licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
851
using JuLIP, ForwardDiff, StaticArrays, BenchmarkTools # simple EAM potential f(R) = sqrt( 1.0 + sum( exp(-norm(r)) for r in R ) ) nneigs = 30 R0 = [ @SVector rand(3) for n = 1:nneigs ] f_fd(R) = ForwardDiff.gradient( T -> f(vecs(T)), mat(R)[:] ) |> vecs function f_d(R::AbstractVector{<:JVec}) ∇f = zeros(JVecF, length(R)) ρ̄ = sum( exp(-norm(r)) for r in R ) dF = 0.5 * (1.0 + ρ̄)^(-0.5) return [ dF * (- exp(-norm(r))) * r/norm(r) for r in R ] end @assert f_d(R0) ≈ f_fd(R0) @btime f($R0); @btime f_d($R0); @btime f_fd($R0); # f1(R::AbstractMatrix) = # sqrt( 1.0 + sum( exp.(-sqrt.(sum(abs2, R, 1))) ) ) # f1_rd(R::Matrix) = # reshape( # ReverseDiff.gradient( S -> f1(reshape(S, 3, length(S) ÷ 3)), R[:] ), # size(R) ) # R1 = mat(R0) # f1_rd(R1) # # @btime f1($R1); # @btime f1_rd($R1);
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2858
using BenchmarkTools using JuLIP using JuLIP: AbstractAtoms, AbstractCalculator function perfbm(id::AbstractString, at::AbstractAtoms, calc::AbstractCalculator; e = true, elist = true, f = true, flist = true) println("--------------------------------------------------------------------------") println(id) if e print("Energy Assembly (without nlist): ") @btime energy($calc, $at) end if elist print("Energy Assembly (with nlist): ") @btime energy($calc, rattle!($at, 0.001)) end if f print("Force Assembly (without nlist): ") @btime forces($calc, $at) end if flist print("Force Assembly (with nlist): ") @btime forces($calc, rattle!($at, 0.001)) end end println() println("≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡") println(" JuLIP Performance Regression Tests") println("≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡") println() perfbm("LENNARD-JONES", bulk(:Al, cubic=true) * (10,10,8), lennardjones(r0=rnn(:Al)) ) data = joinpath(dirname(@__FILE__), "..", "data") * "/" perfbm("EAM (Splines)", bulk(:Fe, cubic=true) * (12,12,8), EAM(data * "pfe.plt", data * "ffe.plt", data * "F_fe.plt") ) perfbm("STILLINGER-WEBER", bulk(:Si, cubic=true) * (12,15,12), StillingerWeber()) ## using BenchmarkTools using JuLIP using JuLIP: AbstractAtoms, AbstractCalculator at = bulk(:Al, cubic=true) * (10,10,8) calc = lennardjones(r0=rnn(:Al)) tmp = JuLIP.alloc_temp(calc, at) JuLIP.energy!(tmp, calc, at) # Performance prior to restructuring # TODO: fix performance of PairPotentials # -------------------------------------------------------------------------- # LENNARD-JONES # Energy Assembly (without nlist): 66.695 ms (41653 allocations: 47.65 MiB) # Energy Assembly (with nlist): 68.778 ms (41675 allocations: 41.52 MiB) # Force Assembly (without nlist): 73.158 ms (41657 allocations: 43.40 MiB) # Force Assembly (with nlist): 72.561 ms (41677 allocations: 41.59 MiB) # -------------------------------------------------------------------------- # EAM (Splines) # Energy Assembly (without nlist): 69.074 ms (71535 allocations: 43.47 MiB) # Energy Assembly (with nlist): 74.438 ms (71558 allocations: 44.49 MiB) # Force Assembly (without nlist): 83.091 ms (69237 allocations: 44.23 MiB) # Force Assembly (with nlist): 87.327 ms (69257 allocations: 44.51 MiB) # -------------------------------------------------------------------------- # STILLINGER-WEBER # Energy Assembly (without nlist): 78.205 ms (402680 allocations: 65.56 MiB) # Energy Assembly (with nlist): 86.708 ms (410401 allocations: 69.01 MiB) # Force Assembly (without nlist): 87.153 ms (411005 allocations: 67.34 MiB) # Force Assembly (with nlist): 91.166 ms (410672 allocations: 69.42 MiB)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1434
using JuLIP, Test, Printf using JuLIP.Testing h0(" JuLIP Tests ") @info("preparing the tests...") verbose=true ## check whether on CI isCI = haskey(ENV, "CI") notCI = !isCI eam_W4 = nothing ## ===== some prototype potentials ====== @info("Loading some interatomic potentials . .") data = joinpath(dirname(pathof(JuLIP)), "..", "data") * "/" eam_Fe = JuLIP.Potentials.EAM(data * "pfe.plt", data * "ffe.plt", data * "F_fe.plt") print(" .") eam_W = JuLIP.Potentials.FinnisSinclair(data*"W-pair-Wang-2014.plt", data*"W-e-dens-Wang-2014.plt") print(" .") global eam_W4 try global eam_W4 = JuLIP.Potentials.EAM(data * "w_eam4.fs") catch global eam_W4 = nothing end println(" done.") julip_tests = [ ("testaux.jl", "Miscellaneous"), ("test_atoms.jl", "Atoms"), ("test_build.jl", "Build"), ("test_fio.jl", "File IO"), ("testanalyticpotential.jl", "Analytic Potential"), ("testpotentials.jl", "Potentials"), ("test_ad.jl", "AD Potentials"), ("testvarcell.jl", "Variable Cell"), ("testhessian.jl", "Hessian"), ] # add solver tests if not on travis if !isCI push!(julip_tests, ("testsolve.jl", "Solve")) else @info("on CI : don't run solver tests") end # "testexpvarcell.jl"; # USE THIS TO WORK ON EXPCELL IMPLEMENTATION @testset "JuLIP" begin for (testfile, testid) in julip_tests h1("Testset $(testid)") @testset "$(testid)" begin include(testfile); end end end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1039
using JuLIP, ForwardDiff, StaticArrays, BenchmarkTools, Test, LinearAlgebra # simple EAM-like potential f(R) = sqrt( 1.0 + sum( exp(-norm(r)) for r in R ) ) # hand-coded gradient function f_d(R::AbstractVector{<:JVec}) ∇f = zeros(JVecF, length(R)) ρ̄ = sum( exp(-norm(r)) for r in R ) dF = 0.5 * (1.0 + ρ̄)^(-0.5) return [ dF * (- exp(-norm(r))) * r/norm(r) for r in R ] end # ForwardDiff gradient f_fd(R) = collect(ForwardDiff.gradient( T -> f(vecs(T)), collect(mat(R)[:]) ) |> vecs) # turn it into an AD potential V = JuLIP.Potentials.ADPotential(f, Inf) # a test configuration nneigs = 30 R0 = [ @SVector rand(3) for n = 1:nneigs ] # check that all of them are the same println(@test V(R0) == f(R0)) println(@test (@D V(R0)) == f_fd(R0)) println(@test f_d(R0) ≈ f_fd(R0)) # timings print("Timing for f: ") @btime f($R0); print("Timing for V: ") @btime V($R0); print("Timing for f_d: ") @btime f_d($R0); print("Timing for f_fd: ") @btime f_fd($R0); print("Timing for @D V: ") @btime (@D $V($R0));
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1868
using JuLIP.Testing, ASE, PyCall @info("These tests to compare JuLIP vs ASE implementations of some potentials") h3("Compare JuLIP vs ASE: EAM") # JuLIP's EMT implementation at = set_pbc!( bulk(:Cu, cubic=true) * (2,2,2), (true,false,false) ) rattle!(at, 0.02) emt = EMT(at) @info("Test JuLIP vs ASE EMT implementation") pyemt = ASE.Models.EMTCalculator() print(" energy: ") println(@test abs(energy(emt, at) - energy(pyemt, at)) < 1e-10) print(" forces: ") println(@test norm(forces(pyemt, at) - forces(emt, at), Inf) < 1e-10) # ------------------------------------------------------------------------ h3("Compare JuLIP EAM Implementation against ASE EAM Implementation") @pyimport ase.calculators.eam as eam pot_file = joinpath(dirname(pathof(JuLIP)), "..", "data", "w_eam4.fs") @info("Generate the ASE potential") eam4_ase = eam.EAM(potential=pot_file) |> ASECalculator @info("Generate low-, med-, high-accuracy JuLIP potential") eam4_jl1 = EAM(pot_file) eam4_jl2 = EAM(pot_file; s = 1e-4) eam4_jl3 = EAM(pot_file; s = 1e-6) at1 = rattle!(bulk(:W, cubic=true) * 3, 0.1) at2 = deleteat!(bulk(:W, cubic=true) * 3, 1) at1_ase = ASEAtoms(at1) at2_ase = ASEAtoms(at2) for (i, (at, at_ase)) in enumerate(zip([at1, at2], [at1_ase, at2_ase])) @info("Test $i") err_low = (energy(eam4_ase, at_ase) - energy(eam4_jl1, at)) / length(at) err_med = (energy(eam4_ase, at_ase) - energy(eam4_jl2, at)) / length(at) err_hi = (energy(eam4_ase, at_ase) - energy(eam4_jl3, at)) / length(at) print(" Low Accuracy energy error:", err_low, "; ", (@test abs(err_low) < 0.02)) print(" Low Accuracy energy error:", err_med, "; ", (@test abs(err_med) < 0.006)) print(" Low Accuracy energy error:", err_hi, "; ", (@test abs(err_hi) < 0.0004)) end # ------------------------------------------------------------------------
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1929
using JuLIP using Test using LinearAlgebra: I h3("check that `bulk` evaluates ok...") at = bulk(:Si) println(@test typeof(at) == Atoms{Float64}) h3("... and that we can repeat it.") println(@test length(at * (1,2,3)) == 6 * length(at)) h3("check deepcopy and == ...") at = bulk(:Si) at1 = deepcopy(at) println(@test at == at1) h3("Check setindex! and getindex ...") at = bulk(:Si, cubic=true) x = at[2] println(@test x == JVec(1.3575, 1.3575, 1.3575)) x += 0.1 at[2] = x X = positions(at) println(@test !(X === at.X)) println(@test X[2] == x) h3("set_positions ...") at = bulk(:Si, cubic=true) * 2 X = positions(at) println(@test !(X === at.X)) println(@test X == at.X) X += 0.1 * rand(JVecF, length(at)) println(@test X != at.X) set_positions!(at, X) println(@test X == at.X) println(@test !(X === at.X)) # TODO: set_momenta, set_masses, set_numbers println(@test chemical_symbols(at) == fill(:Si, 64)) println(@test chemical_symbols(bulk(:W)) == [:W]) h3("test set_positions!") Y = copy(X) Y[3] = JVec(rand(3)) println(@test Y != positions(at)) set_positions!(at, Y) println(@test Y == positions(at)) h3("test set_momenta!") Nat = length(at) Ifree = rand(collect(1:Nat), Nat * 4 ÷ 5) |> unique |> sort # prepare for test below Iclamp = setdiff(1:Nat, Ifree) P = rand(size(Y |> mat)...) P[:, Iclamp] .= 0.0 P = vecs(P) set_momenta!(at, P) println(@test P == momenta(at)) h3("test set_dofs!, etc") # this is making an assumptions on the ordering of dofs; since a new # implementation of the DOF manager could change this, this test needs to be # re-implemented if that happens. set_free!(at, Ifree) println(@test dofs(at) == position_dofs(at) == mat(Y)[:, Ifree][:]) println(@test momentum_dofs(at) == mat(P)[:, Ifree][:]) q = position_dofs(at) q = rand(length(q)) set_position_dofs!(at, q) println(@test q == position_dofs(at)) p = rand(length(q)) set_momentum_dofs!(at, p) println(@test p == momentum_dofs(at))
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
751
using JuLIP, Test using JuLIP.Testing h3("Testing single `Atoms` <-> `Dict`") at = bulk(:Cu, cubic=true) * 3 set_pbc!(at, (true, false, true)) rattle!(at, 0.1) D = Dict(at) at1 = Atoms(D) println(@test(at == at1)) at2 = decode_dict(D) println(@test(at == at2)) h3("Test JSON fio") fn = tempname() save_dict(fn, D) D1 = load_dict(fn) # D1 == D => this will be false so don't test it! at3 = decode_dict(D1) println(@test at3 == at1) h3("Test array of Atoms <-> Dict") ats = [ (bulk(:Cu) * rand(2:4)) for n = 1:5 ] Ds = Dict("ats" => Dict.(ats)) ats1 = decode_dict.(Ds["ats"]) println(@test ats1 == ats) h3("Test JSON fio for array") fn = tempname() save_dict(fn, Ds) Ds1 = load_dict(fn) ats2 = decode_dict.(Ds1["ats"]) println(@test ats == ats2)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
503
println("testing periodic notion of distance") X1 = [ JVecF(0.0,0.0,0.0), JVecF(0.5,0.5,0.5)] at = Atoms(:H, X1) set_pbc!(at, (true, false, false)) set_cell!(at, [1.0 0.2 0.3; 0.0 1.0 0.1; 0.0 0.0 1.0]) X2 = [ X1[1], X1[2] + JVecF(1.0, 0.2, 0.3)] X3 = [ X1[1] - JVecF(0.1, 0.0, 0.0), X1[2]] X4 = [ X1[1], X1[2] + JVecF(0.0, 1.0, 0.1)] @testset "dist" begin @test JuLIP.dist(at, X1, X2) < 1e-14 @test JuLIP.dist(at, X1, X3) ≈ 0.1 @test JuLIP.dist(at, X1, X4) ≈ norm(JVecF(0.0, 1.0, 0.1)) end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1721
import JuLIP.Potentials: @pot, @D, evaluate!, evaluate_d!, PairPotential, @analytic using LinearAlgebra: norm using BenchmarkTools using JuLIP, Test h3("generate hand-coded morse potential") mutable struct Morseold <: PairPotential e0::Float64 A::Float64 r0::Float64 end @pot Morseold evaluate!(tmp, p::Morseold, r::Number) = p.e0 * (exp(-2*p.A*(r/p.r0-1.0)) - 2.0*exp(-p.A*(r/p.r0-1.0))) evaluate_d!(tmp, p::Morseold, r::Number) = -2.0*p.e0*p.A/p.r0*(exp(-2*p.A*(r/p.r0-1.0)) - exp(-p.A*(r/p.r0-1.0))) A = 4.1 e0 = 0.99 r0 = 1.05 morseold = Morseold(e0, A, r0) h3("generate AD morse potential") morse1 = let A = A, e0 = e0, r0 = r0 @analytic( r -> e0 * (exp(-2*A*(r/r0-1.0)) - 2.0*exp(-A*(r/r0-1.0))) ) end @show typeof(morse1) h3("Check consistency of hand-coded and analytic Morse potentials...") rr = collect(range(0.9, stop=2.1, length=100)) morse_r = morse1.(rr) morseold_r = morseold.(rr) dmorse_r = [(@D morse1(r)) for r in rr] dmorseold_r = [ (@D morseold(r)) for r in rr ] println(@test norm(morse_r - morseold_r, Inf) < 1e-12) println(@test norm(dmorse_r - dmorseold_r, Inf) < 1e-12) function runn(f, x, N) s = 0.0 for n = 1:N x += 0.0001 s += f(x) end return s end function runn_d(f, x, N) s = 0.0 for n = 1:N x += 0.0001 s += @D f(x) end return s end h2("Performance tests: @analytic vs hand-coded") x = 1.0+rand() println("Evaluations of @analytic Potential") @btime runn($morse1, $x, 1_000) println("Evaluations hand-coded Potential") @btime runn($morseold, $x, 1_000) println("Grad of @analytic Potential") @btime runn_d($morse1, $x, 1_000) println("Grad of hand-coded Potential") @btime runn_d($morseold, $x, 1_000)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
279
h1("Test Aux") h2("matrix <-> vec conversions") X = rand(3, 3) Y = vecs(X) |> mat println(@test X == Y) Y[1] = -1.0 println(@test X == Y) V = rand(JVecF, 10) A = mat(V) B = vecs(A) println(@test B === V) B[1] = rand(JVecF) println(@test B === V) println(@test A[:, 1] == V[1])
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2847
using JuLIP: stress using JuLIP.Potentials using LinearAlgebra println("-------------------------------------------------") println(" Variable Cell Test") println("-------------------------------------------------") calc = lennardjones(r0=rnn("Al")) at = bulk("Al") * 2 # cubic=true, set_pbc!(at, true) set_calculator!(at, calc) # perturb the cell shape set_defm!(at, defm(at) + 0.1*rand(JMatF), updatepositions=true) # check that under this deformation the atom positions are still # in a homogeneous lattice (i.e. they are deformed correctly with the cell) @test maxnorm(forces(at)) < 1e-12 # now perturb the atom positions as well rattle!(at, 0.1) # set the constraint >>> this means the deformed cell defines F0 and X0 set_constraint!(at, ExpVariableCell(at)) # check that energy, forces, stress, dofs, gradient evaluate at all print("check that energy, forces, stress, dofs, gradient evaluate ... ") energy(at) forces(at) gradient(at) stress(at) println("ok.") @test true print("Check that setting and getting dofs is consistent ... ") x = dofs(at) @assert length(x) == 3 * length(at) + 6 y = x + 0.01 * rand(size(x)) set_dofs!(at, y) z = dofs(at) @test norm(y - z, Inf) < 1e-12 println("ok") # perform the finite-difference test set_dofs!(at, x) JuLIP.Testing.fdtest(calc, at, verbose=true, rattle=0.1) println("-------------------------------------------------") println("Test optimisation with ExpVariableCell") # # start with a clean `at` at = bulk("Si") * 2 # cubic=true, set_pbc!(at, true) set_calculator!(at, StillingerWeber()) set_constraint!(at, ExpVariableCell(at)) # println("For the initial state, stress is far from 0:") @show norm(virial(at), Inf) JuLIP.Solve.minimise!(at, verbose=2) # dt = 1e-6 # for n = 1:100 # x = dofs(at) # ∇E = gradient(at) # @printf(" %3d | %4.2e \n", n, norm(∇E, Inf)) # x -= dt * ∇E # set_dofs!(at, x) # end println("After optimisation, stress is 0:") @show norm(virial(at), Inf) # @test norm(virial(at), Inf) < 1e-4 println("Test for comparison with the standard VariableCell") at = bulk("Si") * 2 # cubic=true, set_pbc!(at, true) set_calculator!(at, StillingerWeber()) set_constraint!(at, VariableCell(at)) # println("For the initial state, stress is far from 0:") @show norm(virial(at), Inf) JuLIP.Solve.minimise!(at, verbose=2) # println("-------------------------------------------------") # println("And now with pressure . . .") # println("-------------------------------------------------") # set_constraint!(at, ExpVariableCell(at, pressure=10.0123)) # JuLIP.Testing.fdtest(calc, at, verbose=true, rattle=0.1) # at = Atoms("Al", pbc=(true,true,true)) * 2 # cubic=true, # set_calculator!(at, calc) # set_constraint!(at, VariableCell(at, pressure=0.01)) # JuLIP.Solve.minimise!(at) # @show norm(stress(at), Inf) # @test norm(gradient(at), Inf) < 1e-4
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3084
using Test, JuLIP, StaticArrays, Printf, LinearAlgebra using JuLIP.Potentials using JuLIP.Testing using JuLIP.Potentials: evaluate_d, evaluate_dd h2("Testing pair potential hessian") at = bulk(:Cu, cubic=true) pp = lennardjones(r0=rnn(:Cu)) h3("test the potential (scalar) itself") rr = 0.9*rnn(:Cu) .+ 3.0*rand(100) ddJ = [@DD pp(r) for r in rr] ddJh = [((@D pp(r + 1e-4)) - (@D pp(r - 1e-4))) / 2e-4 for r in rr] println( @test (@show maximum(abs.(ddJ .- ddJh))) < 1e-4 ) h3("test `hess`; with two test vectors") for R in ( [0.0,-3.61,-3.61], [-1.805,-1.805,-3.61] ) r = norm(R) @show r, R E0 = pp(r) # f0 = grad(pp, r, JVecF(R)) f0 = evaluate_d(pp, r) * R/r size(f0) # df0 = hess(pp, r, JVecF(R)) df0 = evaluate_dd(pp, r) * (R/r) * (R/r)' + (evaluate_d(pp, r)/r) * (I - (R/r) * (R/r)') dfh = zeros(3,3) fh = zeros(3) for p = 2:11 h = 0.1^p for n = 1:3 R[n] += h # fh[n] = (evaluate(pp, norm(R)) - E0) dfh[:, n] = (evaluate_d(pp, norm(R)) * R/norm(R) - f0) / h # (grad(pp, r, JVecF(R)) - f0) / h R[n] -= h end @printf("%1.1e | %4.2e \n", h, norm(dfh - df0, Inf)) end @printf("-------|--------- \n") end h3("full finite-difference test for pairpot `hessian`") at = at * 2 set_pbc!(at, false) set_calculator!(at, pp) println(@test fdtest_hessian( x->JuLIP.gradient(at, x), x->hessian(at, x), dofs(at) )) h2("Testing EAM hessian") # setup a geometry at = bulk(:Fe, cubic=true) * 2 set_pbc!(at, false) eam = eam_Fe set_calculator!(at, eam) rattle!(at, 0.1) h3("test a single stencil") r = [] R = [] for (idx, _j, R1) in sites(at, cutoff(eam)) if idx == 3 global r = r1 global R = R1 break end end # evaluate site gradient and hessian dVs = evaluate_d(eam, R) hVs = evaluate_dd(eam, R) # and convert them to vector form dV = mat(dVs)[:] hV = zeros(3*size(hVs,1), 3*size(hVs,2)) for i = 1:size(hVs,1), j = 1:size(hVs,2) hV[3*(i-1).+(1:3), 3*(j-1).+(1:3)] = hVs[i,j] end matR = mat(R) errs = [] for p = 2:9 h = 0.1^p hVh = fill(0.0, size(hV)) for n = 1:length(matR) matR[n] += h r = norm.(R) dVh = mat(evaluate_d(eam, R))[:] hVh[:, n] = (dVh - dV) / h matR[n] -= h end push!(errs, norm(hVh - hV, Inf)) @printf("%1.1e | %4.2e \n", h, errs[end]) end println(@test /(extrema(errs)...) < 1e-3) h3("full finite-difference test ...") h3(" ... EAM forces") println(@test fdtest( x -> energy(at, x), x -> JuLIP.gradient(at, x), dofs(at) )) # h3(" ... EAM hessian") # println(@test fdtest_hessian( x->gradient(at, x), x->hessian(at, x), dofs(at) )) # TODO: fix EAM hessian again h2("Testing Stillinger-Weber hessian") # setup a geometry at = bulk(:Si, cubic=true) * 2 rattle!(at, 0.02) set_pbc!(at, false) sw = StillingerWeber() set_calculator!(at, sw) h3("full finite-difference test ...") h3(" ... SW forces") println(@test fdtest( x -> energy(at, x), x -> JuLIP.gradient(at, x), dofs(at) )) h3(" ... SW hessian") println(@test fdtest_hessian( x->JuLIP.gradient(at, x), x->hessian(at, x), dofs(at) ))
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3867
using JuLIP using JuLIP.Potentials using JuLIP.Testing using LinearAlgebra pairpotentials = [ LennardJones(1.0,1.0); Morse(4.0,1.0,1.0); SWCutoff(1.0, 3.0) * LennardJones(1.0,1.0); SplineCutoff(2.0, 3.0) * LennardJones(1.0,1.0); LennardJones(1.0, 1.0) * C2Shift(2.0); ZBLPotential(5, 8) ] if eam_W4 != nothing push!(pairpotentials, eam_W4.ϕ) end h2("Testing pair potential implementations") r = range(0.8, stop=4.0, length=100) |> collect push!(r, 2.0-1e-12) for pp in pairpotentials h3(pp) println(@test fdtest(pp, r, verbose=verbose)) end h2("testing shift-cutoffs: ") V = @analytic r -> exp(r) Vhs = V * HS(1.0) r1 = range(0.0, stop=1.0-1e-14, length=20) r2 = range(1.0+1e-14, stop=3.0, length=20) h3("HS") println(@test Vhs.(r1) == exp.(r1)) println(@test norm(Vhs.(r2)) == 0.0) h3("V0") V0 = V * C0Shift(1.0) println(@test V0.(r1) ≈ exp.(r1) .- exp(1.0)) println(@test norm(V0.(r2)) == 0.0) h3("V1") V1 = V * C1Shift(1.0) println(@test V1.(r1) ≈ exp.(r1) .- exp(1.0) .- exp(1.0) .* (r1.-1.0)) println(@test norm(V1.(r2)) == 0.0) h3("V2") V2 = V * C2Shift(1.0) println(@test V2.(r1) ≈ exp.(r1) .- exp(1.0) .- exp(1.0) .* (r1.-1.0) .- 0.5 .* exp(1.0) .* (r1.-1.0).^2) println(@test norm(V2.(r2)) == 0.0) # ============================================================= calculators = Any[] # Basic lennard-jones calculator test push!(calculators, (lennardjones(r0=rnn(:Al)), bulk(:Al, cubic=true, pbc=(true,false,false)) * (3,3,2) ) ) # ZBL Calculator push!(calculators, ( ZBLPotential(4, 7) * SplineCutoff(6.0, 8.0), rattle!(bulk(:W, cubic=true, pbc=false) * (3,3,2), 0.1) ) ) # Stillinger-Weber model at3 = set_pbc!( bulk(:Si, cubic=true) * 2, (false, true, false) ) sw = StillingerWeber() set_calculator!(at3, sw) push!(calculators, (sw, at3)) # EAM Potential at9 = set_pbc!( bulk(:Fe, cubic = true), false ) * 2 eam = eam_Fe push!(calculators, (eam, at9)) if eam_W4 != nothing # Another EAM Potential at10 = set_pbc!( bulk(:W, cubic = true), false ) * 2 push!(calculators, (eam_W4, at10)) end if eam_W != nothing # finnis-sinclair at11 = set_pbc!( bulk(:W, cubic = true), false ) * 2 push!(calculators, (eam_W, at11)) end # JuLIP's EMT implementation at = set_pbc!( bulk(:Cu, cubic=true) * (2,2,2), (true,false,false) ) rattle!(at, 0.02) emt = EMT(at) push!(calculators, (EMT(at), at)) # and a multi-species EMT at1 = bulk(:Cu, cubic=true) at1.Z[[2,4]] .= 13 # Al at = set_pbc!(at1 * 2, false) rattle!(at, 0.02) emt = EMT(at) push!(calculators, (emt, at)) # ========== Run the finite-difference tests for all calculators ============ h2("Testing calculator implementations") for (calc, at_) in calculators println("--------------------------------") h3(typeof(calc)) @show length(at_) println(@test fdtest(calc, at_, verbose=true)) println("--------------------------------") end # ========== Test correct implementation of site_energy ============ # and of partial_energy h2("Testing `site_energy` and `partial_energy` ...") at = bulk(:Si, pbc=true, cubic=true) * 3 sw = StillingerWeber() atsm = bulk(:Si, pbc = true) println("checking site energy identity . . .") println(@test abs( JuLIP.Potentials.site_energy(sw, at, 1) - energy(sw, atsm) / 2 ) < 1e-10) rattle!(at, 0.01) println(@test abs( energy(sw, at) - sum(site_energies(sw, at)) ) < 1e-10) println("fd test for site_energy") f(x) = JuLIP.Potentials.site_energy(sw, set_dofs!(at, x), 1) df(x) = (JuLIP.Potentials.site_energy_d(sw, set_dofs!(at, x), 1) |> mat)[:] println(@test fdtest(f, df, dofs(at); verbose=true)) println("fd test for partial energy") Idom = [2,4,10] f(x) = JuLIP.Potentials.energy(sw, set_dofs!(at, x); domain = Idom) df(x) = - (JuLIP.Potentials.forces(sw, set_dofs!(at, x); domain = Idom) |> mat)[:] println(@test fdtest(f, df, dofs(at); verbose=true))
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3729
using JuLIP using JuLIP.Testing using JuLIP: sigvol_d using Test using LinearAlgebra h2("Testing `minimise!` with equilibration with LJ calculator to lattice") calc = lennardjones(r0=rnn(:Al)) at = bulk(:Al, cubic=true) * 10 X0 = positions(at) |> mat at = rattle!(at, 0.02) set_calculator!(at, calc) x = dofs(at) println(@test (energy(at) == energy(at, x) == energy(calc, at) == energy(calc, at, x) ) ) minimise!(at, precond=:id, verbose=2) X1 = positions(at) |> mat X0 .-= X0[:, 1] X1 .-= X1[:, 1] F = X1 / X0 println("check that the optimiser really converged to a lattice") @show norm(F'*F - I, Inf) @show norm(F*X0 - X1, Inf) @test norm(F*X0 - X1, Inf) < 1e-4 h2("same test but large and with Exp preconditioner") at = bulk(:Al, cubic=true) * (20,20,2) at = rattle!(at, 0.02) set_calculator!(at, calc) minimise!(at, precond = :exp, method = :lbfgs, robust_energy_difference = true, verbose=2 ) h2("Variable Cell Test") calc = lennardjones(r0=rnn(:Al)) at = set_pbc!(bulk(:Al, cubic=true), true) set_calculator!(at, calc) variablecell!(at) x = dofs(at) println(@test (energy(at) == energy(at, x) == energy(calc, at) == energy(calc, at, x) ) ) minimise!(at, verbose = 2) h2("FF preconditioner for StillingerWeber") at = bulk(:Si, cubic=true) * (10,10,2) at = set_pbc!(at, true) at = rattle!(at, 0.02) set_calculator!(at, StillingerWeber()) P = FF(at, StillingerWeber()) minimise!(at, precond = P, method = :lbfgs, robust_energy_difference = true, verbose=2) h2("FF preconditioner for EAM") at = bulk(:W, cubic=true) * (10,10,2) at = set_pbc!(at, true) at = rattle!(at, 0.02) X0 = positions(at) ## set_positions!(at, X0) set_calculator!(at, eam_W) P = FF(at, eam_W) minimise!(at, precond = P, method = :lbfgs, robust_energy_difference = true, verbose=2) ## steepest descent set_positions!(at, X0) set_calculator!(at, eam_W) P = FF(at, eam_W) minimise!(at, precond = P, method = :sd, robust_energy_difference = true, verbose=2) ## h2("Optimise again with some different stabilisation options") set_positions!(at, X0) set_calculator!(at, eam_W) P = FF(at, eam_W, stab=0.1, innerstab=0.2) minimise!(at, precond = P, method = :lbfgs, robust_energy_difference = true, verbose=2) ## h2("for comparison now with Exp") set_positions!(at, X0) minimise!(at, precond = :exp, method = :lbfgs, robust_energy_difference = true, verbose=2) h2("Test optimisation with VariableCell") # start with a clean `at` at = bulk(:Al) * 2 # cubic=true, apply_defm!(at, I + 0.02 * rand(3,3)) calc = lennardjones(r0=rnn(:Al)) set_calculator!(at, calc) variablecell!(at) println(@test JuLIP.Testing.fdtest(calc, at, verbose=true, rattle=0.1)) h2("For the initial state, stress/virial is far from 0:") @show norm(virial(at), Inf) JuLIP.Solve.minimise!(at, verbose=2) println("After optimisation, stress/virial should be 0:") @show norm(virial(at), Inf) @test norm(virial(at), Inf) < 1e-4 h2("Check sigvol derivative") println(@test fdtest(c -> JuLIP.sigvol(reshape(c, (3,3))), c -> JuLIP.sigvol_d(reshape(c, (3,3)))[:], rand(3,3))) # TODO: revive this after introducing external potentials # h2("And now with pressure . . .") # set_constraint!(at, VariableCell(at, pressure=10.0123)) # JuLIP.Testing.fdtest(calc, at, verbose=true, rattle=0.02) # at = bulk(:Al) * 2 # set_calculator!(at, calc) # set_constraint!(at, VariableCell(at, pressure=0.01)) # JuLIP.Solve.minimise!(at, verbose = 2) # @show norm(virial(at), Inf) # @show norm(JuLIP.gradient(at), Inf) # println(@test norm(JuLIP.gradient(at), Inf) < 1e-4) # @info "note it is correct that virial is O(1) since we applied pressure"
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1431
using JuLIP, Test using JuLIP.Potentials, JuLIP.Testing using LinearAlgebra calc = lennardjones(r0=rnn(:Al)) at = set_pbc!(bulk(:Al) * 2, true) set_calculator!(at, calc) println(@test maxnorm(forces(at)) < 1e-12) h3("Check atoms deform correctly with the cell") # perturb the cell shape apply_defm!(at, I + 0.01*rand(JMatF)) # check that under this deformation the atom positions are still # in a homogeneous lattice (i.e. they are deformed correctly with the cell) println(@test maxnorm(forces(at)) < 1e-12) # now perturb the atom positions as well rattle!(at, 0.1) # set the constraint >>> this means the deformed cell defines F0 and X0 variablecell!(at) h3("check that energy, forces, virial, stress, dofs, gradient evaluate ... ") energy(at) forces(at) gradient(at) virial(at) println(@test stress(at) == - virial(at) / volume(at)) h3("Check that setting and getting dofs is consistent ... ") x = dofs(at) @assert length(x) == 3 * length(at) + 9 y = x + 0.01 * rand(Float64, size(x)) set_dofs!(at, y) z = dofs(at) println(@test norm(y - z, Inf) < 1e-14) # now perform the finite-difference test set_dofs!(at, x) println(@test JuLIP.Testing.fdtest(calc, at, verbose=true, rattle=0.1)) h3("Check virial for SW potential") si = bulk(:Si, cubic=true) * 2 rattle!(si, 0.1) apply_defm!(at, I + 0.01*rand(JMatF)) sw = StillingerWeber() variablecell!(si) println(@test JuLIP.Testing.fdtest(calc, si, verbose=true, rattle=0.1))
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
docs
4126
# JuLIP: Julia Library for Interatomic Potentials | **Build Status** | **Social** | |:-:|:-:| | [![Build Status][build-img]][build-url] | [![][gitter-img]][gitter-url] | <!-- [![Build Status](https://travis-ci.org/libAtoms/JuLIP.jl.svg?branch=master)](https://travis-ci.org/libAtoms/JuLIP.jl) --> A package for rapid implementation and testing of new interatomic potentials and molecular simulation algorithms. Requires v0.5 or v0.6 of Julia. Current development is for Julia v0.6.x. Documentation is essentially non-existent but the inline documentations is reasonably complete. The design of `JuLIP` is heavily inspired by [ASE](https://gitlab.com/ase/ase). The main motivation for `JuLIP` is that, while `ASE` is pure Python and hence relies on external software to efficiently evaluate interatomic potentials, Julia allows the implementation of fast potentials in pure Julia, often in just a few lines of code. `ASE` bindings compatible with `JuLIP` are provided by [ASE.jl](https://github.com/cortner/ASE.jl.git). Contributions are welcome, especially for producing examples and tutorials. Any questions or suggestions, please ask on [![][gitter-img]][gitter-url]. # Installation Install JuLIP, from the Julia REPL: ```julia Pkg.add("JuLIP") ``` and run ``` Pkg.test("JuLIP") ``` to make sure the installation succeeded. If a test fails, please open an issue. Most likely you will also want to ASE bindings; please see [ASE.jl](https://github.com/cortner/ASE.jl.git) for more detail. <!-- ## `imolecule` and dependencies This part can be skipped if no visualisation is required; `using JuLIP` will then simply print a warning. `JuLIP.Visualise` uses the Python module `imolecule` to visualise atomistic configurations in an IPython notebook. Its main dependency is [OpenBabel](http://openbabel.org/wiki/Main_Page). Most recently, this could be installed succesfully (from the bash) using ```bash conda install -c openbabel openbabel pip install imolecule ``` --> # Examples The following are some minimal examples to just get something to run. More intersting examples will hopefully follow soon. ## Vacancy in a bulk Si cell ```julia using JuLIP at = bulk(:Si, cubic=true) * 4 deleteat!(at, 1) set_calculator!(at, StillingerWeber()) minimise!(at) # Visualisation is current not working # JuLIP.Visualise.draw(at) # (this will only work in a ipynb) ``` see the `BulkSilicon.ipynb` notebook under `examples` for an extended example. ## Construction of a Buckingham potential ```julia using JuLIP r0 = rnn(:Al) pot = let A = 4.0, r0 = r0 @analytic r -> 6.0 * exp(- A * (r/r0 - 1.0)) - A * (r0/r)^6 end pot = pot * SplineCutoff(2.1 * r0, 3.5 * r0) # `pot` can now be used as a calculator to do something interesting ... ``` ## Site Potential with AD ```julia using JuLIP # and EAM-like site potential f(R) = sqrt( 1.0 + sum( exp(-norm(r)) for r in R ) ) # wrap it into a site potential type => can be used as AbstractCalculator V = ADPotential(f) # evaluate V and ∇V R0 = [ @SVector rand(3) for n = 1:nneigs ] @show V(R0) @show (@D V(R0)) ``` <!-- ## An Example with TightBinding **THIS IS PROBABLY BROKEN ON JULIA v0.6** Similar to vacancy example but with a Tight-Binding Model. First install `TightBinding.jl`: ```julia Pkg.clone("https://github.com/ettersi/FermiContour.jl.git") Pkg.clone("https://github.com/cortner/TightBinding.jl.git") ``` Then run ```julia using JuLIP, TightBinding TB = TightBinding # sp model for Si (NRL-Tight Binding) tbm = TB.NRLTB.NRLTBModel(elem=TB.NRLTB.Si_sp, nkpoints = (0,0,0)) # bulk crystal at = bulk("Si", cubic=true) * 4 Eref = energy(tbm, at) # create vacancy deleteat!(at, 1) Edef = energy(tbm, at) # formation energy: (not really but sort of) println("Vacancy formation energy = ", Edef - Eref * length(at)/(length(at)+1)) println("(probably this should not be negative! Increase simulation accuracy!)") ``` --> [build-img]: https://travis-ci.org/libAtoms/JuLIP.jl.svg?branch=master [build-url]: https://travis-ci.org/libAtoms/JuLIP.jl [gitter-url]: https://gitter.im/libAtoms/JuLIP.jl [gitter-img]: https://badges.gitter.im/libAtoms/JuLIP.jl.svg
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
docs
1282
# Implementation Notes TODO: these are very out of date and need an update ## Prototypes For commonly used functions such as `set_positions!` etc, a prototype is defined which just throws an error. The point of this prototype is that (a) it can be imported from different packages / sub-packages, and (b) it provides documentation. This is done using `@protofun`. ## Storage of positions, forces, etc Atomic positions are stored either as a `Vector{Point{DIM,T}}` or as a `Matrix{T}` of dimension `DIM x Npoints`, where normally `DIM == 3` and `T == Float64`. The conversion between these can be done for free using `reinterpret`. Note that `ASE` internally stores positions as a `Npoints x DIM` matrix, but this memory layout is not efficient for codes that can exploit fast loops. The vector of forces (or negative forces aka gradient) is stored either as a `Vector{Vec{DIM,T}}` or as a `Matrix{T}` or dimensions `DIM x Npoints`. The types `Point, Vec` are from the `FixedSizeArrays` package and should in principle allow fast linear algebra operations on small arrays without having to write explicit loops. ## Neighbour lists Because the `matscipy` neighbour list is so fast we don't bother ever storing and updating the neighbourlist. Instead a calculator can just
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
docs
201
# JuLIP.jl Documentation ## Introduction ## Installation ## Examples ## Further notes * [Implementation Notes](ImplementationNotes.md) * [Temporary Notes](tempnotes.md) that have no other place
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
docs
3416
## Calculator Implementations The most important user-oriented functions are ```{julia} energy(calc, at) forces(calc, at) virial(calc, at) ``` A new calculators / model can either directly implement these, or alternatively one of the functions that are called in their prototype implementation. Concretely, if `calc` is an interatomic potential with a site energy, then these outer calculators should *not* be implemented, but rather the evaluation of the site energy and its derivatives. But e.g. for a Tight-binding model or an interface to another library, one could or possibly must directly implement `energy, force, virial`. The standard implementation of `energy, forces, virial` is designed to admit minimal or even zero allocations during these evaluations. This is achieved as follows: first `energy, forces, virial` call in-place versions with the calling convention ```{julia} energy!( tmp, calc, at) forces!(F, tmpd, calc, at) virial!( tmp, calc, at) ``` where ```{julia} tmp = alloc_temp( calc, at) tmpd = alloc_temp_d(calc, at) ``` A new calculator could again implement `energy!, forces!, virial!` directly. ### Site Potentials However, for a site potentials one should require that ``` calc <: SitePotential ``` In that case an implementation of `energy!, forces!, virial!` already exists, which is based on ```{julia} evaluate!( tmp, calc, R) evaluate_d!(dV, tmpd, calc, R) ``` where `R::AbstractVector{<:JVec}`. Now, the temporary arrays are obtained from ```{julia} tmp = alloc_temp(calc, N) tmpd = alloc_temp_d(calc, N) ``` and `N` is an integer giving an upper bound on the number of neighbours in the system. The allocating versions `energy, ...` will first generate a neighbourlist, then calculate `N` (cf. `NeighbourLists.maxneigs`) then allocate `tmp, tmpd` and then use that to call the non-allocating versions `energy!, ...`. It is *required* that `tmp` has a field `temp.R` and that `tmpd` has fields `tmpd.dV, tmp.R` which will be used to store the neighbourhood information and the site energy derivatives. ### Pair Potentials For pair potentials, i.e. `calc <: PairPotential <: SitePotential` the functions ```{julia} evaluate!( tmp, calc, R::AbstractVector{<:JVec}) evaluate_d!(dV, tmpd, calc, R::AbstractVector{<:JVec}) ``` are implemented through calls to only ```{julia} evaluate!( tmp, calc, r::Number) evaluate_d!(tmpd, calc, r::Number) ``` which in turn are implemented as ``` evaluate(calc, r) evaluate_d(calc, r) ``` A new implementation of a `PairPotential` may overload these definitions at any of these three levels of implementation. ### Hessians and Preconditioners The hessian implementation is less concerned about memory management. The thought is that once we are using hessians all hopes to keep memory under control is out the window anyhow. Therefore, there is only one hessian implementation - for `SitePotential`s at least - based on ```{julia} hessian_pos(calc, at) ``` which allocates temporary arrays for `calc` via ```{julia} tmpdd = alloc_temp_dd(calc, N) ``` where `N` is again the maximum number of neighbours. It also allocates a temporary storage `hEs` for the hessian blocks. (This does *not* need to be in `tmpdd` now!) Then the hessian assembly will call ```{julia} evaluate_dd(hEs, tmp, calc, R::AbstractVector{<:JVec}) ``` For preconditioners the framework is the same but `evaluate_dd` is replaced by `precon`.
