Array{SVector{3,Int},1}, v, p)
"""
function buildhalfbc(fine, S, v, p, onjunction, ibscaled)
T = coordtype(fine)
@assert v != 0
@assert p != 0
@assert length(S) >= 2
@assert mod(length(S), 2) == 0
@assert all(0 .< S .<= numcells(fine))
@assert all([v in cells(fine)[s] for s in S])
bf = Shape{T}[]
n = length(S)
N = n ÷ 2
modn(i) = mod1(i,n)
# sort the fine faces making up the domain
share_edge(i,j) = length(intersect(cells(fine)[i],cells(fine)[j])) == 2
S = sortneighbors(S, share_edge)
@assert all(0 .< S .<= numcells(fine))
port_faces = findall(i -> p in cells(fine)[i], S)
port_edges = [something(findfirst(isequal(v), cells(fine)[S[i]]),0) for i in port_faces]
c_on_boundary = !share_edge(S[end], S[1]) || length(S) == 2
e_on_boundary = length(port_faces) == 1
@assert c_on_boundary || !e_on_boundary
# if there are two ports (c must be interior), we want to iterate
# the support starting with one and ending with the other. This
# might require reordering the ports we just discovered.
if !e_on_boundary
@assert length(port_faces) == 2 "$port_faces, $n"
if port_faces[2] == modn(port_faces[1]+1)
reverse!(port_faces)
reverse!(port_edges)
end
@assert port_faces[1] == modn(port_faces[2]+1)
end
port_lengths = [begin
face = cells(fine)[S[j]]
v1 = vertices(fine)[face[mod1(i+1,3)]]
v2 = vertices(fine)[face[mod1(i+2,3)]]
norm(v2-v1)
end for (j,i) in zip(port_faces, port_edges)]
num_ports = length(port_faces)
port_fluxes = if ibscaled
total_length = sum(port_lengths)
port_lengths / total_length
else
ones(T,num_ports) / num_ports
end
@assert sum(port_fluxes) ≈ 1
@assert length(port_faces) < 3
# Detect the boundary edges
bnd_faces = Int[]
bnd_edges = Int[]
if c_on_boundary
bnd_faces = [1,n]
p1 = x -> x in cells(fine)[S[2]] && x != v
p2 = x -> x in cells(fine)[S[n-1]] && x != v
e1 = findfirst(p1, cells(fine)[S[1]])
e2 = findfirst(p2, cells(fine)[S[n]])
bnd_edges = [e1, e2]
end
# Detect the junction edges
num_junctions = 0
jct_idxes = Int[]
if c_on_boundary
for i in 1:length(bnd_faces)
f, e = bnd_faces[i], bnd_edges[i]
a = vertices(fine)[cells(fine)[S[f]][mod1(e+1,3)]]
b = vertices(fine)[cells(fine)[S[f]][mod1(e+2,3)]]
seg = simplex(a,b)
if onjunction(seg)
push!(jct_idxes, i)
#push!(jct_edges, e)
end
end
num_junctions = length(jct_idxes)
end
# This charge needs to be compensated by interior divergence
total_charge = (!c_on_boundary || num_junctions == 2) ? 1 : 0
charges = if ibscaled
face_areas = [volume(chart(fine, s)) for s in S]
face_areas / sum(face_areas)
else
fill(total_charge/n, n)
end
@assert sum(charges) ≈ 1 || isapprox(sum(charges), 0, atol=1e-8)
# add the port contributions
for (f, e, w) in zip(port_faces, port_edges, port_fluxes)
add!(bf, S[f], e, w)
charges[f] -= w
end
bnd_fluxes = T[]
if c_on_boundary
if num_junctions == 0
ibscaled && error("IB scaled BCs for mesh with boundary not implemented!")
bnd_fluxes = T[-(n-port_faces[2])/n, -port_faces[2]/n]
elseif num_junctions == 1
bnd_fluxes = -ones(T,2)
bnd_fluxes[jct_idxes[1]] = 0
else
bnd_fluxes = zeros(T,2)
end
end
@assert length(bnd_faces) == length(bnd_edges) == length(bnd_fluxes)
for (f, e, w) in zip(bnd_faces, bnd_edges, bnd_fluxes)
add!(bf, S[f], e, w)
charges[f] -= w
end
# The remaining fluxes can be computed based on port and boundary
# influx, and the knowledge of the charge density by recursion.
# Iterate beginning with port 0:
start_face = c_on_boundary ? 1 : port_faces[1]
for i in 1 : n-1
# cyclic port_face[1]-based indexing
j0 = modn(i + start_face - 1)
j1 = modn(j0+1)
# get the indices of the faces in fine.faces
f0, f1 = S[j0], S[j1]
# what are the local indices of the common edge?
e0, e1 = getcommonedge(cells(fine)[f0], cells(fine)[f1])
# add the two half Raviart-Thomas shape functions
add!(bf, S[j0], abs(e0), +charges[j0])
add!(bf, S[j1], abs(e1), -charges[j0])
# update the charge bookkeeping
charges[j1] += charges[j0]
end
# Add a multiple of the zero-divergence pattern such that the result
# is orthogonal to the zero-divergence pattern
if ibscaled
β = zero(T)
for shape in bf
f = shape.cellid
@assert f in S
face = cells(fine)[f]
i = something(findfirst(==(v),face), 0)
@assert i != 0
ch = chart(fine, f)
area = volume(ch)
qps = quadpoints(ch, 3)
@assert sum(w for (p,w) in qps) ≈ area
for (p,w) in qps
vals = RTRefSpace{T}()(p)
bfp = shape.coeff * vals[shape.refid].value
i1 = mod1(i+1,3)
i2 = mod1(i+2,3)
dfp = 0.5/area * (ch.vertices[i2] - ch.vertices[i1])
@assert dfp ≈ vals[i1].value - vals[i2].value
β += w * dot(bfp, dfp)
end
end
γ = zero(T)
for f in S
face = cells(fine)[f]
i = something(findfirst(==(v), face), 0)
@assert i != 0
ch = chart(fine, f)
area = volume(ch)
vct = ch.vertices[mod1(i+2,3)] - ch.vertices[mod1(i+1,3)]
γ += 0.25/area * dot(vct,vct)
end
α = -β/γ
for f in S
face = cells(fine)[f]
i = something(findfirst(==(v), face), 0)
@assert i != 0
add!(bf, f, mod1(i+1,3), α)
add!(bf, f, mod1(i+2,3), -α)
end
β = zero(T)
for shape in bf
f = shape.cellid
@assert f in S
face = cells(fine)[f]
i = something(findfirst(==(v),face), 0)
@assert i != 0
ch = chart(fine, f)
area = volume(ch)
qps = quadpoints(ch, 3)
@assert sum(w for (p,w) in qps) ≈ area
for (p,w) in qps
vals = RTRefSpace{T}()(p)
bfp = shape.coeff * vals[shape.refid].value
i1 = mod1(i+1,3)
i2 = mod1(i+2,3)
dfp = 0.5/area * (ch.vertices[i2] - ch.vertices[i1])
@assert dfp ≈ vals[i1].value - vals[i2].value
β += w * dot(bfp, dfp)
end
end
@assert isapprox(β,0, atol=1e-8)
end
return bf
end
using LinearAlgebra
function buildhalfbc2(patch, port, dirichlet, prt_fluxes)
# println()
edges = skeleton(patch,1)
verts = skeleton(patch,0)
bndry = boundary(patch)
in_bndry = in(bndry)
dirbnd = submesh(dirichlet) do m,edge
in_bndry(m,edge)
# edge in cells(bndry) && return true
# reverse(edge) in cells(bndry) && return true
# return false
end
# @show numcells(patch)
# @show numcells(dirbnd)
@assert numcells(dirbnd) ≤ 4
bnd_dirbnd = boundary(dirbnd)
nodes_dirbnd = skeleton(dirbnd,0)
in_bnd_dirbnd = in(bnd_dirbnd)
int_nodes_dirbnd = submesh(nodes_dirbnd) do m,node
# node in cells(bnd_dirbnd) && return false
# return true
return !in_bnd_dirbnd(m, node)
end
# @show numcells(int_nodes_dirbnd)
@assert numcells(int_nodes_dirbnd) ≤ 2
int_pred = interior_tpredicate(patch)
num_edges_on_port = 0
num_edges_on_dirc = 0
# @show numcells(edges)
# for edge in cells(edges)
# println(edge)
# end
# println()
# for edge in cells(dirbnd)
# println(edge)
# end
# println()
# for edge in cells(port)
# println(edge)
# end
in_port = in(port)
in_dirbnd = in(dirbnd)
int_edges = submesh(edges) do m,edge
in_port(m,edge) && (num_edges_on_port+=1; return false)
in_dirbnd(m,edge) && (num_edges_on_dirc+=1; return true)
!int_pred(m,edge) && return false
return true
# (edge in cells(port)) && (num_edges_on_port+=1 ; return false)
# (reverse(edge) in cells(port)) && (num_edges_on_port+=1 ; return false)
# edge in cells(dirbnd) && (num_edges_on_dirc+=1; return true)
# reverse(edge) in cells(dirbnd) && (num_edges_on_dirc+=1; return true)
# (!int_pred(edge)) && return false
# return true
end
# println()
# for edge in cells(int_edges)
# println(edge)
# end
# @show numcells(int_edges)
# @show num_edges_on_port
# @show num_edges_on_dirc
bnd_verts = skeleton(bndry,0)
prt_verts = skeleton(port,0)
# function isonboundary(node)
# node in cells(bnd_verts)
# end
# int_verts = submesh(!isonboundary, verts)
# dirichlet_nodes = skeleton(dirichlet,0)
in_int_nodes_dirbnd = in(int_nodes_dirbnd)
in_bnd_verts = in(bnd_verts)
in_prt_verts = in(prt_verts)
int_verts = submesh(verts) do m,node
in_int_nodes_dirbnd(m,node) && return true
in_bnd_verts(m,node) && return false
in_prt_verts(m,node) && return false
return true
# node in cells(int_nodes_dirbnd) && return true
# node in cells(bnd_verts) && return false
# node in cells(prt_verts) && return false
# return true
end
# @show numcells(int_verts)
RT_int = raviartthomas(patch, cellpairs(patch, int_edges))
RT_prt = raviartthomas(patch, cellpairs(patch, port))
vertex_list = [c[1] for c in cells(int_verts)]
L0_int = lagrangec0d1(patch, vertex_list, Val{3})
Id = BEAST.Identity()
D = assemble(Id, divergence(RT_int), divergence(RT_int))
Q = assemble(Id, divergence(RT_int), divergence(RT_prt))
d = -Q * prt_fluxes
# @show numfunctions(L0_int)
@assert numfunctions(L0_int) in [1,2]
C = assemble(Id, curl(L0_int), RT_int)
curl_L0_int = curl(L0_int)
c = real(assemble(Id, curl_L0_int, RT_prt)) * prt_fluxes
mD = Matrix(D)
x1 = pinv(mD) * d
N = nullspace(mD)
# @show size(N)
# @show size(C)
p = (C*N) \ (c - C*x1)
x = x1 + N*p
@assert D*x ≈ d atol=1e-8
if !isapprox(C*x, c, atol=1e-8)
@show norm(C*x-c)
error("error")
end
return RT_int, RT_prt, x, prt_fluxes
end
# Use the algebraic construction also used in dual3d
function buffachristiansen2(Faces::CompScienceMeshes.AbstractMesh{U,D1,T}) where {U,D1,T}
faces = barycentric_refinement(Faces)
Edges = skeleton(Faces,1)
Bndry = boundary(Faces)
inBndry = in(Bndry)
Edges = submesh(Edges) do m,Edge
return !inBndry(m,Edge)
# Edge in cells(Bndry) && return false
# reverse(Edge) in cells(Bndry) && return false
# return true
end
#T = Float64
bfs = Vector{Vector{Shape{T}}}(undef, numcells(Edges))
pos = Vector{vertextype(Faces)}(undef, numcells(Edges))
dirichlet = boundary(faces)
for (E,Edge) in enumerate(Edges)
EdgeInds = CompScienceMeshes.indices(Edges, Edge)
# @show Edge
bfs[E] = Vector{Shape{T}}()
pos[E] = cartesian(center(chart(Edges,Edge)))
# port_vertex_idx = numvertices(Faces) + E
port_vertex_idx = argmin(norm.(vertices(faces) .- Ref(pos[E])))
# pos[E] = vertices(faces)[port_vertex_idx]
# @show carttobary(chart(Edges,Edge),pos[E])
# @show pos[E]
# @show (Faces.vertices[Edge[1]]+Faces.vertices[Edge[2]])/2
# Build the plus-patch
ptch_vert_idx = EdgeInds[1]
ptch_face_idcs = [i for (i,face) in enumerate(cells(faces)) if ptch_vert_idx in face]
patch = Mesh(vertices(faces), cells(faces)[ptch_face_idcs])
patch_bnd = boundary(patch)
# @show numcells(patch_bnd)
port = Mesh(vertices(faces), filter(c->port_vertex_idx in c, cells(patch_bnd)))
# @show numcells(patch)
# @show numcells(port)
# @assert numcells(patch) >= 6
@assert numcells(port) == 2
prt_fluxes = [0.5, 0.5]
RT_int, RT_prt, x_int, x_prt = buildhalfbc2(patch, port, dirichlet, prt_fluxes)
for (m,bf) in enumerate(RT_int.fns)
for sh in bf
cellid = ptch_face_idcs[sh.cellid]
BEAST.add!(bfs[E], cellid, sh.refid, sh.coeff * x_int[m])
end
end
for (m,bf) in enumerate(RT_prt.fns)
for sh in bf
cellid = ptch_face_idcs[sh.cellid]
BEAST.add!(bfs[E],cellid, sh.refid, sh.coeff * x_prt[m])
end
end
# Build the minus-patch
ptch_vert_idx = EdgeInds[2]
ptch_face_idcs = [i for (i,face) in enumerate((faces)) if ptch_vert_idx in CompScienceMeshes.indices(faces, face)]
patch = Mesh(vertices(faces), cells(faces)[ptch_face_idcs])
port = Mesh(vertices(faces), filter(c->port_vertex_idx in c, cells(boundary(patch))))
# @assert numcells(patch) >= 6
@assert numcells(port) == 2
prt_fluxes = [-0.5, -0.5]
RT_int, RT_prt, x_int, x_prt = buildhalfbc2(patch, port, dirichlet, prt_fluxes)
for (m,bf) in enumerate(RT_int.fns)
for sh in bf
cellid = ptch_face_idcs[sh.cellid]
BEAST.add!(bfs[E], cellid, sh.refid, sh.coeff * x_int[m])
end
end
for (m,bf) in enumerate(RT_prt.fns)
for sh in bf
cellid = ptch_face_idcs[sh.cellid]
BEAST.add!(bfs[E],cellid, sh.refid, sh.coeff * x_prt[m])
end
end
end
RTBasis(faces, bfs, pos)
end
# Extend into both dual faces in a single call to buildhalfbc2 (aka extend_2_form)
function buffachristiansen3(Faces::CompScienceMeshes.AbstractMesh{U,D1,T}) where {U,D1,T}
faces = barycentric_refinement(Faces)
Edges = skeleton(Faces,1)
Bndry = boundary(Faces)
inBndry = in(Bndry)
Edges = submesh(Edges) do m,Edge
inBndry(m,Edge) && return false
# reverse(Edge) in cells(Bndry) && return false
return true
end
#T = Float64
bfs = Vector{Vector{Shape{T}}}(undef, numcells(Edges))
pos = Vector{vertextype(Faces)}(undef, numcells(Edges))
dirichlet = boundary(faces)
for (E,Edge) in enumerate(Edges)
bfs[E] = Vector{Shape{T}}()
# port_vertex_idx = numvertices(Faces) + E
# pos[E] = vertices(faces)[port_vertex_idx]
pos[E] = cartesian(center(chart(Edges,Edge)))
# port_vertex_idx = numvertices(Faces) + E
port_vertex_idx = argmin(norm.(vertices(faces) .- Ref(pos[E])))
# Build the dual support
EdgeInds = CompScienceMeshes.indices(Edges, Edge)
ptch_face_idcs1 = [i for (i,face) in enumerate(faces) if EdgeInds[1] in CompScienceMeshes.indices(faces,face)]
ptch_face_idcs2 = [i for (i,face) in enumerate(faces) if EdgeInds[2] in CompScienceMeshes.indices(faces,face)]
patch1 = Mesh(vertices(faces), cells(faces)[ptch_face_idcs1])
patch2 = Mesh(vertices(faces), cells(faces)[ptch_face_idcs2])
patch_bnd = boundary(patch1)
port = Mesh(vertices(faces), filter(c->port_vertex_idx in c, cells(patch_bnd)))
patch = CompScienceMeshes.union(patch1, patch2)
# @show numcells(patch_bnd)
# @show numcells(patch)
# @show numcells(port)
# @assert numcells(skeleton(patch,1))+2 == numcells(skeleton(patch1,1)) + numcells(skeleton(patch2,1))
@assert numcells(patch) >= 6
@assert numcells(port) == 2
prt_fluxes = [0.5, -0.5]
RT_int, RT_prt, x_int, x_prt = buildhalfbc2(patch, port, dirichlet, prt_fluxes)
ptch_face_idcs = vcat(ptch_face_idcs1, ptch_face_idcs2)
for (m,bf) in enumerate(RT_int.fns)
for sh in bf
cellid = ptch_face_idcs[sh.cellid]
BEAST.add!(bfs[E], cellid, sh.refid, sh.coeff * x_int[m])
end
end
for (m,bf) in enumerate(RT_prt.fns)
for sh in bf
cellid = ptch_face_idcs[sh.cellid]
BEAST.add!(bfs[E],cellid, sh.refid, sh.coeff * x_prt[m])
end
end
# # Build the minus-patch
# ptch_vert_idx = Edge[2]
# ptch_face_idcs = [i for (i,face) in enumerate(cells(faces)) if ptch_vert_idx in face]
# patch = Mesh(vertices(faces), cells(faces)[ptch_face_idcs])
# port = Mesh(vertices(faces), filter(c->port_vertex_idx in c, cells(boundary(patch))))
# @assert numcells(patch) >= 6
# @assert numcells(port) == 2
# RT_int, RT_prt, x_int, x_prt = buildhalfbc2(patch, port, nothing)
# for (m,bf) in enumerate(RT_int.fns)
# for sh in bf
# cellid = ptch_face_idcs[sh.cellid]
# BEAST.add!(bfs[E], cellid, sh.refid, -1.0 * sh.coeff * x_int[m])
# end
# end
# for (m,bf) in enumerate(RT_prt.fns)
# for sh in bf
# cellid = ptch_face_idcs[sh.cellid]
# BEAST.add!(bfs[E],cellid, sh.refid, -1.0 * sh.coeff * x_prt[m])
# end
# end
end
RTBasis(faces, bfs, pos)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3948 | mutable struct BDM3DBasis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
refspace(s::BDM3DBasis{T}) where {T} = BDM3DRefSpace{T}()
function brezzidouglasmarini3d(mesh, faces)
T = coordtype(mesh)
P = vertextype(mesh)
num_faces = numcells(faces)
C = connectivity(faces, mesh, identity)
#println(C)
rows = rowvals(C)
vals = nonzeros(C)
#println(rows)
fns = Vector{Vector{Shape{T}}}(undef, 3*num_faces)
pos = Vector{P}(undef, 3*num_faces)
#println(cells(faces))
for (i,face) in enumerate(faces)
fns[3*(i-1)+1] = Vector{Shape{T}}()
fns[3*(i-1)+2] = Vector{Shape{T}}()
fns[3*(i-1)+3] = Vector{Shape{T}}()
pos[3*(i-1)+1] = cartesian(center(chart(faces,face)))
pos[3*(i-1)+2] = cartesian(center(chart(faces,face)))
pos[3*(i-1)+3] = cartesian(center(chart(faces,face)))
#println( cartesian(center(chart(faces,face))))
#println(face)
# add shape function for each cell to the basis
for k in nzrange(C,i)
#Cell index
j = rows[k]
#face index (sign gives local orientation)
s = vals[k]
cell = cells(mesh)[j]
#local face index
lf = abs(s);
#local vertex index
lv1 = mod1(lf+1,4)
lv2 = mod1(lf+2,4)
lv3 = mod1(lf+3,4)
#println("\t",lv1," ",lv2," ",lv3)
#println("\t=>",cell[lv1]," ",cell[lv2]," ",cell[lv3])
#global vertex index
gv1 = cell[lv1]
gv2 = cell[lv2]
gv3 = cell[lv3]
if (gv1 < gv2) && (gv2 < gv3)
push!(fns[3*(i-1)+1], Shape{T}(j, 3*(abs(s)-1)+1, sign(s)))
push!(fns[3*(i-1)+2], Shape{T}(j, 3*(abs(s)-1)+2, sign(s)))
push!(fns[3*(i-1)+3], Shape{T}(j, 3*(abs(s)-1)+3, sign(s)))
#println("Case 1")
elseif (gv1 < gv3) && (gv3 < gv2)
push!(fns[3*(i-1)+1], Shape{T}(j, 3*(abs(s)-1)+1, sign(s)))
push!(fns[3*(i-1)+2], Shape{T}(j, 3*(abs(s)-1)+3, sign(s)))
push!(fns[3*(i-1)+3], Shape{T}(j, 3*(abs(s)-1)+2, sign(s)))
#println("Case 2")
elseif (gv2 < gv1) && (gv1 < gv3)
push!(fns[3*(i-1)+1], Shape{T}(j, 3*(abs(s)-1)+2, sign(s)))
push!(fns[3*(i-1)+2], Shape{T}(j, 3*(abs(s)-1)+1, sign(s)))
push!(fns[3*(i-1)+3], Shape{T}(j, 3*(abs(s)-1)+3, sign(s)))
#println("Case 3")
elseif (gv2 < gv3) && (gv3 < gv1)
push!(fns[3*(i-1)+1], Shape{T}(j, 3*(abs(s)-1)+2, sign(s)))
push!(fns[3*(i-1)+2], Shape{T}(j, 3*(abs(s)-1)+3, sign(s)))
push!(fns[3*(i-1)+3], Shape{T}(j, 3*(abs(s)-1)+1, sign(s)))
#println("Case 4")
elseif (gv3 < gv2) && (gv2 < gv1)
push!(fns[3*(i-1)+1], Shape{T}(j, 3*(abs(s)-1)+3, sign(s)))
push!(fns[3*(i-1)+2], Shape{T}(j, 3*(abs(s)-1)+2, sign(s)))
push!(fns[3*(i-1)+3], Shape{T}(j, 3*(abs(s)-1)+1, sign(s)))
#println("Case 5")
elseif (gv3 < gv1) && (gv1 < gv2)
push!(fns[3*(i-1)+1], Shape{T}(j, 3*(abs(s)-1)+3, sign(s)))
push!(fns[3*(i-1)+2], Shape{T}(j, 3*(abs(s)-1)+1, sign(s)))
push!(fns[3*(i-1)+3], Shape{T}(j, 3*(abs(s)-1)+2, sign(s)))
#println("Case 6")
end
#println(s)
#push!(fns[3*(i-1)+1], Shape{T}(j, 3*(abs(s)-1)+1, sign(s)))
#push!(fns[3*(i-1)+2], Shape{T}(j, 3*(abs(s)-1)+2, sign(s)))
#push!(fns[3*(i-1)+3], Shape{T}(j, 3*(abs(s)-1)+3, sign(s)))
end
end
BDM3DBasis(mesh, fns, pos)
end
function brezzidouglasmarini3d(mesh)
faces = skeleton(mesh, 2)
brezzidouglasmarini3d(mesh, faces)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1607 | struct BDMBasis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
BDMBasis(geo, fns) = BDMBasis(geo, fns, Vector{vertextype(geo)}(undef,length(fns)))
refspace(s::BDMBasis{T}) where {T} = BDMRefSpace{T}()
subset(s::BDMBasis,I) = BDMBasis(s.geo, s.fns[I], s.pos[I])
function brezzidouglasmarini(mesh)
edges = skeleton(mesh, 1)
cps = cellpairs(mesh, edges, dropjunctionpair=true)
ids = findall(x -> x>0, cps[2,:])
brezzidouglasmarini(mesh, cps[:,ids])
end
function brezzidouglasmarini(mesh, cellpairs::Array{Int,2})
@warn "brezzidouglasmarini(mesh, cellpairs) assumes mesh is oriented"
@assert size(cellpairs,1) == 2
T = coordtype(mesh)
P = vertextype(mesh)
S = Shape{T}
F = Vector{Shape{T}}
nf = 2*size(cellpairs,2)
fns = Vector{F}(undef, nf)
pos = Vector{P}(undef, nf)
for i in axes(cellpairs)[2]
c1, c2 = cellpairs[:,i]
cell1 = cells(mesh)[c1]
cell2 = cells(mesh)[c2]
e1, e2 = getcommonedge(cell1, cell2)
@assert e1*e2 < 0
e1, e2 = abs(e1), abs(e2)
fns[2*(i-1)+1] = [ S(c1, 2*(e1-1)+1 ,+1.0), S(c2, 2*(e2-1)+2,-1.0)]
fns[2*(i-1)+2] = [ S(c1, 2*(e1-1)+2 ,+1.0), S(c2, 2*(e2-1)+1,-1.0)]
v1 = cell1[mod1(e1+1,3)]
v2 = cell1[mod1(e1+2,3)]
edge = simplex(mesh.vertices[[v1,v2]]...)
cntr = cartesian(center(edge))
pos[2*(i-1)+1] = cntr
pos[2*(i-1)+2] = cntr
end
BDMBasis(mesh, fns, pos)
end
divergence(X::BDMBasis, geo, fns) = LagrangeBasis{0,-1,1}(geo, fns, deepcopy(positions(X)))
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1489 | export divergence
function divergence(X::DirectProductSpace{T}) where T
x = Space{T}[divergence(s) for s in X.factors]
DirectProductSpace(x)
end
"""
divergence(x)
Compute the divergence of a finite element space.
"""
function divergence(x::Space)
ref = refspace(x)
geo = geometry(x)
els = elements(geo)
fns = x.fns
dvs = similar(fns)
for (i,fn) in enumerate(fns)
dvs[i] = similar(fns[i])
for (j,sh) in enumerate(fn)
el = els[sh.cellid]
dvs[i][j] = divergence(ref, sh, el)
end
end
divergence(x, geo, dvs)
end
"""
curl(X)
Compute the curl of a finite element basis. The resulting set of functions might be linearly dependent because of the kernel of the curl operator.
"""
function curl(x::Space)
ref = refspace(x)
geo = geometry(x)
els = elements(geo)
crl = similar(x.fns)
for (i,fn) in enumerate(x.fns)
crl[i] = similar(x.fns[i], 0)
for (j,sh) in enumerate(fn)
el = els[sh.cellid]
append!(crl[i], curl(ref, sh, el))
end
end
curl(x, geo, crl)
end
function gradient(x::Space)
ref = refspace(x)
geo = geometry(x)
els = elements(geo)
crl = similar(x.fns)
for (i,fn) in enumerate(x.fns)
crl[i] = similar(x.fns[i], 0)
for (j,sh) in enumerate(fn)
el = els[sh.cellid]
append!(crl[i], gradient(ref, sh, el))
end
end
gradient(x, geo, crl)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 9195 | using LinearAlgebra
# function addf!(fn::Vector{<:Shape}, x::Vector, space::Space, idcs::Vector{Int})
# for (m,bf) in enumerate(space.fns)
# for sh in bf
# cellid = idcs[sh.cellid]
# BEAST.add!(fn, cellid, sh.refid, sh.coeff * x[m])
# end
# end
# end
function dual2forms_body(Edges, tetrs, bnd, dir, v2t, v2n)
T = coordtype(tetrs)
bfs = Vector{Vector{Shape{T}}}(undef, numcells(Edges))
pos = Vector{vertextype(Edges)}(undef, numcells(Edges))
Cells = cells(Edges)
num_threads = Threads.nthreads()
Threads.@threads for F in eachindex(Cells)
Edge = Cells[F]
myid = Threads.threadid()
myid == 1 && (F % 20 == 0) &&
println("Constructing dual 2-forms: $(F*num_threads) out of $(length(Edges)).")
idcs1 = v2t[Edge[1],1:v2n[Edge[1]]]
idcs2 = v2t[Edge[2],1:v2n[Edge[2]]]
supp1 = tetrs.mesh[idcs1]
supp2 = tetrs.mesh[idcs2]
bnd_supp1 = boundary(supp1)
bnd_supp2 = boundary(supp2)
dir1_faces = submesh(in(dir), bnd_supp1)
dir2_faces = submesh(in(dir), bnd_supp2)
port_faces = bnd_supp1
port_faces = submesh(in(bnd_supp2), port_faces)
x0 = zeros(length(port_faces))
total_vol = sum(volume(chart(port_faces, fc)) for fc in port_faces)
tgt = tangents(center(chart(Edges, F)),1)
for (i,face) in enumerate(port_faces)
chrt = chart(port_faces, face)
nrm = normal(chrt)
vol = volume(chrt)
sgn = sign(dot(nrm, tgt))
x0[i] = sgn * vol / total_vol
end
RT1_prt = BEAST.raviartthomas(supp1, port_faces)
RT2_prt = BEAST.raviartthomas(supp2, port_faces)
x1_int, _, RT1_int = extend_2_form(supp1, dir1_faces, x0, port_faces)
x2_int, _, RT2_int = extend_2_form(supp2, dir2_faces, x0, port_faces)
bfs[F] = Vector{Shape{T}}()
pos[F] = cartesian(center(chart(Edges,F)))
addf!(bfs[F], x1_int, RT1_int, idcs1)
addf!(bfs[F], x0, RT1_prt, idcs1)
addf!(bfs[F], x2_int, RT2_int, idcs2)
addf!(bfs[F], x0, RT2_prt, idcs2)
end
NDLCDBasis(tetrs, bfs, pos)
end
function extend_1_form(supp, dirichlet, x_prt, port_edges)
Id = BEAST.Identity()
bnd_supp = boundary(supp)
supp_edges = CompScienceMeshes.skeleton_fast(supp, 1)
supp_nodes = CompScienceMeshes.skeleton_fast(supp, 0)
dir_compl = submesh(!in(dirichlet), bnd_supp)
dir_compl_edges = CompScienceMeshes.skeleton_fast(dir_compl, 1)
dir_compl_nodes = CompScienceMeshes.skeleton_fast(dir_compl, 0)
int_edges = submesh(!in(dir_compl_edges), supp_edges)
int_nodes = submesh(!in(dir_compl_nodes), supp_nodes)
Nd_prt = BEAST.nedelec(supp, port_edges)
Nd_int = BEAST.nedelec(supp, int_edges)
curl_Nd_prt = curl(Nd_prt)
curl_Nd_int = curl(Nd_int)
A = assemble(Id, curl_Nd_int, curl_Nd_int, threading=Threading{:single})
a = -assemble(Id, curl_Nd_int, curl_Nd_prt, threading=Threading{:single}) * x_prt
if length(int_nodes) > 0
Lg_int = BEAST.lagrangec0d1(supp, int_nodes)
grad_Lg_int = gradient(Lg_int)
B = assemble(Id, grad_Lg_int, Nd_int, threading=Threading{:single})
b = -assemble(Id, grad_Lg_int, Nd_prt, threading=Threading{:single}) * x_prt
Z = zeros(eltype(b), length(b), length(b))
S = [A B'; B Z]
u = S \ [a;b]
else
u = A \ a
end
x_int = u[1:numfunctions(Nd_int)]
return x_int, int_edges, Nd_int
end
function extend_2_form(supp, dirichlet, x_prt, port_faces)
Id = BEAST.Identity()
bnd_supp = boundary(supp)
supp_faces = CompScienceMeshes.skeleton_fast(supp, 2)
supp_edges = CompScienceMeshes.skeleton_fast(supp, 1)
supp_nodes = CompScienceMeshes.skeleton_fast(supp, 0)
dir_compl = submesh(!in(dirichlet), bnd_supp)
dir_compl_faces = CompScienceMeshes.skeleton_fast(dir_compl, 2)
dir_compl_edges = CompScienceMeshes.skeleton_fast(dir_compl, 1)
dir_compl_nodes = CompScienceMeshes.skeleton_fast(dir_compl, 0)
int_faces = submesh(!in(dir_compl_faces), supp_faces)
int_edges = submesh(!in(dir_compl_edges), supp_edges)
int_nodes = submesh(!in(dir_compl_nodes), supp_nodes)
if length(int_nodes) > 0
@assert length(int_nodes) == 1
int_edges = int_edges[collect(1:length(int_edges)-length(int_nodes))]
end
RT_prt = BEAST.raviartthomas(supp, port_faces)
RT_int = BEAST.raviartthomas(supp, int_faces)
Nd_int = BEAST.nedelec(supp, int_edges)
div_RT_prt = divergence(RT_prt)
div_RT_int = divergence(RT_int)
curl_Nd_int = curl(Nd_int)
A = assemble(Id, div_RT_int, div_RT_int)
B = assemble(Id, curl_Nd_int, RT_int)
a = -assemble(Id, div_RT_int, div_RT_prt) * x_prt
b = -assemble(Id, curl_Nd_int, RT_prt) * x_prt
Z = zeros(eltype(b), length(b), length(b))
u = [A B'; B Z] \ [a;b]
x_int = u[1:end-length(b)]
return x_int, int_faces, RT_int
end
function dual1forms(Tetrs, Faces, Dir)
tetrs, bnd, dir, v2t, v2n = dualforms_init(Tetrs, Dir)
dual1forms_body(Faces, tetrs, bnd, dir, v2t, v2n)
end
function dual2forms(Tetrs, Faces, Dir)
tetrs, bnd, dir, v2t, v2n = dualforms_init(Tetrs, Dir)
dual2forms_body(Faces, tetrs, bnd, dir, v2t, v2n)
end
function dual1forms_body(Faces, tetrs, bnd, dir, v2t, v2n)
@assert dimension(Faces) == 2
T = coordtype(tetrs)
bfs = Vector{Vector{Shape{T}}}(undef, length(Faces))
pos = Vector{vertextype(Faces)}(undef, length(Faces))
Cells = cells(Faces)
num_threads = Threads.nthreads()
Threads.@threads for F in 1:length(Faces)
Face = Cells[F]
Chart = chart(Faces, F)
myid = Threads.threadid()
myid == 1 && F % 20 == 0 &&
println("Constructing dual 1-forms: $(F*num_threads) out of $(length(Faces)).")
idcs1 = v2t[Face[1],1:v2n[Face[1]]]
idcs2 = v2t[Face[2],1:v2n[Face[2]]]
idcs3 = v2t[Face[3],1:v2n[Face[3]]]
supp1 = tetrs.mesh[idcs1]
supp2 = tetrs.mesh[idcs2]
supp3 = tetrs.mesh[idcs3]
bnd_supp1 = boundary(supp1)
bnd_supp2 = boundary(supp2)
bnd_supp3 = boundary(supp3)
dir1_faces = submesh(in(dir), bnd_supp1)
dir2_faces = submesh(in(dir), bnd_supp2)
dir3_faces = submesh(in(dir), bnd_supp3)
bnd_dir1 = boundary(dir1_faces)
bnd_dir2 = boundary(dir2_faces)
bnd_dir3 = boundary(dir3_faces)
supp23 = submesh(in(bnd_supp2), bnd_supp3)
supp31 = submesh(in(bnd_supp3), bnd_supp1)
supp12 = submesh(in(bnd_supp1), bnd_supp2)
dir23_edges = submesh(in(bnd_dir2), bnd_dir3)
dir31_edges = submesh(in(bnd_dir3), bnd_dir1)
dir12_edges = submesh(in(bnd_dir1), bnd_dir2)
port_edges = boundary(supp23)
port_edges = submesh(in(boundary(supp31)), port_edges)
port_edges = submesh(in(boundary(supp12)), port_edges)
@assert 1 ≤ length(port_edges) ≤ 2
# Step 1: set port flux and extend to dual faces
x0 = zeros(length(port_edges))
total_vol = sum(volume(chart(port_edges, edge)) for edge in port_edges)
nrm = normal(Chart)
for (i,edge) in enumerate(port_edges)
cht = chart(port_edges, edge)
tgt = tangents(center(cht),1)
vol = volume(cht)
sgn = sign(dot(nrm, tgt))
x0[i] = sgn * vol / total_vol
end
x23, supp23_int_edges, _ = extend_1_form(supp23, dir23_edges, x0, port_edges)
x31, supp31_int_edges, _ = extend_1_form(supp31, dir31_edges, x0, port_edges)
x12, supp12_int_edges, _ = extend_1_form(supp12, dir12_edges, x0, port_edges)
port1_edges = CompScienceMeshes.union(port_edges, supp31_int_edges)
port1_edges = CompScienceMeshes.union(port1_edges, supp12_int_edges)
port2_edges = CompScienceMeshes.union(port_edges, supp12_int_edges)
port2_edges = CompScienceMeshes.union(port2_edges, supp23_int_edges)
port3_edges = CompScienceMeshes.union(port_edges, supp23_int_edges)
port3_edges = CompScienceMeshes.union(port3_edges, supp31_int_edges)
x1_prt = [x0; x31; x12]
x2_prt = [x0; x12; x23]
x3_prt = [x0; x23; x31]
Nd1_prt = BEAST.nedelec(supp1, port1_edges)
Nd2_prt = BEAST.nedelec(supp2, port2_edges)
Nd3_prt = BEAST.nedelec(supp3, port3_edges)
x1_int, _, Nd1_int = extend_1_form(supp1, dir1_faces, x1_prt, port1_edges)
x2_int, _, Nd2_int = extend_1_form(supp2, dir2_faces, x2_prt, port2_edges)
x3_int, _, Nd3_int = extend_1_form(supp3, dir3_faces, x3_prt, port3_edges)
# inject in the global space
fn = BEAST.Shape{Float64}[]
addf!(fn, x1_prt, Nd1_prt, idcs1)
addf!(fn, x1_int, Nd1_int, idcs1)
addf!(fn, x2_prt, Nd2_prt, idcs2)
addf!(fn, x2_int, Nd2_int, idcs2)
addf!(fn, x3_prt, Nd3_prt, idcs3)
addf!(fn, x3_int, Nd3_int, idcs3)
pos[F] = cartesian(CompScienceMeshes.center(Chart))
bfs[F] = fn
end
NDLCCBasis(tetrs, bfs, pos)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 27205 |
"""
The dimension of the space of Lagrange shape functions of degree d over a simplex of
dimension n is binom(n+d,d) == binom(n+d,n)
"""
function lagdimension end
# D: degree
# C: continuity
# M: mesh type
# T: field type
# NF: number of local shape functions
mutable struct LagrangeBasis{D,C,M,T,NF,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
# Constructor that automatically deduces MeshType and ScalarType but requires specification
# of the Degree, Cont, and NumFns type parameters
function LagrangeBasis{D,C,N}(mesh::M, fns::Vector{Vector{Shape{T}}}, pos::Vector{P}) where {P,T,M,N,C,D}
LagrangeBasis{D,C,M,T,N,P}(mesh, fns, pos)
end
refspace(space::LagrangeBasis{D,C,M,T,NF}) where {D,C,M,T,NF} = LagrangeRefSpace{T,D,dimension(geometry(space))+1,NF}()
subset(s::S,I) where {S <: Space} = S(s.geo, s.fns[I], s.pos[I])
function lagrangecxd0(mesh)
U = universedimension(mesh)
D1 = dimension(mesh)+1
T = coordtype(mesh)
geometry = mesh
num_cells = numcells(mesh)
# create the local shapes
fns = Vector{Vector{Shape{T}}}(undef,num_cells)
pos = Vector{vertextype(mesh)}(undef,num_cells)
for (i,cell) in enumerate(mesh)
fns[i] = [Shape(i, 1, T(1.0))]
pos[i] = cartesian(center(chart(mesh, cell)))
end
NF = 1
LagrangeBasis{0,-1,NF}(geometry, fns, pos)
end
"""
unitfunctioncxd0(mesh)
Constructs a constant function with value 1 on `mesh`.
