licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
585
struct IfElseMeasure{B,T,F} <: AbstractMeasure b::B t::T f::F end using MeasureBase: istrue insupport(d::IfElseMeasure, x) = istrue(insupport(d.t, x)) || istrue(insupport(d.f, x)) function logdensity_def(d::IfElseMeasure, x) p = mean(d.b) logdensity_def(p * d.t + (1 - p) * d.f, x) end basemeasure(d::IfElseMeasure) = d.t + d.f @inline function Base.rand(rng::AbstractRNG, ::Type{T}, m::IfElseMeasure) where {T} c = rand(rng, T, m.b) result = ifelse(c, m.t, m.f) rand(rng, T, result) end IfElse.ifelse(b::Bernoulli, t, f) = IfElseMeasure(b, t, f)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1003
using MappedArrays # function as(d::ProductMeasure{Returns{T},F,A}) where {T,F,A<:AbstractArray} # as(Array, as(d.f.f.value), size(d.xs)) # end @inline function Base.rand( rng::AbstractRNG, ::Type{T}, d::ProductMeasure{A}, ) where {T,A<:AbstractArray} mar = marginals(d) # Distributions doens't (yet) have the three-argument form elT = typeof(rand(rng, T, first(mar))) sz = size(mar) x = Array{elT,length(sz)}(undef, sz) @inbounds @simd for j in eachindex(mar) x[j] = rand(rng, T, mar[j]) end x end # # e.g. set(Normal(μ=2)^5, params, randn(5)) # function Accessors.set( # d::ProductMeasure{A}, # ::typeof(params), # p::AbstractArray, # ) where {A<:AbstractArray} # set.(marginals(d), params, p) # end # function Accessors.set( # d::ProductMeasure{A}, # ::typeof(params), # p, # ) where {A<:AbstractArray} # mar = marginals(d) # par = eltype(mar)(p) # ProductMeasure(d.f, Fill(par, size(mar))) # end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
3418
using TransformVariables: AbstractTransform, CallableTransform, CallableInverse export Pushforward export Pullback struct Pushforward{F,M,L} <: AbstractMeasure f::F μ::M logjac::L end insupport(d::Pushforward, x) = insupport(d.μ, inverse(d.f)(x)) Pushforward(f, μ) = Pushforward(f, μ, True()) function Pretty.tile(pf::Pushforward{<:TV.CallableTransform}) Pretty.list_layout(Pretty.tile.([pf.f.t, pf.μ, pf.logjac]); prefix = :Pushforward) end function Pretty.tile(pf::Pushforward) Pretty.list_layout(Pretty.tile.([pf.f, pf.μ, pf.logjac]); prefix = :Pushforward) end struct Pullback{F,M,L} <: AbstractMeasure f::F ν::M logjac::L end Pullback(f, ν) = Pullback(f, ν, True()) insupport(d::Pullback, x) = insupport(d.ν, d.f(x)) function Pretty.tile(pf::Pullback{<:TV.CallableTransform}) Pretty.list_layout(Pretty.tile.([pf.f.t, pf.ν, pf.logjac]); prefix = :Pullback) end function Pretty.tile(pf::Pullback) Pretty.list_layout(Pretty.tile.([pf.f, pf.ν, pf.logjac]); prefix = :Pullback) end @inline function logdensity_def(pb::Pullback{F,M,True}, x) where {F<:CallableTransform,M} f = pb.f ν = pb.ν y, logJ = TV.transform_and_logjac(f.t, x) return logdensity_def(ν, y) + logJ end @inline function logdensity_def(pb::Pullback{F,M,False}, x) where {F<:CallableTransform,M} f = pb.f ν = pb.ν y = f(x) return logdensity_def(ν, y) end @inline function logdensity_def(pf::Pushforward{F,M,True}, y) where {F<:CallableTransform,M} f = pf.f μ = pf.μ x = TV.inverse(f.t)(y) _, logJ = TV.transform_and_logjac(f.t, x) return logdensity_def(μ, x) - logJ end @inline function logdensity_def( pf::Pushforward{F,M,False}, y, ) where {F<:CallableTransform,M} f = pf.f μ = pf.μ x = TV.inverse(f.t)(y) return logdensity_def(μ, x) end Pullback(f::AbstractTransform, ν, logjac = True()) = Pullback(TV.transform(f), ν, logjac) function Pushforward(f::AbstractTransform, ν, logjac = True()) Pushforward(TV.transform(f), ν, logjac) end Pullback(f::CallableInverse, ν, logjac = True()) = Pushforward(TV.transform(f.t), ν, logjac) Pushforward(f::CallableInverse, ν, logjac = True()) = Pullback(TV.transform(f.t), ν, logjac) Base.rand(rng::AbstractRNG, T::Type, ν::Pushforward) = ν.f(rand(rng, T, ν.μ)) Base.rand(rng::AbstractRNG, T::Type, μ::Pullback) = μ.f(rand(rng, T, μ.ν)) testvalue(ν::Pushforward) = TV.transform(ν.f, testvalue(ν.μ)) testvalue(μ::Pullback) = TV.transform(TV.inverse(μ.f), testvalue(μ.ν)) basemeasure(μ::Pullback) = Pullback(μ.f, basemeasure(μ.ν), False()) basemeasure(ν::Pushforward) = Pushforward(ν.f, basemeasure(ν.μ), False()) as(ν::Pushforward) = ν.f ∘ as(ν.μ) as(μ::Pullback) = TV.inverse(μ.f) ∘ μ.ν as(::Lebesgue) = asℝ # TODO: Make this work for affine embeddings as(d::AffinePushfwd) = _as_affine(_firstval(d)) _firstval(d::AffinePushfwd) = first(values(getfield(getfield(d, :f), :par))) _as_affine(x::Real) = asℝ _as_affine(x::AbstractArray) = as(Vector, size(x, 1)) function basemeasure( ::Pushforward{TV.CallableTransform{T},Lebesgue{ℝ}}, ) where {T<:TV.ScalarTransform} Lebesgue(ℝ) end function basemeasure( ::Pullback{TV.CallableTransform{T},Lebesgue{ℝ}}, ) where {T<:TV.ScalarTransform} Lebesgue(ℝ) end # t = as𝕀 # μ = Normal() # ν = Pushforward(t, μ) # x = rand(μ) # julia> logdensity_def(μ, x) ≈ logdensity_def(Pushforward(inverse(t), ν), x) # true
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
45
as(μ::AbstractWeightedMeasure) = as(μ.base)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1713
# Bernoulli distribution export Bernoulli import Base @parameterized Bernoulli() @kwstruct Bernoulli() @kwstruct Bernoulli(p) @kwstruct Bernoulli(logitp) Bernoulli(p) = Bernoulli((p = p,)) basemeasure(::Bernoulli) = CountingBase() testvalue(::Bernoulli) = true insupport(::Bernoulli, x) = x == true || x == false @inline function logdensity_def(d::Bernoulli{(:p,)}, y) p = d.p y == true ? log(p) : log1p(-p) end function density_def(::Bernoulli{()}, y) return 0.5 end @inline function logdensity_def(d::Bernoulli{()}, y) return -logtwo end function density_def(d::Bernoulli{(:p,)}, y) p = d.p return 2 * p * y - p - y + 1 end densityof(d::Bernoulli, y) = density_def(d, y) unsafe_densityof(d::Bernoulli, y) = density_def(d, y) @inline function logdensity_def(d::Bernoulli{(:logitp,)}, y) x = d.logitp return y * x - log1pexp(x) end function density_def(d::Bernoulli{(:logitp,)}, y) exp_x = exp(d.logitp) return exp_x^y / (1 + exp_x) end gentype(::Bernoulli) = Bool Base.rand(rng::AbstractRNG, T::Type, d::Bernoulli{()}) = rand(rng, T) < one(T) / 2 Base.rand(rng::AbstractRNG, T::Type, d::Bernoulli{(:p,)}) = rand(rng, T) < d.p function Base.rand(rng::AbstractRNG, T::Type, d::Bernoulli{(:logitp,)}) rand(rng, T) < logistic(d.logitp) end function smf(b::B, x::X) where {B<:Bernoulli,X} T = Core.Compiler.return_type(densityof, Tuple{B,X}) x < zero(x) && return zero(T) x ≥ one(x) && return one(T) return densityof(b, zero(x)) end function invsmf(b::Bernoulli, p) p0 = densityof(b, 0) p ≤ p0 ? 0 : 1 end proxy(d::Bernoulli{(:p,)}) = Dists.Bernoulli(d.p) proxy(d::Bernoulli{(:logitp,)}) = Dists.Bernoulli(logistic(d.logitp))
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
757
# Beta distribution export Beta @parameterized Beta(α, β) @kwstruct Beta(α, β) @kwalias Beta [ a => α alpha => α b => β beta => β ] @inline function logdensity_def(d::Beta{(:α, :β),Tuple{A,B}}, x::X) where {A,B,X} return xlogy(d.α - 1, x) + xlog1py(d.β - 1, -x) end @inline function basemeasure(d::Beta{(:α, :β)}) ℓ = -logbeta(d.α, d.β) weightedmeasure(ℓ, LebesgueBase()) end Base.rand(rng::AbstractRNG, T::Type, μ::Beta) = rand(rng, Dists.Beta(μ.α, μ.β)) insupport(::Beta, x) = in𝕀(x) insupport(::Beta) = in𝕀 function smf(d::Beta{(:α, :β)}, x::Real) StatsFuns.betacdf(d.α, d.β, x) end function invsmf(d::Beta{(:α, :β)}, p) StatsFuns.betainvcdf(d.α, d.β, p) end proxy(d::Beta{(:α, :β)}) = Dists.Beta(d.α, d.β)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
829
# Beta-Binomial distribution export BetaBinomial import Base using SpecialFunctions @parameterized BetaBinomial(n, α, β) basemeasure(d::BetaBinomial) = CountingBase() testvalue(::BetaBinomial) = 0 @kwstruct BetaBinomial(n, α, β) function Base.rand(rng::AbstractRNG, ::Type{T}, d::BetaBinomial{(:n, :α, :β)}) where {T} k = rand(rng, T, Beta(d.α, d.β)) return rand(rng, T, Binomial(d.n, k)) end @inline function insupport(d::BetaBinomial, x) isinteger(x) && 0 ≤ x ≤ d.n end @inline function logdensity_def(d::BetaBinomial{(:n, :α, :β)}, y) (n, α, β) = (d.n, d.α, d.β) logbinom = -log1p(n) - logbeta(y + 1, n - y + 1) lognum = logbeta(y + α, n - y + β) logdenom = logbeta(α, β) return logbinom + lognum - logdenom end proxy(d::BetaBinomial{(:n, :α, :β)}) = Dists.BetaBinomial(d.n, d.α, d.β)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
2480
# Binomial distribution export Binomial import Base using SpecialFunctions probit(p) = Φinv(p) @parameterized Binomial(n, p) basemeasure(d::Binomial) = CountingBase() testvalue(::Binomial) = 0 @kwstruct Binomial() @inline function logdensity_def(d::Binomial{()}, y) return -logtwo end @inline function insupport(d::Binomial{()}, x) x ∈ (0, 1) end function Base.rand(rng::AbstractRNG, ::Type{T}, d::Binomial{(:n, :p)}) where {T} rand(rng, T, Dists.Binomial(d.n, d.p)) end Binomial(n) = Binomial(n, 0.5) ############################################################################### @kwstruct Binomial(n, p) @inline function insupport(d::Binomial, x) isinteger(x) && 0 ≤ x ≤ d.n end @inline function logdensity_def(d::Binomial{(:n, :p)}, y) (n, p) = (d.n, d.p) return -log1p(n) - logbeta(n - y + 1, y + 1) + xlogy(y, p) + xlog1py(n - y, -p) end function Base.rand( rng::AbstractRNG, ::Type, d::Binomial{(:n, :p),Tuple{I,A}}, ) where {I<:Integer,A} rand(rng, Dists.Binomial(d.n, d.p)) end ############################################################################### @kwstruct Binomial(n, logitp) @inline function logdensity_def(d::Binomial{(:n, :logitp)}, y) n = d.n x = d.logitp return -log1p(n) - logbeta(n - y + 1, y + 1) + y * x - n * log1pexp(x) end function Base.rand( rng::AbstractRNG, ::Type, d::Binomial{(:n, :logitp),Tuple{I,A}}, ) where {I<:Integer,A} rand(rng, Dists.Binomial(d.n, logistic(d.logitp))) end ############################################################################### @kwstruct Binomial(n, probitp) @inline function logdensity_def(d::Binomial{(:n, :probitp)}, y) n = d.n z = d.probitp return -log1p(n) - logbeta(n - y + 1, y + 1) + xlogy(y, Φ(z)) + xlogy(n - y, Φ(-z)) end function Base.rand( rng::AbstractRNG, ::Type, d::Binomial{(:n, :probitp),Tuple{I,A}}, ) where {I<:Integer,A} rand(rng, Dists.Binomial(d.n, Φ(d.probitp))) end proxy(d::Binomial{(:n, :p),Tuple{I,A}}) where {I<:Integer,A} = Dists.Binomial(d.n, d.p) function proxy(d::Binomial{(:n, :logitp),Tuple{I,A}}) where {I<:Integer,A} Dists.Binomial(d.n, logistic(d.logitp)) end function proxy(d::Binomial{(:n, :probitp),Tuple{I,A}}) where {I<:Integer,A} Dists.Binomial(d.n, Φ(d.probitp)) end function smf(μ::Binomial{(:n, :p)}, k) α = max(0, floor(k) + 1) β = max(0, μ.n - floor(k)) beta_smf = smf(Beta(α, β), μ.p) one(beta_smf) - beta_smf end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1301
# Cauchy distribution export Cauchy, HalfCauchy @parameterized Cauchy(μ, σ) @kwstruct Cauchy() @kwstruct Cauchy(μ) @kwstruct Cauchy(σ) @kwstruct Cauchy(μ, σ) @kwstruct Cauchy(λ) @kwstruct Cauchy(μ, λ) logdensity_def(d::Cauchy, x) = logdensity_def(proxy(d), x) basemeasure(d::Cauchy) = WeightedMeasure(static(-logπ), LebesgueBase()) # @affinepars Cauchy @inline function logdensity_def(d::Cauchy{()}, x) return -log1p(x^2) end function density_def(d::Cauchy{()}, x) return inv(1 + x^2) end Base.rand(rng::AbstractRNG, T::Type, μ::Cauchy{()}) = randn(rng, T) / randn(rng, T) Base.rand(::FixedRNG, ::Type{T}, ::Cauchy{()}) where {T} = zero(T) for N in AFFINEPARS @eval begin proxy(d::Cauchy{$N}) = affine(params(d), Cauchy()) @useproxy Cauchy{$N} function rand(rng::AbstractRNG, ::Type{T}, d::Cauchy{$N}) where {T} rand(rng, T, affine(params(d), Cauchy())) end end end ≪(::Cauchy, ::Lebesgue{X}) where {X<:Real} = true @half Cauchy HalfCauchy(σ) = HalfCauchy(σ = σ) Base.rand(::FixedRNG, ::Type{T}, μ::Half{<:Cauchy}) where {T} = one(T) insupport(::Cauchy, x) = true function smf(::Cauchy{()}, x) invπ * atan(x) + 0.5 end function invsmf(::Cauchy{()}, p) tan(π * (p - 0.5)) end proxy(d::Cauchy{()}) = Dists.Cauchy()
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1023
# Dirichlet distribution using MeasureBase: Simplex export Dirichlet using FillArrays @parameterized Dirichlet(α) @inline function basemeasure(μ::Dirichlet{(:α,)}) α = μ.α # TODO: We can make this traverse α only once. Is that faster? logw = loggamma(sum(α)) - sum(loggamma, α) return WeightedMeasure(logw, Lebesgue(Simplex())) end @kwstruct Dirichlet(α) Dirichlet(k::Integer, α) = Dirichlet(Fill(α, k)) @inline function logdensity_def(d::Dirichlet{(:α,)}, x) sum(zip(d.α, x)) do (αj, xj) xlogy(αj - 1, xj) end # `mapreduce` is slow for this case # mapreduce(+, d.α, x) do αj, xj # xlogy(αj - 1, xj) # end end Base.rand(rng::AbstractRNG, T::Type, μ::Dirichlet) = rand(rng, Dists.Dirichlet(μ.α)) function testvalue(::Type{T}, d::Dirichlet{(:α,)}) where {T} n = length(d.α) Fill(inv(convert(T, n)), n) end @inline function insupport(d::Dirichlet{(:α,)}, x) length(x) == length(d.α) && sum(x) ≈ 1.0 end as(μ::Dirichlet) = TV.UnitSimplex(length(μ.α))
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1948
# Exponential distribution export Exponential @parameterized Exponential(β) insupport(::Exponential, x) = x ≥ 0 basemeasure(::Exponential) = LebesgueBase() @kwstruct Exponential() @inline function logdensity_def(d::Exponential{()}, x) return -x end Base.rand(rng::AbstractRNG, T::Type, μ::Exponential{()}) = randexp(rng, T) ########################## # Scale β @kwstruct Exponential(β) function Base.rand(rng::AbstractRNG, T::Type, d::Exponential{(:β,)}) randexp(rng, T) * d.β end @inline function logdensity_def(d::Exponential{(:β,)}, x) z = x / d.β return logdensity_def(Exponential(), z) - log(d.β) end proxy(d::Exponential{(:β,)}) = Dists.Exponential(d.β) ########################## # Log-Scale logβ @kwstruct Exponential(logβ) function Base.rand(rng::AbstractRNG, T::Type, d::Exponential{(:logβ,)}) randexp(rng, T) * exp(d.logβ) end @inline function logdensity_def(d::Exponential{(:logβ,)}, x) z = x * exp(-d.logβ) return logdensity_def(Exponential(), z) - d.logβ end proxy(d::Exponential{(:logβ,)}) = Dists.Exponential(exp(d.logβ)) ########################## # Rate λ @kwstruct Exponential(λ) function Base.rand(rng::AbstractRNG, T::Type, d::Exponential{(:λ,)}) randexp(rng, T) / d.λ end @inline function logdensity_def(d::Exponential{(:λ,)}, x) z = x * d.λ return logdensity_def(Exponential(), z) + log(d.λ) end proxy(d::Exponential{(:λ,)}) = Dists.Exponential(1 / d.λ) ########################## # Log-Rate logλ @kwstruct Exponential(logλ) function Base.rand(rng::AbstractRNG, T::Type, d::Exponential{(:logλ,)}) randexp(rng, T) * exp(-d.logλ) end @inline function logdensity_def(d::Exponential{(:logλ,)}, x) z = x * exp(d.logλ) return logdensity_def(Exponential(), z) + d.logλ end proxy(d::Exponential{(:logλ,)}) = Dists.Exponential(exp(-d.logλ)) smf(::Exponential{()}, x) = smf(StdExponential(), x) invsmf(::Exponential{()}, p) = invsmf(StdExponential(), p)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1366
# Gamma distribution export Gamma @parameterized Gamma() @kwstruct Gamma() proxy(::Gamma{()}) = Exponential() @useproxy Gamma{()} @kwstruct Gamma(k) @inline function logdensity_def(d::Gamma{(:k,)}, x) return xlogy(d.k - 1, x) - x end function basemeasure(d::Gamma{(:k,)}) ℓ = -loggamma(d.k) weightedmeasure(ℓ, LebesgueBase()) end @kwstruct Gamma(k, σ) Gamma(k, σ) = Gamma((k = k, σ = σ)) @useproxy Gamma{(:k, :σ)} function proxy(d::Gamma{(:k, :σ)}) affine((σ = d.σ,), Gamma((k = d.k,))) end @kwstruct Gamma(k, λ) @useproxy Gamma{(:k, :λ)} function proxy(d::Gamma{(:k, :λ)}) affine(NamedTuple{(:λ,)}(d.λ), Gamma((k = d.k,))) end Base.rand(rng::AbstractRNG, T::Type, μ::Gamma{()}) = rand(rng, T, Exponential()) Base.rand(rng::AbstractRNG, T::Type, μ::Gamma{(:k,)}) = rand(rng, Dists.Gamma(μ.k)) insupport(::Gamma, x) = x > 0 @kwstruct Gamma(μ, ϕ) @inline function logdensity_def(d::Gamma{(:μ, :ϕ)}, x) x_μ = x / d.μ inv(d.ϕ) * (log(x_μ) - x_μ) - log(x) end function basemeasure(d::Gamma{(:μ, :ϕ)}) ϕ = d.ϕ ϕinv = inv(ϕ) ℓ = -ϕinv * log(ϕ) - first(logabsgamma(ϕinv)) weightedmeasure(ℓ, LebesgueBase()) end function basemeasure(d::Gamma{(:μ, :ϕ),Tuple{M,StaticFloat64{ϕ}}}) where {M,ϕ} ϕinv = inv(ϕ) ℓ = static(-ϕinv * log(ϕ) - first(logabsgamma(ϕinv))) weightedmeasure(ℓ, LebesgueBase()) end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
875
# Gumbel distribution export Gumbel @parameterized Gumbel() basemeasure(::Gumbel{()}) = LebesgueBase() @kwstruct Gumbel() @kwstruct Gumbel(β) @kwstruct Gumbel(μ, β) # map affine names to those more common for Gumbel for N in [(:μ,), (:σ,), (:μ, :σ)] G = tuple(replace(collect(N), :σ => :β)...) @eval begin proxy(d::Gumbel{$G}) = affine(NamedTuple{$N}(values(params(d))), Gumbel()) logdensity_def(d::Gumbel{$G}, x) = logdensity_def(proxy(d), x) basemeasure(d::Gumbel{$G}) = basemeasure(proxy(d)) end end @inline function logdensity_def(d::Gumbel{()}, x) return -exp(-x) - x end import Base function Base.rand(rng::AbstractRNG, ::Type{T}, d::Gumbel{()}) where {T} u = rand(rng, T) -log(-log(u)) end ≪(::Gumbel, ::Lebesgue{X}) where {X<:Real} = true insupport(::Gumbel, x) = true proxy(::Gumbel{()}) = Dists.Gumbel()
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
495
# InverseGamma distribution export InverseGamma @parameterized InverseGamma(shape) ≃ Lebesgue(ℝ₊) @inline function logdensity_def(μ::InverseGamma{(:shape,)}, x) α = μ.shape xinv = 1 / x return xlogy(α + 1, xinv) - xinv - loggamma(α) end function Base.rand(rng::AbstractRNG, T::Type, μ::InverseGamma{(:shape,)}) rand(rng, Dists.InverseGamma(μ.shape)) end ≪(::InverseGamma, ::Lebesgue{X}) where {X<:Real} = true as(::InverseGamma) = asℝ₊ # @μσ_methods InverseGamma(shape)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1298
# InverseGaussian distribution export InverseGaussian @parameterized InverseGaussian() # @kwstruct InverseGaussian() # @kwstruct InverseGaussian(μ) # @kwstruct InverseGaussian(μ, λ) # InverseGaussian(μ) = InverseGaussian((μ = μ,)) # InverseGaussian(μ, λ) = InverseGaussian((μ = μ, λ = λ)) # @useproxy InverseGaussian{(:k, :θ)} # function logdensity_def(d::InverseGaussian{()}, x) # return (-3log(x) - (x - 1)^2 / x) / 2 # end # function logdensity_def(d::InverseGaussian{(:μ,)}, x) # μ = d.μ # return (-3log(x) - (x - μ)^2 / (μ^2 * x)) / 2 # end # function logdensity_def(d::InverseGaussian{(:μ, :λ)}, x) # μ, λ = d.μ, d.λ # return (log(λ) - 3log(x) - λ * (x - μ)^2 / (μ^2 * x)) / 2 # end # function basemeasure(::InverseGaussian) # ℓ = static(-log2π / 2) # weightedmeasure(ℓ, Lebesgue()) # end Base.rand(rng::AbstractRNG, T::Type, d::InverseGaussian) = rand(rng, proxy(d)) insupport(::InverseGaussian, x) = x > 0 # GLM parameterization @kwstruct InverseGaussian(μ, ϕ) function logdensity_def(d::InverseGaussian{(:μ, :ϕ)}, x) μ, ϕ = d.μ, d.ϕ return (-3log(x) - (x - μ)^2 / (ϕ * μ^2 * x)) / 2 end function basemeasure(d::InverseGaussian{(:μ, :ϕ)}) ℓ = static(-0.5) * (static(float(log2π)) + log(d.ϕ)) weightedmeasure(ℓ, LebesgueBase()) end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
897
# Laplace distribution export Laplace @parameterized Laplace() @kwstruct Laplace() @kwstruct Laplace(μ) @kwstruct Laplace(σ) @kwstruct Laplace(μ, σ) @kwstruct Laplace(λ) @kwstruct Laplace(μ, λ) for N in AFFINEPARS @eval begin proxy(d::Laplace{$N}) = affine(params(d), Laplace()) @useproxy Laplace{$N} end end insupport(::Laplace, x) = true @inline function logdensity_def(d::Laplace{()}, x) return -abs(x) end Laplace(μ, σ) = Laplace((μ = μ, σ = σ)) basemeasure(::Laplace{()}) = WeightedMeasure(static(-logtwo), LebesgueBase()) # @affinepars Laplace function Base.rand(rng::AbstractRNG, ::Type{T}, μ::Laplace{()}) where {T} sign = rand(rng, Bool) absx = randexp(rng, T) sign == true ? absx : -absx end Base.rand(rng::AbstractRNG, ::Type{T}, μ::Laplace) where {T} = Base.rand(rng, T, proxy(μ)) ≪(::Laplace, ::Lebesgue{X}) where {X<:Real} = true
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
3674
# Modified from # https://github.com/tpapp/AltDistributions.jl # See also the Stan manual (the "Stanual", though nobody calls it that) # https://mc-stan.org/docs/2_27/reference-manual/cholesky-factors-of-correlation-matrices-1.html export LKJCholesky using PositiveFactorizations const CorrCholeskyUpper = TV.CorrCholeskyFactor @doc """ LKJCholesky(k=3, η=1.0) LKJCholesky(k=3, logη=0.0) `LKJCholesky(k, ...)` gives the `k×k` LKJ distribution (Lewandowski et al 2009) expressed as a Cholesky decomposition. As a special case, for `C = rand(LKJCholesky(k=K, η=1.0))` (or equivalently `C=rand(LKJCholesky{k}(k=K, logη=0.0))`), `C.L * C.U` is uniform over the set of all `K×K` correlation matrices. Note, however, that in this case `C.L` and `C.U` are **not** sampled uniformly (because the multiplication is nonlinear). The `logdensity` method for this measure applies for `LowerTriangular`, `UpperTriangular`, or `Diagonal` matrices, and will "do the right thing". The `logdensity` **does not check if `L*U` yields a valid correlation matrix**. Valid values are ``η > 0``. When ``η > 1``, the distribution is unimodal with a peak at `I`, while ``0 < η < 1`` yields a trough. ``η = 2`` is recommended as a vague prior. Adapted from https://github.com/tpapp/AltDistributions.jl """ LKJCholesky @parameterized LKJCholesky(k, η) @kwstruct LKJCholesky(k, η) @kwstruct LKJCholesky(k, logη) LKJCholesky(k::Integer) = LKJCholesky(k, 1.0) # Modified from # https://github.com/tpapp/AltDistributions.jl using LinearAlgebra logdensity_def(d::LKJCholesky, C::Cholesky) = logdensity_def(d, C.UL) @inline function logdensity_def( d::LKJCholesky{(:k, :η)}, L::Union{LinearAlgebra.AbstractTriangular,Diagonal}, ) η = d.η # z = diag(L) # sum(log.(z) .* ((k:-1:1) .+ 2*(η-1))) # Note: https://github.com/JuliaMath/MeasureTheory.jl/issues/100#issuecomment-852428192 c = d.k + 2(η - 1) n = size(L, 1) s = sum(1:n) do i (c - i) * @inbounds log(L[i, i]) end return s end @inline function logdensity_def( d::LKJCholesky{(:k, :logη)}, L::Union{LinearAlgebra.AbstractTriangular,Diagonal}, ) c = d.k + 2 * expm1(d.logη) n = size(L, 1) s = sum(1:n) do i (c - i) * @inbounds log(L[i, i]) end return s end as(d::LKJCholesky) = CorrCholesky(d.k) @inline function basemeasure(d::LKJCholesky{(:k, :η)}) t = as(d) base = Pushforward(t, LebesgueBase()^TV.dimension(t), False()) WeightedMeasure(Dists.lkj_logc0(d.k, d.η), base) end @inline function basemeasure(d::LKJCholesky{(:k, :logη)}) t = as(d) η = exp(d.logη) base = Pushforward(t, LebesgueBase()^TV.dimension(t), False()) WeightedMeasure(Dists.lkj_logc0(d.k, η), base) end # TODO: Fix this insupport(::LKJCholesky, x) = true # Note (from @sethaxen): this can be done without the cholesky decomposition, by randomly # sampling the canonical partial correlations, as in the LKJ paper, and then # mapping them to the cholesky factor instead of the correlation matrix. Stan # implements* this. But that can be for a future PR. # # * https://github.com/stan-dev/math/blob/develop/stan/math/prim/prob/lkj_corr_cholesky_rng.hpp function Base.rand(rng::AbstractRNG, ::Type, d::LKJCholesky{(:k, :η)}) return cholesky(Positive, rand(rng, Dists.LKJ(d.k, d.η))) end; function testvalue(d::LKJCholesky) t = CorrCholesky(d.k) return TV.transform(t, zeros(TV.dimension(t))) end function Base.rand(rng::AbstractRNG, ::Type, d::LKJCholesky{(:k, :logη)}) return cholesky(Positive, rand(rng, Dists.LKJ(d.k, exp(d.logη)))) end; ConstructionBase.constructorof(::Type{L}) where {L<:LKJCholesky} = LKJCholesky
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1153
# Multinomial distribution export Multinomial @parameterized Multinomial(n, p) basemeasure(d::Multinomial) = CountingBase() @inline function insupport(d::Multinomial{(:n, :p)}, x) length(x) == length(d.p) || return false all(isinteger, x) || return false sum(x) == d.n || return false return true end @kwstruct Multinomial(n, p) @inline function logdensity_def(d::Multinomial{(:n, :p)}, x) p = d.p s = 0.0 for j in eachindex(x) s += xlogy(x[j], p[j]) end return s end function Base.rand(rng::AbstractRNG, T::Type, μ::Multinomial) rand(rng, Dists.Multinomial(μ.n, μ.p)) end proxy(d::Multinomial{(:p,)}) = Dists.Multinomial(d.n, d.p) # Based on # https://github.com/JuliaMath/Combinatorics.jl/blob/c2114a71ccfc93052efb9a9379e62b81b9388ef8/src/factorials.jl#L99 function logmultinomial(k) s = 0 result = 1 @inbounds for i in k s += i (Δresult, _) = logabsbinomial(s, i) result += Δresult end result end function testvalue(d::Multinomial{(:n, :p)}) n = d.n l = length(d.p) q, r = divrem(n, l) x = fill(q, l) x[1] += r return x end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1887
# Multivariate Normal distribution export MvNormal @parameterized MvNormal(μ, σ) # MvNormal(;kwargs...) = MvNormal(kwargs) @kwstruct MvNormal(μ) @kwstruct MvNormal(σ) @kwstruct MvNormal(λ) @kwstruct MvNormal(μ, σ) @kwstruct MvNormal(μ, λ) @kwstruct MvNormal(Σ) @kwstruct MvNormal(Λ) @kwstruct MvNormal(μ, Σ) @kwstruct MvNormal(μ, Λ) for N in setdiff(AFFINEPARS, [(:μ,)]) @eval begin function as(d::MvNormal{$N}) p = proxy(d) if rank(getfield(p, :f)) == only(supportdim(d)) return as(Array, supportdim(d)) else @error "Not yet implemented" end end end end supportdim(d::MvNormal) = supportdim(params(d)) supportdim(nt::NamedTuple{(:Σ,)}) = size(nt.Σ, 1) supportdim(nt::NamedTuple{(:μ, :Σ)}) = size(nt.Σ, 1) supportdim(nt::NamedTuple{(:Λ,)}) = size(nt.Λ, 1) supportdim(nt::NamedTuple{(:μ, :Λ)}) = size(nt.Λ, 1) @useproxy MvNormal for N in [(:Σ,), (:μ, :Σ), (:Λ,), (:μ, :Λ)] @eval basemeasure_depth(d::MvNormal{$N}) = static(2) end proxy(d::MvNormal) = affine(params(d), Normal()^supportdim(d)) rand(rng::AbstractRNG, ::Type{T}, d::MvNormal) where {T} = rand(rng, T, proxy(d)) insupport(d::MvNormal, x) = insupport(proxy(d), x) # Note: (C::Cholesky).L may or may not make a copy, depending on C.uplo, which is not included in the type @inline function proxy(d::MvNormal{(:Σ,),Tuple{C}}) where {C<:Cholesky} affine((σ = d.Σ.L,), Normal()^supportdim(d)) end @inline function proxy(d::MvNormal{(:Λ,),Tuple{C}}) where {C<:Cholesky} affine((λ = d.Λ.L,), Normal()^supportdim(d)) end @inline function proxy(d::MvNormal{(:μ, :Σ),Tuple{T,C}}) where {T,C<:Cholesky} affine((μ = d.μ, σ = d.Σ.L), Normal()^supportdim(d)) end @inline function proxy(d::MvNormal{(:μ, :Λ),Tuple{T,C}}) where {T,C<:Cholesky} affine((μ = d.μ, λ = d.Λ.L), Normal()^supportdim(d)) end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
2473
# NegativeBinomial distribution export NegativeBinomial import Base @parameterized NegativeBinomial(r, p) insupport(::NegativeBinomial, x) = isinteger(x) && x ≥ 0 basemeasure(::NegativeBinomial) = CountingBase() testvalue(::NegativeBinomial) = 0 function Base.rand(rng::AbstractRNG, ::Type{T}, d::NegativeBinomial) where {T} rand(rng, proxy(d)) end ############################################################################### @kwstruct NegativeBinomial(r, p) NegativeBinomial(n) = NegativeBinomial(n, 0.5) @inline function logdensity_def(d::NegativeBinomial{(:r, :p)}, y) (r, p) = (d.r, d.p) return -log(y + r) - logbeta(r, y + 1) + xlogy(y, p) + xlog1py(r, -p) end proxy(d::NegativeBinomial{(:r, :p)}) = Dists.NegativeBinomial(d.r, d.p) ############################################################################### @kwstruct NegativeBinomial(r, logitp) @inline function logdensity_def(d::NegativeBinomial{(:r, :logitp)}, y) (r, logitp) = (d.r, d.logitp) return -log(y + r) - logbeta(r, y + 1) - y * log1pexp(-logitp) - r * log1pexp(logitp) end proxy(d::NegativeBinomial{(:n, :logitp)}) = Dists.NegativeBinomial(d.n, logistic(d.logitp)) ############################################################################### @kwstruct NegativeBinomial(r, λ) # mean λ, as in Poisson # Converges to Poisson as r→∞ @inline function logdensity_def(d::NegativeBinomial{(:r, :λ)}, y) (r, λ) = (d.r, d.λ) return -log(y + r) - logbeta(r, y + 1) + xlogy(y, λ) + xlogx(r) - xlogy(y + r, r + λ) end function proxy(d::NegativeBinomial{(:r, :λ)}) p = d.λ / (d.r + d.λ) return Dists.NegativeBinomial(d.r, p) end # # https://en.wikipedia.org/wiki/Negative_binomial_distribution#Gamma%E2%80%93Poisson_mixture # function Base.rand(rng::AbstractRNG, d::NegativeBinomial{(:r,:λ)}) # r = d.r # λ = d.λ # μ = rand(rng, Dists.Gamma(r, λ/r)) # return rand(rng, Dists.Poisson(μ)) # end ############################################################################### @kwstruct NegativeBinomial(r, logλ) @inline function logdensity_def(d::NegativeBinomial{(:r, :logλ)}, y) (r, logλ) = (d.r, d.logλ) λ = exp(logλ) return -log(y + r) - logbeta(r, y + 1) + y * logλ + xlogx(r) - xlogy(y + r, r + λ) end function proxy(d::NegativeBinomial{(:r, :logλ)}) λ = exp(d.logλ) p = λ / (d.r + λ) return Dists.NegativeBinomial(d.r, p) end ###############################################################################
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
6551
using StatsFuns export Normal, HalfNormal # The `@parameterized` macro below does three things: # 1. Defines the `Normal` struct # # struct Normal{N, T} <: (ParameterizedMeasure){N} # par::MeasureTheory.NamedTuple{N, T} # end # # (Note that this is the same form required by the `@kwstruct` in the # KeywordCalls package.) # # 2. Sets the base measure # # basemeasure(::Normal) = (1 / sqrt2π) * Lebesgue(ℝ) # # This just means that (log-)densities will be defined relative to this. # Including the `(1 / sqrt2π)` in the base measure allows us to avoid # carrying around the normalization constant. # # 3. Sets up a method for a call with two unnamed arguments, # # Normal(μ, σ) = Normal((μ=μ, σ=σ)) # @parameterized Normal() massof(::Normal) = static(1.0) for N in AFFINEPARS @eval begin proxy(d::Normal{$N,T}) where {T} = affine(params(d), Normal()) @useproxy Normal{$N,T} where {T} end end insupport(d::Normal, x) = True() insupport(d::Normal) = Returns(True()) @inline logdensity_def(d::Normal{()}, x) = -muladd(x, x, log2π) / 2; @inline basemeasure(::Normal{()}) = LebesgueBase() @kwstruct Normal(μ) @kwstruct Normal(σ) @kwstruct Normal(μ, σ) @kwstruct Normal(λ) @kwstruct Normal(μ, λ) params(::Type{N}) where {N<:Normal} = () Normal(μ::M, σ::S) where {M,S} = Normal((μ = μ, σ = σ))::Normal{(:μ, :σ),Tuple{M,S}} # Normal(nt::NamedTuple{N,Tuple{Vararg{AbstractArray}}}) where {N} = MvNormal(nt) # `@kwalias` defines some alias names, giving users flexibility in the names # they use. For example, σ² is standard notation for the variance parameter, but # it's a lot to type. Some users might prefer to just use `var` and have us do # the conversion (at compile time). @kwalias Normal [ mean => μ mu => μ std => σ sigma => σ var => σ² ϕ => σ² ] # It's often useful to be able to map into the parameter space for a given # measure. We (currently, at least) do this *independently* per parameter. This # allows us to do things like, e.g. # # julia> transform(asparams(Normal(2,3)))(randn(2)) # (μ = -0.6778046205440658, σ = 3.7357686957861898) # # julia> transform(asparams(Normal(μ=-3,logσ=2)))(randn(2)) # (μ = 0.3995295982002209, logσ = -1.3902312393777492) # # Or using types: # julia> transform(asparams(Normal{(:μ,:σ²)}))(randn(2)) # (μ = -0.4548087051528626, σ² = 11.920775478312793) # # And of course, you can apply `Normal` to any one of the above. # Rather than try to reimplement everything in Distributions, measures can have # a `proxy` method. This just delegates some methods to the corresponding # Distributions.jl methods. For example, # # julia> entropy(Normal(2,4)) # 2.805232894324563 # proxy(d::Normal{()}) = Dists.Normal() ############################################################################### # Some distributions have a "standard" version that takes no parameters @kwstruct Normal() # Instead of setting default values, the `@kwstruct` call above makes a # parameter-free instance available. The log-density for this is very efficient. Base.rand(rng::Random.AbstractRNG, ::Type{T}, ::Normal{()}) where {T} = randn(rng, T) Base.rand(rng::Random.AbstractRNG, ::Type{T}, μ::Normal) where {T} = rand(rng, T, proxy(μ)) ############################################################################### # `μ` and `σ` parameterizations are so common, we have a macro to make them easy # to build. Note that `μ` and `σ` are *not* always mean and standard deviation, # but instead should be considered "location" and "scale" parameters, # respectively. Also, it's valid to have existing parameters here as a starting # point, in particular a "shape parameter" is very common. See `StudentT` for an # example of this. # # This defines methods for `logdensity` and `Base.rand`. The latter works out # especially nicely, because it lets us do things like # # julia> using Symbolics # [ Info: Precompiling Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] # # julia> @variables μ σ # 2-element Vector{Num}: # μ # σ # # julia> rand(Normal(μ,σ)) # μ + 1.2517620265570832σ # # @μσ_methods Normal() ############################################################################### # The `@half` macro takes a symmetric univariate measure and efficiently creates # a truncated version. @half Normal # A single unnamed parameter for `HalfNormal` should be interpreted as a `σ` HalfNormal(σ) = HalfNormal((σ = σ,)) ############################################################################### @kwstruct Normal(σ²) @kwstruct Normal(μ, σ²) @inline function logdensity_def(d::Normal{(:σ²,)}, x) -0.5 * x^2 / d.σ² end @inline function basemeasure(d::Normal{(:σ²,)}) ℓ = static(-0.5) * (static(float(log2π)) + log(d.σ²)) weightedmeasure(ℓ, LebesgueBase()) end proxy(d::Normal{(:μ, :σ²)}) = affine((μ = d.μ,), Normal((σ² = d.σ²,))) @useproxy Normal{(:μ, :σ²)} ############################################################################### @kwstruct Normal(τ) @kwstruct Normal(μ, τ) @inline function logdensity_def(d::Normal{(:τ,)}, x) -0.5 * x^2 * d.τ end @inline function basemeasure(d::Normal{(:τ,)}) ℓ = static(-0.5) * (static(float(log2π)) - log(d.τ)) weightedmeasure(ℓ, LebesgueBase()) end proxy(d::Normal{(:μ, :τ)}) = affine((μ = d.μ,), Normal((τ = d.τ,))) @useproxy Normal{(:μ, :τ)} ############################################################################### @kwstruct Normal(μ, logσ) @inline function logdensity_def(d::Normal{(:μ, :logσ)}, x) μ = d.μ logσ = d.logσ -0.5(exp(-2 * logσ) * ((x - μ)^2)) end function basemeasure(d::Normal{(:μ, :logσ)}) ℓ = static(-0.5) * (static(float(log2π)) + static(2.0) * d.logσ) weightedmeasure(ℓ, LebesgueBase()) end function logdensity_def(p::Normal, q::Normal, x) μp = mean(p) σp = std(p) μq = mean(q) σq = std(q) # Result is (((x - μq) / σq)^2 - ((x - μp) / σp)^2 + log(abs(σq / σp))) / 2 # We'll write the difference of squares as sqdiff, then divide that by 2 at # the end if σp == σq return (2x - μq - μp) * (μp - μq) / (2 * σp^2) else zp = (x - μp) / σp zq = (x - μq) / σq return ((zq + zp) * (zq - zp)) / 2 + log(abs(σq / σp)) end end MeasureBase.transport_origin(::Normal) = StdNormal() MeasureBase.to_origin(::Normal{()}, y) = y MeasureBase.from_origin(::Normal{()}, x) = x MeasureBase.smf(::Normal{()}, x) = Φ(x) MeasureBase.invsmf(::Normal{()}, p) = Φinv(p) @smfAD Normal{()}
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
927
# Poisson distribution export Poisson import Base using SpecialFunctions: loggamma @parameterized Poisson() @kwstruct Poisson() @kwstruct Poisson(λ) Poisson(λ) = Poisson((λ = λ,)) basemeasure(::Poisson) = Counting(BoundedInts(static(0), static(Inf))) @inline function logdensity_def(d::Poisson{()}, y::T) where {T} return y - one(T) - loggamma(one(T) + y) end @inline function logdensity_def(d::Poisson{(:λ,)}, y) λ = d.λ return y * log(λ) - λ - loggamma(1 + y) end @kwstruct Poisson(logλ) @inline function logdensity_def(d::Poisson{(:logλ,)}, y) return y * d.logλ - exp(d.logλ) - loggamma(1 + y) end gentype(::Poisson) = Int Base.rand(rng::AbstractRNG, T::Type, d::Poisson{(:λ,)}) = rand(rng, Dists.Poisson(d.λ)) function Base.rand(rng::AbstractRNG, T::Type, d::Poisson{(:logλ,)}) rand(rng, Dists.Poisson(exp(d.logλ))) end @inline function insupport(::Poisson, x) isinteger(x) && x ≥ 0 end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
741