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
docs
2113
## Installing numba and llvmlite correctly This will probably be needed to get `chemview` to run, though at the moment it seems `ipywidgets` is the real culprit and there is little hope for a quick fix. ``` git clone https://github.com/numba/llvmlite cd llvmlite LLVM_CONFIG=/Users/ortner/gits/julia/usr/tools/llvm-config python setup.py install LLVM_CONFIG=/Users/ortner/gits/julia/usr/tools/llvm-config pip install numba ``` then start `ipython` and check that `import numba` works, then start Julia and check that `using PyCall; @pyimport numba` works as well. ## (Old) Alternative Installation Instructions for `imolecule` If Option 1 fails, then try the following instructions, which were only tested on OS X. To install `imolecule` simply type ```bash pip install imolecule ``` in a terminal. Installing OpenBabel is relatively straightforward; the key issue is to get the Python bindings set up correctly, especially since there are normally multiple Python versions on an OS X system (Apple, homebrew and anaconda). The following instructions worked for 2.3.90, but make sure to change the SWIG version number directories as needed: ```bash conda install cmake lxml swig git clone https://github.com/openbabel/openbabel.git cd openbabel cmake ../openbabel-2.3.2 -DPYTHON_BINDINGS=ON -DRUN_SWIG=ON -DCMAKE_INSTALL_PREFIX=~/anaconda -DPYTHON_INCLUDE_DIR=~/anaconda/include/python2.7 -DCMAKE_LIBRARY_PATH=~/anaconda/lib -DSWIG_DIR=~/anaconda/share/swig/3.0.2/ -DSWIG_EXECUTABLE=~/anaconda/bin/swig -DPYTHON_LIBRARY=~/anaconda/lib/libpython2.7.so make make install ``` This should have installed all libraries and python packages in `~/anaconda` and the data files in `/usr/local/share/openbabel/2.3.90/`. To tell `babel` where to find them, the following lines must be added to `~/.bash_profile`: ```bash export BABEL_DATADIR="/usr/local/share/openbabel/2.3.90/" export BABEL_LIBDIR="/Users/ortner/anaconda/lib/openbabel/2.3.90/" ``` <!-- (Update: the configuration can be written directly to a JSON file, which ought to circumvent the need for OpenBabel. Need to test this on a clean system.) -->
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
534
using Documenter, BitInformation makedocs( format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true"), sitename="BitInformation.jl", authors="M Klöwer", modules=[BitInformation], pages=["Home"=>"index.md", "Bitwise information"=>"bitinformation.md", "Transformations"=>"transformations.md", "Rounding"=>"rounding.md", "Function index"=>"functions.md"] ) deploydocs( repo = "github.com/milankl/BitInformation.jl.git", devbranch = "main" )
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
1130
module BitInformation # ROUNDING export shave, set_one, groom, halfshave, shave!, set_one!, groom!, halfshave!, round! # TRANSFORMATIONS export bittranspose, bitbacktranspose, xor_delta, unxor_delta, xor_delta!, unxor_delta!, signed_exponent, biased_exponent, bitarray # INFORMATION export bitinformation, mutual_information, redundancy, bitpattern_entropy, bitcount, bitcount_entropy, bitpaircount, bit_condprobability, bit_condentropy import StatsBase: entropy import Distributions: quantile, Normal # Base method extensions include("uint_types.jl") # print and conversions include("bitstring.jl") include("bitarray.jl") # transformations include("bittranspose.jl") include("xor_delta.jl") include("signed_exponent.jl") # rounding include("round_nearest.jl") include("shave_set_groom.jl") # information include("permutations.jl") include("bitcount.jl") include("mutual_information.jl") include("bitpattern_entropy.jl") include("remove_insignificant.jl") end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
1165
function bitarray(A::AbstractArray{T}) where T nbits = 8*sizeof(T) # number of bits in T UIntN = Base.uinttype(T) # UInt type corresponding to T # allocate BitArray with additional dimension for the bits B = BitArray(undef,nbits,size(A)...) indices = CartesianIndices(A) for i in eachindex(A) # every element in A a = reinterpret(UIntN,A[i]) # as UInt mask = UIntN(1) # mask to isolate jth bit for j in 0:nbits-1 # loop from less to more significant bits bit = (a & mask) >> j # isolate bit (=true/false) B[nbits-j,indices[i]] = bit # set BitArray entry to isolated bit in A mask <<= 1 # shift mask towards more significant bit end end return B end function bitmap(A::AbstractMatrix;dim::Int=1) @assert dim in (1,2) "dim has to be 1 or 2, $dim provided." #TODO bitordering for dim=2 is currently off n,m = size(A) B = bitarray(A) nbits,_ = size(B) Br = reshape(B,nbits*n,:) Br = dim == 1 ? Br : Br' return Br end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
7634
""" n = bitcount(A::AbstractArray{T},i::Int) where {T<:Unsigned} Counts the occurences of the 1-bit in bit position i across all elements of A.""" function bitcount(A::AbstractArray{T},i::Int) where {T<:Unsigned} nbits = sizeof(T)*8 # number of bits in T @boundscheck i <= nbits || throw(error("Can't count bit $b for $N-bit type $T.")) c = 0 # counter shift = nbits-i # shift bit i in least significant position mask = one(T) << shift # mask to isolate the bit in position i @inbounds for a in A c += (a & mask) >> shift # to have either 0x0 or 0x1 to increase counter end return c end """ C = bitcount(A::AbstractArray{T}) where {T<:Union{Integer,AbstractFloat}} Counts the occurences of the 1-bit in every bit position across all elements of `A`. Returns a counter array `C::Vector{Int}` such that the first entries represents the first bit in elements of type `T`, e.g. the sign bit for floats.""" function bitcount(A::AbstractArray{T}) where {T<:Union{Integer,AbstractFloat}} nbits = 8*sizeof(T) # determine the size [bit] of elements in A C = zeros(Int,nbits) Auint = reinterpret(Base.uinttype(T),A) # loop over bit positions and for each count through all elements in A # outer loop: bit position, inner loop: all elements in a # note this is faster than swapping inner & outer loop @inbounds for i in 1:nbits C[i] = bitcount(Auint,i) end return C end """ H = bitcount_entropy(A::AbstractArray{T},base::Real=2) where {T<:Union{Integer,AbstractFloat}} Returns a vector `H` of entropies for the occurence of 0,1 in every bit position in `T` across elements of `A`. Makes use of the `bitcount` functions and calculates the entropy from the probability of the 0 and 1 bit. The base `base` is by default 2, such that the unit of entropy is bit.""" function bitcount_entropy( A::AbstractArray{T}, # input array base::Real=2 # entropy with base ) where {T<:Union{Integer,AbstractFloat}} nbits = 8*sizeof(T) # number of bits in T nelements = length(A) C = bitcount(A) # count 1 bits for each bit position H = zeros(nbits) # allocate entropy for each bit position @inbounds for i in 1:nbits # loop over bit positions p = C[i]/nelements # probability of bit 1 H[i] = entropy([p,1-p],base) # entropy based on p end return H end """ bitpair_count!(C::Array{Int,3},a::T,b::T) where {T<:Integer} Update counter array C of size nbits x 2 x 2 for every 00|01|10|11-bitpairing in a,b. `nbits` is the number of bits in type `T`.""" function bitpair_count!(C::Array{Int,3},a::T,b::T) where {T<:Integer} nbits = 8*sizeof(T) mask = one(T) # start with least significant bit @inbounds for i in 0:nbits-1 # loop from least to most significant bit j = 1+((a & mask) >>> i) # isolate that bit in a,b k = 1+((b & mask) >>> i) # and move to 0x0 or 0x1s C[nbits-i,j,k] += 1 # to be used as index j,k to increase counter C mask <<= 1 # shift mask to get the next significant bit end end """ C = bitpair_count(A::AbstractArray{T},B::AbstractArray{T}) where {T<:Union{Integer,AbstractFloat}} Returns counter array C of size nbits x 2 x 2 for every 00|01|10|11-bitpairing in elements of A,B. `nbits` is the number of bits in type `T`.""" function bitpair_count( A::AbstractArray{T}, B::AbstractArray{T} ) where {T<:Union{Integer,AbstractFloat}} @assert size(A) == size(B) "Size of A=$(size(A)) does not match size of B=$(size(B))" nbits = 8*sizeof(T) # number of bits in eltype(A),eltype(B) C = zeros(Int,nbits,2,2) # array of bitpair counters # reinterpret arrays A,B as UInt (no mem allocation required) Auint = reinterpret(Base.uinttype(T),A) Buint = reinterpret(Base.uinttype(T),B) # loop over all elements in A,B pairwise, inner loop (within bitpair_count!): bit positions # note this is faster than swapping inner & outer loop for (a,b) in zip(Auint,Buint) bitpair_count!(C,a,b) # count the bits and update counter array C end return C end """ C = bitpair_count(A::AbstractArray{T},mask::AbstractArray{Bool}) where {T<:Union{Integer,AbstractFloat}} Returns counter array C of size nbits x 2 x 2 for every 00|01|10|11-bitpairing in elements of A,B where neither are masked as determined from `mask`. `nbits` is the number of bits in type `T`.""" function bitpair_count( A::AbstractArray{T}, mask::AbstractArray{Bool} ) where {T<:Union{Integer,AbstractFloat}} @assert size(A) == size(mask) "Size of A=$(size(A)) does not match size of its mask=$(size(mask))" nbits = 8*sizeof(T) # number of bits in eltype(A) C = zeros(Int, nbits, 2, 2) # array of bitpair counters # reinterpret arrays A,B as UInt (no mem allocation required) Auint = reinterpret(Base.uinttype(T), A) # always mask the last element in every column to avoid counting bitpairs across boundaries n = size(A, 1) @inbounds for jk in CartesianIndices(size(A)[2:end]) # 2nd, 3rd, ... dimension for i in 1:n-1 # first dimension but skip the last element if ~(mask[i, jk] | mask[i+1, jk]) # if neither entry is masked bitpair_count!(C, Auint[i, jk], Auint[i+1, jk]) # count all bits and increase counter C end end end return C end # """Update counter array C of size nbits x 2 x 2 for every 00|01|10|11-bitpairing in a,b.""" # function bitpair_count!(C::Array{Int,3}, # counter array nbits x 2 x 2 # A::AbstractArray{T}, # input array A # B::AbstractArray{T}, # input array B # i::Int # bit position # ) where {T<:Integer} # nbits = 8*sizeof(T) # number of bits in T # shift = nbits-i # shift bit i in least significant position # mask = one(T) << shift # mask to isolate the bit in position i # @inbounds for (a,b) in zip(A,B) # loop over all elements in A,B pairwise # j = 1+((a & mask) >>> shift) # isolate bit i in a,b # k = 1+((b & mask) >>> shift) # and move to 0x0 or 0x1 # C[i,j,k] += 1 # to be used as index j,k to increase counter C # end # end # """Returns counter array C of size nbits x 2 x 2 for every 00|01|10|11-bitpairing in elements of A,B.""" # function bitpair_count( A::AbstractArray{T}, # B::AbstractArray{T} # ) where {T<:Union{Integer,AbstractFloat}} # @assert size(A) == size(B) "Size of A=$(size(A)) does not match size of B=$(size(B))" # nbits = 8*sizeof(T) # number of bits in eltype(A),eltype(B) # C = zeros(Int,nbits,2,2) # array of bitpair counters # # reinterpret arrays A,B as UInt (no mem allocation required) # Auint = reinterpret(Base.uinttype(T),A) # Buint = reinterpret(Base.uinttype(T),B) # for i in 1:nbits # bitpair_count!(C,Auint,Buint,i) # count the bits and update counter array C # end # return C # end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
2091
""" H = bitpattern_entropy(A::AbstractArray,base::Real=2) Calculates the bit pattern entropy `H` for an array `A` by reinterpreting the elements as UInts and sorting them to avoid creating a histogram. The bit pattern entropy is the entropy from occurences of every possible bitpattern in `T` in elements of `A`. The unit of entropy is given by base `base`, such that for the default `base=2` it is bits.""" function bitpattern_entropy(A::AbstractArray{T},base::Real=2) where T return bitpattern_entropy!(copy(A),base) # copy of array to avoid in-place changes to A end """ H = bitpattern_entropy!(A::AbstractArray,base::Real=2) Calculates the bit pattern entropy `H` for an array `A` by reinterpreting the elements as UInts and sorting them to avoid creating a histogram. The bit pattern entropy is the entropy from occurences of every possible bitpattern in `T` in elements of `A`. The unit of entropy is given by base `base`, such that for the default `base=2` it is bits. In-place version of `bitpattern_entropy` that will sort `A`. Use `bitpattern_entropy` if changes to `A` are to be avoided.""" function bitpattern_entropy!(A::AbstractArray{T},base::Real=2) where T # reinterpret to UInt then sort in-place for minimal memory allocation sort!(reinterpret(Base.uinttype(T),vec(A))) n = length(A) E = 0.0 # entropy m = 1 # counter, start with 1 as only bitwise-same elements are counted for i in 1:n-1 @inbounds if A[i] == A[i+1] # check whether next entry belongs to the same bin in histogram m += 1 # increase counter else p = m/n # probability/frequency of ith bit pattern E -= p*log(p) # entropy contribution m = 1 # start with 1, A[i+1] is already 1st element of next bin end end p = m/n # complete loop for last bin E -= p*log(p) # entropy contribution of last bin E /= log(base) # convert to given base, 2 i.e. [bit] by default return E end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
457
""" s = bitstring(x::T,mode::Symbol) where {T<:AbstractFloat} Bitstring function for floats with a split-mode for `mode=:split` that splits the bitstring into sign, exponent and significant bits.""" function Base.bitstring(x::T,mode::Symbol) where {T<:AbstractFloat} if mode == :split bstr = bitstring(x) n = Base.exponent_bits(T) return "$(bstr[1]) $(bstr[2:n+1]) $(bstr[n+2:end])" else bitstring(x) end end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
4654
const DEFAULT_BLOCKSIZE=2^14 """Transpose the bits (aka bit shuffle) of an array to place sign bits, etc. next to each other in memory. Back transpose via bitbacktranspose(). Inplace version that requires a preallocated output array At, which must contain 0 bits everywhere.""" function bittranspose!( ::Type{UIntT}, # UInt corresponding to T At::AbstractArray{T}, # transposed array to be filled A::AbstractArray{T}; # original array blocksize::Int=DEFAULT_BLOCKSIZE) where {UIntT<:Unsigned,T} @boundscheck size(A) == size(At) || throw("Input arrays must be of same size.") @boundscheck sizeof(UIntT) == sizeof(T) || throw("Array elements do not match in bitsize.") nbits = sizeof(T)*8 N = length(A) # At .= zero(T) # make sure output array is zero nblocks = (N-1) ÷ blocksize + 1 # number of blocks @inbounds for nb in 1:nblocks lastindex = min(nb*blocksize,N) Ablock = view(A,(nb-1)*blocksize+1:lastindex) Atblock = view(At,(nb-1)*blocksize+1:lastindex) i = 0 # counter for transposed bits for bi in 1:nbits # mask to extract bit bi in each element of A mask = one(UIntT) << (nbits-bi) # walk through elements in A first, then change bit-position # this comes with disadvantage that A has to be read nbits-times # but allows for more natural indexing, as all the sign bits are # read first, and so on. for (ia,a) in enumerate(Ablock) ui = reinterpret(UIntT,a) # mask non-bi bits and # (1) shift by nbits-bi >> to the right, either 0x0 or 0x1 # (2) shift by (nbits-1) - (i % nbits) << to the left # combined this is: >> ((i % nbits)-bi+1) bit = (ui & mask) >> ((i % nbits)-bi+1) # the first nbits elements go into same b in B, then next b idx = (i ÷ nbits) + 1 atui = reinterpret(UIntT,Atblock[idx]) Atblock[idx] = reinterpret(T,atui | bit) i += 1 end end end return At end """Transpose the bits (aka bit shuffle) of an array to place sign bits, etc. next to each other in memory. Back transpose via bitbacktranspose().""" function bittranspose(A::AbstractArray{T};kwargs...) where T UIntT = Base.uinttype(T) # get corresponding UInt to T At = fill(reinterpret(T,zero(UIntT)),size(A)) # preallocate with zeros (essential) bittranspose!(UIntT,At,A;kwargs...) return At end """Backtranspose of bittranspose().""" function bitbacktranspose!( ::Type{UIntT}, # UInt equiv to T A::AbstractArray{T}, # backtransposed output At::AbstractArray{T}; # transposed input blocksize::Int=DEFAULT_BLOCKSIZE) where {UIntT<:Unsigned,T} @boundscheck size(A) == size(At) || throw("Input arrays must be of same size.") @boundscheck sizeof(UIntT) == sizeof(T) || throw("Array elements do not match in bitsize.") nbits = sizeof(T)*8 N = length(At) # A .= zero(T) # make sure output array is zero nblocks = (N-1) ÷ blocksize + 1 # number of blocks @inbounds for nb in 1:nblocks lastindex = min(nb*blocksize,N) Ablock = view(A,(nb-1)*blocksize+1:lastindex) Atblock = view(At,(nb-1)*blocksize+1:lastindex) nelements = length(Atblock) # = blocksize except for the last # block where usually smaller i = 0 # counter for transposed bits for (ia,a) in enumerate(Atblock) ui = reinterpret(UIntT,a) for bi in 1:nbits # mask to extract bit bi in each element of A mask = one(UIntT) << (nbits-bi) # mask non-bi bits and # (1) shift by nbits-bi >> to the right, either 0x0 or 0x1 # (2) shift by (nbits-1) - (i ÷ nblockfloat) << to the left # combined this is: >> ((i ÷ nbits)-bi+1) bit = (ui & mask) >> ((i ÷ nelements)-bi+1) # the first nbits elements go into same a in A, then next a idx = (i % nelements) + 1 aui = reinterpret(UIntT,Ablock[idx]) Ablock[idx] = reinterpret(T,aui | bit) i += 1 end end end return A end """Backtranspose the bits of array A that were previously transposed with bittranspose().""" function bitbacktranspose(At::AbstractArray{T};kwargs...) where T UIntT = Base.uinttype(T) # get corresponding UInt to T A = fill(reinterpret(T,zero(UIntT)),size(At)) # preallocate with zeros (essential) bitbacktranspose!(UIntT,A,At;kwargs...) return A end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
9306
"""Mutual information from the joint probability mass function p of two variables X,Y. p is an nx x ny array which elements represent the probabilities of observing x~X and y~Y.""" function mutual_information(p::AbstractArray{T,2},base::Real=2) where T @assert sum(p) ≈ one(T) "Entries in p have to sum to 1" @assert all(p .>= zero(T)) "Entries in p have to be >= 1" nx,ny = size(p) # events X are 1st dim, Y is 2nd py = sum(p,dims=1) # marginal probabilities of y px = sum(p,dims=2) # marginal probabilities of x M = zero(T) # mutual information M for j in 1:ny # loop over all entries in p for i in 1:nx # add entropy only for non-zero entries in p if p[i,j] > zero(T) M += p[i,j]*log(p[i,j]/px[i]/py[j]) end end end M /= log(base) # convert to given base end """Mutual bitwise information of the elements in input arrays A,B. A and B have to be of same size and eltype.""" function mutual_information(A::AbstractArray{T}, B::AbstractArray{T}; set_zero_insignificant::Bool=true, confidence::Real=0.99 ) where {T<:Union{Integer,AbstractFloat}} nelements = length(A) # number of elements in each A and B nbits = 8*sizeof(T) # number of bits in eltype(A),eltype(B) C = bitpair_count(A,B) # nbits x 2 x 2 array of bitpair counters M = zeros(nbits) # allocate mutual information array P = zeros(2,2) # allocate joint probability mass function @inbounds for i in 1:nbits # mutual information for every bit position for j in 1:2, k in 1:2 # joint prob mass from counter C P[j,k] = C[i,j,k]/nelements end M[i] = mutual_information(P) end # remove information that is insignificantly different from a random 50/50 if set_zero_insignificant set_zero_insignificant!(M,nelements,confidence) end return M end """ M = bitinformation(A::AbstractArray{T}) where {T<:Union{Integer,AbstractFloat}} Bitwise real information content of array `A` calculated from the bitwise mutual information in adjacent entries in `A`. Optional keyword arguments - `dim::Int=1` computes the bitwise information along dimension `dim`. - `masked_value::T=NaN` masks all entries in `A` that are equal to `masked_value`. - `set_zero_insignificant::Bool=true` set insignificant information to zero. - `confidence::Real=0.99` confidence level for `set_zero_insignificant`. """ function bitinformation(A::AbstractArray{T}; dim::Int=1, masked_value::Union{T, Nothing}=nothing, kwargs...) where {T<:Union{Integer, AbstractFloat}} # create a BitArray mask if a masked_value is provided, use === to also allow NaN comparison isnothing(masked_value) || return bitinformation(A, A .=== masked_value; dim, kwargs...) A = permute_dim_forward(A, dim) # Permute A to take adjacent entry in dimension dim n = size(A, 1) # n elements in dim # create a two views on A for pairs of adjacent entries, dim is always 1st dimension after permutation A1view = selectdim(A, 1, 1:n-1) # no adjacent entries in A array bounds A2view = selectdim(A, 1, 2:n) # for same indices A2 is the adjacent entry to A1 return mutual_information(A1view, A2view; kwargs...) end """ M = bitinformation(A::AbstractArray{T}, mask::BitArray) where {T<:Union{Integer,AbstractFloat}} Bitwise real information content of array `A` calculated from the bitwise mutual information in adjacent entries in A along dimension `dim` (optional keyword). Array `A` is masked through trues in entries of the mask `mask`. Masked elements are ignored in the bitwise information calculation.""" function bitinformation(A::AbstractArray{T}, mask::BitArray; dim::Int=1, set_zero_insignificant::Bool=true, confidence::Real=0.99) where {T<:Union{Integer, AbstractFloat}} @boundscheck size(A) == size(mask) || throw(BoundsError) nbits = 8*sizeof(T) # Permute A and mask to take adjacent entry in dimension dim A = permute_dim_forward(A, dim) mask = permute_dim_forward(mask, dim) C = bitpair_count(A, mask) # nbits x 2 x 2 array of bitpair counters nelements = sum(view(C, 1, :, :)) # depending on mask nelements changes so obtain via C @assert nelements > 0 "Mask has $(sum(.~mask)) unmasked values, 0 entries are adjacent." M = zeros(nbits) # allocate mutual information array P = zeros(2, 2) # allocate joint probability mass function @inbounds for i in 1:nbits # mutual information for every bit position for j in 1:2, k in 1:2 # joint prob mass from counter C P[j,k] = C[i,j,k]/nelements end M[i] = mutual_information(P) end # remove information that is insignificantly different from a random 50/50 if set_zero_insignificant set_zero_insignificant!(M,nelements,confidence) end return M end """ R = redundancy(A::AbstractArray{T},B::AbstractArray{T}) where {T<:Union{Integer,AbstractFloat}} Bitwise redundancy of two arrays A,B. Redundancy is a normalised measure of the mutual information: 1 for always identical/opposite bits, 0 for no mutual information.""" function redundancy(A::AbstractArray{T}, B::AbstractArray{T}) where {T<:Union{Integer,AbstractFloat}} M = mutual_information(A,B) # mutual information HA = bitcount_entropy(A) # entropy of A HB = bitcount_entropy(B) # entropy of B R = ones(size(M)...) # allocate redundancy R for i in eachindex(M) # loop over bit positions HAB = HA[i]+HB[i] # sum of entropies of A,B if HAB > 0 # entropy = 0 means A,B are fully redundant R[i] = 2*M[i]/HAB # symmetric redundancy end end return R end # """Mutual bitwise information of the elements in input arrays A,B. # A and B have to be of same size and eltype.""" # function bitinformation(A::AbstractArray{T}, # B::AbstractArray{T}, # n::Int) where {T<:Union{Integer,AbstractFloat}} # @assert size(A) == size(B) # nelements = length(A) # nbits = 8*sizeof(T) # # array of counters, first dim is from last bit to first # C = [zeros(Int,2^min(i,n+1),2) for i in nbits:-1:1] # for (a,b) in zip(A,B) # run through all elements in A,B pairwise # bitcount!(C,a,b,n) # count the bits and update counter array C # end # # P is the join probabilities mass function # P = [C[i]/nelements for i in 1:nbits] # M = [mutual_information(p) for p in P] # # filter out rounding errors # M[isapprox.(M,0,atol=10eps(Float64))] .= 0 # return M # end # """Update counter array of size nbits x 2 x 2 for every # 00|01|10|11-bitpairing in a,b.""" # function bitcount!(C::Array{Int,3},a::T,b::T) where {T<:AbstractFloat} # uia = reinterpret(Base.uinttype(T),a) # uib = reinterpret(Base.uinttype(T),b) # bitcount!(C,uia,uib) # end # """Update counter array of size nbits x 2 x 2 for every # 00|01|10|11-bitpairing in a,b.""" # function bitcount!(C::Vector{Matrix{Int}},a::T,b::T,n::Int) where {T<:AbstractFloat} # uia = reinterpret(Base.uinttype(T),a) # uib = reinterpret(Base.uinttype(T),b) # bitcount!(C,uia,uib,n) # end # """Update counter array of size nbits x 2 x 2 for every # 00|01|10|11-bitpairing in a,b.""" # function bitcount!(C::Vector{Matrix{Int}},a::T,b::T,n::Int) where {T<:Integer} # nbits = 8*sizeof(T) # for i = nbits:-1:1 # @boundscheck size(C[end-i+1],1) == 2^min(i,n+1) || throw(BoundsError()) # end # maskb = one(T) << (nbits-1) # maska = reinterpret(T,signed(maskb) >> n) # for i in 1:nbits # j = 1+((a & maska) >>> max(nbits-n-i,0)) # k = 1+((b & maskb) >>> (nbits-i)) # C[i][j,k] += 1 # maska >>>= 1 # shift through nbits # maskb >>>= 1 # end # end # """Calculate the bitwise redundancy of two arrays A,B. # Multi-bit predictor version which includes n lesser significant bit # as additional predictors in A for the mutual information to account # for round-to-nearest-induced carry bits. Redundancy is normalised # by the entropy of A. To be used for A being the reference array # and B an approximation of it.""" # function redundancy(A::AbstractArray{T}, # B::AbstractArray{T}, # n::Int) where {T<:Union{Integer,AbstractFloat}} # mutinf = bitinformation(A,B,n) # mutual information # HA = bitcount_entropy(A) # entropy of A # R = mutinf./HA # redundancy (asymmetric) # R[iszero.(HA)] .= 0.0 # HA = 0 creates NaN # return R # end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
609
""" permute_dim_forward(A::AbstractArray,dim::Int) Permute array `A` such that dimension `dim` is the first dimension by circular shifting its dimensions. Returns a `PermutedDimsArray`. For `A` being a matrix this is equivalent to a transpose, for more dimensions the dimensions are shifted circular. E.g. An array of size `(3,4,5,6,7)` and `dim=3` will return a PermutedDimsArray of size `(5,6,7,3,4)`.""" function permute_dim_forward(A::AbstractArray,dim::Int) A_ndims = ndims(A) @boundscheck dim <= A_ndims || throw(BoundsError) return PermutedDimsArray(A,circshift(1:A_ndims,-dim+1)) end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
1477
""" p₁ = binom_confidence(n::Int,c::Real) Returns the probability `p₁` of successes in the binomial distribution (p=1/2) of `n` trials with confidence `c`. # Example At c=0.95, i.e. 95% confidence, n=1000 tosses of a coin will yield not more than ```julia julia> p₁ = BitInformation.binom_confidence(1000,0.95) 0.5309897516152281 ``` about 53.1% heads (or tails).""" function binom_confidence(n::Int,c::Real) p = 0.5 + quantile(Normal(),1-(1-c)/2)/(2*sqrt(n)) return min(1.0,p) # cap probability at 1 (only important for n small) end """ Hf = binom_free_entropy(n::Int,c::Real,base::Real=2) Returns the free entropy `Hf` associated with `binom_confidence`.""" function binom_free_entropy(n::Int,c::Real,base::Real=2) p = binom_confidence(n,c) return 1 - entropy([p,1-p],base) end """ set_zero_insignificant!(H::Vector,nelements::Int,confidence::Real) Remove binary information in the vector `H` of entropies that is insignificantly different from a random 50/50 by setting it to zero.""" function set_zero_insignificant!(H::Vector,nelements::Int,confidence::Real) Hfree = binom_free_entropy(nelements,confidence) # free entropy of random 50/50 at trial size # get chance p for 1 (or 0) from binom distr @inbounds for i in eachindex(H) H[i] = H[i] <= Hfree ? 0 : H[i] # set zero what's insignificant end return H end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
6212
const IEEEFloat_and_complex = Union{Float16,Float32,Float64,ComplexF16,ComplexF32,ComplexF64} """Shift integer to push the mantissa in the right position. Used to determine round up or down in the tie case. `keepbits` is the number of mantissa bits to be kept (i.e. not zero-ed) after rounding. Special case: shift is -1 for keepbits == significand_bits(T) to avoid a round away from 0 where no rounding should be applied.""" function get_shift(::Type{T},keepbits::Integer) where {T<:Base.IEEEFloat} shift = Base.significand_bits(T) - keepbits # normal case shift -= keepbits == Base.significand_bits(T) # to avoid round away from 0 return shift end """Returns for a Float-type `T` and `keepbits`, the number of mantissa bits to be kept/non-zeroed after rounding, half of the unit in the last place as unsigned integer. Used in round (nearest) to add ulp/2 just before round down to achieve round nearest. Technically ulp/2 here is just smaller than ulp/2 which rounds down the ties. For a tie round up +1 is added in `round(T,keepbits)`.""" function get_ulp_half( ::Type{T}, keepbits::Integer ) where {T<:Base.IEEEFloat} # convert to signed for arithmetic bitshift # trick to push in 0s from the left and 1s from the right return ~unsigned(signed(~Base.significand_mask(T)) >> (keepbits+1)) end """Returns a mask that's 1 for all bits that are kept after rounding and 0 for the discarded trailing bits. E.g. ``` julia> get_keep_mask(Float16,5) 0xffe0 ```.""" function get_keep_mask( ::Type{T}, keepbits::Integer ) where {T<:Base.IEEEFloat} # convert to signed for arithmetic bitshift # trick to push in 1s from the left and 0s from the right return unsigned(signed(~Base.significand_mask(T)) >> keepbits) end """Returns a mask that's `1` for a given `mantissabit` and `0` else. Mantissa bits are positive for the mantissa (`mantissabit = 1` is the first mantissa bit), `mantissa = 0` is the last exponent bit, and negative for the other exponent bits.""" function get_bit_mask( ::Type{T}, mantissabit::Integer ) where {T<:Base.IEEEFloat} # push the sign mask (1000....) in the right position return Base.sign_mask(T) >> (Base.exponent_bits(T) + mantissabit) end """IEEE's round to nearest tie to even for Float16/32/64.""" function Base.round(x::T, # Float to be rounded ulp_half::UIntT, # obtain from get_ulp_half, shift::Integer, # get_shift, and keepmask::UIntT # get_keep_mask ) where {T<:Base.IEEEFloat,UIntT<:Unsigned} ui = reinterpret(UIntT,x) # bitpattern as uint ui += ulp_half + ((ui >> shift) & one(UIntT)) # add ulp/2 with tie to even return reinterpret(T,ui & keepmask) # set trailing bits to zero end function Base.round(x::Complex, # Complex float to be rounded ulp_half::UIntT, # obtain from get_ulp_half, shift::Integer, # get_shift, and keepmask::UIntT # get_keep_mask ) where {UIntT<:Unsigned} a = round(real(x),ulp_half,shift,keepmask) b = round(imag(x),ulp_half,shift,keepmask) return a+im*b end """Scalar version of `round(::Float,keepbits)` that first obtains `shift, ulp_half, keep_mask` and then rounds.""" function Base.round(x::T, keepbits::Integer ) where {T<:Base.IEEEFloat} return round(x,get_ulp_half(T,keepbits),get_shift(T,keepbits),get_keep_mask(T,keepbits)) end function Base.round(x::Complex{T},keepbits::Integer) where T ulp_half = get_ulp_half(T,keepbits) shift = get_shift(T,keepbits) keepmask = get_keep_mask(T,keepbits) return round(x,ulp_half,shift,keepmask) end """IEEE's round to nearest tie to even for a float array `X` in-place. Calculates from `keepbits` only once the variables `ulp_half`, `shift` and `keep_mask` and loops over every element of the array.""" function round!(X::AbstractArray{T}, # any array with element type T keepbits::Integer # how many mantissa bits to keep ) where {T<:IEEEFloat_and_complex} # constrain element type to (complex) Float16/32/64 ulp_half = get_ulp_half(real(T),keepbits) # half of unit in last place (ulp) shift = get_shift(real(T),keepbits) # integer used for bitshift keep_mask = get_keep_mask(real(T),keepbits) # mask to zero trailing mantissa bits @inbounds for i in eachindex(X) # apply rounding to each element X[i] = round(X[i],ulp_half,shift,keep_mask) end return X end """IEEE's round to nearest tie to even for a float array `X` which returns a rounded copy of `X`.""" function Base.round(X::AbstractArray{T}, # any array with element type T keepbits::Integer # mantissa bits to keep ) where {T<:IEEEFloat_and_complex} # constrain element type to (complex) Float16/32/64 Xcopy = copy(X) # copy array to avoid in-place changes round!(Xcopy,keepbits) # in-place round the copied array return Xcopy end """Checks a given `mantissabit` of `x` for eveness. 1=odd, 0=even. Mantissa bits are positive for the mantissa (`mantissabit = 1` is the first mantissa bit), `mantissa = 0` is the last exponent bit, and negative for the other exponent bits.""" function Base.iseven(x::T, mantissabit::Integer ) where {T<:Base.IEEEFloat} bitmask = get_bit_mask(T,mantissabit) return 0x0 == reinterpret(typeof(bitmask),x) & bitmask end """Checks a given `mantissabit` of `x` for oddness. 1=odd, 0=even. Mantissa bits are positive for the mantissa (`mantissabit = 1` is the first mantissa bit), `mantissa = 0` is the last exponent bit, and negative for the other exponent bits.""" Base.isodd(x::T,mantissabit::Integer) where {T<:Base.IEEEFloat} = ~iseven(x,mantissabit)