"""
function unitfunctioncxd0(mesh)
T = coordtype(mesh)
geometry = mesh
# create the local shapes
fns = Vector{Vector{Shape{T}}}(undef, 1)
pos = Vector{vertextype(mesh)}(undef, 1)
fns[1] = [Shape(i, 1, T(1.0)) for (i, cell) in enumerate(mesh)]
# Arguably, the position is fairly meaningless
# in case of a global function. Might be replaced by something
# more useful.
# For now, we fill it with the average position of the shape functions
p = vertextype(mesh)(0.0, 0.0, 0.0)
for cell in mesh
p += cartesian(center(chart(mesh, cell)))
end
pos[1] = p ./ numcells(mesh)
NF = 1
LagrangeBasis{0,-1,NF}(geometry, fns, pos)
end
"""
unitfunctionc0d1(mesh)
Constructs a constant function with value 1 on `mesh` consisting of linear shapes. For dirichlet=true goes to zero on the boundary.
"""
function unitfunctionc0d1(mesh; dirichlet=true)
if dirichlet == false
return unitfunctionc0d1(mesh, skeleton(mesh,0))
else
return unitfunctionc0d1_dirichlet(mesh)
end
end
function unitfunctionc0d1_dirichlet(mesh)
T = coordtype(mesh)
verts = skeleton(mesh, 0)
detached = trues(numvertices(mesh))
for v in cells(verts)
detached[v] = false
end
bnd = boundary(mesh)
bndverts = skeleton(bnd, 0)
notonbnd = trues(numvertices(mesh))
for v in cells(bndverts)
notonbnd[v] = false
end
vertexlist = findall(notonbnd .& .!detached)
cellids, ncells = vertextocellmap(mesh)
Cells = cells(mesh)
Verts = vertices(mesh)
# create the local shapes
fns = Vector{Vector{Shape{T}}}(undef, 1)
pos = Vector{vertextype(mesh)}(undef, 1)
numshapes = sum(ncells[vertexlist])
shapes = Vector{Shape{T}}(undef,numshapes)
n = 0
for v in vertexlist
nshapes = ncells[v]
nshapes == 0 && continue
for s in 1: nshapes
c = cellids[v,s]
cell = Cells[c]
localid = something(findfirst(isequal(v), cell),0)
@assert localid != 0
shapes[s+n] = Shape(c, localid, T(1.0))
end
n += nshapes
end
fns[1] = shapes
p = sum(mesh.vertices[vertexlist])/length(vertexlist)
pos[1] = p
NF = 3
LagrangeBasis{1,0,NF}(mesh, fns, pos)
end
function unitfunctionc0d1(mesh, nodes::CompScienceMeshes.AbstractMesh{U,1} where {U})
Conn = connectivity(nodes, mesh, abs)
rows = rowvals(Conn)
vals = nonzeros(Conn)
T = coordtype(mesh)
P = vertextype(mesh)
S = Shape{T}
fns = Vector{Vector{Shape{T}}}(undef, 1)
pos = Vector{vertextype(mesh)}(undef, 1)
fn = Vector{S}()
for (i,node) in enumerate(nodes)
for k in nzrange(Conn,i)
cellid = rows[k]
refid = vals[k]
push!(fn, Shape(cellid, refid, T(1.0)))
end
end
fns[1] = fn
p = sum(nodes.vertices)/length(nodes.vertices)
pos[1] = p
NF = dimension(mesh) + 1
LagrangeBasis{1,0,NF}(mesh, fns, pos)
end
"""
lagrangec0d1(mesh[, bnd])
Construct the basis of continuous, piecewise linear basis functions subordinate to mesh `mesh`. Basis functions are constructed at vertices in the interionr of the mesh and on the closure of 'bnd'. In particular, leaving out the second argument creates a finite element space subject to homogeneous Dirichlet boundary conditions.
"""
function lagrangec0d1_dirichlet(mesh)
verts = skeleton(mesh, 0)
detached = trues(numvertices(mesh))
for v in cells(verts)
detached[v] = false
end
bnd = boundary(mesh)
bndverts = skeleton(bnd, 0)
notonbnd = trues(numvertices(mesh))
for v in cells(bndverts)
notonbnd[v] = false
end
vertexlist = findall(notonbnd .& .!detached)
lagrangec0d1(mesh, vertexlist, Val{dimension(mesh)+1})
end
function interior_and_junction_vertices(mesh, jct)
verts = skeleton(mesh, 0)
detached = trues(numvertices(mesh))
for v in cells(verts)
detached[v] = false
end
bndfaces = boundary(mesh)
bndverts = skeleton(bndfaces, 0)
notonbnd = trues(numvertices(mesh))
for v in cells(bndverts)
notonbnd[v] = false
end
onjct = broadcast(!, notonbnd)
overlap_with_junction = overlap_gpredicate(jct)
for indices in cells(bndfaces)
bndface = simplex(vertices(bndfaces, indices))
if overlap_with_junction(bndface)
continue
else
for v in indices
onjct[v] = false
end
end
end
vertexlist = findall(broadcast(|, onjct, notonbnd) .& broadcast(!,detached))
end
"""
duallagrangecxd0(mesh, jct) -> basis
Build dual Lagrange piecewise constant elements. Boundary nodes are only considered if
they are in the interior of `jct`.
The default dual function (`interpolatory=false`) is similar to the one depicted
in Figure 3 of Buffa et al (doi: 10.1090/S0025-5718-07-01965-5), with the
difference that each individual shape function is normalized with respect to
the area so that overall the integral over the dual function is one.
When `interpolatory=true` is used, the function value is one on the support, and thus,
it gives rise to a partition of unity.
"""
function duallagrangecxd0(mesh, jct=CompScienceMeshes.mesh(coordtype(mesh), dimension(mesh)-1); interpolatory=false)
vertexlist = interior_and_junction_vertices(mesh, jct)
duallagrangecxd0(mesh, vertexlist; interpolatory=interpolatory)
end
function duallagrangecxd0(mesh, vertexlist::Vector{Int}; interpolatory=false)
T = coordtype(mesh)
fns = Vector{Vector{Shape{T}}}(undef,length(vertexlist))
pos = Vector{vertextype(mesh)}()
fine = barycentric_refinement(mesh)
vtoc, vton = vertextocellmap(fine)
verts = vertices(mesh)
for (k,v) in enumerate(vertexlist)
n = vton[v]
F = vtoc[v,1:n]
fns[k] = singleduallagd0(fine, F, v, interpolatory=interpolatory)
push!(pos, verts[v])
end
NF = 1
LagrangeBasis{0,-1,NF}(fine, fns, pos)
end
function duallagrangecxd0(mesh, vertices::CompScienceMeshes.AbstractMesh{U,1}; interpolatory=false) where {U}
# vertexlist = Int[v[1] for v in vertices]
vertexlist =Int[CompScienceMeshes.indices(vertices, v)[1] for v in vertices]
return duallagrangecxd0(mesh, vertexlist; interpolatory=interpolatory)
end
"""
singleduallagd0(fine, F, v; interpolatory=false)
Build a single dual constant Lagrange element a mesh `fine`. `F` contains the indices
to cells in the support and v is the index in the vertex list of the defining vertex.
The default dual function (`interpolatory=false`) is similar to the one depicted
in Figure 3 of Buffa et al (doi: 10.1090/S0025-5718-07-01965-5), with the
difference that each individual shape function is normalized with respect to
the area so that overall the integral over the dual function is one.
When `interpolatory=true` is used, the function value is one on the support, and thus,
it gives rise to a partition of unity.
"""
function singleduallagd0(fine, F, v; interpolatory=false)
T = coordtype(fine)
fn = Shape{T}[]
for cellid in F
# cell = cells(fine)[cellid]
ptch = chart(fine, cellid)
coeff = interpolatory ? T(1.0) : 1 / volume(ptch) / length(F)
refid = 1
push!(fn, Shape(cellid, refid, coeff))
end
return fn
end
"""
lagrangec0d1(mesh; dirichlet=[true|false]) -> basis
Build lagrangec0d1 elements, including (dirichlet=false) or excluding (dirichlet=true) those attached to boundary vertices.
"""
function lagrangec0d1(mesh; dirichlet::Bool=true)
if dirichlet == false
# return lagrangec0d1(mesh, boundary(mesh))
return lagrangec0d1(mesh, skeleton(mesh,0))
else
return lagrangec0d1_dirichlet(mesh)
end
end
function lagrangec0d1(mesh, jct)
vertexlist = interior_and_junction_vertices(mesh, jct)
lagrangec0d1(mesh, vertexlist, Val{dimension(mesh)+1})
end
# build continuous linear Lagrange elements on a 2D manifold
function lagrangec0d1(mesh, vertexlist::Vector, ::Type{Val{3}})
T = coordtype(mesh)
U = universedimension(mesh)
cellids, ncells = vertextocellmap(mesh)
Cells = cells(mesh)
Verts = vertices(mesh)
# create the local shapes
fns = Vector{Shape{T}}[]
pos = Vector{vertextype(mesh)}()
sizehint!(fns, length(vertexlist))
sizehint!(pos, length(vertexlist))
for v in vertexlist
numshapes = ncells[v]
numshapes == 0 && continue
shapes = Vector{Shape{T}}(undef,numshapes)
for s in 1: numshapes
c = cellids[v,s]
# cell = mesh.faces[c]
cell = Cells[c]
localid = something(findfirst(isequal(v), cell),0)
@assert localid != 0
shapes[s] = Shape(c, localid, T(1.0))
end
push!(fns, shapes)
push!(pos, Verts[v])
end
NF = 3
LagrangeBasis{1,0,NF}(mesh, fns, pos)
end
# for manifolds of dimension 1
function lagrangec0d1(mesh, vertexlist, ::Type{Val{2}})
T = coordtype(mesh)
U = universedimension(mesh)
P = vertextype(mesh)
geometry = mesh
cellids, ncells = vertextocellmap(mesh)
# create the local shapes
numverts = numvertices(mesh)
fns = Vector{Vector{Shape{T}}}()
pos = Vector{P}()
sizehint!(fns, length(vertexlist))
sizehint!(pos, length(vertexlist))
for v in vertexlist
numshapes = ncells[v]
numshapes == 0 && continue # skip detached vertices
shapes = Vector{Shape{T}}(undef,numshapes)
for s in 1: numshapes
c = cellids[v,s]
cell = mesh.faces[c]
if cell[1] == v
shapes[s] = Shape(c, 1, T(1.0))
elseif cell[2] == v
shapes[s] = Shape(c, 2, T(1.0))
else
error("Junctions not supported")
end
end
push!(fns, shapes)
push!(pos, mesh.vertices[v])
end
NF = 2
LagrangeBasis{1,0,NF}(geometry, fns, pos)
end
function lagrangec0d1(mesh, nodes::CompScienceMeshes.AbstractMesh{U,1} where {U})
Conn = connectivity(nodes, mesh, abs)
rows = rowvals(Conn)
vals = nonzeros(Conn)
T = coordtype(mesh)
P = vertextype(mesh)
S = Shape{T}
fns = Vector{Vector{S}}()
pos = Vector{P}()
for (i,node) in enumerate(nodes)
fn = Vector{S}()
for k in nzrange(Conn,i)
cellid = rows[k]
refid = vals[k]
push!(fn, Shape(cellid, refid, T(1.0)))
end
push!(fns,fn)
push!(pos,cartesian(center(chart(nodes,node))))
end
NF = dimension(mesh) + 1
LagrangeBasis{1,0,NF}(mesh, fns, pos)
end
function lagrangec0d2(mesh::CompScienceMeshes.AbstractMesh{U,3},
nodes::CompScienceMeshes.AbstractMesh{U,1},
edges::CompScienceMeshes.AbstractMesh{U,2}) where {U}
Conn = connectivity(nodes, mesh, abs)
rows = rowvals(Conn)
vals = nonzeros(Conn)
T = coordtype(mesh)
P = vertextype(mesh)
S = Shape{T}
fns = Vector{Vector{S}}()
pos = Vector{P}()
for (i,node) in enumerate(nodes)
fn = Vector{S}()
for k in nzrange(Conn,i)
cellid = rows[k]
refid = vals[k]
push!(fn, Shape(cellid, refid, T(1.0)))
end
push!(fns,fn)
push!(pos,cartesian(center(chart(nodes,node))))
end
Conn = connectivity(edges, mesh, abs)
rows = rowvals(Conn)
vals = nonzeros(Conn)
for (i,edge) in enumerate(edges)
fn = Vector{S}()
for k in nzrange(Conn,i)
cellid = rows[k]
refid = vals[k]
push!(fn, Shape(cellid, 3+refid, T(1.0)))
end
push!(fns,fn)
push!(pos,cartesian(center(chart(edges,edge))))
end
NF = 6
LagrangeBasis{2,0,NF}(mesh, fns, pos)
end
duallagrangec0d1(mesh) = duallagrangec0d1(mesh, barycentric_refinement(mesh), x->false, Val{dimension(mesh)+1})
function duallagrangec0d1(mesh, jct)
jct_pred = inclosure_gpredicate(jct)
refined = barycentric_refinement(mesh)
duallagrangec0d1(mesh, refined, jct_pred, Val{dimension(mesh)+1})
end
function duallagrangec0d1(mesh, refined, jct_pred, ::Type{Val{3}})
T = coordtype(mesh)
num_faces = dimension(mesh)+1
fns = Vector{Vector{Shape{T}}}(undef,numcells(mesh))
pos = Vector{vertextype(mesh)}()
# store the fine mesh's vertices in an octree for fast retrieval
fine_vertices = Octree(vertices(refined))
uv_ctr = ones(dimension(mesh))/(dimension(mesh)+1)
vtoc, vton = vertextocellmap(refined)
for (i,p) in enumerate(mesh)
coarse_idcs = CompScienceMeshes.indices(mesh, p)
coarse_chart = chart(mesh,p)
fns[i] = Vector{Shape{T}}()
push!(pos, cartesian(center(coarse_chart)))
# It is assumed the vertices of this cell have the same index
# mesh and its refinement.
# coarse_cell = chart(mesh, coarse_idcs)
# get the index in fine.vertices of the centroid of coarse_cell
centroid = barytocart(coarse_chart, uv_ctr)
I = CollisionDetection.find(fine_vertices, centroid)
@assert length(I) == 1
centroid_id = I[1]
# get the indx in fine.vertices of the centroid of the faces of coarse_cell
face_center_ids = Vector{Int}(undef,num_faces)
for f in 1:num_faces
# prepare the barycentric coordinate
uv_face_ctr = ones(dimension(mesh)+1)/(dimension(mesh))
uv_face_ctr[f] = 0
uv_face_ctr = uv_face_ctr[1:end-1]
face_ctr = barytocart(coarse_chart, uv_face_ctr)
I = CollisionDetection.find(fine_vertices, face_ctr)
@assert length(I) == 1
face_center_ids[f] = I[1]
end
n = vton[centroid_id]
for c in vtoc[centroid_id,1:n]
fine_idcs = cells(refined)[c]
local_id = something(findfirst(isequal(centroid_id), fine_idcs), 0)
@assert local_id != 0
shape = Shape(c, local_id, 1.0)
push!(fns[i], shape)
end
for f in 1:num_faces
v = face_center_ids[f]
jct_pred(vertices(refined)[v]) && continue
n = vton[v]
for c in vtoc[v,1:n]
fine_idcs = cells(refined)[c]
local_id = something(findfirst(isequal(v), fine_idcs),0)
@assert local_id != 0
shape = Shape(c, local_id, 1/n/2)
push!(fns[i], shape)
end
end
for f in 1:length(coarse_idcs)
v = coarse_idcs[f]
jct_pred(vertices(refined)[v]) && continue
n = vton[v]
for c in vtoc[v,1:n]
fine_idcs = cells(refined)[c]
local_id = something(findfirst(isequal(v), fine_idcs),0)
@assert local_id != 0
shape = Shape(c, local_id, 1/n/2)
push!(fns[i], shape)
end
end
end
@assert length(fns) == length(pos)
NF = 3
return LagrangeBasis{1,0,NF}(refined, fns, pos)
end
"""
duallagrangec0d1(originalmesh, refinedmesh)
It is the user responsibility to provide two meshes representing the same object.
The second mesh needs to be obtained using "barycentric_refinement(originalmesh)".
This basis function creats the dual Lagrange basis function and return an object that contains array of shapes [fns]
It also return a gemoetry containing the refined mesh.
"""
function duallagrangec0d1(mesh, mesh2, pred, ::Type{Val{2}})
T = coordtype(mesh)
U = universedimension(mesh)
# get the information about number of vertices, number of faces , and the maping between vertices and faces for the original mesh
numverts1 = numvertices(mesh)
num_cells1 = numcells(mesh)
cellids1, ncells1=vertextocellmap(mesh)
# get the information about number of vertices, number of faces , and the maping between vertices and faces for the refined mesh
num_cells2 = numcells(mesh2)
numverts2 = numvertices(mesh2)
geometry = mesh2
cellids2, ncells2 = vertextocellmap(mesh2)
fns = Vector{Vector{Shape{T}}}(undef,num_cells1)
pos = Vector{vertextype(mesh)}()
# We will iterate over the coarse mesh segments to assign all the functions to it.
for segment_coarse in 1 : num_cells1
# For the dual Lagrange there is a 6 shapes per segment
numshapes = (ncells1[segment_coarse]*4) -2
shapes = Vector{Shape{T}}(undef,numshapes)
# Now we will get all the smaller faces within the coarse segment
#i.e The coose segment will have two points, and these tow points are connected to two segmesnts in the finer mesh
# This will give us a 4 smaller faces per Dual lagrange basis, we store them first in all_faces
all_faces= Array{SVector{2,Int}}(undef,4) # faces in the original segment (4)
# the follwoing code get the verteciec for each coarse segment
# then it looks for the two faces connected to each point in the finer mesh
# if for example the segment would connect to more than two faces we will have
# mesh.faces[segment_coarse][1],n] and iterate over how many segments [n] are connected
all_faces[1]=mesh2.faces[cellids2[mesh.faces[segment_coarse][1],1]]
all_faces[2]=mesh2.faces[cellids2[mesh.faces[segment_coarse][1],2]]
all_faces[3]=mesh2.faces[cellids2[mesh.faces[segment_coarse][2],1]]
all_faces[4]=mesh2.faces[cellids2[mesh.faces[segment_coarse][2],2]]
# now we now the first point of the corse segment will have the left hand side basis
# and we know that that point is connected to faces 1,2 in the array all_faces
# but now we want to which one of them is inner segment and which one is at the edge
# as both of these two faces are in left hand side
# The inner face will have the left hand side corase point in its first place for example
# we have original point 2,3 , and the coarse segment (2,3)
# after refinment we will have for example points 20,2,21,3,22 with four faces (20,2),(2,21),(21,3),(3,22)
# so the faces to the left (20,2),(2,21) we can decide the inner one if the original point(2) is at first index
# same for right hand side faces (21,3),(3,22) if the original point(3) is in the second index
# then the inner faces are (2,21) and (21,3)
# the following code does the same checking process and assign the shapes for the dual lagragne right away
# For the Left hand side faces
if(all_faces[1][1] == mesh.faces[segment_coarse][1])
shapes[1]= Shape(cellids2[mesh.faces[segment_coarse][1],2],1,0.5)
shapes[2]= Shape(cellids2[mesh.faces[segment_coarse][1],1],2,0.5)
shapes[3]= Shape(cellids2[mesh.faces[segment_coarse][1],1],1,1.0)
elseif(all_faces[2][1] == mesh.faces[segment_coarse][1])
shapes[1]= Shape(cellids2[mesh.faces[segment_coarse][1],2],1,1.0)
shapes[2]= Shape(cellids2[mesh.faces[segment_coarse][1],2],2,0.5)
shapes[3]= Shape(cellids2[mesh.faces[segment_coarse][1],1],1,0.5)
end
# For the Right hand side faces
if(all_faces[3][2] == mesh.faces[segment_coarse][2])
shapes[4]= Shape(cellids2[mesh.faces[segment_coarse][2],1],2,1.0)
shapes[5]= Shape(cellids2[mesh.faces[segment_coarse][2],1],1,0.5)
shapes[6]= Shape(cellids2[mesh.faces[segment_coarse][2],2],2,0.5)
elseif(all_faces[4][2] == mesh.faces[segment_coarse][2])
shapes[4]= Shape(cellids2[mesh.faces[segment_coarse][2],2],2,1.0)
shapes[5]= Shape(cellids2[mesh.faces[segment_coarse][2],2],1,0.5)
shapes[6]= Shape(cellids2[mesh.faces[segment_coarse][2],1],2,0.5)
end
# Now assign all of these shapes to the relevent segment in the coarse mesh
fns[segment_coarse]=shapes
push!(pos, cartesian(center(chart(mesh, segment_coarse))))
end
NF = 2
LagrangeBasis{1,0,NF}(geometry, fns, pos)
end
gradient(space::LagrangeBasis{1,0}, geo, fns) = NDLCCBasis(geo, fns)
# gradient(space::LagrangeBasis{1,0}, geo::CompScienceMeshes.AbstractMesh{U,3} where {U}, fns) = NDBasis(geo, fns)
curl(space::LagrangeBasis{1,0}, geo, fns) = RTBasis(geo, fns)
curl(space::LagrangeBasis{2,0}, geo, fns) = BDMBasis(geo, fns)
gradient(space::LagrangeBasis{1,0,<:CompScienceMeshes.AbstractMesh{<:Any,2}}, geo, fns) =
LagrangeBasis{0,-1,1}(geo, fns, space.pos)
gradient(space::LagrangeBasis{1,0,<:CompScienceMeshes.AbstractMesh{<:Any,3}}, geo, fns) =
NDBasis(geo, fns, space.pos)
#
# Sclar trace for Laggrange element based spaces
#
function strace(X::LagrangeBasis{1,0}, geo, fns::Vector)
# dimension of the boundary
n = dimension(geo)
# degree of the space
d = 1
# number of local shape functions
NF = binomial(n+d,n)
trpos = deepcopy(positions(X))
LagrangeBasis{1,0,NF}(geo, fns, trpos)
end
function extend_0_form(supp, dirichlet, x_prt, Lg_prt)
Id = BEAST.Identity()
bnd_supp = boundary(supp)
supp_nodes = CompScienceMeshes.skeleton_fast(supp, 0)
dir_compl = submesh(!in(dirichlet), bnd_supp)
dir_compl_nodes = CompScienceMeshes.skeleton_fast(dir_compl, 0)
int_nodes = submesh(!in(dir_compl_nodes), supp_nodes)
if length(int_nodes) == 0
T = scalartype(Id, Lg_prt, Lg_prt)
S = typeof(Lg_prt)
P = eltype(Lg_prt.pos)
return T[], int_nodes, S(supp, Vector{Vector{Shape{T}}}(), Vector{P}())
end
Lg_int = BEAST.lagrangec0d1(supp, int_nodes)
grad_Lg_prt = gradient(Lg_prt)
grad_Lg_int = gradient(Lg_int)
A = assemble(Id, grad_Lg_int, grad_Lg_int, threading=Threading{:single})
a = -assemble(Id, grad_Lg_int, grad_Lg_prt, threading=Threading{:single}) * x_prt
x_int = A \ a
return x_int, int_nodes, Lg_int
end
function dualforms_init(Supp, Dir)
tetrs = barycentric_refinement(Supp)
v2t, v2n = CompScienceMeshes.vertextocellmap(tetrs)
bnd = boundary(tetrs)
gpred = CompScienceMeshes.overlap_gpredicate(Dir)
dir = submesh((m,face) -> gpred(chart(m,face)), bnd)
return tetrs, bnd, dir, v2t, v2n
end
function duallagrangec0d1(mesh::CompScienceMeshes.AbstractMesh{<:Any,3}, nodes, dirbnd)
refd, bnd, dir, v2t, v2n = dualforms_init(mesh, dirbnd)
dual0forms_body(mesh, refd, bnd, dir, v2t, v2n)
end
function dual0forms_body(mesh::CompScienceMeshes.AbstractMesh{<:Any,3}, refd, bnd, dir, v2t, v2n)
T = coordtype(refd)
S = Shape{T}
V = vertextype(mesh)
bfs = Vector{Vector{S}}(undef, length(mesh))
pos = Vector{V}(undef, length(mesh))
# Cells = cells(mesh)
Cells = [c for c in mesh]
num_threads = Threads.nthreads()
for F in 1:length(mesh)
# Cell = Cells[F]
Cell = CompScienceMeshes.indices(mesh, Cells[F])
myid = Threads.threadid()
# myid == 1 && F % 20 == 0 &&
# println("Constructing dual 1-forms: $(F) out of $(length(mesh)).")
idcs1 = v2t[Cell[1],1:v2n[Cell[1]]]
idcs2 = v2t[Cell[2],1:v2n[Cell[2]]]
idcs3 = v2t[Cell[3],1:v2n[Cell[3]]]
supp1 = refd[idcs1] # 2D
supp2 = refd[idcs2]
supp3 = refd[idcs3]
bnd_supp1 = boundary(supp1) # 1D
bnd_supp2 = boundary(supp2)
bnd_supp3 = boundary(supp3)
supp23 = submesh(in(bnd_supp2), bnd_supp3) # 1D
supp31 = submesh(in(bnd_supp3), bnd_supp1)
supp12 = submesh(in(bnd_supp1), bnd_supp2)
port = boundary(supp23) # 0D
port = submesh(in(boundary(supp31)), port)
port = submesh(in(boundary(supp12)), port)
@assert length(port) == 1
in_dir = in(dir)
dir1_edges = submesh(in_dir, bnd_supp1) # 1D
dir2_edges = submesh(in_dir, bnd_supp2)
dir3_edges = submesh(in_dir, bnd_supp3)
bnd_dir1 = boundary(dir1_edges) # 0D
bnd_dir2 = boundary(dir2_edges)
bnd_dir3 = boundary(dir3_edges)
dir23_nodes = submesh(in(bnd_dir2), bnd_dir3) # 0D
dir31_nodes = submesh(in(bnd_dir3), bnd_dir1)
dir12_nodes = submesh(in(bnd_dir1), bnd_dir2)
# Step 1: set port flux and extend to dual faces
x0 = ones(T,1)
Lg12_prt = BEAST.lagrangec0d1(supp12, port)
Lg23_prt = BEAST.lagrangec0d1(supp23, port)
Lg31_prt = BEAST.lagrangec0d1(supp31, port)
x23, supp23_int_nodes, _ = extend_0_form(supp23, dir23_nodes, x0, Lg23_prt)
x31, supp31_int_nodes, _ = extend_0_form(supp31, dir31_nodes, x0, Lg31_prt)
x12, supp12_int_nodes, _ = extend_0_form(supp12, dir12_nodes, x0, Lg12_prt)
port1_nodes = union(port, supp31_int_nodes, supp12_int_nodes)
port2_nodes = union(port, supp12_int_nodes, supp23_int_nodes)
port3_nodes = union(port, supp23_int_nodes, supp31_int_nodes)
x1_prt = [x0; x31; x12]
x2_prt = [x0; x12; x23]
x3_prt = [x0; x23; x31]
Lg1_prt = BEAST.lagrangec0d1(supp1, port1_nodes)
Lg2_prt = BEAST.lagrangec0d1(supp2, port2_nodes)
Lg3_prt = BEAST.lagrangec0d1(supp3, port3_nodes)
x1_int, _, Lg1_int = extend_0_form(supp1, dir1_edges, x1_prt, Lg1_prt)
x2_int, _, Lg2_int = extend_0_form(supp2, dir2_edges, x2_prt, Lg2_prt)
x3_int, _, Lg3_int = extend_0_form(supp3, dir3_edges, x3_prt, Lg3_prt)
# inject in the global space
fn = BEAST.Shape{T}[]
addf!(fn, x1_prt, Lg1_prt, idcs1)
addf!(fn, x1_int, Lg1_int, idcs1)
addf!(fn, x2_prt, Lg2_prt, idcs2)
addf!(fn, x2_int, Lg2_int, idcs2)
addf!(fn, x3_prt, Lg3_prt, idcs3)
addf!(fn, x3_int, Lg3_int, idcs3)
pos[F] = cartesian(CompScienceMeshes.center(chart(mesh, Cells[F])))
bfs[F] = fn
end
LagrangeBasis{1,0,3}(refd, bfs, pos)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1053 | function Base.:*(A::AbstractArray, s::Space) where {Space}
@assert ndims(A) == 2
@assert size(A,2) == numfunctions(s)
F = eltype(s.fns)
fns = [similar(F,0) for i in axes(A,1)]
geo = s.geo
for i in axes(A,1)
for j in axes(A,2)
A[i,j] == 0 && continue
shapes = [Shape(sh.cellid, sh.refid, A[i,j]*sh.coeff) for sh in s.fns[j]]
append!(fns[i], shapes)
end
fns[i] = collapse_shapes(fns[i])
end
pos = fill(zero(eltype(s.pos)), length(fns))
return Space(geo, fns, pos)
end
function collapse_shapes(shapevec)
ids = unique([(sh.cellid,sh.refid) for sh in shapevec])
S = eltype(shapevec)
collapsed = [S(id..., 0) for id in ids]
for sh in shapevec
pos = findfirst(isequal((sh.cellid, sh.refid)), ids)
@assert pos != nothing
old = collapsed[pos]
@assert old.cellid == sh.cellid
@assert old.refid == sh.refid
collapsed[pos] = S(old.cellid, old.refid, old.coeff+sh.coeff)
end
collapsed
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1456 | struct NCrossBDMBasis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
NCrossBDMBasis(geo, fns) = NCrossBDMBasis(geo, fns, Vector{vertextype(geo)}(undef,length(fns)))
refspace(s::NCrossBDMBasis{T}) where {T} = NCrossBDMRefSpace{T}()
function ncrossbdm(mesh)
edges = skeleton(mesh, 1)
cps = cellpairs(mesh, edges, dropjunctionpair=true)
ids = findall(x -> x>0, cps[2,:])
ncrossbdm(mesh, cps[:,ids])
end
function ncrossbdm(mesh, cellpairs::Array{Int,2})
@warn "brezzidouglasmarini(mesh, cellpairs) assumes mesh is oriented"
@assert size(cellpairs,1) == 2
T = coordtype(mesh)
P = vertextype(mesh)
S = Shape{T}
F = Vector{Shape{T}}
nf = 2*size(cellpairs,2)
fns = Vector{F}(undef, nf)
pos = Vector{P}(undef, nf)
for i in axes(cellpairs)[2]
c1, c2 = cellpairs[:,i]
cell1 = cells(mesh)[c1]
cell2 = cells(mesh)[c2]
e1, e2 = getcommonedge(cell1, cell2)
@assert e1*e2 < 0
e1, e2 = abs(e1), abs(e2)
fns[2*(i-1)+1] = [ S(c1, 2*(e1-1)+1 ,+1.0), S(c2, 2*(e2-1)+2,-1.0)]
fns[2*(i-1)+2] = [ S(c1, 2*(e1-1)+2 ,+1.0), S(c2, 2*(e2-1)+1,-1.0)]
v1 = cell1[mod1(e1+1,3)]
v2 = cell1[mod1(e1+2,3)]
edge = simplex(mesh.vertices[[v1,v2]]...)
cntr = cartesian(center(edge))
pos[2*(i-1)+1] = cntr
pos[2*(i-1)+2] = cntr
end
NCrossBDMBasis(mesh, fns, pos)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2527 | mutable struct ND2Basis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
ND2Basis(geo, fns) = ND2Basis(geo, fns, Vector{vertextype(geo)}(undef,length(fns)))
refspace(space::ND2Basis{T}) where T = ND2RefSpace{T}()
"""
nedelec2(mesh, edges)
Constructs the 2nd degree Nedelec basis of the first kind i.e. H(curl).
Returns an object of type 'ND2Basis'.