# Snedecor's F distribution export SnedecorF @parameterized SnedecorF(ν1, ν2) @kwstruct SnedecorF(ν1, ν2) @inline function logdensity_def(d::SnedecorF{(:ν1, :ν2)}, y) ν1, ν2 = d.ν1, d.ν2 ν1ν2 = ν1 / ν2 val = (xlogy(ν1, ν1ν2) + xlogy(ν1 - 2, y) - xlogy(ν1 + ν2, 1 + ν1ν2 * y)) / 2 return val end @inline function basemeasure(d::SnedecorF{(:ν1, :ν2)}) ℓ = -logbeta(d.ν1 / 2, d.ν2 / 2) weightedmeasure(ℓ, LebesgueBase()) end Base.rand(rng::AbstractRNG, T::Type, d::SnedecorF) = rand(rng, proxy(d)) proxy(d::SnedecorF{(:ν1, :ν2)}) = Dists.FDist(d.ν1, d.ν2) insupport(::SnedecorF, x) = x > 0 # cdf(d::SnedecorF, x) = StatsFuns.fdistcdf(d.ν1, d.ν2, x) # ccdf(d::SnedecorF, x) = StatsFuns.fdistccdf(d.ν1, d.ν2, x)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1771
# StudentT distribution export StudentT, HalfStudentT @parameterized StudentT(ν) @kwstruct StudentT(ν) @kwstruct StudentT(ν, μ) @kwstruct StudentT(ν, σ) @kwstruct StudentT(ν, λ) @kwstruct StudentT(ν, μ, σ) @kwstruct StudentT(ν, μ, λ) for N in AFFINEPARS @eval begin function proxy(d::StudentT{(:ν, $N...)}) affine(NamedTuple{$N}(params(d)), StudentT((ν = d.ν,))) end end end logdensity_def(d::StudentT, x) = logdensity_def(proxy(d), x) basemeasure(d::StudentT) = basemeasure(proxy(d)) Base.rand(rng::AbstractRNG, ::Type{T}, μ::StudentT) where {T} = rand(rng, T, proxy(μ)) # @affinepars StudentT StudentT(ν, μ, σ) = StudentT((ν = ν, μ = μ, σ = σ)) @kwalias StudentT [ df => ν nu => ν location => μ mean => μ # Doesn't really always exist, but ok fine mu => μ scale => σ sigma => σ ] @inline function logdensity_def(d::StudentT{(:ν,),Tuple{T}}, x::Number) where {T<:Number} ν = d.ν return xlog1py((ν + 1) / (-2), x^2 / ν) end @inline function logdensity_def(d::StudentT{(:ν,)}, x) ν = d.ν return (ν + 1) / (-2) * log1p(x^2 / ν) end @inline function basemeasure(d::StudentT{(:ν,)}) ℓ = loggamma((d.ν + 1) / 2) - loggamma(d.ν / 2) - log(π * d.ν) / 2 weightedmeasure(ℓ, LebesgueBase()) end Base.rand(rng::AbstractRNG, T::Type, μ::StudentT{(:ν,)}) = rand(rng, Dists.TDist(μ.ν)) @half StudentT HalfStudentT(ν, σ) = HalfStudentT((ν = ν, σ = σ)) insupport(::StudentT, x) = true insupport(::StudentT) = Returns(true) proxy(d::StudentT{(:ν,)}) = Dists.TDist(d.ν) smf(d::StudentT, x) = smf(proxy(d), x) invsmf(d::StudentT, p) = invsmf(proxy(d), p) smf(d::StudentT{(:ν,)}, x) = cdf(proxy(d), x) invsmf(d::StudentT{(:ν,)}, p) = quantile(proxy(d), p)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1004
# Uniform distribution export Uniform @parameterized Uniform() @kwstruct Uniform() @kwstruct Uniform(a, b) ############################################################################### # Standard Uniform insupport(::Uniform{()}) = in𝕀 insupport(::Uniform{()}, x) = in𝕀(x) @inline basemeasure(::Uniform{()}) = LebesgueBase() density_def(::Uniform{()}, x) = 1.0 logdensity_def(d::Uniform{()}, x) = 0.0 Base.rand(rng::AbstractRNG, T::Type, μ::Uniform{()}) = rand(rng, T) ############################################################################### # Uniform @inline insupport(d::Uniform{(:a, :b)}, x) = d.a ≤ x ≤ d.b Uniform(a, b) = Uniform((a = a, b = b)) proxy(d::Uniform{(:a, :b)}) = affine((μ = d.a, σ = d.b - d.a), Uniform()) @useproxy Uniform{(:a, :b)} Base.rand(rng::Random.AbstractRNG, ::Type{T}, μ::Uniform) where {T} = rand(rng, T, proxy(μ)) smf(::Uniform{()}, x) = smf(StdUniform(), x) invsmf(::Uniform{()}, p) = invsmf(StdUniform(), p) proxy(::Uniform{()}) = Dists.Uniform()
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
616
struct OrthoTransform{I,N,T} <: TV.AbstractTransform dim::I par::NamedTuple{N,T} end TV.dimension(t::OrthoTransform) = t.dim TV.inverse_eltype(t::OrthoTransform, y::AbstractVector) = extended_eltype(y) function TV.inverse_at!( x::AbstractVector, index, t::OrthoTransform{(:σ,)}, y::AbstractVector, ) end function TV.transform_with( flag::LogJacFlag, t::OrthoTransform{(:σ,)}, x::AbstractVector, index, ) ylen, xlen = size(d.σ) T = extended_eltype(x) ℓ = logjac_zero(flag, T) y = d.σ * view(x, index, index + xlen - 1) index += xlen y, ℓ, index end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1755
# Adapted from https://github.com/tpapp/TransformVariables.jl/blob/master/src/special_arrays.jl export CorrCholesky """ CorrCholesky(n) Cholesky factor of a correlation matrix of size `n`. Transforms ``n(n-1)/2`` real numbers to an ``n×n`` lower-triangular matrix `L`, such that `L*L'` is a correlation matrix (positive definite, with unit diagonal). # Notes If - `z` is a vector of `n` IID standard normal variates, - `σ` is an `n`-element vector of standard deviations, - `C` is obtained from `CorrCholesky(n)`, then `Diagonal(σ) * C.L * z` is a zero-centered multivariate normal variate with the standard deviations `σ` and correlation matrix `C.L * C.U`. """ struct CorrCholesky <: TV.VectorTransform n::Int end TV.dimension(t::CorrCholesky) = TV.dimension(CorrCholeskyUpper(t.n)) # TODO: For now we just transpose the CorrCholeskyUpper result. We should # consider whether it can help performance to implement this directly for the # lower triangular case function TV.transform_with(flag::TV.LogJacFlag, t::CorrCholesky, x::AbstractVector, index) U, ℓ, index = TV.transform_with(flag, CorrCholeskyUpper(t.n), x, index) return Cholesky(U, 'U', 0), ℓ, index end TV.inverse_eltype(t::CorrCholesky, x::AbstractMatrix) = eltype(x) TV.inverse_eltype(t::CorrCholesky, x::Cholesky) = eltype(x) function TV.inverse_at!(x::AbstractVector, index, t::CorrCholesky, L::LowerTriangular) return TV.inverse_at!(x, index, CorrCholeskyUpper(t.n), L') end function TV.inverse_at!(x::AbstractVector, index, t::CorrCholesky, U::UpperTriangular) return TV.inverse_at!(x, index, CorrCholeskyUpper(t.n), U) end function TV.inverse_at!(x::AbstractVector, index, t::CorrCholesky, C::Cholesky) return TV.inverse_at!(x, index, t, C.UL) end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
1519
# Adapted from https://github.com/tpapp/TransformVariables.jl/blob/master/src/special_arrays.jl using LinearAlgebra const CorrCholeskyUpper = CorrCholeskyFactor export CorrCholeskyLower """ CorrCholeskyLower(n) Lower Cholesky factor of a correlation matrix of size `n`. Transforms ``n(n-1)/2`` real numbers to an ``n×n`` lower-triangular matrix `L`, such that `L*L'` is a correlation matrix (positive definite, with unit diagonal). # Notes If - `z` is a vector of `n` IID standard normal variates, - `σ` is an `n`-element vector of standard deviations, - `L` is obtained from `CorrCholeskyLower(n)`, then `Diagonal(σ) * L * z` is a zero-centered multivariate normal variate with the standard deviations `σ` and correlation matrix `L * L'`. """ struct CorrCholeskyLower <: TV.VectorTransform n::Int end TV.dimension(t::CorrCholeskyLower) = TV.dimension(CorrCholeskyUpper(t.n)) # TODO: For now we just transpose the CorrCholeskyUpper result. We should # consider whether it can help performance to implement this directly for the # lower triangular case function TV.transform_with( flag::TV.LogJacFlag, t::CorrCholeskyLower, x::AbstractVector, index, ) U, ℓ, index = TV.transform_with(flag, CorrCholeskyUpper(t.n), x, index) return U', ℓ, index end TV.inverse_eltype(t::CorrCholeskyLower, L::LowerTriangular) = eltype(L) function TV.inverse_at!(x::AbstractVector, index, t::CorrCholeskyLower, L::LowerTriangular) return TV.inverse_at!(x, index, CorrCholeskyUpper(t.n), L') end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
2597
# abstract type AbstractOrderedVector{T} <: AbstractVector{T} end # struct OrderedVector{T} <: AbstractOrderedVector{T} # data::Vector{T} # end # as(::Type{OrderedVector}, transformation::TV.AbstractTransform, dim::Int) = # Ordered(transformation, dim) export Ordered struct Ordered{T<:TV.AbstractTransform} <: TV.VectorTransform transformation::T dim::Int end TV.dimension(t::Ordered) = t.dim addlogjac(ℓ, Δℓ) = ℓ + Δℓ addlogjac(::TV.NoLogJac, Δℓ) = TV.NoLogJac() using MappedArrays bounds(t::TV.ShiftedExp{true}) = (t.shift, TV.∞) bounds(t::TV.ShiftedExp{false}) = (-TV.∞, t.shift) bounds(t::TV.ScaledShiftedLogistic) = (t.shift, t.scale + t.shift) bounds(::TV.Identity) = (-TV.∞, TV.∞) const OrderedΔx = -8.0 # See https://mc-stan.org/docs/2_27/reference-manual/ordered-vector.html function TV.transform_with(flag::TV.LogJacFlag, t::Ordered, x, index::T) where {T} transformation, len = (t.transformation, t.dim) @assert TV.dimension(transformation) == 1 y = similar(x, len) (lo, hi) = bounds(transformation) x = mappedarray(xj -> xj + OrderedΔx, x) @inbounds (y[1], ℓ, _) = TV.transform_with(flag, as(Real, lo, hi), x, index) index += 1 @inbounds for i in 2:len (y[i], Δℓ, _) = TV.transform_with(flag, as(Real, y[i-1], hi), x, index) ℓ = addlogjac(ℓ, Δℓ) index += 1 end return (y, ℓ, index) end TV.inverse_eltype(t::Ordered, y::AbstractVector) = eltype(y) Ordered(n::Int) = Ordered(asℝ, n) function TV.inverse_at!(x::AbstractVector, index, t::Ordered, y::AbstractVector) (lo, hi) = bounds(t.transformation) @inbounds x[index] = TV.inverse(as(Real, lo, hi), y[1]) - OrderedΔx index += 1 @inbounds for i in 2:length(y) x[index] = TV.inverse(as(Real, y[i-1], hi), y[i]) - OrderedΔx index += 1 end return index end export Sorted struct Sorted{M} <: AbstractMeasure μ::M n::Int end logdensity_def(s::Sorted, x) = logdensity_def(s.μ^s.n, x) xform(s::Sorted) = Ordered(xform(s.μ), s.n) function Random.rand!(rng::AbstractRNG, d::Sorted, x::AbstractArray) rand!(rng, d.μ^d.n, x) sort!(x) return x end function Base.rand(rng::AbstractRNG, T::Type, d::Sorted) # TODO: Use `gentype` for this elT = typeof(rand(rng, T, d.μ)) x = Vector{elT}(undef, d.n) rand!(rng, d, x) end # logdensity_def(d, rand(d)) # TV.transform_with(TV.LogJac(), Ordered(asℝ, 4), zeros(4), 1) # TV.transform_with(TV.LogJac(), Ordered(asℝ, 4), randn(4), 1) # d = Pushforward(Ordered(10), Normal()^10, false) # logdensity_def(Lebesgue(ℝ)^10, rand(d))
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
code
17468
using Test using StatsFuns using Base.Iterators: take using Random using LinearAlgebra # using DynamicIterators: trace, TimeLift using TransformVariables: transform, as𝕀 using FillArrays using MeasureTheory using MeasureBase.Interface using MeasureTheory: kernel using Aqua using IfElse # Aqua._test_ambiguities( # Aqua.aspkgids(MeasureTheory); # exclude = [Random.AbstractRNG], # # packages::Vector{PkgId}; # # color::Union{Bool, Nothing} = nothing, # # exclude::AbstractArray = [], # # # Options to be passed to `Test.detect_ambiguities`: # # detect_ambiguities_options..., # ) Aqua.test_all(MeasureBase; ambiguities = false) function draw2(μ) x = rand(μ) y = rand(μ) while x == y y = rand(μ) end return (x, y) end x = randn(10, 3) Σ = cholesky(x' * x) Λ = cholesky(inv(Σ)) σ = MeasureTheory.getL(Σ) λ = MeasureTheory.getL(Λ) test_measures = Any[ # Chain(x -> Normal(μ=x), Normal(μ=0.0)) For(3) do j Normal(σ = j) end For(2, 3) do i, j Normal(i, j) end Normal()^3 Normal()^(2, 3) 3 * Normal() Bernoulli(0.2) Beta(2, 3) Binomial(10, 0.3) BetaBinomial(10, 2, 3) Cauchy() Dirichlet(ones(3)) Exponential() Gumbel() Laplace() LKJCholesky(3, 2.0) Multinomial(n = 10, p = [0.2, 0.3, 0.5]) NegativeBinomial(5, 0.2) Normal(2, 3) Poisson(3.1) StudentT(ν = 2.1) MvNormal(σ = [1 0; 0 1; 1 1]) MvNormal(λ = [1 0 1; 0 1 1]) MvNormal(Σ = Σ) MvNormal(Λ = Λ) MvNormal(σ = σ) MvNormal(λ = λ) Uniform() Dirac(0.0) + Normal() ] @testset "testvalue" begin for μ in test_measures @info "testing $μ" test_interface(μ) end @testset "testvalue(::Chain)" begin mc = Chain(x -> Normal(μ = x), Normal(μ = 0.0)) r = testvalue(mc) @test logdensity_def(mc, Iterators.take(r, 10)) isa AbstractFloat end end @testset "Parameterized Measures" begin @testset "Binomial" begin D = Binomial{(:n, :p)} par = merge((n = 20,), transform(asparams(D, (n = 20,)), randn(1))) d = D(par) (n, p) = (par.n, par.p) logitp = logit(p) probitp = norminvcdf(p) y = rand(d) ℓ = logdensity_def(Binomial(; n, p), y) @test ℓ ≈ logdensity_def(Binomial(; n, logitp), y) @test ℓ ≈ logdensity_def(Binomial(; n, probitp), y) rng = ResettableRNG(Random.MersenneTwister()) @test rand(rng, Binomial(n=0, p=1.0)) == 0 @test rand(rng, Binomial(n=10, p=1.0)) == 10 @test_broken logdensity_def(Binomial(n, p), CountingBase(ℤ[0:n]), x) ≈ binomlogpdf(n, p, x) end @testset "Exponential" begin r = rand(MersenneTwister(123), Exponential(2)) @test r ≈ rand(MersenneTwister(123), Exponential(β = 2)) @test r ≈ rand(MersenneTwister(123), Exponential(λ = 0.5)) @test r ≈ rand(MersenneTwister(123), Exponential(logβ = log(2))) @test r ≈ rand(MersenneTwister(123), Exponential(logλ = log(0.5))) ℓ = logdensity_def(Exponential(2), r) @test ℓ ≈ logdensity_def(Exponential(β = 2), r) @test ℓ ≈ logdensity_def(Exponential(λ = 0.5), r) @test ℓ ≈ logdensity_def(Exponential(logβ = log(2)), r) @test ℓ ≈ logdensity_def(Exponential(logλ = log(0.5)), r) end @testset "NegativeBinomial" begin D = NegativeBinomial{(:r, :p)} par = transform(asparams(D), randn(2)) d = D(par) (r, p) = (par.r, par.p) logitp = logit(p) λ = p * r / (1 - p) logλ = log(λ) y = rand(d) ℓ = logdensity_def(NegativeBinomial(; r, p), y) @test ℓ ≈ logdensity_def(NegativeBinomial(; r, logitp), y) @test ℓ ≈ logdensity_def(NegativeBinomial(; r, λ), y) @test ℓ ≈ logdensity_def(NegativeBinomial(; r, logλ), y) sample1 = rand(MersenneTwister(123), NegativeBinomial(; r, λ)) sample2 = rand(MersenneTwister(123), NegativeBinomial(; r, logλ)) @test sample1 == sample2 @test_broken logdensity_def(Binomial(n, p), CountingBase(ℤ[0:n]), x) ≈ binomlogpdf(n, p, x) end @testset "Poisson" begin sample1 = rand(MersenneTwister(123), Poisson(; logλ = log(100))) sample2 = rand(MersenneTwister(123), Poisson(; λ = 100)) @test sample1 == sample2 end @testset "Normal" begin D = Normal{(:μ, :σ)} par = transform(asparams(D), randn(2)) d = D(par) @test params(d) == par μ = par.μ σ = par.σ σ² = σ^2 τ = 1 / σ² logσ = log(σ) y = rand(d) ℓ = logdensityof(Normal(; μ, σ), y) @test ℓ ≈ logdensityof(Normal(; μ, σ²), y) @test ℓ ≈ logdensityof(Normal(; μ, τ), y) @test ℓ ≈ logdensityof(Normal(; μ, logσ), y) end @testset "LKJCholesky" begin D = LKJCholesky{(:k, :η)} par = transform(asparams(D, (k = 4,)), randn(1)) d = D(merge((k = 4,), par)) # @test params(d) == par η = par.η logη = log(η) y = rand(d) η = par.η ℓ = logdensity_def(LKJCholesky(4, η), y) @test ℓ ≈ logdensity_def(LKJCholesky(k = 4, logη = logη), y) end end @testset "TransitionKernel" begin κ = kernel(Dirac) @test rand(κ(1.1)) == 1.1 k1 = kernel() do x Normal(x, x^2) end k2 = kernel(Normal) do x (μ = x, σ = x^2) end k3 = kernel(Normal; μ = identity, σ = abs2) k4 = kernel(Normal; μ = first, σ = last) do x (x, x^2) end @test k1(3) == k2(3) == k3(3) == k4(3) == Normal(3, 9) end @testset "For" begin FORDISTS = [ For(1:10) do j Normal(μ = j) end For(4, 3) do μ, σ Normal(μ, σ) end For(1:4, 1:4) do μ, σ Normal(μ, σ) end For(eachrow(rand(4, 2))) do x Normal(x[1], x[2]) end For(rand(4), rand(4)) do μ, σ Normal(μ, σ) end ] for d in FORDISTS @info "testing $d" @test logdensity_def(d, rand(d)) isa Float64 end end import MeasureTheory: ⋅ function ⋅(μ::Normal, kernel) m = kernel(μ) Normal(μ = m.μ.μ, σ = sqrt(m.μ.σ^2 + m.σ^2)) end struct AffinePushfwdMap{S,T} B::S β::T end (a::AffinePushfwdMap)(x) = a.B * x + a.β function (a::AffinePushfwdMap)(p::Normal) Normal(μ = a.B * mean(p) + a.β, σ = sqrt(a.B * p.σ^2 * a.B')) end @testset "DynamicFor" begin mc = Chain(Normal(μ = 0.0)) do x Normal(μ = x) end r = rand(mc) # Check that `r` is now deterministic @test logdensity_def(mc, take(r, 100)) == logdensity_def(mc, take(r, 100)) d2 = For(r) do x Normal(μ = x) end @test let r2 = rand(d2) logdensity_def(d2, take(r2, 100)) == logdensity_def(d2, take(r2, 100)) end end @testset "Product of Diracs" begin x = randn(3) t = as(productmeasure(Dirac.(x))) @test transform(t, []) == x end using DynamicIterators: trace, TimeLift # @testset "Univariate chain" begin # ξ0 = 1. # x = 1.2 # P0 = 1.0 # Φ = 0.8 # β = 0.1 # Q = 0.2 # μ = Normal(μ=ξ0, σ=sqrt(P0)) # kernel = MeasureTheory.kernel(Normal; μ=AffinePushfwdMap(Φ, β), σ=MeasureTheory.AsConst(Q)) # @test (μ ⋅ kernel).μ == Normal(μ = 0.9, σ = 0.824621).μ # chain = Chain(kernel, μ) # dyniterate(iter::TimeLift, ::Nothing) = dyniterate(iter, 0=>nothing) # tr1 = trace(TimeLift(chain), nothing, u -> u[1] > 15) # tr2 = trace(TimeLift(rand(Random.GLOBAL_RNG, chain)), nothing, u -> u[1] > 15) # collect(Iterators.take(chain, 10)) # collect(Iterators.take(rand(Random.GLOBAL_RNG, chain), 10)) # end @testset "rootmeasure/logpdf" begin x = rand(Normal()) @test logdensity_rel(Normal(), rootmeasure(Normal()), x) ≈ logdensityof(Normal(), x) end @testset "Transforms" begin t = as𝕀 @testset "Pushforward" begin μ = Normal() ν = Pushforward(t, μ) x = rand(μ) @test logdensity_def(μ, x) ≈ logdensity_def(Pushforward(TV.inverse(t), ν), x) end @testset "Pullback" begin ν = Uniform() μ = Pullback(t, ν) y = rand(ν) @test logdensity_def(ν, y) ≈ logdensity_def(Pullback(TV.inverse(t), μ), y) end end @testset "Likelihood" begin dps = [(Normal(), 2.0) # (Pushforward(as((μ=asℝ,)), Normal()^1), (μ=2.0,)) ] ℓs = [ Likelihood(Normal{(:μ,)}, 3.0), # Likelihood(kernel(Normal, x -> (μ=x, σ=2.0)), 3.0) ] for (d, p) in dps for ℓ in ℓs @test logdensityof(d ⊙ ℓ, p) ≈ logdensityof(d, p) + logdensityof(ℓ.k(p), ℓ.x) end end end @testset "Reproducibility" begin # NOTE: The `test_broken` below are mostly because of the change to `AffinePushfwd`. # For example, `Normal{(:μ,:σ)}` is now `AffinePushfwd{(:μ,:σ), Normal{()}}`. # The problem is not really with these measures, but with the tests # themselves. # # We should instead probably be doing e.g. # `D = typeof(Normal(μ=0.3, σ=4.1))` function repro(D, args, nt = NamedTuple()) t = asparams(D{args}, nt) d = D(transform(t, randn(t.dimension))) r(d) = rand(Random.MersenneTwister(1), d) logdensity_def(d, r(d)) == logdensity_def(d, r(d)) end @testset "Bernoulli" begin @test repro(Bernoulli, (:p,)) end @testset "Binomial" begin @test repro(Binomial, (:n, :p), (n = 10,)) end @testset "Beta" begin @test repro(Beta, (:α, :β)) end @testset "BetaBinomial" begin @test repro(BetaBinomial, (:n, :α, :β), (n = 10,)) end @testset "Cauchy" begin @test_broken repro(Cauchy, (:μ, :σ)) end @testset "Dirichlet" begin @test_broken repro(Dirichlet, (:p,)) end @testset "Exponential" begin @test repro(Exponential, (:λ,)) end @testset "Gumbel" begin @test_broken repro(Gumbel, (:μ, :σ)) end @testset "InverseGamma" begin @test_broken repro(InverseGamma, (:p,)) end @testset "Laplace" begin @test_broken repro(Laplace, (:μ, :σ)) end @testset "LKJCholesky" begin @test repro(LKJCholesky, (:k, :η), (k = 3,)) end @testset "Multinomial" begin @test_broken repro(Multinomial, (:n, :p)) end @testset "MvNormal" begin @test_broken repro(MvNormal, (:μ,)) σ = LowerTriangular(randn(3, 3)) Σ = σ * σ' d = MvNormal(σ = σ) x = rand(d) @test logdensityof(d, x) ≈ logdensityof(Dists.MvNormal(Σ), x) @test logdensityof(MvNormal(zeros(3), σ), x) ≈ logdensityof(d, x) end @testset "NegativeBinomial" begin @test repro(NegativeBinomial, (:r, :p)) end @testset "Normal" begin @test repro(Normal, (:μ, :σ)) end @testset "Poisson" begin @test repro(Poisson, (:λ,)) end @testset "StudentT" begin @test_broken repro(StudentT, (:ν, :μ)) end @testset "Uniform" begin @test repro(Uniform, ()) end end @testset "ProductMeasure" begin d = For(1:10) do j Poisson(exp(j)) end x = Vector{Int16}(undef, 10) @test rand!(d, x) isa Vector @test rand(d) isa Vector @testset "Indexed by Generator" begin d = For((j^2 for j in 1:10)) do i Poisson(i) end x = Vector{Int16}(undef, 10) @test rand!(d, x) isa Vector @test rand(d) isa MeasureTheory.RealizedSamples end @testset "Indexed by multiple Ints" begin d = For(2, 3) do μ, σ Normal(μ, σ) end x = Matrix{Float16}(undef, 2, 3) @test rand!(d, x) isa Matrix @test_broken rand(d) isa Matrix{Float16} end end @testset "Show methods" begin @testset "PowerMeasure" begin @test repr(Lebesgue(ℝ)^5) == "Lebesgue(ℝ) ^ 5" @test repr(Lebesgue(ℝ)^(3, 2)) == "Lebesgue(ℝ) ^ (3, 2)" end end @testset "Half measures" begin @testset "HalfNormal" begin d = Normal(σ = 3) h = HalfNormal(3) x = rand(h) @test densityof(h, x) ≈ 2 * densityof(d, x) end @testset "HalfCauchy" begin d = Cauchy(σ = 3) h = HalfCauchy(3) x = rand(h) @test densityof(h, x) ≈ 2 * densityof(d, x) end @testset "HalfStudentT" begin d = StudentT(ν = 2, σ = 3) h = HalfStudentT(2, 3) x = rand(h) @test densityof(h, x) ≈ 2 * densityof(d, x) end end @testset "MvNormal" begin Q, R = qr(randn(4, 2)) D = Diagonal(sign.(diag(R))) Q = Matrix(Q) * D R = D * R z = randn(2) ℓ = logdensityof(MvNormal((σ = R,)), z) @test ℓ ≈ logdensityof(Dists.MvNormal(R * R'), z) @test ℓ ≈ logdensityof(MvNormal((σ = Q * R,)), Q * z) end @testset "AffinePushfwd" begin testmeasures = [ (Normal, NamedTuple()) (Cauchy, NamedTuple()) (Laplace, NamedTuple()) (StudentT, (ν = 3,)) ] using Test function test_noerrors(d) x = rand(d) @test logdensityof(d, x) isa Real @test logdensity_def(d, x) isa Real end for (M, nt) in testmeasures for p in [(μ = 1,), (μ = 1, σ = 2), (μ = 1, λ = 2), (σ = 2,), (λ = 2,)] d = M(merge(nt, p)) @info "Testing $d" test_noerrors(d) end # for n in 1:3 # @show n # for k in 1:n # @show k # pars = [(μ=randn(n),), (μ=randn(n),σ=randn(n,k)), (μ=randn(n),λ=randn(k,n)), (σ=randn(n,k),), (λ=randn(k,n),)] # for p in pars # @show p # d = M(merge(nt, p)) # test_noerrors(d) # end # end # end end end @testset "AffineTransform" begin f = AffineTransform((μ = 3, σ = 2)) @test f(inverse(f)(1)) == 1 @test inverse(f)(f(1)) == 1 f = AffineTransform((μ = 3, λ = 2)) @test f(inverse(f)(1)) == 1 @test inverse(f)(f(1)) == 1 f = AffineTransform((σ = 2,)) @test f(inverse(f)(1)) == 1 @test inverse(f)(f(1)) == 1 f = AffineTransform((λ = 2,)) @test f(inverse(f)(1)) == 1 @test inverse(f)(f(1)) == 1 f = AffineTransform((μ = 3,)) @test f(inverse(f)(1)) == 1 @test inverse(f)(f(1)) == 1 f = AffineTransform((σ = [1 2; 2 1],)) @test f(inverse(f)([1 2; 2 1])) == [1 2; 2 1] @test inverse(f)(f([1 2; 2 1])) == [1 2; 2 1] end @testset "AffinePushfwd" begin unif = ∫(x -> 0 < x < 1, Lebesgue(ℝ)) f1 = AffineTransform((μ = 3.0, σ = 2.0)) f2 = AffineTransform((μ = 3.0, λ = 2.0)) f3 = AffineTransform((μ = 3.0,)) f4 = AffineTransform((σ = 2.0,)) f5 = AffineTransform((λ = 2.0,)) for f in [f1, f2, f3, f4, f5] par = getfield(f, :par) @test AffinePushfwd(par)(unif) == AffinePushfwd(f, unif) @test densityof(AffinePushfwd(f, AffinePushfwd(inverse(f), unif)), 0.5) == 1 end d = ∫exp(x -> -x^2, Lebesgue(ℝ)) μ = randn(3) # σ = LowerTriangular(randn(3, 3)) σ = let x = randn(10, 3) cholesky(x' * x).L end λ = inv(σ) x = randn(3) @test logdensity_def(AffinePushfwd((μ = μ, σ = σ), d^3), x) ≈ logdensity_def(AffinePushfwd((μ = μ, λ = λ), d^3), x) @test logdensity_def(AffinePushfwd((σ = σ,), d^3), x) ≈ logdensity_def(AffinePushfwd((λ = λ,), d^3), x) @test logdensity_def(AffinePushfwd((μ = μ,), d^3), x) ≈ logdensity_def(d^3, x - μ) d = ∫exp(x -> -x^2, Lebesgue(ℝ)) a = AffinePushfwd((σ = [1 0]',), d^1) x = randn(2) y = randn(1) @test logdensityof(a, x) ≈ logdensityof(d, inverse(a.f)(x)[1]) @test logdensityof(a, a.f(y)) ≈ logdensityof(d^1, y) b = AffinePushfwd((λ = [1 0]'',), d^1) @test logdensityof(b, x) ≈ logdensityof(d, inverse(b.f)(x)[1]) @test logdensityof(b, b.f(y)) ≈ logdensityof(d^1, y) end @testset "IfElseMeasure" begin p = rand() x = randn() @test let a = logdensityof(IfElse.ifelse(Bernoulli(p), Normal(), Normal()), x) b = logdensityof(Normal(), x) a ≈ b end @test let a = logdensityof(IfElse.ifelse(Bernoulli(p), Normal(2, 3), Normal()), x) b = logdensityof(p * Normal(2, 3) + (1 - p) * Normal(), x) a ≈ b end end @testset "https://github.com/JuliaMath/MeasureTheory.jl/issues/217" begin d = For(rand(3), rand(3)) do x, y Normal(x, y) end x = rand(d) @test logdensityof(d, x) isa Real end @testset "Normal smf" begin @test smf(Normal(0, 1), 0) == 0.5 @test smf.((Normal(0, 1),), [0, 0]) == [0.5, 0.5] end affinepars_1d = [ (;) (μ = randn(),) (σ = randn(),) (λ = randn(),) (μ = randn(), σ = randn()) (μ = randn(), λ = randn()) ] smf_measures = [ [Bernoulli(), Bernoulli(rand()), Bernoulli(logitp = randn())] [Beta(rand(), rand())] # [BetaBinomial(rand(5:20), 2 * rand(), 2 * rand())] # [Binomial(rand(5:20), rand())] Cauchy.(affinepars_1d) Normal.(affinepars_1d) StudentT.(merge.(Ref((ν = 1 + 2 * rand(),)), affinepars_1d)) ] |> vcat @testset "smf" begin for μ in smf_measures test_smf(μ) end end @testset "more interface tests" begin for μ in smf_measures test_interface(μ) end end
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
docs
2871
# MeasureTheory [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaMath.github.io/MeasureTheory.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaMath.github.io/MeasureTheory.jl/dev) [![Build Status](https://github.com/JuliaMath/MeasureTheory.jl/workflows/CI/badge.svg)](https://github.com/JuliaMath/MeasureTheory.jl/actions) [![Coverage](https://codecov.io/gh/JuliaMath/MeasureTheory.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaMath/MeasureTheory.jl) [![DOI](https://proceedings.juliacon.org/papers/10.21105/jcon.00092/status.svg)](https://doi.org/10.21105/jcon.00092) `MeasureTheory.jl` is a package for building and reasoning about measures. ## Why? Probabilistic programming and statistical computing are vibrant areas in the development of the Julia programming language, but the underlying infrastructure dramatically predates recent developments. The goal of MeasureTheory.jl is to provide Julia with the right vocabulary and tools for these tasks. In this package we introduce a well-chosen foundational primitives centered around the notion of measure, density and conditional probability with powerful combinators and transforms intended to power and unify work on probabilistic programming and statistical computing within Julia. Check out our [JuliaCon 2021 article](https://doi.org/10.21105/jcon.00092) detailing our ideas for and with this package. ## Getting started To install `MeasureTheory.jl`, open the Julia Pkg REPL (by typing `]` in the standard REPL) and run ```julia pkg> add MeasureTheory ``` To get an idea of the possibilities offered by this package, go to the [documentation](https://JuliaMath.github.io/MeasureTheory.jl/stable). ## Coordination and support For interaction and shorter usage questions, there is the dedicated channel [#measuretheory on Julia's Zulip chat julialang.zulipchat.com](https://julialang.zulipchat.com/#narrow/stream/259730-measuretheory.2Ejl) and the #measuretheory channel on the [Julia language Slack chat](https://julialang.org/slack/) and for broader discussions [Julia's discourse forum](https://discourse.julialang.org). Development takes place on Github with [Github's issue ticker](https://github.com/JuliaMath/MeasureTheory.jl/issues) for bug reports and coordination. We adhere to the [community standards set forward by the Julia community.](https://julialang.org/community/standards/) ## Support [<img src=https://user-images.githubusercontent.com/1184449/140397787-9b7e3eb7-49cd-4c63-8f3c-e5cdc41e393d.png width="49%">](https://informativeprior.com/) [<img src=https://planting.space/sponsor/PlantingSpace-sponsor-3.png width=49%>](https://planting.space) ## Stargazers over time [![Stargazers over time](https://starchart.cc/JuliaMath/MeasureTheory.jl.svg)](https://starchart.cc/JuliaMath/MeasureTheory.jl)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
docs
5130
# Adding a New Measure ## Parameterized Measures This is by far the most common kind of measure, and is especially useful as a way to describe families of probability distributions. ### Declaring a Parameterized Measure To start, declare a `@parameterized`. For example, `Normal` is declared as ```julia @parameterized Normal(μ,σ) ≪ (1/sqrt2π) * Lebesgue(ℝ) ``` [`ℝ` is typed as `\bbR <TAB>`] A `ParameterizedMeasure` can have multiple parameterizations, which as dispatched according to the names of the parameters. The `(μ,σ)` here specifies names to assign if none are given. So for example, ```julia julia> Normal(-3.0, 2.1) Normal(μ = -3.0, σ = 2.1) ``` The right side, `(1/sqrt2π) * Lebesgue(ℝ)`, gives the _base measure_. `Lebesgue` in this case is the technical name for the measure associating an interval of real numbers to its length. The `(1/sqrt2π)` comes from the normalization constant in the probability density function, ```math f_{\text{Normal}}(x|μ,σ) = \frac{1}{σ \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}\ \ . ``` Making this part of the base measure allows us to avoid including it in every computation. The `≪` (typed as `\ll <TAB>`) can be read "is dominated by". This just means that any set for which the base measure is zero must also have zero measure in what we're defining. ### Defining a Log Density Most computations involve log-densities rather than densities themselves, so these are our first priority. `density(d,x)` will default to `exp(logdensity_def(d,x))`, but you can add a separate method if it's more efficient. The definition is simple: ```julia logdensity_def(d::Normal{()} , x) = - x^2 / 2 ``` There are a few things here worth noting. First, we dispatch by the names of `d` (here there are none), and the type of `x` is not specified. Also, there's nothing here about `μ` and `σ`. These _location-scale parameters_ behave exactly the same across lots of distributions, so we have a macro to add them: ```julia @μσ_methods Normal() ``` Let's look at another example, the Beta distribution. Here the base measure is `Lebesgue(𝕀)` (support is the unit interval). The log-density is ```julia @inline function logdensity_def(d::Beta{(:α, :β)}, x) return (d.α - 1) * log(x) + (d.β - 1) * log(1 - x) - logbeta(d.α, d.β) end ``` Note that when possible, we avoid extra control flow for checking that `x` is in the support. In applications, log-densities are often evaluated only on the support by design. Such checks should be implemented at a higher level whenever there is any doubt. Finally, note that in both of these examples, the log-density has a relatively direct algebraic form. It's imnportant to have this whenever possible to allow for symbolic manipulation (using libraries like `SymolicUtils.jl`) and efficient automatic differentiation. ### Random Sampling For univariate distributions, you should define a `Base.rand` method that uses three arguments: - A `Random.AbstractRNG` to use for randomization, - A type to be returned, and - The measure to sample from. For our `Normal` example, this is ```julia Base.rand(rng::Random.AbstractRNG, T::Type, d::Normal{()}) = randn(rng, T) ``` Again, for location-scale families, other methods are derived automatically. For multivariate distributions (or anything that requires heap allocation), you should instead define a `Random.rand!` method. This also takes three arguments, different from `rand`: - The `Random.AbstractRNG`, - The measure to sample from, and - Where to store the result. For example, here's the implementation for `ProductMeasure`: ```julia @propagate_inbounds function Random.rand!(rng::AbstractRNG, d::ProductMeasure, x::AbstractArray) @boundscheck size(d.data) == size(x) || throw(BoundsError) @inbounds for j in eachindex(x) x[j] = rand(rng, eltype(x), d.data[j]) end x end ``` Note that in this example, `d.data[j]` might itself require allocation. This implementation is likely to change in the future to make it easier to define nested structures without any need for ongoing allocation. ## Primitive Measures Most measures are defined in terms of a `logdensity` with respect to some other measure, its `basemeasure`. But how is _that_ measure defined? It can't be "densities all the way down"; at some point, the chain has to stop. A _primitive_ measure is just a measure that has itself as its own base measure. Note that this also means its log-density is always zero. Here's the implementation of `Lebesgue`: ```julia struct Lebesgue{X} <: AbstractMeasure end Lebesgue(X) = Lebesgue{X}() basemeasure(μ::Lebesgue) = μ isprimitive(::Lebesgue) = true gentype(::Lebesgue{ℝ}) = Float64 gentype(::Lebesgue{ℝ₊}) = Float64 gentype(::Lebesgue{𝕀}) = Float64 logdensity_def(::Lebesgue, x) = zero(float(x)) ``` We haven't yet talked about `gentype`. When you call `rand` without specifying a type, there needs to be a default. That default is the `gentype`. This only needs to be defined for primitive measures, because others will fall back on ```julia gentype(μ::AbstractMeasure) = gentype(basemeasure(μ)) ```
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
docs
5265
# Affine Transformations It's very common for measures to use parameters `μ` and `σ`, for example as in `Normal(μ=3, σ=4)` or `StudentT(ν=1, μ=3, σ=4)`. In this context, `μ` and `σ` need not always refer to the mean and standard deviation (the `StudentT` measure specified above is equivalent to a [Cauchy](https://en.wikipedia.org/wiki/Cauchy_distribution) measure, so both mean and standard deviation are undefined). In general, `μ` is a "location parameter", and `σ` is a "scale parameter". Together these parameters determine an affine transformation. ```math f(z) = σ z + μ ``` Starting with the above definition, we'll use ``z`` to represent an "un-transformed" variable, typically coming from a measure which has neither a location nor a scale parameter, for example `Normal()`. Affine transformations are often ambiguously referred as "linear transformations". In fact, an affine transformation is ["the composition of two functions: a translation and a linear map"](https://en.wikipedia.org/wiki/Affine_transformation#Representation) in the stricter algebraic sense: For a function `f` to be linear requires ``f(ax + by) == a f(x) + b f(y)`` for scalars ``a`` and ``b``. For an affine function ``f(z) = σ * z + μ``, where the linear map is defined as ``σ`` and the translation defined as ``μ``, linearity holds only if the translation component ``μ`` is equal to zero. ## Cholesky-based parameterizations If the "un-transformed" `z` is univariate, things are relatively simple. But it's important our approach handle the multivariate case as well. In the literature, it's common for a multivariate normal distribution to be parameterized by a mean `μ` and covariance matrix `Σ`. This is mathematically convenient, but leads to an ``O(n^3)`` [Cholesky decomposition](https://en.wikipedia.org/wiki/Cholesky_decomposition), which becomes a significant bottleneck to compute as ``n`` gets large. While MeasureTheory.jl includes (or will include) a parameterization using `Σ`, we prefer to work in terms of its Cholesky decomposition ``σ``. To see the relationship between our ``σ`` parameterization and the likely more familiar ``Σ`` parameterization, let ``σ`` be a lower-triangular matrix satisfying ```math σ σᵗ = Σ ``` Then given a (multivariate) standard normal ``z``, the covariance matrix of ``σ z + μ`` is ```math 𝕍[σ z + μ] = Σ ``` The one-dimensional case where we have ```math 𝕍[σ z + μ] = σ² ``` shows that the lower Cholesky factor of the covariance generalizes the concept of standard deviation, completing the link between ``σ`` and `Σ`. ## The "Cholesky precision" parameterization The ``(μ,σ)`` parameterization is especially convenient for random sampling. Any measure `z ~ Normal()` determines an `x ~ Normal(μ,σ)` through the affine transformation ```math x = σ z + μ ``` The log-density transformation of a `Normal` with parameters μ, σ does not follow as directly. Starting with an ``x``, we need to find ``z`` using ```math z = σ⁻¹ (x - μ) ``` so the log-density is ```julia logdensity_def(d::Normal{(:μ,:σ)}, x) = logdensity_def(d.σ \ (x - d.μ)) - logdet(d.σ) ``` Here the `- logdet(σ)` is the "log absolute Jacobian", required to account for the stretching of the space. The above requires solving a linear system, which adds some overhead. Even with the convenience of a lower triangular system, it's still not quite as efficient as multiplication. In addition to the covariance ``Σ``, it's also common to parameterize a multivariate normal by its _precision matrix_, defined as the inverse of the covariance matrix, ``Ω = Σ⁻¹``. Similar to our use of ``σ`` for the lower Cholesky factor of `Σ`, we'll use ``λ`` for the lower Cholesky factor of ``Ω``. This parameterization enables more efficient calculation of the log-density using only multiplication and addition, ```julia logdensity_def(d::Normal{(:μ,:λ)}, x) = logdensity_def(d.λ * (x - d.μ)) + logdet(d.λ) ``` ## `AffineTransform` Transforms like ``z → σ z + μ`` and ``z → λ \ z + μ`` can be specified in MeasureTheory.jl using an `AffineTransform`. For example, ```julia julia> f = AffineTransform((μ=3.,σ=2.)) AffineTransform{(:μ, :σ), Tuple{Float64, Float64}}((μ = 3.0, σ = 2.0)) julia> f(1.0) 5.0 ``` In the univariate case this is relatively simple to invert. But if `σ` is a matrix, matrix inversion becomes necessary. This is not always possible as lower triangular matrices are not closed under matrix inversion and as such are not guaranteed to exist. With multiple parameterizations of a given family of measures, we can work around these issues. The inverse transform of a ``(μ,σ)`` transform will be in terms of ``(μ,λ)``, and vice-versa. So ```julia julia> f⁻¹ = inverse(f) AffineTransform{(:μ, :λ), Tuple{Float64, Float64}}((μ = -1.5, λ = 2.0)) julia> f(f⁻¹(4)) 4.0 julia> f⁻¹(f(4)) 4.0 ``` ## `AffinePushfwd` Of particular interest (the whole point of all of this, really) is to have a natural way to work with affine transformations of measures. In accordance with the principle of "common things should have shorter names", we call this `AffinePushfwd`. The structure of `AffinePushfwd` is relatively simple: ```julia struct AffinePushfwd{N,M,T} <: AbstractMeasure f::AffineTransform{N,T} parent::M end ```
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
docs
59
# MeasureBase API ```@autodocs Modules = [MeasureBase] ```
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
docs
63
# MeasureTheory API ```@autodocs Modules = [MeasureTheory] ```
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
docs
1132
```@meta CurrentModule = MeasureTheory ``` # Home `MeasureTheory.jl` is a package for building and reasoning about measures. ## Why? A distribution (as provided by `Distributions.jl`) is also called a _probability measure_, and carries with it the constraint of adding (or integrating) to one. Statistical work usually requires this "at the end of the day", but enforcing it at each step of a computation can have considerable overhead. For instance, Bayesian modeling often requires working with unnormalized posterior densities or improper priors. As a generalization of the concept of volume, measures also have applications outside of probability theory. ## Getting started To install `MeasureTheory.jl`, open the Julia Pkg REPL (by typing `]` in the standard REPL) and run ```julia pkg> add MeasureTheory ``` To get an idea of the possibilities offered by this package, go to the [documentation](https://cscherrer.github.io/MeasureTheory.jl/stable). To know more about the underlying theory and its applications to probabilistic programming, check out our [JuliaCon 2021 submission](https://arxiv.org/abs/2110.00602).