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
5706
"""Bitshaving for floats. Sets trailing bits to 0 (round towards zero). `keepmask` is an unsigned integer with bits being `1` for bits to be kept, and `0` for those that are shaved off.""" function shave( x::T, keepmask::UIntT ) where {T<:Base.IEEEFloat,UIntT<:Unsigned} ui = reinterpret(UIntT,x) ui &= keepmask # set trailing bits to zero return reinterpret(T,ui) end """Halfshaving for floats. Replaces trailing bits with `1000...` a variant of round nearest whereby the representable numbers are halfway between those from shaving or IEEE's round nearest.""" function halfshave( x::T, keepmask::UIntT, bitmask::UIntT ) where {T<:Base.IEEEFloat,UIntT<:Unsigned} ui = reinterpret(UIntT,x) ui &= keepmask # set trailing bits to zero ui |= bitmask # set first trailing bit to 1 return reinterpret(T,ui) end """Bitsetting for floats. Replace trailing bits with `1`s (round away from zero). `setmask` is an unsigned integer with bits being `1` for those that are set to one and `0` otherwise, such that the bits to keep are unaffected.""" function set_one( x::T, setmask::UIntT ) where {T<:Base.IEEEFloat,UIntT<:Unsigned} ui = reinterpret(UIntT,x) ui |= setmask # set trailing bits to 1 return reinterpret(T,ui) end """Bitshaving of a float `x` given `keepbits` the number of mantissa bits to keep after shaving.""" function shave(x::T,keepbits::Integer) where {T<:Base.IEEEFloat} return shave(x,get_keep_mask(T,keepbits)) end """Halfshaving of a float `x` given `keepbits` the number of mantissa bits to keep after halfshaving.""" function halfshave(x::T,keepbits::Integer) where {T<:Base.IEEEFloat} return halfshave(x,get_keep_mask(T,keepbits),get_bit_mask(T,keepbits+1)) end """Bitsetting of a float `x` given `keepbits` the number of mantissa bits to keep after setting.""" function set_one(x::T,keepbits::Integer) where {T<:Base.IEEEFloat} return set_one(x,~get_keep_mask(T,keepbits)) end """In-place version of `shave` for any array `X` with floats as elements.""" function shave!(X::AbstractArray{T}, # any array with element type T keepbits::Integer # how many mantissa bits to keep ) where {T<:Base.IEEEFloat} # constrain element type to Float16/32/64 keep_mask = get_keep_mask(T,keepbits) # mask to zero trailing mantissa bits @inbounds for i in eachindex(X) # apply rounding to each element X[i] = shave(X[i],keep_mask) end return X end """In-place version of `halfshave` for any array `X` with floats as elements.""" function halfshave!(X::AbstractArray{T}, # any array with element type T keepbits::Integer # how many mantissa bits to keep ) where {T<:Base.IEEEFloat} # constrain element type to Float16/32/64 keep_mask = get_keep_mask(T,keepbits) # mask to zero trailing mantissa bits bit_mask = get_bit_mask(T,keepbits+1) # mask to set the first trailing bit to 1 @inbounds for i in eachindex(X) # apply rounding to each element X[i] = halfshave(X[i],keep_mask,bit_mask) end return X end """In-place version of `set_one` for any array `X` with floats as elements.""" function set_one!( X::AbstractArray{T}, # any array with element type T keepbits::Integer # how many mantissa bits to keep ) where {T<:Base.IEEEFloat} # constrain element type to Float16/32/64 set_mask = ~get_keep_mask(T,keepbits) # mask to set trailing mantissa bits to 1 @inbounds for i in eachindex(X) # apply rounding to each element X[i] = set_one(X[i],set_mask) end return X end """Bitgrooming for a float arrays `X` keeping `keepbits` mantissa bits. In-place version that shaves/sets the elements of `X` alternatingly.""" function groom!(X::AbstractArray{T}, # any array with element type T keepbits::Integer # how many mantissa bits to keep ) where {T<:Base.IEEEFloat} # constrain element type to Float16/32/64 keep_mask = get_keep_mask(T,keepbits) # mask to zero trailing mantissa bits set_mask = ~keep_mask # mask to set trailing mantissa bits to 1 n = length(X) @inbounds for i in 1:2:n-1 X[i] = shave(X[i],keep_mask) # every second element is shaved X[i+1] = set_one(X[i+1],set_mask) # every other 2nd element is set end # for arrays of uneven length shave last element (as exempted from loop) @inbounds X[end] = n % 2 == 1 ? shave(X[end],keep_mask) : X[end] return X end # Shave, halfshave, set_one, groom which returns a rounded copy of array `X` instead of # chaning its elements in-place. for func in (:shave,:halfshave,:set_one,:groom) func! = Symbol(func,:!) @eval begin function $func( X::AbstractArray{T}, # any array with element type T keepbits::Integer # how many mantissa bits to keep ) where {T<:Base.IEEEFloat} # constrain element type to Float16/32/64 Xcopy = copy(X) # copy to avoid in-place changes of X $func!(Xcopy,keepbits) # in-place on X's copy return Xcopy end end end """Number of significant bits `nsb` given the number of significant digits `nsd`.""" nsb(nsd::Integer) = Integer(ceil(log(10)/log(2)*nsd))
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
3743
"""In-place version of `signed_exponent(::Array)`.""" function signed_exponent!(A::AbstractArray{T}) where {T<:Base.IEEEFloat} # sign&fraction mask sfmask = Base.sign_mask(T) | Base.significand_mask(T) emask = Base.exponent_mask(T) esignmask = Base.sign_mask(T) >> 1 # exponent sign mask (1st exp bit) sbits = Base.significand_bits(T) bias = Base.exponent_bias(T) @inbounds for i in eachindex(A) ui = reinterpret(Unsigned,A[i]) sf = ui & sfmask # sign & fraction bits e = (((ui & emask) >> sbits) % Int) - bias # de-biased exponent eabs = abs(e) % typeof(ui) # magnitude of exponent esign = e < 0 ? esignmask : zero(esignmask) # determine sign of exponent esigned = esign | (eabs << sbits) # concatentate exponent A[i] = reinterpret(T,sf | esigned) # concatenate everything back together end return A end """In-place version of `biased_exponent(::Array)`. Inverse of `signed_exponent!".""" function biased_exponent!(A::AbstractArray{T}) where {T<:Base.IEEEFloat} # sign&fraction mask sfmask = Base.sign_mask(T) | Base.significand_mask(T) emask = Base.exponent_mask(T) esignmask = Base.sign_mask(T) >> 1 eabsmask = emask & ~esignmask sbits = Base.significand_bits(T) bias = Base.uinttype(T)(Base.exponent_bias(T)) @inbounds for i in eachindex(A) ui = reinterpret(Unsigned,A[i]) sf = ui & sfmask # sign & fraction bits eabs = ((ui & eabsmask) >> sbits) # isolate sign-magnitude exponent esign = (ui & esignmask) == esignmask ? true : false ebiased = bias + (esign ? -eabs : eabs) # concatenate mag&sign and add bias ebiased <<= sbits # shit exponent in position # 10000..., i.e. negative zero in the sign-magintude exponent is mapped # back to NaN/Inf to make signed_exponent fully reversible ebiased = esign & (eabs == 0) ? emask : ebiased A[i] = reinterpret(T,sf | ebiased) # concatenate everything back together end return A end """ ```julia B = signed_exponent(A::AbstractArray{T}) where {T<:Base.IEEEFloat} ``` Converts the exponent bits of Float16,Float32 or Float64-arrays from its IEEE standard biased-form into a sign-magnitude representation. # Example ```julia julia> bitstring(10f0,:split) "0 10000010 01000000000000000000000" julia> bitstring.(signed_exponent([10f0]),:split)[1] "0 00000011 01000000000000000000000" ``` In the IEEE standard floats the exponent 3 is interpret from 0b10000010=130 via subtraction of the exponent bias of Float32 = 127. In sign-magnitude representation the exponent is inferred from the first exponent (0) as sign bit and a magnitude 2^1 + 2^1 = 3. NaN/Inf exponent bits are mapped to negative zero in sign-magnitude representation which is exactly reversed with `biased_exponent`.""" function signed_exponent(A::Array{T}) where {T<:Union{Float16,Float32,Float64}} B = copy(A) return signed_exponent!(B) end function signed_exponent(f::T) where {T<:Union{Float16,Float32,Float64}} return signed_exponent!([f])[1] # pack into array and unpack again end """ ```julia B = biased_exponent(A::AbstractArray{T}) where {T<:Base.IEEEFloat} ``` Convert the signed exponents from `signed_exponent` back into the standard biased exponents of IEEE floats.""" function biased_exponent(A::Array{T}) where {T<:Union{Float16,Float32,Float64}} B = copy(A) return biased_exponent!(B) end function biased_exponent(f::T) where {T<:Union{Float16,Float32,Float64}} return biased_exponent!([f])[1] # pack into array and unpack again end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
747
# define the uints for various formats Base.uinttype(::Type{UInt8}) = UInt8 Base.uinttype(::Type{UInt16}) = UInt16 Base.uinttype(::Type{UInt32}) = UInt32 Base.uinttype(::Type{UInt64}) = UInt64 Base.uinttype(::Type{Int8}) = UInt8 Base.uinttype(::Type{Int16}) = UInt16 Base.uinttype(::Type{Int32}) = UInt32 Base.uinttype(::Type{Int64}) = UInt64 # uints for other types are identified by their byte size Base.uinttype(::Type{T}) where T = Base.uinttype(sizeof(T)*8) # or return the UInt type based on the number of bits function Base.uinttype(nbits::Integer) nbits == 8 && return UInt8 nbits == 16 && return UInt16 nbits == 32 && return UInt32 nbits == 64 && return UInt64 throw(error("Only n=8,16,32,64 bits supported.")) end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
2420
"""Bitwise XOR delta. Elements include A are XORed with the previous one. The first element is left unchanged. E.g. [0b0011,0b0010] -> [0b0011,0b0001] """ function xor_delta!(A::Array{T,1}) where {T<:Unsigned} a = A[1] @inbounds for i in 2:length(A) # skip first element b = A[i] A[i] = a ⊻ b # XOR with prev element a = b # make next (un-XORed) element prev for next iteration end end """Undo bitwise XOR delta. Elements include A are XORed again to reverse xor_delta. E.g. [0b0011,0b0001] -> [0b0011,0b0010] """ function unxor_delta!(A::Array{T,1}) where {T<:Unsigned} a = A[1] @inbounds for i in 2:length(A) # skip first element b = A[i] a = a ⊻ b # un-XOR and store un-XORed a for next iteration A[i] = a end end """Bitwise XOR delta. Elements include A are XORed with the previous one. The first element is left unchanged. E.g. [0b0011,0b0010] -> [0b0011,0b0001]. """ function xor_delta(A::Array{T,1}) where {T<:Unsigned} B = copy(A) xor_delta!(B) return B end """Undo bitwise XOR delta. Elements include A are XORed again to reverse xor_delta. E.g. [0b0011,0b0001] -> [0b0011,0b0010] """ function unxor_delta(A::Array{T,1}) where {T<:Unsigned} B = copy(A) unxor_delta!(B) return B end """Bitwise XOR delta. Elements include A are XORed with the previous one. The first element is left unchanged. E.g. [0b0011,0b0010] -> [0b0011,0b0001]. """ function xor_delta(::Type{UIntT},A::Array{T,1}) where {UIntT<:Unsigned,T<:AbstractFloat} B = reinterpret.(UIntT,A) xor_delta!(B) return reinterpret.(T,B) end """Undo bitwise XOR delta. Elements include A are XORed again to reverse xor_delta. E.g. [0b0011,0b0001] -> [0b0011,0b0010] """ function unxor_delta(::Type{UIntT},A::Array{T,1}) where {UIntT<:Unsigned,T<:AbstractFloat} B = reinterpret.(UIntT,A) unxor_delta!(B) return reinterpret.(T,B) end """Bitwise XOR delta. Elements include A are XORed with the previous one. The first element is left unchanged. E.g. [0b0011,0b0010] -> [0b0011,0b0001]. """ xor_delta(A::Array{T,1}) where {T<:AbstractFloat} = xor_delta(Base.uinttype(T),A) """Undo bitwise XOR delta. Elements include A are XORed again to reverse xor_delta. E.g. [0b0011,0b0001] -> [0b0011,0b0010] """ unxor_delta(A::Array{T,1}) where {T<:AbstractFloat} = unxor_delta(Base.uinttype(T),A)
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
2317
@testset "Bitcount" begin @test bitcount(UInt8[1,2,4,8,16,32,64,128]) == ones(8) @test bitcount(collect(0x0000:0xffff)) == 2^15*ones(16) N = 100_000 c = bitcount(rand(N)) @test c[1] == 0 # sign always 0 @test c[2] == 0 # first expbit always 0, i.e. U(0,1) < 1 @test c[3] == N # second expont always 1 @test all(isapprox.(c[15:50],N/2,rtol=1e-1)) end @testset "Bitcountentropy" begin # test the PRNG on uniformity N = 100_000 H = bitcount_entropy(rand(UInt8,N)) @test all(isapprox.(H,ones(8),rtol=5e-4)) H = bitcount_entropy(rand(UInt16,N)) @test all(isapprox.(H,ones(16),rtol=5e-4)) H = bitcount_entropy(rand(UInt32,N)) @test all(isapprox.(H,ones(32),rtol=5e-4)) H = bitcount_entropy(rand(UInt64,N)) @test all(isapprox.(H,ones(64),rtol=5e-4)) # also for random floats H = bitcount_entropy(rand(N)) @test H[1:5] == zeros(5) # first bits never change @test all(isapprox.(H[16:55],ones(40),rtol=1e-4)) end import BitInformation: bitpair_count @testset "Bit pair count" begin for T in (Float16,Float32,Float64) N = 10_000 A = rand(T,N) C1 = bitpair_count(A,A) # count bitpairs with 2 equiv arrays C2 = bitcount(A) # compare to bits counted in that array nbits = 8*sizeof(T) for i in 1:nbits @test C1[i,1,2] == 0 # no 01 pair for bitpair_count(A,A) @test C1[i,2,1] == 0 # no 10 @test C1[i,1,1] + C1[i,2,2] == N # 00 + 11 are all cases = N @test C1[i,2,2] == C2[i] # 11 is the same as bitcount(A) end Auint = reinterpret(Base.uinttype(T),A) Buint = .~Auint # flip all bits in A C3 = bitpair_count(Auint,Auint) @test C1 == C3 # same when called with uints C4 = bitpair_count(Auint,Buint) for i in 1:nbits @test C4[i,1,2] + C4[i,2,1] == N # 01, 10 are all cases = N @test C1[i,1,1] == C4[i,1,2] # 00 before is now 01 @test C1[i,2,2] == C4[i,2,1] # 11 before is now 10 @test C4[i,1,1] == 0 # no 00 @test C4[i,2,2] == 0 # no 11 end end end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
655
@testset "Bit pattern entropy" begin for N in [100,1000,10000,100000] # every bit pattern is only hit once, hence entropy = log2(N) @test isapprox(log2(N),bitpattern_entropy(rand(Float32,N)),atol=1e-1) @test isapprox(log2(N),bitpattern_entropy(rand(Float64,N)),atol=1e-1) end N = 1000_000 # more bit pattern than there are in 8 or 16-bit @test isapprox(16.0,bitpattern_entropy(rand(UInt16,N)),atol=1e-1) @test isapprox(16.0,bitpattern_entropy(rand(Int16,N)),atol=1e-1) @test isapprox(8.0,bitpattern_entropy(rand(UInt8,N)),atol=1e-1) @test isapprox(8.0,bitpattern_entropy(rand(Int8,N)),atol=1e-1) end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
1306
@testset "Bitstring with split" begin for T in (Float16,Float32,Float64) for _ in 1:30 r = randn() bs_split = bitstring(r,:split) bs = bitstring(r) @test bs == prod(split(bs_split," ")) end end # some individual values too @test bitstring(Float16( 0),:split) == "0 00000 0000000000" @test bitstring(Float16( 1),:split) == "0 01111 0000000000" @test bitstring(Float16(-1),:split) == "1 01111 0000000000" @test bitstring(Float16( 2),:split) == "0 10000 0000000000" @test bitstring( 0f0,:split) == "0 00000000 00000000000000000000000" @test bitstring( 1f0,:split) == "0 01111111 00000000000000000000000" @test bitstring(-1f0,:split) == "1 01111111 00000000000000000000000" @test bitstring( 2f0,:split) == "0 10000000 00000000000000000000000" @test bitstring( 0.0,:split) == "0 00000000000 0000000000000000000000000000000000000000000000000000" @test bitstring( 1.0,:split) == "0 01111111111 0000000000000000000000000000000000000000000000000000" @test bitstring(-1.0,:split) == "1 01111111111 0000000000000000000000000000000000000000000000000000" @test bitstring( 2.0,:split) == "0 10000000000 0000000000000000000000000000000000000000000000000000" end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
7236
@testset "Bitinformation random" begin N = 10_000 for T in (UInt8,UInt16,UInt32,UInt64) A = rand(T,N) @test all(bitinformation(A,set_zero_insignificant=false) .< 1e-3) end for T in (Float16,Float32,Float64) A = rand(T,N) # increase confidence to filter out more information for reliable tests... # i.e. lower the risk of false positives bi = bitinformation(A,confidence=0.9999) # no bit should contain information, insignificant # information should be filtered out @test all(bi .== 0.0) sort!(A) # introduce some information via sorting @test sum(bitinformation(A)) > 9 # some bits of information (guessed) end end @testset "Bitinformation dimensions" begin for T in (Float16,Float32,Float64) A = rand(T,30,40,50) @test bitinformation(A) == bitinformation(A,dim=1) bi1 = bitinformation(A,dim=1) bi2 = bitinformation(A,dim=2) bi3 = bitinformation(A,dim=3) nbits = 8*sizeof(T) for i in 1:nbits @test bi1[i] ≈ bi2[i] atol=1e-3 @test bi2[i] ≈ bi3[i] atol=1e-3 @test bi1[i] ≈ bi3[i] atol=1e-3 end # check that there is indeed more information in the sorted dimensions sort!(A,dims=2) @test sum(bitinformation(A,dim=1)) < sum(bitinformation(A,dim=2)) end end @testset "Mutual information" begin N = 10_000 # equal probabilities for 00|01|10|11 @test 0.0 == mutual_information([0.25 0.25;0.25 0.25]) # every 0 or 1 in A is also a 0 or 1 in B @test 1.0 == mutual_information([0.5 0.0;0.0 0.5]) # as before but more 1s means a lower entropy @test entropy([0.25,0.75],2) == mutual_information([0.25 0.0;0.0 0.75]) # every bit is inverted @test 1.0 == mutual_information([0.0 0.5;0.5 0.0]) # two independent arrays for T in (UInt8,UInt16,UInt32,UInt64,Float16,Float32,Float64) mutinf = mutual_information(rand(T,N),rand(T,N)) for m in mutinf @test isapprox(0,m,atol=2e-3) end end # mutual information of identical arrays # for 0,1 occuring exactly 50/50 this is 1bit # but so in practice slightly lower for rand(UInt), # or clearly lower for low entropy bits in Float16/32/64 # but identical to the bitcount_entropy (up to rounding errors) for T in (UInt8,UInt16,UInt32,UInt64,Float16,Float32,Float64) R = rand(T,N) mutinf = mutual_information(R,R) @test mutinf ≈ bitcount_entropy(R) end end @testset "Redundancy" begin N = 10_000 # No redundancy in independent arrays for T in (UInt8,UInt16,UInt32,UInt64) redun = redundancy(rand(T,N),rand(T,N)) for r in redun @test isapprox(0,r,atol=2e-3) end end # no redundancy in the mantissa bits of rand for T in (Float16,Float32,Float64) redun = redundancy(rand(T,N),rand(T,N)) for r in redun[end-Base.significand_bits(T):end] @test isapprox(0,r,atol=2e-3) end end # Full redundancy in identical arrays for T in (UInt8,UInt16,UInt32,UInt64,Float16,Float32,Float64) A = rand(T,N) H = bitcount_entropy(A) R = redundancy(A,A) for r in R @test r ≈ 1 atol=1e-3 end end # Some artificially introduced redundancy PART I for T in (UInt8,UInt16,UInt32,UInt64) A = rand(T,N) B = copy(A) # B is A on every second entry B[1:2:end] .= rand(T,N÷2) # otherwise independent # joint prob mass is therefore [0.375 0.125; 0.125 0.375] # at 50% bits are identical, at 50% they are independent # = 25% same, 25% opposite p = mutual_information([0.375 0.125;0.125 0.375]) R = redundancy(A,B) for r in R @test r ≈ p rtol=2e-1 end end # Some artificially introduced redundancy PART II for T in (UInt8,UInt16,UInt32,UInt64) A = rand(T,N) B = copy(A) # B is A on every fourth entry B[1:4:end] .= rand(T,N÷4) # otherwise independent # joint prob mass is therefore [0.4375 0.0625; 0.0625 0.4375] # at 75% bits are identical, at 25% they are independent # = 12.5% same, 12.5% opposite p = mutual_information([0.4375 0.0625;0.0625 0.4375]) R = redundancy(A,B) for r in R @test r ≈ p rtol=2e-1 end end end @testset "Mutual information with shave/round" begin N = 10_000 for T in (Float16,Float32,Float64) R = randn(T,N) for keepbit in [5,10,15] Rshaved = shave(R,keepbit) mutinf_shave = mutual_information(R,Rshaved) H_R = bitcount_entropy(R) H_Rs = bitcount_entropy(Rshaved) for (i,(s,hr,hrs)) in enumerate(zip(mutinf_shave,H_R,H_Rs)) if i <= (1+Base.exponent_bits(T)+keepbit) @test isapprox(s,hr,atol=1e-2) @test isapprox(s,hrs,atol=1e-2) else @test s == 0 @test hr > 0 @test hrs == 0 end end end end end @testset "Masked arrays" begin for T in (Float16, Float32, Float64) A = rand(T, 30, 40) sort!(A, dims=1) # nothing is masked mask = BitArray(undef,30,40) fill!(mask,false) @test bitinformation(A) == bitinformation(A, mask) # half of the array is masked # use view to avoid masking only a deep copy through [] indexing fill!(@view(mask[:, 21:end]),true) @test bitinformation(A[:, 1:20]) == bitinformation(A,mask) # half of the array is masked # use view to avoid masking only a deep copy through [] indexing fill!(mask,false) fill!(@view(mask[21:end, :]), true) @test bitinformation(A[1:20, :]) == bitinformation(A,mask) # mask every other value (should throw an error as no # adjacent entries are left) fill!(mask, false) mask[1:2:end, 2:2:end] .= true mask[2:2:end, 1:2:end] .= true @test_throws AssertionError bitinformation(A,mask) # check providing mask against providing a masked_value (mask is created internally) masked_value = convert(T, 1/4) A = rand(T, 30, 40) round!(A, 1) mask = A .== masked_value @test bitinformation(A, mask) == bitinformation(A; masked_value) # check that masked_value=NaN also works A[:,2] .= NaN # put some NaNs somewhere mask = BitArray(undef,size(A)...) # create corresponding mask fill!(mask,false) mask[:,2] .= true @test bitinformation(A,mask) == bitinformation(A;masked_value=convert(T,NaN)) # only 2 in first dimension dimss = ((2,), (2, 3), (2, 3, 4), (2, 3, 4, 5)) for dims in dimss A = randn(T, dims...) @test bitinformation(A) == bitinformation(A, masked_value=T(999.)) end end end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
470
@testset "Permute arrays" begin A = rand(3,4,5,6,7,8) @test A == BitInformation.permute_dim_forward(A,1) A1 = BitInformation.permute_dim_forward(A,2) A1 = BitInformation.permute_dim_forward(A1,6) @test A == A1 A2 = BitInformation.permute_dim_forward(A,3) A2 = BitInformation.permute_dim_forward(A2,5) @test A == A2 A3 = BitInformation.permute_dim_forward(A,4) A3 = BitInformation.permute_dim_forward(A3,4) @test A == A3 end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
3793
@testset "iseven isodd" begin # check sign bits @test iseven(1f0,-8) @test isodd(-1f0,-8) @test iseven(1.0,-11) @test isodd(-1.0,-11) @test iseven(Float16(1),-5) @test isodd(Float16(-1),-5) @test isodd(1.5f0,1) @test isodd(1.5,1) @test isodd(Float16(1.5),1) @test iseven(1.25f0,1) @test iseven(1.25,1) @test iseven(Float16(1.25),1) @test isodd(1.25f0,2) @test isodd(1.25,2) @test isodd(Float16(1.25),2) end @testset "Zero rounds to zero" begin for T in [Float16,Float32,Float64] for k in -5:50 A = zeros(T,2,3) Ar = round(A,k) @test A == Ar @test zero(T) == round(zero(T),k) end end end @testset "one rounds to one" begin for T in [Float16,Float32,Float64] for k in 0:50 A = ones(T,2,3) Ar = round(A,k) @test A == Ar @test one(T) == round(one(T),k) end end end @testset "minus one rounds to minus one" begin for T in [Float16,Float32,Float64] for k in 0:50 A = -ones(T,2,3) Ar = round(A,k) @test A == Ar @test -one(T) == round(-one(T),k) end end end @testset "No rounding for keepbits=10,23,52" begin for (T,k) in zip([Float16,Float32,Float64], [10,23,52]) A = rand(T,200,300) Ar = round(A,k) @test A == Ar # and a single one r = rand(T) @test r == round(r,k) end end @testset "Approx equal for keepbits=5,10,25" begin for (T,k) in zip([Float16,Float32,Float64], [5,10,25]) A = rand(T,200,300) Ar = round(A,k) @test A ≈ Ar # and a single one r = rand(T) @test r ≈ round(r,k) end end @testset "Idempotence" begin for T in [Float16,Float32,Float64] for k in 0:20 A = rand(T,200,300) Ar = round(A,k) Ar2 = round(Ar,k) @test Ar == Ar2 end end end @testset "Tie to even" begin for T in [Float16,Float32,Float64] @test round(1.5f0,0) == T(2) @test round(1.25f0,1) == T(1) @test round(1.5f0,1) == T(1.5) @test round(1.75f0,1) == T(2) @test round(1.125f0,2) == T(1) @test round(1.375f0,2) == T(1.5) @test round(1.625f0,2) == T(1.5) @test round(1.875f0,2) == T(2) end for k in 1:10 m = 0x8000_0000 >> (9+k) x = reinterpret(UInt32,one(Float32)) + m x = reinterpret(Float32,x) @test 1f0 == round(x,k) end end @testset "Round to nearest?" begin N = 1000 for _ in 1:N for (T,UIntT) in zip([Float16,Float32,Float64], [UInt16,UInt32,UInt64]) for k in 1:9 x = randn(T) xr = round(x,k) ulp = Base.sign_mask(T) >> (Base.exponent_bits(T)+k) next_xr = reinterpret(T,reinterpret(UIntT,xr) + ulp) prev_xr = reinterpret(T,reinterpret(UIntT,xr) - ulp) @test abs(next_xr - x) >= abs(xr - x) @test abs(prev_xr - x) >= abs(xr - x) end end end end @testset "Round ComplexF16/32/64" begin @testset for NF in (ComplexF16,ComplexF32,ComplexF64) @testset for keepbits in [4,6,8] A = randn(NF,20,30) R = real.(A) I = imag.(A) Ar1 = round(R,keepbits) + im*round(I,keepbits) Ar2 = round(A,keepbits) @test Ar1 == Ar2 a = randn(NF) r = real(a) i = imag(a) @test round(a,keepbits) == round(r,keepbits) + im*round(i,keepbits) end end end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
287
using BitInformation using Test import StatsBase.entropy import Random include("bitstring.jl") include("round_nearest.jl") include("shave_set_groom.jl") include("signed_exponent.jl") include("xor_transpose.jl") include("bitcount.jl") include("information.jl") include("permutations.jl")
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
2757
@testset "Zero shaves to zero" begin for T in [Float16,Float32,Float64] for k in -5:50 A = zeros(T,2,3) Ar = shave(A,k) @test A == Ar @test zero(T) == round(zero(T),k) end end end @testset "one shaves to one" begin for T in [Float16,Float32,Float64] for k in 0:50 A = ones(T,2,3) Ar = shave(A,k) @test A == Ar @test one(T) == round(one(T),k) end end end @testset "minus one shaves to minus one" begin for T in [Float16,Float32,Float64] for k in 0:50 A = -ones(T,2,3) Ar = shave(A,k) @test A == Ar @test -one(T) == round(-one(T),k) end end end @testset "No (half)shaving/setting/grooming for keepbits=10,23,52" begin for (T,k) in zip([Float16,Float32,Float64], [10,23,52]) A = rand(T,200,300) Ar = shave(A,k) @test A == Ar Ar = halfshave(A,k) @test A == Ar Ar = set_one(A,k) @test A == Ar Ar = groom(A,k) @test A == Ar # and a single one r = rand(T) @test r == shave(r,k) @test r == halfshave(r,k) @test r == set_one(r,k) end end @testset "Approx equal for keepbits=8,15,35" begin for (T,k) in zip([Float16,Float32,Float64], [8,15,35]) A = rand(T,200,300) Ar = shave(A,k) @test A ≈ Ar Ar = halfshave(A,k) @test A ≈ Ar Ar = set_one(A,k) @test A ≈ Ar Ar = groom(A,k) @test A ≈ Ar # and a single one r = rand(T) @test r ≈ shave(r,k) @test r ≈ set_one(r,k) @test r ≈ halfshave(r,k) end end @testset "Idempotence" begin for T in [Float16,Float32,Float64] for k in 0:20 A = rand(T,200,300) Ar = shave(A,k) Ar2 = shave(Ar,k) @test Ar == Ar2 Ar = halfshave(A,k) Ar2 = halfshave(Ar,k) @test Ar == Ar2 Ar = set_one(A,k) Ar2 = set_one(Ar,k) @test Ar == Ar2 Ar = groom(A,k) Ar2 = groom(Ar,k) @test Ar == Ar2 end end end @testset "Shave/set = round towards/away from zero?" begin N = 1000 for _ in 1:N for (T,UIntT) in zip([Float16,Float32,Float64], [UInt16,UInt32,UInt64]) for k in 1:9 x = randn(T) xr = shave(x,k) @test abs(xr) <= abs(x) xr = set_one(x,k) @test abs(xr) >= abs(x) end end end end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
790
@testset "Signed/biased exponent idempotence" begin for T in (Float16,Float32,Float64) for _ in 1:100 A = [reinterpret(T,rand(Base.uinttype(T)))] # call functions with array but evaluated only the element of it # with === to allow to nan equality too @test A[1] === biased_exponent(signed_exponent(A))[1] # and for scalars a = reinterpret(T,rand(Base.uinttype(T))) @test a === biased_exponent(signed_exponent(a)) end # special cases 0, NaN, Inf @test [zero(T)] == biased_exponent(signed_exponent([zero(T)])) @test isnan(biased_exponent(signed_exponent([T(NaN)]))[1]) @test isinf(biased_exponent(signed_exponent([T(Inf)]))[1]) end end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
code
1403