"""
function nedelec2(surface, edges=skeleton(surface,1))
T = coordtype(surface)
P = vertextype(surface)
num_edges = numcells(edges)
C = connectivity(edges, surface, identity)
rows = rowvals(C)
vals = nonzeros(C)
Cells = cells(surface)
num_cells = size(Cells,1)
fns = Vector{Vector{Shape{T}}}(undef,2*(num_edges+num_cells))
pos = Vector{P}(undef,2*(num_edges+num_cells))
chooseref1(x) = if x<0 return 0 else return -1 end
chooseref2(x) = if x<0 return -1 else return 0 end
for (i,edge) in enumerate(edges)
fns[2*i-1] = Vector{Shape{T}}()
fns[2*i] = Vector{Shape{T}}()
pos[2*i-1] = cartesian(center(chart(edges,edge)))
pos[2*i] = cartesian(center(chart(edges,edge)))
sgn = 1.0
for k in nzrange(C,i)
j = rows[k] # j is the index of a cell adjacent to edge
s = vals[k] # s contains the oriented (signed) local index of edge[i] in cell[j]
# i == 3 && @show s
push!(fns[2*i-1], Shape{T}(j, 2*abs(s)+chooseref1(sign(s)), T(sgn)))
sgn *= -1
end
sgn = 1.0
for k in nzrange(C,i)
j = rows[k] # j is the index of a cell adjacent to edge
s = vals[k] # s contains the oriented (signed) local index of edge[i] in cell[j]
# i == 3 && @show s
push!(fns[2*i], Shape{T}(j, 2*abs(s)+chooseref2(sign(s)), T(sgn)))
sgn *= -1
end
end
for (i,cell) in enumerate(Cells)
fns[2*num_edges+2*i-1] = Vector{Shape{T}}()
fns[2*num_edges+2*i] = Vector{Shape{T}}()
push!(fns[2*num_edges+2*i-1], Shape{T}(i, 7, T(1.0)))
push!(fns[2*num_edges+2*i], Shape{T}(i, 8, T(1.0)))
ctr = cartesian(center(chart(surface,i)))
pos[2*num_edges+2*i-1] = ctr
pos[2*num_edges+2*i] = ctr
end
ND2Basis(surface, fns, pos)
end
function LinearAlgebra.cross(::NormalVector, s::ND2Basis)
# @assert CompScienceMeshes.isoriented(s.geo)
return raviartthomas2(s.geo)
end
#=
function curl(space::ND2Basis)
divergence(n × space)
end =#
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1506 | mutable struct NDLCCBasis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
NDLCCBasis(geo, fns) = NDLCCBasis(geo, fns, Vector{vertextype(geo)}(undef,length(fns)))
refspace(space::NDLCCBasis{T}) where {T} = NDLCCRefSpace{T}()
Base.similar(space::NDLCCBasis{T,M,P} where {T,M,P}, geo, fns, pos) = NDLCCBasis(geo, fns, pos)
"""
nedelecc3d(mesh, edges::Array{SArray{Tuple{2},Int64,1,2},1})
returns an object of the type NDLCCBasis.
"""
function nedelecc3d(mesh, edges)
T = coordtype(mesh)
P = vertextype(mesh)
num_edges = numcells(edges)
C = connectivity(edges, mesh, identity)
rows = rowvals(C)
vals = nonzeros(C)
fns = Vector{Vector{Shape{T}}}(undef,num_edges)
pos = Vector{P}(undef,num_edges)
for (i,e) in enumerate(edges)
fns[i] = Vector{Shape{T}}()
pos[i] = cartesian(center(chart(edges,e)))
for k in nzrange(C,i)
j = rows[k]
s = vals[k]
push!(fns[i], Shape{T}(j, abs(s), sign(s)))
end
end
NDLCCBasis(mesh, fns, pos)
end
"""
nedelecc3d(mesh) returns an object of type NDLCCBasis
"""
function nedelecc3d(mesh)
edges = skeleton(mesh,1)
nedelecc3d(mesh, edges)
end
function nedelec(mesh::CompScienceMeshes.AbstractMesh{U,4} where {U},
edges=skeleton(mesh,1))
nedelecc3d(mesh, edges)
end
curl(space::NDLCCBasis, geo, fns) = NDLCDBasis(geo, fns, space.pos)
ttrace(X::NDLCCBasis, geo, fns) = RTBasis(geo, fns, deepcopy(X.pos))
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1429 | mutable struct NDLCDBasis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
NDLCDBasis(geo, fns) = NDLCDBasis(geo, fns, Vector{vertextype(geo)}(undef,length(fns)))
refspace(space::NDLCDBasis{T}) where {T} = NDLCDRefSpace{T}()
Base.similar(space::NDLCDBasis{T,M,P} where {T,M,P}, geo, fns, pos) = NDLCDBasis(geo, fns, pos)
function nedelecd3d(mesh, faces)
T = coordtype(mesh)
P = vertextype(mesh)
num_faces = numcells(faces)
C = connectivity(faces, mesh, identity)
rows = rowvals(C)
vals = nonzeros(C)
fns = Vector{Vector{Shape{T}}}(undef,num_faces)
pos = Vector{P}(undef,num_faces)
for (i,face) in enumerate(faces)
fns[i] = Vector{Shape{T}}()
pos[i] = cartesian(center(chart(faces,face)))
for k in nzrange(C,i)
j = rows[k]
s = vals[k]
push!(fns[i], Shape{T}(j, abs(s), sign(s)))
end
end
NDLCDBasis(mesh, fns, pos)
end
function nedelecd3d(mesh)
faces = skeleton(mesh,2)
nedelecd3d(mesh, faces)
end
function raviartthomas(m::CompScienceMeshes.AbstractMesh{U,4} where {U}, faces=skeleton(m,2))
nedelecd3d(m, faces)
end
ntrace(X::NDLCDBasis, geo, fns) = LagrangeBasis{0,-1,1}(geo, fns, deepcopy(X.pos))
ttrace(X::NDLCDBasis, geo, fns) = NDBasis{}(geo, fns, deepcopy(X.pos))
divergence(space::NDLCDBasis, geo, fns) = LagrangeBasis{0,-1,1}(geo, fns, space.pos)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1271 | struct NDBasis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
NDBasis(geo, fns) = NDBasis(geo, fns, Vector{vertextype(geo)}(undef,length(fns)))
refspace(s::NDBasis) = NDRefSpace{scalartype(s)}()
function nedelec(surface, edges=skeleton(surface,1))
T = coordtype(surface)
# P = eltype(surface.vertices)
P = vertextype(surface)
num_edges = numcells(edges)
C = connectivity(edges, surface, identity)
rows = rowvals(C)
vals = nonzeros(C)
fns = Vector{Vector{Shape{T}}}(undef,num_edges)
pos = Vector{P}(undef,num_edges)
for (i,edge) in enumerate(edges)
fns[i] = Vector{Shape{T}}()
pos[i] = cartesian(center(chart(edges,edge)))
for k in nzrange(C,i)
j = rows[k] # j is the index of a cell adjacent to edge
s = vals[k] # s contains the oriented (signed) local index of edge[i] in cell[j]
# i == 3 && @show s
push!(fns[i], Shape{T}(j, abs(s), sign(s)))
end
end
NDBasis(surface, fns, pos)
end
function LinearAlgebra.cross(::NormalVector, s::NDBasis)
# @assert CompScienceMeshes.isoriented(s.geo)
RTBasis(s.geo, s.fns, s.pos)
end
function curl(space::NDBasis)
divergence(n × space)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 820 |
"""
restrict(refspace, element1, element2)
Computes the restriction of a set of local shape functions on `element1` as linear
combinations of the set of local shape functions on `element2`. More precisely `restrict`
returns an `NxM` matrix `P` such that the `i`-th local shape ``g_i`` function on element2
can be written as:
``g_i = sum_{j=1}^{M} P_{ij} f_j``
"""
function restrict end
function restrict(sp::Space, submesh::CompScienceMeshes.AbstractMesh)
fns = similar(sp.fns)
S = eltype(eltype(fns))
for (i,fn) in pairs(sp.fns)
fns[i] = Vector{S}()
for sh in fn
cell = CompScienceMeshes.restrict(submesh, sh.cellid)
cell == 0 && continue
push!(fns[i], S(cell, sh.refid, sh.coeff))
end
end
similar(sp, submesh, fns, sp.pos)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4578 |
mutable struct RT2Basis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
RT2Basis(geo, fns) = RT2Basis(geo, fns, Vector{vertextype(geo)}(undef,length(fns)))
#= positions(rt) = rt.pos =#
refspace(space::RT2Basis{T}) where {T} = RT2RefSpace{T}()
subset(rt::RT2Basis,I) = RT2Basis(rt.geo, rt.fns[I], rt.pos[I])
#= mutable struct ValDiv end =#
"""
raviartthomas2(mesh, cellpairs::Array{Int,2})
Constructs the RT2 basis on the input `mesh`. The i-th RT2 basis function will
represent a current distribution flowing from cell `cellpairs[1,i]` to
`cellpairs[2,i]` on the mesh.
Returns an object of type `RT2Basis`, which comprises both the mesh and pairs of
Shape objects which corresponds to the cell pairs, containing the necsessary
coefficients and indices to compute the exact basis functions when required
by the solver.
"""
function raviartthomas2(mesh::CompScienceMeshes.AbstractMesh{U,D1,T}, cellpairs::Array{Int,2}) where {U,D1,T}
# combine now the pairs of monopolar RWGs in div-conforming RWGs
numpairs = size(cellpairs,2)
Cells = cells(mesh)
numcells = size(Cells,1)
functions = Vector{Vector{Shape{T}}}(undef,2*(numpairs+numcells))
positions = Vector{vertextype(mesh)}(undef,2*(numpairs+numcells))
chooseref1(x) = if x<0 return 0 else return -1 end
chooseref2(x) = if x<0 return -1 else return 0 end
for i in 1:numpairs
if cellpairs[2,i] > 0
c1 = cellpairs[1,i]; # cell1 = Cells[c1] #mesh.faces[c1]
c2 = cellpairs[2,i]; # cell2 = Cells[c2] #mesh.faces[c2]
cell1 = CompScienceMeshes.indices(mesh, c1)
cell2 = CompScienceMeshes.indices(mesh, c2)
e1, e2 = getcommonedge(cell1, cell2)
functions[2*i-1] = [
Shape{T}(c1, 2*abs(e1)+chooseref1(sign(e1)), T(+1.0)),
Shape{T}(c2, 2*abs(e2)+chooseref1(sign(e2)), T(-1.0))]
functions[2*i] = [
Shape{T}(c1, 2*abs(e1)+chooseref2(sign(e1)), T(+1.0)),
Shape{T}(c2, 2*abs(e2)+chooseref2(sign(e2)), T(-1.0))]
isct = intersect(cell1, cell2)
@assert length(isct) == 2
@assert !(cell1[abs(e1)] in isct)
@assert !(cell2[abs(e2)] in isct)
ctr1 = cartesian(center(chart(mesh, c1)))
ctr2 = cartesian(center(chart(mesh, c2)))
positions[2*i-1] = (ctr1 + ctr2) / 2
positions[2*i] = (ctr1 + ctr2) / 2
else
c1 = cellpairs[1,i]
e1 = cellpairs[2,i]
functions[i] = [
Shape(c1, abs(e1), T(+1.0))]
positions[i] = cartesian(center(chart(mesh, c1)))
end
end
for (i,cell) in enumerate(Cells)
functions[2*numpairs+2*i-1] = [
Shape{T}(i, 7, T(+1.0))]
functions[2*numpairs+2*i] = [
Shape{T}(i, 8, T(+1.0))]
ctr1 = cartesian(center(chart(mesh, i)))
positions[2*numpairs+2*i-1] = ctr1
positions[2*numpairs+2*i] = ctr1
end
geo = mesh
RT2Basis(geo, functions, positions)
end
function raviartthomas2(mesh, edges::CompScienceMeshes.AbstractMesh{U,2} where {U})
cps = CompScienceMeshes.cellpairs(mesh, edges)
# ids = findall(x -> x>0, cps[2,:])
raviartthomas2(mesh, cps)
end
function raviartthomas2(mesh::CompScienceMeshes.AbstractMesh{U,3} where {U})
bnd = boundary(mesh)
edges = submesh(!in(bnd), skeleton(mesh,1))
return raviartthomas2(mesh, edges)
end
"""
raviartthomas2(mesh)
Conducts pre-processing on the input `mesh` by extracting the cell edges, cell pairs
and indices required to construct the RT2 basis on the `mesh`.
Calls raviartthomas2(mesh::Mesh, cellpairs::Array{Int,2}), which constructs
the RT2 basis on the `mesh`, using the cell pairs identified.
Returns the RT2 basis object.
"""
function raviartthomas2(mesh; sort=:spacefillingcurve)
edges = skeleton(mesh, 1; sort)
cps = cellpairs(mesh, edges, dropjunctionpair=true)
ids = findall(x -> x>0, cps[2,:])
raviartthomas2(mesh, cps[:,ids])
end
#= divergence(X::RT2Basis, geo, fns) = LagrangeBasis{0,-1,1}(geo, fns, deepcopy(positions(X)))
ntrace(X::RT2Basis, geo, fns) = LagrangeBasis{0,-1,1}(geo, fns, deepcopy(positions(X))) =#
#= function LinearAlgebra.cross(::NormalVector, s::RT2Basis)
@assert CompScienceMeshes.isoriented(s.geo)
fns = similar(s.fns)
for (i,fn) in pairs(s.fns)
fns[i] = [Shape(sh.cellid, sh.refid, -sh.coeff) for sh in fn]
end
ND2Basis(s.geo, fns, s.pos)
end =#
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2188 | struct RTQSpace{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
# RTQSpace(g::M, fns::Vector{})
function positions(s::RTQSpace) s.pos end
function refspace(s::RTQSpace{T}) where {T} RTQuadRefSpace{T}() end
function subset(rt::RTQSpace,I) RTQSpace(rt.geo, rt.fns[I], rt.pos[I]) end
function raviartthomas(
mesh::CompScienceMeshes.QuadMesh{T},
edges::CompScienceMeshes.AbstractMesh{3,2,T},
connectivity, orientations) where {T<:Any}
fns = Vector{Vector{Shape{T}}}(undef, length(edges))
pos = Vector{SVector{3,T}}(undef, length(edges))
rows = rowvals(connectivity)
vals = nonzeros(connectivity)
for (i,edge) in enumerate(edges)
σ = orientations[i]
fn = map(zip(nzrange(connectivity, i),(σ,-σ))) do (j, α)
Shape{T}(rows[j], abs(vals[j]), α)
end
fns[i] = fn
pos[i] = cartesian(CompScienceMeshes.center(chart(edges, edge)))
end
return RTQSpace(mesh, fns, pos)
end
@testitem "RTQSpace construction" begin
using CompScienceMeshes
m = CompScienceMeshes.meshrectangle(2.0, 2.0, 1.0; structured=:quadrilateral)
edges = skeleton(m, 1)
edges_bnd = boundary(m)
# @show length(edges_bnd)
@test length(edges_bnd) == 8
pred = !in(edges_bnd)
edges_int = submesh(pred, edges)
c = CompScienceMeshes.connectivity(edges_int, m, identity)
@test size(c) == (length(m), length(edges_int))
o = ones(length(edges_int))
s = raviartthomas(m, edges_int, c, o)
@test numfunctions(s) == 4
end
@testitem "RTQSpace assembly data" begin
using CompScienceMeshes
m = CompScienceMeshes.meshrectangle(2.0, 2.0, 1.0; structured=:quadrilateral)
edges = skeleton(m, 1)
edges_bnd = boundary(m)
pred = !in(edges_bnd)
edges_int = submesh(pred, edges)
c = CompScienceMeshes.connectivity(edges_int, m, identity)
o = ones(length(edges_int))
s = raviartthomas(m, edges_int, c, o)
num_cells = numcells(m)
num_bfs = numfunctions(s)
r = refspace(s)
num_refs = numfunctions(r)
celltonum = BEAST.make_celltonum(num_cells, num_refs, num_bfs, s)
els, ad, a2g = BEAST.assemblydata(s)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 8417 |
mutable struct RTBasis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
end
RTBasis(geo, fns) = RTBasis(geo, fns, Vector{vertextype(geo)}(undef,length(fns)))
positions(rt) = rt.pos
refspace(space::RTBasis{T}) where {T} = RTRefSpace{T}()
subset(rt::RTBasis,I) = RTBasis(rt.geo, rt.fns[I], rt.pos[I])
mutable struct ValDiv end
"""
raviartthomas(mesh, cellpairs::Array{Int,2})
Constructs the RT basis on the input `mesh`. The i-th RT basis function will
represent a current distribution flowing from cell `cellpairs[1,i]` to
`cellpairs[2,i]` on the mesh.
Returns an object of type `RTBasis`, which comprises both the mesh and pairs of
Shape objects which corresponds to the cell pairs, containing the necsessary
coefficients and indices to compute the exact basis functions when required
by the solver.
"""
function raviartthomas(mesh::CompScienceMeshes.AbstractMesh{U,D1,T}, cellpairs::Array{Int,2}) where {U,D1,T}
# combine now the pairs of monopolar RWGs in div-conforming RWGs
numpairs = size(cellpairs,2)
functions = Vector{Vector{Shape{T}}}(undef,numpairs)
positions = Vector{vertextype(mesh)}(undef,numpairs)
# Cells = cells(mesh)
for i in 1:numpairs
if cellpairs[2,i] > 0
c1 = cellpairs[1,i]; # cell1 = Cells[c1] #mesh.faces[c1]
c2 = cellpairs[2,i]; # cell2 = Cells[c2] #mesh.faces[c2]
cell1 = CompScienceMeshes.indices(mesh, c1)
cell2 = CompScienceMeshes.indices(mesh, c2)
e1, e2 = getcommonedge(cell1, cell2)
functions[i] = [
Shape{T}(c1, abs(e1), T(+1.0)),
Shape{T}(c2, abs(e2), T(-1.0))]
isct = intersect(cell1, cell2)
@assert length(isct) == 2
@assert !(cell1[abs(e1)] in isct)
@assert !(cell2[abs(e2)] in isct)
ctr1 = cartesian(center(chart(mesh, c1)))
ctr2 = cartesian(center(chart(mesh, c2)))
positions[i] = (ctr1 + ctr2) / 2
else
c1 = cellpairs[1,i]
e1 = cellpairs[2,i]
functions[i] = [
Shape(c1, abs(e1), T(+1.0))]
positions[i] = cartesian(center(chart(mesh, c1)))
end
end
geo = mesh
RTBasis(geo, functions, positions)
end
function raviartthomas(mesh, edges::CompScienceMeshes.AbstractMesh{U,2} where {U})
cps = CompScienceMeshes.cellpairs(mesh, edges)
# ids = findall(x -> x>0, cps[2,:])
raviartthomas(mesh, cps)
end
function raviartthomas(mesh::CompScienceMeshes.AbstractMesh{U,3} where {U})
bnd = boundary(mesh)
edges = submesh(!in(bnd), skeleton(mesh,1))
return raviartthomas(mesh, edges)
end
"""
raviartthomas(mesh)
Conducts pre-processing on the input `mesh` by extracting the cell edges, cell pairs
and indices required to construct the RT basis on the `mesh`.
Calls raviartthomas(mesh::Mesh, cellpairs::Array{Int,2}), which constructs
the RT basis on the `mesh`, using the cell pairs identified.
Returns the RT basis object.
"""
function raviartthomas(mesh; sort=:spacefillingcurve)
edges = skeleton(mesh, 1; sort)
cps = cellpairs(mesh, edges, dropjunctionpair=true)
ids = findall(x -> x>0, cps[2,:])
raviartthomas(mesh, cps[:,ids])
end
# """
# raviartthomas(Γ; neumann)
# Constructs the RT space relative to boundary `neumann` of an open surface, only
# selecting cell pairs whose common edge does lie on `γ` . (This prevents
# the calculation of physically-impossible surface currents, such as those
# flowing 'off the edge' of a surface.)
# """
# function raviartthomas(Γ; neumann)
# γ = neumann
# in_interior = interior_tpredicate(Γ)
# on_junction = overlap_gpredicate(γ)
# pred = c -> (in_interior(c) || on_junction(chart(Γ,c)))
# edges = skeleton(pred, Γ, 1)
# cps = cellpairs(Γ, edges, dropjunctionpair=true)
# raviartthomas(Γ, cps)
# end
# raowiltonglisson = raviartthomas
"""
portcells(Γ::Mesh, γ::Mesh)
returns an array containing cell pairs of mesh Γ
around a boundary edge that overlaps with mesh γ
"""
function portcells(Γ, γ)
in_interior = interior_tpredicate(Γ)
overlaps = overlap_gpredicate(γ)
on_junction = (m,c) -> overlaps(chart(m,c))
pred = (m,x) -> (!in_interior(m,x) && on_junction(m,x)) #check only for exterior overlapping edges
# - if γ is defined to overlap within the structure Γ, this isn't considered a port -
# edges = skeleton(pred, Γ, 1) #Take only exterior edges overlapping γ segment
edges = submesh(pred, skeleton(Γ,1))
cps = cellpairs(Γ, edges, dropjunctionpair=true)
return cps
end
"""
rt_cedge(cps::Array{Int,2}, weight)
Computes single basis function with equally distributed constant current
leaving or entering port defined by cellpairs cps. weight defines the
total current over the port and its direction (+ve = out, -ve = in)
"""
function rt_cedge(cps::Array{Int,2}, weight)
T=typeof(weight)
numpairs = size(cps,2)
@assert numpairs > 0
weight = weight / numpairs #total current leaving and entering equal 1
functions = Vector{Shape{T}}(undef,numpairs) #note: not a Vector{Vector}
for i in 1:numpairs
c1 = cps[1,i]
e1 = cps[2,i]
functions[i] =
Shape(c1, abs(e1), weight)
# this assumes cellpairs will be adjacent eachother through the loop
end
functions
end
"""
rt_vedge(cps::Array{Int,2}, weight)
Computes n-1 basis function with oscillating current in(leaving and entering)
pairs of half triangles defined over port specified by cellpairs cps.
weight defines the magnitude of individual current in and out the half triangles,
and it's polarity simply defines whether to start with in or out
"""
function rt_vedge(cps::Array{Int,2}, weight)
T=typeof(weight)
numpairs = size(cps,2)
@assert numpairs > 0
#adjacent cells are considered a pair, so we have one less numpairs
functions = Vector{Vector{Shape{T}}}(undef,numpairs - 1)
for i in 1:numpairs
if i < numpairs # stop when on last cellpair
c1 = cps[1,i]; e1 = cps[2,i]
c2 = cps[1,i+1]; e2 = cps[2,i+1]
functions[i] = [
Shape(c1, abs(e1), weight),
Shape(c2, abs(e2), -weight)]
# this assumes cellpairs will be adjacent eachother through the loop
end
end
functions
end
"""
rt_ports(Γ::Mesh, γ::Mesh ...)
Constructs the RT space on `Γ`, relative to boundary pairs in `γ`. `γ` expects
any number of pairs-of-ports as arguments and accepts tuples, arrays,
vectors etc. e.g `rt_ports(Γ, a, b ...);` where a = [γ₁ γ₂], b = (γ₃,γ₄) etc.
`rt_ports` with no pair of ports supplied i.e `rt_ports(Γ)` reduces to the
`raviartthomas(Γ)` function. The RT space ensures current continuity in each
pair of ports. i.e. current leaving mesh Γ through γ₁ is accounted for in γ₂.
Returns the RT basis object.
"""
function rt_ports(Γ, γ...)
#TODO: can include an extra argument for polarity applied to ports
T = coordtype(Γ)
internal = raviartthomas(Γ)
fns = internal.fns
pos = internal.pos
for i = 1:length(γ) #loop through pairs of ports
port1 = portcells(Γ, γ[i][1])
port2 = portcells(Γ, γ[i][2])
ce1 = rt_cedge(port1, T(+1.0))
ce2 = rt_cedge(port2, T(-1.0))
ffs = Vector{Shape{T}}(undef,length(ce1) + length(ce2))
ffs = [ce1;ce2]
ve1 = rt_vedge(port1, T(+1.0))
ve2 = rt_vedge(port2, T(-1.0))
fns = [fns;[ffs];ve1;ve2]
end
RTBasis(Γ, fns)
end
"""
getindex_rtg(RT::RTBasis)
Returns the indices of the global half RWGs present in `RT`.
`RT` is typically gotten from `rt_ports`
"""
function getindex_rtg(RT::RTBasis)
#TODO: use more reasonable condition to extract indices
# or have rt_ports return indices with RTBasis
idx=[]
A = RT.fns
for i in 1:length(A)
if size(A[i])[1] > 2
push!(idx,i)
end
end
idx
end
divergence(X::RTBasis, geo, fns) = LagrangeBasis{0,-1,1}(geo, fns, deepcopy(positions(X)))
ntrace(X::RTBasis, geo, fns) = LagrangeBasis{0,-1,1}(geo, fns, deepcopy(positions(X)))
function LinearAlgebra.cross(::NormalVector, s::RTBasis)
@assert CompScienceMeshes.isoriented(s.geo)
fns = similar(s.fns)
for (i,fn) in pairs(s.fns)
fns[i] = [Shape(sh.cellid, sh.refid, -sh.coeff) for sh in fn]
end
NDBasis(s.geo, fns, s.pos)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 799 | abstract type Continuity{T} end
function raviartthomas(mesh, ::Type{Continuity{:none}})
@assert dimension(mesh) == 2
P = vertextype(mesh)
S = Shape{coordtype(mesh)}
F = Vector{S}
nf = 3*numcells(mesh)
functions = Vector{F}(undef, nf)
positions = Vector{P}(undef, nf)
for i in 1:numcells(mesh)
functions[3*(i-1)+1] = [S(i,1,+1.0)]
functions[3*(i-1)+2] = [S(i,2,+1.0)]
functions[3*(i-1)+3] = [S(i,3,+1.0)]
I = CompScienceMeshes.indices(mesh,i)
V = CompScienceMeshes.vertices(mesh,I)
ctr = sum(V)/3
# ctr = sum(mesh.vertices[mesh.faces[i]])/3
positions[3*(i-1)+1] = ctr
positions[3*(i-1)+2] = ctr
positions[3*(i-1)+3] = ctr
end
return RTBasis(mesh, functions, positions)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 690 |
"""
StagedTimeStep{T,N,NN}
T: the value type of the basis function.
N: the number of stages.
NN: the number of stages squared
Each time step has intermediary stages given by the vertor c in a Butcher tableau (A,b,c)
"""
struct StagedTimeStep{T, N, NN, I}
Δt :: T
Nt :: I
c :: SVector{N,T}
A :: SArray{Tuple{N,N},T,2,NN}
b :: SVector{N,T}
zTransformedTermCount :: I
contourRadius :: T
end
scalartype(sts :: StagedTimeStep{T, N, NN, I}) where {T, N, NN, I} = T
temporalbasis(sts :: StagedTimeStep{T, N, NN, I}) where {T, N, NN, I} = timebasisdelta(sts.Δt, sts.Nt)
numfunctions(s::StagedTimeStep) = s.Nt
numstages(s) = 1
numstages(s::StagedTimeStep) = size(s.c,1)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2198 | import CompScienceMeshes.chart,CompScienceMeshes.subd_chart,CompScienceMeshes.GSubdMesh,CompScienceMeshes.subdMesh
mutable struct subdBasis{T,M,P} <: Space{T}
geo::M
fns::Vector{Vector{Shape{T}}}
pos::Vector{P}
data::Tuple{Array{subd_chart},Array{Array{Array{Tuple}}}}
end
function subset(s::S,I) where {S<:subdBasis}
@warn "No parallel assembly supported when using subdivision bases!"
return s
end
mutable struct subReferenceSpace{T,D} <: RefSpace{T,D} end
refspace(s::subdBasis{T,M,P}) where {T,M,P} = subReferenceSpace{T,12}()
# 12 only for regular case
function (rs::subReferenceSpace)(nbhd)
# u = parametric(nbhd)
# x = cartesian(nbhd)
s = shapefuns(nbhd)
scurl = get_shape_curl(nbhd)
# TODO: this needs fixing, stat!
return s #,scurl
end
function subdsurface(mesh::Mesh{U,D1,T}) where {U,D1,T}
subd_mesh = GSubdMesh(mesh)
vertices = mesh.vertices
subd_elements = subd_mesh.elements
nvertices = length(vertices)
nelem = length(subd_elements)
funs=Array{Vector{BEAST.Shape{T}}}(undef,nvertices)
for i = 1 : nvertices funs[i] = [] end
for ie = 1:nelem
inodes = subd_elements[ie].RingNodes
N = length(inodes)
for ib = 1:N
nodeid = inodes[ib]
coeff = 1.0
ifun = BEAST.Shape{T}(ie,ib,coeff)
push!(funs[nodeid], ifun)
end
end
data = assembly(subd_mesh)
return subdBasis(mesh,funs,vertices,data)
end
function assemblydata(subdB::subdBasis)
return subdB.data
end
function assembly(subdG::subdMesh)
nelem = length(subdG.elements)
assemblydata = Array{Array{Array{Tuple}}}(undef,nelem)
ElementCharts = Array{subd_chart}(undef,nelem)
for e = 1:nelem
cha = chart(subdG,e)
ringnodes = cha.RingNodes
nnodes = length(ringnodes)
line=Array{Array{Tuple}}(undef,nnodes)
for inode = 1:nnodes
Node = ringnodes[inode]
entries=[]
entry=tuple(Node,1.0)
push!(entries,entry)
line[inode] = entries
end
assemblydata[e] = line
ElementCharts[e] = cha
end
return(ElementCharts,assemblydata)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 893 |
struct SpaceTimeBasis{S,T,U} <: Space{U}
space::S
time::T
end
function SpaceTimeBasis(space, time)
S = typeof(space)
T = typeof(time)
U = scalartype(space,time)
return SpaceTimeBasis{S,T,U}(space,time)
end
spatialbasis(s) = s
spatialbasis(s::SpaceTimeBasis) = s.space
function spatialbasis(s::DirectProductSpace)
r = [spatialbasis(ch) for ch in s.factors]
return DirectProductSpace(r)
end
temporalbasis(s::SpaceTimeBasis) = s.time
⊗(a, b) = SpaceTimeBasis(a,b)
numfunctions(S::SpaceTimeBasis) = numfunctions(S.space) * numfunctions(S.time)
scalartype(st::SpaceTimeBasis) = promote_type(scalartype(st.space), scalartype(st.time))
function tensordim(s::SpaceTimeBasis,i)
i == 1 && return numfunctions(s.space)
i == 2 && return numfunctions(s.time)
return 1
end
function tensordim(s, i)
i == 1 && return numfunctions(s)
return 1
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 11293 |
using Compat
mutable struct MonomialBasis{T,Degree,NF} <: RefSpace{T,NF} end
valuetype(::MonomialBasis{T}) where {T} = T
degree(::MonomialBasis{T,D}) where {T,D} = D
numfunctions(x::MonomialBasis) = degree(x)+1
function (x::MonomialBasis)(p)
t = cartesian(p)[1]
valuetype(x)[t^d for d in 0 : degree(x)]
end
abstract type AbstractTimeBasisFunction end
"""
TimeBasisFunction{N,D}
T: the value type of the time basis function
N: the number of intervals in the support (this included the semi infinite interval
stretching to +∞)
D1: the degree of the TBF restricted to each of the intervals **plus one**
"""
mutable struct TimeBasisFunction{T,N,D1,D} <: AbstractTimeBasisFunction
timestep::T
numfunctions::Int
polys::SVector{N,Polynomial{D1,T}}
end
function derive(tbf::TimeBasisFunction{T,N,D1,D}) where {T,N,D1,D}
dpolys = Polynomial{D1-1,T}[ derive(p) for p in tbf.polys ]
TimeBasisFunction{T,N,D1-1,D-1}(
tbf.timestep,
tbf.numfunctions,
SVector{N,Polynomial{D1-1,T}}(dpolys...)
)
end
function integrate(tbf::TimeBasisFunction{T,NI,D1,D}) where {T,NI,D1,D}
timestep = tbf.timestep
numfunctions = tbf.numfunctions
polys = Vector{Polynomial{D1+1,T}}(undef, length(tbf.polys))
c = zero(timestep)
for i in 1:length(polys)
t0 = (i-2) * timestep
t1 = (i-1) * timestep
polys[i] = integrate(tbf.polys[i],t0,c)
c = polys[i](t1)
end
TimeBasisFunction{T,NI,D1+1,D+1}(
tbf.timestep,
tbf.numfunctions,
SVector(polys...)
)
end
mutable struct TimeBasisDelta{T} <: AbstractTimeBasisFunction
timestep::T
numfunctions::Int
end
mutable struct DiracBoundary{T} <: RefSpace{T,1} end
numfunctions(x::DiracBoundary) = 1
scalartype(x::TimeBasisDelta{T}) where {T} = T
numfunctions(x::TimeBasisDelta) = x.numfunctions
refspace(x::TimeBasisDelta{T}) where {T} = DiracBoundary{T}()
timestep(x::TimeBasisDelta) = x.timestep
numintervals(x::TimeBasisDelta) = 1
timebasisdelta(dt, Nt)= TimeBasisDelta(dt, Nt)
numintervals(tbf::TimeBasisFunction{T,N,D1,D}) where {T,N,D1,D} = N
degree(tbf::TimeBasisFunction{T,N,D1,D}) where {T,N,D1,D} = D
timestep(tbf::TimeBasisFunction) = tbf.timestep
scalartype(tbf::TimeBasisFunction{T,N,D1,D}) where {T,N,D1,D} = T
numfunctions(t::TimeBasisFunction) = t.numfunctions
refspace(t::TimeBasisFunction{T,N,D1,D}) where {T,N,D1,D} = MonomialBasis{T,D,D1}()
function truncatetail(t::TimeBasisFunction{T,N,D1,D}) where {T,N,D1,D}
P = Polynomial{D1,T}
S = SVector{N,P}
R = SVector{D1,T}
out = deepcopy(t)
polys = [p for p in t.polys]
polys[end] = P(zero(R))
out.polys = S(polys)
return out
end
geometry(t::AbstractTimeBasisFunction) = [SegmentedAxis(timestep(t), numfunctions(t)+numintervals(t)-3)]
"""
timebasisc0d1(type, timestep, numfunctions)
Build the space of continuous, piecewise linear time basis functions. The DoFs
are the time steps. `numfunctions` basis functions will be built in total.
"""
function timebasisc0d1(timestep, numfunctions, T::Type=Float64)
i, z = one(T), zero(T)
polys = SVector(
Polynomial(SVector(i, i/timestep)), # 1 + t
Polynomial(SVector(i, -i/timestep)), # 1 - t
Polynomial(SVector(z, z))
)
TimeBasisFunction{T,3,2,1}(timestep, numfunctions, polys)
end
"""
timebasiscxd0(timestep, numfunctions, T::Type=Float64)
Create a temporal basis based on shifted copies of the nodal continuous, piecewise
linear interpolant.
"""
function timebasiscxd0(timestep, numfunctions, T::Type=Float64)
i, z = one(T), zero(T)
polys = SVector(
Polynomial(i), # 1
Polynomial(z), # 0
)
TimeBasisFunction{T,2,1,0}(timestep, numfunctions, polys)
end
"""
timebasisspline2(timestep, numfunctions, T::Type=Float64)
Create a temporal basis based on shifted copies of the quadratic spline. The
spline is the convolution of a cxd0 and a c0d1 basis function.
"""
function timebasisspline2(dt, numfunctions, T::Type=typeof(dt))
i, z = one(T), zero(T)
polys = SVector{4,Polynomial{3,T}}(
Polynomial(SVector(i/2, i/dt, i/2/dt/dt)),
Polynomial(SVector(i/2, i/dt, -i/dt/dt)),
Polynomial(SVector(2*i, -2*i/dt, i/2/dt/dt)),
Polynomial(SVector(z, z, z))
)
TimeBasisFunction{T,4,3,2}(dt, numfunctions, polys)
end
function timebasisshiftedlagrange(dt, numfunctions, degree, T::Type=typeof(dt))
z, i = zero(T), one(T)
c = Polynomial(SVector(i))
t = Polynomial(SVector(z,i/dt))
polys = Polynomial{degree+1,T}[]
for k = 0:degree
f = c
for i in 1:k
f = T(1/i) * f * (i - t)
end
g = c
for i in 1:(degree-k)
g = T.(1/i) * g * (i + t)
end
push!(polys, f*g)
end
push!(polys, 0*Base.power_by_squaring(t, degree))
@assert length(polys) == degree+2
polys = SVector{degree+2,Polynomial{degree+1,T}}(polys...)