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
0.19.0
923a7b76a9d4be260d4225db1703cd30472b60cc
docs
7848
# MeasureTheory [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://cscherrer.github.io/MeasureTheory.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://cscherrer.github.io/MeasureTheory.jl/dev) [![Build Status](https://github.com/JuliaMath/MeasureTheory.jl/workflows/CI/badge.svg)](https://github.com/JuliaMath/MeasureTheory.jl/actions) [![Coverage](https://codecov.io/gh/JuliaMath/MeasureTheory.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaMath/MeasureTheory.jl) Check out our [JuliaCon submission](https://github.com/JuliaMath/MeasureTheory.jl/blob/paper/paper/paper.pdf) `MeasureTheory.jl` is a package for building and reasoning about measures. ## Why? A distribution (as in Distributions.jl) is also called a _probability measure_, and carries with it the constraint of adding (or integrating) to one. Statistical work usually requires this "at the end of the day", but enforcing it at each step of a computation can have considerable overhead. As a generalization of the concept of volume, measures also have applications outside of probability theory. ## Goals ### Distributions.jl Compatibility Distirbutions.jl is wildly popular, and is large enough that replacing it all at once would be a major undertaking. Instead, we should aim to make any Distribution easily usable as a Measure. We'll most likely implement this using an `IsMeasure` trait. ### Absolute Continuity For two measures μ, ν on a set X, we say μ is _absolutely continuous_ with respect to ν if ν(A)=0 implies μ(A)=0 for every measurable subset A of X. The following are equivalent: 1. μ ≪ ν 2. μ is absolutely continuous wrt ν 3. There exists a function f such that μ = ∫f dν So we'll need a `≪` operator. Note that `≪` is not antisymmetric; it's common for both `μ ≪ ν` and `ν ≪ μ` to hold. If `μ ≪ ν` and `ν ≪ μ`, we say μ and ν are _equivalent_ and write `μ ≃ ν`. (This is often written as `μ ~ ν`, but we reserve `~` for random variables following a distribution, as is common in the literature and probabilistic programming languages.) If we collapse the equivalence classes (under ≃), `≪` becomes a partial order. _We need ≃ and ≪ to be fast_. If the support of a measure can be determined statically from its type, we can define ≃ and ≪ as generated functions. ### Radon-Nikodym Derivatives One of the equivalent conditions above was "There exists a function f such that μ = ∫f dν". In this case, `f` is called a _Radon-Nikodym derivative_, or (less formally) a _density_. In this case we often write `f = dμ/dν`. For any measures μ and ν with μ≪ν, we should be able to represent this. ### Integration More generally, we'll need to be able to represent change of measure as above, `∫f dν`. We'll need an `Integral` type ```julia struct Integral{F,M} f::F μ::M end ``` Then we'll have a function `∫`. For cases where μ = ∫f dν, `∫(f, ν)` will just return `μ` (we can do this based on the types). For unknown cases (which will be most of them), we'll return `∫(f, ν) = Integral(f, ν)`. ### Measure Combinators It should be very easy to build new measures from existing ones. This can be done using, for example, - restriction - product measure - superposition - pushforward There's also function spaces, but this gets much trickier. We'll need to determine a good way to reason about this. ### More??? This is very much a work in progress. If there are things you think we should have as goals, please add an issue with the `goals` label. ------------------ ## Old Stuff **WARNING: The current README is very developer-oriented. Casual use will be much simpler** For an example, let's walk through the construction of `src/probability/Normal`. First, we have ```julia @measure Normal ``` this is just a little helper function, and is equivalent to > TODO: Clean up ```julia quote #= /home/chad/git/Measures.jl/src/Measures.jl:55 =# struct Normal{var"#10#P", var"#11#X"} <: Measures.AbstractMeasure{var"#11#X"} #= /home/chad/git/Measures.jl/src/Measures.jl:56 =# par::var"#10#P" end #= /home/chad/git/Measures.jl/src/Measures.jl:59 =# function Normal(var"#13#nt"::Measures.NamedTuple) #= /home/chad/git/Measures.jl/src/Measures.jl:59 =# #= /home/chad/git/Measures.jl/src/Measures.jl:60 =# var"#12#P" = Measures.typeof(var"#13#nt") #= /home/chad/git/Measures.jl/src/Measures.jl:61 =# return Normal{var"#12#P", Measures.eltype(Normal{var"#12#P"})} end #= /home/chad/git/Measures.jl/src/Measures.jl:64 =# Normal(; var"#14#kwargs"...) = begin #= /home/chad/git/Measures.jl/src/Measures.jl:64 =# Normal((; var"#14#kwargs"...)) end #= /home/chad/git/Measures.jl/src/Measures.jl:66 =# (var"#8#basemeasure"(var"#15#μ"::Normal{var"#16#P", var"#17#X"}) where {var"#16#P", var"#17#X"}) = begin #= /home/chad/git/Measures.jl/src/Measures.jl:66 =# Lebesgue{var"#17#X"} end #= /home/chad/git/Measures.jl/src/Measures.jl:68 =# (var"#9#≪"(::Normal{var"#19#P", var"#20#X"}, ::Lebesgue{var"#20#X"}) where {var"#19#P", var"#20#X"}) = begin #= /home/chad/git/Measures.jl/src/Measures.jl:68 =# true end end ``` Next we have ```julia Normal(μ::Real, σ::Real) = Normal(μ=μ, σ=σ) ``` This defines a default. If we just give two numbers as arguments (but no names), we'll assume this parameterization. Next need to define a `eltype` function. This takes a constructor (here `Normal`) and a parameter, and tells us the space for which this defines a measure. Let's define this in terms of the types of the parameters, ```julia eltype(::Type{Normal}, ::Type{NamedTuple{(:μ, :σ), Tuple{A, B}}}) where {A,B} = promote_type(A,B) ``` That's still kind of boring, so let's build the density. For this, we need to implement the trait ```julia @trait Density{M,X} where {X = domain{M}} begin basemeasure :: [M] => Measure{X} logdensity :: [M, X] => Real end ``` A density doesn't exist by itself, but is defined relative to some _base measure_. For a normal distribution this is just Lebesgue measure on the real numbers. That, together with the usual Gaussian log-density, gives us ```julia @implement Density{Normal{X,P},X} where {X, P <: NamedTuple{(:μ, :σ)}} begin basemeasure(d) = Lebesgue(X) logdensity_def(d, x) = - (log(2) + log(π)) / 2 - log(d.par.σ) - (x - d.par.μ)^2 / (2 * d.par.σ^2) end ``` Now we can compute the log-density: ```julia julia> logdensity_def(Normal(0.0, 0.5), 1.0) -2.2257913526447273 ``` And just to check that our default is working, ```julia julia> logdensity_def(Normal(μ=0.0, σ=0.5), 1.0) -2.2257913526447273 ``` What about other parameterizations? Sure, no problem. Here's a way to write this for mean `μ` (as before), but using the _precision_ (inverse of the variance) instead of standard deviation: ```julia eltype(::Type{Normal}, ::Type{NamedTuple{(:μ, :τ), Tuple{A, B}}}) where {A,B} = promote_type(A,B) @implement Density{Normal{X,P},X} where {X, P <: NamedTuple{(:μ, :τ)}} begin basemeasure(d) = Lebesgue(X) logdensity_def(d, x) = - (log(2) + log(π) - log(d.par.τ) + d.par.τ * (x - d.par.μ)^2) / 2 end ``` And another check: ```julia julia> logdensity_def(Normal(μ=0.0, τ=4.0), 1.0) -2.2257913526447273 ``` We can combine measures in a few ways, for now just _scaling_ and _superposition_: ```julia julia> 2.0*Lebesgue(Float64) + Normal(0.0,1.0) SuperpositionMeasure{Float64,2}((MeasureTheory.WeightedMeasure{Float64,Float64}(2.0, Lebesgue{Float64}()), Normal{NamedTuple{(:μ, :σ),Tuple{Float64,Float64}},Float64}((μ = 0.0, σ = 1.0)))) ``` --- For an easy way to find expressions for the common log-densities, see [this gist](https://gist.github.com/cscherrer/47f0fc7597b4ffc11186d54cc4d8e577)
MeasureTheory
https://github.com/JuliaMath/MeasureTheory.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
6647
######### Jags program example ########### using StatsPlots, Jags, Statistics ProjDir = joinpath(dirname(@__FILE__)) cd(ProjDir) do bones = " model { for (i in 1:nChild) { theta[i] ~ dnorm(0.0, 0.001); for (j in 1:nInd) { # Cumulative probability of > grade k given theta for (k in 1:(ncat[j]-1)) { logit(Q[i,j,k]) <- delta[j]*(theta[i] - gamma[j,k]); } Q[i,j,ncat[j]] <- 0; } for (j in 1:nInd) { # Probability of observing grade k given theta p[i,j,1] <- 1 - Q[i,j,1]; for (k in 2:ncat[j]) { p[i,j,k] <- Q[i,j,(k-1)] - Q[i,j,k]; } grade[i,j] ~ dcat(p[i,j,1:ncat[j]]); } } } " data = Dict{String, Any}() data["nChild"] = 13 data["nInd"] = 34 data["gamma"] = reshape([ 0.7425, 10.267, 10.5215, 9.3877, 0.2593, -0.5998, 10.5891, 6.6701, 8.8921, 12.4275, 12.4788, 13.7778, 5.8374, 6.9485, 13.7184, 14.3476, 4.8066, 9.1037, 10.7483, 0.3887, 3.2573, 11.6273, 15.8842, 14.8926, 15.5487, 15.4091, 3.9216, 15.475, 0.4927, 1.3059, 1.5012, 0.8021, 5.0022, 4.0168, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1.0153, 7.0421, 14.4242, 17.4685, 16.7409, 16.872, 17.0061, 5.2099, 16.9406, 1.3556, 1.8793, 1.8902, 2.3873, 6.3704, 5.1537, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 17.4944, 2.3016, 2.497, 2.3689, 3.9525, 8.2832, 7.1053, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 3.2535, 3.2306, 2.9495, 5.3198, 10.4988, 10.3038], 34, 4) data["delta"] = [ 2.9541, 0.6603, 0.7965, 1.0495, 5.7874, 3.8376, 0.6324, 0.8272, 0.6968, 0.8747, 0.8136, 0.8246, 0.6711, 0.978, 1.1528, 1.6923, 1.0331, 0.5381, 1.0688, 8.1123, 0.9974, 1.2656, 1.1802, 1.368, 1.5435, 1.5006, 1.6766, 1.4297, 3.385, 3.3085, 3.4007, 2.0906, 1.0954, 1.5329] data["ncat"] = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5] data["grade"] = reshape([ 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, NaN, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, NaN, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, NaN, NaN, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, NaN, NaN, 1, 1, NaN, 2, NaN, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, 2, 2, 1, 1, 1, NaN, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, NaN, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, NaN, NaN, 2, 1, NaN, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 3, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, NaN, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, NaN, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 5, 1, 1, 1, 1, 3, 3, 3, 4, 4, 5, 5, 5, 5], 13, 34) inits = Dict{String, Any}() inits["theta"] = [0.5, 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 16, 18] inits["grade"] = reshape([ NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, 1, NaN, NaN, 1, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, 1, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], 13, 34) monitors = Dict{String, Bool}("theta" => true) jagsmodel = Jagsmodel(name="bones1", model=bones, monitor=monitors, #ncommands=4, nchains=1, #adapt=1000, nsamples=10000, thin=1, #deviance=true, dic=true, popt=true, #updatedatafile=true, updateinitfiles=true, #pdir=ProjDir ); println("\nJagsmodel that will be used:") jagsmodel |> display @time sim = jags(jagsmodel, data, [inits], ProjDir) println() ## Plotting p = plot(sim) end #cd
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
7219
######### Jags program example ########### using StatsPlots, Jags, Statistics ProjDir = dirname(@__FILE__) cd(ProjDir) do bones = " model { for (i in 1:nChild) { theta[i] ~ dnorm(0.0, 0.001); for (j in 1:nInd) { # Cumulative probability of > grade k given theta for (k in 1:(ncat[j]-1)) { logit(Q[i,j,k]) <- delta[j]*(theta[i] - gamma[j,k]); } Q[i,j,ncat[j]] <- 0; } for (j in 1:nInd) { # Probability of observing grade k given theta p[i,j,1] <- 1 - Q[i,j,1]; for (k in 2:ncat[j]) { p[i,j,k] <- Q[i,j,(k-1)] - Q[i,j,k]; } grade[i,j] ~ dcat(p[i,j,1:ncat[j]]); } } } " data = Dict{String, Any}() data["nChild"] = 13 data["nInd"] = 34 data["gamma"] = reshape([ 0.7425, 10.267, 10.5215, 9.3877, 0.2593, -0.5998, 10.5891, 6.6701, 8.8921, 12.4275, 12.4788, 13.7778, 5.8374, 6.9485, 13.7184, 14.3476, 4.8066, 9.1037, 10.7483, 0.3887, 3.2573, 11.6273, 15.8842, 14.8926, 15.5487, 15.4091, 3.9216, 15.475, 0.4927, 1.3059, 1.5012, 0.8021, 5.0022, 4.0168, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1.0153, 7.0421, 14.4242, 17.4685, 16.7409, 16.872, 17.0061, 5.2099, 16.9406, 1.3556, 1.8793, 1.8902, 2.3873, 6.3704, 5.1537, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 17.4944, 2.3016, 2.497, 2.3689, 3.9525, 8.2832, 7.1053, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 3.2535, 3.2306, 2.9495, 5.3198, 10.4988, 10.3038], 34, 4) data["delta"] = [ 2.9541, 0.6603, 0.7965, 1.0495, 5.7874, 3.8376, 0.6324, 0.8272, 0.6968, 0.8747, 0.8136, 0.8246, 0.6711, 0.978, 1.1528, 1.6923, 1.0331, 0.5381, 1.0688, 8.1123, 0.9974, 1.2656, 1.1802, 1.368, 1.5435, 1.5006, 1.6766, 1.4297, 3.385, 3.3085, 3.4007, 2.0906, 1.0954, 1.5329] data["ncat"] = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5] data["grade"] = reshape([ 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, NaN, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, NaN, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, NaN, NaN, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, NaN, NaN, 1, 1, NaN, 2, NaN, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, 2, 2, 1, 1, 1, NaN, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, NaN, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, NaN, NaN, 2, 1, NaN, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 3, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NaN, NaN, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, NaN, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 5, 1, 1, 1, 1, 3, 3, 3, 4, 4, 5, 5, 5, 5], 13, 34) grade = reshape([ NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, 1, NaN, NaN, 1, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, 1, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], 13, 34) inits = [ Dict("theta" => [0.5, 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 16, 18], "grade" => grade, ".RNG.name" => "base::Wichmann-Hill"); Dict("theta" => [0.5, 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 16, 18], "grade" => grade, ".RNG.name" => "base::Marsaglia-Multicarry"); Dict("theta" => [0.5, 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 16, 18], "grade" => grade, ".RNG.name" => "base::Super-Duper"); Dict("theta" => [0.5, 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 16, 18], "grade" => grade, ".RNG.name" => "base::Mersenne-Twister"); ] monitors = Dict{String, Bool}( "theta" => true ) jagsmodel = Jagsmodel(name="bones2", model=bones, monitor=monitors, ncommands=4, nchains=1, #adapt=1000, nsamples=10000, thin=1, #deviance=true, dic=true, popt=true, #updatedatafile=true, updateinitfiles=true, #pdir=ProjDir ); println("\nJagsmodel that will be used:") jagsmodel |> display @time sim = jags(jagsmodel, data, [inits;], ProjDir) ## Plotting p = plot(sim) end #cd
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
1459
######### Jags batch program example ########### using StatsPlots, Jags, Statistics ProjDir = @__DIR__ cd(ProjDir) dyes = " model { for (i in 1:BATCHES) { for (j in 1:SAMPLES) { y[i,j] ~ dnorm(mu[i], tau.within); } mu[i] ~ dnorm(theta, tau.between); } theta ~ dnorm(0.0, 1.0E-10); tau.within ~ dgamma(0.001, 0.001); s2.within <- 1/tau.within; tau.between ~ dgamma(0.001, 0.001); s2.between <- 1/tau.between; s2.total <- s2.within + s2.between; f.within <- s2.within/s2.total; f.between <- s2.between/s2.total; } " data = Dict{String, Any}() data["y"] = reshape([ 1545, 1540, 1595, 1445, 1595, 1520, 1440, 1555, 1550, 1440, 1630, 1455, 1440, 1490, 1605, 1595, 1515, 1450, 1520, 1560, 1510, 1465, 1635, 1480, 1580, 1495, 1560, 1545, 1625, 1445 ], 6, 5) data["BATCHES"] = 6 data["SAMPLES"] = 5 inits = [ Dict{String, Any}( "theta" => 1500, "tau.within" => 1, "tau.between" => 1 ) ] monitors = Dict{String, Any}( "theta" => true, "s2.within" => true, "s2.between" => true ) jagsmodel = Jagsmodel(name="dyes", model=dyes, ncommands=3, nchains=4, monitor=monitors) println("\nJagsmodel that will be used:") jagsmodel |> display println("Input observed data dictionary:") data |> display println("\nInput initial values dictionary:") inits |> display println() @time sim = jags(jagsmodel, data, inits, ProjDir) show(sim) println() ## Plotting #p = plot(sim)
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
1261
######### Jags line program example ########### using StatsPlots, Jags, Statistics, Random Random.seed!(0) ProjDir = @__DIR__ cd(ProjDir) line = " model { for (i in 1:n) { mu[i] <- alpha + beta*(x[i] - x.bar); y[i] ~ dnorm(mu[i],tau); } x.bar <- mean(x[]); alpha ~ dnorm(0.0,1.0E-4); beta ~ dnorm(0.0,1.0E-4); tau ~ dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau); } " monitors = Dict( "alpha" => true, "beta" => true, "tau" => true, "sigma" => true ) jagsmodel = Jagsmodel( name="line1", model=line, ncommands=1, nchains=4, monitor=monitors, deviance=true, dic=true, popt=true, pdir=ProjDir ); println("\nJagsmodel that will be used:") jagsmodel |> display data = Dict( "x" => [1, 2, 3, 4, 5], "y" => [1, 3, 3, 3, 5], "n" => 5 ) inits = [ Dict("alpha" => 0,"beta" => 0,"tau" => 1), Dict("alpha" => 1,"beta" => 2,"tau" => 1), Dict("alpha" => 3,"beta" => 3,"tau" => 2), Dict("alpha" => 5,"beta" => 2,"tau" => 5) ] println("Input observed data dictionary:") data |> display println("\nInput initial values dictionary:") inits |> display println() sim = jags(jagsmodel, data, inits, ProjDir) show(sim) println() ## Plotting p = plot(sim) savefig(p, "sim_plot.png")
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
2114
######### Jags line program example ########### using StatsPlots, Jags, Statistics ProjDir = joinpath(dirname(@__FILE__)) cd(ProjDir) do line = " model { for (i in 1:n) { mu[i] <- alpha + beta*(x[i] - x.bar); y[i] ~ dnorm(mu[i],tau); } x.bar <- mean(x[]); alpha ~ dnorm(0.0,1.0E-4); beta ~ dnorm(0.0,1.0E-4); tau ~ dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau); } " monitors = Dict( "alpha" => true, "beta" => true, "tau" => true, "sigma" => true ) jagsmodel = Jagsmodel( name="line2", model=line, monitor=monitors, ncommands=4, #ncommands=1, nchains=4, #deviance=true, dic=true, popt=true, pdir=ProjDir ); println("\nJagsmodel that will be used:") jagsmodel |> display data = Dict{String, Any}( "x" => [1, 2, 3, 4, 5], "y" => [1, 3, 3, 3, 5], "n" => 5 ) inits = [ Dict("alpha" => 0,"beta" => 0,"tau" => 1), Dict("alpha" => 1,"beta" => 2,"tau" => 1), Dict("alpha" => 3,"beta" => 3,"tau" => 2), Dict("alpha" => 5,"beta" => 2,"tau" => 5) ] #= inits = [ Dict("alpha" => 0,"beta" => 0,"tau" => 1,".RNG.name" => "base::Mersenne-Twister"), Dict("alpha" => 1,"beta" => 2,"tau" => 1,".RNG.name" => "base::Mersenne-Twister"), Dict("alpha" => 3,"beta" => 3,"tau" => 2,".RNG.name" => "base::Mersenne-Twister"), Dict("alpha" => 5,"beta" => 2,"tau" => 5,".RNG.name" => "base::Mersenne-Twister") ] =# #= inits = [ Dict("alpha" => 0,"beta" => 0,"tau" => 1,".RNG.name" => "base::Wichmann-Hill"), Dict("alpha" => 1,"beta" => 2,"tau" => 1,".RNG.name" => "base::Marsaglia-Multicarry"), Dict("alpha" => 3,"beta" => 3,"tau" => 2,".RNG.name" => "base::Super-Duper"), Dict("alpha" => 5,"beta" => 2,"tau" => 5,".RNG.name" => "base::Mersenne-Twister") ] =# println("Input observed data dictionary:") data |> display println("\nInput initial values dictionary:") inits |> display println() global sim = jags(jagsmodel, data, inits, ProjDir) println() ## Plotting p = plot(sim) end #cd
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
1324
######### Jags line program example ########### using StatsPlots, Jags, Statistics ProjDir = joinpath(dirname(@__FILE__)) cd(ProjDir) do line = " model { for (i in 1:n) { mu[i] <- alpha + beta*(x[i] - x.bar); y[i] ~ dnorm(mu[i],tau); } x.bar <- mean(x[]); alpha ~ dnorm(0.0,1.0E-4); beta ~ dnorm(0.0,1.0E-4); tau ~ dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau); } " monitors = Dict( "alpha" => true, "beta" => true, "tau" => true, "sigma" => true ) jagsmodel = Jagsmodel( name="line3", model=line, monitor=monitors, deviance=true, dic=true, popt=true, jagsthin=10, thin=1, pdir=ProjDir ); println("\nJagsmodel that will be used:") jagsmodel |> display data = Dict( "x" => [1, 2, 3, 4, 5], "y" => [1, 3, 3, 3, 5], "n" => 5 ) inits = [ Dict("alpha" => 0,"beta" => 0,"tau" => 1), Dict("alpha" => 1,"beta" => 2,"tau" => 1), Dict("alpha" => 3,"beta" => 3,"tau" => 2), Dict("alpha" => 5,"beta" => 2,"tau" => 5) ] println("Input observed data dictionary:") data |> display println("\nInput initial values dictionary:") inits |> display println() sim = jags(jagsmodel, data, inits, ProjDir) println() ## Plotting p = plot(sim) end #cd
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
1325
######### Jags line program example ########### using StatsPlots, Jags, Statistics ProjDir = joinpath(dirname(@__FILE__)) cd(ProjDir) do line = " model { for (i in 1:n) { mu[i] <- alpha + beta*(x[i] - x.bar); y[i] ~ dnorm(mu[i],tau); } x.bar <- mean(x[]); alpha ~ dnorm(0.0,1.0E-4); beta ~ dnorm(0.0,1.0E-4); tau ~ dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau); } " monitors = Dict( "alpha" => true, "beta" => true, "tau" => true, "sigma" => true ) jagsmodel = Jagsmodel( name="line4", model=line, monitor=monitors, deviance=false, dic=true, popt=true, jagsthin=10, thin=1, pdir=ProjDir ); println("\nJagsmodel that will be used:") jagsmodel |> display data = Dict( "x" => [1, 2, 3, 4, 5], "y" => [1, 3, 3, 3, 5], "n" => 5 ) inits = [ Dict("alpha" => 0,"beta" => 0,"tau" => 1), Dict("alpha" => 1,"beta" => 2,"tau" => 1), Dict("alpha" => 3,"beta" => 3,"tau" => 2), Dict("alpha" => 5,"beta" => 2,"tau" => 5) ] println("Input observed data dictionary:") data |> display println("\nInput initial values dictionary:") inits |> display println() sim = jags(jagsmodel, data, inits, ProjDir) println() ## Plotting p = plot(sim) end #cd
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
2982
using StatsPlots, Jags, Statistics ProjDir = dirname(@__FILE__) cd(ProjDir) do ## Data rats = Dict{String, Any}( "Y" => [151 199 246 283 320; 145 199 249 293 354; 147 214 263 312 328; 155 200 237 272 297; 135 188 230 280 323; 159 210 252 298 331; 141 189 231 275 305; 159 201 248 297 338; 177 236 285 350 376; 134 182 220 260 296; 160 208 261 313 352; 143 188 220 273 314; 154 200 244 289 325; 171 221 270 326 358; 163 216 242 281 312; 160 207 248 288 324; 142 187 234 280 316; 156 203 243 283 317; 157 212 259 307 336; 152 203 246 286 321; 154 205 253 298 334; 139 190 225 267 302; 146 191 229 272 302; 157 211 250 285 323; 132 185 237 286 331; 160 207 257 303 345; 169 216 261 295 333; 157 205 248 289 316; 137 180 219 258 291; 153 200 244 286 324], "x" => [8.0, 15.0, 22.0, 29.0, 36.0] ) rats["N"] = size(rats["Y"], 1) rats["T"] = size(rats["Y"], 2) rats["x.bar"] = mean(rats["x"]) ratsmodel = " model { for (i in 1:N) { for (j in 1:T) { mu[i,j] <- alpha[i] + beta[i]*(x[j] - x.bar); Y[i,j] ~ dnorm(mu[i,j], tau.c) } alpha[i] ~ dnorm(alpha.c, tau.alpha); beta[i] ~ dnorm(beta.c, tau.beta); } alpha.c ~ dnorm(0, 1.0E-4); beta.c ~ dnorm(0, 1.0E-4); tau.c ~ dgamma(1.0E-3, 1.0E-3); tau.alpha ~ dgamma(1.0E-3, 1.0E-3); tau.beta ~ dgamma(1.0E-3, 1.0E-3); sigma <- 1.0/sqrt(tau.c); alpha0 <- alpha.c - beta.c*x.bar; } " ## Initial Values inits = [ Dict{String,Any}("alpha" => fill(250, 30), "beta" => fill(6, 30), "alpha.c" => 100, "beta.c" => 2, "tau.c" => 1, "tau.alpha" => 1, "tau.beta" => 1), Dict{String,Any}("alpha" => fill(150, 30), "beta" => fill(3, 30), "alpha.c" => 150, "beta.c" => 2, "tau.c" => 1, "tau.alpha" => 1, "tau.beta" => 1), Dict{String,Any}("alpha" => fill(200, 30), "beta" => fill(6, 30), "alpha.c" => 200, "beta.c" => 1, "tau.c" => 1, "tau.alpha" => 1, "tau.beta" => 1), Dict{String,Any}("alpha" => fill(150, 30), "beta" => fill(3, 30), "alpha.c" => 250, "beta.c" => 1, "tau.c" => 1, "tau.alpha" => 1,"tau.beta" => 1) ] monitors = Dict{String, Bool}( "alpha0" => true, "beta.c" => true, "sigma" =>true ) jagsmodel = Jagsmodel( name="rats", model=ratsmodel, monitor=monitors, #ncommands=4, nchains=1, adapt=1000, nsamples=10000, thin=10, #deviance=true, dic=true, popt=true, pdir=ProjDir); println("Jagsmodel that will be used:") jagsmodel |> display println("Input observed data dictionary:") rats |> display println("\nInput initial values dictionary:") inits |> display println() @time sim = jags(jagsmodel, rats, inits, ProjDir) println() ## Plotting p = plot(sim) end #cd
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
1546
module Jags using Compat, CSV, Pkg, Documenter, DelimitedFiles, Unicode, MCMCChains using PrecompileTools #### Includes #### include("jagsmodel.jl") include("jagscode.jl") if !isdefined(Main, :Stanmodel) include("utilities.jl") end if VERSION >= v"1.9" include("precompile.jl") @compile_workload begin Jags.precompile_model() end end """The directory which contains the executable `bin/stanc`. Inferred from `Main.JAGS_HOME` or `ENV["JAGS_HOME"]` when available. Use `set_jags_home!` to modify.""" JAGS_HOME="" function __init__() global JAGS_HOME = if isdefined(Main, :JAGS_HOME) getproperty(Main, :JAGS_HOME) elseif haskey(ENV, "JAGS_HOME") ENV["JAGS_HOME"] else try # finding Jags in path jags_home = "" if Sys.iswindows() jags_home = splitdir(strip(read(`where jags`, String)))[1] elseif Sys.isunix() jags_home = splitdir(strip(read(`which jags`, String)))[1] end set_jags_home!(jags_home) catch @warn("Did not find JAGS in the PATH.") @warn("Environment variable JAGS_HOME not found. Use set_jags_home!.") end "" end end """Set the path for `Jags`. Example: `set_jags_home!(homedir() * "/src/src/cmdstan-2.11.0/")` """ set_jags_home!(path) = global JAGS_HOME=path #### Exports #### export # From this file set_jags_home!, # From Jags.jl JAGS_HOME, # From jagsmodel.jl Jagsmodel, # From jagscode.jl jags end # module
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
8416