@testset "XOR reversibility UInt" begin for T in (UInt8,UInt16,UInt32,UInt64) A = rand(T,1000) @test A == unxor_delta(xor_delta(A)) @test A == xor_delta(unxor_delta(A)) B = copy(A) xor_delta!(A) unxor_delta!(A) @test B == A unxor_delta!(A) xor_delta!(A) @test B == A end end @testset "XOR reversibility Float" begin for T in (Float32,Float64) A = rand(T,1000) @test A == unxor_delta(xor_delta(A)) @test A == xor_delta(unxor_delta(A)) end end @testset "UInt: Backtranspose of transpose" begin for T in (UInt8,UInt16,UInt32,UInt64) for s in (10,999,2048,9999,123123) A = rand(T,s) @test A == bitbacktranspose(bittranspose(A)) end end end @testset "Float: Backtranspose of transpose" begin for T in (Float32,Float64) for s in (10,999,2048,9999,123123) A = rand(T,s) @test A == bitbacktranspose(bittranspose(A)) end end end @testset "N-dimensional arrays" begin A = rand(UInt32,123,234) @test A == bitbacktranspose(bittranspose(A)) A = rand(UInt32,12,23,34) @test A == bitbacktranspose(bittranspose(A)) A = rand(Float32,123,234) @test A == bitbacktranspose(bittranspose(A)) A = rand(Float32,12,23,34) @test A == bitbacktranspose(bittranspose(A)) end
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
docs
2352
# BitInformation.jl [![CI](https://github.com/milankl/BitInformation.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/milankl/BitInformation.jl/actions/workflows/CI.yml) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://milankl.github.io/BitInformation.jl/dev) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4774191.svg)](https://doi.org/10.5281/zenodo.4774191) BitInformation.jl is a package for bitwise information analysis and manipulation in Julia arrays. Based on counting the occurrences of bits in floats (or generally any bits type) across various dimensions, this package calculates quantities like the bitwise real information content, the mutual information, the redundancy or preserved information between arrays. From v0.5 onwards masked arrays are also supported. For bitwise manipulation, BitInformation.jl also implements various rounding modes (IEEE round,shave,set_one, etc.) efficiently with bitwise operations for any number of bits. E.g. `round(x,i)` implements IEEE's round to nearest tie-to-even for any float retaining `i` mantissa bits. Furthermore, transormations like XOR-delta, bittranspose (aka bit shuffle), or signed/biased exponents are implemented. If you'd like to propose changes, or contribute in any form create a [pull request](https://github.com/milankl/BitInformation.jl/pulls) or raise an [issue](https://github.com/milankl/BitInformation.jl/issues). Contributions are highly appreciated! ## Functionality For an overview of the functionality and explanation see the [documentation](https://milankl.github.io/BitInformation.jl/dev). ## Installation BitInformation.jl is registered in the Julia Registry, so just do ``` julia>] add BitInformation ``` where `]` opens the package manager. The latest version is automatically installed. ## Funding This project is funded by the [Copernicus Programme](https://www.copernicus.eu/en/copernicus-services/atmosphere) through the [ECMWF summer of weather code 2020 and 2021](https://esowc.ecmwf.int/) ## Reference If you use this package, please cite the following publication > M Klöwer, M Razinger, JJ Dominguez, PD Düben and TN Palmer, 2021. *Compressing atmospheric data into its real information content*. **Nature Computational Science** 1, 713–724. [10.1038/s43588-021-00156-2](https://doi.org/10.1038/s43588-021-00156-2)
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
docs
14599
# Bitwise information content analysis ## Bit pattern entropy An $n$-bit number format has $2^n$ bit patterns available to encode a real number. For most data arrays, not all bit pattern occur at equal probability. The bit pattern entropy is the [Shannon information entropy](https://en.wikipedia.org/wiki/Entropy_(information_theory)) $H$, in units of bits, calculated from the probability $p_i$ of each bit pattern ```math H = -\sum_{i=1}^{2^n}p_i \log_2(p_i) ``` The bitpattern entropy is $H \leq n$ and maximised to $n$ bits for a uniform distribution, i.e. all bit pattern occur equally frequent. The free entropy $H_f$ is the difference $n-H$. In BitInformation.jl, the bitpattern entropy is calculated via `bitpattern_entropy(::AbstractArray)` ```julia julia> A = rand(Float32,100000000) .+ 1; julia> bitpattern_entropy(A) 22.938590744784577 ``` Here, the entropy is about 23 bit, meaning that `9` bits are effectively unused. This is because all elements of A are in `[1,2)`, so that the sign and exponent bits are always `0 01111111` followed by 23 random significant bits, each contributing about 1 bit. !!! note "Implementation details" The function `bitpattern_entropy` is based on sorting the array `A`. While this avoids the allocation of a bitpattern histogram (which would make the function unsuitable for anything larger than 32 bits) it has to allocate a sorted version of `A`. If you don't mind the sorting in-place use `bitpattern_entropy!(::AbstractArray)`. ## Bit count entropy The Shannon information entropy $H$, in unit of bits, takes for a bitstream $b=b_1b_2...b_k...b_l$, i.e. a sequence of bits of length $l$, the form ```math H(b) = -p_0 \log_2(p_0) - p_1\log_2(p_1) ``` with $p_0,p_1$ being the probability of a bit $b_k$ in $b$ being 0 or 1. The entropy is maximised to 1 bit for equal probabilities $p_0 = p_1 = \tfrac{1}{2}$ in $b$. The function `bitcount(A::Array)` counts all occurences of the 1-bit in every bit-position in every element of `A`. E.g. ```julia julia> bitstring.(A) # 5-element Vector{UInt8} 5-element Array{String,1}: "10001111" "00010111" "11101000" "10100100" "11101011" julia> bitcount(A) 8-element Array{Int64,1}: 4 # number of 1-bits in the first bit of UInt8 2 # in the second bit position 3 # etc. 1 3 3 3 3 ``` The first bit of elements (here: `UInt8`) in `A` is 4x `1` and hence 1x `0`. In contrast, elements drawn from a uniform distribution U(0,1) ```julia julia> A = rand(Float32,100000); julia> bitcount(A) 32-element Array{Int64,1}: 0 0 100000 100000 ⋮ 37411 25182 0 ``` have never a sign bit that is `1`, but the 2nd and third exponent bit is always `1`. The last significant bits in `rand` do not occur at 50% chance, which is due to the pseudo-random number generator (see a discussion [here](https://sunoru.github.io/RandomNumbers.jl/dev/man/basics/#Conversion-to-Float)). Once the bits in an array are counted, the respective probabilities $p_0,p_1$ can be calculated and the entropy derived. The function `bitcount_entropy(A::Array)` does that ```julia julia> A = rand(UInt8,100000); # entirely random bits julia> bitcount_entropy(A) 8-element Array{Float64,1}: # entropy is for every bit position ≈ 1 0.9999998727542938 0.9999952725717266 0.9999949724904816 0.9999973408228667 0.9999937649515901 0.999992796900212 0.9999970566115759 0.9999998958374157 ``` This converges to 1 for larger arrays. ## Bit pair count The `bitpair_count(A::AbstractArray,B::AbstractArray)` function returns a `nx2x2` array, with `n` being the number of bits elements of `A,B`. The array contains counts the occurrences of bit pairs between A,B, i.e. `00`,`01`,`10`,`11` for all bit positions. E.g. ```julia julia> A = rand(UInt8,5) julia> B = rand(UInt8,5) julia> bitstring.(A) 5-element Array{String,1}: "01000010" "11110110" "01010110" "01111111" "00010100" julia> C = bitpair_count(A,B) julia> C[1,:,:] # bitpairs of A,B in 1st bit position 2×2 Matrix{Int64}: 2 1 1 1 ``` Here, among the 5 element pairs in `A,B` there are 2 which both have a `0` in the first bit position. One element pair is `01`, one `10` and one `11`. ## Mutual information The mutual information of two bitstreams (which can be, for example, two arrays, or adjacent elements in one array) $r = r_1r_2...r_k...r_l$ and $s = s_1s_2...s_k...s_l$ is defined via the joint probability mass function $p_{rs}$ which here takes the form of a 2x2 matrix ```math p_{rs} = \begin{pmatrix}p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} ``` with $p_{ij}$ being the probability that the bits are in the state $r_k=i$ and $s_k = j$ simultaneously and $p_{00}+p_{01}+p_{10}+p_{11} = 1$. The marginal probabilities follow as column or row-wise additions in $p_{rs}$, e.g. the probability that $r_k = 0$ is $p_{r=0} = p_{00} + p_{01}$. The mutual information $M(r,s)$ of the two bitstreams $r,s$ is then ```math M(r,s) = \sum_{r=0}^1 \sum_{s=0}^1 p_{rs} \log_2 \left( \frac{p_{rs}}{p_{r=r}p_{s=s}}\right) ``` The function `mutual_information(::AbstractArray,::AbstractArray)` calculates $M$ as ```julia julia> r = rand(Float32,100_000) # [0,1) random float32s julia> s = shave(r,15) # remove information in sbit 16-23 by setting to 0 julia> mutual_information(r,s) 32-element Vector{Float64}: 0.0 ⋮ 0.9999935941359982 # sbit 12: 1 bit of mutual information 0.9999912641753561 # sbit 13: same 0.9999995383375376 # sbit 14: same 0.9999954191498579 # sbit 15: same 0.0 # sbit 16: always 0 in s, but random in r: M=0 bits 0.0 # sbit 17: same 0.0 0.0 0.0 0.0 0.0 0.0 # sbit 23 ``` The mutual information approaches 1 bit for unchaged bits between `r,s`, but bits that have been shaved off do not contain any information, hence the mutual information also drops as there is no entropy to start with. ## Real bitwise information The mutual information of bits from adjacent bits is the `bitwise real information content` and derived as follows. For the two bitstreams $r,s$ being the preceding and succeeding bits (for example in space or time) in a single bitstream $b$, i.e. $r=b_1b_2...b_{l-1}$ and $s=b_2b_3...b_l$ the unconditional entropy is then effectively $H = H(r) = H(s)$ for $l$ being very large. We then can write the mutual information $M(r,s)$ between adjacent bits also as ```math I = H - q_0H_0 - q_1H_1 ``` which is the real information content $I$. This definition is similar to Jeffress et al. (2017) [^1], but avoids an additional assumption of an uncertainty measure. This defines the real information as the entropy minus the false information. For bitstreams with either $p_0 = 1$ or $p_1 = 1$, i.e. all bits are either 0 or 1, the entropies are zero $H = H_0 = H_1 = 0$ and we may refer to the bits in the bitstream as being unused. In the case where $H > p_0H_0 + p_1H_1$, the preceding bit is a predictor for the succeeding bit which means that the bitstream contains real information ($I > 0$). The computation of $I$ is implemented in `bitinformation(::AbstractArray)` ```julia julia> A = rand(UInt8,1000000) # fully random bits julia> bitinformation(A) 8-element Array{Float64,1}: 0.0 # real information = 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ``` The information of random uniform bits is 0 as the knowledge of a given bit does not provide any information for the succeeding bits. However, correlated arrays (which we achieve here by sorting) ```julia julia> A = rand(Float32,1000000) julia> sort!(A) julia> bitinformation(A) 32-element Vector{Float64}: 0.0 0.0 0.0 0.0 0.00046647589813905157 0.06406479945998214 0.5158447841492068 0.9704486460488391 0.9150881582169795 0.996120575536068 0.9931335810218149 ⋮ 0.15992667263039423 0.0460430997651915 0.006067325343418917 0.0008767479258913191 0.00033132201520535975 0.0007048623462190817 0.0025481588434255187 0.0087191715755926 0.028826838913308506 0.07469492765760763 0.0 ``` have only zero information in the sign (unused for random uniform distribution U(0,1)), and in the first exponent bits (also unused due to limited range) and in the last significant bit (flips randomly). The information is maximised to 1 bit for the last exponent and the first significant bits, as knowing the state of such a bit one can expect the next (or previous) bit to be the same due to the correlation. ## Multi-dimensional real information The real information content $I_m$ for an $m$-dimensional array $A$ is the sum of the real information along the dimensions. Let $b_j$ be a bitstream obtained by unravelling a given bitposition in along its $j$-th dimension. Although the unconditional entropy $H$ is unchanged along the $m$-dimensions, the conditional entropies $H_0,H_1$ change as the preceding and succeeding bit is found in another dimension, e.g. $b_2$ is obtained by re-ordering $b_1$. Normalization by $\tfrac{1}{m}$ is applied to $I_m$ such that the maximum information is 1 bit in $I_m^*$ ```math I_m^* = H - \frac{p_0}{m}\sum_{j=1}^mH_0(b_j) - \frac{p_1}{m}\sum_{j=1}^mH_1(b_j) ``` This is implemented in BitInformation.jl as `bitinformation(::AbstractArray,dim::int)`, e.g. ```julia julia> A = rand(Float32,100,200,300) # a 3D array julia> sort!(A,dims=2) # sort to create some auto-corelation julia> bitinformation(A,dim=2) # information along 2nd dimension 32-element Vector{Float64}: 0.9284529526801016 0.12117292341467487 0.12117292341467487 0.12117292341467487 0.12097216822084497 0.11085252207817117 0.31618374026691876 0.5342647349810241 0.44490628938885407 0.2420859244356707 0.08943278228929732 0.01870979798293037 0.00221913365831955 0.0 0.0 ⋮ 0.0 0.0 ``` The keyword `dim` will permute the dimensions in `A` to calcualte the information in the specified dimensions. By default `dim=1`, which uses the ordering of the bits as they are layed out in memory. ## Redundancy Redundancy $R$ is defined as the symmetric normalised mutual information $M(r,s)$ ```math R(r,s) = \frac{2M(r,s)}{H(r) + H(s)} ``` `R` is the redundancy of information of $r$ in $s$ (and vice versa). $R = 1$ for identical bitstreams $r = s$, but $R = 0$ for statistically independent bitstreams. BitInformation.jl implements the redundancy calculation via `redundancy(::AbstractArray,::AbstractArray)` where the inputs have to be of same size and element type. For example, shaving off some of the last significant bits will set the redundancy for those to 0, but redundancy is 1 for all bitstreams which are identical ```julia julia> r = rand(Float32,100_000) # random data julia> s = shave(r,7) # keep only sign, exp and sbits 1-7 julia> redundancy(r,s) 32-element Vector{Float64}: 1.0 # redundancy 1 as bitstreams are identical 1.0 1.0 1.0 0.9999999999993566 # rounding errors can yield ≈1 0.9999999999999962 1.0 1.0000000000000002 ⋮ 0.0 # redundancy 0 as information lost in shave 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ``` ## Preserved information The preserved information $P(r,s)$ between two bitstreams $r,s$ where $s$ approximates $r$ is the information-weighted redundancy $I$ ```math P(r,s) = R(r,s)I(r) ``` The information loss $L$ is $1-P$ and represents the unpreserved information of $r$ in $s$. In most cases we are interested in the preserved information of an array $X = (x_1,x_2,...,x_q,...,x_n)$ of bitstreams when approximated by a previously compressed array $Y = (y_1,y_2,...,y_q,...,y_n)$. For an array $A$ of floats with $n=32$ bit, for example, $x_1 is the bitstream of all sign bits unravelled along a given dimension (e.g. longitudes) and $x_{32}$ is the bitstream of the last mantissa bits. The redundancy $R(X,Y)$ and the real information $I(X)$ is then calculated for each bit position $q$ individually, and the preserved information $P$ is the redundancy-weighted mean of the real information in $X$ ```math P(X,Y) = \frac{\sum_{q=1}^n R(x_q,y_q)I(x_q)}{\sum_{q=1}^n I(x_q)} ``` The quantity $\sum_{q=1}^n I(x_q)$ is the total information in $X$ and therefore also in $A$. The redundancy is $R=1$ for bits that are unchanged during rounding and $R=0$ for bits that are round to zero. Example ```julia julia> r = rand(Float32,100_000) # random bits julia> sort!(r) # sort to introduce auto-correlation & statistical dependence of bits julia> s = shave(r,7) # s is an approximation to r, shaving off sbits 8-23 julia> R = redundancy(r,s) julia> I = bitinformation(r) julia> P = (R'*I)/sum(I) # preserved information of r in s 0.9087255894613658 # = 91% ``` ## Significance of information For an entirely independent and approximately equal occurrence of bits in a bitstream of length $l$, the probabilities $p_0,p_1$ of a bit being 0 or 1 approach $p_0\approxp_1\approx\tfrac{1}{2}$, but they are in practice not equal for $l < \infty$. Consequently, the entropy is smaller than 1, but only insignificantly. The probability $p_1$ of successes in the binomial distribution (with parameter $p=\tfrac{1}{2}$) with $l$ trials (using the normal approximation for large $l$) is ```math p_1 = \frac{1}{2} + \frac{z}{2\sqrt{l}} ``` where $z$ is the $1-\tfrac{1}{2}(1-c)$ quantile at confidence level $c$ of the standard normal distribution. For $c=0.99$, corresponding to a 99%-confidence level which is used as default here, $z=2.58$ and for $l=10^7$ a probability $\tfrac{1}{2} \leq p \leq p_1 = 0.5004$ is considered insignificantly different from equal occurrence $p_0 = p_1$. This is implemented as `binom_confidence(l,c)` ```julia julia> BitInformation.binom_confidence(10_000_000,0.99) 0.500407274373151 ``` The associated free entropy $H_f$ in units of bits follows as ```math H_f = 1 - p_1\log_2(p_1) - (1-p_1)\log_2(1-p_1) ``` And we consider real information below $H_f$ as insignificantly different from 0 and set the real information $I = 0$. The calculation of $H_f$ is implemented as `binom_free_entropy(l,c,base=2)` ```julia julia> BitInformation.binom_free_entropy(10_000_000,0.99) 4.786066739592698e-7 ``` ## References [^1]: Jeffress, S., Düben, P. & Palmer, T. _Bitwise efficiency in chaotic models_. *Proc. R. Soc. Math. Phys. Eng. Sci.* 473, 20170144 (2017).
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
docs
1446
# Index of functions in BitInformation.jl ### Information ```@docs BitInformation.bitinformation BitInformation.mutual_information BitInformation.redundancy ``` ### Bit counting and entropy ```@docs BitInformation.bitpattern_entropy BitInformation.bitpattern_entropy! BitInformation.bitcount BitInformation.bitcount_entropy BitInformation.bitpair_count ``` ### Significance of information ```@docs BitInformation.binom_confidence BitInformation.binom_free_entropy ``` ### Transformations ```@docs BitInformation.bittranspose BitInformation.bitbacktranspose BitInformation.xor_delta BitInformation.xor_delta! BitInformation.unxor_delta BitInformation.unxor_delta! BitInformation.signed_exponent BitInformation.signed_exponent! BitInformation.biased_exponent BitInformation.biased_exponent! ``` ### Rounding ```@docs Base.round(::Base.IEEEFloat,::Integer) BitInformation.round! BitInformation.get_shift BitInformation.get_ulp_half BitInformation.get_keep_mask BitInformation.get_bit_mask Base.iseven(::Base.IEEEFloat,::Integer) Base.isodd(::Base.IEEEFloat,::Integer) ``` ### Shaving, halfshaving, setting and bit grooming ```@docs BitInformation.shave BitInformation.shave! BitInformation.halfshave BitInformation.halfshave! BitInformation.set_one BitInformation.set_one! BitInformation.groom! BitInformation.nsb ``` ### Printing and BitArray conversion ```@docs Base.bitstring(::Base.IEEEFloat,::Symbol) Base.BitArray(::Matrix) ```
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
docs
784
# BitInformation.jl documentation ## Overview [BitInformation.jl](https://github.com/milankl/BitInformation.jl) is a library for the analysis of bitwise information and bitwise manipulation in n-dimensional Julia arrays. ## Installation BitInformation.jl is registered in the Julia Registry, so just do ```julia julia>] add BitInformation ``` where `]` opens the package manager. The latest version is automatically installed. ## Developers BitInformation.jl is currently developed by [Milan Klöwer](https://github.com/milankl). Any contributions are always welcome. ## Funding This project is funded by the [Copernicus Programme](https://www.copernicus.eu/en/copernicus-services/atmosphere) through the [ECMWF summer of weather code 2020 and 2021](https://esowc.ecmwf.int/).
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
docs
5343
# Rounding Rounding generally replaces a value $x$ with an approximation $\hat{x}$, which is from a smaller set of representable values (e.g. with fewer decimal or binary places of accuracy). Binary rounding removes the information in the $n$ last bits by setting them to 0 (or 1). Several rounding modes exist, and BitInformation.jl implements them efficiently with bitwise operations, in-place or by creating a copy of the original array. !!! tip "Bitstring split into sign, exponent and mantissa bits" BitInformation.jl extends `Base.bitstring` with a split option to better visualise sign, exponent and mantissa bits for floats. ```julia julia> bitstring(1.1f0) "00111111100011001100110011001101" julia> bitstring(1.1f0,:split) "0 01111111 00011001100110011001101" ``` ## Round to nearest With binary round to nearest a full-precision number is replaced by the nearest representable float with fewer mantissa bits by rounding the trailing bits to zero. BitInformation.jl implements this by extending Julia's `round` to `round(::Array{T},n::Integer)` where `T` either `Float32` or `Float64` and `n` the number of significant bits retained after rounding. Negative `n` are possible too, which will round even the exponent bits. Rounding ```julia julia> # bitwise representation (split in sign, exp, sig bits) of some random numbers julia> bitstring.(A,:split) 5-element Array{String,1}: "0 01111101 01001000111110101001000" "0 01111110 01010000000101001110110" "0 01111110 01011101110110001000110" "0 01111101 00010101010111011100000" "0 01111001 11110000000000000000101" ``` to `n=3` significant bits via `round(A,3)` yields ```julia julia> bitstring.(round(A,3),:split) 5-element Array{String,1}: "0 01111101 01000000000000000000000" "0 01111110 01100000000000000000000" # round up, flipping the third significant bit "0 01111110 01100000000000000000000" # same here "0 01111101 00100000000000000000000" # and here "0 01111010 00000000000000000000000" # note how the carry bits correctly carries into the exponent ``` This rounding function is IEEE compatible as it also implements tie-to-even, meaning that `01` which is exactly halway between `0` and `1` is round to `0` which is the *even* number (a bit sequence ending in a `0` is even). Similarly, `11` is round up to `100` and not down to `10`. Rounding to 1 signficant bit means that only `1,1.5,2,3,4,6...` are representable. ```julia julia> A = Float32[1.25,1.5,1.75] julia> bitstring.(A,:split) 3-element Vector{String}: "0 01111111 01000000000000000000000" "0 01111111 10000000000000000000000" "0 01111111 11000000000000000000000" julia> bitstring.(round(A,1),:split) 3-element Vector{String}: "0 01111111 00000000000000000000000" # 1.25 is tie between 1.0 and 1.5, round down to even "0 01111111 10000000000000000000000" # 1.5 is representable, no rounding "0 10000000 00000000000000000000000" # 1.75 is tie between 1.5 and 2.0, round up to even ``` ## Bit shave In contrast to round to nearest, `shave` will always round to zero by *shaving* the trailing significant bits off (i.e. set them to zero). This rounding mode therefore introduces a bias towards 0 and the rounding error can be twice as large as for round to nearest. ```julia julia> bitstring.(shave(A,3),:split) 5-element Array{String,1}: "0 01111101 01000000000000000000000" # identical to round here "0 01111110 01000000000000000000000" # round down here, whereas `round` would round up "0 01111110 01000000000000000000000" "0 01111101 00000000000000000000000" "0 01111001 11100000000000000000000" # no carry bit for `shave` ``` ## Bit set Similar to `shave`, `set_one` will always set the trailing significant bits to `1`. This rounding mode therefore introduces a bias away from 0 and the rounding error can be twice as large as for round to nearest. ```julia julia> bitstring.(set_one(A,3),:split) 5-element Array{String,1}: "0 01111101 01011111111111111111111" # all trailing bits are always 1 "0 01111110 01011111111111111111111" "0 01111110 01011111111111111111111" "0 01111101 00011111111111111111111" "0 01111001 11111111111111111111111" ``` ## Bit groom Combining `shave` and `set_one`, by alternating both removes the bias from both. This method is called *grooming* and is implemented via the `groom` function ```julia julia> bitstring.(groom(A,3),:split) 5-element Array{String,1}: "0 01111101 01000000000000000000000" # shave "0 01111110 01011111111111111111111" # set to one "0 01111110 01000000000000000000000" # shave "0 01111101 00011111111111111111111" # etc. "0 01111001 11100000000000000000000" ``` ## Bit halfshave Another way to remove the bias from `shave` is to replace the trailing significant bits with `100...` which is equivalent to round to nearest, but uses representable values that are always halfway between. This also removes the bias of `shave` or `set_one` and yields on average a rounding error that is as large as from round to nearest ```julia julia> bitstring.(halfshave(A,3),:split) 5-element Array{String,1}: "0 01111101 01010000000000000000000" # set all discarded bits to 1000... "0 01111110 01010000000000000000000" "0 01111110 01010000000000000000000" "0 01111101 00010000000000000000000" "0 01111001 11110000000000000000000" ```
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
0.6.3
2cf994e66a0886a91ba108cb3cfc044363f0bb01
docs
5458
# Bit transformations BitInformation.jl implements several bit transformations, meaning reversible, bitwise operations on scalars or arrays that reorder or transform the bits. This is often used to pre-process the data to make it more suitable for lossless compression algorithms. !!! warning "Interpretation of transformed floats" BitInformation.jl will not store the information that a transformation was applied to a value. This means that Julia will not know about this and interpret/print a value incorrectly. You will have to explicitly execute the backtransform (and know which one!) to undo the transformation ```julia julia> A = [0f0,1f0] # 0 and 1 julia> At = bittranspose(A) # are transposed into 1f-35 and 0 2-element Vector{Float32}: 1.0026967f-35 0.0 julia> bitbacktranspose(At) # reverse transpose 2-element Vector{Float32}: 0.0 1.0 ``` ## Bit transpose (aka shuffle) Bit shuffle operations re-order the bits or bytes in an array, such that bits or each element in that array are placed next to each other in memory. Despite the name, this operation is often called "shuffle", although there is nothing random about this, and it is perfectly reversible. Here, we call it bit transpose, as for an array with $n$ elements of each $n$ bits, this is equivalent to the matrix tranpose ```julia julia> A = rand(UInt8,8); julia> bitstring.(A) 8-element Array{String,1}: "10101011" "11100000" "11010110" "10001101" "10000010" "00011110" "11111100" "00011011" julia> At = bittranspose(A); julia> bitstring.(At) 8-element Array{String,1}: "11111010" "01100010" "11000010" "00100111" "10010111" "00110110" "10101101" "10010001" ``` In general, we can bittranspose $n$-element arrays with $m$ bits bits per element, which corresponds to a reshaped transpose. For floats, bittranspose will place all the sign bits next to each other in memory, then all the first exponent bits and so on. Often this creates a better compressible array, as bits with similar meaning (and often the same state in correlated data) are placed next to each other. ```julia julia> A = rand(Float32,10); julia> Ar = round(A,7); julia> bitstring.(bittranspose(Ar)) 10-element Array{String,1}: "00000000000000000000111111111111" "11111111111111111111111111111011" "11111101100001011100111010000001" "00111000001010001010100111101001" "00000101011101110110000101100010" "00000000000000000000000000000000" "00000000000000000000000000000000" "00000000000000000000000000000000" "00000000000000000000000000000000" "00000000000000000000000000000000" ``` Now all the sign bits are in the first row, and so on. Using `round` means that all the zeros from rounding are now placed at the end of the array. The `bittranspose` function can be reversed by `bitbacktranspose`: ```julia julia> A = rand(Float32,123,234); julia> A == bitbacktranspose(bittranspose(A)) true ``` Both accept arrays of any shape for `UInt`s as well as floats. ## XOR delta Instead of storing every element in an array as itself, you may want to store the difference to the previous value. For bits this "difference" generalises to the reversible xor-operation. The `xor_delta` function applies this operation to a `UInt` or `Float` array: ```julia julia> A = rand(UInt16,4) 4-element Array{UInt16,1}: 0x2569 0x97d2 0x7274 0x4783 julia> xor_delta(A) 4-element Array{UInt16,1}: 0x2569 0xb2bb 0xe5a6 0x35f7 ``` And is reversible with `unxor_delta`. ``` julia> A == unxor_delta(xor_delta(A)) true ``` This method is interesting for correlated data, as many bits will be 0 in the XORed array: ```julia julia> A = sort(1 .+ rand(Float32,100000)); julia> Ax = xor_delta(A); julia> bitstring.(Ax) 100000-element Array{String,1}: "00111111100000000000000000000101" "00000000000000000000000010110011" "00000000000000000000000000001000" "00000000000000000000000001101110" "00000000000000000000000101101001" "00000000000000000000000001101100" "00000000000000000000001111011000" "00000000000000000000000010001101" ⋮ ``` ## Signed exponent IEEE Floating-point numbers have a biased exponent. There are [other ways to encode the exponent](https://en.wikipedia.org/wiki/Signed_number_representations#Comparison_table) and BitInformation.jl implements `signed_exponent` which transforms the exponent bits of a float into a representation where also the exponent has a sign bit (which is the first exponent bit) ```julia julia> a = [0.5f0,1.5f0] # smaller than 1 (exp sign -1), larger than 1 (exp sign +1) julia> bitstring.(a,:split) 2-element Vector{String}: "0 01111110 00000000000000000000000" # biased exponent: 2^(e-bias) = 2^-1 here "0 01111111 10000000000000000000000" # biased exponent: 2^(e-bias) = 2^0 here julia> bitstring.(signed_exponent(a),:split) 2-element Vector{String}: "0 10000001 00000000000000000000000" # signed exponent: sign=1, magnitude=1, i.e. 2^-1 "0 00000000 10000000000000000000000" # signed exponent: sign=0, magnitude=0, i.e. 2^0 ``` The transformation `signed_exponent` can be undone with `biased_exponent` ```julia julia> A = 0.5f0,1.5f0] 2-element Vector{Float32}: 0.5 1.5 julia> signed_exponent(A) 2-element Vector{Float32}: 4.0 5.877472f-39 julia> biased_exponent(signed_exponent(A)) 2-element Vector{Float32}: 0.5 1.5 ``` Both `signed_exponent` and `biased_exponent` also exist as in-place functions `signed_exponent!` and `biased_exponent!`.