TimeBasisFunction{T,degree+2,degree+1,degree}(dt, numfunctions, polys)
end
function (f::TimeBasisFunction)(t::Real)
dt = timestep(f)
ni = numintervals(f)
t < -dt && return zero(t)
i = floor(Int, (t/dt)) + 2
p = i <= ni ? f.polys[i] : f.polys[end]
return p(t)
end
function assemblydata(tbf::TimeBasisFunction)
T = scalartype(tbf)
Δt = timestep(tbf)
z = (0, zero(T))
t = Polynomial(zero(T), one(T))
num_cells = numfunctions(tbf)
num_refs = degree(tbf)+1
max_num_funcs = numintervals(tbf)
numfuncs = zeros(Int, num_cells, num_refs)
data = fill(z, max_num_funcs, num_refs, num_cells)
els = [ simplex(point((i-1)*Δt),point(i*Δt)) for i in 1:num_cells ]
for k in 1 : numfunctions(tbf)
tk = (k-1) * Δt
for i in 1 : numintervals(tbf)
# Focus on interval [(i-2)Δt,(i-1)Δt]
p = tbf.polys[i]
q = substitute(p,t-tk)
c = k + i - 2
1 <= c <= num_cells || continue
for d = 0 : degree(q)
r = d + 1
w = q[d]
j = (numfuncs[c,r] += 1)
data[j,r,c] = (k,w)
end
end
end
return els, AssemblyData(data)
end
function temporalassemblydata(tbf; kmax=typemax(Int))
T = scalartype(tbf)
Δt = timestep(tbf)
t = Polynomial(zero(T), one(T))
num_cells = numfunctions(tbf)
num_refs = degree(tbf)+1
has_zero_tail = all(tbf.polys[end].data .== 0)
# @show has_zero_tail
if has_zero_tail
max_num_funcs = numintervals(tbf) # 3
else
max_num_funcs = min(kmax, numfunctions(tbf))
end
numfuncs = zeros(Int, num_cells, num_refs)
data = fill((0,zero(T)), max_num_funcs, num_refs, num_cells)
for k in 1 : min(kmax, numfunctions(tbf))
tk = (k-1) * Δt
for i in 1 : numintervals(tbf)-1
p = tbf.polys[i]
q = substitute(p,t+tk)
c = k - i + 1
c < 1 && continue
for d = 0 : degree(q)
r = d + 1
w = q[d]
j = (numfuncs[c,r] += 1)
data[j,r,c] = (k,w)
end
end
# Treat the half-open interval separately
if !has_zero_tail
p = tbf.polys[numintervals(tbf)]
q = substitute(p, t+tk)
c = k - numintervals(tbf) + 1
while c > 0
for d = 0 : degree(q)
r = d+1
w = q[d]
j = (numfuncs[c,r] += 1)
data[j,r,c] = (k,w)
end
c = c-1
end
end
end
return AssemblyData(data)
end
function assemblydata(tbf::TimeBasisDelta)
T = scalartype(tbf)
Δt = timestep(tbf)
z = zero(scalartype(tbf))
w = one(scalartype(tbf))
num_cells = numfunctions(tbf)
num_refs = 1
max_num_funcs = 1
num_funcs = zeros(Int, num_cells, num_refs)
data = fill((0,z), max_num_funcs, num_refs, num_cells)
els = [ simplex(point((i-0)*Δt),point((i+1)*Δt)) for i in 1:num_cells ]
for k in 1 : numfunctions(tbf)-1
data[1,1,k] = (k+1,w)
end
return els, AssemblyData(data)
end
function convolve(f::TimeBasisFunction, g::TimeBasisFunction)
# @info "BEAST.convolve: computing quadratic spline out of a pulse and a hat"
dt = timestep(f)
fg = timebasisspline2(dt, numfunctions(f), scalartype(f))
fg.polys = dt * fg.polys
return fg
end
# function convolve(f::TimeBasisFunction{T,2,1,0}, g::TimeBasisFunction{T,2,1,0}) where {T}
# @info "Convolving two pulses into a hat"
# dt = timestep(f)
# fg = timebasisshiftedlagrange(dt, numfunctions(f), 1, scalartype(f))
# fg.polys = dt * fg.polys
# return fg
# end
function convolve(δ::TimeBasisDelta, g::TimeBasisFunction)
# @info "Computing the trivial convolution between a delta and something else"
return g
end
function convolve(f::TimeBasisFunction{T,2,1,0}, g::TimeBasisFunction{T,2,1,0}) where {T}
# @info "Convolving two pulses into a hat"
dt = BEAST.timestep(f)
fg = timebasisshiftedlagrange(dt, numfunctions(f), 1, scalartype(f))
fg.polys = dt * fg.polys
return fg
end
function BEAST.convolve(
f::TimeBasisFunction{T,2,1,0},
g::TimeBasisFunction{T,N,D1,D}) where {T,N,D1,D}
# @info "Convolving a left-of-origin pulse with a piecewise poly"
@assert degree(f.polys[1]) == 0
@assert timestep(f) ≈ timestep(g)
# The result of convolving with a LoO pulse extends the support
# by Δt to the right.
Δt = timestep(f)
P = Polynomial{D1+1,T}
polys = Vector{P}(undef, N+1)
t = Polynomial{2,T}(SVector{2,T}(0, 1))
# Treat the leftmost interval separately
polys[1] = integrate(g.polys[1], -Δt, 0)
for i in 2:N
q1 = -1 * substitute(integrate(g.polys[i-1], (i-2)*Δt, 0), t-Δt)
q2 = integrate(g.polys[i], (i-2)*Δt, 0)
polys[i] = q1 + q2
end
q1 = -1 * substitute(integrate(g.polys[N], (N-1)*Δt, 0), t-Δt)
q2 = integrate(g.polys[N], (N-1)*Δt, 0)
polys[N+1] = q1 + q2
TimeBasisFunction{T,N+1,D1+1,D+1}(
g.timestep,
g.numfunctions,
polys)
end
"""
TimeBasisDeltaShifted{T}
Represents a TimeBasisDelta{T} retarded by a fraction of the time step.
"""
struct TimeBasisDeltaShifted{T} <: AbstractTimeBasisFunction
tbf :: TimeBasisDelta{T}
shift :: T
end
scalartype(x::TimeBasisDeltaShifted) = scalartype(x.tbf)
numfunctions(x::TimeBasisDeltaShifted) = numfunctions(x.tbf)
refspace(x::TimeBasisDeltaShifted) = refspace(x.tbf)
timestep(x::TimeBasisDeltaShifted) = timestep(x.tbf)
numintervals(x::TimeBasisDeltaShifted) = numintervals(x.tbf)
function assemblydata(tbds::TimeBasisDeltaShifted)
tbf = tbds.tbf
T = scalartype(tbf)
Δt = timestep(tbf)
z = zero(scalartype(tbf))
w = one(scalartype(tbf))
num_cells = numfunctions(tbf)
num_refs = 1
max_num_funcs = 1
num_funcs = zeros(Int, num_cells, num_refs)
data = fill((0,z), max_num_funcs, num_refs, num_cells)
els = [ simplex(point((i-0+tbds.shift)*Δt),point((i+1+tbds.shift)*Δt)) for i in 1:num_cells ]
for k in 1 : numfunctions(tbf)
data[1,1,k] = (k,w)
end
return els, AssemblyData(data)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 7322 | using SparseArrays
"""
ntrace(X::Space, γ::Mesh)
Compute the normal trace of basis X on mesh γ. γ is assumed to be part of the
boundary of geometry(X).
"""
function ntrace(X::DirectProductSpace{T}, γ) where T
x = Space{T}[ntrace(s, γ) for s in X.factors]
return DirectProductSpace(x)
end
function strace(X::DirectProductSpace{T}, γ) where T
x = Space{T}[strace(s,γ) for s in X.factors]
return DirectProductSpace(x)
end
function ntrace(X::Space, γ)
# on_target = overlap_gpredicate(γ)
# ad = assemblydata(X)
x = refspace(X)
E, ad, P = assemblydata(X)
igeo = geometry(X)
@assert dimension(γ) == dimension(igeo)-1
# Γ = geo
# Dγ = dimension(γ)
# Σ = skeleton(Γ,Dγ)
ogeo = boundary(igeo)
on_target = overlap_gpredicate(γ)
ogeo = submesh(ogeo) do m,f
ch = chart(m,f)
on_target(ch)
end
# D = copy(transpose(connectivity(ogeo, igeo, abs)))
D = connectivity(igeo, ogeo, abs)
rows, vals = rowvals(D), nonzeros(D)
T = scalartype(X)
S = Shape{T}
fns = [Vector{S}() for i in 1:numfunctions(X)]
for (p,el) in enumerate(E)
for (q,fc) in enumerate(faces(el))
on_target(fc) || continue
# print(Q)
# @assert norm(Q,Inf) != 0
r = 0
for k in nzrange(D,P[p])
vals[k] == q && (r = rows[k]; break)
end
@assert r != 0
fc1 = chart(ogeo, r)
Q = ntrace(x, el, q, fc1)
for i in 1:size(Q,1)
for j in 1:size(Q,2)
for (m,a) in ad[p,j]
# j == q && println("bingo",j,q)
v = a*Q[i,j]
isapprox(v,0,atol=sqrt(eps(T))) && continue
push!(fns[m], Shape(r, i, v))
end
end
end
end
end
ntrace(X, ogeo, fns)
end
strace(X::Space, γ::Mesh) = strace(X, γ, Val{dimension(γ)+1})
function strace(X::Space, γ, dim1::Type{Val{2}})
x = refspace(X)
on_target = overlap_gpredicate(γ)
E, ad = assemblydata(X)
geo = geometry(X)
Γ = geo
Σ = skeleton(Γ,1)
# Allows for quick retrieval of the faces in Σ in a given cell of Γ.
D = copy(transpose(connectivity(Σ, Γ, abs)))
rows, vals = rowvals(D), nonzeros(D)
T = scalartype(X)
@assert numfunctions(X) != 0
fns = [Shape{T}[] for i in 1:numfunctions(X)]
for (p,el) in enumerate(E)
for q in 1:dimension(Γ)+1
# find the global index in Σ of the q-th face of the p-element
e = 0
for k in nzrange(D,p)
if vals[k] == q
e = rows[k]
break
end
end
@assert e != 0
# make sure we use fc as oriented in Σ
cell = CompScienceMeshes.indices(Σ,e) #Σ.faces[e]
fc = chart(Σ, e)
on_target(fc) || continue
Q = strace(x,el,q,fc)
for i in 1:size(Q,1)
for j in 1:size(Q,2)
for (m,a) in ad[p,j]
v = a*Q[i,j]
v == 0 && continue
push!(fns[m], Shape(e, i, v))
end
end
end
end
end
strace(X, Σ, fns)
end
function strace(X::Space, γ, dim1::Type{Val{3}})
x = refspace(X)
E, ad, P = assemblydata(X)
igeo = geometry(X)
@assert dimension(γ) == dimension(igeo)-1
ogeo = boundary(igeo)
on_target = overlap_gpredicate(γ)
ogeo = submesh(ogeo) do m,f
ch = chart(m,f)
on_target(ch)
end
D = connectivity(igeo, ogeo, abs)
rows, vals = rowvals(D), nonzeros(D)
T = scalartype(X)
S = Shape{T}
fns = [Vector{S}() for i in 1:numfunctions(X)]
for (p,el) in enumerate(E)
for (q,fc) in enumerate(faces(el))
on_target(fc) || continue
r = 0
for k in nzrange(D,P[p])
vals[k] == q && (r = rows[k]; break)
end
@assert r != 0
fc1 = chart(ogeo, r)
Q = strace(x, el, q, fc1)
for i in 1:size(Q,1)
for j in 1:size(Q,2)
for (m,a) in ad[p,j]
v = a*Q[i,j]
isapprox(v,0,atol=sqrt(eps(T))) && continue
push!(fns[m], Shape(r, i, v))
end
end
end
end
end
strace(X, ogeo, fns)
end
"""
currently not working!
"""
# function ttrace(X::Space, γ)
#
# x = refspace(X)
# on_target = overlap_gpredicate(γ)
# # ad = assemblydata(X)
# E, ad = assemblydata(X)
#
# geo = geometry(X)
# Γ = geo
# Dγ = dimension(γ)
# Σ = skeleton(Γ,Dγ)
#
# D = copy(transpose(connectivity(Σ, Γ, abs)))
# rows, vals = rowvals(D), nonzeros(D)
#
# T = scalartype(X)
# fns = [Shape{T}[] for i in 1:numfunctions(X)]
#
# for (p,el) in enumerate(E)
#
# for (q,fc) in enumerate(faces(el))
#
# on_target(fc) || (println("skip"); continue)
# # print("\n")
# Q = ttrace(x,el,q,fc)
# # print(Q,q)
# # find the global index in Σ of the q-th face of the p-element
# r = 0
# for k in nzrange(D,p)
# vals[k] == q && (r = rows[k]; break)
# end
# @assert r != 0
# for i in 1:size(Q,1)
# for j in 1:size(Q,2)
# for (m,a) in ad[p,j]
# # if j == q
# # # print("bingo",a,Q[i,j])
# # end
# v = a*Q[i,j]
# v == 0 && continue
# push!(fns[m], Shape(r, i, v))
# end
# end
# end
#
# end
#
# end
#
# ttrace(X, Σ, fns)
# end
function ttrace(X::Space, γ)
x = refspace(X)
E, ad = assemblydata(X)
igeo = geometry(X)
@assert dimension(γ) == dimension(igeo)-1
ogeo = boundary(igeo)
on_target = overlap_gpredicate(γ)
ogeo = submesh(ogeo) do m,face
ch = chart(m,face)
on_target(ch)
end
D = connectivity(igeo, ogeo, abs)
rows, vals = rowvals(D), nonzeros(D)
T = scalartype(X)
S = Shape{T}
fns = [Vector{S}() for i in 1:numfunctions(X)]
for (p,el) in enumerate(E)
for (q,fc) in enumerate(faces(el))
on_target(fc) || continue
r = 0
for k in nzrange(D,p)
vals[k] == q && (r = rows[k]; break)
end
@assert r != 0
fc1 = chart(ogeo, r)
@assert cartesian(center(fc)) ≈ cartesian(center(fc1))
Q = ttrace(x, el, q, fc1)
for i in 1:size(Q,1)
for j in 1:size(Q,2)
for (m,a) in ad[p,j]
v = a*Q[i,j]
isapprox(v,0,atol=sqrt(eps(T))) && continue
push!(fns[m], Shape(r, i, v))
end
end
end
end
end
ttrace(X, ogeo, fns)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 902 | struct BDM3DRefSpace{T} <: RefSpace{T,12} end
function (f::BDM3DRefSpace)(p)
u,v,w = parametric(p)
tu = tangents(p,1)
tv = tangents(p,2)
tw = tangents(p,3)
j = jacobian(p)
d=1/j
return SVector((
(value= 2*(-v*tu+v*tv)/j , divergence= 2*d),
(value= 2*(-w*tu+w*tw)/j , divergence= 2*d),
(value= 2*((u+v+w-1)*tu)/j , divergence= 2*d),
(value= 2*(-w*tv+w*tw)/j , divergence= 2*d),
(value= 2*((u+v+w-1)*tv)/j , divergence= 2*d),
(value= 2*(u*tu-u*tv)/j , divergence= 2*d),
(value= 2*((u+v+w-1)*tw)/j , divergence= 2*d),
(value= 2*(u*tu-u*tw)/j , divergence= 2*d),
(value= 2*(v*tv-v*tw)/j , divergence= 2*d),
(value= 2*(u*tu)/j , divergence= 2*d),
(value= 2*(v*tv)/j , divergence= 2*d),
(value= 2*(w*tw)/j , divergence= 2*d)
))
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2366 | struct BDMRefSpace{T} <: RefSpace{T,6} end
function (f::BDMRefSpace)(p)
u,v = parametric(p)
tu = tangents(p,1)
tv = tangents(p,2)
j = jacobian(p)
d = 1/j
return @SVector[
(value=(-v*tu+v*tv)/j, divergence=d),
(value=(u+v-1)*tu/j, divergence=d),
(value=(u+v-1)*tv/j, divergence=d),
(value=(u*tu-u*tv)/j, divergence=d),
(value=u*tu/j, divergence=d),
(value=v*tv/j, divergence=d),]
end
divergence(ref::BDMRefSpace, sh, el) = Shape(sh.cellid, 1, sh.coeff/(2*volume(el)))
const _vert_perms_bdm = [
(1,2,3),
(2,3,1),
(3,1,2),
(2,1,3),
(1,3,2),
(3,2,1),
]
const _dof_perms_bdm = [
(1,2,3,4,5,6),
(5,6,1,2,3,4),
(3,4,5,6,1,2),
(4,3,2,1,6,5),
(2,1,6,5,4,3),
(6,5,4,3,2,1),
]
function dof_permutation(::BDMRefSpace, vert_permutation)
i = findfirst(==(tuple(vert_permutation...)), _vert_perms_bdm)
return _dof_perms_bdm[i]
end
function dof_perm_matrix(::BDMRefSpace, vert_permutation)
i = findfirst(==(tuple(vert_permutation...)), _vert_perms_bdm)
return _dof_bdmperm_matrix[i]
end
dimtype(::BDMRefSpace, ::CompScienceMeshes.Simplex{U,2}) where {U} = Val{6}
const _dof_bdmperm_matrix = [
@SMatrix[1 0 0 0 0 0; #1. {1,2,3}
0 1 0 0 0 0;
0 0 1 0 0 0;
0 0 0 1 0 0;
0 0 0 0 1 0;
0 0 0 0 0 1],
@SMatrix[0 0 0 0 1 0; #2. {2,3,1}
0 0 0 0 0 1;
1 0 0 0 0 0;
0 1 0 0 0 0;
0 0 1 0 0 0;
0 0 0 1 0 0],
@SMatrix[0 0 1 0 0 0; #3. {3,1,2}
0 0 0 1 0 0;
0 0 0 0 1 0;
0 0 0 0 0 1;
1 0 0 0 0 0;
0 1 0 0 0 0],
@SMatrix[0 0 0 1 0 0; #4. {2,1,3}
0 0 1 0 0 0;
0 1 0 0 0 0;
1 0 0 0 0 0;
0 0 0 0 0 1;
0 0 0 0 1 0],
@SMatrix[0 1 0 0 0 0; #5. {1,3,2}
1 0 0 0 0 0;
0 0 0 0 0 1;
0 0 0 0 1 0;
0 0 0 1 0 0;
0 0 1 0 0 0],
@SMatrix[0 0 0 0 0 1; #6. {3,2,1}
0 0 0 0 1 0;
0 0 0 1 0 0;
0 0 1 0 0 0;
0 1 0 0 0 0;
1 0 0 0 0 0]
] | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 9141 | # T: coeff type
# Degree: degree
# Dim1: dimension of the support + 1
mutable struct LagrangeRefSpace{T,Degree,Dim1,NF} <: RefSpace{T,NF} end
numfunctions(s::LagrangeRefSpace{T,D,2}) where {T,D} = D+1
numfunctions(s::LagrangeRefSpace{T,0,3}) where {T} = 1
numfunctions(s::LagrangeRefSpace{T,1,3}) where {T} = 3
numfunctions(s::LagrangeRefSpace{T,2,3}) where {T} = 6
valuetype(ref::LagrangeRefSpace{T}, charttype) where {T} =
SVector{numfunctions(ref), Tuple{T,T}}
# Evaluate constant lagrange elements on anything
(ϕ::LagrangeRefSpace{T,0})(tp) where {T} = SVector(((value=one(T), derivative=zero(T)),))
# Evaluate linear Lagrange elements on a segment
function (f::LagrangeRefSpace{T,1,2})(mp) where T
u = mp.bary[1]
j = jacobian(mp)
SVector(
(value= u, derivative=-1/j),
(value=1-u, derivative= 1/j))
end
# Evaluete linear lagrange elements on a triangle
function (f::LagrangeRefSpace{T,1,3})(t) where T
u,v,w, = barycentric(t)
# SVector(
# (value=u,),
# (value=v,),
# (value=w,))
j = jacobian(t)
p = t.patch
σ = sign(dot(normal(t), cross(p[1]-p[3],p[2]-p[3])))
SVector(
(value=u, curl=σ*(p[3]-p[2])/j),
(value=v, curl=σ*(p[1]-p[3])/j),
(value=w, curl=σ*(p[2]-p[1])/j))
end
"""
f(tangent_space, Val{:withcurl})
Compute the values of the shape functions together with their curl.
"""
# function (f::LagrangeRefSpace{T,1,3})(t, ::Type{Val{:withcurl}}) where T
# # Evaluete linear Lagrange elements on a triange, together with their curl
# j = jacobian(t)
# u,v,w, = barycentric(t)
# p = t.patch
# σ = sign(dot(normal(t), cross(p[1]-p[3],p[2]-p[3])))
# SVector(
# (value=u, curl=σ*(p[3]-p[2])/j),
# (value=v, curl=σ*(p[1]-p[3])/j),
# (value=w, curl=σ*(p[2]-p[1])/j)
# )
# end
# Evaluate constant Lagrange elements on a triangle, with their curls
function (f::LagrangeRefSpace{T,0,3})(t, ::Type{Val{:withcurl}}) where T
i = one(T)
z = zero(cartesian(t))
SVector(((value=i, curl=z,),))
end
function curl(ref::LagrangeRefSpace{T,1,3} where {T}, sh, el)
sh1 = Shape(sh.cellid, mod1(sh.refid+1,3), -sh.coeff)
sh2 = Shape(sh.cellid, mod1(sh.refid+2,3), +sh.coeff)
return [sh1, sh2]
end
function gradient(ref::LagrangeRefSpace{T,1,4}, sh, tet) where {T}
this_vert = tet.vertices[sh.refid]
# other_verts = deleteat(tet.vertices, sh.refid)
# opp_face = simplex(other_verts...)
opp_face = faces(tet)[sh.refid]
ctr_opp_face = center(opp_face)
n = normal(ctr_opp_face)
h = -dot(this_vert - cartesian(ctr_opp_face), n)
@assert h > 0
gradval = -(1/h)*n
output = Vector{Shape{T}}()
for (i,edge) in enumerate(CompScienceMeshes.edges(tet))
ctr_edge = center(edge)
tgt = tangents(ctr_edge,1)
tgt = normalize(tgt)
lgt = volume(edge)
cff = -lgt * dot(tgt, gradval)
isapprox(cff, 0, atol=sqrt(eps(T))) && continue
push!(output, Shape(sh.cellid, i, sh.coeff * cff))
end
return output
end
function gradient(ref::LagrangeRefSpace{T,1,3} where {T}, sh, el)
sh1 = Shape(sh.cellid, mod1(sh.refid+1,3), +sh.coeff)
sh2 = Shape(sh.cellid, mod1(sh.refid+2,3), -sh.coeff)
return [sh1, sh2]
end
function gradient(ref::LagrangeRefSpace{T,1,2}, sh, seg) where {T}
sh.refid == 1 && return [Shape(sh.cellid, 1, +sh.coeff/volume(seg))]
@assert sh.refid == 2
return [Shape(sh.cellid, 1, -sh.coeff/volume(seg))]
end
function strace(x::LagrangeRefSpace, cell, localid, face)
Q = zeros(scalartype(x),2,3)
p1 = neighborhood(face, 1)
p2 = neighborhood(face, 0)
u1 = carttobary(cell, cartesian(p1))
u2 = carttobary(cell, cartesian(p2))
P1 = neighborhood(cell, u1)
P2 = neighborhood(cell, u2)
vals1 = x(P1)
vals2 = x(P2)
for j in 1:numfunctions(x)
Q[1,j] = vals1[j].value
Q[2,j] = vals2[j].value
end
Q
end
function strace(x::LagrangeRefSpace{T, 1, 4, 4}, cell, localid, face) where {T}
#T = scalartype(x)
t = zeros(T, 3, 4)
for (k,fvert) in enumerate(face.vertices)
for (l,cvert) in enumerate(cell.vertices)
nrm = norm(fvert - cvert)
if isapprox(nrm, 0, atol=sqrt(eps(T)))
t[k,l] = T(1.0)
break
end
end
end
return t
end
function restrict(refs::LagrangeRefSpace{T,0}, dom1, dom2) where T
#Q = eye(T, numfunctions(refs))
Q = Matrix{T}(I, numfunctions(refs), numfunctions(refs))
end
function restrict(f::LagrangeRefSpace{T,1}, dom1, dom2) where T
D = numfunctions(f)
Q = zeros(T, D, D)
# for each point of the new domain
for i in 1:D
v = dom2.vertices[i]
# find the barycentric coordinates in dom1
uvn = carttobary(dom1, v)
# evaluate the shape functions in this point
x = neighborhood(dom1, uvn)
fx = f(x)
for j in 1:D
Q[j,i] = fx[j][1]
end
end
return Q
end
## Quadratic Lagrange element on a triangle
function (f::LagrangeRefSpace{T,2,3})(t) where T
u,v,w, = barycentric(t)
j = jacobian(t)
p = t.patch
#curl=(p[3]-p[2])/j),
# (value=v, curl=(p[1]-p[3])/j),
# (value=w, curl=(p[2]-p[1])/j)
σ = sign(dot(normal(t), cross(p[1]-p[3],p[2]-p[3])))
SVector(
(value=u*(2*u-1), curl=σ*(p[3]-p[2])*(4u-1)/j),
(value=v*(2*v-1), curl=σ*(p[1]-p[3])*(4v-1)/j),
(value=w*(2*w-1), curl=σ*(p[2]-p[1])*(4w-1)/j),
(value=4*v*w, curl=4*σ*(w*(p[1]-p[3])+v*(p[2]-p[1]))/j),
(value=4*w*u, curl=4*σ*(w*(p[3]-p[2])+u*(p[2]-p[1]))/j),
(value=4*u*v, curl=4*σ*(u*(p[1]-p[3])+v*(p[3]-p[2]))/j),
)
end
# function (f::LagrangeRefSpace{T,2,3})(t, ::Type{Val{:withcurl}}) where T
# # Evaluete quadratic Lagrange elements on a triange, together with their curl
# j = jacobian(t)
# u,v,w, = barycentric(t)
# p = t.patch
# σ = sign(dot(normal(t), cross(p[1]-p[3],p[2]-p[3])))
# SVector(
# (value=u*(2*u-1), curl=σ*(p[3]-p[2])*(4u-1)/j),
# (value=v*(2*v-1), curl=σ*(p[1]-p[3])*(4v-1)/j),
# (value=w*(2*w-1), curl=σ*(p[2]-p[1])*(4w-1)/j),
# (value=4*v*w, curl=4*σ*(w*(p[1]-p[3])+v*(p[2]-p[1]))/j),
# (value=4*w*u, curl=4*σ*(w*(p[3]-p[2])+u*(p[2]-p[1]))/j),
# (value=4*u*v, curl=4*σ*(u*(p[1]-p[3])+v*(p[3]-p[2]))/j),
# )
# end
function curl(ref::LagrangeRefSpace{T,2,3} where {T}, sh, el)
#curl of lagc0d2 as combination of bdm functions
z=zero(typeof(sh.coeff))
if sh.refid < 4
sh1 = Shape(sh.cellid, mod1(2*sh.refid+1,6), +sh.coeff)
sh2 = Shape(sh.cellid, mod1(2*sh.refid+2,6), -3*sh.coeff)
sh3 = Shape(sh.cellid, mod1(2*sh.refid+3,6), +3*sh.coeff)
sh4 = Shape(sh.cellid, mod1(2*sh.refid+4,6), -sh.coeff)
else
sh1 = Shape(sh.cellid, mod1(2*sh.refid+4,6), z*sh.coeff)
sh2 = Shape(sh.cellid, mod1(2*sh.refid+5,6), -4*sh.coeff)
sh3 = Shape(sh.cellid, mod1(2*sh.refid+6,6), +4*sh.coeff)
sh4 = Shape(sh.cellid, mod1(2*sh.refid+7,6), z*sh.coeff)
end
return [sh1, sh2, sh3, sh4]
end
const _vert_perms_lag = [
(1,2,3),
(2,3,1),
(3,1,2),
(2,1,3),
(1,3,2),
(3,2,1),
]
const _dof_perms_lag0 = [
(1),
(1),
(1),
(1),
(1),
(1),
]
const _dof_perms_lag1 = [
(1,2,3),
(3,1,2),
(2,3,1),
(2,1,3),
(1,3,2),
(3,2,1),
]
function dof_permutation(::LagrangeRefSpace{<:Any,0}, vert_permutation)
i = findfirst(==(tuple(vert_permutation...)), _vert_perms_lag)
return _dof_perms_lag0[i]
end
function dof_permutation(::LagrangeRefSpace{<:Any,1}, vert_permutation)
i = findfirst(==(tuple(vert_permutation...)), _vert_perms_lag)
return _dof_perms_lag1[i]
end
function dof_perm_matrix(::LagrangeRefSpace{<:Any,0}, vert_permutation)
i = findfirst(==(tuple(vert_permutation...)), _vert_perms_rt)
@assert i != nothing
return _dof_lag0perm_matrix[i]
end
function dof_perm_matrix(::LagrangeRefSpace{<:Any,1}, vert_permutation)
i = findfirst(==(tuple(vert_permutation...)), _vert_perms_rt)
@assert i != nothing
return _dof_rtperm_matrix[i]
end
const _dof_lag0perm_matrix = [
@SMatrix[1], # 1. {1,2,3}
@SMatrix[1], # 2. {2,3,1}
@SMatrix[1], # 3. {3,1,2}
@SMatrix[1], # 4. {2,1,3}
@SMatrix[1], # 5. {1,3,2}
@SMatrix[1] # 6. {3,2,1}
]
function (ϕ::LagrangeRefSpace{T, 1, 4, 4})(lag) where T
u, v, w = parametric(lag)
tu = tangents(lag, 1)
tv = tangents(lag, 2)
tw = tangents(lag, 3)
B = [tu tv tw]
A = inv(transpose(B))
# gradient in u,v,w (unit tetrahedron)
gr1=SVector{3, T}(1.0, 0.0, 0.0)
gr2=SVector{3, T}(0.0, 1.0, 0.0)
gr3=SVector{3, T}(0.0, 0.0, 1.0)
gr4=SVector{3, T}(-1.0, -1.0, -1.0)
return SVector((
(value = u, gradient = A*gr1),
(value = v, gradient = A*gr2),
(value = w, gradient = A*gr3),
(value = T(1.0)-u-v-w, gradient = A*gr4)
))
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 524 | struct NCrossBDMRefSpace{T} <: RefSpace{T,6} end
function (f::NCrossBDMRefSpace{T})(p) where T
u,v = parametric(p)
n = normal(p)
tu = tangents(p,1)
tv = tangents(p,2)
j = jacobian(p)
d = 1/j
return @SVector[
(value= n × (-v*tu+v*tv)/j, curl=d),
(value= n × ((u+v-1)*tu)/j, curl=d),
(value= n × ((u+v-1)*tv) /j, curl=d),
(value= n × (u*tu-u*tv)/j, curl=d),
(value= n × (u*tu)/j, curl=d),
(value= n × (v*tv)/j, curl=d),]
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1035 |
mutable struct ND2RefSpace{T} <: RefSpace{T,8} end
function (ϕ::ND2RefSpace)(nbd)
u, v = parametric(nbd)
n = normal(nbd)
j = jacobian(nbd)
tu = tangents(nbd,1)
tv = tangents(nbd,2)
d = 2/j
inv_j = 1/j
return SVector((
(value= n × ((8*u^2+8*u*v-12*u-6*v+4)*tu + (2*v*(4*u+4*v-3))*tv)*inv_j, curl=(24*u+24*v-18)*inv_j),
(value= n × ((-8*u*v+2*u+6*v-2)*tu + (4*v*(-2*v+1))*tv)*inv_j, curl=(6-24*v)*inv_j),
(value= n × ((4*u*(1-2*u))*tu + (-8*u*v+6*u+2*v-2)*tv)*inv_j, curl=(6-24*u)*inv_j),
(value= n × ((2*u*(4*u+4*v-3))*tu + (8*u*v-6*u+8*v^2-12*v+4)*tv)*inv_j, curl=(24*u+24*v-18)*inv_j),
(value= n × ((2u*(1-4v))*tu + (4v*(1-2v))*tv)*inv_j, curl=(6-24*v)*inv_j),
(value= n × ((4u*(1-2u))*tu + (2v*(1-4u))*tv)*inv_j, curl=(6-24*u)*inv_j),
(value= n × ((8*u*(-2*u-v+2))*tu + (8*v*(-2*u-v+1))*tv)*inv_j, curl=(-48*u-24*v+24)*inv_j),
(value= n × ((8*u*(-u-2*v+1))*tu + (8*v*(-u-2*v+2))*tv)*inv_j, curl=(-24*u-48*v+24)*inv_j)
))
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 5181 | struct NDLCCRefSpace{T} <: RefSpace{T,6} end
function valuetype(ref::NDLCCRefSpace{T}, charttype::Type) where {T}
SVector{universedimension(charttype),T}
end
function (ϕ::NDLCCRefSpace)(ndlc)
u,v,w = parametric(ndlc)
j = jacobian(ndlc)
tu = tangents(ndlc,1)
tv = tangents(ndlc,2)
tw = tangents(ndlc,3)
#B = [tv-tu tw-tu -tu]
B = [tu tv tw]
BMT = transpose(inv(B))
du = SVector{3}(BMT[:,1])
dv = SVector{3}(BMT[:,2])
dw = SVector{3}(BMT[:,3])
#Choose 1-(0,0,0), 2-(1,0,0), 3-(0,1,0), 4-(0,0,1)
#Now it is listed as:
#(1,2) [1-v-w,u,u] (direction: from 1 to 2)
#(1,3) [v,1-u-w,v]
#(1,4) [w,w,1-u,v]
#(2,3) [-v,u,0]
#(2,4) [-w,0,u]
#(3,4) [0,-w,v]
# return SVector((
# (value=(BMT*[-v,u,0]) ,curl=(B*[0,0,2])/j) ,
# (value=(BMT*[-w,0,u]) ,curl=(B*[0,-2,0])/j),
# (value=(BMT*[(w+v-1),-u,-u]),curl=(B*[0,2,-2])/j),
# (value=(BMT*[0,-w,v]) ,curl=(B*[2,0,0])/j) ,
# (value=(BMT*[-v,(u+w-1),-v]),curl=(B*[-2,0,2])/j),
# (value=(BMT*[-w,-w,(u+v-1)]),curl=(B*[2,-2,0])/j)
# ))
return SVector((
(value=-v*du + u*dv, curl=(2*tw)/j),
(value=-w*du + u*dw, curl=(-2*tv)/j),
(value=(w+v-1)*du - u*dv - u*dw, curl=(2*tv - 2*tw)/j),
(value=-w*dv + v*dw, curl=(2*tu)/j),
(value=-v*du + (u+w-1)*dv -v*dw, curl=(-2*tu + 2*tw)/j),
(value=-w*du -w*dv + (u+v-1)*dw, curl=(2*tu -2*tv)/j),
))
## return SVector((
## (value=(BMT*[(w+v-1),-u,-u]),curl=(B*[0,2,-2])/j),
## (value=(BMT*[-v,(u+w-1),-v]) ,curl=(B*[-2,0,2])/j),
## (value=(BMT*[-w,-w,(u+v-1)]) ,curl=(B*[2,-2,0])/j),
## (value=(BMT*[-v,u,0]) ,curl=(B*[0,0,2])/j) ,
## (value=(BMT*[-w,0,u]) ,curl=(B*[0,-2,0])/j),
## (value=(BMT*[0,-w,v]) ,curl=(B*[2,0,0])/j)
## ))
end
#check orientation
function curl(ref::NDLCCRefSpace, sh, el)
a = [4,2,3,4,1,2]##[2,1,1,1,2,4]#[2,1,4,4,3,2]#[4,2,3,4,1,2]
b = [3,4,2,1,3,1]##[3,2,4,3,4,3]#[4,3,3,1,2,1]#[3,4,2,1,3,1]
sh1 = Shape(sh.cellid, b[sh.refid], -sh.coeff)
sh2 = Shape(sh.cellid, a[sh.refid], sh.coeff)
return [sh1,sh2]
end
function restrict(ϕ::NDLCCRefSpace{T}, dom1, dom2) where {T}
# dom2 is the smaller of the domains
K = numfunctions(ϕ)
D = dimension(dom1)
@assert K == 6
@assert D == 3
@assert D == dimension(dom2)
Q = zeros(T,K,K)
for (i,edge) in enumerate(CompScienceMeshes.edges(dom2))
p = center(edge)
c = cartesian(p)
A = volume(edge)
t = tangents(p,1)
t = normalize(t)
u = carttobary(dom1, c)
x = neighborhood(dom1, u)
y = ϕ(x)
for j in 1:K
Q[j,i] = -dot(y[j].value, t) * A
end
end
return Q
end
function ttrace(x::NDLCCRefSpace, el, q, fc)
# el: the supporting chart of the input
# q: the local index of the face of el on which we compute the trace
# fc: the chart on which we compute the trace
el_ctr = cartesian(center(el))
fc_ctr = cartesian(center(fc))
T = scalartype(x)
y = BEAST.RTRefSpace{T}()
t = zeros(scalartype(x),3,6)
for (j,edgej) in enumerate(CompScienceMeshes.edges(el))
for (i,edgei) in enumerate(CompScienceMeshes.edges(fc))
nbdi = center(edgei)
nbdj = neighborhood(el, carttobary(el, cartesian(nbdi)))
@assert isapprox(cartesian(nbdi), cartesian(nbdj), atol=1e-4)
xval = x(nbdj)[j].value
# yval = y(nbdi)[i].value
tgt = -tangents(nbdi,1)
nrm = normal(fc)
bnr = cross(normalize(tgt), nrm)
@assert dot(bnr, cartesian(nbdi)-fc_ctr) > 0
@assert norm(bnr) ≈ 1
dot(nrm, fc_ctr - el_ctr) < 0 && (nrm = -nrm)
t[i,j] = dot(bnr, nrm × xval) * volume(edgei)
end
end
return t
#
# # fa = SArray{Tuple{2},Int,1,2}
# # te = SArray{Tuple{3},Int,1,3}
# j = 0
# y = BEAST.NDRefSpace{scalartype(x)}()
# n = normal(fc)
# for fac in faces(el)
# j += 1
# j == q && continue
# # fac != fc || continue
# #vind locale index (i) in fc van de edge die in zowel fc als fac ligt
# A = setdiff(fc.vertices,setdiff(fc.vertices,fac.vertices))
# # @show length(A)
# @assert length(A) == 2
# edg = fa([findfirst(isequal(A[1]), fc.vertices),findfirst(isequal(A[2]), fc.vertices)])
# i = abs(CompScienceMeshes.relorientation(edg,te([1,2,3])))
# #i = findfirst(isequal(setdiff(fcv,facv)[1]), fcv)
# edg_chart = simplex(fc.vertices[edg[1]], fc.vertices[edg[2]])
# edg_centr = cartesian(center(edg_chart))
# p = neighborhood(fc, carttobary(fc, edg_centr))
# r = neighborhood(el, carttobary(el, edg_centr))
# yp = y(p)[i].value
# xr = x(r)[j].value
# tgt = edg_chart.vertices[1] - edg_chart.vertices[2]
# ypt = dot(yp, tgt)
# xrt = dot(n × xr, tgt)
# # t[i,j] = volume(el)/(volume(fac)*norm(A[1]-A[2]))
# t[i,j] = xrt / ypt
# end
# return t
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3259 | struct NDLCDRefSpace{T} <: RefSpace{T,4} end
function valuetype(ref::NDLCDRefSpace{T}, charttype::Type) where {T}
SVector{universedimension(charttype),T}
end
function (ϕ::NDLCDRefSpace)(ndlc)
u,v,w = parametric(ndlc)
j = jacobian(ndlc)
tu = tangents(ndlc,1)
tv = tangents(ndlc,2)
tw = tangents(ndlc,3)
# B = [tu tv tw]
# return SVector((
# (value=(2*B*[(u-1),v,w]/j),divergence=(6/j)),
# (value=(2*B*[u,(v-1),w]/j),divergence=(6/j)),
# (value=(2*B*[u,v,(w-1)]/j),divergence=(6/j)),
# (value=(2*B*[u,v,w]/j) ,divergence=(6/j))
# ))
return SVector((
(value=(2*((u-1)*tu + v*tv + w*tw)/j), divergence=(6/j)),
(value=(2*(u*tu + (v-1)*tv + w*tw)/j), divergence=(6/j)),
(value=(2*(u*tu + v*tv + (w-1)*tw)/j),divergence=(6/j)),
(value=(2*(u*tu + v*tv + w*tw)/j) ,divergence=(6/j))
))
end
function ntrace(x::NDLCDRefSpace, el, q, fc)
t = zeros(scalartype(x),1,4)
t[q] = 1 / volume(fc)
return t
end
"""
Does not give the correct result for an imput basis with non-vanishing
input basis on the boundary
"""
function ttrace(x::NDLCDRefSpace, el, q, fc)
# el: the supporting chart of the input
# q: the local index of the face of el on which we compute the trace
# fc: the chart on which we compute the trace
t = zeros(scalartype(x),3,4)
fa = SArray{Tuple{2},Int,1,2}
te = SArray{Tuple{3},Int,1,3}
j = 0
y = BEAST.NDRefSpace{scalartype(x)}()
n = normal(fc)
for fac in faces(el)
j += 1
j == q && continue
# fac != fc || continue
#vind locale index (i) in fc van de edge die in zowel fc als fac ligt
A = setdiff(fc.vertices,setdiff(fc.vertices,fac.vertices))
# @show length(A)
@assert length(A) == 2
edg = fa([findfirst(isequal(A[1]), fc.vertices),findfirst(isequal(A[2]), fc.vertices)])
i = abs(CompScienceMeshes.relorientation(edg,te([1,2,3])))
#i = findfirst(isequal(setdiff(fcv,facv)[1]), fcv)
edg_chart = simplex(fc.vertices[edg[1]], fc.vertices[edg[2]])
edg_centr = cartesian(center(edg_chart))
p = neighborhood(fc, carttobary(fc, edg_centr))
r = neighborhood(el, carttobary(el, edg_centr))
yp = y(p)[i].value
xr = x(r)[j].value
tgt = edg_chart.vertices[1] - edg_chart.vertices[2]
ypt = dot(yp, tgt)
xrt = dot(n × xr, tgt)
# t[i,j] = volume(el)/(volume(fac)*norm(A[1]-A[2]))
t[i,j] = xrt / ypt
end
return t
end
divergence(ref::NDLCDRefSpace, sh, el) = Shape(sh.cellid, 1, sh.coeff/volume(el))
function restrict(ϕ::NDLCDRefSpace{T}, dom1, dom2) where {T}
# dom2 is the smaller of the domains
K = numfunctions(ϕ)
D = dimension(dom1)
@assert K == 4
@assert D == 3
@assert D == dimension(dom2)
Q = zeros(T,K,K)
for (i,face) in enumerate(faces(dom2))
p = center(face)
c = cartesian(p)
A = volume(face)
m = normal(p)
# u = carttobary(dom1,cartesian(p))
u = carttobary(dom1, c)
x = neighborhood(dom1, u)
y = ϕ(x)
for j in 1:K
Q[j,i] = dot(y[j].value, m) * A
end
end
return Q
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1676 | """
Local shape function `r` is the one whose field lines straddle local edge `r`,
which is the edge adjacent to vertex `r`.