function mis2str(x::Missing) return "NA" end function mis2str(x::Char) return x end function mis2str(x) return string(x) end function jags( model::Jagsmodel, data = Dict{String, Any}(), init = Dict{String, Any}(), ProjDir=pwd(); updatedatafile::Bool=true, updateinitfiles::Bool=true ) try if updatedatafile if length(keys(data)) > 0 print("\nCreating data file $(model.name)-data.R - ") @time update_R_file(joinpath(model.tmpdir, "$(model.name)-data.R"), data) end else println("\nData file not updated.") end if updateinitfiles if size(init, 1) > 0 update_init_files(model, init) end else println("\nInit files not updated.") end println() println("Executing $(model.ncommands) command(s), each with $(model.nchains) chain(s) took:") @time run(pipeline(par(model.command), stdout="$(model.name)-run.log")) sim = mchain(model) return(sim) catch e println(e) end end #### Update data and init files function update_init_files(model::Jagsmodel, init) println() k = length(init) m = max(model.nchains, model.ncommands) indx = filter(x -> x!=0, [%(i, (k+1)) for i in 1:2m]) for i in 1:m print("Creating init file $(model.name)-inits$(i).R - ") @time update_R_file(joinpath(model.tmpdir, "$(model.name)-inits$(i).R"), init[indx[i]]) end end function update_R_file(file::String, dct; replaceNaNs::Bool=true) isfile(file) && rm(file) strmout = open(file, "w") str = "" for entry in dct str = "\""*entry[1]*"\""*" <- " val = entry[2] if replaceNaNs if typeof(entry[2]) == Array{Float64, 1} if true in isnan.(entry[2]) val = convert(Array{Union{Float64,Missing}},entry[2]) for i in 1:length(val) if isnan(val[i]) val[i] = NA end end end end if typeof(entry[2]) == Array{Float64, 2} if true in isnan.(entry[2]) val = convert(Array{Union{Float64,Missing}},entry[2]) k,l = size(val) for i in 1:k for j in 1:l if isnan(val[i, j]) val[i, j] = missing end end end end end end if typeof(val) <: String str = str*"\"$(val)\"\n" elseif length(val)==1 && length(size(val))==0 # Scalar str = str * mis2str(val) * "\n" elseif length(val)>=1 && length(size(val))==1 # Vector str = str*"structure(c(" for i in 1:length(val) str = str*"$(mis2str(val[i]))" if i < length(val) str = str*", " end end str = str*"), .Dim=c($(length(val))))\n" elseif length(val)>1 && length(size(val))>1 # Array str = str*"structure(c(" for i in 1:length(val) str = str*"$(mis2str(val[i]))" if i < length(val) str = str*", " end end dimstr = "c"*string(size(val)) str = str*"), .Dim=$(dimstr))\n" end write(strmout, str) end close(strmout) end #### use readdlm to read in all chains and create a Dict function read_jagsfiles(model::Jagsmodel) index = readdlm(joinpath(model.tmpdir, "$(model.name)-cmd1-index.txt"), header=false) idxdct = Dict{String, Any}() for row in 1:size(index)[1] idxdct[index[row, 1]]=[Int(index[row, 2]), Int(index[row, 3])] end ## Collect the results of a chain in an array ## chainarray = Dict{String, Any}[] ## Each chain dictionary can contain up to 4 types of results ## result_type_files = ["samples"] rtdict = Dict{String, Any}() res_type = result_type_files[1] ## tdict contains the arrays of values ## tdict = Dict{String, Any}() println() for i in 1:model.ncommands tdict = Dict{String, Any}() for j in 1:model.nchains if isfile(joinpath(model.tmpdir, "$(model.name)-cmd$(i)-chain$(j).txt")) println("Reading $(model.name)-cmd$(i)-chain$(j).txt") res = readdlmcsv(joinpath(model.tmpdir, "$(model.name)-cmd$(i)-chain$(j).txt")) for key in index[:, 1] indx1 = idxdct[key][1] indx2 = idxdct[key][2] if length(keys(tdict)) == 0 tdict = Dict(key => res[indx1:indx2, 2]) else tdict = merge(tdict, Dict(key => res[indx1:indx2, 2])) end end ## End of processing result type file ## ## If any keys were found, merge it in the rtdict ## if length(keys(tdict)) > 0 #println("Merging $(convert(Symbol, res_type)) with keys $(keys(tdict))") rtdict[res_type]=tdict tdict = Dict{String, Any}() end end ## If rtdict has keys, push it to the chain array ## if length(keys(rtdict)) > 0 #println("Pushing the rtdict with keys $(keys(rtdict))") push!(chainarray, rtdict) rtdict = Dict{String, Any}() end end end (idxdct, chainarray) end #### Create a MCMCChains::Chains result function mchain(model::Jagsmodel) println() local totalnchains, curchain index = readdlm(joinpath(model.tmpdir, "$(model.name)-cmd1-index.txt"), header=false) # Correct model.adapt for jagsthin != 1 # if jagsthin != 1, adaptation samples are not included. if model.jagsthin != 1 model.adapt = 1 end cnames = String[] for i in 1:size(index)[1] append!(cnames, [index[i]]) end totalnchains = model.nchains * model.ncommands a3d = fill(0.0, Int(index[1, 3]), size(index, 1), totalnchains); for i in 1:model.ncommands for j in 1:model.nchains if isfile(joinpath(model.tmpdir, "$(model.name)-cmd$(i)-chain$(j).txt")) println("Reading $(model.name)-cmd$(i)-chain$(j).txt") res = readdlmcsv(joinpath(model.tmpdir, "$(model.name)-cmd$(i)-chain$(j).txt")) curchain = (i-1)*model.nchains + j #println(curchain) k = 0 for key in cnames k += 1 a3d[:, k, curchain] = res[index[k, 2]:index[k, 3], 2] end end end end println() MCMCChains.Chains(a3d,cnames) end #### Read DIC related results function read_pDfile(model::Jagsmodel) index = readdlm(joinpath(model.tmpdir, "$(model.name)-cmd1-index0.txt"), header=false); idxdct = Dict{String, Any}() for row in 1:size(index)[1] idxdct[index[row, 1]]=[Int(index[row, 2]), Int(index[row, 3])] end ## Collect the results of a chain in an array ## chainarray = Dict{String, Any}[] ## Each chain dictionary can contain up to 4 types of results ## result_type_files = ["samples"] rtdict = Dict{String, Any}() res_type = result_type_files[1] ## tdict contains the arrays of values ## tdict = Dict{String, Any}() for i in 0:0 tdict = Dict{String, Any}() if isfile(joinpath(model.tmpdir, "$(model.name)-cmd1-chain$(i).txt")) println("Reading $(model.name)-cmd1-chain$(i).txt") res = readdlmcsv(joinpath(model.tmpdir, "$(model.name)-cmd1-chain$(i).txt")) for key in index[:, 1] indx1 = idxdct[key][1] indx2 = idxdct[key][2] if length(keys(tdict)) == 0 tdict = Dict(key => res[indx1:indx2, 2]) else tdict = merge(tdict, Dict(key => res[indx1:indx2, 2])) end end ## End of processing result type file ## ## If any keys were found, merge it in the rtdict ## if length(keys(tdict)) > 0 #println("Merging $(convert(Symbol, res_type)) with keys $(keys(tdict))") rtdict = merge(rtdict, Dict(res_type => tdict)) tdict = Dict{String, Any}() end end ## If rtdict has keys, push it to the chain array ## if length(keys(rtdict)) > 0 #println("Pushing the rtdict with keys $(keys(rtdict))") push!(chainarray, rtdict) rtdict = Dict{String, Any}() end end (idxdct, chainarray) end function read_table_file(model::Jagsmodel, len::Int) pdpopt = Dict{String, Any}[] if model.dic && model.popt numrows = 2len else numrows = len end res = readdlmcsv(joinpath(model.tmpdir, "$(model.name)-cmd1-table0.txt")) if model.dic && model.popt pdpopt = Dict("pD.mean" => res[1:len, 2]) pdpopt = merge(pdpopt, Dict("popt" => res[len+1:2len, 2])) else if model.dic pdpopt = Dict("pD.mean" => res[1:len, 2]) else pdpopt = Dict("popt" => res[1:len, 2]) end end pdpopt end
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
7720
import Base: show mutable struct Jagsmodel name::String ncommands::Int nchains::Int adapt::Int nsamples::Int thin::Int jagsthin::Int monitor::Dict deviance::Bool dic::Bool popt::Bool model::String model_file::String data::Dict{String,Any} data_file::String init::Array{Dict{String,Any},1} command::Array{Base.AbstractCmd, 1} tmpdir::String end function Jagsmodel(; name::String="Noname", model::String="", model_file::String="", ncommands::Int=1, nchains::Int=4, adapt::Int=1000, nsamples::Int=10000, thin::Int=1, jagsthin::Int=1, monitor=Dict{String,Any}(), deviance::Bool=false, dic::Bool=false, popt::Bool=false, updatejagsfile::Bool=true, pdir::String=pwd()) tmpdir = joinpath(pdir, "tmp") @show tmpdir if !isdir(tmpdir) mkdir(tmpdir) end # Check if .bugs file needs to be updated. if length(model) > 0 update_bugs_file(joinpath(tmpdir, "$(name).bugs"), strip(model)) elseif length(model) == 0 && length(model_file) >0 && isfile(model_file) cp(model_file, joinpath(tmpdir, "$(name).bugs")) else println("No proper model defined.") end model_file = joinpath(pdir, "$(name).bugs") # Remove old files created by previous runs for i in 1:ncommands isfile(joinpath(tmpdir, "$(name)-cmd$(i)-index0.txt")) && rm(joinpath(tmpdir, "$(name)-cmd$(i)-index0.txt")); isfile(joinpath(tmpdir, "$(name)-cmd$(i)-table0.txt")) && rm(joinpath(tmpdir, "$(name)-cmd$(i)-table0.txt")); for j in 0:nchains isfile(joinpath(tmpdir, "$(name)-cmd$(i)-chain$(j).R")) && rm(joinpath(tmpdir, "$(name)-cmd$(i)-chain$(j).R")); end end # Create the command array which will be executed in parallel cmdarray = fill(``, ncommands) for i in 1:ncommands jfile = joinpath(tmpdir, "$(name)-cmd$(i).jags") cmdarray[i] = @static Sys.iswindows() ? `cmd /c jags $(jfile)` : `jags $(jfile)` end # DIC needs at least 2 chains if (dic || popt) && nchains < 2 nchains = 2 end data = Dict{String, Any}() init = Dict{String, Any}[] if length(monitor) == 0 println("No monitors defined!") end data_file = joinpath(tmpdir, "$(name)-data.R") jm = Jagsmodel(name, ncommands, nchains, adapt, nsamples, thin, jagsthin, monitor, deviance, dic, popt, model, model_file, data, data_file, init, cmdarray, tmpdir); if ncommands == 1 updatejagsfile && update_jags_file(jm) else for i in 1:ncommands updatejagsfile && update_jags_file(jm, i) end end jm end #### Function to update the bugs, init and data files function update_bugs_file(file::AbstractString, str::AbstractString) str2 = "" if isfile(file) str2 = read(file,String) str != str2 && rm(file) end if str != str2 println("\nFile $(file) will be updated.") strmout = open(file, "w") write(strmout, str) close(strmout) else println("\nFile $(file) not updated.") end end #### Function to update the jags file for ncommand == 1 function update_jags_file(model::Jagsmodel) jagsstr = "/*\n\tGenerated $(model.name).jags command file\n*/\n" if model.deviance || model.dic || model.popt jagsstr = jagsstr*"load dic\n" end modelfile = joinpath(model.tmpdir, basename(model.model_file)) jagsstr = jagsstr* "model in \"$(modelfile)\"\n" jagsstr = jagsstr*"data in \"$(joinpath(model.tmpdir, model.data_file))\"\n" jagsstr = jagsstr*"compile, nchains($(model.nchains))\n" for i in 1:model.nchains fname = "$(model.name)-inits$(i).R" jagsstr = jagsstr*"parameters in \"$(joinpath(model.tmpdir, fname))\", chain($(i))\n" end jagsstr = jagsstr*"initialize\n" jagsstr = jagsstr*"update $(model.adapt)\n" if model.deviance jagsstr = jagsstr*"monitor deviance, thin($(model.jagsthin))\n" end if model.dic jagsstr = jagsstr*"monitor pD\n" jagsstr = jagsstr*"monitor pD, type(mean)\n" end if model.popt jagsstr = jagsstr*"monitor popt, type(mean)\n" end for entry in model.monitor if entry[2] jagsstr = jagsstr*"monitor $(string(entry[1])), thin($(model.jagsthin))\n" end end jagsstr = jagsstr*"update $(model.nsamples)\n" jagsstr = jagsstr*"coda *, stem(\"$(joinpath(model.tmpdir, model.name))-cmd1-\")\n" jagsstr = jagsstr*"exit\n" check_jags_file(joinpath(model.tmpdir, "$(model.name)-cmd1.jags"), jagsstr) end #### Function to update the jags file for ncommand > 1 function update_jags_file(model::Jagsmodel, cmd::Int) m = max(model.nchains, model.ncommands) indx = filter(x -> x!=0, [%(i, (m+1)) for i in 1:3m]) indx = indx[cmd:length(indx)] jagsstr = "/*\n\tGenerated $(model.name).jags command file\n*/\n" if model.deviance || model.dic || model.popt jagsstr = jagsstr*"load dic\n" end jagsstr = jagsstr* "model in \"" * joinpath(model.tmpdir, basename(model.model_file)) * "\"\n" jagsstr = jagsstr*"data in \"$(joinpath(model.tmpdir, model.data_file))\"\n" jagsstr = jagsstr*"compile, nchains($(model.nchains))\n" for i in 1:model.nchains fname = joinpath(model.tmpdir, "$(model.name)-inits$(indx[i]).R") jagsstr = jagsstr*"parameters in \"$(fname)\", chain($(i))\n" end jagsstr = jagsstr*"initialize\n" jagsstr = jagsstr*"update $(model.adapt)\n" if model.deviance jagsstr = jagsstr*"monitor deviance\n" end if model.dic jagsstr = jagsstr*"monitor pD\n" jagsstr = jagsstr*"monitor pD, type(mean)\n" end if model.popt jagsstr = jagsstr*"monitor popt, type(mean)\n" end for entry in model.monitor if entry[2] jagsstr = jagsstr*"monitor $(string(entry[1])), thin($(model.jagsthin))\n" end end jagsstr = jagsstr*"update $(model.nsamples)\n" jagsstr = jagsstr*"coda *, stem(\"$(joinpath(model.tmpdir, model.name))-cmd$(cmd)-\")\n" jagsstr = jagsstr*"exit\n" check_jags_file(joinpath(model.tmpdir, "$(model.name)-cmd$(cmd).jags"), jagsstr) end function check_jags_file(file::String, str::String) str2 = "" if isfile(file) str2 = read(file,String) str != str2 && rm(file) end if str != str2 println("File $(file) will be updated.") strmout = open(file, "w") write(strmout, str) close(strmout) else println("File $(file) not updated.") end end function model_show(io::IO, m::Jagsmodel, compact::Bool=false) if compact==true println("Jagsmodel(", m.name, ", ", m.ncommands, ", ", m.nchains, ", ", m.adapt, ", ", m.nsamples, ", ", m.thin, ", ", m.jagsthin, ", ", m.monitor, ", ", m.deviance, ", ", m.dic, ", ", m.popt, ", ", m.model_file, ", ", m.data_file, ", ", m.tmpdir, ")") else println(" name = \"$(m.name)\"") println(" ncommands = $(m.ncommands)") println(" nchains = $(m.nchains)") println(" adapt = $(m.adapt)") println(" nsamples = $(m.nsamples)") println(" thin = $(m.thin)") println(" jagsthin = $(m.jagsthin)") println(" monitor = $(m.monitor)") println(" deviance = $(m.deviance)") println(" dic = $(m.dic)") println(" popt = $(m.popt)") #println(" model = $(model)") println(" model_file = $(m.model_file)") #println(" data = $(data)") println(" data_file = $(m.data_file)") #println(" init = $(init)") println(" tmpdir = $(m.tmpdir)") end end show(io::IO, m::Jagsmodel) = model_show(io, m, false) showcompact(io::IO, m::Jagsmodel) = model_show(io, m, true)
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
1370
function precompile_model() redirect_stdout(devnull) do ProjDir = tempdir() cd(ProjDir) do line = " model { for (i in 1:n) { mu[i] <- alpha + beta*(x[i] - x.bar); y[i] ~ dnorm(mu[i],tau); } x.bar <- mean(x[]); alpha ~ dnorm(0.0,1.0E-4); beta ~ dnorm(0.0,1.0E-4); tau ~ dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau); } " monitors = Dict("alpha" => true, "beta" => true, "tau" => true, "sigma" => true) jagsmodel = Jagsmodel( name = "line4", model = line, monitor = monitors, deviance = false, dic = true, popt = true, jagsthin = 10, thin = 1, pdir = ProjDir, ) println("\nJagsmodel that will be used:") jagsmodel |> display data = Dict("x" => [1, 2, 3, 4, 5], "y" => [1, 3, 3, 3, 5], "n" => 5) inits = [ Dict("alpha" => 0, "beta" => 0, "tau" => 1), Dict("alpha" => 1, "beta" => 2, "tau" => 1), Dict("alpha" => 3, "beta" => 3, "tau" => 2), Dict("alpha" => 5, "beta" => 2, "tau" => 5), ]; sim = jags(jagsmodel, data, inits, ProjDir) println(sim) end end end
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
1545
#= import Base: * if !isdefined(Main, :Stan) function *(c1::Cmd, c2::Cmd) res = deepcopy(c1) for i in 1:length(c2.exec) push!(res.exec, c2.exec[i]) end res end function *(c1::Cmd, sa::Array{String, 1}) res = deepcopy(c1) for i in 1:length(sa) push!(res.exec, sa[i]) end res end function *(c1::Cmd, s::String) res = deepcopy(c1) push!(res.exec, s) res end end =# """ # par Rewrite dct to R format in file. ### Method ```julia par(cmds) ``` ### Required arguments ```julia * `cmds::Array{Base.AbstractCmd,1}` : Multiple commands to concatenate or * `cmd::Base.AbstractCmd` : Single command to be * `n::Number` inserted n times into cmd or * `cmd::Array{String, 1}` : Array of cmds as Strings ``` """ function par(cmds::Array{Base.AbstractCmd,1}) if length(cmds) > 2 return(par([cmds[1:(length(cmds)-2)]; Base.AndCmds(cmds[length(cmds)-1], cmds[length(cmds)])])) elseif length(cmds) == 2 return(Base.AndCmds(cmds[1], cmds[2])) else return(cmds[1]) end end function par(cmd::Base.AbstractCmd, n::Number) res = deepcopy(cmd) if n > 1 for i in 2:n res = Base.AndCmds(res, cmd) end end res end function par(cmd::Array{String, 1}) res = `$(cmd[1])` for i in 2:length(cmd) res = `$res $(cmd[i])` end res end function readdlmcsv(fn) tmp = CSV.File(fn; header=0, delim=' ', ignorerepeated=true, types=Float64) return hcat(tmp.Column1, tmp.Column2) end
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
901
println("Running tests for Jags-j1.7-v3.1.0") using Compat, Jags using Test code_tests = ["test_cmd.jl"] println("Run execution_tests only if Jags is available") execution_tests = [ "test_line1.jl", #"test_line2.jl", "test_line3.jl", "test_line4.jl", "test_rats.jl", "test_bones1.jl", "test_bones2.jl", "test_dyes.jl" ] if isdefined(Main, :JAGS_HOME) && length(JAGS_HOME) > 0 for my_test in code_tests println("\n * $(my_test) *") include(my_test) end @testset "Jags.jl" begin for my_test in code_tests println("\n\n\n * $(my_test) *") include(my_test) end for my_test in execution_tests println("\n\n\n * $(my_test) *") include(my_test) end println("\n") end else println("\n\nJAGS_HOME not found.") println("Skipping all tests that depend on the Jags executable!\n") end
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
238
ProjDir = joinpath(dirname(@__FILE__), "..", "Examples", "Bones1") tmpdir = joinpath(ProjDir, "tmp") isdir(tmpdir) && rm(tmpdir, recursive=true); include(joinpath(ProjDir, "jbones1.jl")) isdir(tmpdir) && rm(tmpdir, recursive=true);
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
199
ProjDir = joinpath(dirname(@__FILE__), "..", "Examples", "Bones2") isfile(tmpdir) && rm(tmpdir); include(joinpath(ProjDir, "jbones2.jl")) isdir(tmpdir) && rm(tmpdir, recursive=true);
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
761
using Jags, StatsPlots, Random, Distributions ProjDir = @__DIR__ Random.seed!(3431) y = rand(Normal(0,1),50) Model = " model { for (i in 1:length(y)) { y[i] ~ dnorm(mu,sigma); } mu ~ dnorm(0, 1/sqrt(10)); sigma ~ dt(0,1,1) T(0, ); } " monitors = Dict( "mu" => true, "sigma" => true, ) jagsmodel = Jagsmodel( name="Gaussian", model=Model , monitor=monitors, ncommands=2, nchains=2, nsamples=2000, #deviance=true, dic=true, popt=true, pdir=ProjDir ) data = Dict{String, Any}( "y" => y, ) inits = [ Dict("mu" => 0.0,"sigma" => 1.0, ".RNG.name" => "base::Mersenne-Twister", ".RNG.seed" => 314159, ) ] sim = jags(jagsmodel, data, inits, ProjDir) show(sim) println() #plot(sim)
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
1234
using Jags, StatsPlots, Random, Distributions cd(@__DIR__) ProjDir = pwd() Random.seed!(3431) y = rand(Normal(0,1),50) Model = " model { for (i in 1:length(y)) { y[i] ~ dnorm(mu[i],sigma); } for(i in 1:length(y)){ mu[i] ~ dnorm(0, 1/sqrt(10)); } sigma ~ dt(0,1,1) T(0, ); } " monitors = Dict( "mu" => true, "sigma" => true, ) inits = [ Dict("mu"=>.0,"sigma"=>1.0) ] jagsmodel = Jagsmodel( name="Gaussian", model=Model , monitor=monitors, ncommands=1, nchains=4 , #deviance=true, dic=true, popt=true, pdir=ProjDir ) println("\nJagsmodel that will be used:") jagsmodel |> display data = Dict{String, Any}( "y" => y, ) inits = [ Dict("mu" => 0.0,"sigma" => 1.0, ".RNG.name" => "base::Mersenne-Twister") ] println("Input observed data dictionary:") data |> display println("\nInput initial values dictionary:") inits |> display println() ####################################################################################### # Estimate Parameters ####################################################################################### sim = jags(jagsmodel, data, inits, ProjDir) sim = sim[5001:end,:,:]
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
1724
ProjDir = dirname(@__FILE__) tmpdir = joinpath(ProjDir, "tmp") inits1 = [ Dict("alpha" => 0,"beta" => 0,"tau" => 1), Dict("alpha" => 1,"beta" => 2,"tau" => 1), Dict("alpha" => 3,"beta" => 3,"tau" => 2), Dict("alpha" => 5,"beta" => 2,"tau" => 5) ] function test(init::Array{Dict{String, Int64},1}) res = map((x)->convert(Dict{String, Any}, x), init) end function test(init::Array{Dict{String, Float64},1}) res = map((x)->convert(Dict{String, Any}, x), init) end function test(init::Array{Dict{String, Number},1}) res = map((x)->convert(Dict{String, Any}, x), init) end function test(init::Array{Dict{String, Any},1}) res = map((x)->convert(Dict{String, Any}, x), init) end line = " model { for (i in 1:n) { mu[i] <- alpha + beta*(x[i] - x.bar); y[i] ~ dnorm(mu[i],tau); } x.bar <- mean(x[]); alpha ~ dnorm(0.0,1.0E-4); beta ~ dnorm(0.0,1.0E-4); tau ~ dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau); } " data = Dict{String, Any}() data["x"] = [1, 2, 3, 4, 5] data["y"] = [1, 3, 3, 3, 5] data["n"] = 5 inits = test(inits1) monitors = Dict{String, Bool}( "alpha" => true, "beta" => true, "tau" => true, "sigma" => true, ) jagsmodel = Jagsmodel(name="line1", model=line, monitor=monitors, ncommands=1, nchains=4, adapt=1000, nsamples=10000, thin=1, deviance=true, dic=true, popt=true, pdir=ProjDir); println("\nJagsmodel that will be used:") jagsmodel |> display println("Input observed data dictionary:") data |> display println("\nInput initial values dictionary:") inits |> display isdir(tmpdir) && rm(tmpdir, recursive=true);
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
244
ProjDir = joinpath(dirname(@__FILE__), "..", "Examples", "Dyes") tmpdir = joinpath(ProjDir, "tmp") isdir(tmpdir) && rm(tmpdir, recursive=true); include(joinpath(ProjDir, "jdyes.jl")) isdir(tmpdir) && rm(tmpdir, recursive=true);
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
248
ProjDir = joinpath(dirname(@__FILE__), "..", "Examples", "Line1") tmpdir = joinpath(ProjDir, "tmp") isdir(tmpdir) && rm(tmpdir, recursive=true); include(joinpath(ProjDir, "jline1.jl")) isdir(tmpdir) && rm(tmpdir, recursive=true);
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
250
ProjDir = joinpath(dirname(@__FILE__), "..", "Examples", "Line2") tmpdir = joinpath(ProjDir, "tmp") isdir(tmpdir) && rm(tmpdir, recursive=true); include(joinpath(ProjDir, "jline2.jl")) isdir(tmpdir) && rm(tmpdir, recursive=true);
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
247
ProjDir = joinpath(dirname(@__FILE__), "..", "Examples", "Line3") tmpdir = joinpath(ProjDir, "tmp") isdir(tmpdir) && rm(tmpdir, recursive=true); include(joinpath(ProjDir, "jline3.jl")) isdir(tmpdir) && rm(tmpdir, recursive=true);
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
248
ProjDir = joinpath(dirname(@__FILE__), "..", "Examples", "Line4") tmpdir = joinpath(ProjDir, "tmp") isdir(tmpdir) && rm(tmpdir, recursive=true); include(joinpath(ProjDir, "jline4.jl")) isdir(tmpdir) && rm(tmpdir, recursive=true);
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
code
248
ProjDir = joinpath(dirname(@__FILE__), "..", "Examples", "Rats") tmpdir = joinpath(ProjDir, "tmp") isdir(tmpdir) && rm(tmpdir, recursive=true); include(joinpath(ProjDir, "jrats.jl")) isdir(tmpdir) && rm(tmpdir, recursive=true);
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
3.1.3
5f26d17cdefa50947df734e5b43fc6d5a1ebf524
docs
8741
# Jags ![][CI-build] [CI-build]: https://github.com/jagsjulia/Jags.jl/workflows/CI/badge.svg?branch=master ## Purpose A package to use Jags (as an external program) from Julia. Jags.jl has been moved to JagsJulia. For more info on Jags, please go to <http://mcmc-jags.sourceforge.net>. ## What's new ### Version 3.2.0 (unfinished) 1. Attempting to fix issue #23. Warning: I have seen many cases where the Jags binary simply hangs. This happens immediatiately after the line "Executing `n` command(s), each with `m` chain(s) took:". ### Version 3.1.0 1. Reactivate Github actions. ### Version 3.0.3 1. Please note that version 3.0.2 `allows` MCMCChains v 4.0 which can introduce breaking changes in handling of Chains. If this is a problem, please force usage of Jags@3.0.1. ### Version 3.0.0 1. MCMCChains for storage and diagnostics (thanks to Chris Fisher) 2. No longer depends on Mamba and Gadfly ### Version 2.0.1 (tagged Jan 2019) 1. Fixed issues with REQUIRE. ### Version 2.0.0 (tagged Jan 2019) 1. Thanks to Hellema Jags.jl has been updated for Julia 1. ### Version 1.0.5 (tagged Jan 2018) 1. Added an option to specify thinning by Jags. Jagsmodel() now accepts a jagsthin arguments. Default is jagsthin=1. Thanks to @hellemo. See examples Line3 and Line4. 2. Further updates by Hellemo (e.g. to improve readdlm performance). 3. Tested on Julia 0.6. Not yet on Julia 0.7-. ### Version 1.0.2 1. Requires Julia v"0.5.0-rc3". 2. Updated .travis.yml to jsut test on Julia 0.5 ### Version 1.0.0 1. Updated for Julia 0.5 ### Version 0.2.0 1. Added badges for Julia package listing 2. Exported JAGS_HOME in Jags.jl 3. Updated for to also run Julia 0.4 pre-releases ### Version 0.1.5 1. Updated .travis.yml 2. The runtests.jl script now prints package version ### Version 0.1.4 1. Allowed JAGS_HOME and JULIA_SVG_BROWSER to be set from either ~/.juliarc.jl or as an evironment variable. Updated README accordingly. ### Version 0.1.3 1. Removed upper bound on Julia in REQUIRE. ### Version 0.1.2 1. Fix for access to environment variables on Windows. ### Version 0.1.1 1. Stores Jags's input & output files in a subdirectory of the working directory. 2. Added Bones2 example. ### Version 0.1.0 The two most important features introduced in version 0.1.0 are: 1. Using Mamba to display and diagnose simulation results. The call to jags() to sample now returns a Mamba Chains object (previously it returned a dictionary). 2. Added the ability to specify RNGs in the initializations file for running simulations in parallel. ### Version 0.0.4 1. Added the ability to start multiple Jags scripts in parallel. ### Version 0.0.3 and earlier 1. Parsing structure for input arguments to Stan. 2. Single process execution of a Jags simulations. 3. Read created output files by Jags back into Julia. ## Requirements This version of the Jags.jl package assumes that: 1. Jags is installed and the jags binary is on $PATH. The variable JAGS_HOME is currently initialized either from ~/.juliarc.jl or from an environment variable JAGS_HOME. JAGS_HOME currently only used in runtests.jl to disable attempting to run tests that need the Jags executable on $PATH. To test and run the examples: **julia >** ``Pkg.test("Jags")`` ## A walk through example As in the Jags.jl setting, the Jags program consumes and produces files in a 'tmp' subdirectory of the current directory, it is useful to control the current working directory and restore the original directory at the end of the script. ``` using Jags ProjDir = dirname(@__FILE__) cd(ProjDir) ``` Variable `line` holds the model which will be writtten to a file named `$(model.name).bugs` in the 'tmp' subdirectory. The value of model.name is set later on, see the call to Jagsmodel() below. ``` line = " model { for (i in 1:n) { mu[i] <- alpha + beta*(x[i] - x.bar); y[i] ~ dnorm(mu[i],tau); } x.bar <- mean(x[]); alpha ~ dnorm(0.0,1.0E-4); beta ~ dnorm(0.0,1.0E-4); tau ~ dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau); } " ``` Next, define which variables should be monitored (if => true). ``` monitors = (String => Bool)[ "alpha" => true, "beta" => true, "tau" => true, "sigma" => true, ] ``` The next step is to create and initialize a Jagsmodel: ``` jagsmodel = Jagsmodel( name="line1", model=line, monitor=monitors, #ncommands=1, nchains=4, #deviance=true, dic=true, popt=true, pdir=ProjDir); println("\nJagsmodel that will be used:") jagsmodel |> display ``` Notice that by default a single command with 4 chains is created. It is possible to run each of the 4 chains in a separate process which has advantages. Using the Bones example as a testcase, on my machine running 1 command simulating a single chain takes 6 seconds, 4 (parallel) commands each simulating 1 chain takes about 9 seconds and a single command simulating 4 chains takes about 25 seconds. Of course this is dependent on the number of available cores and assumes the drawing of samples takes a reasonable chunk of time vs. running a command in a new shell. Running chains in separate commands does need additional data to be passed in through the initialization data and is demonstrated in Examples/Line2. Some more details are given below. If nchains is set to 1, this is updated in Jagsmodel() if dic and/or popt is requested. Jags needs minimally 2 chains to compute those. The input data for the line example is in below data dictionary: ``` data = Dict( "x" => [1, 2, 3, 4, 5], "y" => [1, 3, 3, 3, 5], "n" => 5 ) println("Input observed data dictionary:") data |> display ``` Next define an array of dictionaries with initial values for parameters. If the array of dictionaries has not enough elements, the elements will be recycled for chains/commands: ``` inits = [ Dict("alpha" => 0,"beta" => 0,"tau" => 1), Dict("alpha" => 1,"beta" => 2,"tau" => 1), Dict("alpha" => 3,"beta" => 3,"tau" => 2), Dict("alpha" => 5,"beta" => 2,"tau" => 5) ] #### Note: Multiple init sets is the best option to get independent chains. println("\nInput initial values dictionary:") inits |> display println() ``` Run the mcmc simulation, passing in the model, the data, the initial values and the working directory. If 'inits' is a single dictionary, it needs to be passed in as '[inits]', see the Bones example. ``` sim = jags(jagsmodel, data, inits, ProjDir) describe(sim) println() ``` ## Running a Jags script, some details Jags.jl really only consists of 2 functions, Jagsmodel() and jags(). Jagsmodel() is used to define and set up the basic structure to run a simulation. The full signature of Jagsmodel() is: ``` function Jagsmodel(; name="Noname", model="", ncommands=1, nchains=4, adapt=1000, nsamples=10000, thin=10, jagsthin=1, monitor=Dict(), deviance=false, dic=false, popt=false, updatejagsfile=true, pdir=pwd()) ``` All arguments are keyword arguments and have default values, although usually at least the name and model arguments will be provided. After a Jagsmodel has been created, the workhorse function jags() is called to run the simulation, passing in the Jagsmodel, the data and the initialization for the chains. As Jags needs quite a few input files and produces several output files, these are all stored in a subdirectory of the working directory, typically called 'tmp'. The full signature of jags() is: ``` function jags( model::Jagsmodel, data::Dict{String, Any}=Dict{String, Any}(), init::Array{Dict{String, Any}, 1} = Dict{String, Any}[], ProjDir=pwd(); updatedatafile::Bool=true, updateinitfiles::Bool=true ) ``` All parameters to compile and run the Jags script are implicitly passed in through the model argument. The Line2 example shows how to run multiple Jags simulations in parallel. The most simple case, e.g. 4 commands, each with a single chain, can be initialized with an 'inits' like shown below: ``` inits = [ Dict("alpha" => 0,"beta" => 0,"tau" => 1,".RNG.name" => "base::Wichmann-Hill"), Dict("alpha" => 1,"beta" => 2,"tau" => 1,".RNG.name" => "base::Marsaglia-Multicarry"), Dict("alpha" => 3,"beta" => 3,"tau" => 2,".RNG.name" => "base::Super-Duper"), Dict("alpha" => 5,"beta" => 2,"tau" => 5,".RNG.name" => "base::Mersenne-Twister") ] ``` The first entry in the 'inits' array will be passed into the first chain in the first command process, the second entry to the second process, etc. A second chain in the first command would be initialized with the second entry, etc. ## To do More features will be added as requested by users and as time permits. Please file an issue/comment/request. **Note 1:** In order to support platforms other than OS X, help is needed to test on such platforms.