BitInformation
https://github.com/milankl/BitInformation.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
232
using Documenter, BEAST makedocs( clean=false, sitename="BEAST Documentation") deploydocs( # deps = Deps.pip("mkdocs", "python-markdown-math"), repo = "github.com/krcools/BEAST.jl.git", # julia = "1.0", )
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
3608
using CompScienceMeshes using BEAST Faces = meshsphere(1.0, 0.35) Edges = skeleton(Faces,1) faces = barycentric_refinement(Faces) edges = skeleton(faces,1) # verts = skeleton(faces,0) E = 1 Edge = cells(Edges)[1] port_idx = numvertices(Faces) + E ptch_idx = Edge[1] # patch = Mesh(vertices(faces), filter(c -> ptch_idx in c, cells(faces))) patch_idcs = Int[] for (i,face) in enumerate(cells(faces)) if ptch_idx in face push!(patch_idcs, i) end end ptch = Mesh(vertices(faces), cells(faces)[patch_idcs]) port = Mesh(vertices(edges), filter(c -> port_idx in c, cells(boundary(ptch)))) @show numcells(ptch) @show numcells(port) # D, C, d, c, d0, d1, # RT_int, RT_prt, x_int, x_prt = BEAST.buildhalfbc2(ptch, port, nothing) # # BF = BEAST.Shape{Float64}[] # for (m,bf) in enumerate(RT_int.fns) # for sh in bf # cellid = patch_idcs[sh.cellid] # BEAST.add!(BF,cellid, sh.refid, sh.coeff * x_int[m]) # end # end # # for (m,bf) in enumerate(RT_prt.fns) # for sh in bf # cellid = patch_idcs[sh.cellid] # BEAST.add!(BF,cellid, sh.refid, sh.coeff * x_prt[m]) # end # end # RT_prt = raviartthomas(patch, cellpairs(patch, port)) # Lx = lagrangecxd0(patch) # @assert numfunctions(Lx) == numcells(patch) # # Id = BEAST.Identity() # div_RT_prt = divergence(RT_prt) # Z, store = BEAST.allocatestorage(Id, Lx, div_RT_prt, Val{:bandedstorage}, BEAST.LongDelays{:ignore}) # BEAST.assemble_local_mixed!(Id, Lx, div_RT_prt, store) bcs3 = BEAST.buffachristiansen3(Faces) bcs2 = BEAST.buffachristiansen2(Faces) bcs1 = BEAST.buffachristiansen(Faces) rts = BEAST.raviartthomas(Faces) G1 = assemble(BEAST.NCross(), bcs1, rts) Q1 = assemble(BEAST.Identity(), divergence(bcs1), divergence(bcs1)) G2 = assemble(BEAST.NCross(), bcs2, rts) Q2 = assemble(BEAST.Identity(), divergence(bcs2), divergence(bcs2)) G3 = assemble(BEAST.NCross(), bcs3, rts) Q3 = assemble(BEAST.Identity(), divergence(bcs3), divergence(bcs3)) using LinearAlgebra @show cond(Matrix(G3)) using LinearAlgebra # @assert (numcells(Faces) - 1) == (size(Q,1) - rank(Q)) @assert cond(Matrix(G1)) < 3.5 function compress!(space) T = scalartype(space) for (i,fn) in pairs(space.fns) shapes = Dict{Tuple{Int,Int},T}() for shape in fn v = get(shapes, (shape.cellid, shape.refid), zero(T)) shapes[(shape.cellid, shape.refid)] = v + shape.coeff # set!(shapes, (shape.cellid, shape.refid), v + shape.coeff) end space.fns[i] = [BEAST.Shape(k[1], k[2], v) for (k,v) in shapes] end end getch(geo,i) = chart(geo, cells(geo)[i]) import PlotlyJS function showfn(space,i) geo = geometry(space) T = coordtype(geo) X = Dict{Int,T}() Y = Dict{Int,T}() Z = Dict{Int,T}() U = Dict{Int,T}() V = Dict{Int,T}() W = Dict{Int,T}() for sh in space.fns[i] chrt = chart(geo, cells(geo)[sh.cellid]) nbd = center(chrt) vals = refspace(space)(nbd) x,y,z = cartesian(nbd) @show vals[sh.refid].value u,v,w = vals[sh.refid].value # @show x, y, z # @show u, v, w X[sh.cellid] = x Y[sh.cellid] = y Z[sh.cellid] = z U[sh.cellid] = get(U,sh.cellid,zero(T)) + sh.coeff * u V[sh.cellid] = get(V,sh.cellid,zero(T)) + sh.coeff * v W[sh.cellid] = get(W,sh.cellid,zero(T)) + sh.coeff * w end X = collect(values(X)) Y = collect(values(Y)) Z = collect(values(Z)) U = collect(values(U)) V = collect(values(V)) W = collect(values(W)) PlotlyJS.cone(x=X,y=Y,z=Z,u=U,v=V,w=W) end
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1128
# If you want a scatter plot of the spectra, define `plotresults = true` # prior to running this script. using CompScienceMeshes, BEAST using LinearAlgebra Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) println("Mesh with $(numvertices(Γ)) vertices and $(numcells(Γ)) cells.") X = raviartthomas(Γ) Y = BEAST.buffachristiansen2(Γ) κ = ω = 1.0; γ = κ*im T = MWSingleLayer3D(γ) N = NCross() Txx = assemble(T,X,X); println("primal discretisation assembled.") Tyy = assemble(T,Y,Y); println("dual discretisation assembled.") Nxy = Matrix(assemble(N,X,Y)); println("duality form assembled.") iNxy = inv(Nxy); println("duality form inverted.") A = iNxy' * Tyy * iNxy * Txx @show cond(Txx) @show cond(Tyy) @show cond(A) wx, wy, wp = eigvals(Txx), eigvals(Tyy), eigvals(A); println("eigvals found.") (@isdefined plotresults) || (plotresults = false) if plotresults @eval begin using Plots plot() scatter!(wx,c=:blue,label="primal") scatter!(wy,c=:red,label="dual") scatter!(wp,c=:green,label="CMP") plot!(xlim=(-0.5,0.5),ylim=(-10.0,10.0)) end end
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1164
# If you want a scatter plot of the spectra, define `plotresults = true` # prior to running this script. using CompScienceMeshes, BEAST using LinearAlgebra # Γ = readmesh(joinpath(@__DIR__,"sphere2.in")) Γ = meshrectangle(1.0, 1.0, 0.2, 3) println("Mesh with $(numvertices(Γ)) vertices and $(numcells(Γ)) cells.") X = raviartthomas(Γ) Y = BEAST.buffachristiansen3(Γ) κ = ω = 1.0; γ = κ*im T = MWSingleLayer3D(γ) N = NCross() Txx = assemble(T,X,X); println("primal discretisation assembled.") Tyy = assemble(T,Y,Y); println("dual discretisation assembled.") Nxy = assemble(N,X,Y); println("duality form assembled.") iNxy = inv(Matrix(Nxy)); println("duality form inverted.") A = iNxy' * Tyy * iNxy * Txx @show cond(Matrix(Nxy)) @show cond(Txx) @show cond(Tyy) @show cond(A) wx, wy, wp = eigvals(Txx), eigvals(Tyy), eigvals(A); println("eigvals found.") (@isdefined plotresults) || (plotresults = false) if plotresults @eval begin using Plots plot() scatter!(wx,c=:blue,label="primal") scatter!(wy,c=:red,label="dual") scatter!(wp,c=:green,label="CMP") plot!(xlim=(-0.5,0.5),ylim=(-10.0,10.0)) end end
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1856
using BEAST using CompScienceMeshes using LinearAlgebra # define geometry & material parameters f₀= 3.0e6 # 3 GHz c = 3.0e8 ϵ₀ = 8.85418782e-12 μ₀ = 1.25663706e-6 ϵᵣ=1; μᵣ=1 l = w = 1.0 #Length and width of capacitor plates d = 0.1 #seperation of plates h = 1/12 #size of meshes ω = 2π*f₀ vₑ = c/sqrt(ϵᵣ) λₑ = vₑ/f₀ η = sqrt(μ₀*μᵣ/ϵ₀*ϵᵣ) κ = ω/vₑ println("wavenumber = ", κ) println("freq = ", f₀, " Hz") println("λ = ", λₑ, "m; l = ", l ,"m") # Build and mesh the structure Γ₁ = meshrectangle(l,w,h); CompScienceMeshes.translate!(Γ₁, point(0.0,0.0,d)) Γ₀ = meshrectangle(l,w,h) γ₁ = meshsegment(l, h, 3) CompScienceMeshes.translate!(γ₁, point(0.0,0.0,d)) γ₀ = meshsegment(l, h, 3) Γ = weld(Γ₁, Γ₀) # define the excitation V₀ = 1.0 f = ScalarTrace{typeof(V₀)}(p -> V₀) #define basis function RT = rt_ports(Γ,[γ₁,γ₀]) # define the equations @hilbertspace j @hilbertspace k T = MWSingleLayer3D(im*κ) trc = X->ntrace(X,γ₁) EFIE = @varform η*T[k,j] == f[trc(k)] # discretise & solve the equation efie = @discretise EFIE j∈RT k∈RT u = solve(efie) #Calculate & plot face currents fcr,geo = facecurrents(u, RT); println("Face currents calculated") # patch_mat(geo, fcr); println("Facecurrents plotted") # Compute the Scalar Potential across the ports z = range(-0.5, stop=0.5, length=100) pts1 = point.(0.5,0.5,z) # pts1 = [point(0.5,0.5,a) for a in range(-0.5,stop=0.5,length=100)] volt = η*potential(MWSingleLayerPotential3D(κ), pts1, u, RT, type=ComplexF64) # Plot the Scalar potential using Plots Φ = real.(getindex.(volt,1)) display(plot(z,Φ,xlabel="height",ylabel="scalar potential",label="")) # Compare numerical capacitance with parallel plate approximation idx = getindex_rtg(RT) #get index of global RWG Q = norm(-u[idx]/(im*ω)) C = (ϵ₀*ϵᵣ*(l*w))/d println("Relative different w.r.t. large plate capacitance: ", 2*abs(Q-C)/abs(Q+C))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
3242
using BEAST using CompScienceMeshes using LinearAlgebra using SparseArrays import Plotly import Plots Plots.plotly() function Base.:+(a::S, b::S) where {S<:BEAST.Space} @assert geometry(a) == geometry(b) S(geometry(a), [a.fns; b.fns], [a.pos; b.pos]) end l = w = 1.0 #Length and width of capacitor plates d = 0.1 #seperation of plates h = 1/60 #size of meshes Γ₀ = meshrectangle(l,w,h) Γ₁ = CompScienceMeshes.translate(Γ₀, point(0.0,0.0,d)) γ₀ = meshsegment(l,h,3) γ₁ = CompScienceMeshes.translate(γ₀, point(0.0,0.0,d)) Γ = weld(Γ₁, Γ₀) κ = 2pi / 100 V₀ = 1.0 f = ScalarTrace{typeof(V₀)}(p -> V₀) edges_all = skeleton(Γ, 1) edges_int = submesh(!in(boundary(Γ)), edges_all) on_γ₀ = overlap_gpredicate(γ₀) edges_pt0 = submesh(edges_all) do m, edge ch = chart(m, edge) return on_γ₀(ch) end on_γ₁ = overlap_gpredicate(γ₁) edges_pt1 = submesh(edges_all) do m, edge ch = chart(m, edge) return on_γ₁(ch) end RT_int = raviartthomas(Γ, edges_int) RT_pt0 = raviartthomas(Γ, edges_pt0) RT_pt1 = raviartthomas(Γ, edges_pt1) verts_pt0_int = submesh(!in(boundary(edges_pt0)), skeleton(edges_pt0,0)) verts_pt1_int = submesh(!in(boundary(edges_pt1)), skeleton(edges_pt1,0)) C0 = connectivity(verts_pt0_int, edges_pt0) C1 = connectivity(verts_pt1_int, edges_pt1) X = RT_int Y0 = RT_pt0 * C0 Y1 = RT_pt1 * C1 # This is ugly and will fail if the two ports are not equal... D = sparse(reshape([fill(+1.0, length(edges_pt0)); fill(-1.0, length(edges_pt1))],length(edges_pt0)+length(edges_pt1),1)) RT_pt = RT_pt0 + RT_pt1 Z = RT_pt * D @hilbertspace x y0 y1 z @hilbertspace ξ η0 η1 ζ T = Maxwell3D.singlelayer(wavenumber=κ) trc = X->ntrace(X,γ₁) efie = @discretise( @varform( T[ξ,x] + T[ξ,y0] + T[ξ,y1] + T[ξ,z] + T[η0,x] + T[η0,y0] + T[η0,y1] + T[η0,z] + T[η1,x] + T[η1,y0] + T[η1,y1] + T[η1,z] + T[ζ,x] + T[ζ,y0] + T[ζ,y1] + T[ζ,z] == f[trc(ζ)]), ξ∈X, η0∈Y0, η1∈Y1, ζ∈Z, x∈X, y0∈Y0, y1∈Y1, z∈Z) u = solve(efie) # assemble(efie.equation.rhs, efie.test_space_dict) # @enter assemble(efie.equation.rhs, X + Y0 + Y1 + Z) # assemble(efie.equation.lhs, efie.test_space_dict, efie.trial_space_dict) # You can access the current coefficients pertaining to subspaces # using the Hilbert space 'placeholder' @show length(u[x]) @show length(u[y0]) @show length(u[y1]) @show length(u[z]) S = (((X + Y0) + Y1) + Z) fcr, geo = facecurrents(u, S) Plotly.plot(patch(geo, norm.(fcr))) |> display # Compute the Scalar Potential across the ports. Note how a voltage # gap of 1V comes out as a 'natural' condition on the solution. zs = range(-0.5, stop=0.5, length=100) pts = [point(0.5,0.5,z) for z ∈ zs] Φ = potential(MWSingleLayerPotential3D(κ), pts, u, S; type=ComplexF64) Plots.plot(zs, real(Φ), xlabel="height",ylabel="scalar potential",label=false) |> display # Plot current along γ₀ and γ₁. Note: in this symmetric situation, we # expect these to be opposite on corresponding points of the two ports. # In general this is not true; in fact, the two ports could have different shape and size traceS0 = ntrace(S, γ₀) traceS1 = ntrace(S, γ₁) fcr0, geo0 = facecurrents(u, traceS0) fcr1, geo1 = facecurrents(u, traceS1) Plots.plot() Plots.plot!(imag.(fcr0)) Plots.plot!(imag.(fcr1)) |> display
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1004
using CompScienceMeshes, BEAST o, x, y, z = euclidianbasis(3) Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) X, Y = raviartthomas(Γ), buffachristiansen(Γ) Δt ,Nt = 0.3, 200 T = timebasisshiftedlagrange(Δt, Nt, 2) δ = timebasisdelta(Δt, Nt) V = X ⊗ T W = Y ⊗ δ duration = 20 * Δt * 2 delay = 1.5 * duration amplitude = 1.0 gaussian = derive(creategaussian(duration, delay, amplitude)) direction, polarisation = ẑ, x̂ Ė = BEAST.planewave(polarisation, direction, gaussian, 1.0) Ḣ = direction × Ė @hilbertspace j @hilbertspace k K̇ = TDMaxwell3D.doublelayer(speedoflight=1.0, numdiffs=1) Nİ = BEAST.TemporalDifferentiation(NCross()⊗Identity()) @hilbertspace k @hilbertspace j mfie_dot = @discretise (0.5*Nİ)[k,j] + K̇[k,j] == -1.0Ḣ[k] k∈W j∈V xmfie_dot = BEAST.motsolve(mfie_dot) # Xmfie, Δω, ω0 = fouriertransform(xmfie, Δt, 0.0, 2) # ω = collect(ω0 .+ (0:Nt-1)*Δω) # _, i1 = findmin(abs.(ω .- 1.0)) # # ω1 = ω[i1] # um = Xmfie[:,i1] / fouriertransform(gaussian)(ω1)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1774
using CompScienceMeshes using BEAST Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) X = raviartthomas(Γ) d = BEAST.CurlSingleLayerDP3D(1.0im, 1.0) s = Helmholtz3D.singlelayer(wavenumber=1.0) X = raviartthomas(Γ,BEAST.Continuity{:none}) Y = lagrangec0d1(Γ) x = refspace(X) y = refspace(Y) charts = [chart(Γ,c) for c in Γ] qs = BEAST.defaultquadstrat(s, x, x) qd = quaddata(s, x, x, charts, charts, qs) m1,m2 = 10,11 ql = quadrule(s, x, x, m1, charts[m1], m2, charts[m2], qd, qs) @show @which quadrule(s, x, x, m1, charts[m1], m2, charts[m2], qd, qs) @show typeof(ql) BEAST.momintegrals!(s, x, x, charts[10], charts[20], zeros(ComplexF64,3,3), ql) # sop = BEAST.singularpart(s) ctr = CompScienceMeshes.center(charts[m1]) # BEAST.momintegrals!(sop, ctr, x, x, charts[m1], charts[m1], zeros(3,3), ql, 1.0) dvg = divergence @hilbertspace j p @hilbertspace k q κ = 1.0 curlA = BEAST.ScalarTrace{ComplexF64}(((x,y,z),)->-exp(-im*κ*z)*ŷ) ndotA = BEAST.NDotTrace{ComplexF64}(((x,y,z),)->-x*exp(-im*κ*z)*ẑ) a = @varform s[k,j] + s[dvg(k),p] + s[q,dvg(j)] - κ^2*s[q,p] == curlA[k]+ndotA[q] Eq = @discretise a k∈X q∈Y j∈X p∈Y u = solve(Eq) # lform = Eq.equation.rhs # @which scalartype(lform.terms[2].functional.field) # @enter assemble(Eq.equation.rhs, Eq.test_space_dict) # assemble(Eq.equation.lhs, Eq.test_space_dict, Eq.trial_space_dict) # uj = u[1:numfunctions(X)] # up = u[numfunctions(X)+1:end] uj = u[j] up = u[p] xrange = range(-2.0, stop=2.0, length=40) # xrange = [0.0] # yrange = [0.0] zrange = range(-2.0, stop=2.0, length=40) pts = [point(x,0,z) for x ∈ xrange, z ∈ zrange] A1 = BEAST.DPVectorialTerm(1.0, 1.0*im) A2 = BEAST.DPScalarTerm(1.0, 1.0*im) p1 = potential(A1,pts,uj,X) p2 = potential(A2,pts,up,Y) p = p1 + p2
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1260
using CompScienceMeshes, BEAST using LinearAlgebra using Profile using StaticArrays function tau(x::SVector{U,T}) where {U,T} 1.0-1.0/4.0 end ntrc = X->ntrace(X,y) T = CompScienceMeshes.tetmeshsphere(1.0,0.25) X = nedelecd3d(T) y = boundary(T) @show numfunctions(X) ϵ, μ, ω = 1.0, 1.0, 1.0; κ, η = ω * √(ϵ*μ), √(μ/ϵ) ϵ_r =4.0 χ = tau K, I, B = VIE.singlelayer(wavenumber=κ, tau=χ), Identity(), VIE.boundary(wavenumber=κ, tau=χ) E = VIE.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) H = -1/(im*κ*η)*curl(E) @hilbertspace j @hilbertspace k α = 1.0/ϵ_r eq = @varform α*I[j,k]-K[j,k]-B[ntrc(j),k] == E[j] dbvie = @discretise eq j∈X k∈X u = solve(dbvie) #postprocessing Φ, Θ = [0.0], range(0,stop=2π,length=100) pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for θ in Θ for ϕ in Φ] ffd = potential(VIE.farfield(wavenumber=κ, tau=χ), pts, u, X) ff = im*κ*ffd using Plots #Farfield plot(xlabel="theta") plot!(Θ, norm.(ff), label="far field", title="D-VIE") #NearField Z = range(-1,1,length=100) Y = range(-1,1,length=100) nfpoints = [point(0,y,z) for y in Y, z in Z] Enear = BEAST.grideval(nfpoints,α.*u,X) Enear = reshape(Enear,100,100) contour(real.(getindex.(Enear,1))) heatmap(Z, Y, real.(getindex.(Enear,1)), clim=(0.0,1.0))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
452
using CompScienceMeshes using BEAST Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) X = raviartthomas(Γ) κ, η = 1.0, 1.0 t = Maxwell3D.singlelayer(wavenumber=κ) E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n @hilbertspace j @hilbertspace k efie = @discretise t[k,j]==e[k] j∈X k∈X u, ch = BEAST.gmres_ch(efie; restart=1500) include("utils/postproc.jl") include("utils/plotresults.jl")
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
432
using CompScienceMeshes using BEAST # Γ = readmesh(joinpath(@__DIR__,"sphere2.in")) Γ = meshsphere(radius=1.0, h=0.1) X = brezzidouglasmarini(Γ) κ = 1.0 t = Maxwell3D.singlelayer(wavenumber=κ) E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n @hilbertspace j @hilbertspace k efie = @discretise t[k,j]==e[k] j∈X k∈X u = gmres(efie) include("utils/postproc.jl") include("utils/plotresults.jl")
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1329
using CompScienceMeshes using BEAST Γ = CompScienceMeshes.meshrectangle(2.0, 2.0, 0.1; structured=:quadrilateral) edges = skeleton(Γ, 1) edges_bnd = boundary(Γ) pred = !in(edges_bnd) edges_int = submesh(pred, edges) c = CompScienceMeshes.connectivity(edges_int, Γ, identity) o = ones(length(edges_int)) X = raviartthomas(Γ, edges_int, c, o) @show numfunctions(X) κ, η = 1.0, 1.0 t = Maxwell3D.singlelayer(wavenumber=κ) E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n @hilbertspace j @hilbertspace k efie = @discretise t[k,j]==e[k] j∈X k∈X u, ch = BEAST.gmres_ch(efie; restart=1500) Φ, Θ = [0.0], range(0,stop=π,length=100) pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for ϕ in Φ for θ in Θ] ffd = potential(MWFarField3D(wavenumber=κ), pts, u, X) xs, y, zs = range(-4,stop=6,length=200), 1.0, range(-5,stop=5,length=200) gridpoints = [point(x,y,z) for z in zs, x in xs] nfd = potential(MWSingleLayerField3D(wavenumber = κ), gridpoints, u, X) # nfd = reshape(nfd, (nx,nz)) nfd .-= E.(gridpoints) import Plots using LinearAlgebra p1 = Plots.scatter(Θ, real.(norm.(ffd))) p2 = Plots.heatmap(-clamp.(real.(getindex.(nfd,1)), -3.0, 3.0), clims=(-3,3), colormap=:viridis) p3 = Plots.contour(-clamp.(real.(getindex.(nfd,1)), -3.0, 3.0), clims=(-3,3)) Plots.plot(p1,p2,p3,layout=(3,1))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
594
using CompScienceMeshes using BEAST #Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) Γ = meshsphere(radius=1.0, h=0.2) # Γ = CompScienceMeshes.meshmobius(h=0.035) X = BEAST.raviartthomas2(Γ) κ, η = 1.0, 1.0 t = Maxwell3D.singlelayer(wavenumber=κ) E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) # E = -η/(im*κ)*BEAST.CurlCurlGreen(κ, ẑ, point(2,0,0)) e = (n × E) × n @hilbertspace j @hilbertspace k efie = @discretise t[k,j]==e[k] j∈X k∈X u, ch = BEAST.gmres_ch(efie; restart=1500) include("utils/postproc.jl") include("utils/plotresults.jl")
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1244
using CompScienceMeshes, BEAST using LinearAlgebra using Profile using StaticArrays function tau(x::SVector{U,T}) where {U,T} 4.0-1.0 end ttrc = X->ttrace(X,y) T = CompScienceMeshes.tetmeshsphere(1.0,0.25) X = nedelecc3d(T) y = boundary(T) @show numfunctions(X) ϵ, μ, ω = 1.0, 1.0, 1.0; κ, η = ω * √(ϵ*μ), √(μ/ϵ) ϵ_r = 4.0 χ = tau K, I, B = VIE.singlelayer2(wavenumber=κ, tau=χ), Identity(), VIE.boundary2(wavenumber=κ, tau=χ) E = VIE.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) H = -1/(im*κ*η)*curl(E) @hilbertspace j @hilbertspace k α = ϵ_r eq = @varform α*I[j,k]-K[j,k]+B[ttrc(j),k] == E[j] evie = @discretise eq j∈X k∈X u = solve(evie) #postprocessing Φ, Θ = [0.0], range(0,stop=2π,length=100) pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for θ in Θ for ϕ in Φ ] ffe = potential(VIE.farfield(wavenumber=κ, tau=χ), pts, u, X) ff = ffe using Plots #Farfield plot(xlabel="theta") plot!(Θ, norm.(ff), label="far field", title="E-VIE") #Nearfield Z = range(-1,1,length=100) Y = range(-1,1,length=100) nfpoints = [point(0,y,z) for y in Y, z in Z] Enear = BEAST.grideval(nfpoints,u,X) Enear = reshape(Enear,100,100) contour(real.(getindex.(Enear,1))) heatmap(Z, Y, real.(getindex.(Enear,1)), clim=(0.0,1.0))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
5930
using CompScienceMeshes using BEAST using LinearAlgebra const Id = BEAST.Identity() function add!(fn, x, space) for (m,bf) in enumerate(space.fns) for sh in bf BEAST.add!(fn, sh.cellid, sh.refid, sh.coeff * x[m]) end end end function compress!(space) T = scalartype(space) for (i,fn) in pairs(space.fns) shapes = Dict{Tuple{Int,Int},T}() for shape in fn v = get(shapes, (shape.cellid, shape.refid), zero(T)) shapes[(shape.cellid, shape.refid)] = v + shape.coeff # set!(shapes, (shape.cellid, shape.refid), v + shape.coeff) end space.fns[i] = [BEAST.Shape(k[1], k[2], v) for (k,v) in shapes] end end import Plotly function showfn(space,i) geo = geometry(space) T = coordtype(geo) X = Dict{Int,T}() Y = Dict{Int,T}() Z = Dict{Int,T}() U = Dict{Int,T}() V = Dict{Int,T}() W = Dict{Int,T}() for sh in space.fns[i] chrt = chart(geo, cells(geo)[sh.cellid]) nbd = center(chrt) vals = refspace(space)(nbd) x,y,z = cartesian(nbd) # @show vals[sh.refid].value u,v,w = vals[sh.refid].value # @show x, y, z # @show u, v, w X[sh.cellid] = x Y[sh.cellid] = y Z[sh.cellid] = z U[sh.cellid] = get(U,sh.cellid,zero(T)) + sh.coeff * u V[sh.cellid] = get(V,sh.cellid,zero(T)) + sh.coeff * v W[sh.cellid] = get(W,sh.cellid,zero(T)) + sh.coeff * w end X = collect(values(X)) Y = collect(values(Y)) Z = collect(values(Z)) U = collect(values(U)) V = collect(values(V)) W = collect(values(W)) Plotly.cone(x=X,y=Y,z=Z,u=U,v=V,w=W) end Tetrs = CompScienceMeshes.tetmeshsphere(1.0, 0.45) tetrs = barycentric_refinement(Tetrs) bnd_Tetrs = boundary(Tetrs) bnd_tetrs = boundary(tetrs) # srt_bnd_Tetrs = sort.(bnd_Tetrs) # srt_bnd_tetrs = sort.(bnd_tetrs) Faces = submesh(!in(bnd_Tetrs), skeleton(Tetrs,2)) # Faces = submesh(Face -> !(sort(Face) in srt_bnd_Tetrs), skeleton(Tetrs,2)) @show length(Faces) F = 396 Face = cells(Faces)[F] pos = cartesian(CompScienceMeshes.center(chart(Faces, F))) supp1 = submesh((m,tet) -> Face[1] in CompScienceMeshes.indices(m,tet), tetrs.mesh) supp2 = submesh((m,tet) -> Face[2] in CompScienceMeshes.indices(m,tet), tetrs.mesh) supp3 = submesh((m,tet) -> Face[3] in CompScienceMeshes.indices(m,tet), tetrs.mesh) supp = CompScienceMeshes.union(supp1, supp2) supp = CompScienceMeshes.union(supp, supp3) # PlotlyJS.plot(patch(boundary(supp))) port = skeleton(supp1, 1) port = submesh(in(skeleton(supp2,1)), port) port = submesh(in(skeleton(supp3,1)), port) # port = submesh(edge -> sort(edge) in sort.(skeleton(supp2,1)), port) # port = submesh(edge -> sort(edge) in sort.(skeleton(supp3,1)), port) @show length(port) @assert 1 ≤ length(port) ≤ 2 dir = submesh(in(bnd_tetrs), boundary(supp)) # dir = submesh(face -> sort(face) in srt_bnd_tetrs, boundary(supp)) rim = boundary(dir) @show length(dir) # srt_port = sort.(port) # srt_dir_edges = sort.(skeleton(dir,1)) # srt_bnd_edges = sort.(skeleton(boundary(supp),1)) # srt_rim = sort.(rim) in_port = in(port) in_dir_edges = in(skeleton(dir,1)) in_bnd_edges = in(skeleton(boundary(supp),1)) in_rim = in(rim) int_edges = submesh(skeleton(supp,1)) do m,edge in_port(m,edge) && return false in_rim(m,edge) && return false in_dir_edges(m,edge) && return true in_bnd_edges(m,edge) && return false return true end # int_edges = submesh(skeleton(supp,1)) do edge # sort(edge) in srt_port && return false # sort(edge) in srt_rim && return false # sort(edge) in srt_dir_edges && return true # sort(edge) in srt_bnd_edges && return false # return true # end @show length(int_edges) @assert length(skeleton(supp,0)) - length(skeleton(supp,1)) + length(skeleton(supp,2)) - length(supp) == 1 Nd_prt = BEAST.nedelecc3d(supp, port) Nd_int = BEAST.nedelecc3d(supp, int_edges) @show numfunctions(Nd_int) x0 = ones(length(port)) / length(port) for (i,edge) in enumerate(port) tgt = tangents(CompScienceMeshes.center(chart(port,edge)),1) if dot(normal(chart(Faces,F)), tgt) < 0 x0[i] *= -1 end end curl_Nd_int = curl(Nd_int) A = Matrix(assemble(Id, curl_Nd_int, curl_Nd_int)) N = nullspace(A) @show size(N,2) a = -assemble(Id, curl_Nd_int, curl(Nd_prt)) * x0 x1 = pinv(A) * a # x1 = A \ a @show norm(N'*a) @show norm(A*x1-a) # srt_bnd_verts = sort.(skeleton(boundary(supp),0)) # srt_prt_verts = sort.(skeleton(port,0)) # int_verts = submesh(skeleton(supp,0)) do vert # sort(vert) in srt_bnd_verts && return false # sort(vert) in srt_prt_verts && return false # return true # end in_bnd_verts = in(skeleton(boundary(supp),0)) in_prt_verts = in(skeleton(port,0)) int_verts = submesh(skeleton(supp,0)) do m,vert in_bnd_verts(m,vert) && return false in_prt_verts(m,vert) && return false return true end @show length(int_verts) L0_int = lagrangec0d1(supp, int_verts) @show numfunctions(L0_int) grad_L0_int = BEAST.gradient(L0_int) @assert numfunctions(grad_L0_int) == numfunctions(L0_int) B = assemble(Id, grad_L0_int, Nd_int) freeze, store = BEAST.allocatestorage(Id, grad_L0_int, Nd_int, Val{:bandedstorage}, BEAST.LongDelays{:ignore}) BEAST.assemble_local_mixed!(Id, grad_L0_int, Nd_int, store) B2 = freeze() @assert isapprox(B, B2, atol=1e-8) @show rank(B2) b = -assemble(Id, grad_L0_int, Nd_prt) * x0 p = (B*N) \ (b-B*x1) x1 = x1 + N*p @show norm(A*x1-a) @show norm(B*x1-b) fn = BEAST.Shape{Float64}[] add!(fn, x0, Nd_prt) add!(fn, x1, Nd_int) Y1 = BEAST.NDLCCBasis(supp, [fn],[pos]) curlY1 = curl(Y1); compress!(curl(Y1)); include(joinpath(@__DIR__, "utils/edge_values.jl")) EV = edge_values(Y1,1) check_edge_values(EV) # error("stop") Dir = boundary(Tetrs) Y = BEAST.dual1forms(Tetrs, Faces, Dir) curlY = curl(Y) CC = assemble(Id, curlY, curlY) Plotly.plot(svdvals(Matrix(CC)))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
7755