This is not the edge starting at vertex `r`. The downside of this local numbering
scheme is that it cannot be extended to cells that are not simplices because
there is no well defined concept of adjacent-ness.
"""
mutable struct NDRefSpace{T} <: RefSpace{T,3} end
function (ϕ::NDRefSpace)(nbd)
u, v = parametric(nbd)
n = normal(nbd)
j = jacobian(nbd)
tu = tangents(nbd,1)
tv = tangents(nbd,2)
d = 2/j
return SVector((
(value = n × (tu*(u-1) + tv*v ) / j, curl = d),
(value = n × (tu*u + tv*(v-1)) / j, curl = d),
(value = n × (tu*u + tv*v ) / j, curl = d)
))
end
function restrict(ϕ::NDRefSpace{T}, dom1, dom2) where T
K = numfunctions(ϕ)
D = dimension(dom1)
@assert K == 3
@assert D == 2
@assert D == dimension(dom2)
Q = zeros(T,K,K)
for i in 1:K
# find the center of edge i of dom2
a = dom2.vertices[mod1(i+1,D+1)]
b = dom2.vertices[mod1(i+2,D+1)]
c = (a + b) / 2
# find the tangent in this point to the edge
t = b - a
# l = norm(t)
# n = dom2.normals[1]
# m = cross(t, n) / l
# dom1 : the smaller domain on which the reference functions are def'd
# dom2 : the larger domain on which the function to be restrcited is def'd
u = carttobary(dom1, c)
x = neighborhood(dom1, u)
y = ϕ(x)
for j in 1:K
# Q[j,i] = dot(y[j][1], m) * l
Q[j,i] = dot(y[j][1], t)
end
end
return Q
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 5938 | struct RT2RefSpace{T} <: RefSpace{T,8} end
function (f::RT2RefSpace)(p)
u, v = parametric(p)
j = jacobian(p)
tu = tangents(p,1)
tv = tangents(p,2)
inv_j = 1/j
# return SVector(
# (value=-(4u*(1-2u))*tu - (2v*(1-4u))*tv, divergence=inv_j),
# (value=-(2u*(1-4v))*tu - (4v*(1-2v))*tv, divergence=inv_j),
# (value=(-8*u^2-8*u*v+12*u+6*v-4)*tu + (2*v*(-4*u-4*v+3))*tv, divergence=inv_j),
# (value=(8*u*v-2*u-6*v+2)*tu + (4*v*(2*v-1))*tv, divergence=inv_j),
# (value=-(2*u*(4*u+4*v-3))*tu - (8*u*v-6*u+8*v^2-12*v+4)*tv, divergence=inv_j),
# (value=-(4*u*(1-2*u))*tu - (-8*u*v+6*u+2*v-2)*tv, divergence=inv_j),
# (value=(8*u*(-2*u-v+2))*tu + (8*v*(-2*u-v+1))*tv, divergence=inv_j),
# (value=(8*u*(-u-2*v+1))*tu + (8*v*(-u-2*v+2))*tv, divergence=inv_j),
# )
return SVector(
(value=((8*u^2+8*u*v-12*u-6*v+4)*tu + (2*v*(4*u+4*v-3))*tv)*inv_j, divergence=(24*u+24*v-18)*inv_j),
(value=((-8*u*v+2*u+6*v-2)*tu + (4*v*(-2*v+1))*tv)*inv_j, divergence=(6-24*v)*inv_j),
(value=((4*u*(1-2*u))*tu + (-8*u*v+6*u+2*v-2)*tv)*inv_j, divergence=(6-24*u)*inv_j),
(value=((2*u*(4*u+4*v-3))*tu + (8*u*v-6*u+8*v^2-12*v+4)*tv)*inv_j, divergence=(24*u+24*v-18)*inv_j),
(value=((2u*(1-4v))*tu + (4v*(1-2v))*tv)*inv_j, divergence=(6-24*v)*inv_j),
(value=((4u*(1-2u))*tu + (2v*(1-4u))*tv)*inv_j, divergence=(6-24*u)*inv_j),
(value=((8*u*(-2*u-v+2))*tu + (8*v*(-2*u-v+1))*tv)*inv_j, divergence=(-48*u-24*v+24)*inv_j),
(value=((8*u*(-u-2*v+1))*tu + (8*v*(-u-2*v+2))*tv)*inv_j, divergence=(-24*u-48*v+24)*inv_j)
)
end
function interpolate(fields, interpolant::BEAST.RT2RefSpace, chart)
T = coordtype(chart)
Q = Any[]
refchart = CompScienceMeshes.domain(chart).simplex
nfields = length(fields(center(chart)))
for (edge, refedge) in zip(faces(chart), faces(refchart))
l0 = zeros(T,nfields)
l1 = zeros(T,nfields)
qps = CompScienceMeshes.quadpoints(edge,4)
for (p_edge,w) in qps
s = parametric(p_edge)
# x = cartesian(p_edge)
# u = carttobary(chart, x)
p_refedge = neighborhood(refedge,s)
u = cartesian(p_refedge)
p_refchart = neighborhood(refchart, u)
t_refedge = tangents(p_refedge,1)
m_refedge = point(-t_refedge[2], t_refedge[1])
m_refedge /= norm(m_refedge)
q0ref = (-1) * (1-s[1]) * m_refedge
q1ref = (-1) * s[1] * m_refedge
nxq0ref = point(-q0ref[2], q0ref[1])
nxq1ref = point(-q1ref[2], q1ref[1])
p_chart = neighborhood(chart, u)
n_chart = normal(p_chart)
J_chart = jacobian(p_chart)
t1 = tangents(p_chart,1)
t2 = tangents(p_chart,2)
q0 = -n_chart × (nxq0ref[1]*t1 + nxq0ref[2]*t2) / J_chart
q1 = -n_chart × (nxq1ref[1]*t1 + nxq1ref[2]*t2) / J_chart
vals = fields(p_chart)
J_edge = jacobian(p_edge)
J_refedge = jacobian(p_refedge)
l0 .+= [w * dot(f,q0) * J_chart / J_edge * J_refedge for f in vals]
l1 .+= [w * dot(f,q1) * J_chart / J_edge * J_refedge for f in vals]
end
push!(Q,l0)
push!(Q,l1)
end
l6 = zeros(T,nfields)
l7 = zeros(T,nfields)
qps = CompScienceMeshes.quadpoints(chart, 4)
for (p,w) in qps
q6ref = point(1,0)
q7ref = point(0,1)
nxq6ref = point(-q6ref[2], q6ref[1])
nxq7ref = point(-q7ref[2], q7ref[1])
J_chart = jacobian(p)
n_chart = normal(p)
t1 = tangents(p,1)
t2 = tangents(p,2)
q6 = -n_chart × (nxq6ref[1] * t1 + nxq6ref[2] * t2) / J_chart
q7 = -n_chart × (nxq7ref[1] * t1 + nxq7ref[2] * t2) / J_chart
vals = fields(p)
l6 .+= [w * dot(f,q6) for f in vals]
l7 .+= [w * dot(f,q7) for f in vals]
end
push!(Q,l6)
push!(Q,l7)
return hcat(Q...)
end
function dof_perm_matrix(::RT2RefSpace, vert_permutation)
i = findfirst(==(tuple(vert_permutation...)), _vert_perms_rt)
@assert i != nothing
return _dof_rt2perm_matrix[i]
end
const _dof_rt2perm_matrix = [
@SMatrix[1 0 0 0 0 0 0 0; #1. {1,2,3}
0 1 0 0 0 0 0 0;
0 0 1 0 0 0 0 0;
0 0 0 1 0 0 0 0;
0 0 0 0 1 0 0 0;
0 0 0 0 0 1 0 0;
0 0 0 0 0 0 1 0;
0 0 0 0 0 0 0 1],
@SMatrix[0 0 0 0 1 0 0 0; #2. {2,3,1}
0 0 0 0 0 1 0 0;
1 0 0 0 0 0 0 0;
0 1 0 0 0 0 0 0;
0 0 1 0 0 0 0 0;
0 0 0 1 0 0 0 0;
0 0 0 0 0 0 0 -1;
0 0 0 0 0 0 1 -1],
@SMatrix[0 0 1 0 0 0 0 0; #3. {3,1,2}
0 0 0 1 0 0 0 0;
0 0 0 0 1 0 0 0;
0 0 0 0 0 1 0 0;
1 0 0 0 0 0 0 0;
0 1 0 0 0 0 0 0;
0 0 0 0 0 0 -1 1;
0 0 0 0 0 0 -1 0],
@SMatrix[0 0 0 1 0 0 0 0; #4. {2,1,3}
0 0 1 0 0 0 0 0;
0 1 0 0 0 0 0 0;
1 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0;
0 0 0 0 1 0 0 0;
0 0 0 0 0 0 0 1;
0 0 0 0 0 0 1 0],
@SMatrix[0 1 0 0 0 0 0 0; #5. {1,3,2}
1 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0;
0 0 0 0 1 0 0 0;
0 0 0 1 0 0 0 0;
0 0 1 0 0 0 0 0;
0 0 0 0 0 0 1 -1;
0 0 0 0 0 0 0 -1],
@SMatrix[0 0 0 0 0 1 0 0; #6. {3,2,1}
0 0 0 0 1 0 0 0;
0 0 0 1 0 0 0 0;
0 0 1 0 0 0 0 0;
0 1 0 0 0 0 0 0;
1 0 0 0 0 0 0 0;
0 0 0 0 0 0 -1 0;
0 0 0 0 0 0 -1 1]
]
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4358 | struct RTRefSpace{T} <: DivRefSpace{T,3} end
# valuetype(ref::RTRefSpace{T}, charttype) where {T} = SVector{3,Tuple{SVector{universedimension(charttype),T},T}}
function valuetype(ref::RTRefSpace{T}, charttype::Type) where {T}
SVector{universedimension(charttype),T}
end
function (ϕ::RTRefSpace)(mp)
u, v = parametric(mp)
j = jacobian(mp)
tu = tangents(mp,1)
tv = tangents(mp,2)
inv_j = 1/j
d = 2 * inv_j
u_tu = u*tu
v_tv = v*tv
return SVector((
(value=(u_tu-tu + v_tv )*inv_j, divergence=d),
(value=(u_tu + v_tv-tv)*inv_j, divergence=d),
(value=(u_tu + v_tv )*inv_j, divergence=d)
))
end
divergence(ref::RTRefSpace, sh, el) = Shape(sh.cellid, 1, sh.coeff/volume(el))
"""
ntrace(refspace, element, localindex, face)
Compute the normal trace of all local shape functions on `elements` belonging to
`refspace` on `face`. This function returns a matrix expressing the traces of local
shape functions in `refspace` as linear combinations of functions in the local
trace space. Cf. `restrict`. `localindex` is the index of `face` in the enumeration
of faces of `elements`. In many special cases knowing this index allows for highly
optimised implementations.
"""
function ntrace(x::RTRefSpace, el, q, fc)
t = zeros(scalartype(x),1,3)
t[q] = 1 / volume(fc)
return t
end
const _vert_perms_rt = [
(1,2,3),
(2,3,1),
(3,1,2),
(2,1,3),
(1,3,2),
(3,2,1),
]
const _dof_perms_rt = [
(1,2,3),
(3,1,2),
(2,3,1),
(2,1,3),
(1,3,2),
(3,2,1),
]
function dof_permutation(::RTRefSpace, vert_permutation)
i = something(findfirst(==(tuple(vert_permutation...)), _vert_perms_rt),0)
@assert i != 0
return _dof_perms_rt[i]
end
function dof_perm_matrix(::RTRefSpace, vert_permutation)
i = findfirst(==(tuple(vert_permutation...)), _vert_perms_rt)
@assert i != nothing
return _dof_rtperm_matrix[i]
end
"""
interpolate(interpolant::RefSpace, chart1, interpolee::RefSpace, chart2)
Computes by interpolation approximations of the local shape functions for
`interpolee` on `chart2` in terms of the local shape functions for `interpolant`
on `chart1`. The returned value is a matrix `Q` such that
```math
\\phi_i \\approx \\sum_j Q_{ij} \\psi_j
```
with ``\\phi_i`` the i-th local shape function for `interpolee` and ``\\psi_j`` the
j-th local shape function for `interpolant`.
"""
function interpolate(interpolant::RefSpace, chart1, interpolee::RefSpace, chart2)
function fields(p)
x = cartesian(p)
v = carttobary(chart2, x)
r = neighborhood(chart2, v)
fieldvals = [f.value for f in interpolee(r)]
end
interpolate(fields, interpolant, chart1)
end
function interpolate(interpolant::RefSpace, chart1, interpolee::RefSpace, chart2, ch1toch2)
function fields(p1)
u1 = parametric(p1)
u2 = cartesian(ch1toch2, u1)
p2 = neighborhood(chart2, u2)
fieldvals = [f.value for f in interpolee(p2)]
end
interpolate(fields, interpolant, chart1)
end
function interpolate(fields, interpolant::RTRefSpace, chart)
Q = map(faces(chart)) do face
p = center(face)
x = cartesian(p)
u = carttobary(chart, x)
q = neighborhood(chart, u)
n = normal(q)
# minus because in CSM the tangent points towards vertex[1]
t = -tangents(p,1)
m = cross(t,n)
fieldvals = fields(q)
q = [dot(fv,m) for fv in fieldvals]
end
return hcat(Q...)
end
function restrict(ϕ::RefSpace, dom1, dom2)
interpolate(ϕ, dom2, ϕ, dom1)
end
function restrict(ϕ::RefSpace, dom1, dom2, dom2todom1)
interpolate(ϕ, dom2, ϕ, dom1, dom2todom1)
end
const _dof_rtperm_matrix = [
@SMatrix[1 0 0; # 1. {1,2,3}
0 1 0;
0 0 1],
@SMatrix[0 0 1; # 2. {2,3,1}
1 0 0;
0 1 0],
@SMatrix[0 1 0; # 3. {3,1,2}
0 0 1;
1 0 0],
@SMatrix[0 1 0; # 4. {2,1,3}
1 0 0;
0 0 1],
@SMatrix[1 0 0; # 5. {1,3,2}
0 0 1;
0 1 0],
@SMatrix[0 0 1; # 6. {3,2,1}
0 1 0;
1 0 0]
]
# Support for zeroth order elements on quadrilaterals
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3564 | struct RTQuadRefSpace{T} <: DivRefSpace{T,4} end
function (ϕ::RTQuadRefSpace{T})(p) where {T}
u, v = parametric(p)
j = jacobian(p)
D = tangents(p)
eu = point(T,1,0)
ev = point(T,0,1)
i = one(T)
vals = SVector(
(value=(v-1)*ev, divergence=i),
(value=u*eu, divergence=i),
(value=v*ev, divergence=i),
(value=(u-1)*eu, divergence=i),
)
map(vals) do f
(value=D*f.value/j, divergence=f.divergence/j) end
end
function interpolate(fields, interpolant::RTQuadRefSpace{T}, chart) where {T}
refchart = domain(chart)
Q = map(zip(faces(chart), faces(refchart))) do (edge,refedge)
s = T(0.5)
p_edge = neighborhood(edge, s)
p_refedge = neighborhood(refedge, s)
p_refchart = neighborhood(refchart, cartesian(p_refedge))
p_chart = neighborhood(chart, cartesian(p_refchart))
n_chart = normal(p_chart)
t_edge = tangents(p_edge, 1)
m_edge = -cross(t_edge, n_chart)
fieldvals = fields(p_chart)
map(fv -> dot(fv,m_edge), fieldvals)
end
return hcat(Q...)
end
@testitem "interpolate" begin
using CompScienceMeshes
p1 = point(0,0,0)
p2 = point(2,0,0)
p3 = point(2,4,0)
p4 = point(0,4,0)
quad = CompScienceMeshes.Quadrilateral(p1,p2,p3,p4)
f(p) = (x = cartesian(p); return [point(x[1]+2, -x[2]-3, 0)])
rtq = BEAST.RTQuadRefSpace{Float64}()
Q = BEAST.interpolate(f, rtq, quad)
p = neighborhood(quad, point(0.5, 0.5))
val1 = f(p)[1]
val2 = sum(Q[1,i] * ϕ.value for (i,ϕ) in zip(axes(Q,2), rtq(p)))
@show val1
@show val2
@test val1 ≈ val2
end
const _vrtperm_matrix_rtq = [
(1,2,3,4),
(2,3,4,1),
(3,4,1,2),
(4,1,2,3),
(2,1,4,3),
(1,4,3,2),
(4,3,2,1),
(3,2,1,4),
]
const _dofperm_matrix_rtq = [
@SMatrix[1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0],
@SMatrix[0.0 0.0 0.0 1.0; 1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0; 0.0 0.0 1.0 0.0],
@SMatrix[0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0; 1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0],
@SMatrix[0.0 1.0 0.0 0.0; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0; 1.0 0.0 0.0 0.0],
@SMatrix[1.0 0.0 0.0 0.0; 0.0 0.0 0.0 1.0; 0.0 0.0 1.0 0.0; 0.0 1.0 0.0 0.0],
@SMatrix[0.0 0.0 0.0 1.0; 0.0 0.0 1.0 0.0; 0.0 1.0 0.0 0.0; 1.0 0.0 0.0 0.0],
@SMatrix[0.0 0.0 1.0 0.0; 0.0 1.0 0.0 0.0; 1.0 0.0 0.0 0.0; 0.0 0.0 0.0 1.0],
@SMatrix[0.0 1.0 0.0 0.0; 1.0 0.0 0.0 0.0; 0.0 0.0 0.0 1.0; 0.0 0.0 1.0 0.0],
]
function dof_perm_matrix(::RTQuadRefSpace, vert_permutation)
i = findfirst(==(tuple(vert_permutation...)), _vrtperm_matrix_rtq)
@assert i != nothing
return _dofperm_matrix_rtq[i]
end
@testitem "restrict RTQ0" begin
using CompScienceMeshes
using Combinatorics
ref_vertices = [
point(0,0),
point(1,0),
point(1,1),
point(0,1)]
vertices = [
point(0,0,0),
point(1,0,0),
point(1,1,0),
point(0,1,0)]
chart1 = CompScienceMeshes.Quadrilateral(vertices...)
for I in BEAST._vrtperm_matrix_rtq
@show I
chart2 = CompScienceMeshes.Quadrilateral(
vertices[I[1]],
vertices[I[2]],
vertices[I[3]],
vertices[I[4]])
chart2tochart1 = CompScienceMeshes.Quadrilateral(ref_vertices[collect(I)]...)
rs = BEAST.RTQuadRefSpace{Float64}()
Q1 = BEAST.dof_perm_matrix(rs, I)
Q2 = BEAST.restrict(rs, chart1, chart2, chart2tochart1)
@test Q1 ≈ Q1
end
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1971 | struct CurlSingleLayerDP3D{T,U} <: MaxwellOperator3D{U,T}
gamma::T
alpha::U
end
function integrand(op::CurlSingleLayerDP3D, kernel_vals,
test_vals, test_nbhd, trial_vals, trial_nbhd)
α = op.alpha
gx = test_vals.value
fy = trial_vals.value
∇G = kernel_vals.gradgreen
nx = normal(test_nbhd)
return -α * dot(nx × gx, ∇G * fy)
end
function momintegrals!(op::CurlSingleLayerDP3D,
test_local_space::RTRefSpace, trial_local_space::LagrangeRefSpace,
test_triangular_element, trial_triangular_element, out, strat::SauterSchwabStrategy)
I, J, K, L = SauterSchwabQuadrature.reorder(
test_triangular_element.vertices,
trial_triangular_element.vertices, strat)
test_triangular_element = simplex(test_triangular_element.vertices[I]...)
trial_triangular_element = simplex(trial_triangular_element.vertices[J]...)
function igd(u,v)
α = op.alpha
γ = op.gamma
x = neighborhood(test_triangular_element,u)
y = neighborhood(trial_triangular_element,v)
nx = normal(x)
r = cartesian(x) - cartesian(y)
R = norm(r)
G = exp(-γ*R)/(4π*R)
GG = -(γ + 1/R) * G / R * r
f = test_local_space(x)
g = trial_local_space(y)
jx = jacobian(x)
jy = jacobian(y)
j = jx*jy
αjGG = α*j*GG
R = @SVector[αjGG*g[i].value for i in 1:3]
return @SMatrix[dot(f[i].value × nx, R[j]) for i in 1:3, j in 1:3]
end
Q = sauterschwab_parameterized(igd, strat)
for j ∈ 1:3
for i ∈ 1:3
out[i,j] += Q[K[i],L[j]]
end
end
nothing
end
function quadrule(op::BEAST.CurlSingleLayerDP3D,
test_local_space::BEAST.RTRefSpace, trial_local_space::BEAST.RTRefSpace,
test_index, test_chart, trial_index, trial_chart, quadrature_data)
qrdf(op, test_local_space, trial_local_space, test_index, test_chart, trial_index, trial_chart, quadrature_data)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1121 | struct DPVectorialTerm{A,K}
alpha::A
gamma::K
end
struct DPScalarTerm{A,K}
alpha::A
gamma::K
end
const DPTerm = Union{DPVectorialTerm, DPScalarTerm}
quaddata(pot::DPTerm, local_space, charts) = quadpoints(local_space, charts, (2,))
quadrule(pot::DPTerm, local_space, test_index, test_point, trial_index, trial_chart, quad_data) = quad_data[1,trial_index]
function kernelvals(pot::DPTerm, test_point, trial_neighborhood)
γ = pot.gamma
α = pot.alpha
r = test_point - cartesian(trial_neighborhood)
R = norm(r)
γR = γ*R
expn = exp(-γR)
green = expn / (4π*R)
gradgreen = -(γ + 1/R) * green / R * r
return (vector=r, distance=R, green=green, gradgreen=gradgreen)
end
function integrand(pot::DPVectorialTerm, kernel_values, test_point, trial_values, trial_neighborhood)
α = pot.alpha
G = kernel_values.green
f = trial_values.value
return α*G*f
end
function integrand(pot::DPScalarTerm, kernel_values, test_point, trial_values, trial_neighborhood)
α = pot.alpha
∇G = kernel_values.gradgreen
f = trial_values.value
return α*∇G*f
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4041 | import SpecialFunctions: hankelh2
abstract type HelmholtzOperator2D <: IntegralOperator end
scalartype(::HelmholtzOperator2D) = ComplexF64
struct SingleLayer{T} <: HelmholtzOperator2D
wavenumber::T
end
struct HyperSingular{T} <: HelmholtzOperator2D
wavenumber::T
end
struct DoubleLayer{T} <: HelmholtzOperator2D
wavenumber::T
end
struct DoubleLayerTransposed{T} <: HelmholtzOperator2D
wavenumber::T
end
function cellcellinteractions!(biop::HelmholtzOperator2D, tshs, bshs, tcell, bcell, z)
regularcellcellinteractions!(biop, tshs, bshs, tcell, bcell, z)
end
function testfunc1()
print("test function!")
end
defaultquadstrat(op::HelmholtzOperator2D, tfs, bfs) = DoubleNumWiltonSauterQStrat(4,3,4,3,4,4,4,4)
function quaddata(op::HelmholtzOperator2D, g::LagrangeRefSpace, f::LagrangeRefSpace, tels, bels,
qs::DoubleNumWiltonSauterQStrat)
tqd = quadpoints(g, tels, (qs.outer_rule_far,))
bqd = quadpoints(f, bels, (qs.inner_rule_far,))
return (tpoints=tqd, bpoints=bqd)
end
function quadrule(op::HelmholtzOperator2D, g::LagrangeRefSpace, f::LagrangeRefSpace, i, τ, j, σ, qd,
qs::DoubleNumWiltonSauterQStrat)
DoubleQuadRule(
qd.tpoints[1,i],
qd.bpoints[1,j]
)
end
mutable struct KernelValsHelmholtz2D
wavenumber
vect
dist
green
gradgreen
txty
end
function kernelvals(biop::HelmholtzOperator2D, tgeo, bgeo)
k = biop.wavenumber
r = tgeo.cart - bgeo.cart
R = norm(r)
kr = k * R
hankels = hankelh2.([0 1], kr)
green = -im / 4 * hankels[1]
gradgreen = k * im / 4 * hankels[2] * r / R
txty = dot(normal(tgeo), normal(bgeo))
KernelValsHelmholtz2D(k, r, R, green, gradgreen, txty)
end
shapevals(op::HelmholtzOperator2D, ϕ, ts) = shapevals(ValDiff(), ϕ, ts)
function integrand(biop::SingleLayer, kerneldata, tvals,
tgeo, bvals, bgeo)
gx = tvals[1]
fy = bvals[1]
gx * kerneldata.green * fy
end
function integrand(biop::HyperSingular, kernel, tvals, tgeo,
bvals, bgeo)
gx = tvals[1]
fy = bvals[1]
dgx = tvals[2]
dfy = bvals[2]
k = kernel.wavenumber
G = kernel.green
txty = kernel.txty
(dgx * dfy - k*k * txty * gx * fy) * G
end
function integrand(biop::DoubleLayer, kernel, fp, mp, fq, mq)
nq = normal(mq)
fp[1] * dot(nq, -kernel.gradgreen) * fq[1]
end
function integrand(biop::DoubleLayerTransposed, kernel, fp, mp, fq, mq)
np = normal(mp)
fp[1] * dot(np, kernel.gradgreen) * fq[1]
end
mutable struct PlaneWaveDirichlet{T,P} <: Functional
wavenumber::T
direction::P
end
scalartype(x::PlaneWaveDirichlet{T}) where {T} = complex(T)
mutable struct PlaneWaveNeumann{T,P} <: Functional
wavenumber::T
direction::P
end
scalartype(x::PlaneWaveNeumann{T}) where {T} = complex(T)
mutable struct ScalarTrace{T,F} <: Functional
field::F
end
ScalarTrace(f::F) where {F} = ScalarTrace{scalartype(f), F}(f)
ScalarTrace{T}(f::F) where {T,F} = ScalarTrace{T,F}(f)
strace(f, mesh::Mesh) = ScalarTrace(f)
(s::ScalarTrace)(x) = s.field(cartesian(x))
integrand(s::ScalarTrace, tx, fx) = dot(tx.value, fx)
scalartype(s::ScalarTrace{T}) where {T} = T
shapevals(f::Functional, ϕ, ts) = shapevals(ValOnly(), ϕ, ts)
function (field::PlaneWaveDirichlet)(mp)
wavenumber = field.wavenumber
direction = field.direction
cart = cartesian(mp)
exp(-im * wavenumber * dot(direction, cart))
end
function(field::PlaneWaveNeumann)(mp)
wavenumber = field.wavenumber
direction = field.direction
cart = cartesian(mp)
norm = normal(mp)
wave = exp(-im * wavenumber * dot(direction, cart))
grad = -im * wavenumber * direction * wave
d = norm[1] * grad[1]
for i in 2:length(norm) d += norm[i] * grad[i] end
return d
end
function integrand(pw::PlaneWaveDirichlet, sv, fx)
tx = sv[1]
return dot(tx, fx)
end
function integrand(pw::PlaneWaveNeumann, sv, fx)
tx = sv[1]
d = tx[1] * fx[1]
for i in 2:length(tx) d += tx[i]*fx[i] end
return d
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3156 | module Helmholtz3D
using ..BEAST
const Mod = BEAST
using LinearAlgebra
function singlelayer(;
alpha=nothing,
gamma=nothing,
wavenumber=nothing
)
alpha, gamma = Mod.operator_parameter_handler(alpha, gamma, wavenumber)
return Mod.HH3DSingleLayerFDBIO(alpha,gamma)
end
function doublelayer(;
alpha=nothing,
gamma=nothing,
wavenumber=nothing
)
alpha, gamma = Mod.operator_parameter_handler(alpha, gamma, wavenumber)
return Mod.HH3DDoubleLayerFDBIO(alpha, gamma)
end
function doublelayer_transposed(;
alpha=nothing,
gamma=nothing,
wavenumber=nothing
)
alpha, gamma = Mod.operator_parameter_handler(alpha, gamma, wavenumber)
return Mod.HH3DDoubleLayerTransposedFDBIO(alpha, gamma)
end
function hypersingular(;
alpha=nothing,
beta=nothing,
gamma=nothing,
wavenumber=nothing
)
gamma, wavenumber = Mod.gamma_wavenumber_handler(gamma, wavenumber)
if alpha === nothing
if Mod.isstatic(gamma) #static case
alpha = 0.0 # In the long run, this should probably be rather 'nothing'
else
alpha = gamma^2
end
end
if beta === nothing
if Mod.isstatic(gamma) #static case
beta = one(alpha)
else
beta = one(gamma)
end
end
return Mod.HH3DHyperSingularFDBIO(alpha, beta, gamma)
end
function planewave(;
direction=error("direction is a required argument"),
gamma=nothing,
wavenumber=nothing,
amplitude=one(eltype(direction)))
gamma, wavenumber = Mod.gamma_wavenumber_handler(gamma, wavenumber)
# Note: Unlike for the operators, there seems little benefit in
# explicitly declaring a Laplace-Type excitation.
Mod.isstatic(gamma) && (gamma = zero(amplitude))
return Mod.HH3DPlaneWave(direction, gamma, amplitude)
end
function linearpotential(; direction=SVector(1, 0, 0), amplitude=1.0)
return Mod.HH3DLinearPotential(direction ./ norm(direction), amplitude)
end
function grad_linearpotential(; direction=SVector(0.0, 0.0, 0.0), amplitude=1.0)
return Mod.gradHH3DLinearPotential(direction, amplitude)
end
function monopole(;
position=SVector(0.0, 0.0, 0.0),
gamma=nothing,
wavenumber=nothing,
amplitude=1.0
)
gamma, wavenumber = Mod.gamma_wavenumber_handler(gamma, wavenumber)
Mod.isstatic(gamma) && (gamma = zero(amplitude))
return Mod.HH3DMonopole(position, gamma, amplitude)
end
function grad_monopole(;
position=SVector(0.0, 0.0, 0.0),
gamma=nothing,
wavenumber=nothing,
amplitude=1.0
)
gamma, wavenumber = Mod.gamma_wavenumber_handler(gamma, wavenumber)
Mod.isstatic(gamma) && (gamma = zero(amplitude))
return Mod.gradHH3DMonopole(position, gamma, amplitude)
end
end
export Helmholtz3D
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 8473 | # function pulled_back_integrand(op::HH3DSingleLayerFDBIO,
# test_local_space::LagrangeRefSpace,
# trial_local_space::LagrangeRefSpace,
# test_chart, trial_chart)
# (u,v) -> begin
# x = neighborhood(test_chart,u)
# y = neighborhood(trial_chart,v)
# f = test_local_space(x)
# g = trial_local_space(y)
# j = jacobian(x) * jacobian(y)
# α = op.alpha
# γ = gamma(op)
# R = norm(cartesian(x)-cartesian(y))
# G = exp(-γ*R)/(4*π*R)
# αjG = α*G*j
# SMatrix{length(f),length(g)}((f[j].value * αjG * g[i].value for i in 1:length(g) for j in 1:length(f) )...)
# end
# end
# function pulled_back_integrand(op::HH3DHyperSingularFDBIO,
# test_local_space::LagrangeRefSpace,
# trial_local_space::LagrangeRefSpace,
# test_chart, trial_chart)
# (u,v) -> begin
# x = neighborhood(test_chart,u)
# y = neighborhood(trial_chart,v)
# nx = normal(x)
# ny = normal(y)
# f = test_local_space(x)
# g = trial_local_space(y)
# j = jacobian(x) * jacobian(y)
# α = op.alpha
# β = op.beta
# γ = gamma(op)
# R = norm(cartesian(x)-cartesian(y))
# G = exp(-γ*R)/(4*π*R)
# αjG = ny*α*G*j
# βjG = β*G*j
# A = SA[(αjG*g[i].value for i in 1:length(g))...]
# B = SA[(βjG*g[i].curl for i in 1:length(g))...]
# SMatrix{length(f),length(g)}((((dot(nx*f[j].value,A[i])+dot(f[j].curl,B[i])) for i in 1:length(g) for j in 1:length(f))...))