Jags
https://github.com/JagsJulia/Jags.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2997
# # ====================================================================== # Import some chemistry and materials science data tables from # ASE. Without this data, JuLIP can do very little! # ====================================================================== # using PyCall, JSON @pyimport ase.data as ase_data asedata = Dict( :symbols => ase_data.chemical_symbols, :masses => ase_data.atomic_masses, :refstates => ase_data.reference_states ) write(@__DIR__() * "/asedata.json", JSON.json(asedata, 0)) # ====================================================================== # NOTE: # some other data that we could consider adding # asedata.atomic_numbers # ase_data.atomic_names # ase_data.covalent_radii # ase_data.ground_state_magnetic_moments # ase_data.vdw_radii # can we get some more stuff like electron affinity somewhere? # function rnn_old(species::Symbol) # X = positions(bulk(species) * 2) # return minimum( norm(X[n]-X[m]) for n = 1:length(X) for m = n+1:length(X) ) # end # # _rnn = fill(-1.0, length(_symbols)) # for n = 2:length(_symbols) # z = n-1 # try # _rnn[n] = rnn_old(JuLIP.Chemistry.chemical_symbol(z)) # catch # end # end # ====================================================================== # get access to the atomic numbers ase_emt = pyimport("ase.calculators.emt") ase_data = pyimport("ase.data") function emt_default_parameters() # import everything we need from ASE Bohr = ase_emt.Bohr # get_atomic_numbers(id::AbstractString) = ase_data.atomic_numbers[id] ase_parameters = ase_emt.parameters beta = ase_emt.beta # convert ASE style Dict to a new Dict where parameters # are stored in a type instead of tuple. params = Dict{String, Dict{String,Float64}}() maxseq = maximum([par[2] for par in values(ase_parameters)]) * Bohr # ✓ rc = beta * maxseq * 0.5 * (sqrt(3) + sqrt(4)) # ✓ rr = rc * 2 * sqrt(4) / (sqrt(3) + sqrt(4)) # ✓ acut = log(9999.0) / (rr - rc) # ✓ for (key, p) in ase_parameters # p is a tuple of parameters, key a species s0 = p[2] * Bohr eta2 = p[4] / Bohr kappa = p[5] / Bohr x = eta2 * beta * s0 gamma1 = 0.0 gamma2 = 0.0 for (i, n) in enumerate([12; 6; 24]) r = s0 * beta * sqrt(i) x = n / (12.0 * (1.0 + exp(acut * (r - rc)))) gamma1 += x * exp(-eta2 * (r - beta * s0)) gamma2 += x * exp(-kappa / beta * (r - beta * s0)) end params[key] = Dict{String, Float64}( "E0" => p[1], "s0" => s0, "V0" => p[3], "η2" => eta2, "κ" => kappa, "λ" => p[6] / Bohr, "n0" => p[7] / Bohr^3, "γ1" => gamma1, "γ2" => gamma2 ) par = params[key] par["Cpair"] = -0.5 * par["V0"] / par["γ2"] / par["n0"] end return Dict("params" => params, "acut" => acut, "rc" => rc, "beta" => beta) end emt_data = emt_default_parameters() write(@__DIR__() * "/emt.json", JSON.json(emt_data, 0))
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
485
using Documenter, JuLIP makedocs( modules = [JuLIP], clean = false, format = Documenter.Formats.HTML, sitename = "JuLIP.jl", pages = [ "Home" => "index.md", "Implementation Notes" => "ImplementationNotes.md", "Temporary Notes" => "tempnotes.md" ] ) # deploydocs( # julia = "nightly", # repo = "github.com/JuliaDocs/Documenter.jl.git", # target = "build", # deps = nothing, # make = nothing, # )
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3472
using JuLIP, BenchmarkTools, ReverseDiff using JuLIP.Potentials: evaluate_d! const r0 = rnn(:Cu) const rcut = 2.5 * r0 # --------------- EAM Potential based on ForwardDiff ------------------- eam1 = let r0 = r0, rcut = rcut ρ(r) = exp(-3*(r/r0-1.0)) - exp(-3*(rcut/r0-1.0) ) + 3 * exp( - 3 * (rcut/r0 - 1.0) ) * (r/r0 - rcut/r0) Rs -> sqrt(sum(ρ ∘ norm, R)) end V_fd = ADPotential(eam1, rcut) # --------------- EAM Potential based on ReverseDiff ------------------- # Still need to figure out how to incorporate ReverseDiff into # JuLIP, so there are no convenience wrappers for this eam_mat = let r0 = r0, rcut = rcut ρ(r) = exp(-3*(r/r0-1.0)) - exp(-3*(rcut/r0-1.0) ) + 3 * exp( - 3 * (rcut/r0 - 1.0) ) * (r/r0 - rcut/r0) Rs -> sqrt(sum(ρ(norm(@view Rs[:, n])) for n = 1:size(Rs, 2))) end eam_rd = Rs -> eam_mat(mat(Rs)) eam_rd_d = Rs -> ReverseDiff.gradient( s -> eam_mat(reshape(s, (3, length(s) ÷ 3))), mat(Rs)[:]) |> vecs # --------------- EAM Potential based on JuLIP Machinery ------------------- # hand-coded EAM, only ρ, ϕ, √ are differentiated symbolically # (i.e. source code transformation, and NOT ForwardDiff / ReverseDiff) V_j = EAM( ZeroPairPotential(), (@analytic r -> exp(-3*(r/r0-1.0))) * C1Shift(rcut), (@analytic t -> sqrt(t)) ) R = [] F = [] println("Timing of Site-Potential Calls") for N in [10, 20, 40, 80] println("$N neighbours") R = r0 + rand(JVecF, N) F = similar(R) r = norm.(R) @assert V_fd(R) ≈ V_j(r, R) print(" ForwardDiff: V: ") @btime V_fd($R) print(" ReverseDiff: V: ") @btime eam_rd($R) print(" JuLIP: V: ") @btime V_j($R) print(" ForwardDiff: ∇V: ") @btime (@D V_fd($R)) print(" ReverseDiff: ∇V: ") @btime eam_rd_d($R) print(" JuLIP: ∇V: ") @btime evaluate_d!($F, $V_j, $r, $R) end # Timing of Site-Potential Calls # 10 neighbours # ForwardDiff: V: 1.262 μs (44 allocations: 1.16 KiB) # ReverseDiff: V: 1.123 μs (45 allocations: 1.11 KiB) # JuLIP: V: 197.062 ns (2 allocations: 176 bytes) # ForwardDiff: ∇V: 15.068 μs (147 allocations: 7.89 KiB) # ReverseDiff: ∇V: 346.711 μs (1593 allocations: 49.69 KiB) # JuLIP: ∇V: 324.797 ns (4 allocations: 112 bytes) # 20 neighbours # ForwardDiff: V: 2.126 μs (84 allocations: 2.17 KiB) # ReverseDiff: V: 2.052 μs (85 allocations: 2.05 KiB) # JuLIP: V: 319.104 ns (2 allocations: 256 bytes) # ForwardDiff: ∇V: 25.205 μs (522 allocations: 19.86 KiB) # ReverseDiff: ∇V: 727.735 μs (3164 allocations: 98.28 KiB) # JuLIP: ∇V: 574.875 ns (4 allocations: 112 bytes) # 40 neighbours # ForwardDiff: V: 3.914 μs (164 allocations: 4.25 KiB) # ReverseDiff: V: 3.900 μs (165 allocations: 3.92 KiB) # JuLIP: V: 584.110 ns (2 allocations: 464 bytes) # ForwardDiff: ∇V: 61.363 μs (1992 allocations: 60.78 KiB) # ReverseDiff: ∇V: 1.429 ms (6305 allocations: 195.53 KiB) # JuLIP: ∇V: 1.062 μs (4 allocations: 112 bytes) # 80 neighbours # ForwardDiff: V: 7.824 μs (324 allocations: 8.28 KiB) # ReverseDiff: V: 7.654 μs (325 allocations: 7.67 KiB) # JuLIP: V: 1.093 μs (2 allocations: 752 bytes) # ForwardDiff: ∇V: 192.137 μs (7813 allocations: 209.86 KiB) # ReverseDiff: ∇V: 2.900 ms (12586 allocations: 389.66 KiB) # JuLIP: ∇V: 2.049 μs (4 allocations: 112 bytes)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2947
# testing performance of AD # conclusion is that it scales linearly with dimension; # however it is a factor 100 slower than the objective. using BenchmarkTools using ReverseDiff: GradientTape, GradientConfig, gradient, gradient!, compile import ForwardDiff ϕ(r) = exp( - 6 * (abs(r)-1)) - 2 * exp( - 3 * (abs(r)-1)) dϕ(r) = ForwardDiff.derivative(ϕ, r) ρ(r) = exp( - 4 * (abs(r)-1) ) dρ(r) = ForwardDiff.derivative(ρ, r) ψ(t) = sqrt(t) dψ(t) = ForwardDiff.derivative(ψ, t) function get_rho(x) N = length(x) rho = zeros(eltype(x), N) for n = 2:N t = ρ(x[n]-x[n-1]) rho[n-1] += t rho[n] += 1 end for n = 3:N t = ρ(x[n] - x[n-2]) rho[n] += t rho[n-2] += t end return rho end function F(x) N = length(x) E = 0.0 for j = 1:2, n = (1+j):N E += ϕ(x[n]-x[n-j]) end return E + sum(ψ, get_rho(x)) end function dF(x) N = length(x) dE = zeros(N) F = ψ.(get_rho(x)) for j = 1:2, n = (1+j):N dϕ_ = dϕ(x[n]-x[n-j]) dρ_ = dρ(x[n]-x[n-j]) a = dϕ_ + (F[n] - F[n-j]) * dρ_ dE[n] += a dE[n-j] -= a end return dE end x = gresult = compiled_f_tape = nothing for N in (100, 400, 1600) # pre-record a GradientTape for `F` using inputs with Float64 elements f_tape = GradientTape(F, rand(N)) # compile `f_tape` into a more optimized representation compiled_f_tape = compile(f_tape) # some inputs and work buffers to play around with gresult = zeros(N) x = collect(1:N) + rand(N) println("N = $N") print(" Time for F: ") @btime F($x) print(" Time for DF (ForwardDiff): ") @btime ForwardDiff.gradient($F, $x) print(" Time for DF (ReverseDiff): ") @btime gradient!($gresult, $compiled_f_tape, $x) print(" Time for DF(manual): ") @btime dF($x) end # RESULTS 03/04/2018, MacBook Pro, Julia v0.6.2, # - ForwardDiff 0.7.4 # - ReverseDiff 0.2.0 # # N = 8000 # Time for F: # 564.137 μs (2 allocations: 62.58 KiB) # Time for DF (ForwardDiff): # N = 100 # Time for F: 6.191 μs (1 allocation: 896 bytes) # Time for DF (ForwardDiff): 409.391 μs (6043 allocations: 659.25 KiB) # Time for DF (ReverseDiff): 451.058 μs (0 allocations: 0 bytes) # Time for DF(manual): 17.426 μs (3 allocations: 2.63 KiB) # N = 400 # Time for F: 26.206 μs (1 allocation: 3.25 KiB) # Time for DF (ForwardDiff): 6.538 ms (96204 allocations: 10.17 MiB) # Time for DF (ReverseDiff): 1.999 ms (0 allocations: 0 bytes) # Time for DF(manual): 63.400 μs (3 allocations: 9.75 KiB) # N = 1600 # Time for F: 109.590 μs (1 allocation: 12.63 KiB) # Time for DF (ForwardDiff): 155.275 ms (1536804 allocations: 162.25 MiB) # Time for DF (ReverseDiff): 15.896 ms (0 allocations: 0 bytes) # Time for DF(manual): 260.063 μs (3 allocations: 37.88 KiB)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1838
module MultiLJ using JuLIP using JuLIP.Potentials: pairs using LinearAlgebra: I import JuLIP: energy, forces, cutoff export MLJ struct MLJ{T} <: AbstractCalculator Z2idx::Vector{Int} V::Matrix{T} rcut::Float64 end @pot MLJ cutoff(V::MLJ) = V.rcut function MLJ(Z, ϵ, σ; rcutfact = 2.5) @assert length(Z) == length(unique(Z)) # create a mapping from atomic numbers to indices Z2idx = zeros(Int, maximum(Z)) Z2idx[Z] = 1:length(Z) # generate the potential rcut = maximum(σ) * rcutfact V = [ LennardJones(σ[a,b], ϵ[a, b]) * C2Shift(σ[a,b] * rcutfact) for a = 1:length(Z), b = 1:length(Z) ] return MLJ(Z2idx, V, rcut) end function energy(V::MLJ, at::Atoms) E = 0.0 for (i, j, r, R) in pairs(at, cutoff(V)) a = V.Z2idx[at.Z[i]] b = V.Z2idx[at.Z[j]] E += 0.5 * V.V[a, b](r) end return E end function forces(V::MLJ, at::Atoms) F = zeros(JVecF, length(at)) for (i, j, r, R) in pairs(at, cutoff(V)) a = V.Z2idx[at.Z[i]] b = V.Z2idx[at.Z[j]] f = 0.5 * grad(V.V[a,b], r, R) F[i] += f F[j] -= f end return F end end # -------------- # test code # -------------- using JuLIP, MultiLJ, StaticArrays # parameters from PHYS REV B, VOLUME 64, 184201 # Crystals of binary Lennard-Jones solids # T F Middleton, J Hernandez-Rojas, P N Mortenson, D J Wales ϵ = [1.0 1.5; 1.5 0.5] σ = [1.0 0.8; 0.8 0.88] z = [1, 2] V = MultiLJ.MLJ(z, ϵ, σ) # n = 2 x, o = 0:n, ones(n) X = [ kron(x, o, o)[:]'; kron(o, x, o)'; kron(o, o, x)' ] X = vecs( X + 0.05 * rand(size(X)) ) Nat = length(X) at = Atoms(X, zeros(X), ones(Nat), rand(z, Nat), 5 * Matrix(1.0I, 3,3), false; calc = V) # check that energy and forces evaluate ok energy(V, at) forces(V, at) # finite-difference test JuLIP.Testing.fdtest(V, at)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
7619
# TODO: switch all cell(at)' to cell(at) and store cells """ `module Constraints` TODO: write documentation """ module Constraints using JuLIP: Dofs, AbstractConstraint, AbstractAtoms, AbstractCalculator, mat, vecs, JMat, JVec, set_positions!, set_cell!, virial, cell, forces, momenta, set_momenta!, constraint, rnn, calculator, hessian_pos import JuLIP: position_dofs, project!, set_position_dofs!, positions, momentum_dofs, set_momentum_dofs!, dofs, set_dofs!, positions, energy, gradient, hessian export FixedCell, VariableCell, InPlaneFixedCell, AntiPlaneFixedCell, atomdofs using SparseArrays: SparseMatrixCSC, nnz, sparse, findnz using LinearAlgebra: rmul!, det # ======================================================================== # FIXED CELL IMPLEMENTATION # ======================================================================== """ `FixedCell`: no constraints are placed on the motion of atoms, but the cell shape is fixed Constructor: ```julia FixedCell(at::AbstractAtoms; free=..., clamp=..., mask=...) ``` Set at most one of the kwargs: * no kwarg: all atoms are free * `free` : list of free atom indices (not dof indices) * `clamp` : list of clamped atom indices (not dof indices) * `mask` : 3 x N Bool array to specify individual coordinates to be clamped """ struct FixedCell <: AbstractConstraint ifree::Vector{Int} end FixedCell(at::AbstractAtoms; clamp = nothing, free=nothing, mask=nothing) = FixedCell(analyze_mask(at, free, clamp, mask)) position_dofs(at::AbstractAtoms, cons::FixedCell) = mat(positions(at))[cons.ifree] set_position_dofs!(at::AbstractAtoms, cons::FixedCell, x::Dofs) = set_positions!(at, positions(at, cons.ifree, x)) momentum_dofs(at::AbstractAtoms, cons::FixedCell) = mat(momenta(at))[cons.ifree] set_momentum_dofs!(at::AbstractAtoms, cons::FixedCell, p::Dofs) = set_momenta!(at, zeros_free(3 * length(at), p, cons.ifree) |> vecs) project!(at::AbstractAtoms, cons::FixedCell) = at gradient(calc::AbstractCalculator, at::AbstractAtoms, cons::FixedCell) = rmul!(mat(forces(at))[cons.ifree], -1.0) energy(calc::AbstractCalculator, at::AbstractAtoms, cons::FixedCell) = energy(calc, at) hessian(calc::AbstractCalculator, at::AbstractAtoms, cons::FixedCell) = project(cons, _pos_to_dof(hessian_pos(calculator(at), at), at)) # TODO: this is a temporary hack, and I think we need to # figure out how to do this for more general constraints # maybe not too terrible project(cons::FixedCell, A::SparseMatrixCSC) = A[cons.ifree, cons.ifree] # =========================== # 2D FixedCell Constraints # =========================== """ preliminary implementation of a Constraint, restricting a simulation to 2D in-plane motion """ function InPlaneFixedCell(at::AbstractAtoms; clamp = Int[], free = nothing) if free == nothing free = setdiff(1:length(at), clamp) end mask = fill(false, (3, length(at))) mask[:, free] = true mask[3, :] = false return FixedCell(at, mask = mask) end """ preliminary implementation of a Constraint, restricting a simulation to 2D out-of-plane motion """ function AntiPlaneFixedCell(at::AbstractAtoms; free = Int[]) mask = fill(false, (3, length(at))) mask[:, free] = true mask[1:2, :] = false return FixedCell(at, mask = mask) end # ======================================================================== # VARIABLE CELL IMPLEMENTATION # ======================================================================== """ `VariableCell`: both atom positions and cell shape are free; **WARNING:** (1) before manipulating the dof-vectors returned by a `VariableCell` constraint, read *meaning of dofs* instructions at bottom of help text! (2) The `volume` field is a signed volume. Constructor: ```julia VariableCell(at::AbstractAtoms; free=..., clamp=..., mask=..., fixvolume=false) ``` Set at most one of the kwargs: * no kwarg: all atoms are free * `free` : list of free atom indices (not dof indices) * `clamp` : list of clamped atom indices (not dof indices) * `mask` : 3 x N Bool array to specify individual coordinates to be clamped ### Meaning of dofs On call to the constructor, `VariableCell` stored positions and deformation `X0, F0`, dofs are understood *relative* to this initial configuration. `dofs(at, cons::VariableCell)` returns a vector that represents a pair `(Y, F1)` of a displacement and a deformation matrix. These are to be understood *relative* to the reference `X0, F0` stored in `cons` as follows: * `F = F1` (the cell is then `F'`) * `X = [F1 * (F0 \\ y) for y in Y)]` One aspect of this definition is that clamped atom positions still change via `F` """ struct VariableCell{T} <: AbstractConstraint ifree::Vector{Int} X0::Vector{JVec{T}} F0::JMat{T} pressure::T fixvolume::Bool volume::T # this is meaningless if `fixvolume == false` end function VariableCell(at::AbstractAtoms; free=nothing, clamp=nothing, mask=nothing, pressure = 0.0, fixvolume=false) if pressure != 0.0 && fixvolume @warn("the pressure parameter will be ignored when `fixvolume==true`") end return VariableCell( analyze_mask(at, free, clamp, mask), positions(at), cell(at)', pressure, fixvolume, det(cell(at)) ) end # reverse map: # F -> F # X[n] = F * F^{-1} X0[n] function position_dofs(at::AbstractAtoms, cons::VariableCell) X = positions(at) F = cell(at)' A = cons.F0 * inv(F) U = [A * x for x in X] # switch to broadcast! return [mat(U)[cons.ifree]; Matrix(F)[:]] end posdofs(x) = x[1:end-9] celldofs(x) = x[end-8:end] function set_position_dofs!(at::AbstractAtoms{T}, cons::VariableCell, x::Dofs ) where {T} F = JMat{T}(celldofs(x)) A = F * inv(cons.F0) Y = copy(cons.X0) mat(Y)[cons.ifree] = posdofs(x) for n = 1:length(Y) Y[n] = A * Y[n] end set_positions!(at, Y) set_cell!(at, F') return at end # for a variation x^t_i = (F+tU) F_0^{-1} (u_i + t v_i) # ~ U F^{-1} F F0^{-1} u_i + F F0^{-1} v_i # we get # dE/dt |_{t=0} = U : (S F^{-T}) - < (F * inv(F0))' * frc, v> # # this is nice because there is no contribution from the stress to # the positions component of the gradient """ `sigvol` : signed volume """ sigvol(C::AbstractMatrix) = det(C) sigvol(at::AbstractAtoms) = sigvol(cell(at)) """ `sigvol_d` : derivative of signed volume """ sigvol_d(C::AbstractMatrix) = sigvol(C) * inv(C)' sigvol_d(at::AbstractAtoms) = sigvol_d(cell(at)) # sigvol_d(at::AbstractAtoms) = sigvol(at) * inv(cell(at)) function gradient(calc::AbstractCalculator, at::AbstractAtoms, cons::VariableCell) F = cell(at)' A = F * inv(cons.F0) G = forces(at) for n = 1:length(G) G[n] = - A' * G[n] end S = - virial(at) * inv(F)' # ∂E / ∂F S += cons.pressure * sigvol_d(at)' # applied stress return [ mat(G)[cons.ifree]; Array(S)[:] ] end energy(calc::AbstractCalculator, at::AbstractAtoms, cons::VariableCell) = energy(calc, at) + cons.pressure * sigvol(at) # TODO: fix this once we implement the volume constraint ?????? # => or just disallow the volume constraint for now? project!(at::AbstractAtoms, cons::VariableCell) = at # TODO: CONTINUE WITH EXPCELL IMPLEMENTATION # include("expcell.jl") # convenience function to return DoFs associated with a particular atom atomdofs(a::AbstractAtoms, I::Integer) = findall(in(3*I-2:3*I), constraint(a).ifree) end # module
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2138
""" `module Experimental` TODO: write documentation """ module Experimental using JuLIP: AbstractAtoms, dofs, set_dofs!, atomdofs using JuLIP.Potentials using ForwardDiff export newton!, constrained_bond_newton! function newton(x, g, h; maxsteps=10, tol=1e-5) for i in 1:maxsteps gi = g(x) norm(gi, Inf) < tol && break x = x - h(x) \ gi @show i, norm(gi, Inf) end return x end function newton!(a::AbstractAtoms; maxsteps=20, tol=1e-10) x = newton(dofs(a), x -> gradient(a, x), x -> hessian(a, x)) set_dofs!(a, x) return x end function constrained_bond_newton!(a::AbstractAtoms, i::Integer, j::Integer, bondlength::AbstractFloat; maxsteps=20, tol=1e-10) I1 = atomdofs(a, i) I2 = atomdofs(a, j) I1I2 = [I1; I2] # bondlength of target bond blen(x) = norm(x[I2] - x[I1]) # constraint function c(x) = blen(x) - bondlength # gradient of constraint function dc(x) r = zeros(length(x)) r[I1] = (x[I1]-x[I2])/blen(x) r[I2] = (x[I2]-x[I1])/blen(x) return r end # define some auxiliary index arrays that start at 1 to # allow the ForwardDiff hessian to be done only on relevent dofs, x[I1I2] _I1 = 1:length(I1) _I2 = length(I1)+1:length(I1)+length(I2) _blen(x) = norm(x[_I2] - x[_I1]) _c(x) = _blen(x) - bondlength function ddc(x) s = spzeros(length(x), length(x)) s[I1I2, I1I2] = ForwardDiff.hessian(_c, x[I1I2]) return s end # Define Lagrangian L(x, λ) = E - λC and its gradient and hessian L(x, λ) = energy(a, x) - λ*c(x) L(z) = L(z[1:end-1], z[end]) dL(x, λ) = [gradient(a, x) - λ * dc(x); -c(x)] dL(z) = dL(z[1:end-1], z[end]) ddL(x, λ) = [(hessian(a, x) - λ * ddc(x)) -dc(x); -dc(x)' 0.] ddL(z) = ddL(z[1:end-1], z[end]) # Use Newton scheme to find saddles L where ∇L = 0 z = [dofs(a); -10.0*c(dofs(a))] z = newton(z, dL, ddL, maxsteps=maxsteps, tol=tol) set_dofs!(a, z[1:end-1]) return z end end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2391
""" `JuLIP.FIO` : provides some basis file IO. All sub-modules and derived packages should use these interface functions so that the file formats can be changed later. This submodule provides - load_dict - save_dict - decode_dict """ module FIO using JSON export load_dict, save_dict, decode_dict, save_json, load_json ####################################################################### # Conversions to and from Dict ####################################################################### # eventually we want to be able to serialise all JuLIP types to Dict # and back and those Dicts may only contain elementary data types # this will then allow us to load them back via decode_dict without # having to know the type in the code """ `decode_dict(D::Dict) -> ?` Looks for a key `__id__` in `D` whose value is used to dynamically dispatch the decoding to ```julia convert(Val(Symbol(D["__id__"]))) ``` That is, a user defined type must implement this `convert(::Val, ::Dict)` utility function. The typical code would be ```julia module MyModule struct MyStructA a::Float64 end Dict(A::MyStructA) = Dict( "__id__" -> "MyModule_MyStructA", "a" -> a ) MyStructA(D::Dict) = A(D["a"]) Base.convert(::Val{:MyModule_MyStructA}) end ``` The user is responsible for choosing an id that is sufficiently unique. The purpose of this function is to enable the loading of more complex JSON files and automatically converting the parsed Dict into the appropriate composite types. It is intentional that a significant burden is put on the user code here. This will maximise flexibiliy, e.g., by introducing version numbers, and being able to read old version in the future. """ function decode_dict(D::Dict) if !haskey(D, "__id__") @error("JuLIP.IO.decode_dict: `D` has no key `__id__`") end return convert(Val(Symbol(D["__id__"])), D) end ####################################################################### # JSON ####################################################################### function load_dict(fname::AbstractString) return JSON.parsefile(fname) end function save_dict(fname::AbstractString, D::Dict; indent=2) f = open(fname, "w") JSON.print(f, D, indent) close(f) return nothing end save_json = save_dict load_json = load_dict end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1252
# JuLIP.jl master file. module JuLIP using Reexport @reexport using NeighbourLists # quickly switch between Matrices and Vectors of SVectors, etc include("arrayconversions.jl") # File IO include("FIO.jl") @reexport using JuLIP.FIO # define types and abstractions of generic functions include("abstractions.jl") include("chemistry.jl") @reexport using JuLIP.Chemistry # the main atoms type include("atoms.jl") include("dofmanagement.jl") # how to build some simple domains include("build.jl") @reexport using JuLIP.Build # a few auxiliary routines include("utils.jl") @reexport using JuLIP.Utils # interatomic potentials prototypes and some example implementations include("Potentials.jl") @reexport using JuLIP.Potentials # basic preconditioning capabilities include("preconditioners.jl") @reexport using JuLIP.Preconditioners # some solvers include("Solve.jl") @reexport using JuLIP.Solve # experimental features include("Experimental.jl") @reexport using JuLIP.Experimental # the following are some sub-modules that are primarily used # to create further abstractions to be shared across several # modules in the JuLIP-verse. include("mlips.jl") include("nbody.jl") # codes to facilitate testing include("Testing.jl") end # module
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
6928
""" ## module Potentials ### Summary This module implements some basic interatomic potentials in pure Julia, as well as provides building blocks and prototypes for further implementations The implementation is done in such a way that they can be used either in "raw" form or withinabstractframeworks. ### Types ### `evaluate`, `evaluate_d`, `evaluate_dd`, `grad` ### The `@D`, `@DD`, `@GRAD` macros TODO: write documentation """ module Potentials using JuLIP: AbstractAtoms, AbstractCalculator, JVec, mat, vec, JMat, SVec, vecs, SMat, positions, set_positions! using StaticArrays: @SMatrix using NeighbourLists using LinearAlgebra: norm using SparseArrays: sparse import JuLIP: energy, forces, cutoff, virial, hessian_pos, hessian, site_energies, r_sum, site_energy, site_energy_d, energy!, forces!, virial!, alloc_temp, alloc_temp_d, alloc_temp_dd export PairPotential, SitePotential, ZeroSitePotential # the following are prototypes for internal functions around which IPs are # defined function evaluate end function evaluate_d end function evaluate_dd end function evaluate! end function evaluate_d! end function evaluate_dd! end function grad end function precond end include("potentials_base.jl") # * @pot, @D, @DD, @GRAD and related things """ `SitePotential`:abstractsupertype for generic site potentials """ abstract type SitePotential <: AbstractCalculator end """ `PairPotential`:abstractsupertype for pair potentials Can also be used as a constructor for analytic pair potentials, e.g., ```julia lj = @analytic r -> r^(-12) - 2 * r^(-6) ``` """ abstract type PairPotential <: SitePotential end evaluate(V::SitePotential, R) = evaluate!(alloc_temp(V, length(R)), V, R) evaluate_d(V::SitePotential, R::AbstractVector{JVec{T}}) where {T} = evaluate_d!(zeros(JVec{T}, length(R)), alloc_temp_d(V, length(R)), V, R) evaluate_dd(V::SitePotential, R::AbstractVector{JVec{T}}) where {T} = evaluate_dd!(zeros(JMat{T}, length(R), length(R)), alloc_temp_dd(V, length(R)), V, R) evaluate(V::PairPotential, r::Number) = evaluate!(alloc_temp(V, 1), V, r) evaluate_d(V::PairPotential, r::Number) = evaluate_d!(alloc_temp_d(V, 1), V, r) evaluate_dd(V::PairPotential, r::Number) = evaluate_dd!(alloc_temp_d(V, 1), V, r) NeighbourLists.sites(at::AbstractAtoms, rcut::AbstractFloat) = sites(neighbourlist(at, rcut)) NeighbourLists.pairs(at::AbstractAtoms, rcut::AbstractFloat) = pairs(neighbourlist(at, rcut)) "a site potential that just returns zero" mutable struct ZeroSitePotential <: SitePotential end @pot ZeroSitePotential cutoff(::ZeroSitePotential) = Bool(0) energy(V::ZeroSitePotential, at::AbstractAtoms{T}; kwargs...) where T = zero(T) forces(V::ZeroSitePotential, at::AbstractAtoms{T}; kwargs...) where T = zeros(JVec{T}, length(at)) evaluate!(tmp, p::ZeroSitePotential, args...) = Bool(0) evaluate_d!(dEs, tmp, V::ZeroSitePotential, args...) = fill!(dEs, zero(eltype(dEs))) evaluate_dd!(hEs, tmp, V::ZeroSitePotential, args...) = fill!(hEs, zero(eltype(hEs))) # Implementation of a generic site potential # ================================================ alloc_temp(V::SitePotential, at::AbstractAtoms) = alloc_temp(V, maxneigs(neighbourlist(at, cutoff(V)))) alloc_temp(V::SitePotential, N::Integer) = ( R = zeros(JVecF, N), ) alloc_temp_d(V::SitePotential, at::AbstractAtoms) = alloc_temp_d(V, maxneigs(neighbourlist(at, cutoff(V)))) alloc_temp_d(V::SitePotential, N::Integer) = ( R = zeros(JVecF, N), dV = zeros(JVecF, N) ) alloc_temp_dd(V::SitePotential, N::Integer) = nothing energy(V::SitePotential, at::AbstractAtoms; kwargs...) = energy!(alloc_temp(V, at), V, at; kwargs...) virial(V::SitePotential, at::AbstractAtoms; kwargs...) = virial!(alloc_temp_d(V, at), V, at; kwargs...) forces(V::SitePotential, at::AbstractAtoms{T}; kwargs...) where {T} = forces!(zeros(JVec{T}, length(at)), alloc_temp_d(V, at), V, at; kwargs...) function energy!(tmp, V::SitePotential, at::AbstractAtoms{T}; domain=1:length(at)) where {T} E = zero(T) nlist = neighbourlist(at, cutoff(V)) for i in domain _j, R = neigs!(tmp.R, nlist, i) E += evaluate!(tmp, V, R) end return E end function forces!(frc, tmp, V::SitePotential, at::AbstractAtoms{T}; domain=1:length(at), reset=true) where {T} if reset; fill!(frc, zero(JVec{T})); end nlist = neighbourlist(at, cutoff(V)) for i in domain j, R = neigs!(tmp.R, nlist, i) evaluate_d!(tmp.dV, tmp, V, R) for a = 1:length(j) frc[j[a]] -= tmp.dV[a] frc[i] += tmp.dV[a] end end return frc end site_virial(dV, R::AbstractVector{JVec{T}}) where {T} = ( length(R) > 0 ? (- sum( dVi * Ri' for (dVi, Ri) in zip(dV, R) )) : zero(JMat{T}) ) function virial!(tmp, V::SitePotential, at::AbstractAtoms{T}; domain=1:length(at)) where {T} vir = zero(JMat{T}) nlist = neighbourlist(at, cutoff(V)) for i in domain _j, R = neigs!(tmp.R, nlist, i) evaluate_d!(tmp.dV, tmp, V, R) vir += site_virial(tmp.dV, R) end return vir end site_energies(V::SitePotential, at::AbstractAtoms{T}; kwargs...) where {T} = site_energies!(zeros(T, length(at)), alloc_temp(V, at), V, at) function site_energies!(Es, tmp, V::SitePotential, at::AbstractAtoms{T}; domain = 1:length(at)) where {T} nlist = neighbourlist(at, cutoff(V)) for i in domain _j, R = neigs!(tmp.R, nlist, i) Es[i] = evaluate!(tmp, V, R) end return Es end site_energy(V::SitePotential, at::AbstractAtoms, i0::Integer) = energy(V, at; domain = (i0,)) site_energy_d(V::SitePotential, at::AbstractAtoms, i0::Integer) = rmul!(forces(V, at; domain = (i0,)), -one(eltype(at))) # ------------------------------------------------ # specialisation for Pair potentials include("analyticpotential.jl") # * AnalyticFunction # * F64fun, WrappedAnalyticFunction include("cutoffs.jl") # * SWCutoff # * ShiftCutoff # * SplineCutoff include("pairpotentials.jl") # * PairCalculator # * LennardJonesPotential # * MorsePotential # * SimpleExponential # * WrappedPairPotential include("adsite.jl") # * ADPotential : Site potential using ForwardDiff include("stillingerweber.jl") # * type StillingerWeber include("splines.jl") include("eam.jl") # EAM, FinnisSinclair include("onebody.jl") # code for 1-body functions ; TODO: move into `nbody` include("hessians.jl") # code for hessians of site potentials include("multi.jl") # experimental multi-species code # -> eventually this is to be integrated into all the main codebase include("emt.jl") # a simple analytic EAM potential. (EMT -> embedded medium theory) end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
4721
""" `module JuLIP.Solve` Contains a few geometry optimisation routines, for now see the help for these: * `minimise!` """ module Solve import Optim import LineSearches using Optim: OnceDifferentiable, optimize, ConjugateGradient, LBFGS using LineSearches: BackTracking using LinearAlgebra: I using JuLIP: AbstractAtoms, update!, dofs, energy, gradient, set_dofs!, site_energies, Dofs, calculator, AbstractCalculator, r_sum, fixedcell using JuLIP.Potentials: SitePotential using JuLIP.Preconditioners: Exp export minimise! Ediff(V::AbstractCalculator, at::AbstractAtoms, Es0::Vector) = r_sum(site_energies(V, at) - Es0) Ediff(at::AbstractAtoms, Es0::Vector, x::Dofs) = Ediff(calculator(at), set_dofs!(at, x), Es0) """ `minimise!(at::AbstractAtoms)`: geometry optimisation `at` must have a calculator and a constraint attached. ## Keyword arguments: * `precond = :auto` : preconditioner; more below * `gtol = 1e-6` : gradient tolerance (max-norm) * `ftol = 1e-32` : objective tolerance * `Optimiser = :auto`, `:auto` should always work, at least on the master branch of `Optim`; `:lbfgs` needs the `extraplbfgs2` branch, which is not yet merged. Other options might be introduced in the future. * `verbose = 1`: 0 : no output, 1 : final, 2 : iteration and final * `robust_energy_difference = false` : if true use Kahan summation of site energies * `store_trace = false` : store history of energy and norm of forces * `extended_trace = false`: also store full history of postions and forces * `maxstep = Inf`: maximum step size, useful if initial gradient is very large * `callback`: callback function to pass to `optimize()`, e.g. to use alternate convergence criteria ## Preconditioner `precond` may be a valid preconditioner, e.g., `I` or `Exp(at)`, or one of the following symbols * `:auto` : the code will make the best choice it can with the avilable information * `:exp` : will use `Exp(at)` * `:id` : will use `I` """ function minimise!(at::AbstractAtoms; precond = :auto, method = :auto, gtol=1e-5, ftol=1e-32, verbose = 1, robust_energy_difference = false, store_trace = false, extended_trace = false, maxstep = Inf, callback = nothing, g_calls_limit = 1_000) # create an objective function if robust_energy_difference Es0 = site_energies(at) obj_f = x -> Ediff(at, Es0, x) else obj_f = x->energy(at, x) end obj_g! = (g, x) -> copyto!(g, gradient(at, x)) # create a preconditioner if isa(precond, Symbol) if precond == :auto if fixedcell(at) precond = :exp else precond = :id end end if precond == :exp if method == :lbfgs precond = Exp(at, energyscale = :auto) else precond = Exp(at) end elseif precond == :id precond = I else error("unknown symbol for precond") end end # choose the optimisation method Optim.jl if method == :auto || method == :cg if precond == I optimiser = ConjugateGradient(linesearch = BackTracking(order=2, maxstep=maxstep)) else optimiser = ConjugateGradient( P = precond, precondprep = (P, x) -> update!(P, at, x), linesearch = BackTracking(order=2, maxstep=maxstep) ) end elseif method == :lbfgs optimiser = LBFGS( P = precond, precondprep = (P, x) -> update!(P, at, x), alphaguess = LineSearches.InitialHagerZhang(), linesearch = BackTracking(order=2, maxstep=maxstep) ) elseif method == :sd optimiser = Optim.GradientDescent( P = precond, precondprep = (P, x) -> update!(P, at, x), linesearch = BackTracking(order=2, maxstep=maxstep) ) else error("JuLIP.Solve.minimise!: unknown `method` option") end results = optimize( obj_f, obj_g!, dofs(at), optimiser, Optim.Options( f_tol = ftol, g_tol = gtol, g_calls_limit = g_calls_limit, store_trace = store_trace, extended_trace = extended_trace, callback = callback, show_trace = (verbose > 1)) ) set_dofs!(at, Optim.minimizer(results)) # analyse the results if verbose > 0 println(results) end return results end end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
5761
""" This module supplies some functions for testing of the implementation. Look at `?` for * `fdtest` : general finite-difference test * `fdtest_R2R`: fd test for F : ℝ → ℝ """ module Testing using Test using JuLIP: AbstractCalculator, AbstractAtoms, energy, gradient, forces, calculator, set_positions!, dofs, mat, vecs, positions, rattle!, set_dofs!, set_calculator! using JuLIP.Potentials: PairPotential, evaluate, evaluate_d, grad, @D using Printf using LinearAlgebra: norm export fdtest, fdtest_hessian, h0, h1, h2, h3, print_tf """ first-order finite-difference test for scalar F * `fdtest(F::Function, dF::Function, x)` * `fdtest(V::PairPotential, r::Vector{Float64})` * `fdtest(calc::AbstractCalculator, at::AbstractAtoms)` """ function fdtest(F::Function, dF::Function, x; verbose=true) errors = Float64[] E = F(x) dE = dF(x) # loop through finite-difference step-lengths @printf("---------|----------- \n") @printf(" h | error \n") @printf("---------|----------- \n") for p = 2:11 h = 0.1^p dEh = copy(dE) for n = 1:length(dE) x[n] += h dEh[n] = (F(x) - E) / h x[n] -= h end push!(errors, norm(dE - dEh, Inf)) @printf(" %1.1e | %4.2e \n", h, errors[end]) end @printf("---------|----------- \n") if minimum(errors) <= 1e-3 * maximum(errors) if verbose println("passed") end return true else @warn("""It seems the finite-difference test has failed, which indicates that there is an inconsistency between the function and gradient evaluation. Please double-check this manually / visually. (It is also possible that the function being tested is poorly scaled.)""") return false end end function fdtest_hessian(F::Function, dF::Function, x; verbose=true) errors = Float64[] F0 = F(x) dF0 = dF(x) dFh = copy(Matrix(dF0)) @assert size(dFh) == (length(F0), length(x)) # loop through finite-difference step-lengths @printf("---------|----------- \n") @printf(" h | error \n") @printf("---------|----------- \n") for p = 2:11 h = 0.1^p for n = 1:length(x) x[n] += h dFh[:, n] = (F(x) - F0) / h x[n] -= h end push!(errors, norm(dFh - dF0, Inf)) @printf(" %1.1e | %4.2e \n", h, errors[end]) end @printf("---------|----------- \n") if minimum(errors) <= 1e-3 * maximum(errors) println("passed") return true else @warn("""It seems the finite-difference test has failed, which indicates that there is an inconsistency between the function and gradient evaluation. Please double-check this manually / visually. (It is also possible that the function being tested is poorly scaled.)""") return false end end "finite-difference test for a function V : ℝ → ℝ" function fdtest_R2R(F::Function, dF::Function, x::Vector{Float64}; verbose=true) errors = Float64[] E = [ F(t) for t in x ] dE = [ dF(t) for t in x ] # loop through finite-difference step-lengths if verbose @printf("---------|----------- \n") @printf(" h | error \n") @printf("---------|----------- \n") end for p = 2:11 h = 0.1^p dEh = ([F(t+h) for t in x ] - E) / h push!(errors, norm(dE - dEh, Inf)) if verbose @printf(" %1.1e | %4.2e \n", h, errors[end]) end end if verbose @printf("---------|----------- \n") end if minimum(errors) <= 1e-3 * maximum(errors[1:2]) println("passed") return true else @warn("""is seems the finite-difference test has failed, which indicates that there is an inconsistency between the function and gradient evaluation. Please double-check this manually / visually. (It is also possible that the function being tested is poorly scaled.)""") return false end end fdtest(V::PairPotential, r::AbstractVector; kwargs...) = fdtest_R2R(s -> V(s), s -> (@D V(s)), collect(r); kwargs...) function fdtest(calc::AbstractCalculator, at::AbstractAtoms; verbose=true, rattle=0.01) X0 = copy(positions(at)) calc0 = calculator(at) set_calculator!(at, calc) # random perturbation to positions (and cell for VariableCell) # perturb atom positions a bit to get out of equilibrium states # Don't use `rattle!` here which screws up the `VariableCell` constraint # test!!! (but why?!?!?) x = dofs(at) x += rattle * rand(length(x)) # call the actual FD test result = fdtest( x -> energy(at, x), x -> gradient(at, x), x ) # restore original atom positions set_positions!(at, X0) set_calculator!(at, calc0) return result end function h0(str) dashes = "≡"^(length(str)+4) printstyled(dashes, color=:magenta); println() printstyled(" "*str*" ", bold=true, color=:magenta); println() printstyled(dashes, color=:magenta); println() end function h1(str) dashes = "="^(length(str)+2) printstyled(dashes, color=:magenta); println() printstyled(" " * str * " ", bold=true, color=:magenta); println() printstyled(dashes, color=:magenta); println() end function h2(str) dashes = "-"^length(str) printstyled(dashes, color=:magenta); println() printstyled(str, bold=true, color=:magenta); println() printstyled(dashes, color=:magenta); println() end h3(str) = (printstyled(str, bold=true, color=:magenta); println()) print_tf(::Test.Pass) = printstyled("+", bold=true, color=:green) print_tf(::Test.Fail) = printstyled("-", bold=true, color=:red) print_tf(::Tuple{Test.Error,Bool}) = printstyled("x", bold=true, color=:magenta) end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3638