using CompScienceMeshes using BEAST using LinearAlgebra const Id = BEAST.Identity() const Nx = BEAST.NCross() # function Base.in(mesh::CompScienceMeshes.AbstractMesh) # cells_mesh = sort.(mesh) # function f(cell) # sort(cell) in cells_mesh # end # end function add!(fn, x, space, idcs) for (m,bf) in enumerate(space.fns) for sh in bf cellid = idcs[sh.cellid] BEAST.add!(fn, cellid, sh.refid, sh.coeff * x[m]) end end end function compress!(space) T = scalartype(space) for (i,fn) in pairs(space.fns) shapes = Dict{Tuple{Int,Int},T}() for shape in fn v = get(shapes, (shape.cellid, shape.refid), zero(T)) shapes[(shape.cellid, shape.refid)] = v + shape.coeff end space.fns[i] = [BEAST.Shape(k[1], k[2], v) for (k,v) in shapes] end end import Plotly function showfn(space,i) geo = geometry(space) T = coordtype(geo) X = Dict{Int,T}() Y = Dict{Int,T}() Z = Dict{Int,T}() U = Dict{Int,T}() V = Dict{Int,T}() W = Dict{Int,T}() for sh in space.fns[i] chrt = chart(geo, cells(geo)[sh.cellid]) nbd = center(chrt) vals = refspace(space)(nbd) x,y,z = cartesian(nbd) u,v,w = vals[sh.refid].value X[sh.cellid] = x Y[sh.cellid] = y Z[sh.cellid] = z U[sh.cellid] = get(U,sh.cellid,zero(T)) + sh.coeff * u V[sh.cellid] = get(V,sh.cellid,zero(T)) + sh.coeff * v W[sh.cellid] = get(W,sh.cellid,zero(T)) + sh.coeff * w end X = collect(values(X)) Y = collect(values(Y)) Z = collect(values(Z)) U = collect(values(U)) V = collect(values(V)) W = collect(values(W)) Plotly.cone(x=X,y=Y,z=Z,u=U,v=V,w=W) end function extend_edge_to_face(supp, dirichlet, x_prt, port_edges) bnd_supp = boundary(supp) supp_edges = CompScienceMeshes.skeleton_fast(supp, 1) supp_nodes = CompScienceMeshes.skeleton_fast(supp, 0) dir_compl_edges = submesh(!in(dirichlet), bnd_supp) dir_compl_nodes = CompScienceMeshes.skeleton_fast(dir_compl_edges, 0) int_edges = submesh(!in(dir_compl_edges), supp_edges) int_nodes = submesh(!in(dir_compl_nodes), supp_nodes) Nd_prt = BEAST.nedelec(supp, port_edges) Nd_int = BEAST.nedelec(supp, int_edges) Lg_int = BEAST.lagrangec0d1(supp, int_nodes) curl_Nd_prt = divergence(n × Nd_prt) curl_Nd_int = divergence(n × Nd_int) grad_Lg_int = n × curl(Lg_int) A = assemble(Id, curl_Nd_int, curl_Nd_int) B = assemble(Id, grad_Lg_int, Nd_int) a = -assemble(Id, curl_Nd_int, curl_Nd_prt) * x_prt b = -assemble(Id, grad_Lg_int, Nd_prt) * x_prt Z = zeros(eltype(b), length(b), length(b)) u = [A B'; B Z] \ [a;b] x_int = u[1:end-length(b)] return x_int, int_edges, Nd_int end function extend_face_to_tetr(supp, dirichlet, x_prt, port_edges) bnd_supp = boundary(supp) supp_edges = CompScienceMeshes.skeleton_fast(supp, 1) supp_nodes = CompScienceMeshes.skeleton_fast(supp, 0) dir_compl_faces = submesh(!in(dirichlet), bnd_supp) dir_compl_edges = CompScienceMeshes.skeleton_fast(dir_compl_faces, 1) dir_compl_nodes = CompScienceMeshes.skeleton_fast(dir_compl_faces, 0) int_edges = submesh(!in(dir_compl_edges), supp_edges) int_nodes = submesh(!in(dir_compl_nodes), supp_nodes) Nd_prt = BEAST.nedelecc3d(supp, port_edges) Nd_int = BEAST.nedelecc3d(supp, int_edges) Lg_int = BEAST.lagrangec0d1(supp, int_nodes) curl_Nd_prt = curl(Nd_prt) curl_Nd_int = curl(Nd_int) grad_Lg_int = BEAST.gradient(Lg_int) A = assemble(Id, curl_Nd_int, curl_Nd_int) B = assemble(Id, grad_Lg_int, Nd_int) a = -assemble(Id, curl_Nd_int, curl_Nd_prt) * x_prt b = -assemble(Id, grad_Lg_int, Nd_prt) * x_prt Z = zeros(eltype(b), length(b), length(b)) u = [A B'; B Z] \ [a;b] x_int = u[1:end-length(b)] return x_int, int_edges, Nd_int end Tetrs = CompScienceMeshes.tetmeshsphere(1.0, 0.45) tetrs = barycentric_refinement(Tetrs) v2t, v2n = CompScienceMeshes.vertextocellmap(tetrs) Bnd = boundary(Tetrs) bnd = boundary(tetrs) Dir = Bnd dir = bnd Faces = submesh(!in(Bnd), CompScienceMeshes.skeleton_fast(Tetrs,2)) @show length(Faces) F = 396 Face = cells(Faces)[F] pos = cartesian(CompScienceMeshes.center(chart(Faces, F))) idcs1 = v2t[Face[1],1:v2n[Face[1]]] idcs2 = v2t[Face[2],1:v2n[Face[2]]] idcs3 = v2t[Face[3],1:v2n[Face[3]]] supp1 = tetrs.mesh[idcs1] supp2 = tetrs.mesh[idcs2] supp3 = tetrs.mesh[idcs3] dir1_faces = submesh(in(dir), boundary(supp1)) dir2_faces = submesh(in(dir), boundary(supp2)) dir3_faces = submesh(in(dir), boundary(supp3)) supp23 = submesh(in(boundary(supp2)), boundary(supp3)) supp31 = submesh(in(boundary(supp3)), boundary(supp1)) supp12 = submesh(in(boundary(supp1)), boundary(supp2)) dir23_edges = submesh(in(boundary(dir2_faces)), boundary(dir3_faces)) dir31_edges = submesh(in(boundary(dir3_faces)), boundary(dir1_faces)) dir12_edges = submesh(in(boundary(dir1_faces)), boundary(dir2_faces)) port_edges = boundary(supp23) port_edges = submesh(in(boundary(supp31)), port_edges) port_edges = submesh(in(boundary(supp12)), port_edges) @assert 1 ≤ length(port_edges) ≤ 2 # Step 1: set port flux and extend to dual faces x0 = ones(length(port_edges)) / length(port_edges) for (i,edge) in enumerate(port_edges) tgt = tangents(CompScienceMeshes.center(chart(port_edges, edge)),1) if dot(normal(chart(Faces, F)), tgt) < 0 x0[i] *= -1 end end x23, supp23_int_edges = extend_edge_to_face(supp23, dir23_edges, x0, port_edges) x31, supp31_int_edges = extend_edge_to_face(supp31, dir31_edges, x0, port_edges) x12, supp12_int_edges = extend_edge_to_face(supp12, dir12_edges, x0, port_edges) port1_edges = CompScienceMeshes.union(port_edges, supp31_int_edges) port1_edges = CompScienceMeshes.union(port1_edges, supp12_int_edges) port2_edges = CompScienceMeshes.union(port_edges, supp12_int_edges) port2_edges = CompScienceMeshes.union(port2_edges, supp23_int_edges) port3_edges = CompScienceMeshes.union(port_edges, supp23_int_edges) port3_edges = CompScienceMeshes.union(port3_edges, supp31_int_edges) x1_prt = [x0; x31; x12] x2_prt = [x0; x12; x23] x3_prt = [x0; x23; x31] Nd1_prt = BEAST.nedelecc3d(supp1, port1_edges) Nd2_prt = BEAST.nedelecc3d(supp2, port2_edges) Nd3_prt = BEAST.nedelecc3d(supp3, port3_edges) x1_int, _, Nd1_int = extend_face_to_tetr(supp1, dir1_faces, x1_prt, port1_edges) x2_int, _, Nd2_int = extend_face_to_tetr(supp2, dir2_faces, x2_prt, port2_edges) x3_int, _, Nd3_int = extend_face_to_tetr(supp3, dir3_faces, x3_prt, port3_edges) # inject in the global space fn = BEAST.Shape{Float64}[] add!(fn, x1_prt, Nd1_prt, idcs1) add!(fn, x1_int, Nd1_int, idcs1) add!(fn, x2_prt, Nd2_prt, idcs2) add!(fn, x2_int, Nd2_int, idcs2) add!(fn, x3_prt, Nd3_prt, idcs3) add!(fn, x3_int, Nd3_int, idcs3) pos = cartesian(CompScienceMeshes.center(chart(Faces, F))) space = BEAST.NDLCCBasis(tetrs, [fn], [pos]) tetrs, bnd, dir, v2t, v2n = BEAST.dualforms_init(Tetrs, Dir) D1 = BEAST.dual1forms_body(Faces, tetrs, bnd, dir, v2t, v2n) P2 = BEAST.nedelecd3d(Tetrs, Faces) # S = BEAST.dual1forms(Tetrs, Faces[collect(396:405)], Dir) Edges = CompScienceMeshes.skeleton_fast(Tetrs, 1) int_Edges = submesh(!in(skeleton(boundary(Tetrs),1)), Edges) P1 = BEAST.nedelecc3d(Tetrs, int_Edges) curl_D1 = curl(D1) curl_P1 = curl(P1) div_P2 = divergence(P2) G = assemble(Id, curl_D1, curl_D1) GP = assemble(Id, div_P2, div_P2) M = assemble(Id, D1, P2) CDP = assemble(Id, D1, curl_P1) CPD = CDP' GDD = assemble(Id, D1, D1) iM = inv(Matrix(M)) A1 = CPD * inv(Matrix(GDD)) * CDP; A2 = assemble(Id, curl_P1, curl_P1) A3 = CPD * iM' * inv(Matrix(GDD)) * iM * CDP;
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
7588
using CompScienceMeshes using BEAST using LinearAlgebra const Id = BEAST.Identity() function add!(fn, x, space) for (m,bf) in enumerate(space.fns) for sh in bf BEAST.add!(fn, sh.cellid, sh.refid, sh.coeff * x[m]) end end end function compress!(space) T = scalartype(space) for (i,fn) in pairs(space.fns) shapes = Dict{Tuple{Int,Int},T}() for shape in fn v = get(shapes, (shape.cellid, shape.refid), zero(T)) shapes[(shape.cellid, shape.refid)] = v + shape.coeff # set!(shapes, (shape.cellid, shape.refid), v + shape.coeff) end space.fns[i] = [BEAST.Shape(k[1], k[2], v) for (k,v) in shapes] end end Tetrs = CompScienceMeshes.tetmeshsphere(1.0, 0.15) tetrs = barycentric_refinement(Tetrs) cells_Bndry = [sort(c) for c in cells(skeleton(boundary(Tetrs),1))] Bnd = boundary(Tetrs) Neu = Bnd Dir = Mesh(vertices(Bnd), CompScienceMeshes.celltype(Bnd)[]) bnd = boundary(tetrs) neu = bnd dir = Mesh(vertices(bnd), CompScienceMeshes.celltype(bnd)[]) # srt_Dir = sort.(Dir) # Edges = submesh(skeleton(Tetrs,1)) do Edge # sort(Edge) in srt_Dir && return false # return true # end Edges = submesh(!in(Dir), skeleton(Tetrs,1)) # Edges = skeleton(Tetrs,1) # srt_bnd_Faces = sort.(boundary(Tetrs)) # srt_neu = sort.(neu) # Faces = submesh(skeleton(Tetrs,2)) do Face # !(sort(Face) in srt_bnd_Faces) # end # srt_bnd_Nodes = sort.(skeleton(boundary(Tetrs),0)) # Nodes = submesh(skeleton(Tetrs,0)) do node # !(sort(node) in srt_bnd_Nodes) # end Nodes = submesh(!in(skeleton(boundary(Tetrs),0)), skeleton(Tetrs,0)) @show numcells(Edges) # @show length(Faces) # pred = CompScienceMeshes.interior_tpredicate(Tetrs) # AllFaces = skeleton(Tetrs,2) # sm = submesh(pred, AllFaces) E = 1 Edge = cells(Edges)[E] pos = cartesian(CompScienceMeshes.center(chart(Edges, E))) # v = argmin(norm.(vertices(tetrs) .- Ref(pos))) support1 = submesh((m,tetr) -> Edge[1] in CompScienceMeshes.indices(m,tetr), tetrs.mesh) support2 = submesh((m,tetr) -> Edge[2] in CompScienceMeshes.indices(m,tetr), tetrs.mesh) # port = submesh(face -> v in face, boundary(support1)) # port2 = submesh(face -> v in face, boundary(support2)) # port = submesh(face -> sort(face) in sort.(boundary(support2)), boundary(support1)) port = submesh(in(boundary(support2)), boundary(support1)) # for p in port # @assert sort(p) in sort.(port2) # end @show length(port) support = CompScienceMeshes.union(support1, support2) @assert CompScienceMeshes.isoriented(support) @show length(support) @assert length(skeleton(support1,2)) + length(skeleton(support2,2)) == length(skeleton(support,2)) + length(port) edges = skeleton(support,1) # cells_bnd_edges = [sort(c) for c in skeleton(boundary(support),1)] # cells_prt_edges = [sort(c) for c in skeleton(port,1)] # cells_dir_edges = [sort(c) for c in skeleton(boundary(tetrs),1)] bnd_support = boundary(support) # cells_bnd_tetrs = sort.(boundary(tetrs)) # srt_dir = sort.(dir) # dir_cap_bnd = submesh(face -> sort(face) in sort.(dir), bnd_support) dir_cap_bnd = submesh(in(dir), bnd_support) # cells_bnd_dir_cap_bnd = sort.(boundary(dir_cap_bnd)) in_bnd_dir_cap_bnd = in(boundary(dir_cap_bnd)) in_dir_edges = in(skeleton(boundary(tetrs),1)) in_bnd_edges = in(skeleton(boundary(support),1)) in_prt_edges = in(skeleton(port,1)) int_edges = submesh(edges) do m,edge in_bnd_dir_cap_bnd(m,edge) && return false in_bnd_edges(m,edge) && return true in_dir_edges(m,edge) && return false in_prt_edges(m,edge) && return false return true end # int_edges = submesh(edges) do edge # sort(edge) in cells_bnd_dir_cap_bnd && return false # sort(edge) in cells_dir_edges && return true # sort(edge) in cells_bnd_edges && return false # sort(edge) in cells_prt_edges && return false # return true # end @show length(int_edges) Nd_int = BEAST.nedelecc3d(support, int_edges) Q = assemble(Id, Nd_int, Nd_int) freeze, store = BEAST.allocatestorage(Id, Nd_int, Nd_int, Val{:bandedstorage}, BEAST.LongDelays{:ignore}) BEAST.assemble_local_mixed!(Id, Nd_int, Nd_int, store) Q2 = freeze() @assert Q ≈ Q2 Q3 = assemble(Id, curl(Nd_int), curl(Nd_int)) rank(Q3) # cells_bnd_faces = [sort(c) for c in boundary(support)] # cells_prt_faces = [sort(c) for c in port] # srt_dir_cap_bnd = sort.(dir_cap_bnd) in_dir_cap_bnd = in(dir_cap_bnd) in_bnd_faces = in(boundary(support)) in_prt_faces = in(port) int_faces = submesh(skeleton(support,2)) do m,face in_dir_cap_bnd(m,face) && return true in_bnd_faces(m,face) && return false in_prt_faces(m,face) && return false return true end # int_faces = submesh(skeleton(support,2)) do face # # sort(face) in cells_bnd_tetrs && return true # sort(face) in srt_dir_cap_bnd && return true # sort(face) in cells_bnd_faces && return false # sort(face) in cells_prt_faces && return false # return true # end @show length(int_faces) @assert length(int_faces) + length(boundary(support)) + length(port) == length(skeleton(support,2)) + length(dir_cap_bnd) RT_int = BEAST.nedelecd3d(support, int_faces) for (m,fn) in enumerate(RT_int.fns) ct = count(sh -> sh.cellid <= length(support1), fn) # @show m, ct @assert 0 ≤ ct ≤ 2 end Q4 = assemble(Id, divergence(RT_int), divergence(RT_int)) numfunctions(RT_int) - rank(Q4) RT_prt = BEAST.nedelecd3d(support, port) for fn in RT_prt.fns @assert count(sh -> sh.cellid <= length(support1), fn) == 1 @assert count(sh -> sh.cellid > length(support1), fn) == 1 end Q5 = assemble(Id, divergence(RT_int), divergence(RT_int)) x0 = ones(length(port)) / length(port) tgt = vertices(Edges)[Edge[1]] - vertices(Edges)[Edge[2]] for (i,face) in enumerate(port) x0[i] *= sign(dot(normal(chart(port,face)), tgt)) # if RT_prt.fns[i][1].coeff < 0 # x0[i] *= -1 # end end Q6 = assemble(Id, divergence(RT_int), divergence(RT_prt)) d = -Q6 * x0 x1 = pinv(Matrix(Q5)) * d # L0 = lagrangecxd0(support) # Q7 = assemble(Id, L0, divergence(RT_int)) # Q8 = assemble(Id, L0, L0) # ch1 = [] # ch2 = [] # ch = [ch1; ch2] # x1 = pinv(Q7) * () fn = BEAST.Shape{Float64}[] add!(fn, x0, RT_prt) add!(fn, x1, RT_int) Y1 = BEAST.NDLCDBasis(support, [fn], [pos]) divY1 = divergence(Y1); compress!(divY1) import Plotly function showfn(space,i) geo = geometry(space) T = coordtype(geo) X = Dict{Int,T}() Y = Dict{Int,T}() Z = Dict{Int,T}() U = Dict{Int,T}() V = Dict{Int,T}() W = Dict{Int,T}() for sh in space.fns[i] chrt = chart(geo, cells(geo)[sh.cellid]) nbd = CompScienceMeshes.center(chrt) vals = refspace(space)(nbd) x,y,z = cartesian(nbd) # @show vals[sh.refid].value u,v,w = vals[sh.refid].value # @show x, y, z # @show u, v, w X[sh.cellid] = x Y[sh.cellid] = y Z[sh.cellid] = z U[sh.cellid] = get(U,sh.cellid,zero(T)) + sh.coeff * u V[sh.cellid] = get(V,sh.cellid,zero(T)) + sh.coeff * v W[sh.cellid] = get(W,sh.cellid,zero(T)) + sh.coeff * w end X = collect(values(X)) Y = collect(values(Y)) Z = collect(values(Z)) U = collect(values(U)) V = collect(values(V)) W = collect(values(W)) Plotly.cone(x=X,y=Y,z=Z,u=U,v=V,w=W) end # error("stop") Dir = Mesh(vertices(Tetrs), CompScienceMeshes.celltype(int_faces)[]) # error() tetrs, bnd, dir, v2t, v2n = BEAST.dualforms_init(Tetrs, Dir) Y = BEAST.dual2forms_body(Edges[collect(1:10)], tetrs, bnd, dir, v2t, v2n) # Y = BEAST.dual2forms(Tetrs, Edges, Dir) nothing
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
3759
using LinearAlgebra using CompScienceMeshes using BEAST include("utils/showfn.jl") Tetrs = CompScienceMeshes.meshball(radius=1.0, h=0.26) Faces = CompScienceMeshes.skeleton_fast(Tetrs, 2) Edges = CompScienceMeshes.skeleton_fast(Tetrs, 1) Nodes = CompScienceMeshes.skeleton_fast(Tetrs, 0) hemi = submesh(Tetrs) do m,Tetr cartesian(CompScienceMeshes.center(chart(Tetrs, Tetr)))[3] < 0 end bnd_Faces = boundary(Tetrs) bnd_Edges = CompScienceMeshes.skeleton_fast(bnd_Faces, 1) bnd_Nodes = CompScienceMeshes.skeleton_fast(bnd_Faces, 0) int_Faces = submesh(!in(bnd_Faces), Faces) int_Edges = submesh(!in(bnd_Edges), Edges) int_Nodes = submesh(!in(bnd_Nodes), Nodes) @show length(int_Edges) @show length(int_Faces) primal2 = BEAST.nedelecd3d(Tetrs, Faces) primal1 = BEAST.nedelecc3d(Tetrs, int_Edges) Dir = bnd_Faces Neu = submesh(!in(Dir), bnd_Faces) # tetrs, bnd, dir, v2t, v2n = BEAST.dualforms_init(Tetrs, Dir) # dual1 = BEAST.dual1forms_body(Faces, tetrs, bnd, dir, v2t, v2n) # error() dual2 = BEAST.dual2forms(Tetrs, int_Edges, Dir) dual1 = BEAST.dual1forms(Tetrs, Faces, Dir) @assert numfunctions(primal1) == numfunctions(dual2) @assert numfunctions(primal2) == numfunctions(dual1) Id = BEAST.Identity() G = assemble(Id, dual1, primal2) H = assemble(Id, dual2, primal1) TF = connectivity(Faces, Tetrs) FE = connectivity(int_Edges, Faces) EN = connectivity(int_Nodes, int_Edges) @show norm(G) @show norm(H) @show norm(TF*G*FE) @show norm(FE*H*EN) # A = assemble(Id, primal2, primal2) # B = assemble(Id, curl(primal1), curl(primal1)) # B2 = FE'*A*FE; # @show norm(B - B2) # EV = eigen(B) # idx = findfirst(abs.(EV.values) .> 1e-6) # u = real(EV.vectors[:,idx+1]) # primal1_hemi = restrict(primal1, hemi) # trace_primal1_hemi = BEAST.ttrace(primal1_hemi, boundary(hemi)) # fcr, geo = facecurrents(u, trace_primal1_hemi) # Plotly.plot(patch(geo, norm.(fcr))) # tetrs, bnd, dir, v2t, v2n = BEAST.dual1forms_init(Tetrs, Dir) # duals11 = BEAST.dual1forms_body(int_Faces[collect(1:10)], tetrs, bnd, dir, v2t, v2n) # Ggf = assemble(Id, dual1, primal2); Cgg = assemble(Id, dual1, curl(primal1)) # Cfg = Ggf \ Cgg; # Conn = Matrix(connectivity(int_Edges, Faces)) # @show norm(Cfg - Conn) Zpp = zeros(numfunctions(primal1), numfunctions(primal1)) Zdd = zeros(numfunctions(dual1), numfunctions(dual1)) ϵ = BEAST.Multiplicative(p -> 1.0) μ = BEAST.Multiplicative(p -> 1.0) Ipp = assemble(ϵ, primal1, primal1) Idd = assemble(μ, dual1, dual1, storage_policy=Val{:densestorage}) Zpd = zeros(numfunctions(primal1), numfunctions(dual1)) C = [Zpp Cgg'; -Cgg Zdd]; J = [Ipp Zpd; Zpd' Idd]; γ = 1.0 * im # P = inv(2J - C) * (2J + C); # Q = (2J - C) * inv(2J + C); jg = assemble(BEAST.ScalarTrace{eltype(x̂)}(p -> x̂), primal1) mG = zeros(numfunctions(dual1)) b = [jg; mG] u = (C - γ*J) \ b eg = u[1:numfunctions(primal1)] hG = u[numfunctions(primal1)+1:end] primal1_hemi = restrict(primal1, hemi) trace_primal1_hemi = BEAST.ttrace(primal1_hemi, boundary(hemi)) fcr, geo = facecurrents(eg, trace_primal1_hemi) Plotly.plot(patch(geo, norm.(fcr))) curl_primal1_hemi = BEAST.curl(primal1_hemi) ncurl_primal1_hemi = BEAST.ntrace(curl_primal1_hemi, boundary(hemi)) fcr, geo = facecurrents(eg, ncurl_primal1_hemi) Plotly.plot(patch(geo, norm.(fcr))) tetrs = geometry(dual1) bary_hemi = submesh(tetrs) do m,tetr cartesian(CompScienceMeshes.center(chart(tetrs, tetr)))[1] < 0 end dual1_hemi = restrict(dual1, bary_hemi) bnd_bary_hemi = boundary(bary_hemi) trace_dual1_hemi = BEAST.ttrace(dual1_hemi, bnd_bary_hemi) fcr, geo = facecurrents(hG, trace_dual1_hemi) Plotly.plot(patch(geo, norm.(fcr))) # tetrs, bnd, dir, v2t, v2n = BEAST.dualforms_init(Tetrs, Dir) # @profview BEAST.dual1forms_body(Faces[collect(1:10)], tetrs, bnd, dir, v2t, v2n)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
2441
using CompScienceMeshes using BEAST using SparseArrays tetrs = CompScienceMeshes.tetmeshsphere(1.0, 0.15) @show numcells(tetrs) bndry = boundary(tetrs) edges = skeleton(tetrs, 1) interior_edges = submesh(!in(skeleton(bndry,1)), edges) @assert numcells(interior_edges) + numcells(skeleton(bndry,1)) == numcells(edges) X = BEAST.nedelecc3d(tetrs, interior_edges) @assert numfunctions(X) == numcells(interior_edges) Id = BEAST.Identity() Y = curl(X) A1 = assemble(Id, Y, Y) A2 = assemble(Id, X, X) A = A1 - A2 using LinearAlgebra f = BEAST.ScalarTrace{typeof(x̂)}(x -> x̂) b = assemble(f, X) u = A \ b using Plots pts = [point(0.0,t,0.0) for t in range(-2,2,length=200)]; vals = BEAST.grideval(pts, u, X) vals2 = BEAST.grideval(pts, u, Y) vals2 = [point(0,1,0) × val for val in vals2] plot(getindex.(real(vals),1), m=1) plot(norm.(vals2), m=2) # Inspect the value of a single basis function p = 120 tet = chart(tetrs, p) nbd = neighborhood(tet, [0.5, 0.5, 0.0]) edg = simplex(tet.vertices[1], tet.vertices[2]) tgt = normalize(edg.vertices[2] - edg.vertices[1]) vals = refspace(X)(nbd) @assert dot(tgt,vals[1].value) ≈ 1/volume(edg) atol=1e-8 # check also the value of the raviart-thomas 3d in the center # of their defining face Z = BEAST.nedelecd3d(tetrs) @assert numfunctions(Z) == numcells(skeleton(tetrs,2)) fce = simplex(tet.vertices[2], tet.vertices[3], tet.vertices[4]) nbd_rt = neighborhood(tet, [0.0, 1/3, 1/3]) vals_rt = refspace(Z)(nbd_rt) # dot(vals_rt[1].value, normal(fce)) * volume(fce) o, x, y, z = euclidianbasis(3) @assert volume(simplex(x,y,z,o)) * 6 ≈ 1 G = boundary(tetrs) Z = BEAST.ttrace(curl(X), G) fcr, geo = facecurrents(u, Z) import Plotly Plotly.plot(patch(geo, norm.(fcr))) Dir = Mesh(vertices(tetrs), CompScienceMeshes.celltype(G)[]) # error("stop") Xplus = BEAST.nedelecc3d(tetrs, skeleton(tetrs,1)) bnd_tetrs = boundary(tetrs) ttXplus = BEAST.ttrace(Xplus, bnd_tetrs) TF, Idcs = isdivconforming(ttXplus) @show length(Idcs) # error("stop") # @target Q ()->BEAST.dual2forms(tetrs, skeleton(tetrs,1), Dir) # Q = @make Q Q = BEAST.dual2forms(tetrs, skeleton(tetrs,1), Dir) QXplus = assemble(Id, Q, Xplus) curlX = curl(X) QcurlX = assemble(Id, Q, curlX) v = QXplus \ (QcurlX * u) fcr1, geo1 = facecurrents(v, BEAST.ttrace(Xplus, bnd_tetrs)); fcr2, geo2 = facecurrents(u, BEAST.ttrace(curl(X), bnd_tetrs)); fcr3, geo3 = facecurrents(v, divergence(ttXplus)); Plotly.plot(patch(geo, norm.(fcr)))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
2960
using CompScienceMeshes using BEAST using LinearAlgebra import Plotly # Exterior wavenumber κ₀ = 3.0 # This is where the number of domains enters the problem description κ = [1.5κ₀, 2.5κ₀] # Description of the domain boundaries h = 0.125 Γ1 = meshcuboid(0.5, 1.0, 1.0, h) Γ2 = -Mesh([point(-x,y,z) for (x,y,z) in vertices(Γ1)], deepcopy(cells(Γ1))) Γ = [Γ1, Γ2] # Beyond this point the problem description is completely independent # of the number of domains and their relative positioning # Incident field Einc = Maxwell3D.planewave(direction=(x̂+ẑ)/√2, polarization=ŷ, wavenumber=κ₀) Hinc = -1/(im*κ₀)*curl(Einc) # Definition of the boundary integral operators T0 = Maxwell3D.singlelayer(wavenumber=κ₀) K0 = Maxwell3D.doublelayer(wavenumber=κ₀) T = [Maxwell3D.singlelayer(wavenumber=κᵢ) for κᵢ ∈ κ] K = [Maxwell3D.doublelayer(wavenumber=κᵢ) for κᵢ ∈ κ] # Definition of per-domain bilinear forms @hilbertspace m j @hilbertspace k l A0 = K0[k,m] - T0[k,j] + T0[l,m] + K0[l,j] A = [Kᵢ[k,m] - Tᵢ[k,j] + Tᵢ[l,m] + Kᵢ[l,j] for (Tᵢ,Kᵢ) ∈ zip(T,K)] N = BEAST.NCross() Nᵢ = -0.5*N[k,m] - 0.5*N[l,j] # Building the global system p = BEAST.hilbertspace(:p, length(κ)) q = BEAST.hilbertspace(:q, length(κ)) Adiag = BEAST.Variational.DirectProductKernel(A) Ndiag = BEAST.Variational.BlockDiagKernel(Nᵢ) B = A0[p,q] + Adiag[p,q] + Ndiag[p,q] - Nᵢ[p,q] # Also for the right hand side, first per domain contributions # are constructed, followed by the global synthesis e = (n × Einc) × n h = (n × Hinc) × n bᵢ = e[k] - h[l] b = bᵢ[p] Xₕ = raviartthomas.(Γ) Yₕ = raviartthomas.(Γ) Pₕ = [Xᵢ×Yᵢ for (Xᵢ,Yᵢ) ∈ zip(Xₕ,Yₕ)] Qₕ = [Xᵢ×Yᵢ for (Xᵢ,Yᵢ) ∈ zip(Xₕ,Yₕ)] deq = BEAST.discretise(B==b, (p .∈ Pₕ)..., (q .∈ Qₕ)...) u = solve(deq) # u = gmres(deq, tol=1e-4, maxiter=2500) fcrm = [facecurrents(u[qᵢ][m], Xᵢ)[1] for (qᵢ,Xᵢ) ∈ zip(q,Xₕ)] fcrj = [facecurrents(u[qᵢ][j], Xᵢ)[1] for (qᵢ,Xᵢ) ∈ zip(q,Xₕ)] Plotly.plot([patch(Γᵢ, norm.(fcrᵢ), caxis=(0,2)) for (fcrᵢ,Γᵢ) ∈ zip(fcrm,Γ)]) Plotly.plot([patch(Γᵢ, norm.(fcrᵢ), caxis=(0,2)) for (fcrᵢ,Γᵢ) ∈ zip(fcrj,Γ)]) function nearfield(um,Xm,uj,Xj,κ,η,points) K = BEAST.MWDoubleLayerField3D(wavenumber=κ) T = BEAST.MWSingleLayerField3D(wavenumber=κ) Em = potential(K, points, um, Xm) Ej = potential(T, points, uj, Xj) Hm = potential(T, points, um, Xm) Hj = potential(K, points, uj, Xj) return -Em + η * Ej, 1/η*Hm + Hj end Xs = range(-2.0,2.0,length=150) Zs = range(-1.5,2.5,length=100) pts = [point(x,0.5,z) for z in Zs, x in Xs] EH0 = [nearfield(u[qᵢ][m], Xᵢ, u[qᵢ][j], Yᵢ, κ₀, 1.0, pts) for (qᵢ,Xᵢ,Yᵢ) ∈ zip(q,Xₕ,Yₕ)] EHi = [nearfield(-u[qᵢ][m], Xᵢ, -u[qᵢ][j], Yᵢ, κᵢ, 1.0, pts) for (qᵢ,Xᵢ,Yᵢ,κᵢ) ∈ zip(q,Xₕ,Yₕ,κ)] Eo = sum(getindex.(EH0,1)) + Einc.(pts) Ho = sum(getindex.(EH0,2)) + Hinc.(pts) Ei = getindex.(EHi,1) Hi = getindex.(EHi,2) Etot = Eo + sum(Ei) Htot = Ho + sum(Hi) import Plots Plots.heatmap(Xs, Zs, clamp.(real.(getindex.(Etot,2)),-2.0,2.0); colormap=:viridis)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
3909
using CompScienceMeshes using BEAST using LinearAlgebra trias = CompScienceMeshes.meshrectangle(1.0,1.0,0.05) trias = CompScienceMeshes.meshcircle(1.0,0.5) tetrs = CompScienceMeshes.tetmeshcuboid(1,1,1,0.2) f = BEAST.ScalarTrace{Float64}(x -> sin(pi*x[1]*x[2])*sin(pi*x[2])) f2 = BEAST.ScalarTrace{Float64}(x -> (-x[2]*sin(2*pi*(x[1]^2+x[2]^2))*sin(atan(x[2],x[1])), x[1]*sin(2*pi*(x[1]^2+x[2]^2))*sin(atan(x[2],x[1])), 0) ) g = BEAST.ScalarTrace{Float64}(x -> (sin(pi*x[1])*cos(pi*x[2]), -cos(pi*x[1])*sin(pi*x[2]), 0 )) g = BEAST.ScalarTrace{Float64}(x -> (sin(pi*x[1])*cos(pi*x[2]), sin(pi*x[2])*cos(pi*x[2]), sin(pi*x[3])*cos(pi*x[2]))) g2 = BEAST.ScalarTrace{Float64}(x -> ( sin(pi*x[1])*cos(pi*x[3]), 0, -cos(pi*x[1])*sin(pi*x[3]))) N = 4 h = Vector(undef, N) errorL = Vector(undef, N) errorBDM = Vector(undef, N) errorRT = Vector(undef, N) for n in 1:N h[n] = 0.5^(n) trias = CompScienceMeshes.meshrectangle(1.0,1.0, h[n]) # trias = CompScienceMeshes.meshcircle(1.0, h[n], 3) Z = BEAST.lagrangec0d1(trias, dirichlet=false) Y = BEAST.brezzidouglasmarini(trias) X = BEAST.raviartthomas(trias) u_exact = DofInterpolate(Z,f) b_exact = DofInterpolate(Y,f2) r_exact = DofInterpolate(X,f2) identity = BEAST.Identity() M = assemble(identity, Z, Z) b = assemble(f,Z) u_n = M \ b errorL[n] = sqrt((u_n-u_exact)'*M*(u_n-u_exact)) M = assemble(identity, Y, Y) b = assemble(f2,Y) b_n = M \ b errorBDM[n] = sqrt((b_n-b_exact)'*M*(b_n-b_exact)) M = assemble(identity, X, X) b = assemble(f2,X) r_n = M \ b errorRT[n] = sqrt((r_n-r_exact)'*M*(r_n-r_exact)) end N = 15 delta = Vector(undef, N) error = Vector(undef, N) for i in 1:N delta[i] = 0.5-0.025*i tetrs = tetmeshcuboid(1.0,1.0,1.0, delta[i]) bndry = boundary(tetrs) faces = skeleton(tetrs, 2) # onbnd1 = CompScienceMeshes.in(bnd_edges) # onbnd0 = CompScienceMeshes.in(bnd_verts) # interior_edges = submesh(!onbnd1, all_edges) # interior_verts = submesh(!onbnd0, all_verts) # bndry_faces = [sort(c) for c in cells(skeleton(bndry, 2))] # function is_interior(faces) # !(sort(faces) in bndry_faces) # end onbnd = CompScienceMeshes.in(bndry) interior_faces = submesh(!onbnd, faces) # interior_faces = submesh(is_interior, faces) W = BEAST.brezzidouglasmarini3d(tetrs, interior_faces) u_exact = DofInterpolate(W,g2) identity = BEAST.Identity() M = assemble(identity, W, W) b = assemble(g2,W) u_n = M \ b error[i] = real(sqrt((u_n-u_exact)'*M*(u_n-u_exact))) end N=15 delta2 = Vector(undef, N) error2 = Vector(undef, N) for i in 1:N delta2[i] =0.5-0.025*i tetrs = tetmeshcuboid(1.0,1.0,1.0, delta2[i]) bndry = boundary(tetrs) faces = skeleton(tetrs, 2) # bndry_faces = [sort(c) for c in cells(skeleton(bndry, 2))] # function is_interior(faces) # !(sort(faces) in bndry_faces) # end # interior_faces = submesh(is_interior, faces) onbnd = CompScienceMeshes.in(bndry) interior_faces = submesh(!onbnd, faces) V = BEAST.nedelecd3d(tetrs, interior_faces) q_exact = DofInterpolate(V,g) identity = BEAST.Identity() M2 = assemble(identity, V, V) b2 = assemble(g,V) q_n = M2 \ b2 error2[i] = real(sqrt((q_n-q_exact)'*M2*(q_n-q_exact))) end using Plots p2 = plot(delta,error, label="BDM3D", title="L2-Error on [0,1]^3",xlabel="h", ylabel="Error", legend=:bottomright, xaxis=:log, yaxis=:log) plot!(p2, delta2, error2, label="Nedelec Div", xlims=[0.075,0.55]) p1 = plot(h,real(errorL), label="Lagrange", title="L2-Error on [0,1]^2",xlabel="h", ylabel="Error", legend=:bottomright, xaxis=:log, yaxis=:log, xlims=[0.025,0.5]) plot!(p1,h,real(errorBDM),label="BDM") plot!(p1,h,real(errorRT),label="Raviart-Thomas") plot(p1,p2, layout=2)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
239
using CompScienceMeshes using BEAST sphere = CompScienceMeshes.tetmeshsphere(1.0, 0.35) hemi = submesh((m,tet) -> cartesian(CompScienceMeshes.center(chart(m,tet)))[3] < 0, sphere) X = BEAST.nedelecd3d(sphere) Y = BEAST.restrict(X, hemi)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
223
using CompScienceMeshes using BEAST m = CompScienceMeshes.tetmeshsphere(1.0, 0.45) bnd_m = boundary(m) m1 = skeleton(m,1) X = BEAST.nedelecc3d(m,m1) Y = BEAST.ttrace(X,bnd_m) @assert length(geometry(Y)) == length(bnd_m)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1284