# end
# end
# function pulled_back_integrand(op::HH3DDoubleLayerFDBIO,
# test_local_space::LagrangeRefSpace,
# trial_local_space::LagrangeRefSpace,
# test_chart, trial_chart)
# (u,v) -> begin
# x = neighborhood(test_chart,u)
# y = neighborhood(trial_chart,v)
# ny = normal(y)
# f = test_local_space(x)
# g = trial_local_space(y)
# j = jacobian(x) * jacobian(y)
# α = op.alpha
# γ = gamma(op)
# r = cartesian(x) - cartesian(y)
# R = norm(r)
# G = exp(-γ*R)/(4*π*R)
# inv_R = 1/R
# ∇G = -(γ + inv_R) * G * inv_R * r
# αnyj∇G = dot(ny,-α*∇G*j)
# SMatrix{length(f),length(g)}((f[j].value * αnyj∇G * g[i].value for i in 1:length(g) for j in 1:length(f))...)
# end
# end
# function pulled_back_integrand(op::HH3DDoubleLayerTransposedFDBIO,
# test_local_space::LagrangeRefSpace,
# trial_local_space::LagrangeRefSpace,
# test_chart, trial_chart)
# (u,v) -> begin
# x = neighborhood(test_chart,u)
# y = neighborhood(trial_chart,v)
# nx = normal(x)
# f = test_local_space(x)
# g = trial_local_space(y)
# j = jacobian(x) * jacobian(y)
# α = op.alpha
# γ = gamma(op)
# r = cartesian(x) - cartesian(y)
# R = norm(r)
# G = exp(-γ*R)/(4*π*R)
# inv_R = 1/R
# ∇G = -(γ + inv_R) * G * inv_R * r
# αnxj∇G = dot(nx,α*∇G*j)
# SMatrix{length(f),length(g)}((f[j].value * αnxj∇G * g[i].value for i in 1:length(g) for j in 1:length(f))...)
# end
# end
# function momintegrals!(op::Helmholtz3DOp,
# test_local_space::LagrangeRefSpace{<:Any,0}, trial_local_space::LagrangeRefSpace{<:Any,0},
# test_triangular_element, trial_triangular_element, out, strat::SauterSchwabStrategy)
# I, J, K, L = SauterSchwabQuadrature.reorder(
# test_triangular_element.vertices,
# trial_triangular_element.vertices, strat)
# test_triangular_element = simplex(
# test_triangular_element.vertices[I[1]],
# test_triangular_element.vertices[I[2]],
# test_triangular_element.vertices[I[3]])
# trial_triangular_element = simplex(
# trial_triangular_element.vertices[J[1]],
# trial_triangular_element.vertices[J[2]],
# trial_triangular_element.vertices[J[3]])
# test_sign = Combinatorics.levicivita(I)
# trial_sign = Combinatorics.levicivita(J)
# σ = momintegrals_sign(op, test_sign, trial_sign)
# igd = pulled_back_integrand(op, test_local_space, trial_local_space,
# test_triangular_element, trial_triangular_element)
# G = SauterSchwabQuadrature.sauterschwab_parameterized(igd, strat)
# out[1,1] += G[1,1] * σ
# nothing
# end
# function momintegrals!(op::Helmholtz3DOp,
# test_local_space::LagrangeRefSpace, trial_local_space::LagrangeRefSpace,
# test_triangular_element, trial_triangular_element, out, strat::SauterSchwabStrategy)
# I, J, K, L = SauterSchwabQuadrature.reorder(
# test_triangular_element.vertices,
# trial_triangular_element.vertices, strat)
# test_triangular_element = simplex(
# test_triangular_element.vertices[I[1]],
# test_triangular_element.vertices[I[2]],
# test_triangular_element.vertices[I[3]])
# trial_triangular_element = simplex(
# trial_triangular_element.vertices[J[1]],
# trial_triangular_element.vertices[J[2]],
# trial_triangular_element.vertices[J[3]])
# test_sign = Combinatorics.levicivita(I)
# trial_sign = Combinatorics.levicivita(J)
# σ = momintegrals_sign(op, test_sign, trial_sign)
# igd = pulled_back_integrand(op, test_local_space, trial_local_space,
# test_triangular_element, trial_triangular_element)
# G = SauterSchwabQuadrature.sauterschwab_parameterized(igd, strat)
# for j ∈ 1:3, i ∈ 1:3
# out[i,j] += G[K[i],L[j]] * σ
# end
# nothing
# end
# function momintegrals!(op::Helmholtz3DOp,
# test_local_space::LagrangeRefSpace{<:Any,0}, trial_local_space::LagrangeRefSpace{<:Any,1},
# test_triangular_element, trial_triangular_element, out, strat::SauterSchwabStrategy)
# I, J, K, L = SauterSchwabQuadrature.reorder(
# test_triangular_element.vertices,
# trial_triangular_element.vertices, strat)
# test_triangular_element = simplex(
# test_triangular_element.vertices[I[1]],
# test_triangular_element.vertices[I[2]],
# test_triangular_element.vertices[I[3]])
# trial_triangular_element = simplex(
# trial_triangular_element.vertices[J[1]],
# trial_triangular_element.vertices[J[2]],
# trial_triangular_element.vertices[J[3]])
# test_sign = Combinatorics.levicivita(I)
# trial_sign = Combinatorics.levicivita(J)
# σ = momintegrals_sign(op, test_sign, trial_sign)
# igd = pulled_back_integrand(op, test_local_space, trial_local_space,
# test_triangular_element, trial_triangular_element)
# G = SauterSchwabQuadrature.sauterschwab_parameterized(igd, strat)
# for i ∈ 1:3
# out[1,i] += G[L[i]] * σ
# end
# nothing
# end
# function momintegrals!(op::Helmholtz3DOp,
# test_local_space::LagrangeRefSpace{<:Any,1}, trial_local_space::LagrangeRefSpace{<:Any,0},
# test_triangular_element, trial_triangular_element, out, strat::SauterSchwabStrategy)
# I, J, K, L = SauterSchwabQuadrature.reorder(
# test_triangular_element.vertices,
# trial_triangular_element.vertices, strat)
# test_triangular_element = simplex(
# test_triangular_element.vertices[I[1]],
# test_triangular_element.vertices[I[2]],
# test_triangular_element.vertices[I[3]])
# trial_triangular_element = simplex(
# trial_triangular_element.vertices[J[1]],
# trial_triangular_element.vertices[J[2]],
# trial_triangular_element.vertices[J[3]])
# test_sign = Combinatorics.levicivita(I)
# trial_sign = Combinatorics.levicivita(J)
# σ = momintegrals_sign(op, test_sign, trial_sign)
# igd = pulled_back_integrand(op, test_local_space, trial_local_space,
# test_triangular_element, trial_triangular_element)
# G = SauterSchwabQuadrature.sauterschwab_parameterized(igd, strat)
# for i ∈ 1:3
# out[i,1] += G[K[i]] * σ
# end
# nothing
# end
# function momintegrals_sign(op::HH3DSingleLayerFDBIO, test_sign, trial_sign)
# return 1
# end
# function momintegrals_sign(op::HH3DDoubleLayerFDBIO, test_sign, trial_sign)
# return trial_sign
# end
# function momintegrals_sign(op::HH3DDoubleLayerTransposedFDBIO, test_sign, trial_sign)
# return test_sign
# end
# function momintegrals_sign(op::HH3DHyperSingularFDBIO, test_sign, trial_sign)
# return test_sign * trial_sign
# end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4648 | struct HH3DPlaneWave{P,K,T}
direction::P
gamma::K
amplitude::T
end
function (f::HH3DPlaneWave)(r)
d = f.direction
γ = f.gamma
a = f.amplitude
return a * exp(-γ*dot(d,r))
end
function (f::HH3DPlaneWave)(r::CompScienceMeshes.MeshPointNM)
return f(cartesian(r))
end
scalartype(f::HH3DPlaneWave{P,K,T}) where {P,K,T} = promote_type(eltype(P), K, T)
"""
HH3DLinearPotential
A potential that linearly increases in `direction` with scaling coefficient `amplitude`.
Its negative gradient will be a uniform vector field pointing in the opposite direction.
"""
struct HH3DLinearPotential{P,T}
direction::P
amplitude::T
end
scalartype(f::HH3DLinearPotential{P,T}) where {P,T} = promote_type(eltype(P), T)
function (f::HH3DLinearPotential)(r)
d = f.direction
a = f.amplitude
return a * dot(d, r)
end
function (f::HH3DLinearPotential)(r::CompScienceMeshes.MeshPointNM)
return f(cartesian(r))
end
struct gradHH3DLinearPotential{T,P}
direction::P
amplitude::T
end
function (f::gradHH3DLinearPotential)(r)
d = f.direction
a = f.amplitude
return a * d
end
function (f::gradHH3DLinearPotential)(r::CompScienceMeshes.MeshPointNM)
r = cartesian(mp)
return dot(normal(mp), f(r))
end
function grad(m::HH3DLinearPotential)
return gradHH3DLinearPotential(m.direction, m.amplitude)
end
*(a::Number, m::HH3DLinearPotential) = HH3DLinearPotential(m.direction, a * m.amplitude)
*(a::Number, m::gradHH3DLinearPotential) = gradHH3DLinearPotential(m.direction, a * m.amplitude)
dot(::NormalVector, m::gradHH3DLinearPotential) = NormalDerivative(HH3DLinearPotential(m.direction, m.amplitude))
"""
HH3DMonopole
Potential of a monopole-type point source (e.g., of an electric charge)
"""
struct HH3DMonopole{P,K,T}
position::P
gamma::K
amplitude::T
end
scalartype(x::HH3DMonopole{P,K,T}) where {P,K,T} = promote_type(eltype(P), K, T)
function (f::HH3DMonopole)(r::CompScienceMeshes.MeshPointNM)
return f(cartesian(r))
end
function (f::HH3DMonopole)(r)
γ = f.gamma
p = f.position
a = f.amplitude
return a*exp(-γ * norm(r - p)) / (norm(r - p))
end
struct gradHH3DMonopole{P,K,T}
position::P
gamma::K
amplitude::T
end
scalartype(x::gradHH3DMonopole{P,K,T}) where {P,K,T} = promote_type(eltype(P), K, T)
function (f::gradHH3DMonopole)(r)
a = f.amplitude
γ = f.gamma
p = f.position
vecR = r - p
R = norm(vecR)
return -a * vecR * exp(-γ * R) / R^2 * (γ + 1 / R)
end
function (f::gradHH3DMonopole)(mp::CompScienceMeshes.MeshPointNM)
r = cartesian(mp)
return dot(normal(mp), f(r))
end
function grad(m::HH3DMonopole)
return gradHH3DMonopole(m.position, m.gamma, m.amplitude)
end
*(a::Number, m::HH3DMonopole) = HH3DMonopole(m.position, m.gamma, a * m.amplitude)
*(a::Number, m::gradHH3DMonopole) = gradHH3DMonopole(m.position, m.gamma, a * m.amplitude)
dot(::NormalVector, m::gradHH3DMonopole) = NormalDerivative(HH3DMonopole(m.position, m.gamma, m.amplitude))
mutable struct DirichletTrace{T,F} <: Functional
field::F
end
DirichletTrace(f::F) where {F} = DirichletTrace{scalartype(f), F}(f)
DirichletTrace{T}(f::F) where {T,F} = DirichletTrace{T,F}(f)
scalartype(s::DirichletTrace{T}) where {T} = T
function (ϕ::DirichletTrace)(p)
F = ϕ.field
x = cartesian(p)
return F(x)
end
integrand(::DirichletTrace, test_vals, field_vals) = dot(test_vals[1], field_vals)
struct NormalDerivative{T,F} <: Functional
field::F
end
NormalDerivative(f::F) where {F} = NormalDerivative{scalartype(f), F}(f)
NormalDerivative{T}(f::F) where {T,F} = NormalDerivative{T,F}(f)
scalartype(s::NormalDerivative{T}) where {T} = T
const ∂n = Val{:normalderivative}
(::Type{Val{:normalderivative}})(f) = NormalDerivative(f)
function (f::NormalDerivative)(nbd)
x = cartesian(nbd)
g = gradient(f.field)(x)
n = normal(nbd)
return dot(n,g)
end
function (f::NormalDerivative{T,F})(manipoint) where {T,F<:HH3DPlaneWave}
d = f.field.direction
γ = f.field.gamma
a = f.field.amplitude
n = normal(manipoint)
r = cartesian(manipoint)
return -γ*a * dot(d,n) * exp(-γ*dot(d,r))
end
function (f::NormalDerivative{T,F})(manipoint) where {T,F<:HH3DLinearPotential}
gradient = f.field.amplitude * f.field.direction
n = normal(manipoint)
return dot(n, gradient)
end
function (f::NormalDerivative{T,F})(manipoint) where {T,F<:HH3DMonopole}
m = f.field
grad_m = grad(m)
n = normal(manipoint)
r = cartesian(manipoint)
return dot(n, grad_m(r))
end
integrand(::NormalDerivative, test_vals, field_vals) = dot(test_vals[1], field_vals) | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 515 | struct HH3DFarField{K}
gamma::K
end
function HH3DFarField(;wavenumber=error("wavenumber is a required argument"))
if iszero(real(wavenumber))
HH3DFarField(-imag(wavenumber))
else
HH3DFarField(wavenumber*im)
end
end
quaddata(op::HH3DFarField,rs,els) = quadpoints(rs,els,(3,))
quadrule(op::HH3DFarField,refspace,p,y,q,el,qdata) = qdata[1,q]
kernelvals(op::HH3DFarField,y,p) = exp(op.gamma*dot(y,cartesian(p)))
function integrand(op::HH3DFarField,krn,y,f,p)
krn * f.value
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2453 |
struct HH3DDoubleLayerNear{K}
gamma::K
end
struct HH3DSingleLayerNear{K}
gamma::K
end
struct HH3DHyperSingularNear{K}
gamma::K
end
struct HH3DDoubleLayerTransposedNear{K}
gamma::K
end
function HH3DDoubleLayerNear(;wavenumber=error("wavenumber is a required argument"))
if iszero(real(wavenumber))
HH3DDoubleLayerNear(-imag(wavenumber))
else
HH3DDoubleLayerNear(wavenumber*im)
end
end
function HH3DSingleLayerNear(;wavenumber=error("wavenumber is a required argument"))
if iszero(real(wavenumber))
HH3DSingleLayerNear(-imag(wavenumber))
else
HH3DSingleLayerNear(wavenumber*im)
end
end
function HH3DHyperSingularNear(;wavenumber=error("wavenumber is a required argument"))
if iszero(real(wavenumber))
HH3DHyperSingularNear(-imag(wavenumber))
else
HH3DHyperSingularNear(wavenumber*im)
end
end
function HH3DDoubleLayerTransposedNear(;wavenumber=error("wavenumber is a required argument"))
if iszero(real(wavenumber))
HH3DDoubleLayerTransposedNear(-imag(wavenumber))
else
HH3DDoubleLayerTranposedNear(wavenumber*im)
end
end
HH3DNear = Union{HH3DSingleLayerNear, HH3DDoubleLayerNear, HH3DDoubleLayerTransposedNear, HH3DHyperSingularNear}
defaultquadstrat(op::HH3DNear, basis) = SingleNumQStrat(3)
quaddata(op::HH3DNear,rs,els,qs::SingleNumQStrat) = quadpoints(rs,els,(qs.quad_rule,))
quadrule(op::HH3DNear,refspace,p,y,q,el,qdata,qs::SingleNumQStrat) = qdata[1,q]
function kernelvals(op::HH3DNear,y,p)
γ = op.gamma
x = cartesian(p)
r = y - x
R = norm(r)
γR = γ*R
inv_R = 1/R
expn = exp(-γR)
green = expn * inv_R * inv_4pi
gradgreen = -(γ + inv_R) * green * inv_R * r
nx = normal(p)
(;γ, r, R, green, gradgreen, nx)
end
function integrand(op::HH3DDoubleLayerNear,krn,y,f,p)
∇G = -krn.gradgreen
nx = krn.nx
fx = f.value
∂G∂n = nx ⋅ ∇G
return ∂G∂n * fx
end
function integrand(op::HH3DSingleLayerNear, krn, y, f, p)
G = krn.green
fx = f.value
return G * fx
end
function integrand(op::HH3DDoubleLayerTransposedNear, krn, y, f, p)
∇G = krn.gradgreen
fx = f.value
return ∇G * fx
end
function integrand(op::HH3DHyperSingularNear, krn, y, f, p)
G = krn.green
nx = krn.nx
γ = krn.γ
invR = 1/krn.R
fx = f.value
r = krn.r
# returns ∇ᵣn̂'∇ᵣ'G - strong singularity, probably makes problems for small distances R
return (nx * G * invR * (γ + invR) - r * dot(nx,r) * G * invR^2 * (γ^2 + 3 * γ * invR + 3 * invR^2)) * fx
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4864 | abstract type Helmholtz3DOp{T,K} <: MaxwellOperator3D{T,K} end
abstract type Helmholtz3DOpReg{T,K} <: MaxwellOperator3DReg{T,K} end
"""
```
∫_Γ dx ∫_Γ dy \\left(α G g(x) n_x ⋅ n_y f(y) + β G \\mbox{curl} g(x) ⋅ \\mbox{curl} f(y) \\right)
```
with ``G(x,y) = \\frac{e^{-γ |x-y|}}{4 π |x-y|}``
"""
struct HH3DHyperSingularFDBIO{T,K} <: Helmholtz3DOp{T,K}
"coefficient of the weakly singular term"
alpha::T
"coefficient of the hyper singular term"
beta::T
"`im*κ` with `κ` the wave number"
gamma::K
end
function sign_upon_permutation(op::HH3DHyperSingularFDBIO, I, J)
return Combinatorics.levicivita(I) * Combinatorics.levicivita(J)
end
struct HH3DHyperSingularReg{T,K} <: Helmholtz3DOpReg{T,K}
"coefficient of the weakly singular term"
alpha::T
"coefficient of the hyper singular term"
beta::T
"`im*κ` with `κ` the wave number"
gamma::K
end
struct HH3DHyperSingularSng{T,K} <: Helmholtz3DOp{T,K}
"coefficient of the weakly singular term"
alpha::T
"coefficient of the hyper singular term"
beta::T
"`im*κ` with `κ` the wave number"
gamma::K
end
HH3DHyperSingularFDBIO(gamma) = HH3DHyperSingularFDBIO(gamma^2, one(gamma), gamma)
"""
```math
a(u,v) = α ∬_{Γ×Γ} u(x) G_{γ}(|x-y|) v(y)
```
with ``G_{γ}(r) = \\frac{e^{-γr}}{4πr}``.
"""
struct HH3DSingleLayerFDBIO{T,K} <: Helmholtz3DOp{T,K}
alpha::T
gamma::K
end
struct HH3DSingleLayerReg{T,K} <: Helmholtz3DOpReg{T,K}
alpha::T
gamma::K
end
struct HH3DSingleLayerSng{T,K} <: Helmholtz3DOp{T,K}
alpha::T
gamma::K
end
struct HH3DDoubleLayerFDBIO{T,K} <: Helmholtz3DOp{T,K}
alpha::T
gamma::K
end
struct HH3DDoubleLayerReg{T,K} <: Helmholtz3DOpReg{T,K}
alpha::T
gamma::K
end
struct HH3DDoubleLayerSng{T,K} <: Helmholtz3DOp{T,K}
alpha::T
gamma::K
end
struct HH3DDoubleLayerTransposedFDBIO{T,K} <: Helmholtz3DOp{T,K}
alpha::T
gamma::K
end
struct HH3DDoubleLayerTransposedReg{T,K} <: Helmholtz3DOpReg{T,K}
alpha::T
gamma::K
end
struct HH3DDoubleLayerTransposedSng{T,K} <: Helmholtz3DOp{T,K}
alpha::T
gamma::K
end
defaultquadstrat(::Helmholtz3DOp, ::LagrangeRefSpace, ::LagrangeRefSpace) =
DoubleNumWiltonSauterQStrat(2,3,2,3,4,4,4,4)
defaultquadstrat(::Helmholtz3DOp, ::subReferenceSpace, ::subReferenceSpace) =
DoubleNumWiltonSauterQStrat(4,7,4,7,4,4,4,4)
regularpart(op::HH3DHyperSingularFDBIO) = HH3DHyperSingularReg(op.alpha, op.beta, op.gamma)
singularpart(op::HH3DHyperSingularFDBIO) = HH3DHyperSingularSng(op.alpha, op.beta, op.gamma)
function (igd::Integrand{<:HH3DHyperSingularFDBIO})(x,y,f,g)
α = igd.operator.alpha
β = igd.operator.beta
γ = gamma(igd.operator)
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1 / R
green = exp(-γ*R)*(i4pi*iR)
nx = normal(x)
ny = normal(y)
_integrands(f,g) do fi, gi
α*dot(nx,ny)*gi.value*fi.value*green + β*dot(gi.curl,fi.curl)*green
end
end
HH3DSingleLayerFDBIO(gamma) = HH3DSingleLayerFDBIO(one(gamma), gamma)
regularpart(op::HH3DSingleLayerFDBIO) = HH3DSingleLayerReg(op.alpha, op.gamma)
singularpart(op::HH3DSingleLayerFDBIO) = HH3DSingleLayerSng(op.alpha, op.gamma)
function (igd::Integrand{<:HH3DSingleLayerFDBIO})(x,y,f,g)
α = igd.operator.alpha
γ = gamma(igd.operator)
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1 / R
green = exp(-γ*R)*(i4pi*iR)
αG = α * green
_integrands(f,g) do fi, gi
dot(gi.value, αG*fi.value)
end
end
HH3DDoubleLayerFDBIO(gamma) = HH3DDoubleLayerFDBIO(one(gamma), gamma)
regularpart(op::HH3DDoubleLayerFDBIO) = HH3DDoubleLayerReg(op.alpha, op.gamma)
singularpart(op::HH3DDoubleLayerFDBIO) = HH3DDoubleLayerSng(op.alpha, op.gamma)
function (igd::Integrand{<:HH3DDoubleLayerFDBIO})(x,y,f,g)
γ = gamma(igd.operator)
α = igd.operator.alpha
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1/R
green = exp(-γ*R)*(iR*i4pi)
gradgreen = -(γ + iR) * green * (iR * r)
αgradgreen = α * gradgreen
n = normal(y)
fvalue = getvalue(f)
gvalue = getvalue(g)
return _krondot(fvalue,gvalue) * dot(n, -αgradgreen)
end
HH3DDoubleLayerTransposedFDBIO(gamma) = HH3DDoubleLayerTransposedFDBIO(one(gamma), gamma)
regularpart(op::HH3DDoubleLayerTransposedFDBIO) = HH3DDoubleLayerTransposedReg(op.alpha, op.gamma)
singularpart(op::HH3DDoubleLayerTransposedFDBIO) = HH3DDoubleLayerTransposedSng(op.alpha, op.gamma)
function (igd::Integrand{<:HH3DDoubleLayerTransposedFDBIO})(x,y,f,g)
γ = gamma(igd.operator)
α = igd.operator.alpha
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1/R
green = exp(-γ*R)*(iR*i4pi)
gradgreen = -(γ + iR) * green * (iR * r)
αgradgreen = α * gradgreen
n = normal(x)
fvalue = getvalue(f)
gvalue = getvalue(g)
return _krondot(fvalue,gvalue) * dot(n, αgradgreen)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1625 |
mutable struct NitscheHH3{T} <: MaxwellOperator3D{T,T}
gamma::T
end
defaultquadstrat(::NitscheHH3, ::LagrangeRefSpace, ::LagrangeRefSpace) = DoubleNumWiltonSauterQStrat(10,8,10,8,3,3,3,3)
function quaddata(operator::NitscheHH3,
localtestbasis::LagrangeRefSpace,
localtrialbasis::LagrangeRefSpace,
testelements, trialelements, qs::DoubleNumWiltonSauterQStrat)
tqd = quadpoints(localtestbasis, testelements, (qs.outer_rule_far,))
bqd = quadpoints(x -> localtrialbasis(x), trialelements, (qs.inner_rule_far,))
#return QuadData(tqd, bqd)
return (tpoints=tqd, bpoints=bqd)
end
function quadrule(op::NitscheHH3, g::LagrangeRefSpace, f::LagrangeRefSpace, i, τ, j, σ, qd,
qs::DoubleNumWiltonSauterQStrat)
DoubleQuadRule(
qd.tpoints[1,i],
qd.bpoints[1,j]
)
end
struct KernelValsMaxwell3D{T,U,P,Q}
"gamma = im * wavenumber"
gamma::U
vect::P
dist::T
green::U
gradgreen::Q
end
const inv_4pi = 1/(4pi)
function kernelvals(biop::MaxwellOperator3D, p, q)
γ = gamma(biop)
r = cartesian(p) - cartesian(q)
T = eltype(r)
R = norm(r)
γR = γ*R
inv_R = 1/R
expn = exp(-γR)
green = expn * inv_R * T(inv_4pi)
gradgreen = -(γ + inv_R) * green * inv_R * r
KernelValsMaxwell3D(γ, r, R, green, gradgreen)
end
function integrand(op::NitscheHH3, kernel, test_vals, test_point, trial_vals, trial_point)
Gxy = kernel.green
@assert length(test_point.patch.tangents) == 1
tx = normalize(tangents(test_point, 1))
gx = test_vals[1]
curlfy = trial_vals[2]
return gx*dot(tx, Gxy * curlfy)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 14224 | # single layer
function (igd::Integrand{<:HH3DSingleLayerReg})(x,y,f,g)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(igd.operator)
α = igd.operator.alpha
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1 / R
green = (expm1(-γ*R) - 0.5*γ^2*R^2) / (4pi*R)
αG = α * green
_integrands(f,g) do fi, gi
dot(gi.value, αG*fi.value)
end
end
function innerintegrals!(op::HH3DSingleLayerSng, test_neighborhood,
test_refspace::LagrangeRefSpace{T,0} where {T},
trial_refspace::LagrangeRefSpace{T,0} where {T},
test_elements, trial_element, zlocal, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = trial_element.vertices
x = cartesian(test_neighborhood)
n = normalize((s1-s3)×(s2-s3))
ρ = x - dot(x - s1, n) * n
scal, vec = WiltonInts84.wiltonints(s1, s2, s3, x, Val{1})
∫G = (scal[2] + 0.5*γ^2*scal[4]) / (4π)
zlocal[1,1] += α * ∫G * dx
return nothing
end
# single layer with patch basis and pyramid testing
function innerintegrals!(op::HH3DSingleLayerSng, test_neighborhood,
test_refspace::LagrangeRefSpace{T,1} where {T},
trial_refspace::LagrangeRefSpace{T,0} where {T},
test_elements, trial_element, zlocal, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = trial_element.vertices
t1, t2, t3 = test_elements.vertices
x = cartesian(test_neighborhood)
n = normalize((s1-s3)×(s2-s3))
ρ = x - dot(x - s1, n) * n
scal, vec = WiltonInts84.wiltonints(s1, s2, s3, x, Val{1})
∫G = (scal[2] + 0.5*γ^2*scal[4]) / (4π)
Atot = 1/2*norm(cross(t3-t1,t3-t2))
for i in 1:numfunctions(test_refspace)
Ai = 1/2*norm(cross(test_elements.vertices[mod1(i-1,3)]-x,test_elements.vertices[mod1(i+1,3)]-x))
g = Ai/Atot
for j in 1:numfunctions(trial_refspace)
zlocal[i,j] += α * ∫G * g * dx
end
end
return nothing
end
# single layer with pyramid basis and patch testing
function innerintegrals!(op::HH3DSingleLayerSng, test_neighborhood,
test_refspace::LagrangeRefSpace{T,0} where {T},
trial_refspace::LagrangeRefSpace{T,1} where {T},
test_elements, trial_element, zlocal, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = trial_element.vertices
x = cartesian(test_neighborhood)
n = normalize((s1-s3)×(s2-s3))
ρ = x - dot(x - s1, n) * n
∫Rⁿ, ∫RⁿN = WiltonInts84.higherorder(s1,s2,s3,x,3)
∫G = (∫RⁿN[2] + 0.5*γ^2*∫RⁿN[3]) / (4π)
for i in 1:numfunctions(trial_refspace)
zlocal[1,i] += α * ∫G[i] * dx
end
return nothing
end
#single layer with pyramid basis and pyramid testing
function innerintegrals!(op::HH3DSingleLayerSng, test_neighborhood,
test_refspace::LagrangeRefSpace{T,1} where {T},
trial_refspace::LagrangeRefSpace{T,1} where {T},
test_elements, trial_element, zlocal, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = trial_element.vertices
t1, t2, t3 = test_elements.vertices
x = cartesian(test_neighborhood)
n = normalize((s1-s3)×(s2-s3))
ρ = x - dot(x - s1, n) * n
∫Rⁿ, ∫RⁿN = WiltonInts84.higherorder(s1,s2,s3,x,3)
∫G = (∫RⁿN[2] + 0.5*γ^2*∫RⁿN[3]) / (4π)
Atot = 1/2*norm(cross(t3-t1,t3-t2))
for i in 1:numfunctions(test_refspace)
Ai = 1/2*norm(cross(test_elements.vertices[mod1(i-1,3)]-x,test_elements.vertices[mod1(i+1,3)]-x))
g = Ai/Atot
for j in 1:numfunctions(trial_refspace)
zlocal[i,j] += α * ∫G[j] * g * dx
end
end
return nothing
end
# double layer transposed
function (igd::Integrand{<:HH3DDoubleLayerTransposedReg})(x,y,f,g)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(igd.operator)
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1/R
γR = γ*R
expo = exp(-γR)
gradgreen = ( -(γR + 1)*expo + (1 - 0.5*γR^2) ) * (i4pi*iR^3) * r
n = normal(x)
fvalue = getvalue(f)
gvalue = getvalue(g)
return _krondot(fvalue,gvalue) * dot(n, gradgreen)
end
#double layer transposed with patch basis and pyramid testing
function innerintegrals!(op::HH3DDoubleLayerTransposedSng, test_neighborhood,
test_refspace::LagrangeRefSpace{T,0,3,1} where {T},
trial_refspace::LagrangeRefSpace{T,0,3,1} where {T},
test_elements, trial_element, zlocal, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = trial_element.vertices
t1, t2, t3 = test_elements.vertices
x = cartesian(test_neighborhood)
n = normalize((t1-t3)×(t2-t3))
ρ = x - dot(x - s1, n) * n
scal, vec, grad = WiltonInts84.wiltonints(s1, s2, s3, x, Val{1})
∫∇G = -(grad[1]+0.5*γ^2*grad[3])/(4π)
∫n∇G = dot(n,∫∇G)
for i in 1:numfunctions(test_refspace)
for j in 1:numfunctions(trial_refspace)
zlocal[i,j] += α * ∫n∇G * dx
end
end
return nothing
end
#double layer transposed with patch basis and pyramid testing
function innerintegrals!(op::HH3DDoubleLayerTransposedSng, test_neighborhood,
test_refspace::LagrangeRefSpace{T,1,3,3} where {T},
trial_refspace::LagrangeRefSpace{T,0,3,1} where {T},
test_elements, trial_element, zlocal, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = trial_element.vertices
t1, t2, t3 = test_elements.vertices
x = cartesian(test_neighborhood)
n = normalize((t1-t3)×(t2-t3))
ρ = x - dot(x - s1, n) * n
scal, vec, grad = WiltonInts84.wiltonints(s1, s2, s3, x, Val{1})
∫∇G = -(grad[1]+0.5*γ^2*grad[3])/(4π)
∫n∇G = dot(n,∫∇G)
Atot = 1/2*norm(cross(t3-t1,t3-t2))
for i in 1:numfunctions(test_refspace)
Ai = 1/2*norm(cross(test_elements.vertices[mod1(i-1,3)]-x,test_elements.vertices[mod1(i+1,3)]-x))
g = Ai/Atot
for j in 1:numfunctions(trial_refspace)
zlocal[i,j] += α * ∫n∇G * g * dx
end
end
return nothing
end
#double layer transposed with pyramid basis and patch testing
function innerintegrals!(op::HH3DDoubleLayerTransposedSng, test_neighborhood,
test_refspace::LagrangeRefSpace{T,0,3,1} where {T},
trial_refspace::LagrangeRefSpace{T,1,3,3} where {T},
test_elements, trial_element, zlocal, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = trial_element.vertices
t1, t2, t3 = test_elements.vertices
x = cartesian(test_neighborhood)
n = normalize((t1-t3)×(t2-t3))
ρ = x - dot(x - s1, n) * n
_, _, _, grad = WiltonInts84.higherorder(s1,s2,s3,x,3)
∫∇G = -(grad[1] + 0.5*γ^2*grad[2]) / (4π)
for i in 1:numfunctions(test_refspace)
for j in 1:numfunctions(trial_refspace)
∫n∇G = dot(n,∫∇G[j])
zlocal[i,j] += α * ∫n∇G * dx
end
end
return nothing
end
#double layer transposed with pyramid basis and pyramid testing
function innerintegrals!(op::HH3DDoubleLayerTransposedSng, test_neighborhood,
test_refspace::LagrangeRefSpace{T,1,3,3} where {T},
trial_refspace::LagrangeRefSpace{T,1,3,3} where {T},
test_elements, trial_element, zlocal, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = trial_element.vertices
t1, t2, t3 = test_elements.vertices
x = cartesian(test_neighborhood)
n = normalize((t1-t3)×(t2-t3))
ρ = x - dot(x - s1, n) * n
_, _, _, grad = WiltonInts84.higherorder(s1,s2,s3,x,3)
∫∇G = -(grad[1] + 0.5*γ^2*grad[2]) / (4π)
Atot = 1/2*norm(cross(t3-t1,t3-t2))
for i in 1:numfunctions(test_refspace)
Ai = 1/2*norm(cross(test_elements.vertices[mod1(i-1,3)]-x,test_elements.vertices[mod1(i+1,3)]-x))
g = Ai/Atot
for j in 1:numfunctions(trial_refspace)
∫n∇G = dot(n,∫∇G[j])
zlocal[i,j] += α * ∫n∇G * g * dx
end
end
return nothing
end
# double layer
function (igd::Integrand{<:HH3DDoubleLayerReg})(x,y,f,g)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(igd.operator)
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1/R
γR = γ*R
expo = exp(-γR)
gradgreen = ( -(γR + 1)*expo + (1 - 0.5*γR^2) ) * (i4pi*iR^3) * r
n = normal(y)
fvalue = getvalue(f)
gvalue = getvalue(g)
return _krondot(fvalue,gvalue) * dot(n, -gradgreen)
end
#double layer with pyramid basis and pyramid testing
function innerintegrals!(op::HH3DDoubleLayerSng, p,
g::LagrangeRefSpace{T,1} where {T},
f::LagrangeRefSpace{T,1} where {T},
t, s, z, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = s.vertices
t1, t2, t3 = t.vertices
x = cartesian(p)
n = normalize((s1-s3)×(s2-s3))
ρ = x - dot(x - s1, n) * n
_, _, _, grad = WiltonInts84.higherorder(s1,s2,s3,x,3)
∫∇G = -(grad[1] + 0.5*γ^2*grad[2]) / (4π)
Atot = 1/2*norm(cross(t3-t1,t3-t2))
for i in 1:numfunctions(g)
Ai = 1/2*norm(cross(t.vertices[mod1(i-1,3)]-x,t.vertices[mod1(i+1,3)]-x))
g = Ai/Atot
for j in 1:numfunctions(f)
z[i,j] += α * dot(n,-∫∇G[j]) * g * dx
end
end
return nothing
end
#double layer with patch basis and pyramid testing
function innerintegrals!(op::HH3DDoubleLayerSng, p,
g::LagrangeRefSpace{T,0} where {T},
f::LagrangeRefSpace{T,0} where {T},
t, s, z, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = s.vertices
t1, t2, t3 = t.vertices
x = cartesian(p)
n = normalize((s1-s3)×(s2-s3))
ρ = x - dot(x - s1, n) * n
scal, vec, grad = WiltonInts84.wiltonints(s1, s2, s3, x, Val{1})
∫∇G = -(grad[1]+0.5*γ^2*grad[3])/(4π)
for i in 1:numfunctions(g)
for j in 1:numfunctions(f)
z[i,j] += α * dot(n,-∫∇G) * dx #why the minus?