module Visualise using PyCall, JSON using JuLIP: set_pbc!, positions, neighbourlist using JuLIP.ASE: AbstractAtoms, ASEAtoms, write, rnn, chemical_symbols export draw @pyimport IPython.display as ipydisp @pyimport imolecule """ ### KW-args (copied from imolecule) * `size`: Starting dimensions of visualization, in pixels, e.g., `(500,500)` * `drawing_type`: Specifies the molecular representation. Can be 'ball and stick', "wireframe", or 'space filling'. * `camera_type`: Can be 'perspective' or 'orthographic'. * `shader`: Specifies shading algorithm to use. Can be 'toon', 'basic', 'phong', or 'lambert'. * `display_html`: If True (default), embed the html in a IPython display. If False, return the html as a string. * `element_properties`: A dictionary providing color and radius information for custom elements or overriding the defaults in imolecule.js * `show_save`: If True, displays a save icon for rendering molecule as an image. ## More kwargs: * bonds: :babel, :auto * cutoff: :auto or a number """ function draw(at::AbstractAtoms; bonds=:babel, box=:auto, camera_type="perspective", size=(500,500), display_html=false, cutoff=:auto, kwargs...) # TODO: implement box (ignore for now) # TODO: check whether we are in a notebook or REPL if bonds == :babel # in this case we assume that OpenBabel and in particular `pybel` is # installed; we write the atoms object as xyz and let `pybel` # do the rest fn = "$(tempname()).xyz" write(fn, at) out = ipydisp.HTML( imolecule.draw( fn, format="xyz", camera_type=camera_type, size=size, display_html=false, kwargs...) ) rm(fn) return out elseif bonds == :auto # TODO: bonds = autobondlenghts(at) elseif !isa(bonds, Dict) error("""draw(at ...) : at the momement, `bonds` must be `:babel`, `:auto` or a `Dict` containing the bonds-length information""") end # we have a `Dict` that contains all the bond-length information # (which we guessed really; this needs more work) # we can therefore write a JSON file with atom positions + connectivity # and let `imolecule` load that; this never needs to import `pybel` so it # will work even if OpenBabel is not installed. # TODO: bond-length guesses for multiple species # TODO: bounding box especially with PBCs # TODO: check which other information imolecule accepts # temporarily assume there is a single species! # and make the bond length 120% of the NN-length if cutoff == :auto bondlength = 1.2 * rnn( chemical_symbols(at)[1] ) else bondlength = cutoff end # we need to turn of PBC otherwise we get weird bonds set_pbc!(at, (false, false, false)) atoms = [Dict("element" => e, "location" => Vector(x)) for (e, x) in zip(chemical_symbols(at), positions(at)) ] nlist = neighbourlist(at, bondlength) # we are assuming that nlist is the Matscipy nlist ij = unique(sort([nlist.i nlist.j], 2), 1) - 1 bondlist = [Dict("atoms" => [ij[n,1];ij[n,2]], "order" => 1) for n = 1:Base.size(ij, 1)] molecule_data = Dict("atoms" => atoms, "bonds" => bondlist) # write to a temporary file fn = "$(tempname()).json" fio = open(fn, "w") print(fio, JSON.json(molecule_data)) close(fio) # plot out = ipydisp.HTML( imolecule.draw(fn, format="json", camera_type=camera_type, size=size, display_html=false, kwargs...) ) rm(fn) return out end end # module Visualise
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
14529
import LinearAlgebra: ldiv!, mul! using LinearAlgebra: det, UniformScaling import Base: length, getindex, setindex!, deleteat! import NeighbourLists: cutoff # function defined primarily on AbstractAtoms export positions, get_positions, set_positions!, momenta, get_momenta, set_momenta!, masses, get_masses, set_masses, cell, get_cell, set_cell!, is_cubic, cell_vecs, pbc, get_pbc, set_pbc!, set_data!, get_data, has_data, set_calculator!, calculator, get_calculator, neighbourlist, cutoff, apply_defm!, energy, potential_energy, forces, gradient, hessian, site_energies, site_energy, partial_energy, site_energy_d, partial_energy_d, stress, virial, site_virials, position_dofs, set_position_dofs!, momentum_dofs, set_momentum_dofs!, dofs, set_dofs!, preconditioner, volume, chemical_symbols, atomic_numbers, AbstractAtoms, AbstractCalculator # temporary prototypes while rewriting # todo: prototype and document these here function chemical_symbols end function atomic_numbers end function site_energy_d end function partial_energy_d end # ----- # here we define and document the prototypes that are implemented """ `AbstractAtoms{T}` the abstract supertype for storing atomistic configurations. A basic implementation might simply store a list of positions, see e.g. `Atoms`. Some Base functions that should be overloaded for atoms objects: - length - deleteat - getindex - setindex! """ abstract type AbstractAtoms{T} end abstract type AbstractConstraint end """ `AbstractCalculator`: theabstractsupertype of calculators. These store model information, and are linked to the implementation of energy, forces, and so forth. """ abstract type AbstractCalculator end """ `Dofs{T}`: dof vector; simply an alias for `Vector{T}` """ const Dofs{T} = Vector{T} """ `positions(at)` : Return copy of positions of all atoms as a `Vector{JVec}` """ function positions end "alias for `positions`" get_positions = positions "`set_positions!(at, X) -> at` : Set positions of all atoms" function set_positions! end set_positions!(at::AbstractAtoms, p::AbstractMatrix) = set_positions!(at, vecs(p)) set_positions!(at::AbstractAtoms, x, y, z) = set_positions!(at, [x'; y'; z']) # this is already documented at its first definition in `arrayconversions`? xyz(at::AbstractAtoms) = xyz(positions(at)) "`momenta(at)` : Return copy of momenta of all atoms as a `Vector{<:JVec}`." function momenta end "alias for `momenta`" get_momenta = momenta "`set_momenta!(at, P) -> at` : Set momenta of all atoms" function set_momenta! end set_momenta!(at::AbstractAtoms, p::AbstractMatrix) = set_momenta!(at, vecs(p)) "`masses` : return vector of all masses" function masses end "`get_masses` : alias for `masses`" get_masses = masses "`set_masses!(at, M) -> at` : set the atom masses" function set_masses! end "`cell(at) -> JMat` : get computational cell (the rows are the lattice vectors)" function cell end "alias for `cell`" get_cell = cell "`set_cell!(at, C) -> at` : set computational cell; cf. `?cell`" function set_cell! end """ `cell_vecs(at) -> (SVec, SVec, SVec)` : return the three cell vectors """ function cell_vecs(at::AbstractAtoms) C = cell(at) @assert size(C) == (3,3) return C[1,:], C[2,:], C[3,:] end "`volume(at)` : return volume of computational cell" volume(at) = abs(det(cell(at))) """ `apply_defm!(at, F, t = zero(JVec)) -> at` : for a 3 x 3 matrix `F` and `at::AbstractAtoms` the affine deformation `x -> Fx + t` is applied to the configuration, modifying `at` inplace and returning it. This modifies both the cell and the positions. """ function apply_defm!(at::AbstractAtoms{T}, F::AbstractMatrix, t::AbstractVector = zero(JVec{T})) where {T} @assert size(F) == (3,3) @assert length(t) == 3 C = cell(at) X = positions(at) Cnew = C * F' for n = 1:length(X) # TODO: project back into the cell? X[n] = F * X[n] + t end set_cell!(at, Cnew) set_positions!(at, X) return at end "`set_pbc!(at, p) -> at` : set periodic boundary conditions" function set_pbc! end set_pbc!(at::AbstractAtoms, p::Bool) = set_pbc!(at, (p,p,p)) "`pbc(at)` : get array or tuple determining which directions are periodic" function pbc end "`get_pbc(at)` : alias for `pbc`" get_pbc = pbc """ `is_cubic(at) -> Bool` : determines whether a cubic cell is used (i.e. cell is a diagonal matrix) """ is_cubic(a::AbstractAtoms) = isdiag(cell(a)) """ `set_data!(at, name, value)`: associate some data with `at`; to be stored in a Dict within `at` if `name::Union{Symbol, AbstractString}`, then `setindex!` is an alias for `set_data!`, i.e., we may write `at[:id] = val` """ function set_data! end setindex!(at::AbstractAtoms, value, name::Union{Symbol, AbstractString}) = set_data!(at, name, value) """ `get_data(at, name)`: obtain some data stored with `set_data!` if `name::Union{Symbol, AbstractString}`, then `getindex` is an alias for `get_data`. """ function get_data end getindex(at::AbstractAtoms, name::Union{Symbol, AbstractString}) = get_data(at, name) "`has_data(at, key)` : check whether some data with id `key` is already stored" function has_data end "alias for `deleteat!`" delete_atom! = deleteat! "`calculator(at)` : return an attached calculator" function calculator end "`set_calculator!(at, calc) -> at` : attach a calculator" function set_calculator! end """ `neighbourlist(at, rcut)` construct a suitable neighbourlist for this atoms object. `rcut` should be allowed to be either a scalar or a vector. """ function neighbourlist end """ `static_neighbourlist(at::AbstractAtoms, cutoff; key = :staticnlist)` This function first checks whether a static neighbourlist already exists with cutoff `cutoff` and if it does then it returns the existing list. If it does not, then it computes a new neighbour list with the current configuration, stores it for later use and returns it. """ function static_neighbourlist(at::AbstractAtoms, cutoff; key=:staticnlist) recompute = false if has_data(at, key) nlist = get_data(at, key) if cutoff(nlist) != cutoff recompute = true end else recompute = true end if recompute set_data!( at, key, neighbourlist(at, cutoff) ) end return get_data(at, key) end static_neighbourlist(at::AbstractAtoms) = static_neighbourlist(at, cutoff(at)) ####################################################################### # CALCULATOR ####################################################################### """ `cutoff(calc)` : Returns the cut-off radius of the attached potential. `cutoff(at)` : returns the cutoff of the attached calculator """ function cutoff end cutoff(at::AbstractAtoms) = cutoff(calculator(at)) """ `energy(calc, at)`: Return the total potential energy of a configuration of atoms `at`, using the calculator `calc`. In addition, `energy` can be called in the following ways: * `energy(calc, at)`: base definition; this is normally the only method that needs to be overloaded when a new calculator is implemented. * `energy(at)`: if a calculator is attached to `at` * `energy(calc, at, const, dof)` * `energy(calc, at, dof)` * `energy(at, dofs)` """ function energy end potential_energy = energy """ `site_energy(calc, at, n)` : return site energy at atom idx `n` """ function site_energy end site_energy(at::AbstractAtoms, n::Integer) = site_energy(calculator(at), at, n) """ `site_energies(calc, at)` : return vector of all site energies """ function site_energies end site_energies(a::AbstractAtoms) = site_energies(calculator(a), a) """ `partial_energy(calc, at, subset)` : return energy contained in a `subset` of the configuration """ function partial_energy end partial_energy(at::AbstractAtoms, subset) = partial_energy(calculator(at), at, subset) """ `forces(calc, at)` : forces as `Vector{<:JVec}` (negative gradient w.r.t. atom positions only) """ function forces end forces(at::AbstractAtoms) = forces(calculator(at), at) """ `hessian_pos(calc, at):` block-hessian with respect to all atom positions """ function hessian_pos end hessian_pos(at::AbstractAtoms) = hessian_pos(calculator(at), at) """ * `virial(c::AbstractCalculator, a::AbstractAtoms) -> JMat` * `virial(a::AbstractAtoms) -> JMat` returns virial, (- ∂E / ∂F) where `F = cell(a)'` """ function virial end virial(at::AbstractAtoms) = virial(calculator(at), at) """ * `stress(c::AbstractCalculator, a::AbstractAtoms) -> JMatF` * `stress(a::AbstractAtoms) -> JMatF` stress = - virial / volume; this function should *not* be overloaded; instead overload virial """ stress(calc::AbstractCalculator, at::AbstractAtoms) = - virial(calc, at) / volume(at) stress(at::AbstractAtoms) = stress(calculator(at), at) ####################################################################### # Constraints and DoF Handling ####################################################################### """ `position_dofs(at::AbstractAtoms) -> Dofs` `dofs(at::AbstractAtoms) -> Dofs` Take an atoms object `at` and return a Dof-vector that fully describes the state given the potential constraints placed on it. """ function position_dofs end """ `dofs` is an alias for `position_dofs` """ dofs = position_dofs """ * `set_position_dofs!(at::AbstractAtoms, cons::AbstractConstraint, x::Dofs) -> at` * `set_position_dofs!(at::AbstractAtoms, x::Dofs) -> at` * `set_dofs!(at::AbstractAtoms, cons::AbstractConstraint, x::Dofs) -> at` * `set_dofs!(at::AbstractAtoms, cons::AbstractConstraint) -> at` change configuration stored in `at` according to `cons` and `x`. """ function set_position_dofs! end """ `set_dofs!` is an alias for `set_position_dofs!` """ set_dofs! = set_position_dofs! """ `momentum_dofs(at::AbstractAtoms) -> Dofs` Take an atoms object `at` and return a Dof-vector that fully describes the momenta (given any constraints placed on `at`) """ function momentum_dofs end """ * `set_momentum_dofs!(at::AbstractAtoms, cons::AbstractConstraint, p::Dofs) -> at` * `set_momentum_dofs!(at::AbstractAtoms, p::Dofs) -> at` change configuration stored in `at` according to `cons` and `p`. """ function set_momentum_dofs! end """ * `project!(at::AbstractAtoms) -> at` project the `at` onto the constraint manifold. """ function project! end # converting calculator functionality # The following lines define variants of the `energy` function, which # get around the issue that energy may or may not include an external # potential; the rule is as follows: # - a new calculator must implement `energy(calc, at)` # - a new constraint must implement `energy(calc, at, cons)` # and at the end *must* use `energy(calc, at)` but may not call any # other variants of `energy`. """ * `energy(at, x::Dofs) -> Float64` `potential_energy`; with potentially added cell terms, e.g., if there is applied stress or applied pressure. """ energy(at::AbstractAtoms, x::Dofs) = energy(set_dofs!(at, x)) energy(calc::AbstractCalculator, at::AbstractAtoms, x::Dofs) = energy(calc, set_dofs!(at, x)) energy(at::AbstractAtoms) = energy(calculator(at), at) """ * `gradient(calc, at, cons::AbstractConstraint, c::Dofs) -> Dofs` * `gradient(at) -> Dofs` * `gradient(at, x::Dofs) -> Dofs` gradient of `potential_energy` in dof-format; depending on the constraint this could include e.g. a gradient w.r.t. cell shape; normally only the form `gradient(calc, at, cons)` should be overloaded by an `AbstractConstraints` object. """ function gradient end gradient(at::AbstractAtoms, x::Dofs) = gradient(set_dofs!(at, x)) gradient(calc::AbstractCalculator, at::AbstractAtoms, x::Dofs) = gradient(calc, set_dofs!(at, x)) gradient(at::AbstractAtoms) = gradient(calculator(at), at) """ `hessian`: compute hessian of total energy with respect to DOFs! same as gradient, just returns the hessian; new constraints should only overload `hessian(calc, at, cons)` """ function hessian end hessian(at::AbstractAtoms, x::Dofs) = hessian(set_dofs!(at, x)) hessian(calc::AbstractCalculator, at::AbstractAtoms, x::Dofs) = hessian(calc, set_dofs!(at, x)) hessian(at::AbstractAtoms) = hessian(calculator(at), at) ####################################################################### # PRECONDITIONER # we don't create an abstract type, but somewhere we should # document that a preconditioner must implement the following # operations: # - update!(precond, at) # - ldiv!(out, P, f) # - mul!)(out, P, x) ####################################################################### """ `update!(precond, at)` Update the preconditioner with the new geometry information. """ function update! end update!(precond, at::AbstractAtoms, x::Dofs) = update!(precond, set_dofs!(at, x)) # TODO: make a Julia PR? do this in-place ldiv!(out::Dofs, P::UniformScaling, x::Dofs) = copyto!(out, P \ x) # mul! is already correctly defined -> no need to define it here. update!(P::UniformScaling, at::AbstractAtoms) = P """ construct a preconditioner suitable for this atoms object default is `I` """ preconditioner(at::AbstractAtoms) = preconditioner(at, calculator(at)) # should be preconditioner(calc, at) ??? preconditioner(at::AbstractAtoms, calc::AbstractCalculator) = I ####################################################################### ## Experimental Prototypes for in-place versions ####################################################################### """ `alloc_temp(args...)` : allocate temporary arrays for the evaluation of some calculator or potential; see developer docs for more information """ alloc_temp(args...) = nothing """ `alloc_temp_d(args...)` : allocate temporary arrays for the evaluation of some calculator or potential; see developer docs for more information """ alloc_temp_d(args...) = nothing alloc_temp_dd(args...) = nothing """ `energy!`: non-allocating version of `energy` """ energy!(calc::AbstractCalculator, at::AbstractAtoms, temp::Nothing) = energy(calc, at) """ `energy!`: non-allocating version of `forces` """ forces!(F::AbstractVector{JVec{T}}, calc::AbstractCalculator, at::AbstractAtoms{T}, temp::Nothing) where {T} = copy!(F, forces(calc, at)) """ `energy!`: non-allocating version of `virial` """ virial!(calc::AbstractCalculator, at::AbstractAtoms, temp::Nothing) = virial(calc, at)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3754
import ForwardDiff using JuLIP: vecs, mat, JVec export ADPotential # Implementation of a ForwardDiff site potential # ================================================ """ `abstract FDPotential <: SitePotential` To implement a site potential that uses ForwardDiff.jl for AD, create a concrete type and overload `JuLIP.Potentials.ad_evaluate`. Example ```julia mutable struct P1 <: FDPotential end @pot P1 JuLIP.Potentials.ad_evaluate(pot::P1, R::Matrix{T}) where {T<:Real} = sum( exp(-norm(R[:,i])) for i = 1:size(R,2) ) ``` Notes: * For an `FDPotential`, the argument to `ad_evaluate` will be `R::Matrix` rather than `R::Vector{<:JVec}`; this is an unfortunate current limitation of `ForwardDiff`. Hopefully it can be fixed. * TODO: allow arguments `(r, R)` then use chain-rule to combine them. """ struct ADPotential{TV, T, FR} <: SitePotential V::TV rcut::T gradfun::FR end @pot ADPotential ADPotential(V, rcut) = ADPotential(V, rcut, ForwardDiff.gradient) cutoff(V::ADPotential) = V.rcut evaluate!(tmp, V::ADPotential, R::AbstractVector{<: JVec}) = V.V(R) function evaluate_d!(dEs, tmp, V::ADPotential, R::AbstractVector{<: JVec}) dV = V.gradfun( S -> V.V(vecs(S)), collect(mat(R)[:]) ) |> vecs copyto!(dEs, dV) return dEs end ####### Prototype AD Hessian Implementation # using JuLIP, JuLIP.Potentials # using JuLIP.Potentials: evaluate_d # JJ = JuLIP # JPP = JuLIP.Preconditioners # # function ad_grad(V::SitePotential, S) # R = reshape(S, 3, length(S) ÷ 3) |> vecs # r = [norm(u) for u in R] # dV = evaluate_d(V, r, R) # return mat(dV)[:] # end # # ad_hess(V::SitePotential, S::Vector{Float64}) = ForwardDiff.jacobian( S_ -> ad_grad(V, S_), S ) # # ad_hess(V, R::AbstractVector{JVecF}) = ad_hess(V, mat(R)[:]) # # atind2lininds(i::Integer) = (i-1) * 3 + [1,2,3] # # localinds(j::Integer) = 3 * (j-1) + [1,2,3] # # function ad_hessian(V, at::AbstractAtoms) # I = Int[]; J = Int[]; Z = Float64[] # for (i0, neigs, r, R, _) in sites(at, cutoff(V)) # ii = atind2lininds(i0) # jj = [atind2lininds(j_) for j_ in neigs] # # compute positive version of hessian of V(R) # hV = ad_hess(V, R) # # nneigs = length(neigs) # for j1 = 1:nneigs, j2 = 1:nneigs # LJ1, LJ2 = localinds(j1), localinds(j2) # local indices # GJ1, GJ2 = jj[j1], jj[j2] # global indices # H = view(hV, LJ1, LJ2) # for a = 1:3, b = 1:3 # append!(I, [ GJ1[a], ii[a], GJ1[a], ii[a] ]) # append!(J, [ GJ2[b], GJ2[b], ii[b], ii[b] ]) # append!(Z, [ H[a,b], - H[a,b], -H[a,b], H[a,b] ]) # end # end # end # N = 3*length(at) # return sparse(I, J, Z, N, N) # end # # ad_hessian(at::AbstractAtoms, x::Vector) = # ad_hessian(calculator(at), set_dofs!(at, x)) # # # ========= STUFF FOR FF Preconditioner ============= # # """ # `ADP`: this computes a basic FF preconditioner by AD-ing the site # energy derivatives. It is slow and most of the time not as effective as # the hand-coded ones. # """ # type ADP{VT <: SitePotential} <: SitePotential # V::VT # end # cutoff(V::ADP) = cutoff(V.V) # # function _ad_grad(V::SitePotential, S) # R = reshape(S, 3, length(S) ÷ 3) |> vecs # r = [norm(u) for u in R] # dV = evaluate_d(V, r, R) # return mat(dV)[:] # end # # _ad_hess(V::SitePotential, S) = ForwardDiff.jacobian( S_ -> _ad_grad(V, S_), S ) # # function precon(Vad::ADP, r, R) # V = Vad.V # hV = _ad_hess(V, mat(R)[:]) # # positive factorisation # hV = 0.5 * (hV + hV') # L = cholfact(Positive, hV)[:L] # H = L * L' # return 0.9 * H + 0.1 * maximum(diag(H)) * eye(size(L,1)) # end # # hinds(j) = 3 * (j-1) + [1,2,3]
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3676
""" `EMT`: a re-implementation of the `EMT` calculator (a variant of EAM) os ASE in Julia, largely for fun and comparison with Python, but also to demonstrate how to implement a multi-component calculator in JuLIP """ struct AnalyticEAM <: MSitePotential pair::Vector{WrappedPairPotential} rho::Vector{WrappedPairPotential} embed::Vector{WrappedAnalyticFunction} z2ind::Dict{Int, Int} end cutoff(calc::AnalyticEAM) = min(cutoff(calc.pair), cutoff(calc.rho)) AnalyticEAM(N::Integer) = AnalyticEAM( Vector{WrappedPairPotential}(undef, N), Vector{WrappedPairPotential}(undef, N), Vector{WrappedAnalyticFunction}(undef, N), Dict{Int, Int}() ) function evaluate!(tmp, calc::AnalyticEAM, 𝐑, 𝐙, z0) ρ̄ = 0.0 Es = 0.0 i0 = calc.z2ind[z0] for (R, Z) in zip(𝐑, 𝐙) i = calc.z2ind[Z] r = norm(R) Es += calc.pair[i](r) ρ̄ += calc.rho[i](r) end Es += calc.embed[i0](ρ̄) return Es end function evaluate_d!(dEs, tmp, calc::EMT, 𝐑, 𝐙, z0) ρ̄ = 0.0 i0 = calc.z2ind[z0] for (R, Z) in zip(𝐑, 𝐙) i = calc.z2ind[Z] r = norm(R) ρ̄ += calc.rho[i](r) end dF = @D calc.embed[i0](ρ̄) for (j, (R, Z)) in enumerate(zip(𝐑, 𝐙)) i = calc.z2ind[Z] r = norm(R) R̂ = R/r dpair = @D calc.pair[i](r) drho = @D calc.rho[i](r) dEs[j] = (dpair + dF * drho) * R̂ end return dEs end "embedding function for the Gupta potential" mutable struct GuptaEmbed <: SimpleFunction xi end evaluate(p::GuptaEmbed, r) = p.xi * sqrt(r) evaluate_d(p::GuptaEmbed, r) = 0.5*p.xi ./ sqrt(r) """`GuptaPotential`: E_i = A ∑_{j ≠ i} v(r_ij) - ξ ∑_i √ ρ_i v(r_ij) = exp[ -p (r_ij/r0 - 1) ] ρ_i = ∑_{j ≠ i} exp[ -2q (r_ij / r0 - 1) ] """ GuptaPotential(A, xi, p, q, r0, TC::Type, TCargs...) = EAMPotential( TC( SimpleExponential(A, p, r0), TCargs... ), # V TC( SimpleExponential(1.0, 2*q, r0), TCargs...), # rho GuptaEmbed( xi ) ) # embed gupta_parameters = Dict( # a D α R₀ <<< Gupta notation :Cu => (3.6147, 0.3446, 1.3921, 2.838), :Ag => (4.0862, 0.3294, 1.3939, 3.096), :Au => (4.0785, 0.4826, 1.6166, 3.004), :Ni => (3.5238, 0.4279, 1.3917, 2.793) ) function GuptaEAM() end # # data Johnson & Oh (1989) # # johnson_params = Dict( # # species a (Å) Ec(eV) ΩB(eV) ΩG(eV) A # :Li => (3.5087, 1.65, 1.63, 0.77, 8.52), # :Na => (4.2906, 1.13, 1.63, 0.68, 7.16), # :K => (5.344, 0.941, 1.58, 0.59, 6.71), # :V => (3.0399, 5.30, 13.62, 4.17, 0.78), # :Nb => (3.3008, 7.47, 19.08, 4.43, 0.52), # :Ta => (3.3026, 8.089, 21.66, 7.91, 1.57), # :Cr => (2.8845, 4.10, 11.77, 8.71, 0.71), # :Mo => (3.150, 6.810, 25.68, 12.28, 0.78), # :W => (3.16475, 8.66, 30.65, 15.84, 1.01), # :Fe => (2.86645, 4.29, 12.26, 6.53, 2.48) # ) # # function JohnsonEAM(sym::Symbol) # if !haskey(johnson_params, sym) # error("""The Johnson & Oh EAM model does is not defined for $(sym); # only the chemical symbols $(keys(johnson_params)) are # available""" ) # end # a, Ec, ΩB, ΩG, A = johnson_params[sym] # c1 = - 15 * ΩG / (3*A + 2) # K3 = c1 * (3/4*A - 0.5*S) # (6) # K2 = c1 * (15/16*A - 3/4*S - 9/8*A*S + 7/8) # K1 = - 15 * ΩG * (7/8 - 3/4*S) # K0 = # V = # f = @analytic r -> # F = @analytic ρ -> - (Ec-EUF) * (1 - log((ρ/ρe)^n)) * (ρ/ρe)^n # end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2931
using MacroTools: @capture, prewalk using Calculus: differentiate using CommonSubexpressions import FunctionWrappers import FunctionWrappers: FunctionWrapper export AnalyticFunction, @analytic const ScalarFun{T} = FunctionWrapper{T, Tuple{T}} """ `F64fun`: `FunctionWrapper` to wrap many different potentials within a single type. Can be used as `F64fun(::Function)` or as `F64fun(::AnalyticFunction)` """ const F64fun = ScalarFun{Float64} """ take an expression of the form `r -> f(r)` and return the expression `r -> f'(r)` """ function fdiff( ex, ndiff ) @assert 1 <= ndiff <= 2 @assert @capture(ex, var_ -> expr_) d_ex = differentiate(expr.args[2], var) if ndiff == 2 d_ex = differentiate(d_ex, var) end d_ex = CommonSubexpressions.cse(d_ex) return :( $var -> $d_ex ) end """ auxiliary function to allow expression substitution from `@Analytic`; see `?@Analytic` for more detail """ function substitute(args) subs = Dict{Symbol,Union{Expr, Symbol}}() for i = 2:length(args) @assert @capture(args[i], var_ = sub_) subs[var] = sub end prewalk(expr -> get(subs, expr, expr), args[1]) end # ================== Analytical Potentials ========================== abstract type SimplePairPotential <: PairPotential end """ `struct AnalyticFunction`: described an analytic function, allowing to evaluate at least 2 derivatives. Formally, `AnalyticFunction <: PairPotential`, which simplifies dispatch, but it an `AnalyticFunction` should normally **not be used as a Calculator**! This type hierarchy may need to be revisited. ### Usage: ```julia lj = @analytic r -> r^(-12) - 2.0*r^(-6) morse = let A = 4.0, r0 = 1.234 @analytic r -> exp(-2.0*A*(r/r0-1.0)) - 2.0*exp(-A*(r/r0-1.0)) end To create a "wrapped" AnalyticFunction{F64fun, ...} , use ``` lj_wrapped = F64fun(lj) ``` if an formula for an analytic function contains a sub-expression that occurs multiple time, then this can be constructed as follows: ``` V = @analytic( r -> exp(s) * s, s = r^2 ) # is the same as V = @analytic r -> exp(r^2) * r^2 ``` """ struct AnalyticFunction{F0,F1,F2} <: SimplePairPotential f::F0 f_d::F1 f_dd::F2 end @pot AnalyticFunction F64fun(p::AnalyticFunction) = AnalyticFunction(F64fun(p.f), F64fun(p.f_d), F64fun(p.f_dd)) cutoff(V::AnalyticFunction) = Inf const WrappedAnalyticFunction = AnalyticFunction{F64fun,F64fun,F64fun} """ `@analytic`: generate C2 function from symbol """ macro analytic(args...) fexpr = substitute(args) quote AnalyticFunction( $(Base.FastMath.make_fastmath(esc(fexpr))), $(Base.FastMath.make_fastmath(esc(fdiff(fexpr, 1)))), $(Base.FastMath.make_fastmath(esc(fdiff(fexpr, 2)))) ) end end evaluate!(tmp, p::SimplePairPotential, r::Number) = p.f(r) evaluate_d!(tmp, p::SimplePairPotential, r::Number) = p.f_d(r) evaluate_dd!(tmp, p::SimplePairPotential, r::Number) = p.f_dd(r)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2698
using StaticArrays using Base: ReinterpretArray, ReshapedArray using LinearAlgebra: norm import Base.convert export mat, vecs, xyz export SVec, SMat, JVec, JVecF, JMat, JMatF export maxdist, maxnorm "typealias fora static vector type; currently `StaticArrays.SVector`" const SVec = SVector "typealias fora static matrix type; currently `StaticArrays.SMatrix`" const SMat = SMatrix "`JVec{T}` : 3-dimensional immutable vector" const JVec{T} = SVec{3,T} const JVecF = JVec{Float64} const JVecI = JVec{Int} "`JMat{T}` : 3 × 3 immutable matrix" const JMat{T} = SMatrix{3,3,T,9} const JMatF = SMatrix{3,3,Float64,9} const JMatI = JMat{Int} # """ `vecs(V)` : convert (as reference) a `3 x N` matrix or `3*N` vector representing N vectors (e.g. positions or forces) in R³ to a vector of `JVec` vectors. If `V` is obtained from a call to `mat(X)` where `X::Vector{JVec{T}}` then `vecs(V) === X`. """ vecs(V::AbstractMatrix{T}) where {T} = (@assert size(V,1) == 3; reinterpret(JVec{T}, vec(V))) vecs(V::AbstractVector{T}) where {T} = reinterpret(JVec{T}, V) vecs(M::ReshapedArray{T,2,ReinterpretArray{T,1,JVec{T},Array{JVec{T},1}},Tuple{}} ) where {T} = M.parent.parent """ `mat(X)`: convert (as reference) a vector of `SVec` to a 3 x N matrix representing those. ### Usage: ``` X = positions(at) # returns a Vector{<: JVec} M = positions(at) |> mat # returns an AbstractMatrix X === vecs(M) ``` """ mat(V::AbstractVector{SVec{N,T}}) where {N,T} = reshape( reinterpret(T, V), (N, length(V)) ) # mat(X::Base.ReinterpretArray) = reshape(X.parent, 3, :) """ convert a Vector{JVec{T}} or a 3 x N Matrix{T} into a 3-tuple (x, y, z). E.g., ``` x, y, z = positions(at) |> xyz ``` a short-cut is ``` x, y, z = xyz(at) ``` Conversely, `set_positions!(at, x, y, z)` is also allowed. """ function xyz(V::AbstractMatrix) @assert size(V, 1) == 3 return (view(V, 1, :), view(V, 2, :), view(V, 3, :)) end xyz(V::AbstractVector{JVec{T}}) where {T} = xyz(mat(V)) """ `maxdist(A, B): ` maximum of distances between two ordered sets of objects, typically positions. `maximum(norm(a - b) for (a,b) in zip(A,B))` """ function maxdist(x::AbstractArray, y::AbstractArray) @assert length(x) == length(y) return maximum( norm(a-b) for (a,b) in zip(x,y) ) end """ `maxdist(X, y): ` maximum of distance of `y` to all items of `X`; `maximum( norm(x - y) for x in X)` """ maxdist(X::AbstractArray{T}, y::T) where {T} = maximum(norm(x - y) for x in X) maxdist(x::T, X::AbstractArray{T}) where {T} = maxdist(X, x) "`maximum(norm(y) for y in x);` typically, x is a vector of forces" maxnorm(X::AbstractVector) = maximum( norm(x) for x in X )
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
7987
import Base.Dict export Atoms """ `JData`: datatype for storing any data some data which needs to be updated if the configuration (positions only!) has changed too much. """ mutable struct JData{T} max_change::T # how much X may change before recomputing accum_change::T # how much has it changed already data::Any end struct LinearConstraint{T} C::Matrix{T} b::Vector{T} desc::String # description of the constraint end mutable struct DofManager{T} variablecell::Bool xfree::Vector{Int} lincons::Vector{LinearConstraint{T}} # ---- X0::Vector{JVec{T}} F0::JMat{T} end """ `Atoms{T <: AbstractFloat} <: AbstractAtoms` The main type storing information about atomic configurations. This is not normally constructed directly by calling `Atoms`, but using one of the utility functions such as `bulk`. ## Constructors TODO ## Convenience functions * `bulk` # Getters and Setters * `positions`, `set_positions!` * `momenta`, `set_momenta!` * `masses`, `set_masses!` * `numbers`, `set_numbers!` * `cell`, `set_cell!` * `pbc`, `set_pbc!` * `calculator`, `set_calculator!` * `get_data`, `set_data!` """ mutable struct Atoms{T <: AbstractFloat} <: AbstractAtoms{T} X::Vector{JVec{T}} # positions P::Vector{JVec{T}} # momenta (or velocities?) M::Vector{T} # masses Z::Vector{Int16} # atomic numbers cell::JMat{T} # cell pbc::JVec{Bool} # boundary condition calc::Union{Nothing, AbstractCalculator} dofmgr::DofManager data::Dict{Any,JData{T}} end Atoms(X::Vector{JVec{T}}, P::Vector{JVec{T}}, M::Vector{T}, Z::Vector{Int16}, cell::JMat{T}, pbc::JVec{Bool}, calc::Union{Nothing, AbstractCalculator} = nothing) where {T} = Atoms(X, P, M, Z, cell, pbc, calc, DofManager(length(X), T), Dict{Any,JData{T}}()) Base.eltype(::Atoms{T}) where {T} = T # derived properties length(at::Atoms) = length(at.X) getindex(at::Atoms, i::Integer) = at.X[i] function setindex!(at::Atoms{T}, val, i::Integer) where {T} u = norm(at.X[i] - val) at.X[i] = convert(JVec{T}, val) update_data!(at, u) return val end # ------------------------ access to struct fields ---------------------- # ----- getters positions(at::Atoms) = copy(at.X) momenta(at::Atoms) = copy(at.P) masses(at::Atoms) = copy(at.M) numbers(at::Atoms) = copy(at.Z) atomic_numbers(at::Atoms) = copy(at.Z) cell(at::Atoms) = at.cell pbc(at::Atoms) = at.pbc calculator(at::Atoms) = at.calc chemical_symbols(at::Atoms) = Chemistry.chemical_symbol.(at.Z) # ----- setters function set_positions!(at::Atoms{T}, X::AbstractVector{JVec{T}}) where T update_data!(at, dist(at, X)) at.X .= X return at end function set_momenta!(at::Atoms{T}, P::AbstractVector{JVec{T}}) where T at.P .= P return at end function set_masses!(at::Atoms{T}, M::AbstractVector{T}) where T update_data!(at, Inf) at.M .= M return at end function set_numbers!(at::Atoms, Z::AbstractVector{<:Integer}) update_data!(at, Inf) at.Z .= Z return at end function set_cell!(at::Atoms{T}, C::AbstractMatrix) where T update_data!(at, Inf) at.cell = JMat{T}(C) return at end function set_pbc!(at::Atoms, p::Union{AbstractVector, Tuple}) q = JVec{Bool}(p...) if at.pbc != q update_data!(at, Inf) at.pbc = q end return at end function set_calculator!(at::Atoms, calc::Union{AbstractCalculator, Nothing}) at.calc = calc return at end # --------------- equality tests ------------------- import Base.== ==(at1::Atoms{T}, at2::Atoms{T}) where T = ( isapprox(at1, at2, tol = 0.0) && (at1.data == at2.data) && (at1.calc == at2.calc) && (at1.dofmgr == at2.dofmgr) ) import Base.isapprox function isapprox(at1::Atoms{T}, at2::Atoms{T}; tol = sqrt(eps(T))) where {T} if length(at1) != length(at2) return false end if tol > 0 ndigits = floor(Int, abs(log10(tol))) X1 = [round.(x, ndigits) for x in at1.X] X2 = [round.(x, ndigits) for x in at2.X] else X1, X2 = at1.X, at2.X end p1 = sortperm(X1) p2 = sortperm(X2) return (maxdist(at1.X[p1], at2.X[p2]) <= tol) && (maxdist(at1.P[p1], at2.P[p2]) <= tol) && (norm(at1.M[p1] - at2.M[p2], Inf) <= tol) && (at1.Z[p1] == at2.Z[p2]) && (norm(at1.cell - at2.cell, Inf) <= tol) && (at1.pbc == at2.pbc) end # --------------- some aliases for easier / direct access -------------- # and some access not covered above function neighbourlist(at::Atoms{T}, rcut::AbstractFloat; recompute=false, key="nlist:default", int_type = Int32, kwargs...) where {T} # we are allowed to use a stored list if !recompute if has_data(at, key) nlist = get_data(at, key)::PairList{T, int_type} if cutoff(nlist) >= rcut return nlist end end end # we are either forces to recompute, or no nlist exists or is not # suitable for the request. nlist = PairList(positions(at), rcut, cell(at), pbc(at); int_type=int_type, kwargs...)::PairList{T, int_type} set_data!(at, key, nlist, 0.0) return nlist end # function neighbourlist(at::Atoms{T}, rcut::AbstractFloat; # recompute=false, key="nlist:default", kwargs...) where {T} # return PairList(positions(at), rcut, cell(at), pbc(at); kwargs...) # end neighbourlist(at::Atoms) = neighbourlist(at, cutoff(at)) # --------------- data Dict handling ------------------ """ `has_data(at::Atoms, key)`: checks whether `at` is storing a datum with key `key`; see also `set_data!` """ has_data(at::Atoms, key) = haskey(at.data, key) """ `get_data(at::Atoms, key)`: retrieves a datum; see also `set_data!`. Unlike `get_positions`, etc, this returns the original datum, not a copy (unless it is immutable). """ get_data(at::Atoms, key) = (at.data[key]).data """ `set_data!(a::Atoms, key, value, max_change=Inf)`: Stores `value` under an arbitrary key `key` inside `at`. The entry is paired with an updatemeasure `chg`. Whenever atom positions or the cell change by a distance `d`, the counter is incremented `chg += d`. When `chg > max_change`, the entry is deleted from the dictionary. The two most common uses are with `max_change = Inf` (default) - in this case the entry will never be deleted; and `max_change = 0.0` - in this case the entry will be deleted whenever atom positions or the cell change. The change counter is used, e.g., for neighbourlists with buffer, and for preconditioners so that the list need not be recomputed each time the configuration changes. """ function set_data!(at::Atoms, key, value, max_change=Inf) at.data[key] = JData(max_change, 0.0, value) return at end """ `function set_transient!(a::Atoms, key, value, max_change=0.0)`: this is an alias for `set_data!` but with default `max_change = 0.0` instead of `max_change = Inf`. """ set_transient!(at::Atoms, key, value, max_change=0.0) = set_data!(at, key, value, max_change) """ `update_data!(at::Atoms, r::Real)`: increment the change counter in all stored data and delete the expired ones. """ function update_data!(at::Atoms, r::Real) for (key, t) in at.data t.accum_change += r if t.accum_change >= t.max_change delete!(at.data, key) end end return at end # ------------------------ FIO ---------------------- Dict(at::Atoms) = Dict( "__id__" => "JuLIP_Atoms", "X" => at.X, "P" => at.P, "M" => at.M, "Z" => at.Z, "cell" => at.cell, "pbc" => at.pbc, "calc" => nothing, "data" => nothing ) Atoms(D::Dict) = Atoms(D["X"], D["P"], D["M"], D["Z"], D["cell"], D["pbc"]) # calc = D["calc"], # cons = D["cons"], # data = D["data"] ) Base.convert(::Val{:JuLIP_Atoms}, D) = Atoms(D)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1048