using CompScienceMeshes, BEAST h = 2π / 51; Γ = meshcircle(1.0, h) X, Y = lagrangecxd0(Γ), lagrangec0d1(Γ) κ = 1.0 S, Dᵀ = SingleLayer(κ), DoubleLayerTransposed(κ) D, N = DoubleLayer(κ), HyperSingular(κ) I = Identity() # TM scattering E = PlaneWaveDirichlet(κ, point(1.0,0.0)) H = PlaneWaveNeumann( κ, point(1.0,0.0)) @hilbertspace u; @hilbertspace u′ @hilbertspace t; @hilbertspace t′ tm_efie = @discretise S[u′,u] == E[u′] u∈X u′∈X tm_mfie = @discretise (0.5I + Dᵀ)[t′,u] == H[t′] u∈X t′∈X u1, u2 = solve(tm_efie), solve(tm_mfie) # TE scattering E = PlaneWaveNeumann( κ, point(1.0, 0.0)) H = PlaneWaveDirichlet(κ, point(1.0, 0.0)) te_efie = @discretise N[t,t′] == E[t′] t∈Y t′∈Y te_mfie = @discretise (0.5I - D)[t,u′] == H[u′] t∈Y u′∈Y t1, t2 = solve(te_efie), solve(te_mfie) using Plots nx = numfunctions(X); Δα = 2π/nx; α = (collect(1:nx) .- 0.5) * Δα plt1 = Plots.plot(α, real(u1), c=:blue, label="TM-EFIE") Plots.scatter!(α, real(u2), c=:red, m=:circle, label="TM-MFIE") Plots.title!("current vs. angle") ny = numfunctions(Y); Δα = 2π/ny; α = collect(0:ny-1) * Δα plt2 = Plots.plot(α, real(t1), c=:blue, label="TE-EFIE") Plots.scatter!(α, real(t2), c=:red, m=:circle, label="TE-MFIE") Plots.title!("current vs. angle") Plots.plot(plt1,plt2)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1516
using CompScienceMeshes, BEAST o, x, y, z = euclidianbasis(3) Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) X = lagrangecxd0(Γ) # X = subdsurface(Γ) # X = raviartthomas(Γ) @show numfunctions(X) κ = 1.0; γ = im*κ a = Helmholtz3D.singlelayer(wavenumber=κ) b = Helmholtz3D.doublelayer_transposed(gamma=κ*im) +0.5Identity() uⁱ = Helmholtz3D.planewave(wavenumber=κ, direction=z) f = strace(uⁱ,Γ) g = ∂n(uⁱ) @hilbertspace u @hilbertspace v eq1 = @discretise a[v,u] == f[v] u∈X v∈X eq2 = @discretise b[v,u] == g[v] u∈X v∈X x1 = gmres(eq1) x2 = gmres(eq2) fcr1, geo1 = facecurrents(x1, X) fcr2, geo2 = facecurrents(x2, X) # include(Pkg.dir("CompScienceMeshes","examples","plotlyjs_patches.jl")) using LinearAlgebra using Plotly pt1 = Plotly.plot(patch(geo1, real.(norm.(fcr1)))); pt2 = Plotly.plot(patch(geo2, real.(norm.(fcr2)))); display([pt1 pt2]) # using Test # ## test the results # Z = assemble(a,X,X); # m1, m2 = 1, numfunctions(X) # chm, chn = chart(Γ,cells(Γ)[m1]), chart(Γ,cells(Γ)[m2]) # ctm, ctn = CompScienceMeshes.center(chm), CompScienceMeshes.center(chn) # R = norm(cartesian(ctm)-cartesian(ctn)) # G = exp(-im*κ*R)/(4π*R) # Wmn = volume(chm) * volume(chn) * G # @show abs(Wmn-Z[m1,m2]) / abs(Z[m1,m2]) # @test abs(Wmn-Z[m1,m2]) / abs(Z[m1,m2]) < 2.0e-3 # r = assemble(f,X) # m1 = 1 # chm = chart(Γ,cells(Γ)[m1]) # ctm = CompScienceMeshes.center(chm) # sm = volume(chm) * f(ctm) # r[m1] # @show abs(sm - r[m1]) / abs(r[m1]) # @test abs(sm - r[m1]) / abs(r[m1]) < 1e-3
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1250
using CompScienceMeshes, BEAST using LinearAlgebra, Pkg Pkg.activate(@__DIR__) # Γ = readmesh(joinpath(@__DIR__,"sphere2.in")) Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) # Γ = meshrectangle(1.0, 1.0, 0.05, 3) X = lagrangec0d1(Γ) @show numfunctions(X) κ = 2π; γ = im*κ a = -1Helmholtz3D.hypersingular(gamma=γ) b = Helmholtz3D.doublelayer(gamma=γ) - 0.5Identity() uⁱ = Helmholtz3D.planewave(wavenumber=κ, direction=ẑ) f = strace(uⁱ,Γ) g = ∂n(uⁱ) @hilbertspace u @hilbertspace v eq1 = @discretise a[v,u] == g[v] u∈X v∈X eq2 = @discretise b[v,u] == f[v] u∈X v∈X x1 = gmres(eq1) x2 = gmres(eq2) # @assert norm(x1-x2)/norm(x1+x2) < 0.5e-2 fcr1, geo1 = facecurrents(x1, X) fcr2, geo2 = facecurrents(x2, X) using Plots Plots.plot(title="Comparse 1st and 2nd kind eqs.") Plots.plot!(norm.(fcr1),c=:blue,label="1st") Plots.scatter!(norm.(fcr2),c=:red,label="2nd") import Plotly plt1 = Plotly.plot(patch(Γ, norm.(fcr1))) plt2 = Plotly.plot(patch(Γ, norm.(fcr2))) display([plt1 plt2]) ys = range(-2,2,length=200) zs = range(-2,2,length=200) pts = [point(0.5, y, z) for y in ys, z in zs] nf = BEAST.HH3DDoubleLayerNear(wavenumber=κ) near = BEAST.potential(nf, pts, x1, X, type=ComplexF64) inc = uⁱ.(pts) tot = near + inc
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
8372
using BEAST using CompScienceMeshes using StaticArrays using LinearAlgebra using Plotly ## Looking at convergence hs = [0.3, 0.2, 0.1, 0.09]#,0.08,0.07,0.06,0.04] ir = 0.8 err_IDPSL_pot = zeros(Float64, length(hs)) err_IDPDL_pot = zeros(Float64, length(hs)) err_INPSL_pot = zeros(Float64, length(hs)) err_INPDL_pot = zeros(Float64, length(hs)) err_IDPSL_field = zeros(Float64, length(hs)) err_IDPDL_field = zeros(Float64, length(hs)) err_INPSL_field = zeros(Float64, length(hs)) err_INPDL_field = zeros(Float64, length(hs)) err_EDPSL_pot = zeros(Float64, length(hs)) err_EDPDL_pot = zeros(Float64, length(hs)) err_ENPSL_pot = zeros(Float64, length(hs)) err_ENPDL_pot = zeros(Float64, length(hs)) err_EDPSL_field = zeros(Float64, length(hs)) err_EDPDL_field = zeros(Float64, length(hs)) err_ENPSL_field = zeros(Float64, length(hs)) err_ENPDL_field = zeros(Float64, length(hs)) for (i, h) in enumerate(hs) r = 50.0 sphere = meshsphere(r, h * r) X0 = lagrangecxd0(sphere) X1 = lagrangec0d1(sphere) S = Helmholtz3D.singlelayer(; gamma=0.0) D = Helmholtz3D.doublelayer(; gamma=0.0) Dt = Helmholtz3D.doublelayer_transposed(; gamma=0.0) N = Helmholtz3D.hypersingular(; gamma=0.0) q = 100.0 ϵ = 1.0 # Interior problem # Formulations from Sauter and Schwab, Boundary Element Methods(2011), Chapter 3.4.1.1 pos1 = SVector(r * 1.5, 0.0, 0.0) pos2 = SVector(-r * 1.5, 0.0, 0.0) charge1 = HH3DMonopole(position=pos1, amplitude=q/(4*π*ϵ), wavenumber=0.0) charge2 = HH3DMonopole(position=pos2, amplitude=-q/(4*π*ϵ), wavenumber=0.0) #Potential of point charges Φ_inc(x) = charge1(x) + charge2(x) gD0 = assemble(DirichletTrace(charge1), X0) + assemble(DirichletTrace(charge2), X0) gD1 = assemble(DirichletTrace(charge1), X1) + assemble(DirichletTrace(charge2), X1) gN = assemble(∂n(charge1), X1) + assemble(BEAST.n ⋅ grad(charge2), X1) G = assemble(Identity(), X1, X1) o = ones(numfunctions(X1)) #Interior Dirichlet problem - compare Sauter & Schwab M_IDPSL = assemble(S, X0, X0) M_IDPDL = (-1 / 2 * assemble(Identity(), X1, X1) + assemble(D, X1, X1)) #Interior Neumann problem M_INPSL = (1 / 2 * assemble(Identity(), X1, X1) + assemble(Dt, X1, X1)) + G * o * o' * G M_INPDL = assemble(N, X1, X1) + G * o * o' * G ρ_IDPSL = M_IDPSL \ (-gD0) ρ_IDPDL = M_IDPDL \ (-gD1) ρ_INPSL = M_INPSL \ (-gN) ρ_INPDL = M_INPDL \ (gN) pts = meshsphere(r * ir, r * ir * 0.6).vertices pot_IDPSL = potential(HH3DSingleLayerNear(0.0), pts, ρ_IDPSL, X0; type=ComplexF64) pot_IDPDL = potential(HH3DDoubleLayerNear(0.0), pts, ρ_IDPDL, X1; type=ComplexF64) pot_INPSL = potential(HH3DSingleLayerNear(0.0), pts, ρ_INPSL, X1; type=ComplexF64) pot_INPDL = potential(HH3DDoubleLayerNear(0.0), pts, ρ_INPDL, X1; type=ComplexF64) # Total potential inside should be zero err_IDPSL_pot[i] = norm(pot_IDPSL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts)) err_IDPDL_pot[i] = norm(pot_IDPDL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts)) err_INPSL_pot[i] = norm(pot_INPSL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts)) err_INPDL_pot[i] = norm(pot_INPDL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts)) Efield(x) = -grad(charge1)(x) + -grad(charge2)(x) field_IDPSL = -potential(HH3DDoubleLayerTransposedNear(0.0), pts, ρ_IDPSL, X0) field_IDPDL = -potential(HH3DHyperSingularNear(0.0), pts, ρ_IDPDL, X1) field_INPSL = -potential(HH3DDoubleLayerTransposedNear(0.0), pts, ρ_INPSL, X1) field_INPDL = -potential(HH3DHyperSingularNear(0.0), pts, ρ_INPDL, X1) # Total field inside should be zero err_IDPSL_field[i] = norm(field_IDPSL + Efield.(pts)) / norm(Efield.(pts)) err_IDPDL_field[i] = norm(field_IDPDL + Efield.(pts)) / norm(Efield.(pts)) err_INPSL_field[i] = norm(field_INPSL + Efield.(pts)) / norm(Efield.(pts)) err_INPDL_field[i] = norm(field_INPDL + Efield.(pts)) / norm(Efield.(pts)) # Exterior problem # formulations from Sauter and Schwab, Boundary Element Methods(2011), Chapter 3.4.1.2 pos1 = SVector(r * 0.5, 0.0, 0.0) pos2 = SVector(-r * 0.5, 0.0, 0.0) charge1 = HH3DMonopole(position=pos1, amplitude=q/(4*π*ϵ), wavenumber=0.0) charge2 = HH3DMonopole(position=pos2, amplitude=-q/(4*π*ϵ), wavenumber=0.0) gD0 = assemble(DirichletTrace(charge1), X0) + assemble(DirichletTrace(charge2), X0) gD1 = assemble(DirichletTrace(charge1), X1) + assemble(DirichletTrace(charge2), X1) gN = assemble(∂n(charge1), X1) + assemble(∂n(charge2), X1) G = assemble(Identity(), X1, X1) o = ones(numfunctions(X1)) M_EDPSL = assemble(S, X0, X0) M_EDPDL = (1 / 2 * assemble(Identity(), X1, X1) + assemble(D, X1, X1)) M_ENPSL = (-1 / 2 * assemble(Identity(), X1, X1) + assemble(Dt, X1, X1)) + G * o * o' * G M_ENPDL = assemble(N, X1, X1) + G * o * o' * G ρ_EDPSL = M_EDPSL \ (-gD0) ρ_EDPDL = M_EDPDL \ (-gD1) ρ_ENPSL = M_ENPSL \ (-gN) ρ_ENPDL = M_ENPDL \ (gN) testsphere = meshsphere(r / ir, r / ir * 0.6) pts = testsphere.vertices[norm.(testsphere.vertices) .> r] pot_EDPSL = potential(HH3DSingleLayerNear(0.0), pts, ρ_EDPSL, X0; type=ComplexF64) pot_EDPDL = potential(HH3DDoubleLayerNear(0.0), pts, ρ_EDPDL, X1; type=ComplexF64) pot_ENPSL = potential(HH3DSingleLayerNear(0.0), pts, ρ_ENPSL, X1; type=ComplexF64) pot_ENPDL = potential(HH3DDoubleLayerNear(0.0), pts, ρ_ENPDL, X1; type=ComplexF64) err_EDPSL_pot[i] = norm(pot_EDPSL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts)) err_EDPDL_pot[i] = norm(pot_EDPDL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts)) err_ENPSL_pot[i] = norm(pot_ENPSL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts)) err_ENPDL_pot[i] = norm(pot_ENPDL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts)) field_EDPSL = -potential(HH3DDoubleLayerTransposedNear(0.0), pts, ρ_EDPSL, X0) field_EDPDL = -potential(HH3DHyperSingularNear(0.0), pts, ρ_EDPDL, X1) field_ENPSL = -potential(HH3DDoubleLayerTransposedNear(0.0), pts, ρ_ENPSL, X1) field_ENPDL = -potential(HH3DHyperSingularNear(0.0), pts, ρ_ENPDL, X1) err_EDPSL_field[i] = norm(field_EDPSL + Efield.(pts)) / norm(Efield.(pts)) err_EDPDL_field[i] = norm(field_EDPDL + Efield.(pts)) / norm(Efield.(pts)) err_ENPSL_field[i] = norm(field_ENPSL + Efield.(pts)) / norm(Efield.(pts)) err_ENPDL_field[i] = norm(field_ENPDL + Efield.(pts)) / norm(Efield.(pts)) end ## Plotly.plot( [ Plotly.scatter(; x=hs, y=err_IDPSL_pot[:, end], name="IDPSL"), Plotly.scatter(; x=hs, y=err_IDPDL_pot[:, end], name="IDPDL"), Plotly.scatter(; x=hs, y=err_INPSL_pot[:, end], name="INPSL"), Plotly.scatter(; x=hs, y=err_INPDL_pot[:, end], name="INPDL"), ], Layout(; xaxis_type="log", yaxis_type="log", xaxis_title="h / r", yaxis_title="rel. error", title="Errors - potential - interior problem", ), ) Plotly.plot( [ Plotly.scatter(; x=hs, y=err_EDPSL_pot[:, end], name="EDPSL"), Plotly.scatter(; x=hs, y=err_EDPDL_pot[:, end], name="EDPDL"), Plotly.scatter(; x=hs, y=err_ENPSL_pot[:, end], name="ENPSL"), Plotly.scatter(; x=hs, y=err_ENPDL_pot[:, end], name="ENPDL"), ], Layout(; xaxis_type="log", yaxis_type="log", xaxis_title="h / r", yaxis_title="rel. error", title="Errors - potential - exterior problem", ), ) Plotly.plot( [ Plotly.scatter(; x=hs, y=err_IDPSL_field[:, end], name="IDPSL"), Plotly.scatter(; x=hs, y=err_IDPDL_field[:, end], name="IDPDL"), Plotly.scatter(; x=hs, y=err_INPSL_field[:, end], name="INPSL"), Plotly.scatter(; x=hs, y=err_INPDL_field[:, end], name="INPDL"), ], Layout(; xaxis_type="log", yaxis_type="log", xaxis_title="h / r", yaxis_title="rel. error", title="Errors - field - interior problem", ), ) Plotly.plot( [ Plotly.scatter(; x=hs, y=err_EDPSL_field[:, end], name="EDPSL"), Plotly.scatter(; x=hs, y=err_EDPDL_field[:, end], name="EDPDL"), Plotly.scatter(; x=hs, y=err_ENPSL_field[:, end], name="ENPSL"), Plotly.scatter(; x=hs, y=err_ENPDL_field[:, end], name="ENPDL"), ], Layout(; xaxis_type="log", yaxis_type="log", xaxis_title="h / r", yaxis_title="rel. error", title="Errors - field - exterior problem", ), )
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
2705
using BEAST using CompScienceMeshes using StaticArrays using LinearAlgebra using Test using Plots using SphericalScattering # Layered Dielectic Sphere # MoM (Lippmann Schwinger VIE) vs. Analytical Solution (SphericalScattering) # Environment ε1 = 1.0*ε0 μ1 = μ0 # Layered Dielectic Sphere ε2 = 5.0*ε0 # outer shell μ2 = μ0 ε3 = 20.0*ε0 μ3 = μ0 ε4 = 7.0*ε0 μ4 = μ0 ε5 = 30.0*ε0 # inner core μ5 = μ0 r = 1.0 radii = SVector(0.2*r, 0.6*r, 0.8*r, r) # inner core stops at first radius filling = SVector(Medium(ε5, μ5), Medium(ε4, μ4), Medium(ε3, μ3), Medium(ε2, μ2)) # Mesh, Basis h = 0.1 mesh = CompScienceMeshes.tetmeshsphere(r,h) X = lagrangec0d1(mesh; dirichlet = false) @show numfunctions(X) bnd = boundary(mesh) strc = X -> strace(X, bnd) # VIE Operators function generate_tau(ε_env, radii, filling) function tau(x::SVector{U,T}) where {U,T} for (i, radius) in enumerate(radii) norm(x) <= radius && (return T(1.0 - filling[i].ε/ε_env)) end #return 0.0 error("Evaluated contrast outside the sphere!") end return tau end τ = generate_tau(ε1, radii, filling) #contrast function I = Identity() V = VIE.hhvolume(tau = τ, wavenumber = 0.0) B = VIE.hhboundary(tau = τ, wavenumber = 0.0) Y = VIE.hhvolumegradG(tau = τ, wavenumber = 0.0) # Exitation dirE = SVector(1.0, 0.0, 0.0) dirgradΦ = - dirE amp = 1.0 Φ_inc = VIE.linearpotential(direction = dirgradΦ, amplitude = amp) # Assembly b = assemble(Φ_inc, X) Z_I = assemble(I, X, X) Z_V = assemble(V, X, X) Z_B = assemble(B, strc(X), X) Z_Y = assemble(Y, X, X) # System matrix Z_version1 = Z_I + Z_V + Z_B Z_version2 = Z_I + Z_Y # Solution of the linear system of equations u_version1 = Z_version1 \ Vector(b) u_version2 = Z_version2 \ Vector(b) ## Observe the potential on a x-line in dirgradΦ direction # x-line at y0, z0 - Potential only inside the sphere mesh valid! y0 = 0.0 z0 = 0.0 x_range = range(0.0, stop = 1.0*r, length = 200) points_x = [point(x, y0, z0) for x in x_range] x = collect(x_range) # SphericalScattering solution on x-line sp = LayeredSphere(radii = radii, filling = filling) ex = UniformField(direction = dirE, amplitude = amp) Φ_x = real.(field(sp, ex, ScalarPotential(points_x))) # MoM solution on x-line Φ_MoM_version1_x = BEAST.grideval(points_x, u_version1, X, type = Float64) Φ_MoM_version2_x = BEAST.grideval(points_x, u_version2, X, type = Float64) # Plot plot(x, Φ_x, label = "SphericalScattering") plot!(x, Φ_MoM_version1_x, label = "MoM: S=I+B+V, boundary+volume") plot!(x, Φ_MoM_version2_x, label = "MoM: S=I+Y, gradgreen") xlims!(0.0, 1.0) # sphere center to radius r ylims!(-0.3, 0.0) title!("Potential Φ(x, y0, z0)") xlabel!("x")
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1750
using CompScienceMeshes using BEAST using LinearAlgebra width, height, h = 1.0, 0.5, 0.05 ℑ₁ = meshrectangle(width, height, h) ℑ₂ = CompScienceMeshes.rotate(ℑ₁, 0.5π * x̂) ℑ₃ = CompScienceMeshes.rotate(ℑ₁, 1.0π * x̂) Γ₁ = weld(ℑ₁,-ℑ₂) Γ₂ = weld(ℑ₂,-ℑ₃) X₁ = raviartthomas(Γ₁) X₂ = raviartthomas(Γ₂) Y₁ = buffachristiansen(Γ₁) Y₂ = buffachristiansen(Γ₂) X = X₁ × X₂ Y = Y₁ × Y₂ @hilbertspace p @hilbertspace q κ = 3.0 SL = Maxwell3D.singlelayer(wavenumber=κ) N = NCross() E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n; import BEAST: diag, blocks Sxx = assemble(@discretise blocks(SL)[p,q] p∈X q∈X) ex = assemble(e, X) # Build the preconditioner Nxy = assemble(@discretise(BEAST.diag(N)[p,q], p∈X, q∈Y)) Dyx = BEAST.GMRESSolver(Nxy, tol=2e-12, restart=250, verbose=false) Dxy = BEAST.GMRESSolver(transpose(Nxy), tol=2e-12, restart=250, verbose=false) Syy = BEAST.assemble(@discretise BEAST.diag(SL)[p,q] p∈Y q∈Y) P = Dxy * Syy * Dyx # Solve system without and with preconditioner u1, ch1 = solve(BEAST.GMRESSolver(Sxx,tol=2e-5, restart=250), ex) u2, ch2 = solve(BEAST.GMRESSolver(P*Sxx, tol=2e-5, restart=250), P*ex) # error() # Q = P*Sxx # S = BEAST.GMRESSolver(Q, tol=2e-5, restart=250) # rhs = P*ex # @run solve(S, rhs) # Compute and visualise the far field Φ, Θ = [0.0], range(0,stop=π,length=100) pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for ϕ in Φ for θ in Θ] near1 = potential(MWFarField3D(wavenumber=κ), pts, u1, X) near2 = potential(MWFarField3D(wavenumber=κ), pts, u2, X) using Plots @show norm(u1-u2) # Plots.plot(title="far field") Plots.plot!(Θ, real.(getindex.(near1,1)), label="no preconditioner") Plots.scatter!(Θ, real.(getindex.(near2,1)), label="Calderon preconditioner")
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
710
using CompScienceMeshes, BEAST width, height, h = 1.0, 0.5, 0.05 G1 = meshrectangle(width, height, h) G2 = CompScienceMeshes.rotate(G1, 0.5π * x̂) G3 = CompScienceMeshes.rotate(G1, 1.0π * x̂) G = weld(G1, G2, G3) X = raviartthomas(G) κ = 1.0 E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n T = Maxwell3D.singlelayer(wavenumber=κ) @hilbertspace j; @hilbertspace k efie = @discretise T[k,j]==e[k] j∈X k∈X u = gmres(efie) Θ, Φ = range(0.0,stop=π,length=100), 0.0 ffpoints = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for θ in Θ for ϕ in Φ] farfield = potential(MWFarField3D(wavenumber=κ), ffpoints, u, X) using Plots using LinearAlgebra Plots.plot(Θ,norm.(farfield))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
620
using CompScienceMeshes using BEAST using LinearAlgebra import Plotly m = meshsphere(radius=1.0, h=0.25) nodes = skeleton(m,0) edges = skeleton(m,1) X = BEAST.lagrangec0d2(m, nodes, edges) Y = BEAST.lagrangecxd0(m) uⁱ = Helmholtz3D.planewave(wavenumber=1.0, direction=point(0,0,1)) f = strace(uⁱ,m) fy = assemble(f,Y) Id = BEAST.Identity() qs = BEAST.SingleNumQStrat(8) Gxy = assemble(Id, X, Y, quadstrat=qs) Gxx = assemble(Id, X, X, quadstrat=qs) Gyy = assemble(Id, Y, Y, quadstrat=qs) Pxy = inv(Matrix(Gxx)) * Gxy * inv(Matrix(Gyy)) fX = Pxy * fy fcr, geo = facecurrents(fX, X) Plotly.plot(patch(m, real.(fcr)))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
582
using CompScienceMeshes, BEAST Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) X, Y = raviartthomas(Γ), buffachristiansen(Γ) ϵ, μ, ω = 1.0, 1.0, 1.0; κ, η = ω * √(ϵ*μ), √(μ/ϵ) K, N = Maxwell3D.doublelayer(wavenumber=κ), NCross() E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) # E = -η/(im*κ)*BEAST.CurlCurlGreen(κ, ẑ, point(2,0,0)) H = -1/(im*μ*ω)*curl(E) h = (n × H) × n @hilbertspace j @hilbertspace m mfie = @discretise (K+0.5N)[m,j] == h[m] j∈X m∈Y u = gmres(mfie) include("utils/postproc.jl") include("utils/plotresults.jl")
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
666
using CompScienceMeshes, BEAST # Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) Γ = meshsphere(radius=1.0, h=0.1) # X, Y = raviartthomas(Γ), buffachristiansen(Γ) X = brezzidouglasmarini(Γ) Y = brezzidouglasmarini(Γ) # X = raviartthomas(Γ) # Y = raviartthomas(Γ) ϵ, μ, ω = 1.0, 1.0, 1.0; κ = ω * √(ϵ*μ) # κ = 3.0 NK, Id = BEAST.DoubleLayerRotatedMW3D(1.0, im*κ), Identity() E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) H = -1/(im*μ*ω)*curl(E) h = n × H @hilbertspace j @hilbertspace m mfie = @discretise (NK-0.5Id)[m,j] == h[m] j∈X m∈Y u = gmres(mfie) include("utils/postproc.jl") include("utils/plotresults.jl")
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
963
using CompScienceMeshes, BEAST Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) X = raviartthomas(Γ) Y = buffachristiansen(Γ) Z = raviartthomas(Γ, BEAST.Continuity{:none}) ϵ, μ, ω = 1.0, 1.0, 1.0; κ = ω * √(ϵ*μ) K, N = Maxwell3D.doublelayer(wavenumber=κ), NCross() NK, Id = BEAST.DoubleLayerRotatedMW3D(im*κ), Identity() E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) H = -1/(im*μ*ω)*curl(E) h = (n × H) × n q = n × H @hilbertspace j @hilbertspace m @hilbertspace g mfie1 = @discretise (K+0.5N)[m,j] == h[m] j∈X m∈Y mfie2 = @discretise (NK-0.5Id)[g,j] == q[m] j∈Z g∈Z u1 = gmres(mfie1) u2 = gmres(mfie2) fcr1, _ = facecurrents(u1, X) fcr2, _ = facecurrents(u2, Z) using LinearAlgebra using Plots Plots.plot(title="Compare current density") Plots.plot!(norm.(fcr1), label="MxMIFE") Plots.scatter!(norm.(fcr2), label="DGMFIE", c=:red) u = u2 X = Z include("utils/postproc.jl") include("utils/plotresults.jl")
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1502
using CompScienceMeshes, BEAST function blkdiagm(blks...) m = sum(size(b,1) for b in blks) n = sum(size(b,2) for b in blks) A = zeros(eltype(first(blks)), m, n) o1 = 1 o2 = 1 for b in blks m1 = size(b,1) n1 = size(b,2) A[o1:o1+m1-1,o2:o2+n1-1] .= b o1 += m1 o2 += n1 end A end width, height, h = 1.0, 0.5, 0.05 G1 = meshrectangle(width, height, h) G2 = CompScienceMeshes.rotate(G1, 0.5π * x̂) G3 = CompScienceMeshes.rotate(G1, 1.0π * x̂) G12 = weld(G1,-G2) G23 = weld(G2,-G3) G31 = weld(G3,-G1) X12 = lagrangec0d1(G12) X23 = lagrangec0d1(G23) X31 = lagrangec0d1(G31) Y12 = duallagrangecxd0(G12) Y23 = duallagrangecxd0(G23) Y31 = duallagrangecxd0(G31) κ = 1.0 SL = Helmholtz3D.singlelayer(wavenumber=κ) HS = Helmholtz3D.hypersingular(gamma=κ*im) N = Identity() X = X12 × X23 × X31 Y = Y12 × Y23 × Y31 E = Helmholtz3D.planewave(direction=ẑ, wavenumber=κ) e = strace(E, G12) ex = assemble(e, X) Sxx = assemble(SL, X, X) N1 = assemble(Identity(), X12, Y12) N2 = assemble(Identity(), X23, Y23) N3 = assemble(Identity(), X31, Y31) Nxy = blkdiagm(N1,N2,N3) Syy = assemble(HS, Y, Y) Dyx = inv(Nxy) Q = transpose(Dyx) * Syy * Dyx * Sxx R = transpose(Dyx) * Syy * Dyx * ex u1, ch1 = solve(BEAST.GMRESSolver(Sxx),ex) u2, ch2 = solve(BEAST.GMRESSolver(Q),R) @show ch1.iters @show ch2.iters using LinearAlgebra cond(Sxx) cond(Q) w1 = eigvals(Sxx) w2 = eigvals(Q) using Plots Plots.plot() Plots.scatter!(w1) Plots.scatter!(w2)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
2972
using CompScienceMeshes, BEAST width, height, h = 1.0, 0.5, 0.05 G1 = meshrectangle(width, height, h) G2 = CompScienceMeshes.rotate(G1, 0.5π * x̂) G3 = CompScienceMeshes.rotate(G1, 1.0π * x̂) G12 = weld(G1,-G2) G23 = weld(G2,-G3) G31 = weld(G3,-G1) X12 = raviartthomas(G12) X23 = raviartthomas(G23) X31 = raviartthomas(G31) Y12 = buffachristiansen(G12) Y23 = buffachristiansen(G23) Y31 = buffachristiansen(G31) κ = 1.0 SL = Maxwell3D.singlelayer(wavenumber=κ) N = NCross() X = X12 × X23 × X31 Y = Y12 × Y23 × Y31 E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n @hilbertspace j @hilbertspace k mtefie = @discretise( SL[k,j] == e[k], j ∈ X, k ∈ X) # u = gmres(mtefie) # # offset = 1; u12 = u[offset:offset+numfunctions(X12)-1] # offset += numfunctions(X12); u23 = u[offset:offset+numfunctions(X23)-1] # offset += numfunctions(X23); u31 = u[offset:offset+numfunctions(X31)-1] # # fcr12, _ = facecurrents(u12, X12) # fcr23, _ = facecurrents(u23, X23) # fcr31, _ = facecurrents(u31, X31) import Plotly using LinearAlgebra # p1 = PlotlyJS.Plot(patch(G12, norm.(fcr12))) # p2 = PlotlyJS.Plot(patch(G23, norm.(fcr23))) # p3 = PlotlyJS.Plot(patch(G31, norm.(fcr31))) # PlotlyJS.plot([p1, p2, p3]) function blkdiagm(blks...) m = sum(size(b,1) for b in blks) n = sum(size(b,2) for b in blks) A = zeros(eltype(first(blks)), m, n) o1 = 1 o2 = 1 for b in blks m1 = size(b,1) n1 = size(b,2) A[o1:o1+m1-1,o2:o2+n1-1] .= b o1 += m1 o2 += n1 end A end Sxx = BEAST.sysmatrix(mtefie) N1 = assemble(N, X12, Y12) N2 = assemble(N, X23, Y23) N3 = assemble(N, X31, Y31) Nxy = blkdiagm(N1,N2,N3) Syy = assemble(SL, Y, Y) iNxy = inv(Nxy) # cond(Matrix(Sxx)) ex = assemble(e,X) P = transpose(iNxy) * Syy * iNxy Q = P * Sxx; R = P * ex; u1, ch1 = solve(BEAST.GMRESSolver(Sxx),ex) u2, ch2 = solve(BEAST.GMRESSolver(Q),R) @show ch1.iters @show ch2.iters # gmres() ns = [ 0, numfunctions(X12), numfunctions(X23), numfunctions(X31)] cns = cumsum(ns) u12 = u1[cns[1]+1:cns[2]] u23 = u1[cns[2]+1:cns[3]] u31 = u1[cns[3]+1:cns[4]] fcr1, geo1 = facecurrents(u12, X12) fcr2, geo2 = facecurrents(u23, X23) fcr3, geo3 = facecurrents(u31, X31) p1 = patch(geo1, norm.(fcr1)) p2 = patch(geo2, norm.(fcr2)) p3 = patch(geo3, norm.(fcr3)) Plotly.plot([p1,p2,p3]) G123 = weld(G1,G2,G3) X123 = raviartthomas(G123) stefie = @discretise( SL[k,j] == e[k], j ∈ X123, k ∈ X123) Sst = assemble(SL, X123, X123) bst = assemble(e, X123) ust, chst = solve(BEAST.GMRESSolver(Sst),bst) fcrst, geost = facecurrents(ust, X123) Plotly.plot(patch(geost, norm.(fcrst))) Φ, Θ = [0.0], range(0,stop=π,length=100) pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for ϕ in Φ for θ in Θ] ffd_mt = potential(MWFarField3D(wavenumber=κ), pts, u1, X) ffd_st = potential(MWFarField3D(wavenumber=κ), pts, ust, X123) Plots.plot(norm.(ffd_mt)) Plots.scatter!(norm.(ffd_st))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
873
using BEAST using CompScienceMeshes fn = joinpath(@__DIR__,"assets","thick_cladding.msh") G01 = CompScienceMeshes.read_gmsh_mesh(fn, physical="Gamma01") G02 = CompScienceMeshes.read_gmsh_mesh(fn, physical="Gamma02") G12 = CompScienceMeshes.read_gmsh_mesh(fn, physical="Gamma12") G = CompScienceMeshes.read_gmsh_mesh(fn) @assert numcells(G01) + numcells(G02) + numcells(G12) == numcells(G) # Build region boundaries with normals pointing inward: G1 = weld(-G01, -G12) @assert CompScienceMeshes.isoriented(G1) G2 = weld(-G02, G12) @assert CompScienceMeshes.isoriented(G2) E1 = CompScienceMeshes.interior(G1) E2 = CompScienceMeshes.interior(G2) E = CompScienceMeshes.interior(G) Nd = BEAST.nedelec(G, E) Nd1 = BEAST.nedelec(G1, E1) Nd2 = BEAST.nedelec(G2, E2) RT1 = n × Nd1 RT2 = n × Nd2 A1 = CompScienceMeshes.embedding(E1,E) A2 = CompScienceMeshes.embedding(E2,E)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
2104
using CompScienceMeshes, BEAST trc = X->ntrace(X,γ) dvg = divergence h1 = h2 = h3 = 1/15; h = max(h1, h2, h3) width, height = 1.0, 0.5 Γ1 = meshrectangle(width, height, h1) Γ2 = meshrectangle(width, height, h2); CompScienceMeshes.rotate!(Γ2, 0.5π*x̂) Γ3 = meshrectangle(width, height, h3); CompScienceMeshes.rotate!(Γ3, 1.0π*x̂) γ = meshsegment(width, width, 3) κ = 1.0 S, T, I = SingleLayerTrace(κ*im), MWSingleLayer3D(κ), Identity() St = transpose(S) E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n×E)×n in_interior1 = CompScienceMeshes.interior_tpredicate(Γ1) in_interior2 = CompScienceMeshes.interior_tpredicate(Γ2) in_interior3 = CompScienceMeshes.interior_tpredicate(Γ3) on_junction = CompScienceMeshes.overlap_gpredicate(γ) edges1 = submesh((m,e)->in_interior1(m,e) || on_junction(chart(m,e)), skeleton(Γ1,1)) edges2 = submesh((m,e)->in_interior2(m,e) || on_junction(chart(m,e)), skeleton(Γ2,1)) edges3 = submesh((m,e)->in_interior3(m,e) || on_junction(chart(m,e)), skeleton(Γ3,1)) # edges1 = skeleton(e -> in_interior1(e) || on_junction(chart(Γ1,e)), Γ1,1) # edges2 = skeleton(e -> in_interior2(e) || on_junction(chart(Γ2,e)), Γ2,1) # edges3 = skeleton(e -> in_interior3(e) || on_junction(chart(Γ3,e)), Γ3,1) X1 = raviartthomas(Γ1, edges1) X2 = raviartthomas(Γ2, edges2) X3 = raviartthomas(Γ3, edges3) # X1, X2, X3 = raviartthomas(Γ1, γ), raviartthomas(Γ2, γ), raviartthomas(Γ3, γ) X = X1 × X2 × X3 @hilbertspace j @hilbertspace k α, β = 1/(im*κ), log(abs(h))/(im*κ) Eq = @varform T[k,j] + α*S[trc(k), dvg(j)] + α*St[dvg(k), trc(j)] + β*I[trc(k), trc(j)] == e[k] eq = @discretise Eq j∈X k∈X # trcX = trc(X) # dvgX = dvg(X) # Q1 = assemble(Eq.lhs.terms[2].kernel, trcX, dvgX; threading=BEAST.Threading{:single}) # Q2 = assemble(Eq.lhs.terms[3].kernel, dvgX, trcX; threading=BEAST.Threading{:single}) u = solve(eq) Θ, Φ = range(0.0,stop=π,length=100), 0.0 ffpoints = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for θ in Θ for ϕ in Φ] farfield = potential(MWFarField3D(wavenumber=κ), ffpoints, u, X) using Plots using LinearAlgebra plot(Θ,norm.(farfield))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