end
end
return nothing
end
#double layer with patch basis and pyramid testing
function innerintegrals!(op::HH3DDoubleLayerSng, p,
g::LagrangeRefSpace{T,1} where {T},
f::LagrangeRefSpace{T,0} where {T},
t, s, z, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = s.vertices
t1, t2, t3 = t.vertices
x = cartesian(p)
n = normalize((s1-s3)×(s2-s3))
ρ = x - dot(x - s1, n) * n
scal, vec, grad = WiltonInts84.wiltonints(s1, s2, s3, x, Val{1})
∫∇G = -(grad[1]+0.5*γ^2*grad[3])/(4π)
Atot = 1/2*norm(cross(t3-t1,t3-t2))
for i in 1:numfunctions(g)
Ai = 1/2*norm(cross(t.vertices[mod1(i-1,3)]-x,t.vertices[mod1(i+1,3)]-x))
g = Ai/Atot
for j in 1:numfunctions(f)
z[i,j] += α * dot(n,-∫∇G) * g * dx
end
end
return nothing
end
#double layer with pyramid basis and patch testing
function innerintegrals!(op::HH3DDoubleLayerSng, p,
g::LagrangeRefSpace{T,0} where {T},
f::LagrangeRefSpace{T,1} where {T},
t, s, z, quadrature_rule::WiltonSERule, dx)
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
α = op.alpha
s1, s2, s3 = s.vertices
x = cartesian(p)
n = normalize((s1-s3)×(s2-s3))
ρ = x - dot(x - s1, n) * n
_, _, _, grad = WiltonInts84.higherorder(s1,s2,s3,x,3)
∫∇G = -(grad[1] + 0.5*γ^2*grad[2]) / (4π)
for i in 1:numfunctions(g)
for j in 1:numfunctions(f)
z[i,j] += α * dot(n,-∫∇G[j]) * dx
end
end
return nothing
end
function (igd::Integrand{<:HH3DHyperSingularReg})(x,y,f,g)
α = igd.operator.alpha
β = igd.operator.beta
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(igd.operator)
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1 / R
green = (expm1(-γ*R) - 0.5*γ^2*R^2) / (4pi*R)
nx = normal(x)
ny = normal(y)
_integrands(f,g) do fi, gi
α*dot(nx,ny)*gi.value*fi.value*green + β*dot(gi.curl,fi.curl)*green
end
end
function innerintegrals!(op::HH3DHyperSingularSng, p,
g::LagrangeRefSpace{T,1} where {T},
f::LagrangeRefSpace{T,1} where {T},
t, s, z, quadrature_rule::WiltonSERule, dx)
α = op.alpha
β = op.beta
# TODO: It is better to dispatch on γ
# to handle the static case more efficiently
γ = gamma(op)
s1, s2, s3 = s.vertices
t1, t2, t3 = t.vertices
x = cartesian(p)
nx = normalize((s1-s3)×(s2-s3))
ny = normalize((t1-t3)×(t2-t3))
∫Rⁿ, ∫RⁿN = WiltonInts84.higherorder(s1,s2,s3,x,3)
greenconst = (∫Rⁿ[2] + 0.5*γ^2*∫Rⁿ[3]) / (4π)
greenlinear = (∫RⁿN[2] + 0.5*γ^2*∫RⁿN[3] ) / (4π)
jt = volume(t) * factorial(dimension(t))
js = volume(s) * factorial(dimension(s))
curlt = [(t3-t2)/jt,(t1-t3)/jt,(t2-t1)/jt]
curls = [(s3-s2)/js,(s1-s3)/js,(s2-s1)/js]
Atot = 1/2*norm(cross(t3-t1,t3-t2))
for i in 1:numfunctions(g)
Ai = 1/2*norm(cross(t.vertices[mod1(i-1,3)]-x,t.vertices[mod1(i+1,3)]-x))
g = Ai/Atot
for j in 1:numfunctions(f)
z[i,j] += β * dot(curlt[i],curls[j])*greenconst*dx + α*dot(nx,ny) * greenlinear[j]*g*dx
end
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1093 | struct PlaneWaveHH3DTD{T,P,F} <: TDFunctional{T}
direction::P
speed_of_light::T
signature::F
amplitude::T
end
function planewave(direction, speedoflight::Number, signature, amplitude=one(speedoflight)::Number)
PlaneWaveHH3DTD(direction, speedoflight, signature, amplitude)
end
*(a, f::PlaneWaveHH3DTD) = PlaneWaveHH3DTD(f.direction, f.speed_of_light, f.signature, a*f.amplitude)
function(f::PlaneWaveHH3DTD)(r,t)
k = f.direction
u = sum(k[i]*r[i] for i in 1:length(k))
#u = dot(f.direction, r)
a = f.amplitude
c = f.speed_of_light
h = f.signature
a * h(c*cartesian(t)[1] - u)
end
function gradient(f::PlaneWaveHH3DTD)
@assert f.amplitude ≈ 1
PlaneWaveMWTD(
f.direction,
-f.direction,
f.speed_of_light,
derive(f.signature)
)
end
struct DotTraceHH{T,F} <: TDFunctional{T}
field::F
end
dot(::NormalVector, field::TDFunctional) = DotTraceHH{scalartype(field), typeof(field)}(field)
function (f::DotTraceHH)(p,t)
n = normal(p)
x = cartesian(p)
return dot(n, f.field(x,t))
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 7130 | abstract type HH3DTDBIO{T} <: RetardedPotential{T} end
struct HH3DSingleLayerTDBIO{T} <: HH3DTDBIO{T}
"speed of light"
speed_of_light::T
"number of temporal differentiations"
num_diffs::Int
end
HH3DSingleLayerTDBIO(c) = HH3DSingleLayerTDBIO(c, 0)
struct HH3DHyperSingularTDBIO{T} <: HH3DTDBIO{T}
speed_of_light::T
weight_of_weakly_singular_term::T
weight_of_hyper_singular_term::T
num_diffs_on_weakly_singular_term::Int
num_diffs_on_hyper_singular_term::Int
end
function HH3DHyperSingularTDBIO(;speed_of_light, numdiffs)
id = one(speed_of_light)
HH3DHyperSingularTDBIO(speed_of_light, id, id, numdiffs+1, numdiffs-1)
end
struct HH3DDoubleLayerTDBIO{T} <: HH3DTDBIO{T}
speed_of_light::T
weight::T
num_diffs::Int
end
HH3DDoubleLayerTDBIO(;speed_of_light) = HH3DDoubleLayerTDBIO(speed_of_light,one(speed_of_light),0)
defaultquadstrat(::HH3DTDBIO, tfs, bfs) = nothing
# See: ?BEAST.quaddata for help
function quaddata(operator::HH3DTDBIO,
test_local_space, trial_local_space, time_local_space,
test_element, trial_element, time_element, quadstrat::Nothing)
dmax = numfunctions(time_local_space)-1
bn = binomial.((0:dmax),(0:dmax)')
V = eltype(test_element[1].vertices)
ws = WiltonInts84.workspace(V)
order = 4
@show order
quadpoints(test_local_space, test_element, (order,)), bn, ws
end
# See: ?BEAST.quadrule for help
function quadrule(operator::HH3DTDBIO,
test_local_space, trial_local_space, time_local_space,
p, test_element, q, trial_element, r, time_element,
quad_data, quadstrat::Nothing)
# WiltonInts84Strat(quad_data[1,p])
qd = quad_data
WiltonInts84Strat(qd[1][1,p],qd[2],qd[3])
end
function innerintegrals!(zlocal, operator::HH3DSingleLayerTDBIO,
test_point,
test_local_space, trial_local_space, time_local_space,
test_element, trial_element, time_element,
quad_rule, quad_weight)
# error("Here!!!")
dx = quad_weight
x = cartesian(test_point)
# n = normal(test_point)
# a = trial_element[1]
# ξ = x - dot(x -a, n) * n
r = time_element[1]
R = time_element[2]
@assert r < R
N = max(degree(time_local_space), 1)
∫G, ∫vG, ∫∇G = WiltonInts84.wiltonints(
trial_element[1],
trial_element[2],
trial_element[3],
x, r, R, Val{2}, quad_rule.workspace)
a = dx / (4*pi)
D = operator.num_diffs
@assert D == 0
@assert numfunctions(test_local_space) == 1
@assert numfunctions(trial_local_space) == 1
@inline function tmRoR_sl(d, iG)
sgn = isodd(d) ? -1 : 1
r = sgn * iG[d+2]
end
# bns = quad_rule.binomials
@assert D == 0
for k in 1 : numfunctions(time_local_space)
d = k - 1
d < D && continue
q = reduce(*, d-D+1:d ,init=1)
zlocal[1,1,k] += a * q * tmRoR_sl(d-D, ∫G)
end # k
end
function innerintegrals!(zlocal, operator::HH3DHyperSingularTDBIO,
test_point,
test_local_space, trial_local_space, time_local_space,
test_element, trial_element, time_element,
quad_rule, quad_weight)
dx = quad_weight
x = cartesian(test_point)
nx = normal(test_point)
ny = normal(trial_element)
ndotn = dot(nx,ny)
a = trial_element[1]
ξ = x - dot(x -a, ny) * ny
r = time_element[1]
R = time_element[2]
@assert r < R
N = max(degree(time_local_space), 1)
∫G, ∫Gξy, = WiltonInts84.wiltonints(
trial_element[1],
trial_element[2],
trial_element[3],
x, r, R, Val{N-1},quad_rule.workspace)
@assert numfunctions(test_local_space) <= 3
@assert numfunctions(trial_local_space) == 3
@inline function tmRoR(d, iG)
r = (isodd(d) ? -1 : 1) * iG[d+2]
end
@inline function tmRoRf(d, ∫G, ∫Gξy, bξ, h, m)
(isodd(d) ? -1 : 1) * ((1 - h*dot(m,bξ)) * ∫G[d+2] - h*dot(m, ∫Gξy[d+2]))
end
test_values = test_local_space(test_point)
trial_values = trial_local_space(center(trial_element))
# weakly singular term
α = dx / (4π) * operator.weight_of_weakly_singular_term
Ds = operator.num_diffs_on_weakly_singular_term
for i in 1 : numfunctions(test_local_space)
g, curlg = test_values[i]
for j in 1 : numfunctions(trial_local_space)
b = trial_element[j]
opp_edge = trial_element[mod1(j+2,3)] - trial_element[mod1(j+1,3)]
h = norm(opp_edge)/2/volume(trial_element)
m = normalize(cross(opp_edge, ny))
for k in 1 : numfunctions(time_local_space)
d = k-1
d < Ds && continue
q = reduce(*, d-Ds+1:d ,init=1)
zlocal[i,j,k] += α * q * g * ndotn * tmRoRf(d-Ds, ∫G, ∫Gξy, ξ-b, h, m)
end
end
end
# Hyper-singular term
β = dx / (4π) * operator.weight_of_hyper_singular_term
Dh = operator.num_diffs_on_hyper_singular_term
for i in 1 : numfunctions(test_local_space)
g, curlg = test_values[i]
for j in 1 : numfunctions(trial_local_space)
_, curlf = trial_values[j]
for k in 1 : numfunctions(time_local_space)
d = k - 1
d < Dh && continue
q = reduce(*, d-Dh+1:d ,init=1)
zlocal[i,j,k] += β * q * dot(curlg, curlf) * tmRoR(d-Dh, ∫G)
end
end
end
end
function innerintegrals!(zlocal, operator::HH3DDoubleLayerTDBIO,
test_point,
test_local_space, trial_local_space, time_local_space,
test_element, trial_element, time_element,
quad_rule, quad_weight)
@assert numfunctions(test_local_space) <= 3
@assert numfunctions(trial_local_space) == 1
dx = quad_weight
x = cartesian(test_point)
nx = normal(test_point)
# a = trial_element[1]
# ξ = x - dot(x -a, ny) * ny
r = time_element[1]
R = time_element[2]
@assert r < R
N = max(degree(time_local_space), 1)
∫G, ∫Gξy, ∫∇G = WiltonInts84.wiltonints(
trial_element[1],
trial_element[2],
trial_element[3],
x, r, R, Val{N-1},quad_rule.workspace)
@inline function grad_tmRoR(d,∇G)
σ = isodd(d) ? -1 : 1
return σ * ∇G[d+1]
end
test_values = test_local_space(test_point)
trial_values = trial_local_space(center(trial_element))
@assert all(getindex.(trial_values,1) .≈ [1])
# @assert all(getindex.(trial_values,2) .≈ Ref([0,0,0]))
# weakly singular term
α = dx / (4π) * operator.weight
D = operator.num_diffs
for i in 1 : numfunctions(test_local_space)
g, curlg = test_values[i]
for j in 1 : numfunctions(trial_local_space)
f, curlf = trial_values[j]
for k in 1 : numfunctions(time_local_space)
d = k-1
d < D && continue
q = reduce(*, d-D+1:d ,init=1)
@assert q == 1
zlocal[i,j,k] += α * q * g * dot(nx, grad_tmRoR(d-D, ∫∇G)) * f
end
end
end
# @assert all(zlocal[:,:,2] .≈ 0)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 58 | struct TDHH3DSingleLayerNear{T}
speed_of_light::T
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2358 | function momintegrals!(op::MWSingleLayer3D, g::RTRefSpace, f::RTRefSpace, t, s, z, strat::BogaertStrategy)
T, GG = GetIntegrals(t, s, op.gamma, strat)
# Get the (u,v,w) → (x,y,z) tf matrix for tcell == bcell
P = @SMatrix [
t[1][1] t[2][1] t[3][1]
t[1][2] t[2][2] t[3][2]
t[1][3] t[2][3] t[3][3]
]
R = @SMatrix [
s[1][1] s[2][1] s[3][1]
s[1][2] s[2][2] s[3][2]
s[1][3] s[2][3] s[3][3]
]
∫G = sum(T)
Q = P*T
∫xG = @SVector [
Q[1,1]+Q[1,2]+Q[1,3],
Q[2,1]+Q[2,2]+Q[2,3],
Q[3,1]+Q[3,2]+Q[3,3],
]
Q = R*transpose(T)
∫Gy = @SVector [
Q[1,1]+Q[1,2]+Q[1,3],
Q[2,1]+Q[2,2]+Q[2,3],
Q[3,1]+Q[3,2]+Q[3,3]
]
Q = P*T*transpose(R)
∫xGy = Q[1,1] + Q[2,2] + Q[3,3]
c₁ = op.α
c₂ = op.β
# Now build the shape-shape interactions from these
α = 1 / volume(t) / volume(s) / 4
γ = op.gamma
for i in 1:3
a = t[i]
for j in 1:3
b = s[j]
z[i,j] = α*c₁*(∫xGy - dot(a,∫Gy) - dot(b,∫xG) + dot(a,b)*∫G) + 4α*c₂*∫G
end
end
end
function momintegrals!(op::MWDoubleLayer3D, g::RTRefSpace, f::RTRefSpace,
τ, σ, z, strat::BogaertStrategy)
# Get the primitives
r = τ.vertices
s = σ.vertices
G, GG = GetIntegrals(τ, σ, op.gamma, strat)
# representation of RT elements in terms of
# the tangents tu, tv and coordinates u,v,w
# f_1 = [ (-v-w) t_u + v t_v ] / j
# f_2 = [ u t_u + (-u-w) t_v ] / j
# f_3 = [ u t_u + v t_v ] / j
α = @SMatrix [
0 -1 -1
1 0 0
1 0 0]
β = @SMatrix [
0 1 0
-1 0 -1
0 1 0]
duu = τ.tangents[1] × σ.tangents[1]
duv = τ.tangents[1] × σ.tangents[2]
dvu = τ.tangents[2] × σ.tangents[1]
dvv = τ.tangents[2] × σ.tangents[2]
J = 4 * volume(σ) * volume(τ)
for i in 1:3
for j in 1:3
Iuu = sum([α[i,p] * GG[p,q] * α[j,q] for p in 1:3, q in 1:3])
Iuv = sum([α[i,p] * GG[p,q] * β[j,q] for p in 1:3, q in 1:3])
Ivu = sum([β[i,p] * GG[p,q] * α[j,q] for p in 1:3, q in 1:3])
Ivv = sum([β[i,p] * GG[p,q] * β[j,q] for p in 1:3, q in 1:3])
z[i,j] = (dot(duu, Iuu) + dot(duv, Iuv) + dot(dvu, Ivu) + dot(dvv, Ivv)) / J
end
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2853 | abstract type MWFarField <: FarField end
"""
Operator to compute the far field of a current distribution. In particular, given the current distribution ``j`` this operator allows for the computation of
```math
A j = n × ∫_Γ e^{γ ̂x ⋅ y} dy
```
where ``̂x`` is the unit vector in the direction of observation. Note that the assembly routing expects the observation directions to be normalised by the caller.
"""
struct MWFarField3D{K, U} <: MWFarField
gamma::K
amplitude::U
end
struct MWDoubleLayerFarField3D{K, U} <: MWFarField
gamma::K
amplitude::U
end
struct MWDoubleLayerRotatedFarField3D{K,U} <: MWFarField
gamma::K
amplitude::U
end
function MWFarField3D(;
gamma=nothing,
wavenumber=nothing,
amplitude=nothing
)
gamma, _ = gamma_wavenumber_handler(gamma, wavenumber)
@assert !isstatic(gamma)
amplitude === nothing && (amplitude = 1.0)
return MWFarField3D(gamma, amplitude)
end
MWFarField3D(op::MWSingleLayer3D{T,U}) where {T,U} = MWFarField3D(op.gamma, sqrt(op.α*op.β))
function MWDoubleLayerFarField3D(;
gamma=nothing,
wavenumber=nothing,
amplitude=nothing
)
gamma, _ = gamma_wavenumber_handler(gamma, wavenumber)
@assert !isstatic(gamma)
amplitude === nothing && (amplitude = 1.0)
return MWDoubleLayerFarField3D(gamma, amplitude)
end
MWDoubleLayerFarField3D(op::MWDoubleLayer3D{T}) where {T} = MWDoubleLayerFarField3D(op.gamma, 1.0)
# quaddata(op::MWFarField,rs,els) = quadpoints(rs,els,(3,))
# quadrule(op::MWFarField,refspace,p,y,q,el,qdata) = qdata[1,q]
kernelvals(op::MWFarField,y,p) = exp(op.gamma*dot(y,cartesian(p)))
function integrand(op::MWFarField3D,krn,y,f,p)
op.amplitude*(y × (krn * f[1])) × y
end
function integrand(op::MWDoubleLayerFarField3D,krn,y,f,p)
op.amplitude*(y × (krn * f[1]))
end
struct MWFarField3DDropConstant{K, U} <: MWFarField
gamma::K
coeff::U
end
kernelvals(op::MWFarField3DDropConstant,y,p) = expm1(op.gamma*dot(y,cartesian(p)))
function integrand(op::MWFarField3DDropConstant,krn,y,f,p)
op.coeff*(y × (krn * f[1])) × y
end
function MWDoubleLayerRotatedFarField3D(;
gamma=nothing,
wavenumber=nothing,
amplitude=nothing
)
gamma, _ = gamma_wavenumber_handler(gamma, wavenumber)
@assert !isstatic(gamma)
amplitude === nothing && (amplitude = 1.0)
return MWDoubleLayerRotatedFarField3D(gamma, amplitude)
end
MWDoubleLayerRotatedFarField3D(op::DoubleLayerRotatedMW3D{T,U}) where {T,U} =
MWDoubleLayerRotatedFarField3D(op.gamma, T(1))
function integrand(op::MWDoubleLayerRotatedFarField3D, krn, y, f, p)
op.amplitude * (y × ((krn * f[1]) × normal(p)))
end
LinearAlgebra.cross(::NormalVector, a::MWDoubleLayerFarField3D) = MWDoubleLayerRotatedFarField3D(a.gamma, a.amplitude)
LinearAlgebra.cross(::NormalVector, a::MWDoubleLayerRotatedFarField3D) = MWDoubleLayerFarField3D(a.gamma, -a.amplitude)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2203 | module Maxwell3D
using ..BEAST
Mod = BEAST
"""
singlelayer(;gamma, alpha, beta)
singlelayer(;wavenumber, alpha, beta)
Bilinear form given by:
```math
α ∬_{Γ×Γ} j(x)⋅k(y) G_{γ}(x,y) + β ∬_{Γ×Γ} div j(x) div k(y) G_{γ}(x,y)
```
with ``G_{γ} = e^{-γ|x-y|} / 4π|x-y|``.
"""
function singlelayer(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
beta=nothing)
gamma, wavenumber = Mod.gamma_wavenumber_handler(gamma, wavenumber)
if Mod.isstatic(gamma) # static case
@assert !(isnothing(alpha)) && !(isnothing(beta))
end
alpha === nothing && (alpha = -gamma)
beta === nothing && (beta = -1/gamma)
Mod.MWSingleLayer3D(gamma, alpha, beta)
end
weaklysingular(;wavenumber) = singlelayer(;wavenumber, alpha=-im*wavenumber, beta=zero(im*wavenumber))
hypersingular(;wavenumber) = singlelayer(; wavenumber, alpha=zero(im*wavenumber), beta=-1/(im*wavenumber))
"""
doublelayer(;gamma)
doublelaher(;wavenumber)
Bilinear form given by:
```math
α ∬_{Γ^2} k(x) ⋅ (∇G_γ(x-y) × j(y))
```
with ``G_γ = e^{-γ|x-y|} / 4π|x-y|``
"""
function doublelayer(;
alpha=nothing,
gamma=nothing,
wavenumber=nothing)
gamma, wavenumber = Mod.gamma_wavenumber_handler(gamma, wavenumber)
if isnothing(alpha)
if Mod.isstatic(gamma) # static case
alpha = 1.0 # Default to double precision
else
alpha = one(gamma)
end
end
Mod.MWDoubleLayer3D(alpha, gamma)
end
planewave(;
direction = error("missing arguement `direction`"),
polarization = error("missing arguement `polarization`"),
wavenumber = error("missing arguement `wavenumber`"),
amplitude = one(real(typeof(wavenumber)))) =
Mod.PlaneWaveMW(direction, polarization, wavenumber*im, amplitude)
farfield(;
wavenumber = error("missing argument: `wavenumber`")) =
Mod.MWFarField3D(wavenumber=wavenumber)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 6166 | mutable struct PlaneWaveMW{T,P}
direction::P
polarisation::P
gamma::T
amplitude::T
end
function PlaneWaveMW(d,p,γ,a = 1)
T = promote_type(eltype(d), eltype(p), typeof(γ), typeof(a))
P = similar_type(typeof(d), T)
PlaneWaveMW{T,P}(d,p,γ,a)
end
scalartype(x::PlaneWaveMW{T,P}) where {T,P} = promote_type(T, eltype(P))
"""
planewavemw3d(;direction, polarization, wavenumber, gamma[, amplitude=1])
Create a plane wave solution to Maxwell's equations.
"""
function planewavemw3d(;
direction = error("missing arguement `direction`"),
polarization = error("missing arguement `polarization`"),
wavenumber = nothing,
gamma = nothing,
amplitude = 1,
)
gamma, wavenumber = gamma_wavenumber_handler(gamma, wavenumber)
isstatic(gamma) && (gamma = zero(eltype(direction)))
return PlaneWaveMW(direction, polarization, gamma, amplitude)
end
function (e::PlaneWaveMW)(x)
γ = e.gamma
d = e.direction
u = e.polarisation
a = e.amplitude
a * exp(-γ * dot(d, x)) * u
end
function curl(field::PlaneWaveMW)
γ = field.gamma
d = field.direction
u = field.polarisation
a = field.amplitude
v = d × u
b = -a * γ
PlaneWaveMW(d, v, γ, b)
end
*(a::Number, e::PlaneWaveMW) = PlaneWaveMW(e.direction, e.polarisation, e.gamma, a*e.amplitude)
abstract type Dipole end
mutable struct DipoleMW{T,P} <: Dipole
location::P
orientation::P
gamma::T
end
function DipoleMW(l,o,γ)
T = promote_type(eltype(l), eltype(o), typeof(γ))
P = similar_type(typeof(l), T)
DipoleMW{T,P}(l,o,γ)
end
scalartype(x::DipoleMW{T,P}) where {T,P} = promote_type(T, eltype(P))
mutable struct curlDipoleMW{T,P} <: Dipole
location::P
orientation::P
gamma::T
end
function curlDipoleMW(l,o,γ)
T = promote_type(eltype(l), eltype(o), typeof(γ))
P = similar_type(typeof(l), T)
curlDipoleMW{T,P}(l,o,γ)
end
scalartype(x::curlDipoleMW{T,P}) where {T,P} = promote_type(T, eltype(P))
"""
dipolemw3d(;location, orientation, wavenumber)
Create an electric dipole solution to Maxwell's equations representing the electric
field part. Implementation is based on (9.18) of Jackson's “Classical electrodynamics”,
with the notable difference that the ``\exp(ikr)`` is used.
"""
function dipolemw3d(;
location = error("missing arguement `location`"),
orientation = error("missing arguement `orientation`"),
wavenumber = nothing,
gamma = nothing
)
gamma, wavenumber = gamma_wavenumber_handler(gamma, wavenumber)
isstatic(gamma) && (gamma = zero(eltype(orientation)))
return DipoleMW(location, orientation, gamma)
end
function (d::DipoleMW)(x; isfarfield=false)
γ = d.gamma
x_0 = d.location
p = d.orientation
if isfarfield
# postfactor (4*π*im)/k = (-4*π)/γ to be consistent with BEAST far field computation
# and, of course, adapted phase factor exp(im*k*dot(n,x_0)) with
# respect to (9.19) of Jackson's Classical Electrodynamics
r = norm(x)
n = x/r
return cross(cross(n,1/(4*π)*(-γ^2*cross(cross(n,p),n))*exp(γ*dot(n,x_0))*(-4*π)/γ),n)
else
r = norm(x-x_0)
n = (x - x_0)/r
return 1/(4*π)*exp(-γ*r)*(-γ^2/r*cross(cross(n,p),n) +
(1/r^3 + γ/r^2)*(3*n*dot(n,p) - p))
end
end
function (d::curlDipoleMW)(x; isfarfield=false)
γ = d.gamma
x_0 = d.location
p = d.orientation
if isfarfield
# postfactor (4*π*im)/k to be consistent with BEAST far field computation
r = norm(x)
n = x/r
return (-γ)*(-γ^2)/(4*π)*cross(n,p)*(-4*π)/γ*exp(γ*dot(n,x_0))
else
r = norm(x-x_0)
n = (x - x_0)/r
return γ^3/(4*π)*cross(n,p)*exp(-γ*r)/r*(1 + 1/(γ*r))
end
end
function curl(d::DipoleMW)
return curlDipoleMW(d.location, d.orientation, d.gamma)
end
*(a::Number, d::DipoleMW) = DipoleMW(d.location, a .* d.orientation, d.gamma)
*(a::Number, d::curlDipoleMW) = curlDipoleMW(d.location, a .* d.orientation, d.gamma)
mutable struct CrossTraceMW{F} <: Functional
field::F
end
scalartype(x::CrossTraceMW) = scalartype(x.field)
mutable struct TangTraceMW{F} <: Functional
field::F
end
scalartype(t::TangTraceMW) = scalartype(t.field)
cross(::NormalVector, p::Function) = CrossTraceMW(p)
cross(::NormalVector, p::PlaneWaveMW) = CrossTraceMW(p)
cross(::NormalVector, p::Dipole) = CrossTraceMW(p)
cross(t::CrossTraceMW, ::NormalVector) = TangTraceMW(t.field)
function (ϕ::CrossTraceMW)(p)
F = ϕ.field
x = cartesian(p)
n = normal(p)
return n × F(x)
end
function (ϕ::TangTraceMW)(p)
F = ϕ.field
x = cartesian(p)
n = normal(p)
return (n × F(x)) × n
end
integrand(::TangTraceMW, gx, ϕx) = gx[1] ⋅ ϕx
integrand(::CrossTraceMW, test_vals, field_val) = test_vals[1] ⋅ field_val
struct NDotTrace{T,F} <: Functional
field::F
end
NDotTrace(f::F) where {F} = NDotTrace{scalartype(f), F}(f)
NDotTrace{T}(f::F) where {T,F} = NDotTrace{T,F}(f)
scalartype(s::NDotTrace{T}) where {T} = T
(ϕ::NDotTrace)(p) = dot(normal(p), ϕ.field(cartesian(p)))
integrand(::NDotTrace, g, ϕ) = dot(g.value, ϕ)
LinearAlgebra.dot(::NormalVector, f) = NDotTrace(f)
mutable struct CurlGreen{T,U,V}
wavenumber::T
source::U
position::V
end
function (f::CurlGreen)(x)
γ = im * f.wavenumber
r = x-f.position
R = norm(r)
g = exp(-γ*R)/(4π*R)
j = f.source
return -γ/R * (1 + 1/(γ*R)) * g * (r × j)
end
mutable struct CurlCurlGreen{T,U,V}
wavenumber::T
source::U
position::V
end
cross(::NormalVector, p::CurlGreen) = CrossTraceMW(p)
cross(::NormalVector, p::CurlCurlGreen) = CrossTraceMW(p)
function (f::CurlCurlGreen)(x)
γ = im * f.wavenumber
r = x - f.position
R = norm(r)
g = exp(-γ*R)/(4π*R)
j = f.source
return (-γ^2/R^2 * (r × j) × r + (1/R^2 + γ/R)/R^2 * (3r * dot(r,j) - R^2 * j)) * g
end
curl(f::CurlGreen) = CurlCurlGreen(f.wavenumber, f.source, f.position)
function curl(f::CurlCurlGreen)
κ = f.wavenumber
j = κ^2 * f.source
x = f.position
return CurlGreen(κ, j, x)
end
Base.:*(a::Number, f::CurlGreen) = CurlGreen(f.wavenumber, a*f.source, f.position)
Base.:*(a::Number, f::CurlCurlGreen) = CurlCurlGreen(f.wavenumber, a*f.source, f.position)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 7678 | abstract type MaxwellOperator3D{T,K} <: IntegralOperator end
abstract type MaxwellOperator3DReg{T,K} <: MaxwellOperator3D{T,K} end
scalartype(op::MaxwellOperator3D{T,K}) where {T, K <: Val{0}} = T
scalartype(op::MaxwellOperator3D{T,K}) where {T, K} = promote_type(T, K)
gamma(op::MaxwellOperator3D{T,Val{0}}) where {T} = zero(T)
gamma(op::MaxwellOperator3D{T,K}) where {T, K} = op.gamma
struct MWSingleLayer3D{T,U} <: MaxwellOperator3D{T,U}
gamma::T
α::U
β::U
end
gamma(op::MWSingleLayer3D{Val{0}, U}) where {U} = zero(U)
scalartype(op::MWSingleLayer3D{T,U}) where {T,U} = promote_type(T,U)
# sign_upon_permutation(op::MWSingleLayer3D, I, J) = 1
MWSingleLayer3D(gamma) = MWSingleLayer3D(gamma, -gamma, -1/(gamma))
MWWeaklySingular(gamma) = MWSingleLayer3D(gamma, 1, 0)
MWHyperSingular(gamma) = MWSingleLayer3D(gamma, 0, 1)
export Maxwell3D
struct MWSingleLayer3DReg{T,U} <: MaxwellOperator3DReg{T,U}
gamma::T
α::U
β::U
end
struct MWSingleLayer3DSng{T,U} <: MaxwellOperator3D{T,U}
gamma::T
α::U
β::U
end
regularpart(op::MWSingleLayer3D) = MWSingleLayer3DReg(op.gamma, op.α, op.β)
singularpart(op::MWSingleLayer3D) = MWSingleLayer3DSng(op.gamma, op.α, op.β)
function _legendre(n,a,b)
x, w = FastGaussQuadrature.gausslegendre(n)
w .*= (b-a)/2
x .= (x.+1)/2*(b-a).+a
collect(zip(x,w))
end
# defaultquadstrat(op::MaxwellOperator3D, tfs::Space, bfs::Space) = DoubleNumWiltonSauterQStrat(2,3,6,7,5,5,4,3)
defaultquadstrat(op::MaxwellOperator3D, tfs::RTRefSpace, bfs::RTRefSpace) = DoubleNumWiltonSauterQStrat(2,3,6,7,5,5,4,3)
# defaultquadstrat(op::MaxwellOperator3D, tfs::RefSpace, bfs::RefSpace) = DoubleNumWiltonSauterQStrat(2,3,6,7,5,5,4,3)
struct MWDoubleLayer3D{T,K} <: MaxwellOperator3D{T,K}
alpha::T
gamma::K
end
# sign_upon_permutation(op::MWDoubleLayer3D, I, J) = 1
struct MWDoubleLayer3DSng{T,K} <: MaxwellOperator3D{T,K}
alpha::T
gamma::K
end
struct MWDoubleLayer3DReg{T,K} <: MaxwellOperator3DReg{T,K}
alpha::T
gamma::K
end
MWDoubleLayer3D(gamma) = MWDoubleLayer3D(1.0, gamma) # For legacy purposes
regularpart(op::MWDoubleLayer3D) = MWDoubleLayer3DReg(op.alpha, op.gamma)
singularpart(op::MWDoubleLayer3D) = MWDoubleLayer3DSng(op.alpha, op.gamma)
# function quadrule(op::MaxwellOperator3D, g::BDMRefSpace, f::BDMRefSpace, i, τ, j, σ, qd,
# qs::DoubleNumWiltonSauterQStrat)
# hits = 0
# dtol = 1.0e3 * eps(eltype(eltype(τ.vertices)))
# dmin2 = floatmax(eltype(eltype(τ.vertices)))
# for t in τ.vertices
# for s in σ.vertices
# d2 = LinearAlgebra.norm_sqr(t-s)
# dmin2 = min(dmin2, d2)
# hits += (d2 < dtol)
# end
# end
# hits == 3 && return SauterSchwabQuadrature.CommonFace(qd.gausslegendre[3])
# hits == 2 && return SauterSchwabQuadrature.CommonEdge(qd.gausslegendre[2])
# hits == 1 && return SauterSchwabQuadrature.CommonVertex(qd.gausslegendre[1])
# h2 = volume(σ)
# xtol2 = 0.2 * 0.2
# k2 = abs2(gamma(op))
# return DoubleQuadRule(
# qd.tpoints[1,i],
# qd.bpoints[1,j],)
# end
# function qrdf(op::MaxwellOperator3D, g::RTRefSpace, f::RTRefSpace, i, τ, j, σ, qd)
# # defines coincidence of points
# dtol = 1.0e3 * eps(eltype(eltype(τ.vertices)))
# # decides on whether to use singularity extraction
# xtol = 0.2
# k = norm(gamma(op))
# hits = 0
# xmin = xtol
# for t in τ.vertices
# for s in σ.vertices
# d = norm(t-s)
# xmin = min(xmin, k*d)
# if d < dtol
# hits +=1
# break
# end
# end
# end
# xmin < xtol && return WiltonSERule(
# qd.tpoints[1,i],
# DoubleQuadRule(
# qd.tpoints[2,i],
# qd.bpoints[2,j],
# ),
# )
# return DoubleQuadRule(
# qd.tpoints[1,i],
# qd.bpoints[1,j],
# )
# end
################################################################################
#
# Kernel definitions
#
################################################################################
const i4pi = 1 / (4pi)
function (igd::Integrand{<:MWSingleLayer3D})(x,y,f,g)
α = igd.operator.α
β = igd.operator.β
γ = igd.operator.gamma
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1 / R
green = exp(-γ*R)*(i4pi*iR)
αG = α * green
βG = β * green
_integrands(f,g) do fi,gj
αG * dot(fi.value, gj.value) + βG * dot(fi.divergence, gj.divergence)
end
end
function (igd::Integrand{<:MWSingleLayer3DReg})(x,y,f,g)
α = igd.operator.α
β = igd.operator.β
γ = igd.operator.gamma
r = cartesian(x) - cartesian(y)
R = norm(r)
γR = γ*R
# iR = 1 / R
green = (expm1(-γR) + γR - 0.5*γR^2) / (4pi*R)
αG = α * green
βG = β * green
_integrands(f,g) do fi,gj
αG * dot(fi.value, gj.value) + βG * dot(fi.divergence, gj.divergence)
end
end
function (igd::Integrand{<:MWDoubleLayer3D})(x,y,f,g)
γ = igd.operator.gamma
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1/R
green = exp(-γ*R)*(iR*i4pi)
gradgreen = -(γ + iR) * green * (iR * r)
fvalue = getvalue(f)
gvalue = getvalue(g)
G = cross.(Ref(gradgreen), gvalue)
return _krondot(fvalue, G)
end
function (igd::Integrand{<:MWDoubleLayer3DReg})(x,y,f,g)
γ = igd.operator.gamma
r = cartesian(x) - cartesian(y)
R = norm(r)
γR = γ*R
iR = 1/R
expo = exp(-γR)
green = (expo - 1 + γR - 0.5*γR^2) * (i4pi*iR)
gradgreen = ( -(γR + 1)*expo + (1 - 0.5*γR^2) ) * (i4pi*iR^3) * r
fvalue = getvalue(f)
gvalue = getvalue(g)
G = cross.(Ref(gradgreen), gvalue)
return _krondot(fvalue, G)
end
################################################################################
#
# Handling of operator parameters (Helmholtz and Maxwell)
#
################################################################################
"""
gamma_wavenumber_handler(gamma, wavenumber)
This function handles the input of `gamma` and `wavenumber`. It throws an error if both `gamma` and
`wavenumber` are provided. If neither is provided, it assumes a static problem and returns `Val(0)`
for `gamma` and `wavenumber`.