# field symbol name is array fields = [ (:X, "positions", true), (:P, "momenta", true), (:M, "masses", true), (:Z, "numbers", true), (:cell, "cell", false), (:calc, "calculator", false), (:cons, "constraint", false), (:pbc, "pbc", false), ] for (S, name, isarray) in fields set_name = Meta.parse("set_$(name)!") get_name = Meta.parse("$name") if isarray @eval begin function $(get_name)(at::Atoms) return copy(at.$S) end function $(set_name)(at::Atoms, Q) if length(at.$S) != length(Q) at.$S = copy(Q) else at.$S .= Q end return at end end else function $(get_name)(at::Atoms) return at.$S end function $(set_name)(at::Atoms, Q) at.$S = Q return at end end end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
10113
""" `module Build` : this is a very poor man's version of `ase.build`. At the moment only a subset of the `bulk` functionality is supported. """ module Build import JuLIP using ..Chemistry using JuLIP: JVec, JMat, JVecF, JMatF, mat, Atoms, cell, cell_vecs, positions, momenta, masses, numbers, pbc, chemical_symbols, set_cell!, set_pbc!, update_data!, apply_defm! using LinearAlgebra: I, Diagonal, isdiag, norm import Base: union import JuLIP: Atoms export repeat, bulk, cluster, autocell!, append _auto_pbc(pbc::Tuple{Bool, Bool, Bool}) = JVec(pbc...) _auto_pbc(pbc::Bool) = JVec(pbc, pbc, pbc) _auto_pbc(pbc::AbstractVector) = JVec(pbc...) _auto_cell(cell) = cell _auto_cell(cell::AbstractMatrix) = JMat(cell) _auto_cell(C::AbstractVector{T}) where {T <: Real} = ( length(C) == 3 ? JMatF(C[1], 0.0, 0.0, 0.0, C[2], 0.0, 0.0, 0.0, C[3]) : JMatF(C...) ) # (case 2 requires that length(C) == 0 _auto_cell(C::AbstractVector{T}) where {T <: AbstractVector} = JMatF([ C[1] C[2] C[3] ]) _auto_cell(C::AbstractVector) = _auto_cell([ c for c in C ]) """ `autocell!(at::Atoms) -> Atoms` generates cell vectors that contain all atom positions + a small buffer, sets the cell of `at` accordingly (in-place) and returns the same atoms objet with the new cell. """ autocell!(at::Atoms) = set_cell!(at, _autocell(positions(at))) function _autocell(X::Vector{JVec{T}}) where T ext = extrema(mat(X), dims = (2,)) C = Diagonal([ e[2] - e[1] + 1.0 for e in ext ][:]) return JMat{T}(C) end # if we have no clue about X just return it and see what happens _auto_X(X) = X # if the elements of X weren't inferred, try to infer before reading # TODO: this might lead to a stack overflow!! _auto_X(X::AbstractVector) = _auto_X( [x for x in X] ) # the cases where we know what to do ... _auto_X(X::AbstractVector{T}) where {T <: AbstractVector} = [ JVecF(x) for x in X ] _auto_X(X::AbstractVector{T}) where {T <: Real} = _auto_X(reshape(X, 3, :)) _auto_X(X::AbstractMatrix) = (@assert size(X)[1] == 3; [ JVecF(X[:,n]) for n = 1:size(X,2) ]) _auto_M(M::AbstractVector{T}) where {T <: AbstractFloat} = Vector{T}(M) _auto_M(M::AbstractVector) = Vector{Float64}(M) _auto_Z(Z::AbstractVector) = Vector{Int16}(Z) Atoms(; kwargs...) = Atoms{Float64}(; kwargs...) Atoms{T}(; X = JVec{T}[], P = JVec{T}[], M = T[], Z = Int16[], cell = zero(JMat{T}), pbc = JVec(false, false, false), calc = nothing ) where {T} = Atoms(X, P, M, Z, cell, pbc, calc) Atoms(X, P, M, Z, cell, pbc, calc=nothing) = Atoms(_auto_X(X), _auto_X(P), _auto_M(M), _auto_Z(Z), _auto_cell(cell), _auto_pbc(pbc), calc) Atoms(Z::Vector{Int16}, X::Vector{JVec{T}}; kwargs...) where {T} = Atoms{T}(; Z=Z, X=X, kwargs...) """ simple way to construct an atoms object from just positions """ Atoms(s::Symbol, X::Vector{JVec{T}}; kwargs...) where {T} = Atoms{T}(; X = X, M = fill(one(T), length(X)), P = zeros(JVec{T}, length(X)), Z = fill(atomic_number(s), length(X)), cell = _autocell(X), pbc = (false, false, false), kwargs... ) Atoms(s::Symbol, X::Matrix{Float64}) = Atoms(s, vecs(X)) const _unit_cells = Dict( # (positions, cell matrix, factor of a) :fcc => ( [ [0 0 0], ], [0 1 1; 1 0 1; 1 1 0], 0.5), :bcc => ( [ [0.0,0.0,0.0], ], [-1 1 1; 1 -1 1; 1 1 -1], 0.5), :diamond => ( [ [0.0, 0.0, 0.0], [0.5, 0.5, 0.5] ], [0 1 1; 1 0 1; 1 1 0], 0.5) ) const _cubic_cells = Dict( # (positions, factor of a) :fcc => ( [ [0 0 0], [0 1 1], [1 0 1], [1 1 0] ], 0.5 ), :bcc => ( [ [0 0 0], [1 1 1] ], 0.5 ), :diamond => ( [ [0 0 0], [1 1 1], [0 2 2], [1 3 3], [2 0 2], [3 1 3], [2 2 0], [3 3 1] ], 0.25 ) ) _simple_structures = [:fcc, :bcc, :diamond] function _simple_bulk(sym::Symbol, cubic::Bool) if cubic X, scal = _cubic_cells[symmetry(sym)] C = Matrix(1.0I, 3, 3) / scal else X, C, scal = _unit_cells[symmetry(sym)] end a = lattice_constant(sym) return [ JVecF(x) * a * scal for x in X ], JMatF(C * a * scal) end function _bulk_hcp(sym::Symbol) D = Chemistry.refstate(sym) a = D["a"] c = a * D["c/a"] return [JVecF(0.0, 0.0, 0.0), JVecF(0.0, a / sqrt(3), c / 2)], JMatF( [a, -a / 2, 0.0, 0.0, a * sqrt(3)/2, 0.0, 0.0, 0.0, c] ) end _convert_pbc(pbc::NTuple{3, Bool}) = pbc _convert_pbc(pbc::Bool) = (pbc, pbc, pbc) function bulk(sym::Symbol; T=Float64, cubic = false, pbc = (true,true,true)) symm = symmetry(sym) if symm in _simple_structures X, C = _simple_bulk(sym, cubic) elseif symm == :hcp X, C = _bulk_hcp(sym) # cubic parameter is irrelevant for hcp end m = atomic_mass(sym) z = atomic_number(sym) nat = length(X) return Atoms( convert(Vector{JVec{T}}, X), fill(zero(JVec{T}), nat), fill(T(m), nat), fill(UInt16(z), nat), convert(JMat{T}, C), _convert_pbc(pbc) ) end """ auxiliary function to convert a general cell to a cubic one; this is a bit of a hack, so to not make a mess of things, this will only work in very restrictive circumstances and otherwise throw an error. But it could be revisited. """ function _cubic_cell(atu::Atoms{T}) where {T} @assert length(atu) == 1 ru = JuLIP.rmin(atu) at = bulk(chemical_symbol(atu.Z[1]), cubic=true) r = JuLIP.rmin(at) return apply_defm!(at, (ru/r) * one(JMat{T})) end """ `cluster(args...; kwargs...) -> at::AbstractAtoms` Produce a cluster of approximately radius R. The center atom is always at index 1. ## Methods ``` cluster(atu::AbstractAtoms, R::Real) # specify unit cell cluster(sym::Symbol, R::Real) # atu = bulk(sym; cubic=true) ``` Both methods assume that there is only a single species, and both require the use of an orthorhombic unit cell (for now). * `sym`: chemical symbol of the atomic species * `R` : length-scale, meaning depends on shape of the cluster ## Keyword Arguments: * `dims` : dimension into which the cluster is extended, typically `(1,2,3)` for 3D point defects and `(1,2)` for 2D dislocations, in the remaining dimension(s) the b.c. will be periodic. * `shape` : shape of the cluster, at the moment only `:ball` is allowed ## todo * lift the restriction of single species * allow other shapes """ function cluster(atu::Atoms{T}, R::Real; dims = [1,2,3], shape = :ball, x0=nothing) where {T} sym = chemical_symbols(atu)[1] # check that the cell is orthorombic if !isdiag(cell(atu)) if length(atu) > 1 error("""`JuLIP.cluster` requires as argument either a cubic cell or a one-atom cell.""") end atu = _cubic_cell(atu) end # # check that the first index is the centre # @assert norm(atu[1]) == 0.0 # determine by how much to multiply in each direction Fu = cell(atu)' L = [ j ∈ dims ? 2 * (ceil(Int, R/Fu[j,j])+3) : 1 for j = 1:3] # multiply at = atu * L # find point closest to centre x̄ = sum( x[dims] for x in at.X ) / length(at.X) i0 = findmin( [norm(x[dims] - x̄) for x in at.X] )[2] if x0 == nothing x0 = at[i0] else x0 += at[i0] end # swap positions X = positions(at) X[1], X[i0] = X[i0], X[1] F = Diagonal([Fu[j,j]*L[j] for j = 1:3]) # carve out a cluster with mini-buffer to account for round-off r = [ norm(x[dims] - x0[dims]) for x in X ] IR = findall( r .<= R+sqrt(eps(T)) ) # generate new positions Xcluster = X[IR] # generate the cluster at_cluster = Atoms(sym, Xcluster) set_cell!(at_cluster, F') # take open boundary in all directions specified in dims, periodic in the rest set_pbc!(at_cluster, [ !(j ∈ dims) for j = 1:3 ]) # return the cluster and the index of the center atom return at_cluster end cluster(sym::Symbol, R::Real; kwargs...) = cluster( bulk(sym, cubic=true), R; kwargs... ) """ ``` repeat(at::Atoms, n::NTuple{3}) -> Atoms repeat(at::Atoms, n::Integer) = repeat(at, (n,n,n)) ``` Takes an `Atoms` configuration / cell and repeats it n_j times into the j-th cell-vector direction. For example, ``` at = repeat(bulk("C"), (3,2,4)) ``` creates 3 x 2 x 4 unit cells of carbon. The same can be achieved by `*`: ``` at = bulk("C") * (3, 2, 4) ``` """ function Base.repeat(at::Atoms, n::NTuple{3}) C0 = cell(at) c1, c2, c3 = cell_vecs(at) X0, P0, M0, Z0 = positions(at), momenta(at), masses(at), numbers(at) nrep = n[1] * n[2] * n[3] nat0 = length(at) X = Base.repeat(X0, outer=nrep) P = Base.repeat(P0, outer=nrep) M = Base.repeat(M0, outer=nrep) Z = Base.repeat(Z0, outer=nrep) i = 0 for a in CartesianIndices( (1:n[1], 1:n[2], 1:n[3]) ) b = c1 * (a[1]-1) + c2 * (a[2]-1) + c3 * (a[3]-1) X[i+1:i+nat0] = [b+x for x in X0] i += nat0 end return Atoms(X, P, M, Z, Diagonal(collect(n)) * cell(at), pbc(at)) end Base.repeat(at::Atoms, n::Integer) = repeat(at, (n,n,n)) Base.repeat(at::Atoms, n::AbstractArray) = repeat(at, (n...,)) import Base.* *(at::Atoms, n) = repeat(at, n) *(n, at::Atoms) = repeat(at, n) """ `deleteat!(at::Atoms, n) -> at`: returns the same atoms object `at`, but with the atom(s) specified by `n` removed. """ function Base.deleteat!(at::Atoms, n) deleteat!(at.X, n) deleteat!(at.P, n) deleteat!(at.M, n) deleteat!(at.Z, n) update_data!(at, Inf) return at end union(at1::Atoms, at2::Atoms) = Atoms( X = union(at1.X, at2.X), P = union(at1.P, at2.P), M = union(at1.M, at2.M), Z = union(at1.Z, at2.Z), cell = cell(at1), pbc = pbc(at1) ) append(at::Atoms, X::AbstractVector{<:JVec}) = Atoms( X = union(at.X, X), P = union(at.P, zeros(JVecF, length(X))), M = union(at.M, zeros(length(X))), Z = union(at.Z, zeros(Int, length(X))), cell = cell(at), pbc = pbc(at) ) end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
1392
module Chemistry using JuLIP.FIO: load_dict export atomic_number, chemical_symbol, atomic_mass, symmetry, lattice_constant, rnn data = load_dict(@__DIR__()[1:end-3] * "data/asedata.json") const _rnn = [Float64(d) for d in data["rnn"]] const _symbols = [Symbol(s) for s in data["symbols"]] const _masses = [Float64(m) for m in data["masses"]] const _refstates = Dict{String, Any}[ d == nothing ? Dict{String, Any}() : d for d in data["refstates"]] const _numbers = Dict{Symbol, Int16}() for (n, sym) in enumerate(_symbols) _numbers[sym] = Int16(n - 1) end atomic_number(sym::Symbol) = _numbers[sym] chemical_symbol(z::Integer) = _symbols[z+1] atomic_mass(z::Integer) = _masses[z+1] atomic_mass(sym::Symbol) = atomic_mass(atomic_number(sym)) element_name(z::Integer) = _names[z+1] element_name(sym::Symbol) = element_name(atomic_number(sym)) rnn(z::Integer) = _rnn[z+1] # >>> TODO: move to utils ?? bulk as well?? rnn(sym::Symbol) = rnn(atomic_number(sym)) symmetry(z::Integer) = Symbol(_refstates[z+1]["symmetry"]) symmetry(sym::Symbol) = symmetry(atomic_number(sym)) lattice_constant(z::Integer) = Float64( _refstates[z+1]["a"] ) lattice_constant(sym::Symbol) = lattice_constant(atomic_number(sym)) refstate(z::Integer) = _refstates[z+1] refstate(sym::Symbol) = refstate(atomic_number(sym)) end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
6292
import Base.* export SWCutoff, SplineCutoff, Shift, HS, C0Shift, C1Shift, C2Shift # this file is include from Potentials.jl # i.e. it is part of JuLIP.Potentials # it implements three types of cutoff potentials. ######################## Stillinger-Weber type cutoff """ `cutsw(r, Rc, Lc)` Implementation of the C^∞ Stillinger-Weber type cut-off potential 1.0 / ( 1.0 + exp( lc / (Rc-r) ) ) `d_cutinf` implements the first derivative """ @inline cutsw(r::T, Rc, Lc) where {T} = T(1) / ( T(1) + exp( Lc / ( max(Rc-r, T(0)) + T(1e-2) ) ) ) "derivative of `cutsw`" @inline function cutsw_d(r::T, Rc, Lc) where {T} t = T(1) / ( max(Rc-r, T(0)) + T(1e-2) ) # a numerically stable (Rc-r)^{-1} e = T(1) / (T(1) + exp(Lc * t)) # compute exponential only once return - Lc * (T(1) - e) * e * t^2 end """ `type SWCutoff`: SW type cut-off potential with C^∞ regularity 1.0 / ( 1.0 + exp( Lc / (Rc-r) ) ) This is not very optimised: one could speed up `evaluate_d` significantly by avoiding multiple evaluations. ### Parameters * `Rc` : cut-off radius * `Lc` : scale """ struct SWCutoff{T} <: PairPotential Rc::T Lc::T e0::T end @pot SWCutoff evaluate(p::SWCutoff, r::Number) = p.e0 * cutsw(r, p.Rc, p.Lc) evaluate_d(p::SWCutoff, r::Number) = p.e0 * cutsw_d(r, p.Rc, p.Lc) cutoff(p::SWCutoff) = p.Rc # simplified constructor to ensure compatibility SWCutoff(Rc, Lc) = SWCutoff(Rc, Lc, one(typeof(Rc))) # kw-constructor (original SW parameters, pair term) SWCutoff(; Rc=1.8, Lc=1.0, e0=1.0) = SWCutoff(Rc, Lc, e0) ######################## Shift-Cutoff: """ `Shift{ORD}` : a shift-cutoff function It is not technically a cut-off function but a cut-off operator. Let `f(r)` with real arguments and range, then ``` g = f * Shift(o, rcut) ``` creates a new function `g(r) = (f(r) - p(r)) * (r < rcut)` where `p(r)` is a polynomial of order `o` such that all derivatives of `g` up to order `o` vanish at `r = rcut`. There order must be an integer between -1 and 2. Choosing `o=-1` creates a Heaviside function. ### Equivalent constructors: ``` HS(r::Float64) = Shift(-1, r) C0Shift(r::Float64) = Shift(0, r) C1Shift(r::Float64) = Shift(1, r) C2Shift(r::Float64) = Shift(2, r) ``` ### Example: ``` lj = LennardJones() # standard lennad-jones potential V = lj * C2Shift(2.5) ``` Now `V` is a C2-continuous `PairPotential` with support (0, 2.5].""" struct Shift{ORD, TV, T} <: PairPotential ord::Val{ORD} V::TV rcut::T Vcut::T dVcut::T ddVcut::T end @pot Shift const HS{TV} = Shift{-1, TV} const C0Shift{TV} = Shift{0, TV} const C1Shift{TV} = Shift{1, TV} const C2Shift{TV} = Shift{2, TV} cutoff(p::Shift) = p.rcut # the basic constructors "see documentation for `Shift`" HS(r::AbstractFloat) = Shift(-1, r) "see documentation for `Shift`" C0Shift(r::AbstractFloat) = Shift(0, r) "see documentation for `Shift`" C1Shift(r::AbstractFloat) = Shift(1, r) "see documentation for `Shift`" C2Shift(r::AbstractFloat) = Shift(2, r) Shift(o::Int, r::AbstractFloat) = Shift(Val(o), nothing, r, 0.0, 0.0, 0.0) Shift(V, p::Shift{-1}) = Shift(p.ord, V, p.rcut, 0.0, 0.0, 0.0) Shift(V, p::Shift{0}) = Shift(p.ord, V, p.rcut, V(p.rcut), 0.0, 0.0) Shift(V, p::Shift{1}) = Shift(p.ord, V, p.rcut, V(p.rcut), (@D V(p.rcut)), 0.0) Shift(V, p::Shift{2}) = Shift(p.ord, V, p.rcut, V(p.rcut), (@D V(p.rcut)), (@DD V(p.rcut))) *(V::PairPotential, p::Shift{ORD, Nothing}) where {ORD} = Shift(V, p) *(p::Shift{ORD, Nothing}, V::PairPotential) where {ORD} = Shift(V, p) @inline evaluate(p::Shift{-1}, r::Number) = r < p.rcut ? p.V(r) : 0.0 @inline evaluate_d(p::Shift{-1}, r::Number) = r < p.rcut ? (@D p.V(r)) : 0.0 @inline evaluate_dd(p::Shift{-1}, r::Number) = r < p.rcut ? (@DD p.V(r)) : 0.0 @inline evaluate(p::Shift{0}, r::Number) = r < p.rcut ? (p.V(r) - p.Vcut) : 0.0 @inline evaluate_d(p::Shift{0}, r::Number) = r < p.rcut ? (@D p.V(r)) : 0.0 @inline evaluate_dd(p::Shift{0}, r::Number) = r < p.rcut ? (@DD p.V(r)) : 0.0 @inline evaluate(p::Shift{1}, r::Number) = r >= p.rcut ? 0.0 : (p.V(r) - p.Vcut - p.dVcut * (r - p.rcut)) @inline evaluate_d(p::Shift{1}, r::Number) = r < p.rcut ? ((@D p.V(r)) - p.dVcut) : 0.0 @inline evaluate_dd(p::Shift{1}, r::Number) = r < p.rcut ? (@DD p.V(r)) : 0.0 @inline evaluate(p::Shift{2}, r::Number) = r >= p.rcut ? 0.0 : (p.V(r) - p.Vcut - p.dVcut * (r - p.rcut) - 0.5 * p.ddVcut * (r-p.rcut)^2) @inline evaluate_d(p::Shift{2}, r::Number) = r >= p.rcut ? 0.0 : ((@D p.V(r)) - p.dVcut - p.ddVcut * (r - p.rcut)) @inline evaluate_dd(p::Shift{2}, r::Number) = r >= p.rcut ? 0.0 : ((@DD p.V(r)) - p.ddVcut) ######################## Quintic Spline cut-off: # TODO: switch to general types ? @inline function fcut(r, r0, r1) s = 1.0 - (r-r0) / (r1-r0) return (s >= 1.0) + (0.0 < s < 1.0) * (@fastmath 6.0 * s^5 - 15.0 * s^4 + 10.0 * s^3) end "Derivative of `fcut`; see documentation of `fcut`." @inline function fcut_d(r, r0, r1) s = 1-(r-r0) / (r1-r0) return -(0 < s < 1) * (@fastmath (30*s^4 - 60 * s^3 + 30 * s^2) / (r1-r0)) end "Second order derivative of `fcut`; see documentation of `fcut`." function fcut_dd(r, r0, r1) s = 1-(r-r0) / (r1-r0) return (0 < s < 1) * (@fastmath (120*s^3 - 180 * s^2 + 60 * s) / (r1-r0)^2) end """ `SplineCutoff` : Piecewise quintic C^{2,1} regular polynomial. Parameters: * r0 : inner cut-off radius * r1 : outer cut-off radius. """ mutable struct SplineCutoff <: PairPotential r0::Float64 r1::Float64 end @pot SplineCutoff @inline evaluate(p::SplineCutoff, r::Number) = fcut(r, p.r0, p.r1) @inline evaluate_d(p::SplineCutoff, r::Number) = fcut_d(r, p.r0, p.r1) evaluate_dd(p::SplineCutoff, r::Number) = fcut_dd(r, p.r0, p.r1) cutoff(p::SplineCutoff) = p.r1 Base.string(p::SplineCutoff) = "SplineCutoff(r0=$(p.r0), r1=$(p.r1))" # ============ DRAFT: cos-based cutoff ============ @inline function coscut(r::T, r0, r1) where {T <: AbstractFloat} if r <= r0 return T(1.0) elseif r > r1 return T(0.0) else return @fastmath T(0.5) * (cos( π * (r-r0) / (r1-r0) ) + T(1.0)) end end @inline function coscut_d(r::T, r0, r1) where {T <: AbstractFloat} if r0 < r < r1 return @fastmath - π/(2*(r1-r0)) * sin( π * (r-r0) / (r1-r0) ) else return T(0.0) end end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
8986
export atomdofs, variablecell, fixedcell, dofmgr_resetref!, variablecell!, fixedcell!, set_clamp!, set_free!, set_mask!, reset_clamp! using SparseArrays: SparseMatrixCSC, nnz, sparse, findnz using LinearAlgebra: rmul!, det # ======================================================================== # AUXILIARY FUNCTIONS # ======================================================================== function zeros_free(n::Integer, x::AbstractVector, free) z = zeros(eltype(x), n) z[free] = x return z end function insert_free!(p::AbstractArray, x::AbstractVector, free) p[free] = x return p end # a helper function to get a valid positions array from a dof-vector positions(at::AbstractAtoms, ifree::AbstractVector{<:Integer}, dofs::Dofs) = insert_free!(positions(at) |> mat, dofs, ifree) |> vecs """ `_pos_to_dof` : a helper function that will convert a positions-based block-hessian into a classical dof-based hessian with the standard JuLIP ordering of dofs. """ function _pos_to_dof(Hpos::SparseMatrixCSC, at::AbstractAtoms{T}) where {T} I, J, Z = Int[], Int[], T[] for C in (I, J, Z); sizehint!(C, 9 * nnz(Hpos)); end Nat = length(at) @assert Nat == size(Hpos, 2) # TODO: this findnz creates an extra copy of all data, which we should avoid for (iat, jat, zat) in zip(findnz(Hpos)...) for a = 1:3, b = 1:3 push!(I, 3 * (iat-1) + a) push!(J, 3 * (jat-1) + b) push!(Z, zat[a,b]) end end return sparse(I, J, Z, 3*Nat, 3*Nat) end # TODO: this is a temporary hack, and I think we need to # figure out how to do this for more general constraints # maybe not too terrible projectxfree(at::Atoms, A::SparseMatrixCSC) = A[at.dofmgr.xfree, at.dofmgr.xfree] """ `analyze_mask` : helper function to generate list of dof indices from lists of atom indices indicating free and clamped atoms """ function analyze_mask(at, free, clamp, mask) if length(findall((free != nothing, clamp != nothing, mask != nothing))) > 1 error("FixedCell: only one of `free`, `clamp`, `mask` may be provided") elseif all( (free == nothing, clamp == nothing, mask == nothing) ) # in this case (default) all atoms are free return collect(1:3*length(at)) end # determine free dof indices Nat = length(at) if clamp != nothing # revert to setting free free = setdiff(1:Nat, clamp) end if free != nothing # revert to setting mask mask = fill(false, 3, Nat) if !isempty(free) mask[:, free] .= true end end return findall(mask[:]) end analyze_mask(at, free::Colon, clamp::Nothing, mask::Nothing) = collect(1:3*length(at)) analyze_mask(at, free::Nothing, clamp::Colon, mask::Nothing) = Int[] # ======================================================================== # MAIN DOF MANAGER INTERFACE # ======================================================================== """ `VariableCell`: both atom positions and cell shape are free; **WARNING:** (1) before manipulating the dof-vectors returned by a `VariableCell` constraint, read *meaning of dofs* instructions at bottom of help text! (2) The `volume` field is a signed volume. Constructor: ```julia VariableCell(at::AbstractAtoms; free=..., clamp=..., mask=..., fixvolume=false) ``` Set at most one of the kwargs: * no kwarg: all atoms are free * `free` : list of free atom indices (not dof indices) * `clamp` : list of clamped atom indices (not dof indices) * `mask` : 3 x N Bool array to specify individual coordinates to be clamped ### Meaning of dofs On call to the constructor, `VariableCell` stored positions and deformation `X0, F0`, dofs are understood *relative* to this initial configuration. `dofs(at, cons::VariableCell)` returns a vector that represents a pair `(Y, F1)` of a displacement and a deformation matrix. These are to be understood *relative* to the reference `X0, F0` stored in `cons` as follows: * `F = F1` (the cell is then `F'`) * `X = [F1 * (F0 \\ y) for y in Y)]` One aspect of this definition is that clamped atom positions still change via `F` """ DofManager(at::AbstractAtoms) = DofManager(length(at), eltype(at)) DofManager(Nat::Integer, T = Float64) = DofManager( false, # variablecell collect(1:3*Nat), # xfree LinearConstraint{T}[], # lincons JVec{T}[], # X0 zero(JMat{T}) ) # F0 import Base.== ==(d1::DofManager, d2::DofManager) = (d1.variablecell == d2.variablecell) && (d1.xfree == d2.xfree) # TODO: potential need to add equality about the constraints? # is xfree even relevant for equality? variablecell(at::Atoms) = at.dofmgr.variablecell fixedcell(at::Atoms) = !variablecell(at::Atoms) function dofmgr_resetref!(at) at.dofmgr.X0 = copy(positions(at)) at.dofmgr.F0 = cell(at)' return at end # convenience function to return DoFs associated with a particular atom atomdofs(at::Atoms, i::Integer) = findall(in(3*i-2:3*i), at.dofmgr.xfree) """ `variablecell!(at)` : make the cell-shape variable """ variablecell!(at) = set_variablecell!(at, true) """ `fixedcell!(at)` : freeze the cell shape """ fixedcell!(at) = set_variablecell!(at, false) """ `set_variablecell!` : specify whether cell shape is variable or fixed """ function set_variablecell!(at::AbstractAtoms, tf::Bool) at.dofmgr.variablecell = tf if tf dofmgr_resetref!(at) end return at end set_clamp!(at::Atoms, Iclamp::AbstractVector{<: Integer}) = set_clamp!(at; clamp = Iclamp) set_free!(at::Atoms, Ifree::AbstractVector{<: Integer}) = set_clamp!(at; free = Ifree) set_mask!(at::Atoms, mask) = set_clamp!(at; mask=mask) reset_clamp!(at) = set_clamp!(at; free = :) function set_clamp!(at::Atoms; free=nothing, clamp=nothing, mask=nothing) at.dofmgr.xfree = analyze_mask(at, free, clamp, mask) return at end # reverse map: # F -> F # X[n] = F * F^{-1} X0[n] function position_dofs(at::Atoms) if fixedcell(at) return mat(at.X)[at.dofmgr.xfree] end # variable cell case: X = positions(at) F = cell(at)' A = at.dofmgr.F0 * inv(F) U = [A * x for x in X] # switch to broadcast! return [mat(U)[at.dofmgr.xfree]; Matrix(F)[:]] end posdofs(x) = x[1:end-9] celldofs(x) = x[end-8:end] function set_position_dofs!(at::AbstractAtoms{T}, x::Dofs) where {T} if fixedcell(at) return set_positions!(at, positions(at, at.dofmgr.xfree, x)) end # variable cell case: F = JMat{T}(celldofs(x)) A = F * inv(at.dofmgr.F0) Y = copy(at.dofmgr.X0) mat(Y)[at.dofmgr.xfree] = posdofs(x) for n = 1:length(Y) Y[n] = A * Y[n] end set_positions!(at, Y) set_cell!(at, F') return at end function momentum_dofs(at::AbstractAtoms) if fixedcell(at) return mat(momenta(at))[at.dofmgr.xfree] end @error("`momentum_dofs` is not yet implmement for variable cells") return nothing end function set_momentum_dofs!(at::AbstractAtoms, p::Dofs) if fixedcell(at) return set_momenta!(at, zeros_free(3 * length(at), p, at.dofmgr.xfree) |> vecs) end @error("`set_momentum_dofs!` is not yet implmement for variable cells") return nothing end # for a variation x^t_i = (F+tU) F_0^{-1} (u_i + t v_i) # ~ U F^{-1} F F0^{-1} u_i + F F0^{-1} v_i # we get # dE/dt |_{t=0} = U : (S F^{-T}) - < (F * inv(F0))' * frc, v> # # this is nice because there is no contribution from the stress to # the positions component of the gradient """ `sigvol` : signed volume """ sigvol(C::AbstractMatrix) = det(C) sigvol(at::AbstractAtoms) = sigvol(cell(at)) """ `sigvol_d` : derivative of signed volume """ sigvol_d(C::AbstractMatrix) = sigvol(C) * inv(C)' sigvol_d(at::AbstractAtoms) = sigvol_d(cell(at)) function gradient(calc::AbstractCalculator, at::Atoms) if fixedcell(at) return rmul!(mat(forces(at))[at.dofmgr.xfree], -1.0) end F = cell(at)' A = F * inv(at.dofmgr.F0) G = forces(at) for n = 1:length(G) G[n] = - A' * G[n] end S = - virial(at) * inv(F)' # ∂E / ∂F # S += at.dofmgr.pressure * sigvol_d(at)' # applied stress TODO: revive this! return [ mat(G)[at.dofmgr.xfree]; Array(S)[:] ] end function hessian(calc::AbstractCalculator, at::AbstractAtoms) if fixedcell(at) H = _pos_to_dof(hessian_pos(calculator(at), at), at) return projectxfree(at, H) end @error("`hessian` is not yet implmement for variable cells") return nothing end # TODO: # - in-plane, anti-plane # - pressure # - fixvolume # - once we add an external potential we need to think about terminology # should energy -> potential_energy?; total_energy a new one? # total_energy(calc::AbstractCalculator, at::AbstractAtoms, cons::VariableCell) = # energy(calc, at) + cons.pressure * sigvol(at)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
6413
using NeighbourLists using DelimitedFiles: readdlm using JuLIP: r_sum using LinearAlgebra: rmul! export EAM # =================== General Single-Species EAM Potential ==================== """ `struct EAM1` Generic Single-species EAM potential, to specify it, one needs to specify the pair potential ϕ, the electron density ρ and the embedding function F. The most convenient constructor is likely via tabulated values, more below. # Constructors: ``` EAM(pair::PairPotential, eden::PairPotential, embed) EAM(fpair::AbstractString, feden::AbstractString, fembed::AbstractString; kwargs...) ``` ## Constructing an EAM potential from tabulated values At the moment only the .plt format is implemented. Files can e.g. be obtained from * [NIST](https://www.ctcms.nist.gov/potentials/) Use the `EAM(fpair, feden, fembed)` constructure. The keyword arguments specify details of how the tabulated values are fitted; see `?SplinePairPotential` for more details. TODO: implement other file formats. """ struct EAM1{T1, T2, T3, T4} <: SitePotential ϕ::T1 # pair potential ρ::T2 # electron density potential F::T3 # embedding function info::T4 end @pot EAM1 EAM1(ϕ, ρ, F) = EAM1(ϕ, ρ, F, nothing) cutoff(V::EAM1) = max(cutoff(V.ϕ), cutoff(V.ρ)) function evaluate!(tmp, V::EAM1, R::AbstractVector{JVec{T}}) where {T} if length(R) == 0 return V.F(T(0.0)) else return V.F(sum(V.ρ ∘ norm, R)) + T(0.5) * sum(V.ϕ ∘ norm, R) end end function evaluate_d!(dEs::AbstractVector{JVec{T}}, tmp, V::EAM1, Rs) where {T} if length(Rs) == 0; return dEs; end ρ̄ = sum(V.ρ ∘ norm, Rs) dF = @D V.F(ρ̄) for (i, R) in enumerate(Rs) r = norm(R) dEs[i] = ((T(0.5) * (@D V.ϕ(r)) + dF * (@D V.ρ(r))) / r) * R end return dEs end alloc_temp_dd(V::EAM1, N::Integer) = ( ∇ρ = zeros(JVecF, N), r = zeros(Float64, N) ) evaluate_dd!(hEs, tmp, V::EAM1, R) = _hess_!(hEs, tmp, V, R, identity) # ff preconditioner specification for EAM potentials # (just replace id with abs and hess with precon in the hessian code) precon!(hEs, tmp, V::EAM1, R, stab=0.0) = _hess_!(hEs, tmp, V, R, abs, stab) function _hess_!(hEs, tmp, V::EAM1, R::AbstractVector{JVec{T}}, fabs, stab=T(0) ) where {T} for i = 1:length(R) r = norm(R[i]) tmp.r[i] = r tmp.∇ρ[i] = grad(V.ρ, r, R[i]) end # precompute some stuff ρ̄ = sum(V.ρ, tmp.r) dF = @D V.F(ρ̄) ddF = @DD V.F(ρ̄) # assemble for i = 1:length(R) for j = 1:length(R) hEs[i,j] = (1-stab) * fabs(ddF) * tmp.∇ρ[i] * tmp.∇ρ[j]' end r = tmp.r[i] S = R[i] / r dϕ = @D V.ϕ(r) dρ = @D V.ρ(r) ddϕ = @DD V.ϕ(r) ddρ = @DD V.ρ(r) a = fabs(0.5 * ddϕ + dF * ddρ) b = fabs((0.5 * dϕ + dF * dρ) / r) hEs[i,i] += ( (1-stab) * ( (a-b) * S * S' + b * I ) + stab * ( (a+b) * I ) ) end return hEs end # implementation of EAM models using data files function EAM(fpair::AbstractString, feden::AbstractString, fembed::AbstractString; kwargs...) pair = SplinePairPotential(fpair; kwargs...) eden = SplinePairPotential(feden; kwargs...) embed = SplinePairPotential(feden; fixcutoff = false, kwargs...) return EAM1(pair, eden, embed) end # # Load EAM file from .fs file format # function EAM(fname::AbstractString; kwargs...) if fname[end-3:end] == ".eam" error(".eam is not yet implemented, please file an issue") elseif fname[end-6:end] == ".eam.fs" error(".eam.fs is not yet implemented, please file an issue") elseif fname[end-2:end] == ".fs" return eam_from_fs(fname; kwargs...) end error("unknwon EAM file format, please file an issue") end # ================= Finnis-Sinclair Potential ======================= mutable struct FSEmbed end @pot FSEmbed evaluate(V::FSEmbed, ρ̄) = - sqrt(ρ̄) evaluate_d(V::FSEmbed, ρ̄::T) where {T} = - T(0.5) / sqrt(ρ̄) evaluate_dd(V::FSEmbed, ρ̄::T) where {T} = T(0.25) * ρ̄^(T(-3/2)) """ `FinnisSinclair`: constructs an EAM potential with embedding function -√ρ̄. """ FinnisSinclair(pair::PairPotential, eden::PairPotential) = EAM1(pair, eden, FSEmbed()) function FinnisSinclair(fpair::AbstractString, feden::AbstractString; kwargs...) pair = SplinePairPotential(fpair; kwargs...) eden = SplinePairPotential(feden; kwargs...) return FinnisSinclair(pair, eden) end # ================= Various File Loaders ======================= """ `eam_from_fs(fname; kwargs...) -> EAM` Read a `.fs` file specifying and EAM / Finnis-Sinclair potential. """ function eam_from_fs(fname; kwargs...) F, ρfun, ϕfun, ρ, r, info = read_fs(fname) return EAM1( SplinePairPotential(r, ϕfun; kwargs...) * (@analytic r -> 1/r), SplinePairPotential(r, ρfun; kwargs...), SplinePairPotential(ρ, F; fixcutoff= false, kwargs...), info ) end """ `read_fs(fname)` -> F, ρfun, ϕfun, ρ, r, info Read a `.fs` file specifying and EAM / Finnis-Sinclair potential. The description of the file format is taken from http://lammps.sandia.gov/doc/pair_eam.html see also https://sites.google.com/a/ncsu.edu/cjobrien/tutorials-and-guides/eam """ function read_fs(fname) f = open(fname) # ignore the first three lines for n = 1:3 readline(f) end # line 4: Nelements Element1 Element2 ... ElementN L4 = readline(f) |> chomp |> IOBuffer |> readdlm if L4[1] != 1 error("""`read_fs`: the file `$fname` is for alloys, but only the single species potential is implemented so far.""") end info = Dict() info[:species] = L4[2] # line 5: Nrho, drho, Nr, dr, cutoff L5 = readline(f) |> IOBuffer |> readdlm Nrho, drho, Nr, dr, cutoff = Int(L5[1]), L5[2], Int(L5[3]), L5[4], L5[5] info[:cutoff] = cutoff # line 6: atomic number, mass, lattice constant, lattice type (e.g. FCC) L6 = readline(f) |> IOBuffer |> readdlm info[:number], info[:mass], info[:a0], info[:lattice] = tuple(L6...) # all the data data = readdlm(f) @assert length(data) == Nrho+2*Nr ρ = range(0, stop=(Nrho-1)*drho, length=Nrho) r = range(cutoff - (Nr-1)*dr, stop=cutoff, length=Nr) # embedding function F = data[1:Nrho] # density function ρfun = data[Nrho+1:Nrho+Nr] # interatomic potential ϕfun = data[Nrho+Nr+1:Nrho+2*Nr] return F, ρfun, ϕfun, ρ, r, info end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3479
using JuLIP.FIO: load_json using JuLIP: chemical_symbol, atomic_number using JuLIP.Potentials: WrappedAnalyticFunction, F64fun, @D import JuLIP.Potentials: evaluate!, evaluate_d! export EMT """ `EMT`: a re-implementation of the `EMT` calculator (a variant of EAM) os ASE in Julia, largely for fun and comparison with Python, but also to demonstrate how to implement a multi-component calculator in JuLIP """ struct EMT <: MSitePotential pair::Vector{WrappedPairPotential} Cpair::Vector{Float64} rho::Vector{WrappedPairPotential} embed::Vector{WrappedAnalyticFunction} z2ind::Dict{Int, Int} rc::Float64 end cutoff(calc::EMT) = calc.rc + 0.5 # ========================== Initialisation ============================ function _load_emt() D = load_json( joinpath(@__DIR__(), "..", "data", "emt.json") ) return D["params"], D["acut"], D["rc"], D["beta"] end EMT(at::Atoms) = EMT(unique(at.Z)) EMT(sym::Vector{Symbol}) = EMT(atomic_number.(sym)) function EMT(Z::Vector{<:Integer}) # load all the parameters params, acut, rc, β = _load_emt() rcplus = rc + 0.5 # the actual cutoff # get unique Z numbers and use them to allocate the EMT calculator Z = unique(Z) nZ = length(Z) emt = EMT(Vector{WrappedPairPotential}(undef, nZ), # pair Vector{Float64}(undef, nZ), # Cpair Vector{WrappedPairPotential}(undef, nZ), # rho Vector{WrappedAnalyticFunction}(undef, nZ), # embed Dict{Int,Int}(), rc) # loop through unique symbols/Z and for each compute the relevant potentials for (i, z) in enumerate(Z) # store Z -> i maps emt.z2ind[z] = i sym = chemical_symbol(z) p = params[String(sym)] # cut-off: this is a FD function; this is AWFUL! replace with spline??? # Θ = 1.0 / (1.0 + exp($acut * (r - $rc) )) # pair potential n0, κ, s0 = p["n0"], p["κ"], p["s0"] emt.pair[i] = WrappedPairPotential( @analytic(r -> n0 * exp( -κ * (r / β - s0) ) * θ, θ = 1.0 / (1.0 + exp(acut * (r - rc) )) ), rcplus) emt.Cpair[i] = p["Cpair"] # radial electron density function η2, γ1 = p["η2"], p["γ1"] emt.rho[i] = WrappedPairPotential( @analytic( r -> n0 * exp( -η2 * (r - (β*s0)) ) * θ, θ = 1.0 / (1.0 + exp(acut * (r - rc) )) ), rcplus) # embedding function E0, V0, λ = p["E0"], p["V0"], p["λ"] emt.embed[i] = F64fun( @analytic( ρ̄-> E0 * ((1.0 + λ * DS) * exp(-λ * DS) - 1.0) + 6.0 * V0 * exp(-κ * DS), DS = - log( (1.0/(12.0*γ1*n0)) * ρ̄ ) / (β * η2) ) ) end return emt end # ========================== Main Functionality ============================ function evaluate!(tmp, emt::EMT, 𝐑, 𝐙, z0) ρ̄ = 0.0 Es = 0.0 i0 = emt.z2ind[z0] for (R, Z) in zip(𝐑, 𝐙) i = emt.z2ind[Z] r = norm(R) Es += emt.Cpair[i0] * emt.pair[i](r) ρ̄ += emt.rho[i](r) end Es += emt.embed[i0](ρ̄) return Es end function evaluate_d!(dEs, tmp, emt::EMT, 𝐑, 𝐙, z0) ρ̄ = 0.0 i0 = emt.z2ind[z0] for (R, Z) in zip(𝐑, 𝐙) i = emt.z2ind[Z] r = norm(R) ρ̄ += emt.rho[i](r) end dF = @D emt.embed[i0](ρ̄) for (j, (R, Z)) in enumerate(zip(𝐑, 𝐙)) i = emt.z2ind[Z] r = norm(R) R̂ = R/r dpair = emt.Cpair[i0] * (@D emt.pair[i](r)) drho = @D emt.rho[i](r) dEs[j] = (dpair + dF * drho) * R̂ end end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3769