5444
using CompScienceMeshes using BEAST Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) Γref = CompScienceMeshes.barycentric_refinement(Γ) X = raviartthomas(Γ, BEAST.Continuity{:none}) Y = raviartthomas(Γref, BEAST.Continuity{:none}) # X = subset(X,1690:1692) # Y = subset(Y,10141:10143) # X = subset(X,[1692]) # Y = subset(Y,[10147]) # Y = buffachristiansen(Γ) κ, η = 1.0, 1.0 t = Maxwell3D.singlelayer(wavenumber=κ) E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n g = 6 # ssstrat(g) = BEAST.DoubleNumSauterQstrat(7, 6, g, g, g, g) ssstrat(g) = BEAST.CommonFaceVertexSauterCommonEdgeWiltonPostitiveDistanceNumQStrat( 7, 6, 10, 8, g, g, g+3, g) qs1 = ssstrat(g) qs2 = BEAST.NonConformingIntegralOpQStrat(ssstrat(g)) A1 = assemble(t,Y,X, quadstrat=qs1, threading=BEAST.Threading{:single}) A2 = assemble(t,Y,X, quadstrat=qs2, threading=BEAST.Threading{:single}) # @enter assemble(t,Y,X, quadstrat=qs2, threading=BEAST.Threading{:single}) import Plots Plots.plotly() step = 1 rowidx = 10894 Plots.plot(imag.(A1[rowidx,1:step:end])) Plots.scatter!(imag.(A2[rowidx,1:step:end])) val, pos = findmax(abs.(A1-A2)) rowidx = Y.fns[pos[1]][1].cellid colidx = X.fns[pos[2]][1].cellid τ = chart(Γref, rowidx) σ = chart(Γ, colidx) # τ = [ # [0.18517788982868066, 0.05998671122432393, 0.9735312677690339], # [0.1647116144395066, 0.0050896055947335095, 0.9807011064756881], # [0.245326672427806, -0.06121735585211891, 0.9675056894602609]] # σ = [ # [0.1133762981558132, -0.1176791567283826, 0.9865583769286949], # [0.1647116144395066, 0.0050896055947335025, 0.9807011064756881], # [0.08409655645120719, 0.07139656704158594, 0.9938965234911153]] # eτ = simplex( # point(0.1647116144395066, 0.0050896055947335095, 0.9807011064756881), # point(0.245326672427806, -0.06121735585211891, 0.9675056894602609)) # eσ = simplex( # point(0.1647116144395066, 0.0050896055947335025, 0.9807011064756881), # point(0.08409655645120719, 0.07139656704158594, 0.9938965234911153)) # CompScienceMeshes.overlap(eτ, eσ) # τ = τ.vertices # σ = σ.vertices import Plotly function Plotly.mesh3d(a::Vector{<:CompScienceMeshes.Simplex}; opacity=0.5, kwargs...) T = coordtype(a[1]) n = length(a) X = Vector{T}(undef, 3*n) Y = Vector{T}(undef, 3*n) Z = Vector{T}(undef, 3*n) for i in 1:n X[3*(i-1)+1:3*i] = getindex.(a[i].vertices, 1) Y[3*(i-1)+1:3*i] = getindex.(a[i].vertices, 2) Z[3*(i-1)+1:3*i] = getindex.(a[i].vertices, 3) end I = collect(0:3:3*(n-1)) J = I .+ 1 K = I .+ 2 return Plotly.mesh3d(x=X,y=Y,z=Z,i=I,j=J,k=K; opacity, kwargs...) end m1 = Plotly.mesh3d([τ], opacity=0.5) m2 = Plotly.mesh3d([σ], opacity=0.5) # m1 = Plotly.mesh3d( # x=getindex.(τ,1), # y=getindex.(τ,2), # z=getindex.(τ,3), # i=[0], j=[1], k=[2]) # m2 = Plotly.mesh3d( # x=getindex.(σ,1), # y=getindex.(σ,2), # z=getindex.(σ,3), # i=[0], j=[1], k=[2]) Plotly.plot([m1,m2]) isct1, clps1 = CompScienceMeshes.intersection_keep_clippings(τ,σ) isct2, clps2 = CompScienceMeshes.intersection_keep_clippings(σ,τ) m3 = Plotly.mesh3d(isct1, opacity=0.5, color="blue") m4 = Plotly.mesh3d(isct2, opacity=0.5, color="red") Plotly.plot([m3,m4]) m5 = Plotly.mesh3d(clps2[1], opacity=0.5, color="green") m6 = Plotly.mesh3d(clps2[1][[1]], opacity=0.5, color="yellow") Plotly.plot([m3,m6]) p = isct1[1] q = clps2[1][1] for (i,λ) in pairs(faces(p)) for (j,μ) in pairs(faces(q)) if CompScienceMeshes.overlap(λ, μ) global gi = i global gj = j global qr = BEAST.NonConformingTouchQRule(qs1, i, j) end end end 𝒳 = refspace(X) 𝒴 = refspace(Y) out10 = zeros(ComplexF64, 3, 3) BEAST.momintegrals!(t, 𝒴, 𝒳, p, q, out10, BEAST.NonConformingTouchQRule(ssstrat(10), gi, gj)) out20 = zeros(ComplexF64, 3, 3) BEAST.momintegrals!(t, 𝒴, 𝒳, p, q, out20, BEAST.NonConformingTouchQRule(ssstrat(20), gi, gj)) @show out10[1,1] out20[1,1] τs, σs = BEAST._conforming_refinement_touching_triangles(p,q,2,3) @assert length(τs) == 1 @assert length(σs) == 2 @assert volume(p) ≈ sum(volume.(τs)) @assert volume(q) ≈ sum(volume.(σs)) @assert all(volume.(τs) .> eps(Float64)*1e3) @assert all(volume.(σs) .> eps(Float64)*1e3) m7 = Plotly.mesh3d(τs[[1]], color="blue", opacity=0.5) m8 = Plotly.mesh3d(σs[[1]], color="red", opacity=0.5) Plotly.plot([m7,m8]) out1_10 = zeros(ComplexF64, 3, 3) qs = ssstrat(10) qd = quaddata(t, 𝒴, 𝒳, τs, σs, qs) qr = quadrule(t, 𝒴, 𝒳, 1, τs[1], 1, σs[1], qd, qs) BEAST.momintegrals!(t, 𝒴, 𝒳, τs[1], σs[1], out1_10, qr) out1_20 = zeros(ComplexF64, 3, 3) qs = ssstrat(20) qd = quaddata(t, 𝒴, 𝒳, τs, σs, qs) qr = quadrule(t, 𝒴, 𝒳, 1, τs[1], 1, σs[1], qd, qs) BEAST.momintegrals!(t, 𝒴, 𝒳, τs[1], σs[1], out1_20, qr) @show out1_10[1,1] out1_20[1,1] out2_10 = zeros(ComplexF64, 3, 3) qs = ssstrat(10) qd = quaddata(t, 𝒴, 𝒳, τs, σs, qs) qr = quadrule(t, 𝒴, 𝒳, 1, τs[1], 1, σs[2], qd, qs) BEAST.momintegrals!(t, 𝒴, 𝒳, τs[1], σs[2], out2_10, qr) out2_20 = zeros(ComplexF64, 3, 3) qs = ssstrat(20) qd = quaddata(t, 𝒴, 𝒳, τs, σs, qs) qr = quadrule(t, 𝒴, 𝒳, 1, τs[1], 2, σs[2], qd, qs) BEAST.momintegrals!(t, 𝒴, 𝒳, τs[1], σs[2], out2_20, qr) @show out2_10[1,1] out2_20[1,1] out_ref = zeros(ComplexF64, 3, 3) qrss = BEAST.SauterSchwabQuadrature.CommonVertex(g) BEAST.momintegrals_test_refines_trial!(out_ref, t, Y, rowidx, p, X, colidx, q, qrss, qs1) @show out_ref
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
7207
using CompScienceMeshes using BEAST # Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) # Γref = CompScienceMeshes.barycentric_refinement(Γ) # h = 0.2*0.7 # M1 = meshcuboid(0.5, 1.0, 1.0, h) # M2 = meshcuboid(0.5, 1.0, 1.0, 1.2*h) # M2 = CompScienceMeshes.translate(M2, point(-0.5, 0, 0)) M1 = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/assets/M1.in")) M2 = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/assets/M2.in")) import Plotly Plotly.plot([ patch(M1,color="red", opacity=0.5), patch(M2,color="blue", opacity=0.5), wireframe(M1), wireframe(M2)]) X = raviartthomas(M1, BEAST.Continuity{:none}) Y = raviartthomas(M2, BEAST.Continuity{:none}) # X = subset(X,1690:1692) # Y = subset(Y,10141:10143) # X = subset(X,[1692]) # Y = subset(Y,[10147]) # Y = buffachristiansen(Γ) κ, η = 1.0, 1.0 t = Maxwell3D.singlelayer(wavenumber=κ) E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n g = 6 # ssstrat(g) = BEAST.DoubleNumSauterQstrat(7, 6, g, g, g, g) ssstrat(g) = BEAST.DoubleNumWiltonSauterQStrat( 7, 6, 10, 8, g, g, g+3, g) qs1 = BEAST.DoubleNumWiltonSauterQStrat( 2, 3, 6, 7, 5, 5, 4, 3) qs2 = BEAST.NonConformingIntegralOpQStrat(qs1) # A1 = assemble(t,Y,X, quadstrat=qs1, threading=BEAST.Threading{:single}) A2 = assemble(t,Y,X, quadstrat=qs2, threading=BEAST.Threading{:single}) A3 = assemble(t,X,Y, quadstrat=qs2, threading=BEAST.Threading{:single}) error() # @enter assemble(t,Y,X, quadstrat=qs2, threading=BEAST.Threading{:single}) import Plots Plots.plotly() step = 1 rowidx = 10894 Plots.plot(imag.(A1[rowidx,1:step:end])) Plots.scatter!(imag.(A2[rowidx,1:step:end])) val, pos = findmax(abs.(A1-A2)) rowidx = Y.fns[pos[1]][1].cellid colidx = X.fns[pos[2]][1].cellid τ = chart(Γref, rowidx) σ = chart(Γ, colidx) # τ = [ # [0.18517788982868066, 0.05998671122432393, 0.9735312677690339], # [0.1647116144395066, 0.0050896055947335095, 0.9807011064756881], # [0.245326672427806, -0.06121735585211891, 0.9675056894602609]] # σ = [ # [0.1133762981558132, -0.1176791567283826, 0.9865583769286949], # [0.1647116144395066, 0.0050896055947335025, 0.9807011064756881], # [0.08409655645120719, 0.07139656704158594, 0.9938965234911153]] # eτ = simplex( # point(0.1647116144395066, 0.0050896055947335095, 0.9807011064756881), # point(0.245326672427806, -0.06121735585211891, 0.9675056894602609)) # eσ = simplex( # point(0.1647116144395066, 0.0050896055947335025, 0.9807011064756881), # point(0.08409655645120719, 0.07139656704158594, 0.9938965234911153)) # CompScienceMeshes.overlap(eτ, eσ) # τ = τ.vertices # σ = σ.vertices import Plotly function Plotly.mesh3d(a::Vector{<:CompScienceMeshes.Simplex}; opacity=0.5, kwargs...) T = coordtype(a[1]) n = length(a) X = Vector{T}(undef, 3*n) Y = Vector{T}(undef, 3*n) Z = Vector{T}(undef, 3*n) for i in 1:n X[3*(i-1)+1:3*i] = getindex.(a[i].vertices, 1) Y[3*(i-1)+1:3*i] = getindex.(a[i].vertices, 2) Z[3*(i-1)+1:3*i] = getindex.(a[i].vertices, 3) end I = collect(0:3:3*(n-1)) J = I .+ 1 K = I .+ 2 return Plotly.mesh3d(x=X,y=Y,z=Z,i=I,j=J,k=K; opacity, kwargs...) end m1 = Plotly.mesh3d([τ], opacity=0.5) m2 = Plotly.mesh3d([σ], opacity=0.5) # m1 = Plotly.mesh3d( # x=getindex.(τ,1), # y=getindex.(τ,2), # z=getindex.(τ,3), # i=[0], j=[1], k=[2]) # m2 = Plotly.mesh3d( # x=getindex.(σ,1), # y=getindex.(σ,2), # z=getindex.(σ,3), # i=[0], j=[1], k=[2]) Plotly.plot([m1,m2]) isct1, clps1 = CompScienceMeshes.intersection_keep_clippings(τ,σ) isct2, clps2 = CompScienceMeshes.intersection_keep_clippings(σ,τ) m3 = Plotly.mesh3d(isct1, opacity=0.5, color="blue") m4 = Plotly.mesh3d(isct2, opacity=0.5, color="red") Plotly.plot([m3,m4]) m5 = Plotly.mesh3d(clps2[1], opacity=0.5, color="green") m6 = Plotly.mesh3d(clps2[1][[1]], opacity=0.5, color="yellow") Plotly.plot([m3,m6]) p = isct1[1] q = clps2[1][1] for (i,λ) in pairs(faces(p)) for (j,μ) in pairs(faces(q)) if CompScienceMeshes.overlap(λ, μ) global gi = i global gj = j global qr = BEAST.NonConformingTouchQRule(qs1, i, j) end end end 𝒳 = refspace(X) 𝒴 = refspace(Y) out10 = zeros(ComplexF64, 3, 3) BEAST.momintegrals!(t, 𝒴, 𝒳, p, q, out10, BEAST.NonConformingTouchQRule(ssstrat(10), gi, gj)) out20 = zeros(ComplexF64, 3, 3) BEAST.momintegrals!(t, 𝒴, 𝒳, p, q, out20, BEAST.NonConformingTouchQRule(ssstrat(20), gi, gj)) @show out10[1,1] out20[1,1] τs, σs = BEAST._conforming_refinement_touching_triangles(p,q,2,3) @assert length(τs) == 1 @assert length(σs) == 2 @assert volume(p) ≈ sum(volume.(τs)) @assert volume(q) ≈ sum(volume.(σs)) @assert all(volume.(τs) .> eps(Float64)*1e3) @assert all(volume.(σs) .> eps(Float64)*1e3) m7 = Plotly.mesh3d(τs[[1]], color="blue", opacity=0.5) m8 = Plotly.mesh3d(σs[[1]], color="red", opacity=0.5) Plotly.plot([m7,m8]) out1_10 = zeros(ComplexF64, 3, 3) qs = ssstrat(10) qd = quaddata(t, 𝒴, 𝒳, τs, σs, qs) qr = quadrule(t, 𝒴, 𝒳, 1, τs[1], 1, σs[1], qd, qs) BEAST.momintegrals!(t, 𝒴, 𝒳, τs[1], σs[1], out1_10, qr) out1_20 = zeros(ComplexF64, 3, 3) qs = ssstrat(20) qd = quaddata(t, 𝒴, 𝒳, τs, σs, qs) qr = quadrule(t, 𝒴, 𝒳, 1, τs[1], 1, σs[1], qd, qs) BEAST.momintegrals!(t, 𝒴, 𝒳, τs[1], σs[1], out1_20, qr) @show out1_10[1,1] out1_20[1,1] out2_10 = zeros(ComplexF64, 3, 3) qs = ssstrat(10) qd = quaddata(t, 𝒴, 𝒳, τs, σs, qs) qr = quadrule(t, 𝒴, 𝒳, 1, τs[1], 1, σs[2], qd, qs) BEAST.momintegrals!(t, 𝒴, 𝒳, τs[1], σs[2], out2_10, qr) out2_20 = zeros(ComplexF64, 3, 3) qs = ssstrat(20) qd = quaddata(t, 𝒴, 𝒳, τs, σs, qs) qr = quadrule(t, 𝒴, 𝒳, 1, τs[1], 2, σs[2], qd, qs) BEAST.momintegrals!(t, 𝒴, 𝒳, τs[1], σs[2], out2_20, qr) @show out2_10[1,1] out2_20[1,1] out_ref = zeros(ComplexF64, 3, 3) qrss = BEAST.SauterSchwabQuadrature.CommonVertex(g) BEAST.momintegrals_test_refines_trial!(out_ref, t, Y, rowidx, p, X, colidx, q, qrss, qs1) @show out_ref τ = simplex( point(0.0, 0.0, 0.1666666666673599), point(-0.12200846792768633, 0.0, 0.1220084679279961), point(0.0, 0.0, 0.0)) σ = simplex( point(0.0, 0.0, 0.1249999999997732), point(0.0, 0.0, 0.2499999999994112), point(0.0, 0.1038676364273151, 0.1864502994601513)) for (i,λ) in pairs(faces(τ)) for (j,μ) in pairs(faces(σ)) if CompScienceMeshes.overlap(λ, μ) global gi = i global gj = j # global qr = BEAST.NonConformingTouchQRule(qs1, i, j) end end end τs, σs = BEAST._conforming_refinement_touching_triangles(τ,σ,gi,gj); @assert volume(τ) ≈ sum(volume.(τs)) @assert volume(σ) ≈ sum(volume.(σs)) Plotly.plot([Plotly.mesh3d(τs, color="red"), Plotly.mesh3d(σs, color="blue")]) Plotly.plot([Plotly.mesh3d([τ], color="red"), Plotly.mesh3d([σ], color="blue")]) τ = simplex( point(0.0, 0.893151804804907, 0.4384102834058539), point(0.0, 0.8931541172685571, 0.4383125008447698), point(0.0, 0.8932364620235818, 0.43836004261125),) σ = simplex( point(0.0, 0.893151804804907, 0.4384102834058539), point(0.0, 0.8931541172685571, 0.4383125008447698), point(0.0, 0.8932364620235818, 0.43836004261125),) CompScienceMeshes.overlap(τ, σ)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
985
using CompScienceMeshes, BEAST # Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) Γ = meshsphere(radius=1.0, h=0.15) X, Y = raviartthomas(Γ), buffachristiansen(Γ) ϵ, μ, ω = 1.0, 1.0, 1.0; κ, η = ω * √(ϵ*μ), √(μ/ϵ) # K, N = Maxwell3D.doublelayer(wavenumber=κ), NCross() nxK = BEAST.DoubleLayerRotatedMW3D(1.0, κ*im) Id = BEAST.Identity() E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) # E = -η/(im*κ)*BEAST.CurlCurlGreen(κ, ẑ, point(2,0,0)) H = -1/(im*μ*ω)*curl(E) h = (n × H) × n nxh = n × H h = nxh × n @hilbertspace j @hilbertspace m mfie = @discretise (nxK-0.5Id)[m,j] == nxh[m] j∈X m∈X u = solve(mfie) include("utils/postproc.jl") include("utils/plotresults.jl") # freeze, store = BEAST.allocatestorage(nxK, X, X, Val{:bandedstorage}, BEAST.LongDelays{:compress}) # @enter BEAST.assemble!(nxK, X, X, store, BEAST.Threading{:single}) # Z1 = freeze() # Z2 = assemble(Id, X, X) # Z = Z1 - 0.5*Z2 # b = assemble(nxh, X) # u = Z \ b
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
460
using CompScienceMeshes using BEAST Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) X = raviartthomas(Γ) Y = buffachristiansen(Γ, ibscaled=true) N = BEAST.NCross() κ = 1.0 E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n b = assemble(e, X) G = assemble(N, X, Y) x = G \ b fcr, geo = facecurrents(x, Y) using Plotly using LinearAlgebra Plotly.plot(patch(geo.mesh, norm.(fcr); caxis=(0.0, 1.0)))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
3267
using CompScienceMeshes, BEAST using LinearAlgebra function nearfield(um,uj,Xm,Xj,κ,η,points, Einc=(x->point(0,0,0)), Hinc=(x->point(0,0,0))) K = BEAST.MWDoubleLayerField3D(wavenumber=κ) T = BEAST.MWSingleLayerField3D(wavenumber=κ) Em = potential(K, points, um, Xm) Ej = potential(T, points, uj, Xj) E = -Em + η * Ej + Einc.(points) Hm = potential(T, points, um, Xm) Hj = potential(K, points, uj, Xj) H = 1/η*Hm + Hj + Hinc.(points) return E, H end ϵ0 = 8.854e-12 μ0 = 4π*1e-7 c = 1/√(ϵ0*μ0) λ = 2.9979563769321627 ω = 2π*c/λ Ω = CompScienceMeshes.tetmeshsphere(λ,0.1*λ) Γ = boundary(Ω) X = raviartthomas(Γ) @show numfunctions(X) ϵr = 2.0 μr = 1.0 κ, η = ω/c, √(μ0/ϵ0) κ′, η′ = κ*√(ϵr*μr), η*√(μr/ϵr) # κ, η = π, 1.0 # κ′, η′ = 2.0κ, η/2.0 T = Maxwell3D.singlelayer(wavenumber=κ) T′ = Maxwell3D.singlelayer(wavenumber=κ′) K = Maxwell3D.doublelayer(wavenumber=κ) K′ = Maxwell3D.doublelayer(wavenumber=κ′) E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) H = -1/(im*κ*η)*curl(E) e = (n × E) × n h = (n × H) × n @hilbertspace j m @hilbertspace k l α, α′ = 1/η, 1/η′ pmchwt = @discretise( (η*T+η′*T′)[k,j] - (K+K′)[k,m] + (K+K′)[l,j] + (α*T+α′*T′)[l,m] == -e[k] - h[l], j∈X, m∈X, k∈X, l∈X) u = solve(pmchwt) Θ, Φ = range(0.0,stop=2π,length=100), 0.0 ffpoints = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for θ in Θ for ϕ in Φ] # Don't forget the far field comprises two contributions ffm = potential(MWFarField3D(κ*im, η), ffpoints, u[m], X) ffj = potential(MWFarField3D(κ*im, η), ffpoints, u[j], X) ff = -η*im*κ*ffj + im*κ*cross.(ffpoints, ffm) # Compare the far field and the field far using Plots ffradius = 100.0 E_far, H_far = nearfield(u[m],u[j],X,X,κ,η, ffradius .* ffpoints) nxE_far = cross.(ffpoints, E_far) * (4π*ffradius) / exp(-im*κ*ffradius) Et_far = -cross.(ffpoints, nxE_far) Plots.plot() Plots.plot!(Θ, norm.(ff)/η ,label="far field") Plots.scatter!(Θ, norm.(Et_far), label="field far") using Plots Plots.plot(xlabel="theta") Plots.plot!(Θ,norm.(ff),label="far field",title="PMCHWT") import Plotly using LinearAlgebra fcrj, _ = facecurrents(u[j],X) fcrm, _ = facecurrents(u[m],X) Plotly.plot(patch(Γ, norm.(fcrj))) Plotly.plot(patch(Γ, norm.(fcrm))) Z = range(-6,6,length=200) Y = range(-4,4,length=200) nfpoints = [point(0,y,z) for z in Z, y in Y] import Base.Threads: @spawn task1 = @spawn nearfield(u[m],u[j],X,X,κ,η,nfpoints,E,H) task2 = @spawn nearfield(-u[m],-u[j],X,X,κ′,η′,nfpoints) E_ex, H_ex = fetch(task1) E_in, H_in = fetch(task2) E_tot = E_in + E_ex H_tot = H_in + H_ex Plots.contour(real.(getindex.(E_tot,1))) Plots.contour(real.(getindex.(H_tot,2))) Plots.heatmap(Z, Y, clamp.(real.(getindex.(E_tot,1)),-1.5,1.5)) Plots.heatmap(Z, Y, clamp.(imag.(getindex.(E_tot,1)),-1.5,1.5)) Plots.heatmap(Z, Y, real.(getindex.(H_tot,2))) Plots.heatmap(Z, Y, imag.(getindex.(H_tot,2))) Plots.plot(real.(getindex.(E_tot[:,51],1))) Plots.plot(real.(getindex.(H_tot[:,51],2)))
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1395
using CompScienceMeshes using LinearAlgebra # function cone(p,q; sizemode="absolute", sizeref=2, kwargs...) # x = getindex.(p,1) # y = getindex.(p,2) # z = getindex.(p,3) # u = getindex.(q,1) # v = getindex.(q,2) # w = getindex.(q,3) # Plotly.cone(;x,y,z,u,v,w, sizemode, sizeref, kwargs...) # end fn = joinpath(dirname(pathof(CompScienceMeshes)),"geos/torus.geo") fn = joinpath(@__DIR__, "assets/rectangular_torus.geo") h = 0.08 Γ = CompScienceMeshes.meshgeo(fn; dim=2, h) Γ0 = skeleton(Γ,0) Γ1 = skeleton(Γ,1) Σ = connectivity(Γ, Γ1, sign) Λ = connectivity(Γ0, Γ1, sign) # using Plotly # Plotly.plot([patch(Γ, opacity=0.5), wireframe(Γ)]) using BEAST X = raviartthomas(Γ) Y = buffachristiansen(Γ) K = Maxwell3D.doublelayer(gamma=0.0) Id = BEAST.Identity() Nx = BEAST.NCross() M = K + 0.5Nx qs = BEAST.defaultquadstrat(M,Y,X) qs[2] = BEAST.DoubleNumWiltonSauterQStrat(6, 7, 6, 7, 9, 9, 9, 9) Myx = assemble(M, Y, X, quadstrat=qs) using LinearAlgebra (;U,S,V) = svd(Myx) v0 = V[:,end] fcr, geo = facecurrents(v0, X) # pts = [cartesian(center(chart(Γ,p))) for p in Γ] import Plotly pt1 = patch(Γ,norm.(fcr), opacity=0.5) pt2 = CompScienceMeshes.cones(Γ, fcr, sizeref=0.4) Plotly.plot([pt1, pt2]) G = assemble(Id,X,X) norm(v0) norm(Σ'*v0) norm(Λ'*G*v0) # Dict{Any, Any} with 3 entries: # 0.5 => 0.370836 # 0.25 => 0.315732 # 0.125 => 0.265276
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
3888
using BEAST, CompScienceMeshes, LinearAlgebra using Plots # using JLD2 setminus(A,B) = submesh(!in(B), A) radius = 1.0 nearstrat = BEAST.DoubleNumWiltonSauterQStrat(6, 7, 6, 7, 7, 7, 7, 7) farstrat = BEAST.DoubleNumQStrat(1,2) dmat(op,tfs,bfs) = BEAST.assemble(op,tfs,bfs; quadstrat=nearstrat) # hmat(op,tfs,bfs) = AdaptiveCrossApproximation.h1compress(op,tfs,bfs; nearstrat=nearstrat,farstrat=farstrat) mat = dmat h = [0.1, 0.05, 0.025, 0.0125] κ = [1.0, 10.0] h = 0.3 κ = 0.000001 γ = im*κ # function runsim(;h, κ) SL = Maxwell3D.singlelayer(wavenumber=κ) WS = Maxwell3D.weaklysingular(wavenumber=κ) HS = Maxwell3D.hypersingular(wavenumber=κ) N = NCross() E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) e = (n × E) × n; Γ = meshsphere(;radius, h) ∂Γ = boundary(Γ) edges = setminus(skeleton(Γ,1), ∂Γ) verts = setminus(skeleton(Γ,0), skeleton(∂Γ,0)) Σ = Matrix(connectivity(Γ, edges, sign)) Λ = Matrix(connectivity(verts, edges, sign)) I = LinearAlgebra.I PΣ = Σ * pinv(Σ'*Σ) * Σ' PΛH = I - PΣ ℙΛ = Λ * pinv(Λ'*Λ) * Λ' ℙHΣ = I - ℙΛ MR = γ * PΣ + PΛH ML = PΣ + 1/γ * PΛH MRΣ = γ * PΣ MRΛH = PΛH MLΣ = PΣ MLΛH = 1/γ * PΛH 𝕄R = γ * ℙΛ + ℙHΣ 𝕄L = ℙΛ + 1/γ * ℙHΣ X = raviartthomas(Γ) Y = buffachristiansen(Γ) @hilbertspace p @hilbertspace q SLxx = assemble(@discretise(SL[p,q], p∈X, q∈X), materialize=mat) WSxx = assemble(@discretise(WS[p,q], p∈X, q∈X), materialize=mat) ex = BEAST.assemble(@discretise e[p] p∈X) sys0 = SLxx sys1 = MLΣ * SLxx * MRΣ + MLΛH * WSxx * MRΣ + MLΣ * WSxx * MRΛH + MLΛH * WSxx * MRΛH rhs0 = ex rhs1 = ML * ex u0, ch0 = solve(BEAST.GMRESSolver(sys0, tol=2e-5, restart=250), rhs0) v1, ch1 = solve(BEAST.GMRESSolver(sys1, tol=2e-5, restart=250), rhs1) u1 = MR * v1 # u2 = MR * v2 # error() # @show ch1.iters # @show ch2.iters Φ, Θ = [0.0], range(0,stop=π,length=40) pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for ϕ in Φ for θ in Θ] near0 = potential(MWFarField3D(wavenumber=κ), pts, u0, X) near1 = potential(MWFarField3D(wavenumber=κ), pts, u1, X) # near2 = potential(MWFarField3D(wavenumber=κ), pts, u2, X) # u1, ch1.iters, u2, ch2.iters, near1, near2, X # end plot(); plot!(Θ, norm.(near0)); scatter!(Θ, norm.(near1)) # scatter!(Θ, norm.(near2)) # error() # using LinearAlgebra # using Plots # plotly() # w0 = eigvals(Matrix(SLxx)) # w1 = eigvals(Matrix(sys)) # w2 = eigvals(Matrix(P * sys)) # plot(exp.(2pi*im*range(0,1,length=200))) # scatter!(w0) # scatter!(w1) # scatter!(w2) # function makesim(d::Dict) # @unpack h, κ = d # u1, ch1, u2, ch2, near1, near2, X = runsim(;h, κ) # fulld = merge(d, Dict( # "u1" => u1, # "u2" => u2, # "ch1" => ch1, # "ch2" => ch2, # "near1" => near1, # "near2" => near2 # )) # end # method = splitext(basename(@__FILE__))[1] # params = @strdict h κ # dicts = dict_list(params) # for (i,d) in enumerate(dicts) # @show d # f = makesim(d) # @tagsave(datadir("simulations", method, savename(d,"jld2")), f) # end #' Visualise the spectrum # mSxx = BEAST.convert_to_dense(Sxx) # mSyy = BEAST.convert_to_dense(Syy) # Z = mSxx # W = iN' * mSyy * iN * mSxx; # wZ = eigvals(Matrix(Z)) # wW = eigvals(Matrix(W)) # plot(exp.(im*range(0,2pi,length=200))) # scatter!(wZ) # scatter!(wW) # Study the various kernels # HS = Maxwell3D.singlelayer(gamma=0.0, alpha=0.0, beta=1.0) # Id = BEAST.Identity() # Z12 = BEAST.lagrangecxd0(G12) # Z23 = BEAST.lagrangecxd0(Ĝ23) # Z = Z12 × Z23 # W12 = BEAST.duallagrangecxd0(G12) # W23 = BEAST.duallagrangecxd0(Ĝ23) # W = W12 × W23 # DX = assemble(Id, Z, divergence(X)) # HX = assemble(HS, X, X) # DY = assemble(Id, W, divergence(Y)) # HY = assemble(HS, Y, Y) # Nx = BEAST.NCross() # NYX = assemble(Nx, Y, X) # Q = HY * iN * HX # using AlgebraicMultigrid # A = poisson(100) # b = rand(100); # solve(A, b, RugeStubenAMG(), maxiter=1, abstol=1e-6)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
1302
using CompScienceMeshes using BEAST Γ1 = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) Γ2 = CompScienceMeshes.translate(Γ1, [10,0,0]) SL = Maxwell3D.singlelayer(wavenumber=1.0) X1 = raviartthomas(Γ1) X2 = raviartthomas(Γ2) x1 = refspace(X1) x2 = refspace(X2) function BEAST.quaddata(op::typeof(SL), tref::typeof(x1), bref::typeof(x2), tels, bels, qs::BEAST.DoubleNumQStrat) qs = BEAST.DoubleNumWiltonSauterQStrat(qs.outer_rule, qs.inner_rule, 1, 1, 1, 1, 1, 1) BEAST.quaddata(op, tref, bref, tels, bels, qs) end function BEAST.quadrule(op::typeof(SL), tref::typeof(x1), bref::typeof(x2), i ,τ, j, σ, qd, qs::BEAST.DoubleNumQStrat) return BEAST.DoubleQuadRule( qd.tpoints[1,i], qd.bpoints[1,j]) end BEAST.quadinfo(SL,X1,X2) BEAST.quadinfo(SL,X1,X2, quadstrat=BEAST.DoubleNumQStrat(2,3)) @time Z1 = assemble(SL,X1,X2); @time Z2 = assemble(SL,X1,X2,quadstrat=BEAST.DoubleNumQStrat(2,3)); ba1 = blockassembler(SL,X1,X2) ba2 = blockassembler(SL,X1,X2,quadstrat=BEAST.DoubleNumQStrat(2,3)) T = scalartype(SL,X1,X2) n1 = numfunctions(X1) n2 = numfunctions(X2) W1 = zeros(T,n1,n2); W2 = zeros(T,n1,n2); idcs1 = collect(1:n1) idcs2 = collect(1:n2) @time ba1(idcs1,idcs2, (v,m,n)->(W1[m,n]+=v)) @time ba2(idcs1,idcs2, (v,m,n)->(W2[m,n]+=v));
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
517
using CompScienceMeshes using BEAST fn = joinpath(dirname(@__FILE__),"assets","torus.msh") m = CompScienceMeshes.read_gmsh_mesh(fn) X = raviartthomas(m) Y = buffachristiansen(m) N = BEAST.NCross() K = Maxwell3D.doublelayer(gamma=0.0) verts = skeleton(m,0) edges = skeleton(m,1) faces = skeleton(m,2) Λ = connectivity(verts, edges) Σ = connectivity(faces, edges) M = assemble(K+0.5N,Y,X) using LinearAlgebra s = svdvals(M) using Plots plot(log10.(s)) x = nullspace(M, 1.1*s[end]) norm(x) norm(M*x) norm(Σ'*Λ)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
928
using CompScienceMeshes, BEAST o, x, y, z = euclidianbasis(3) # D, Δx = 1.0, 0.35 # Γ = meshsphere(D, Δx) Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) Γ = meshsphere(1.0, 0.45) X = raviartthomas(Γ) #Δt, Nt = 0.08, 400 Δt, Nt = 0.6, 200 T = timebasisc0d1(Δt, Nt) U = timebasiscxd0(Δt, Nt) # T = timebasisshiftedlagrange(Δt, Nt, 2) # U = timebasisdelta(Δt, Nt) V = X ⊗ T W = X ⊗ U width, delay, scaling = 8.0, 12.0, 1.0 gaussian = creategaussian(width, delay, scaling) direction, polarisation = ẑ, x̂ E = BEAST.planewave(polarisation, direction, derive(gaussian), 1.0) @hilbertspace j; @hilbertspace j′ T = MWSingleLayerTDIO(1.0,-1.0,-1.0,2,0) tdefie = @discretise T[j′,j] == -1E[j′] j∈V j′∈W xefie = solve(tdefie) Xefie, Δω, ω0 = fouriertransform(xefie, Δt, 0.0, 2) ω = collect(ω0 .+ (0:Nt-1)*Δω) _, i1 = findmin(abs.(ω.-1.0)) ω1 = ω[i1] ue = Xefie[:,i1]/ fouriertransform(gaussian)(ω1)
BEAST
https://github.com/krcools/BEAST.jl.git
[ "MIT" ]
2.5.0
757efc563022d39e95f751b7e5a29d020a57e049
code
980
using CompScienceMeshes, BEAST o, x, y, z = euclidianbasis(3) # D, Δx = 1.0, 0.35 Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../examples/sphere2.in")) X, Y = raviartthomas(Γ), buffachristiansen(Γ) # Δt, Nt = 0.11, 200 Δt, Nt = 0.6, 200 δ = timebasisdelta(Δt, Nt) h = timebasisc0d1(Δt, Nt) p = timebasiscxd0(Δt, Nt) V = X ⊗ p W = Y ⊗ p width, delay, scaling = 8.0, 12.0, 1.0 gaussian = creategaussian(width, delay, scaling) direction, polarisation = ẑ, x̂ E = BEAST.planewave(polarisation, direction, gaussian, 1.0) # E = BEAST.planewave(polarisation, direction, derive(gaussian), 1.0) H = direction × E @hilbertspace j; @hilbertspace m′ K, I, N = MWDoubleLayerTDIO(1.0, 1.0, 0), Identity(), NCross() tdmfie = @discretise (0.5*(N⊗I) + 1.0*K)[m′,j] == -1H[m′] j∈V m′∈W xmfie = solve(tdmfie) Xmfie, Δω, ω0 = fouriertransform(xmfie, Δt, 0.0, 2) ω = collect(ω0 .+ (0:Nt-1)*Δω) _, i1 = findmin(abs.(ω .- 1.0)) ω1 = ω[i1] um = Xmfie[:,i1] / fouriertransform(gaussian)(ω1)
BEAST
https://github.com/krcools/BEAST.jl.git