# Arguments
- `gamma`: `im` * `wavenumber` or `nothing`.
- `wavenumber`: `wavenumber` or `nothing`.
# Returns
- `gamma` and `wavenumber`: Appropriate pair `gamma` and `wavenumber`.
"""
function gamma_wavenumber_handler(gamma, wavenumber)
if !isnothing(gamma) && !isnothing(wavenumber)
error("Supplying both gamma and wavenumber is not supported.")
elseif isnothing(gamma) && isnothing(wavenumber)
# if neither gamma nor wavenumber is supplied, we are assuming a static problem
return Val(0), Val(0)
end
if isnothing(gamma) && !isnothing(wavenumber)
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
return gamma, wavenumber
end
"""
isstatic(gamma)
This function checks if the provided `gamma` value represents a static problem.
It returns true if `gamma` is of type `Val{0}` indicating a static problem.
# Arguments
- `gamma`: `gamma` value.
# Returns
- A boolean indicating whether the problem is static or not.
"""
function isstatic(gamma)
return typeof(gamma) == Val{0}
end
function isstatic(op::MaxwellOperator3D)
return isstatic(op.gamma)
end
function operator_parameter_handler(alpha, gamma, wavenumber)
gamma, wavenumber = gamma_wavenumber_handler(gamma, wavenumber)
if alpha === nothing
if isstatic(gamma) # static problem
alpha = 1.0 # default to double precision
else
alpha = one(real(typeof(gamma)))
end
end
return alpha, gamma
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2032 |
mutable struct MWSingleLayerField3D{T, U}
gamma::T
α::U
β::U
end
mutable struct MWDoubleLayerField3D{T}
gamma::T
end
"""
MWSingleLayerField3D(;gamma, wavenumber, alpha, beta)
Create the single layer near field operator, for use with `potential`.
"""
function MWSingleLayerField3D(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
beta=nothing
)
gamma, _ = gamma_wavenumber_handler(gamma, wavenumber)
@assert !isstatic(gamma)
alpha === nothing && (alpha = -gamma)
beta === nothing && (beta = -1/gamma)
MWSingleLayerField3D(gamma, alpha, beta)
end
MWSingleLayerField3D(op::MWSingleLayer3D{T,U}) where {T,U} = MWSingleLayerField3D(op.gamma, op.α, op.β)
"""
MWDoubleLayerField3D(; gamma, wavenumber)
Create the double layer near field operator, for use with `potential`.
"""
function MWDoubleLayerField3D(;
gamma=nothing,
wavenumber=nothing
)
gamma, _ = gamma_wavenumber_handler(gamma, wavenumber)
@assert !isstatic(gamma)
MWDoubleLayerField3D(gamma)
end
MWDoubleLayerField3D(op::MWDoubleLayer3D) = MWDoubleLayerField3D(op.gamma)
const MWField3D = Union{MWSingleLayerField3D,MWDoubleLayerField3D}
defaultquadstrat(op::MWField3D, basis) = SingleNumQStrat(2)
quaddata(op::MWField3D,rs,els,qs::SingleNumQStrat) = quadpoints(rs,els,(qs.quad_rule,))
quadrule(op::MWField3D,refspace,p,y,q,el,qdata,qs::SingleNumQStrat) = qdata[1,q]
function kernelvals(op::MWField3D,y,p)
γ = op.gamma
r = y - cartesian(p)
R = norm(r)
γR = γ*R
expn = exp(-γR)
green = expn / (4pi*R)
gradgreen = -(γ + 1/R) * green / R * r
krn = (trans=r, dist=R, green=green, gradgreen=gradgreen)
end
function integrand(op::MWSingleLayerField3D, krn, y, fp, p)
γ = op.gamma
j = fp.value
ρ = fp.divergence
G = krn.green
∇G = krn.gradgreen
op.α*G*j - op.β*∇G*ρ
end
function integrand(op::MWDoubleLayerField3D, krn, y, fp, p)
j = fp.value
∇G = krn.gradgreen
∇G × j
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1143 |
"""
Describe a single layer operator from the surface to a line.
```math
<v, Su> = ∫_γ dx v(x) ∫_Γ dy \frac{e^{-ikR}}{4πR} u(y)
```
"""
mutable struct SingleLayerTrace{T} <: MaxwellOperator3D{T,T}
gamma::T
end
defaultquadstrat(::SingleLayerTrace, ::LagrangeRefSpace, ::LagrangeRefSpace) = DoubleNumWiltonSauterQStrat(10,8,10,8,3,3,3,3)
function quaddata(operator::SingleLayerTrace,
localtestbasis::LagrangeRefSpace,
localtrialbasis::LagrangeRefSpace,
testelements, trialelements, qs::DoubleNumWiltonSauterQStrat)
tqd = quadpoints(localtestbasis, testelements, (qs.outer_rule_far,))
bqd = quadpoints(localtrialbasis, trialelements, (qs.outer_rule_near,))
#return QuadData(tqd, bqd)
return (tpoints=tqd, bpoints=bqd)
end
# Use numerical quadrature for now
# Note: basis integral is over triangle, test over line
function quadrule(op::SingleLayerTrace, g::LagrangeRefSpace, f::LagrangeRefSpace, i, τ, j, σ, qd,
qs::DoubleNumWiltonSauterQStrat)
DoubleQuadRule(
qd.tpoints[1,i],
qd.bpoints[1,j]
)
end
integrand(op::SingleLayerTrace, kernel, g, τ, f, σ) = f[1]*g[1]*kernel.green
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1108 | """
struct DoubleLayerRotatedMW3D{T,K} <: MaxwellOperator3D{T,K}
Bilinear form given by:
```math
α ∬_{Γ^2} k(x) ⋅ [n̂(x) × (∇G_γ(x-y) × j(y))]
```
with ``G_γ = e^{-γ|x-y|} / 4π|x-y|``
# Fields
- `alpha::T`: Factor in front of bilinear form.
- `gamma::K`: imaginary unit times the wavenumber.
"""
struct DoubleLayerRotatedMW3D{T,K} <: MaxwellOperator3D{T,K}
alpha::T
gamma::K
end
# defaultquadstrat(op::DoubleLayerRotatedMW3D, tfs::Space, bfs::Space) = DoubleNumSauterQstrat(6,7,5,5,4,3)
defaultquadstrat(op::DoubleLayerRotatedMW3D, tfs::Space, bfs::Space) = DoubleNumQStrat(6,7)
LinearAlgebra.cross(::NormalVector, a::MWDoubleLayer3D) = DoubleLayerRotatedMW3D(a.alpha, a.gamma)
function (igd::Integrand{<:DoubleLayerRotatedMW3D})(x,y,f,g)
nx = normal(x)
r = cartesian(x) - cartesian(y)
R = norm(r)
iR = 1/R
γ = gamma(igd.operator)
G = exp(-γ*R)/(4π*R)
K = -(γ + iR) * G * (iR * r)
fvalue = getvalue(f)
gvalue = getvalue(g)
Kg = cross.(Ref(K), gvalue)
nxKg = cross.(Ref(nx), Kg)
return _krondot(fvalue, nxKg)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 156 | struct SourceField{F} <: Functional
field::F
end
(s::SourceField)(p) = s.f(cartesian(p))
integrand(f::SourceField, tval, fval) = dot(fval, tval.value)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 702 |
mutable struct MWSingleLayerPotential3D{K}
wavenumber::K
end
#quaddata(op::MWSingleLayerPotential3D,rs,els) = quaddata(rs,els,(2,))
quaddata(op::MWSingleLayerPotential3D,rs,els) = quadpoints(rs,els,(3,))
quadrule(op::MWSingleLayerPotential3D,refspace,p,y,q,el,qdata) = qdata[1,q]
function kernelvals(op::MWSingleLayerPotential3D,y,p)
k = op.wavenumber
r = y - cartesian(p)
R = norm(r)
expn = exp(im * k * R)
green = expn / (4pi*R)
gradgreen = -(im*k + 1/R) * green / R * r
KernelValsMaxwell3D(im*k, r, R, green, gradgreen)
end
function integrand(op::MWSingleLayerPotential3D, krn, y, fp, p)
divJ = fp[2]
γ = krn.gamma
G = krn.green
-G*divJ/γ
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2059 | import WiltonInts84
mutable struct WiltonSERule{P,Q} <: SingularityExtractionRule
outer_quad_points::P
regularpart_quadrule::Q
end
function innerintegrals!(op::MWSingleLayer3DSng, p, g, f, t, s, z,
strat::WiltonSERule, dx)
γ = op.gamma
T = typeof(γ)
x = cartesian(p)
n = cross(s[1]-s[3],s[2]-s[3])
n /= norm(n)
ρ = x - ((x-s[1]) ⋅ n) * n
scal, vec = WiltonInts84.wiltonints(s[1], s[2], s[3], x, Val{1})
# \int \frac{1}{4 \pi R}
∫G = (scal[2] - γ*scal[3] + 0.5*γ^2*scal[4]) / (4π)
# \int \frac{y}{4 \pi R}
∫Gy = SVector((
(vec[2][1] + scal[2]*ρ[1] - γ*(vec[3][1]+scal[3]*ρ[1]) + 0.5*γ^2*(vec[4][1]+scal[4]*ρ[1]))/(4π),
(vec[2][2] + scal[2]*ρ[2] - γ*(vec[3][2]+scal[3]*ρ[2]) + 0.5*γ^2*(vec[4][2]+scal[4]*ρ[2]))/(4π),
(vec[2][3] + scal[2]*ρ[3] - γ*(vec[3][3]+scal[3]*ρ[3]) + 0.5*γ^2*(vec[4][3]+scal[4]*ρ[3]))/(4π),
))
c₁ = op.α
c₂ = op.β
α = 1 / volume(t) / volume(s) / 4
for i in 1 : numfunctions(g)
a = t[i]
g = x - a
dg = 2
for j in 1 : numfunctions(f)
b = s[j]
∫Gf = SVector(∫Gy[1]-∫G*b[1], ∫Gy[2]-∫G*b[2], ∫Gy[3]-∫G*b[3])
∫Gdf = 2 * ∫G
dg∫Gf = g[1]*∫Gf[1] + g[2]*∫Gf[2] + g[3]*∫Gf[3]
z[i,j] += ( α*c₁*dg∫Gf + α*c₂*dg*∫Gdf ) * dx
end # next j
end #
end
function innerintegrals!(op::MWDoubleLayer3DSng, p, g, f, t, s, z, strat::WiltonSERule, dx)
γ = op.gamma
T=typeof(γ)
x = cartesian(p)
n = cross(s[1]-s[3],s[2]-s[3])
n /= norm(n)
ρ = x - ((x-s[1]) ⋅ n) * n
scal, vec, grad = WiltonInts84.wiltonints(s[1], s[2], s[3], x, Val{1})
# \int \nabla G_s with G_s = \nabla (1/R + 0.5*γ^2*R) / (4\pi)
∫∇G = T.((-grad[1] - 0.5*γ^2*grad[3]) / (4π))
α = 1 / volume(t) / volume(s) / 4
for i in 1 : numfunctions(g)
a = t[i]
g = (x - a)
for j in 1 : numfunctions(f)
b = s[j]
z[i,j] += ( α * ( (x-b) × g ) ⋅ ∫∇G ) * dx
end # next j
end #
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1365 | mutable struct PlaneWaveMWTD{T,F,P} <: TDFunctional{T}
direction::P
polarisation::P
speedoflight::T
amplitude::F
end
function planewave(polarisation,direction,amplitude,speedoflight)
PlaneWaveMWTD(direction,polarisation,speedoflight,amplitude)
end
planewave(;signature, polarization, direction, speedoflight) =
PlaneWaveMWTD(direction, polarization, speedoflight, signature)
scalartype(p::PlaneWaveMWTD) = eltype(p.polarisation)
*(a, pw::PlaneWaveMWTD) = PlaneWaveMWTD(
pw.direction,
a * pw.polarisation,
pw.speedoflight,
pw.amplitude
)
cross(k, pw::PlaneWaveMWTD) = PlaneWaveMWTD(
pw.direction,
k × pw.polarisation,
pw.speedoflight,
pw.amplitude
)
function (f::PlaneWaveMWTD)(r,t)
t = cartesian(t)[1]
r = cartesian(r)
dr = zero(typeof(t))
for i in 1 : 3
dr += r[i]*f.direction[i]
end
f.polarisation * f.amplitude(t - dr/f.speedoflight)
end
function integrate(f::BEAST.PlaneWaveMWTD)
planewave(
signature = integrate(f.amplitude),
direction = f.direction,
polarization = f.polarisation,
speedoflight = f.speedoflight)
end
function differentiate(f::BEAST.PlaneWaveMWTD)
planewave(
signature = derive(f.amplitude),
direction = f.direction,
polarization = f.polarisation,
speedoflight = f.speedoflight)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 9673 |
mutable struct MWSingleLayerTDIO{T} <: RetardedPotential{T}
"speed of light in medium"
speed_of_light::T
"weight of the weakly singular term"
ws_weight::T
"weight of the hypersingular term"
hs_weight::T
"number of temporal differentiations in the weakly singular term"
ws_diffs::Int
"number of temporal differentiations in the hyper singular term"
hs_diffs::Int
end
function Base.:*(a::Number, op::MWSingleLayerTDIO)
@info "scalar product a * op (SL)"
MWSingleLayerTDIO(
op.speed_of_light,
a * op.ws_weight,
a * op.hs_weight,
op.ws_diffs,
op.hs_diffs)
end
mutable struct MWDoubleLayerTDIO{T} <: RetardedPotential{T}
speed_of_light::T
weight::T
num_diffs::Int
end
function Base.:*(a::Number, op::MWDoubleLayerTDIO)
@info "scalar product a * op (DL)"
MWDoubleLayerTDIO(
op.speed_of_light,
a * op.weight,
op.num_diffs)
end
mutable struct MWDoubleLayerTransposedTDIO{T} <: RetardedPotential{T}
speed_of_light::T
weight::T
num_diffs::Int
end
function Base.:*(a::Number, op::MWDoubleLayerTransposedTDIO)
@info "scalar product a * op (DL)"
MWDoubleLayerTransposedTDIO(
op.speed_of_light,
a * op.weight,
op.num_diffs)
end
MWSingleLayerTDIO(;speedoflight) = MWSingleLayerTDIO(speedoflight,-1/speedoflight,-speedoflight,2,0)
MWDoubleLayerTDIO(;speedoflight) = MWDoubleLayerTDIO(speedoflight, one(speedoflight), 0)
module TDMaxwell3D
import ...BEAST
function singlelayer(;speedoflight, numdiffs=0)
@assert numdiffs >= 0
numdiffs == 0 && return BEAST.integrate(BEAST.MWSingleLayerTDIO(speedoflight,-1/speedoflight,-speedoflight,2,0))
return BEAST.MWSingleLayerTDIO(speedoflight,-1/speedoflight,-speedoflight,2+numdiffs-1,numdiffs-1)
end
function doublelayer(;speedoflight, numdiffs=0)
@assert numdiffs >= -1
numdiffs == -1 && BEAST.integrate(BEAST.MWDoubleLayerTDIO(speedoflight,1.0,0))
return BEAST.MWDoubleLayerTDIO(speedoflight,1.0,numdiffs)
end
end # module TDMaxwell3D
export TDMaxwell3D
defaultquadstrat(::MWSingleLayerTDIO, tfs, bfs) = OuterNumInnerAnalyticQStrat(3)
function quaddata(op::MWSingleLayerTDIO, testrefs, trialrefs, timerefs,
testels, trialels, timeels, quadstrat::OuterNumInnerAnalyticQStrat)
dmax = numfunctions(timerefs)-1
bn = binomial.((0:dmax),(0:dmax)')
V = eltype(testels[1].vertices)
ws = WiltonInts84.workspace(V)
# quadpoints(testrefs, testels, (3,)), bn, ws
quadpoints(testrefs, testels, (quadstrat.outer_rule,)), bn, ws
end
quadrule(op::MWSingleLayerTDIO, testrefs, trialrefs, timerefs,
p, testel, q, trialel, r, timeel, qd, ::OuterNumInnerAnalyticQStrat) = WiltonInts84Strat(qd[1][1,p],qd[2],qd[3])
struct TransposedStorage{F}
store::F
end
@inline (f::TransposedStorage)(v,m,n,k) = f.store(v,n,m,k)
function assemble!(dl::MWDoubleLayerTDIO, W::SpaceTimeBasis, V::SpaceTimeBasis, store,
threading::Type{Threading{:multi}}; quadstrat=defaultquadstrat(dl,W,V))
X, T = spatialbasis(W), temporalbasis(W)
Y, U = spatialbasis(V), temporalbasis(V)
if CompScienceMeshes.refines(geometry(Y), geometry(X))
@assert !CompScienceMeshes.refines(geometry(X), geometry(Y))
W = Y⊗T
V = X⊗U
op = MWDoubleLayerTransposedTDIO(dl.speed_of_light, dl.weight, dl.num_diffs)
assemble!(op, W, V, store)
return
end
P = Threads.nthreads()
Y, S = spatialbasis(W), temporalbasis(W)
splits = [round(Int,s) for s in range(0, stop=numfunctions(Y), length=P+1)]
@info "Starting assembly with $P threads:"
Threads.@threads for i in 1:P
lo, hi = splits[i]+1, splits[i+1]
lo <= hi || continue
Y_p = subset(Y, lo:hi)
store2 = (v,m,n,k) -> store(v,lo+m-1,n,k)
assemble_chunk!(dl, Y_p ⊗ S, V, store2; quadstrat)
end
# return assemble_chunk!(dl, W, V, store1)
end
defaultquadstrat(::MWDoubleLayerTDIO, tfs, bfs) = OuterNumInnerAnalyticQStrat(3)
function quaddata(op::MWDoubleLayerTDIO, testrefs, trialrefs, timerefs,
testels, trialels, timeels, quadstrat::OuterNumInnerAnalyticQStrat)
dmax = numfunctions(timerefs)-1
bn = binomial.((0:dmax),(0:dmax)')
V = eltype(testels[1].vertices)
ws = WiltonInts84.workspace(V)
quadpoints(testrefs, testels, (quadstrat.outer_rule,)), bn, ws
end
quadrule(op::MWDoubleLayerTDIO, testrefs, trialrefs, timerefs,
p, testel, q, trialel, r, timeel, qd, quadstrat::OuterNumInnerAnalyticQStrat) =
WiltonInts84Strat(qd[1][1,p],qd[2],qd[3])
defaultquadstrat(::MWDoubleLayerTransposedTDIO, tfs, bfs) = OuterNumInnerAnalyticQStrat(3)
function quaddata(op::MWDoubleLayerTransposedTDIO,
testrefs, trialrefs, timerefs,
testels, trialels, timeels, quadstrat::OuterNumInnerAnalyticQStrat)
dmax = numfunctions(timerefs)-1
bn = binomial.((0:dmax),(0:dmax)')
V = eltype(testels[1].vertices)
ws = WiltonInts84.workspace(V)
quadpoints(testrefs, testels, (quadstrat.outer_rule,)), bn, ws
end
quadrule(op::MWDoubleLayerTransposedTDIO, testrefs, trialrefs, timerefs,
p, testel, q, trialel, r, timeel, qd, quadstrat::OuterNumInnerAnalyticQStrat) =
WiltonInts84Strat(qd[1][1,p],qd[2],qd[3])
function momintegrals!(z, op::MWDoubleLayerTransposedTDIO,
g, f, T, τ, σ, ι, qr::WiltonInts84Strat)
op1 = MWDoubleLayerTDIO(op.speed_of_light, op.weight, op.num_diffs)
momintegrals!(z, op1, g, f, T, τ, σ, ι, qr::WiltonInts84Strat)
w = similar(z)
permutedims!(w, z, [2,1,3])
end
@inline function tmRoR(d, iG, bns)
sgn = isodd(d) ? -1 : 1
r = sgn * iG[d+2]
end
# build
# ``\int (D-R)^d/R (y-b) dy`` from
# ``(ξ-b) \int R^k dy`` and
# ``\int R^k (y-ξ) dy``
@inline function tmRoRf(d, iG, iGξy, bξ, bns)
sgn = isodd(d) ? -1 : 1
iGf = iGξy[d+2] + bξ * iG[d+2]
r = sgn * iGf
end
"""
Q = qd(T,dh,::Val{N})
Q[k] is the factor in front resulting from differentiating t^(k-1) dh times.
"""
@generated function qh(::Type{T},dh,n::Type{Val{N}}) where {N,T}
xp = quote end
for k in 1:N
qk = Symbol(:q,k)
d = k-1
xp1 = quote
$(qk) = one($T)
for v in 0 : dh-1
$(qk) *= ($d-v)
end
end
append!(xp.args, xp1.args)
end
xp1 = :(())
for k in 1:N
qk = Symbol(:q,k)
push!(xp1.args, :($qk))
end
push!(xp.args, xp1)
return xp
end
function innerintegrals!(zl, op::MWSingleLayerTDIO,
p, # test_point, test_time
U, V, W, # local_test_space, local_trial_space, local_temporal_space
τ, σ, ι, # test_element, trial_element, spherial_shell
qr, w) # inner_quadrature_rule, outer_quadrature_weight
T = typeof(w)
sol = op.speed_of_light
#Rmax = sol * tmax
dx = w
x = cartesian(p)
n = cross(σ[1]-σ[3],σ[2]-σ[3])
n /= norm(n)
ξ = x - ((x-σ[1]) ⋅ n) * n
r = ι[1]
R = ι[2]
@assert r < R
@assert degree(W) <= 3
∫G, ∫Gξy, = WiltonInts84.wiltonints(σ[1],σ[2],σ[3],x,r,R,Val{2},qr.workspace)
αg = 1 / volume(τ) / 2
αf = 1 / volume(σ) / 2
αG = 1 / 4π
α = αg * αf * αG * op.ws_weight * dx
β = 4 * αg * αf * αG * op.hs_weight * dx
ds = op.ws_diffs
dh = op.hs_diffs
qhs = qh(T,dh,Val{4})
qss = qh(T,ds,Val{4})
bn = qr.binomials
#solpowers = collect(sol^p for p ∈ 0:numfunctions(W)-1)
sol2 = sol*sol
sol3 = sol2*sol
sol4 = sol3*sol
sol5 = sol4*sol
solpowers = (one(sol), sol, sol2, sol3, sol4, sol5)
for i in 1 : numfunctions(U)
a = τ[i]
g = (x-a)
for j in 1 : numfunctions(V)
b = σ[j]; bξ = ξ-b
for k in 1 : numfunctions(W)
d = k-1 # ranges from 0 to numfunctions(W)-1
sgn = isodd(d) ? -1 : 1
# hyper singular contribution
if d >= dh
@assert dh == 0
q = qhs[k]
Ih = tmRoR(d-dh, ∫G, bn) # \int (cTmax-R)^(d-dh)/R dy
#zl[i,j,k] += β * q * Ih / sol^(d-dh)
zl[i,j,k] += β * q * Ih / solpowers[d-dh+1]
end
# weakly singular contribution
if d >= ds
q = qss[k]
Is = tmRoRf(d-ds, ∫G, ∫Gξy, bξ, bn) # \int (cTmax-R)^(d-ds)/R (y-b) dy
#zl[i,j,k] += α * q * (g ⋅ Is) / sol^(d-ds)
zl[i,j,k] += α * q * (g ⋅ Is) / solpowers[d-ds+1]
end
end
end
end
end
function innerintegrals!(z, op::MWDoubleLayerTDIO,
p,
U, V, W,
τ, σ, ι,
qr, w)
T = typeof(w)
sol = op.speed_of_light
dx = w
x = cartesian(p)
n = cross(σ[1]-σ[3],σ[2]-σ[3])
n /= norm(n)
ξ = x - ((x-σ[1]) ⋅ n) * n
r = ι[1]
R = ι[2]
@assert r < R
@assert degree(W) <= 3
#N = max(degree(W), 0)
∫G, ∫Gξy, ∫∇G = WiltonInts84.wiltonints(σ[1],σ[2],σ[3],x,r,R,Val{2},qr.workspace)
@assert isapprox(∫∇G[2] , point(0,0,0), atol=1e-8)
αg = 1 / volume(τ) / 2
αf = 1 / volume(σ) / 2
αG = 1 / 4 / π
α = αG * op.weight * dx # * αg * αf
ds = op.num_diffs
@inline function tmGRoR(d, iGG)
sgn = isodd(d) ? -1 : 1
r = sgn * iGG[d+1]
end
Ux = U(p)
Vx = αf * @SVector[(x-σ[1]), (x-σ[2]), (x-σ[3])]
for i in 1 : numfunctions(U)
# a = τ[i]
# g = αg * (x-τ[i])
g = Ux[i].value
for j in 1 : numfunctions(V)
# b = σ[j]
# f = αf * (x-σ[j])
# f = Vx[j].value
f = Vx[j]
fxg = f × g
for k in 1 : numfunctions(W)
d = k-1
sgn = isodd(d) ? -1 : 1
if d >= ds
q = one(T)
for p in 0 : ds-1
q *= (d-p)
end
# @assert q == 1
z[i,j,k] += -α * q * ( fxg ⋅ tmGRoR(d-ds, ∫∇G) ) / sol^(d-ds)
end
end
end
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 976 |
"""
Operator to compute the far field of a current distribution in the time domain.
In particular, given the current distribution ``j`` this operator allows for the computation of
```math
R = ̂x ⋅ y
ffd = n × ∫_Γ j(r', t - R/c} dy
```
where ``̂x`` is the unit vector in the direction of observation.
Note that the assembly routing expects the observation directions to be normalised by the caller.
"""
mutable struct MWFarField3DTD{K}
sol::K
end
function quaddata(op::MWFarField3DTD, trialrefs, timerefs, trialels, timeels)
trialqd = quadpoints(trialrefs, trialels, (3,))
trialqd, nothing
end
function quadrule(op::MWFarField3DTD,trialrefs, timerefs,
p, testel, q, trialel, r, timeel, qd)
qd[1][1,q], nothing
end
kernelvals(op::MWFarField3DTD,test,source) = dot(test,cartesian(source))/op.sol
function integrand(op::MWFarField3DTD,krn,testels, trialvals, t, T)
τ = krn
timevals = T(t - τ)
testels × (trialvals[1] * timevals)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 353 | abstract type FarField end
defaultquadstrat(op::FarField, basis) = SingleNumQStrat(3)
defaultquadstrat(op::FarField, basis::DirectProductSpace) = defaultquadstrat(op, basis.factors[1])
quaddata(op::FarField,rs,els,qs::SingleNumQStrat) = quadpoints(rs,els,(qs.quad_rule,))
quadrule(op::FarField,refspace,p,y,q,el,qdata,qs::SingleNumQStrat) = qdata[1,q] | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1494 | function octree(charts::Vector{S} where {S <: CompScienceMeshes.Simplex})
ncells = length(charts)
T = coordtype(charts[1])
P = eltype(charts[1].vertices)
points = zeros(P, ncells)
radii = zeros(T, ncells)
for (i,ch) in enumerate(charts)
points[i] = cartesian(center(ch))
radii[i] = maximum(norm(v-points[i]) for v in ch.vertices)
end
return Octree(points, radii)
end
"""
grideval(points, coeffs, basis; type=nothing)
"""
function grideval(points, coeffs, basis; type=nothing)
# charts: active charts
# ad: assembly data (active_cell_idx, local_shape_idx) -> [dof1, dfo2, ...]
# ag: active_cell_idx -> global_cell_idx
charts, ad, ag = assemblydata(basis)
refs = refspace(basis)
V = valuetype(refs, eltype(charts))
T = promote_type(eltype(coeffs), eltype(V))
P = similar_type(V, T)
type != nothing && (P = type)
values = zeros(P, size(points))
chart_tree = BEAST.octree(charts)
for (j,point) in enumerate(points)
i = CompScienceMeshes.findchart(charts, chart_tree, point)
if i != nothing
# @show i
chart = charts[i]
u = carttobary(chart, point)
vals = refs(neighborhood(chart,u))
for r in 1 : numfunctions(refs)
for (m,w) in ad[i, r]
values[j] += w * coeffs[m] * vals[r][1]
end
end
continue
end
end
return values
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 837 | struct CommonFaceOverlappingEdgeQStrat{S}
conforming_qstrat::S
end
function quaddata(a, X, Y, tels, bels, qs::CommonFaceOverlappingEdgeQStrat)
return quaddata(a, X, Y, tels, bels, qs.conforming_qstrat)
end
function quadrule(a, 𝒳, 𝒴, i, τ, j, σ, qd,
qs::CommonFaceOverlappingEdgeQStrat)
if CompScienceMeshes.overlap(τ, σ)
return quadrule(a, 𝒳, 𝒴, i, τ, j, σ, qd, qs.conforming_qstrat)
end
for (i,λ) in pairs(faces(τ))
for (j,μ) in pairs(faces(σ))
if CompScienceMeshes.overlap(λ, μ)
return NonConformingTouchQRule(qs.conforming_qstrat, i, j)
end end end
# Either positive distance, common face, or common vertex, which can
# be handled directly by the parent quadrature strategy
return quadrule(a, 𝒳, 𝒴, i, τ, j, σ, qd, qs.conforming_qstrat)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 956 | struct DoubleQuadRule{P,Q}
outer_quad_points::P
inner_quad_points::Q
end
"""
momintegrals!(biop, tshs, bshs, tcell, bcell, interactions, strat)
Function for the computation of moment integrals using simple double quadrature.
"""
function momintegrals!(biop, tshs, bshs, tcell, bcell, z, strat::DoubleQuadRule)
igd = Integrand(biop, tshs, bshs, tcell, bcell)
womps = strat.outer_quad_points
wimps = strat.inner_quad_points
for womp in womps
tgeo = womp.point
tvals = womp.value
M = length(tvals)
jx = womp.weight
for wimp in wimps
bgeo = wimp.point
bvals = wimp.value
N = length(bvals)
jy = wimp.weight
j = jx * jy
z1 = j * igd(tgeo, bgeo, tvals, bvals)
for n in 1:N
for m in 1:M
z[m,n] += z1[m,n]
end end
end
end
return z
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 757 | function quaddata(operator::IntegralOperator,
local_test_basis::RefSpace, local_trial_basis::RefSpace,
test_elements, trial_elements, qs::DoubleNumQStrat)
test_quad_data = quadpoints(local_test_basis, test_elements, (qs.outer_rule,))
trial_quad_data = quadpoints(local_trial_basis, trial_elements, (qs.inner_rule,))
return test_quad_data, trial_quad_data
end
function quadrule(operator::IntegralOperator,
local_test_basis::RefSpace, local_trial_basis::RefSpace,
test_id, test_element, trial_id, trial_element,
quad_data, qs::DoubleNumQStrat)
test_quad_rules = quad_data[1]
trial_quad_rules = quad_data[2]
DoubleQuadRule(
test_quad_rules[1,test_id],
trial_quad_rules[1,trial_id]
)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2429 | struct DoubleNumSauterQstrat{R,S}
outer_rule::R
inner_rule::R
sauter_schwab_common_tetr::S
sauter_schwab_common_face::S
sauter_schwab_common_edge::S
sauter_schwab_common_vert::S
end
function quaddata(op::IntegralOperator,
test_local_space::RefSpace, trial_local_space::RefSpace,
test_charts, trial_charts, qs::DoubleNumSauterQstrat)
T = coordtype(test_charts[1])
tqd = quadpoints(test_local_space, test_charts, (qs.outer_rule,))
bqd = quadpoints(trial_local_space, trial_charts, (qs.inner_rule,))
leg = (
convert.(NTuple{2,T},_legendre(qs.sauter_schwab_common_vert,0,1)),
convert.(NTuple{2,T},_legendre(qs.sauter_schwab_common_edge,0,1)),
convert.(NTuple{2,T},_legendre(qs.sauter_schwab_common_face,0,1)),
convert.(NTuple{2,T},_legendre(qs.sauter_schwab_common_tetr,0,1)),
)
return (tpoints=tqd, bpoints=bqd, gausslegendre=leg)
end
function quadrule(op::IntegralOperator, g::RefSpace, f::RefSpace,
i, τ::CompScienceMeshes.Simplex{<:Any, 2},
j, σ::CompScienceMeshes.Simplex{<:Any, 2},
qd, qs::DoubleNumSauterQstrat)
hits = _numhits(τ, σ)
@assert hits <= 3
hits == 3 && return SauterSchwabQuadrature.CommonFace(qd.gausslegendre[3])
hits == 2 && return SauterSchwabQuadrature.CommonEdge(qd.gausslegendre[2])
hits == 1 && return SauterSchwabQuadrature.CommonVertex(qd.gausslegendre[1])
return DoubleQuadRule(
qd.tpoints[1,i],
qd.bpoints[1,j],)
end
function quadrule(op::IntegralOperator, g::RefSpace, f::RefSpace,
i, τ::CompScienceMeshes.Quadrilateral,
j, σ::CompScienceMeshes.Quadrilateral,
qd, qs::DoubleNumSauterQstrat)
hits = _numhits(τ, σ)
@assert hits != 3
@assert hits <= 4
hits == 4 && return SauterSchwabQuadrature.CommonFaceQuad(qd.gausslegendre[3])
hits == 2 && return SauterSchwabQuadrature.CommonEdgeQuad(qd.gausslegendre[2])
hits == 1 && return SauterSchwabQuadrature.CommonVertexQuad(qd.gausslegendre[1])
return DoubleQuadRule(
qd.tpoints[1,i],
qd.bpoints[1,j],)
end
function _numhits(τ, σ)
T = coordtype(τ)
hits = 0
dtol = 1.0e3 * eps(T)
dmin2 = floatmax(T)
for t in vertices(τ)
for s in vertices(σ)
d2 = LinearAlgebra.norm_sqr(t-s)
d = norm(t-s)
dmin2 = min(dmin2, d2)
hits += (d < dtol)
end
end
return hits
end | BEAST | https://github.com/krcools/BEAST.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.