# ======================================================================== # EXP VARIABLE CELL IMPLEMENTATION # ======================================================================== # # F = exp(U) F0 # x = F * F0^{-1} z = exp(U) z # # ϕ( exp(U+tV) (z+tv) ) ~ ϕ'(x) ⋅ (exp(U) V) + ϕ'(x) ⋅ ( L(U, V) exp(-U) exp(U) z ) # >>> ∂E(U) : V = [S exp(-U)'] : L(U,V) # = L'(U, S exp(-U)') : V # = L(U', S exp(-U)') : V # = L(U, S exp(-U)) : V (provided U = U') # define expm for StaticArrays since it is not provided (anymre?) import StaticArrays using LinearAlgebra: det _expm(A::StaticArrays.SMatrix{N,N,T}) where {N,T} = StaticArrays.SMatrix{N,N,T}(exp(Array(A))) mutable struct ExpVariableCell <: AbstractConstraint ifree::Vector{Int} X0::Vector{JVecF} F0::JMatF pressure::Float64 fixvolume::Bool end function ExpVariableCell(at::AbstractAtoms; free=nothing, clamp=nothing, mask=nothing, pressure = 0.0, fixvolume=false) if pressure != 0.0 && fixvolume warning("the pressure setting will be ignored when `fixvolume==true`") end return ExpVariableCell( analyze_mask(at, free, clamp, mask), positions(at), defm(at), pressure, fixvolume ) end function logm_defm(at::AbstractAtoms, cons::ExpVariableCell) F = defm(at) # remove the reference deformation (F = expm(U) * F0) expU = F * inv(cons.F0) # expU should be spd, but roundoff (or other things) might mess this up # do we need an extra check here? U = log(expU |> Array) |> JMat U = real(0.5 * (U + U')) # check that expm(U) * F0 ≈ F (if not, then something has gone horribly wrong) if norm(F - _expm(U) * cons.F0, Inf) > 1e-12 @show F @show _expm(U) * cons.F0 error("something has gone wrong; U is not symmetric?") end return U, F end expposdofs(x) = x[1:end-6] expcelldofs(x) = x[end-5:end] U2dofs(U) = U[(1,2,3,5,6,9)] dofs2U(x) = JMat(expcelldofs(x)[(1,2,3,2,4,5,3,5,6)]) function position_dofs(at::AbstractAtoms, cons::ExpVariableCell) X = positions(at) U, _ = logm_defm(at, cons) # tranform the positions back to the reference cell (F0) broadcast!(x -> _expm(-U) * x, X, X) # construct dof vector return [mat(X)[cons.ifree]; U2dofs(U)] end function set_position_dofs!(at::AbstractAtoms, cons::ExpVariableCell, x::Dofs) U = dofs2U(x) expU = _expm(U) F = expU * cons.F0 Z = copy(cons.X0) mat(Z)[cons.ifree] = expposdofs(x) broadcast!(z -> expU * z, Z, Z) set_positions!(at, Z) set_defm!(at, F) return at end """ Directional derivative of matrix exponential. See Theorem 2.1 in AL-MOHY, HIGHAM SIAM J. Matrix Anal. Appl. 30, 2009. """ function dexpm_3x3(X::AbstractMatrix, E::AbstractMatrix) @assert size(X) == size(E) == (3, 3) return _expm([ X E; zeros(3,3) X ])[1:3, 4:6] end function gradient(at::AbstractAtoms, cons::ExpVariableCell) U, F = logm_defm(at, cons) G = forces(at) broadcast!(g -> - (_expm(U) * g), G, G) # G[n] <- -exp(U) * G[n] T = dexpm_3x3(U, - virial(at) * _expm(-U)) # add the forces acting on the upper diagonal of U to the lower diagonal # this way we ensure that T : V = U2dofs(T) : U2dofs(V) T[[2,3,6]] += T[[4,7,8]] # add the pressure component T[[1,5,9]] += cons.pressure * exp(trace(U)) * U[[1,5,9]] return [ mat(G)[cons.ifree]; U2dofs(T) ] end energy(at::AbstractAtoms, cons::ExpVariableCell) = energy(at) + cons.pressure * det(defm(at)) / det(cons.F0) # >>>>>> exp(trace(U)) <<<<< (tested) # TODO: fix this once we implement the volume constraint ?????? project!(at::AbstractAtoms, cons::ExpVariableCell) = at
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
4264
hessian_pos(V::SitePotential, at::AbstractAtoms) = _precon_or_hessian_pos(V, at, evaluate_dd!) # implementation of a generic assembly of a global block-hessian from # local site-hessians function _precon_or_hessian_pos(V, at::AbstractAtoms{T}, hfun) where {T} nlist = neighbourlist(at, cutoff(V)) maxN = maxneigs(nlist) hEs = zeros(JMat{T}, maxN, maxN) tmp = alloc_temp_dd(V, maxN) I, J, Z = Int[], Int[], JMat{T}[] # a crude size hint for C in (I, J, Z); sizehint!(C, npairs(nlist)); end for (i, neigs, R) in sites(nlist) nneigs = length(neigs) # [1] the "off-centre" component of the hessian: # h[a, b] = ∂_{Ra} ∂_{Rb} V (this is a nneigs x nneigs block-matrix) fill!(hEs, zero(JMat{T})) hfun(hEs, tmp, V, R) for a = 1:nneigs, b = 1:nneigs # if norm(hEs[a,b], Inf) > 0 push!(I, neigs[a]) push!(J, neigs[b]) push!(Z, hEs[a,b]) # end end # [2] the ∂_{Ri} ∂_{Ra} terms # hib = ∂_{Ri} ∂_{Rb} V = - ∑_a ∂_{Ra} ∂_{Rb} V # also at the same time we pre-compute the centre-centre term: # hii = ∂_{Ri} ∂_{Ri} V = - ∑_a ∂_{Ri} ∂_{Ra} V hii = zero(JMat{T}) for b = 1:nneigs hib = -sum( hEs[a, b] for a = 1:nneigs ) # if norm(hib, Inf) > 0 hii -= hib append!(I, (i, neigs[b] )) append!(J, (neigs[b], i )) append!(Z, (hib, hib' )) # end end # and finally add the ∂_{Ri}^2 term, which is precomputed above # if norm(hii, Inf) > 0 push!(I, i) push!(J, i) push!(Z, hii) # end end return sparse(I, J, Z, length(at), length(at)) end # ====== TODO: revisit the FD hessians ========= # """ # `fd_hessian(V, R, h) -> H` # # If `length(R) = N` and `length(R[i]) = d` then `H` is an N × N `Matrix{SMatrix}` with # each element a d × d static array. # """ # function fd_hessian(V::SitePotential, R::Vector{SVec{D,T}}, h) where {D,T} # N = length(R) # H = zeros(SMat{D, D, T}, N, N) # return fd_hessian!(H, V, R, h) # end # # """ # `fd_hessian!(H, V, R, h) -> H` # # Fill `H` with the hessian entries; cf `fd_hessian`. # """ # function fd_hessian!(H, V::SitePotential, R::Vector{SVec{D,T}}, h) where {D,T} # N = length(R) # # convert R into a long vector and H into a big matrix (same part of memory!) # Rvec = mat(R)[:] # Hmat = zeros(N*D, N*D) # reinterpret(T, H, (N*D, N*D)) # # now re-define ∇V as a function of a long vector (rather than a vector of SVecs) # dV(r) = (evaluate_d(V, r |> vecs) |> mat)[:] # # compute the hessian as a big matrix # for i = 1:N*D # Rvec[i] +=h # dVp = dV(Rvec) # Rvec[i] -= 2*h # dVm = dV(Rvec) # Hmat[:, i] = (dVp - dVm) / (2 * h) # Rvec[i] += h # end # Hmat = 0.5 * (Hmat + Hmat') # # convert to a block-matrix # for i = 1:N, j = 1:N # Ii = (i-1) * D + (1:D) # Ij = (j-1) * D + (1:D) # H[i, j] = SMat{D,D}(Hmat[Ii, Ij]) # end # return H # end # # function fd_hessian(calc::AbstractCalculator, at::AbstractAtoms{T}, h) where {T} # N = length(at) # H = zeros(JMat{T}, N, N) # return fd_hessian!(H, calc, at, h) # end # # # """ # `fd_hessian!{D,T}(H, calc, at, h) -> H` # # Fill `H` with the hessian entries; cf `fd_hessian`. # """ # function fd_hessian!(H, calc::AbstractCalculator, at::AbstractAtoms, h) # D = 3 # N = length(at) # X = positions(at) |> mat # x = X[:] # # convert R into a long vector and H into a big matrix (same part of memory!) # Hmat = zeros(N*D, N*D) # # now re-define ∇V as a function of a long vector (rather than a vector of SVecs) # dE(x_) = (site_energy_d(calc, set_positions!(at, reshape(x_, D, N)), 1) |> mat)[:] # # compute the hessian as a big matrix # for i = 1:N*D # x[i] += h # dEp = dE(x) # x[i] -= 2*h # dEm = dE(x) # Hmat[:, i] = (dEp - dEm) / (2 * h) # x[i] += h # end # Hmat = 0.5 * (Hmat + Hmat') # # convert to a block-matrix # for i = 1:N, j = 1:N # Ii = (i-1) * D + (1:D) # Ij = (j-1) * D + (1:D) # H[i, j] = SMat{D,D}(Hmat[Ii, Ij]) # end # return H # end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
5097
""" Prototype for IPs based on "Machine-Learning", to be imported by modules that either define basis sets or regression methods """ module MLIPs using JuLIP: AbstractCalculator, AbstractAtoms using JuLIP.FIO: decode_dict import JuLIP: energy, forces, virial, site_energy, site_energy_d import Base: Dict, convert, == export IPSuperBasis, IPCollection, combine """ `abstract type IPBasis` : A type derived from `IPBasis` defines not an IP as such but a collection of IPs that can be understood as a basis set. E.g., a 2B-potential could be obtained from polynomials, ``` ϕ(r) = ∑_k c_k exp(-k r) ``` then the `B::IPBasis` might specify the basis functions {r -> exp(-kr)} as a collection of `PairPotential`s. Then, `energy(at, B)` does not return a single energy but a vector of energies. ## Developer Notes * `length(basis::IPBasis)` must return the number of basis functions """ abstract type IPBasis end # ========== wrap one more more calculators into a basis ================= struct IPCollection{T} <: IPBasis coll::Vector{T} end IPCollection(args...) = IPCollection([args...]) Base.length(coll::IPCollection) = length(coll.coll) combine(basis::IPCollection, coeffs::AbstractVector{<:Number}) = SumIP([ c * b for (c, b) in zip(coeffs, basis.coll) ]) energy(coll::IPCollection, at::AbstractAtoms) = [ energy(B, at) for B in coll.coll ] forces(coll::IPCollection, at::AbstractAtoms) = [ forces(B, at) for B in coll.coll ] virial(coll::IPCollection, at::AbstractAtoms) = [ virial(B, at) for B in coll.coll ] site_energy(coll::IPCollection, at::AbstractAtoms, i0::Integer) = [ site_energy(V, at, i0) for V in coll.coll ] site_energy_d(coll::IPCollection, at::AbstractAtoms, i0::Integer) = [ site_energy_d(V, at, i0) for V in coll.coll ] Dict(coll::IPCollection) = Dict( "__id__" => "JuLIP_IPCollection", "coll" => Dict.(coll.coll) ) IPCollection(D::Dict) = IPCollection( decode_dict.( D["coll"] ) ) convert(::Val{:JuLIP_IPCollection}, D::Dict) = IPCollection(D) import Base.== ==(B1::IPCollection, B2::IPCollection) = all(B1.coll .== B2.coll) # ========== IPSuperBasis : combine multiple sub-basis ================= """ `struct IPSuperBasis:` a collection of IP basis sets, re-interpreted as a large basis """ struct IPSuperBasis{TB <: IPBasis} <: IPBasis BB::Vector{TB} end _convert_basis_(b::IPBasis) = b _convert_basis_(b::AbstractCalculator) = IPCollection(b) _convert_basis_(b::AbstractVector) = IPCollection(b) IPSuperBasis(args...) = IPSuperBasis([_convert_basis_(b) for b in args]) Base.length(super::IPSuperBasis) = sum(length.(super.BB)) function combine(basis::IPSuperBasis, coeffs::AbstractVector{<:Number}) i0 = 0 components = [] for B in basis.BB lenB = length(B) push!(components, combine(B, coeffs[i0+1:i0+lenB])) i0 += lenB end return SumIP(components) end energy(superB::IPSuperBasis, at::AbstractAtoms) = vcat([ energy(B, at) for B in superB.BB ]...) forces(superB::IPSuperBasis, at::AbstractAtoms) = vcat([ forces(B, at) for B in superB.BB ]...) virial(superB::IPSuperBasis, at::AbstractAtoms) = vcat([ virial(B, at) for B in superB.BB ]...) site_energy(superB::IPSuperBasis, at::AbstractAtoms, i0::Integer) = vcat([ site_energy(B, at, i0) for B in superB.BB ]...) site_energy_d(superB::IPSuperBasis, at::AbstractAtoms, i0::Integer) = vcat([ site_energy_d(B, at, i0) for B in superB.BB ]...) Dict(superB::IPSuperBasis) = Dict( "__id__" => "JuLIP_IPSuperBasis", "components" => Dict.(superB.BB) ) IPSuperBasis(D::Dict) = IPSuperBasis( decode_dict.( D["components"] ) ) convert(::Val{:JuLIP_IPSuperBasis}, D::Dict) = IPSuperBasis(D) import Base.== ==(B1::IPSuperBasis, B2::IPSuperBasis) = all(B1.BB .== B2.BB) # ========== SumIP ================= # a sum of several IPs. struct SumIP{T} <: AbstractCalculator components::Vector{T} end SumIP(args...) = SumIP([args...]) energy(sumip::SumIP, at::AbstractAtoms; kwargs...) = sum(energy(calc, at; kwargs...) for calc in sumip.components) forces(sumip::SumIP, at::AbstractAtoms; kwargs...) = sum(forces(calc, at; kwargs...) for calc in sumip.components) virial(sumip::SumIP, at::AbstractAtoms; kwargs...) = sum(virial(calc, at; kwargs...) for calc in sumip.components) site_energy(sumip::SumIP, at::AbstractAtoms, i0::Integer) = sum(site_energy(V, at, i0) for V in sumip.components) site_energy_d(sumip::SumIP, at::AbstractAtoms, i0::Integer) = sum(site_energy_d(V, at, i0) for V in sumip.components) Dict(sumip::SumIP) = Dict( "__id__" => "JuLIP_SumIP", "components" => Dict.(sumip.components) ) SumIP(D::Dict) = SumIP( decode_dict.( D["components"] ) ) convert(::Val{:JuLIP_SumIP}, D::Dict) = SumIP(D) SumIP(V::AbstractCalculator, sumip::SumIP) = SumIP( [ [V]; sumip.components ] ) SumIP(sumip::SumIP, V::AbstractCalculator) = SumIP( [ sumip.components; [V] ] ) SumIP(sum1::SumIP, sum2::SumIP) = SumIP( [ sum1.components; sum2.components ] ) end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
3402
using JuLIP.Chemistry: atomic_number using JuLIP: Atoms abstract type MSitePotential <: AbstractCalculator end # Experimental Multi-component codes """ `neigsz!(tmp, nlist::PairList, at::Atoms, i::Integer) -> j, R Z` requires a temporary storage array `tmp` with fields `tmp.R, tmp.Z`. """ function neigsz!(tmp, nlist::PairList, at::Atoms, i::Integer) j, R = neigs!(tmp.R, nlist, i) Z = tmp.Z for n = 1:length(j) Z[n] = at.Z[j[n]] end return j, R, (@view Z[1:length(j)]) end struct MPairPotential <: MSitePotential Z2V::Dict{Tuple{Int16,Int16}, WrappedPairPotential} end MPairPotential() = MPairPotential(Dict{(Int16, Int16), WrappedPairPotential}()) function MPairPotential(args...) Vm = MPairPotential() for p in args @assert p isa Pair z, V = _convert_multi_pp(sym::Symbol, p) Vm.Z2V[z] = V end return Vm end F64fun(V::F64fun) = V _convert_multi_pp(sym::Tuple{Symbol, Symbol}, V) = _convert_multi_pp(atomic_number.(sym), V) _convert_multi_pp(z::Tuple{<:Integer,<:Integer}, V) = Int16.(z), V cutoff(V::MPairPotential) = maximum( cutoff(V) for (key, V) in V.Z2V ) alloc_temp(V::MSitePotential, at::AbstractAtoms) = alloc_temp(V, maxneigs(neighbourlist(at, cutoff(V)))) alloc_temp(V::MSitePotential, N::Integer) = ( R = zeros(JVecF, N), Z = zeros(Int16, N), ) alloc_temp_d(V::MSitePotential, at::AbstractAtoms) = alloc_temp_d(V, maxneigs(neighbourlist(at, cutoff(V)))) alloc_temp_d(V::MSitePotential, N::Integer) = (dV = zeros(JVecF, N), R = zeros(JVecF, N), Z = zeros(Int16, N), ) energy(V::MSitePotential, at::AbstractAtoms; kwargs...) = energy!(alloc_temp(V, at), V, at; kwargs...) virial(V::MSitePotential, at::AbstractAtoms; kwargs...) = virial!(alloc_temp_d(V, at), V, at; kwargs...) forces(V::MSitePotential, at::AbstractAtoms{T}; kwargs...) where {T} = forces!(zeros(JVec{T}, length(at)), alloc_temp_d(V, at), V, at; kwargs...) function energy!(tmp, calc::MSitePotential, at::Atoms{T}; domain=1:length(at)) where {T} E = 0.0 nlist = neighbourlist(at, cutoff(calc)) for i in domain j, R, Z = neigsz!(tmp, nlist, at, i) E += evaluate!(tmp, calc, R, Z, Int16(at.Z[i])) end return E end function forces!(frc, tmp, calc::MSitePotential, at::Atoms{T}; domain=1:length(at), reset=true) where {T} if reset; fill!(frc, zero(JVec{T})); end nlist = neighbourlist(at, cutoff(calc)) for i in domain j, R, Z = neigsz!(tmp, nlist, at, i) evaluate_d!(tmp.dV, tmp, calc, R, Z, Int16(at.Z[i])) for a = 1:length(j) frc[j[a]] -= tmp.dV[a] frc[i] += tmp.dV[a] end end return frc end function virial!(tmp, calc::MSitePotential, at::Atoms{T}; domain=1:length(at)) where {T} nlist = neighbourlist(at, cutoff(calc)) vir = zero(JMat{T}) for i in domain j, R, Z = neigsz!(tmp, nlist, at, i) evaluate_d!(tmp.dV, tmp, calc, R, Z, Int16(at.Z[i])) vir += site_virial(tmp.dV, R) end return vir end evaluate(V::MSitePotential, R, Z, z) = evaluate!(alloc_temp(V, length(R)), V, R, Z, z) evaluate_d(V::MSitePotential, R::AbstractVector{JVec{T}}, Z, z) where {T} = evaluate_d!(zeros(JVec{T}, length(R)), alloc_temp_d(V, length(R)), V, R, Z, z)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2572
import Base: convert, == # import JuLIP: energy, virial, site_energies, forces # import JuLIP.Potentials: evaluate using JuLIP: JVec, JMat, chemical_symbols export OneBody, MOneBody """ `mutable struct OneBody{T} <: NBodyFunction{1}` this should not normally be constructed by a user, but instead E0 should be passed to the relevant lsq functions, which will construct it. """ mutable struct OneBody{T} <: AbstractCalculator E0::T end @pot OneBody evaluate(V::OneBody) = V.E0 site_energies(V::OneBody, at::AbstractAtoms) = fill(V(), length(at)) energy(V::OneBody, at::AbstractAtoms; domain = 1:length(at)) = length(domain) * V() forces(V::OneBody, at::AbstractAtoms{T}; kwargs...) where {T} = zeros(JVec{T}, length(at)) virial(V::OneBody, at::AbstractAtoms{T}; kwargs...) where {T} = zero(JMat{T}) site_energy(V::OneBody, at::AbstractAtoms, i0::Integer) = V() site_energy_d(V::OneBody, at::AbstractAtoms{T}, i0::Integer) where {T} = zeros(JVec{T}, length(at)) Dict(V::OneBody) = Dict("__id__" => "OneBody", "E0" => V.E0) OneBody(D::Dict) = OneBody(D["E0"]) convert(::Val{:OneBody}, D::Dict) = OneBody(D) ==(V1::OneBody, V2::OneBody) = (V1.E0 == V2.E0) import Base: * *(c::Real, V::OneBody) = OneBody(V.E0 * c) *(V::OneBody, c::Real) = c * V """ `mutable struct MOneBody{T} <: NBodyFunction{1}` this should not normally be constructed by a user, but instead E0 should be passed to the relevant lsq functions, which will construct it. This structure deals with multi-species configurations. """ mutable struct MOneBody{T} <: AbstractCalculator E0::Dict{Symbol, T} end @pot MOneBody evaluate(V::MOneBody,sp) = V.E0[sp] function site_energies(V::MOneBody{T}, at::AbstractAtoms) where {T} E = zeros(T, length(at)) for i in 1:length(at) E[i] = V(chemical_symbols(at)[i]) end return E end energy(V::MOneBody, at::AbstractAtoms) = sum(site_energies(V,at)) forces(V::MOneBody, at::AbstractAtoms{T}) where {T} = zeros(JVec{T}, length(at)) virial(V::MOneBody, at::AbstractAtoms{T}) where {T} = zero(JMat{T}) Dict(V::MOneBody) = Dict("__id__" => "MOneBody", "E0" => V.E0) function convert_str_2_symb(D::Dict{String,T}) where {T} Dout = Dict{Symbol,T}() for key in keys(D) Dout[Symbol(key)] = D[key] end return Dout end convert_str_2_symb(D::Dict{Symbol,T}) where {T} = D #already in the correct form MOneBody(D::Dict{String, T}) where {T} = MOneBody(convert_str_2_symb(D["E0"])) convert(::Val{:MOneBody}, D::Dict) = MOneBody(convert_str_2_symb(D["E0"])) ==(V1::MOneBody, V2::MOneBody) = (V1.E0 == V2.E0)
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
8125
# included from Potentials.jl # part of the module JuLIP.Potentials using JuLIP: JVec, JMat, neighbourlist using LinearAlgebra: I using JuLIP.Chemistry: atomic_number using NeighbourLists export ZeroPairPotential, PairSitePotential, ZBLPotential, LennardJones, lennardjones, Morse, morse ## TODO: kill this one? grad(V::PairPotential, r::Real, R::JVec) = ((@D V(r)) / r) * R evaluate!(tmp, V::PairPotential, r::Union{Number, JVec}) = V(r) evaluate_d!(tmp, V::PairPotential, r::Union{Number, JVec}) = @D V(r) evaluate_dd!(tmp, V::PairPotential, r::Union{Number, JVec}) = @DD V(r) function evaluate!(tmp, V::PairPotential, R::AbstractVector{JVec{T}}) where {T} Es = zero(T) for i = 1:length(R) Es += T(0.5) * evaluate!(tmp, V, norm(R[i])) end return Es end function evaluate_d!(dEs, tmp, V::PairPotential, R::AbstractVector{JVec{T}}) where {T} for i = 1:length(R) r = norm(R[i]) dEs[i] = (T(0.5) * evaluate_d!(tmp, V, r) / r) * R[i] end return dEs end function evaluate_dd!(hEs, tmp, V::PairPotential, R::AbstractVector{<: JVec}) n = length(R) for i = 1:n hEs[i,i] = 0.5 * _hess!(tmp, V, norm(R[i]), R[i]) end return hEs end function _hess!(tmp, V::PairPotential, r::Number, R::JVec) R̂ = R/r P = R̂ * R̂' dV = evaluate_d!(tmp, V, r) / r ddV = evaluate_dd!(tmp, V, r) return (ddV - dV) * P + dV * I end function precon!(hEs, tmp, V::PairPotential, R::AbstractVector{<: JVec}, innerstab=T(0.0)) n = length(R) for i = 1:n hEs[i,i] = precon!(tmp, V, norm(R[i]), R[i], innerstab) end return hEs end # an FF preconditioner for pair potentials function precon!(tmp, V::PairPotential, r::T, R::JVec{T}, innerstab=T(0.1) ) where {T <: Number} r = norm(R) dV = evaluate_d!(tmp, V, r) ddV = evaluate_dd!(tmp, V, r) R̂ = R/r return (1-innerstab) * (abs(ddV) * R̂ * R̂' + abs(dV / r) * (I - R̂ * R̂')) + innerstab * (abs(ddV) + abs(dV / r)) * I end """ `LennardJones(σ, e0):` constructs the 6-12 Lennard-Jones potential [wiki](https://en.wikipedia.org/wiki/Lennard-Jones_potential) e0 * 4 * ( (σ/r)¹² - (σ/r)⁶ ) Constructor with kw arguments: `LennardJones(; kwargs...)` * `e0, σ` : standard LJ parameters, default `e0 = 1.0, σ = 1.0` * `r0` : equilibrium distance - if `r0` is specified then `σ` is ignored * `a0` : FCC lattice parameter, if `a0` is specified then `σ` is ignored (`r0, a0` cannot both be specified at the same time) """ LennardJones(σ, e0) = (@analytic r -> e0 * 4.0 * ((σ/r)^(12) - (σ/r)^(6))) function ljparams(; σ=1.0, e0=1.0, r0 = nothing, a0 = nothing) if r0 != nothing && a0 != nothing error("`LenndardJones`: cannot specify both `r0` and `a0`") end if a0 != nothing # r0 = nn-dist = a0/sqrt(2) in FCC r0 = a0 / sqrt(2) end if r0 != nothing # standard LJ is minimised at r = 2^(1/6) σ = r0 / 2^(1/6) end return σ, e0 end LennardJones(; kwargs...) = LennardJones(ljparams(;kwargs...)...) """ `lennardjones(; kwargs...)` simplified constructor for `LennardJones` (note this is type unstable!) In addition to the `kwargs` of `LennardJones`, this accepts also * `rcut` : default `:auto` which gives `rcut = (1.9*σ, 2.7*σ)`. Use `nothing` or `Inf` to specify no cutoff, or specify a tuple or array with two elements specifying the lower and upper cut-off radii to be used with `SplineCutoff`. """ function lennardjones(; rcut = :auto, kwargs...) σ, e0 = ljparams(; kwargs...) if (rcut == nothing || rcut == Inf) return LennardJones(σ, e0) elseif rcut == :auto rcut = (1.9*σ, 2.7*σ) end return SplineCutoff(rcut[1], rcut[2]) * LennardJones(σ, e0) end """ `Morse(A, e0, r0)` or `Morse(;A=4.0, e0=1.0, r0=1.0)`: constructs a `PairPotential` for ``` e0 ( exp( -2 A (r/r0 - 1) ) - 2 exp( - A (r/r0 - 1) ) ) ``` """ Morse(A, e0, r0) = @analytic( r -> e0 * ( exp(-(2.0*A) * (r/r0 - 1.0)) - 2.0 * exp(-A * (r/r0 - 1.0)) ) ) Morse(;A=4.0, e0=1.0, r0=1.0) = Morse(A, e0, r0) """ `morse(A=4.0, e0=1.0, r0=1.0, rcut=(1.9*r0, 2.7*r0))` simplified constructor for `Morse` (type unstable) """ morse(;A=4.0, e0=1.0, r0=1.0, rcut=(1.9*r0, 2.7*r0)) = ( (rcut == nothing || rcut == Inf) ? Morse(A, e0, r0) : SplineCutoff(rcut[1], rcut[2]) * Morse(A, e0, r0) ) """ `ZeroPairPotential()`: creates a potential that just returns zero """ struct ZeroPairPotential <: PairPotential end @pot ZeroPairPotential evaluate(p::ZeroPairPotential, r::T) where {T <: Number} = T(0.0) evaluate_d(p::ZeroPairPotential, r::T) where {T <: Number} = T(0.0) evaluate_dd(p::ZeroPairPotential, r::T) where {T <: Number} = T(0.0) cutoff(p::ZeroPairPotential) = Bool(0) # the weakest number type # ------------------------------------------------------------------------ # TODO: write more docs + tests for ZBL """ Implementation of the ZBL potential to model close approach. """ struct ZBLPotential{TV} <: PairPotential Z1::Int Z2::Int V::TV # analytic end @pot ZBLPotential evaluate(V::ZBLPotential, r::Number) = evaluate(V.V, r::Number) evaluate_d(V::ZBLPotential, r::Number) = evaluate_d(V.V, r::Number) cutoff(::ZBLPotential) = Inf ZBLPotential(Z1::Integer, Z2::Integer) = let Z1=Z1, Z2=Z2 au = 0.8854 * 0.529 / (Z1^0.23 + Z2^0.23) ϵ0 = 0.00552634940621 C = Z1*Z2/(4*π*ϵ0) E1, E2, E3, E4 = 0.1818, 0.5099, 0.2802, 0.02817 A1, A2, A3, A4 = 3.2/au, 0.9423/au, 0.4028/au, 0.2016/au V = @analytic(r -> C * (E1*exp(-A1*r) + E2*exp(-A2*r) + E3*exp(-A4*r) + E4*exp(-A4*r) ) / r) ZBLPotential(Z1, Z2, V) end ZBLPotential(Z::Integer) = ZBLPotential(Z, Z) ZBLPotential(s1::Symbol, s2::Symbol) = ZBLPotential(atomic_number(s1), atomic_number(s2)) ZBLPotential(s::Symbol) = ZBLPotential(s, s) Dict(V::ZBLPotential) = Dict("__id__" => "JuLIP_ZBLPotential", "Z1" => V.Z1, "Z2" => Z.Z2) ZBLPotential(D::Dict) = ZBLPotential(D["Z1"], D["Z2"]) Base.convert(::Val{:JuLIP_ZBLPotential}, D::Dict) = ZBLPotential(D) # ==================================================================== # A product of two pair potentials: primarily used for cutoff mechanisms "product of two pair potentials" mutable struct ProdPot{P1, P2} <: PairPotential p1::P1 p2::P2 end @pot ProdPot import Base.* *(p1::PairPotential, p2::PairPotential) = ProdPot(p1, p2) @inline evaluate(p::ProdPot, r::Number) = p.p1(r) * p.p2(r) evaluate_d(p::ProdPot, r::Number) = (p.p1(r) * (@D p.p2(r)) + (@D p.p1(r)) * p.p2(r)) evaluate_dd(p::ProdPot, r::Number) = (p.p1(r) * (@DD p.p2(r)) + 2 * (@D p.p1(r)) * (@D p.p2(r)) + (@DD p.p1(r)) * p.p2(r)) cutoff(p::ProdPot) = min(cutoff(p.p1), cutoff(p.p2)) # ==================================================================== """ `struct WrappedPairPotential` wraps a pairpotential using `FunctionWrappers` in order to allow type-stable storage of multiple potentials. This is the main technique required at the moment to work with multi-component systems. Otherwise, this is not advisable since it disables a range of possible compiler optimisations. """ struct WrappedPairPotential <: SimplePairPotential f::F64fun f_d::F64fun f_dd::F64fun rcut::Float64 end @pot WrappedPairPotential cutoff(V::WrappedPairPotential) = V.rcut # evaluate, etc are all derived from SimplePairPotential function WrappedPairPotential(V::AnalyticFunction, rcut) @assert (0 < rcut < Inf) f, f_d, f_dd = let V=V, rc = rcut (F64fun(r -> evaluate(V, r) * (r<rc)), F64fun(r -> evaluate_d(V, r) * (r<rc)), F64fun(r -> evaluate_dd(V, r) * (r<rc))) end return WrappedPairPotential(f, f_d, f_dd, cutoff(V)) end function WrappedPairPotential(V::PairPotential) @assert (0 < cutoff(V) < Inf) f, f_d, f_dd = let V=V, rc = cutoff(V) (F64fun(r -> evaluate(V, r) * (r<rc)), F64fun(r -> evaluate_d(V, r) * (r<rc)), F64fun(r -> evaluate_dd(V, r) * (r<rc))) end return WrappedPairPotential(f, f_d, f_dd, cutoff(V)) end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2792
export @D, @DD, @GRAD, @pot # =========================================================================== # implement some fun little macros for easier access # to the potentials # =========================================================================== # REMARK on @pot: # --------------- # Julia 0.4 version: # call(pp::Potential, varargs...) = evaluate(pp, varargs...) # call(pp::Potential, ::Type{Val{:D}}, varargs...) = evaluate_d(pp, varargs...) # call(pp::Potential, ::Type{Val{:DD}}, varargs...) = evaluate_dd(pp, varargs...) # call(pp::Potential, ::Type{Val{:GRAD}}, varargs...) = grad(pp, varargs...) # unfortunately, in 0.5 `call` doesn't take anabstractargument anymore, # which means that we need to specify for every potential how to # create this syntactic sugar. This is what `@pot` is for. """ Annotate a type with `@pot` to setup the syntax sugar for `evaluate, evaluate_d, evaluate_dd, grad`. ## Usage: For example, the declaration ```julia "documentation for `LennardJones`" mutable struct LennardJones <: PairPotential r0::Float64 end @pot LennardJones ``` creates the following aliases: ```julia lj = LennardJones(1.0) lj(args...) = evaluate(lj, args...) @D lj(args...) = evaluate_d(lj, args...) @DD lj(args...) = evaluate_dd(lj, args...) @GRAD lj(args...) = grad(lj, args...) ``` Usage of `@pot` is not restricted to pair potentials, but can be applied to *any* type. """ macro pot(fsig) @assert fsig isa Symbol sym = esc(:x) tsym = esc(fsig) quote @inline ($sym::$tsym)(args...) = evaluate($sym, args...) @inline ($sym::$tsym)(::Type{Val{:D}}, args...) = evaluate_d($sym, args...) @inline ($sym::$tsym)(::Type{Val{:DD}}, args...) = evaluate_dd($sym, args...) @inline ($sym::$tsym)(::Type{Val{:GRAD}}, args...) = grad($sym, args...) end end # -------------------------------------------------------------------------- # next create macros that translate """ `@D`: Use to evaluate the derivative of a potential. E.g., to compute the Lennard-Jones potential, ```julia lj = LennardJones() r = 1.0 + rand(10) ϕ = lj(r) ϕ' = @D lj(r) ``` see also `@DD`. """ macro D(fsig::Expr) @assert fsig.head == :call insert!(fsig.args, 2, Val{:D}) for n = 1:length(fsig.args) fsig.args[n] = esc(fsig.args[n]) end return fsig end "`@DD` : analogous to `@D`" macro DD(fsig::Expr) @assert fsig.head == :call for n = 1:length(fsig.args) fsig.args[n] = esc(fsig.args[n]) end insert!(fsig.args, 2, Val{:DD}) return fsig end "`@GRAD` : analogous to `@D`, but escapes to `grad`" macro GRAD(fsig::Expr) @assert fsig.head == :call for n = 1:length(fsig.args) fsig.args[n] = esc(fsig.args[n]) end insert!(fsig.args, 2, Val{:GRAD}) return fsig end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
7856
module Preconditioners using AlgebraicMultigrid using JuLIP: AbstractAtoms, Dofs, maxdist, cutoff, positions, forces, mat, vecs, set_positions!, chemical_symbols, rnn, JVec, JMat , AbstractCalculator, calculator, cell, fixedcell, projectxfree, _pos_to_dof using JuLIP.Potentials: @pot, @analytic, evaluate, evaluate_d, PairPotential, HS, SitePotential, sites, C0Shift, _precon_or_hessian_pos using SparseArrays: SparseMatrixCSC using LinearAlgebra: cholesky, I, Symmetric, norm import SuiteSparse import JuLIP: update! import JuLIP.Potentials: precon!, cutoff import Base: *, \, size import LinearAlgebra: ldiv!, mul!, dot export Exp, FF """ `IPPrecon`: the standard preconditioner type for JuLIP `IPPrecon` stores a field `p <: AbstractCalculator` which is should implement `precon(p, r, R)` which is a block matrix analogue of `hess(p, r, R)` and is used to assemble the preconditioner matrix via ```julia precon_matrix(P, at::AbstractAtoms) ``` If `p` should be updated in response to an update of `at` then the type can overload `JuLIP.Preconditioners.update_inner!`. ## Constructor: ``` IPPrecon(p::AbstractCalculator, at::AbstractAtoms; kwargs...) ``` ## Keyword arguments: * `updatedist`: determines after how much movement of the atoms, the preconditioner is updated * `tol`: solver tolerance if AMG is used * `updatefreq`: after how many iterations do we force an update {10} * `stab`: stabilisation constant {0.01}, add `stab * I` to `P` * `solve`: which solver to used, `:amg` or `:chol`, default is `:amg` """ mutable struct IPPrecon{TV, TS, T <: AbstractFloat, TI <: Integer} p::TV solver::TS A::SparseMatrixCSC{T, TI} oldX::Vector{JVec{T}} updatedist::T tol::T updatefreq::TI skippedupdates::TI stab::T innerstab::T end function IPPrecon(p, at::AbstractAtoms; updatedist=0.2 * rnn(at), tol=1e-7, updatefreq=10, stab=0.01, solver = :chol, innerstab=0.0) # make sure we don't use this in a context it is not intended for! @assert fixedcell(at) A = AlgebraicMultigrid.poisson(12) if solver == :amg solver = ruge_stuben(A) elseif solver in [:chol, :direct] solver = cholesky(A) else error("`IPPrecon` : unknown solver $(solver)") end P = IPPrecon(p, solver, A, positions(at), updatedist, tol, updatefreq, 0, stab, innerstab) # the force_update! makes the first assembly pass. return force_update!(P, at) end # some standard Base functionality lifted to IPPrecon ldiv!(out::Dofs, P::IPPrecon{TV, TS}, f::Dofs) where TV where TS <: AlgebraicMultigrid.MultiLevel = copyto!(out, solve(P.solver, f, 200, AlgebraicMultigrid.V(), P.tol)) ldiv!(out::Dofs, P::IPPrecon{TV, TS}, f::Dofs) where TV where TS <: SuiteSparse.CHOLMOD.Factor = copyto!(out, P.solver \ f) mul!(out::Dofs, P::IPPrecon, x::Dofs) = mul!(out, P.A, x) dot(x, P::IPPrecon, y) = dot(x, P * y) *(P::IPPrecon, x::AbstractVector) = P.A * x \(P::IPPrecon, x::AbstractVector) = ldiv!(zeros(length(x)), P, x) Base.size(P::IPPrecon) = size(P.A) need_update(P::IPPrecon, at::AbstractAtoms) = (P.skippedupdates > P.updatefreq) || (maxdist(positions(at), P.oldX) >= P.updatedist) update!(P::IPPrecon, at::AbstractAtoms) = need_update(P, at) ? force_update!(P, at) : (P.skippedupdates += 1; P) update_solver!(P::IPPrecon{TV, TS}) where TV where TS <: SuiteSparse.CHOLMOD.Factor = cholesky(Symmetric(P.A)) update_solver!(P::IPPrecon{TV, TS}) where TV where TS <: AlgebraicMultigrid.MultiLevel = ruge_stuben(P.A) function force_update!(P::IPPrecon, at::AbstractAtoms) # perform updates of the potential p (if needed; usually not) P.p = update_inner!(P.p, at) # construct the preconditioner matrix ... Pmat = precon_matrix(P.p, at, P.innerstab) Pmat = Pmat + P.stab * I Pmat = projectxfree(at, Pmat) # and the AMG solver P.A = Pmat P.solver = update_solver!(P) # remember the atom positions copyto!(P.oldX, positions(at)) # and remember that we just did a full update P.skippedupdates = 0 return P end # ============== Implementation of some concrete types ====================== # default implementation of update_inner!; # most of the time no inner update is required "update `IPPrecon.p`, must return updated `p`" update_inner!(p::Any, at::AbstractAtoms) = p "return the three linear indices associated with an atom index" atind2lininds(i::Integer) = (i-1) * 3 + [1;2;3] """ build the preconditioner matrix associated with the potential V """ precon_matrix(V, at::AbstractAtoms, innerstab = 0.1; preconmap = (hEs, tmp, V, R) -> precon!(hEs, tmp, V, R, innerstab)) = _pos_to_dof(_precon_or_hessian_pos(V, at, preconmap), at) """ A variant of the `Exp` preconditioner; see ### Constructor: `Exp(at::AbstractAtoms)` Keyword arguments: * `A`: stiffness of potential {default 3.0} * `r0`: nn distance estimate {default is an automicatic estimate} * `cutoff_mult`: cut-off is `r0 * cutoff_mult` {default 2.2} * `kwargs...`: `IPPrecon` parameters ### Reference D. Packwood, J. Kermode, L. Mones, N. Bernstein, J. Woolley, N. I. M. Gould, C. Ortner, and G. Csanyi. A universal preconditioner for simulating condensed phase materials. J. Chem. Phys., 144, 2016. """ mutable struct Exp{T, TV} Vexp::TV energyscale::T end cutoff(P::Exp) = cutoff(P.Vexp) function precon!(hEs, tmp, P::Exp{T}, R::AbstractVector{<: JVec}, innerstab=0) where {T} n = length(R) for i = 1:n hEs[i,i] = (P.energyscale * P.Vexp(norm(R[i]))+innerstab) * one(JMat{T}) end return hEs end function Exp(at::AbstractAtoms{T}; A=T(3.0), r0=rnn(at), cutoff_mult=T(2.2), energyscale = T(1.0), kwargs...) where {T} e0 = energyscale == :auto ? T(1.0) : energyscale rcut = r0 * cutoff_mult Vexp = let A=A, r0=r0 @analytic r -> exp( - A * (r/r0 - 1)) end * C0Shift(rcut) P = IPPrecon(Exp(Vexp, e0), at; kwargs...) if energyscale == :auto P.p.energyscale = estimate_energyscale(at, P) force_update!(P, at) end return P end # want μ * <P v, v> ~ <∇E(x+hv) - ∇E(x), v> / h function estimate_energyscale(at::AbstractAtoms{T}, P) where {T} # get the P-matrix at current configuration A = precon_matrix(P.p, at) # determine direction in which the cell is maximal F = Matrix(cell(at)') X0 = positions(at) _, i = maximum( (norm(F[:, j]), j) for j = 1:3 ) # hack to make findmax work again Fi = JVec{T}(F[:, i]) # an associated perturbation V = [sin(2*pi * dot(Fi, x)/dot(Fi,Fi)) * Fi for x in X0] # compute gradient at current positions f0 = forces(at) |> mat # compute gradient at perturbed positions h = 1e-3 set_positions!(at, X0 + h * V) f1 = forces(at) |> mat # return the estimated value for the energyscale V = mat(V) μ = - dot((f1 - f0)/h, V) / dot(A * V[:], V[:]) if μ < 0.1 || μ > 100.0 warn(""" e0 = $(μ) in `estimate_energyscale`; this is likely due to a poor starting guess in an optimisation, probably best to set the energyscale manually, or use CG instead of LBFGS. """) end return μ end """ `FF`: defines a preconditioner based on a force-field; implementation is close to the paper where this idea is described: Preconditioners for the geometry optimisation and saddle point search of molecular systems; Letif Mones, Christoph Ortner & Gábor Csányi; Scientific Reports 8, Article number: 13991 (2018) Each potential has to define a `precon` method from which the preconditioner is build. """ FF(at::AbstractAtoms, V::AbstractCalculator; kwargs...) = IPPrecon(V, at; kwargs...) FF(at::AbstractAtoms; kwargs...) = FF(at, calculator(at); kwargs...) end # end module Preconditioners
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
2919
# # implementation of Spline-based pair potentials # and other functionality # import Dierckx using Dierckx: Spline1D # https://github.com/kbarbary/Dierckx.jl """ `type SplinePairPotential` Pair potential defined via splines. In the construction of these splines atomic units (Angstrom) are assumed. If this is used in different units, then something will probably break. ### Constructors: ``` SplinePairPotential(xdat, ydat; kwargs...) # fit spline from data points SplinePairPotential(fname; kwargs...) # load data points from file ``` Keyword arguments: * `s = 1e-2`: balances smoothness versus fit; basically an error bound, see Dierckx website for more info * `fixcutoff = true`: if true, then the fit will be artificially modified at the cut-off to ensure that the transition to zero is smooth * `order = 3`: can use lower or higher order splines (0 <= order <= 5) but only 3 is tested * `w = (1.0 + ydat).^(-2)`: this gives relative weights to datapoints to ensure a good in the important regions; the intuition behind the default choice is that is prevents overfitting at very high energies which are not physical anyhow, but ensure that sufficient data points are used in the low energy region. """ mutable struct SplinePairPotential <: PairPotential spl::Spline1D # The actual spline object rcut::Float64 # cutoff radius (??? could just use spl.t[end] ???) wrk::Vector{Float64} # a work array for faster evaluation of derivatives end @pot SplinePairPotential SplinePairPotential(spl::Spline1D) = SplinePairPotential(spl, maximum(spl.t), Vector{Float64}(undef, length(spl.t))) cutoff(V::SplinePairPotential) = V.rcut evaluate(V::SplinePairPotential, r::Number) = V.spl(r) evaluate_d(V::SplinePairPotential, r::Number) = _deriv(V, r, 1) evaluate_dd(V::SplinePairPotential, r::Number) = _deriv(V, r, 2) _deriv(V::SplinePairPotential, r, nu) = Dierckx.derivative(V.spl, r, nu) function SplinePairPotential(xdat, ydat; s = 1e-2, fixcutoff=true, order=3, w = (1.0 .+ abs.(ydat)).^(-2)) # this creates a "fit" with s determining the balance between smoothness # and fitting the data (basically an error bound) spl = Spline1D(xdat, ydat; bc = "zero", s = s, k = order, w = w) # set the last few spline data-points to 0 to get a guaranteed # smooth transition to 0 at the cutoff. if fixcutoff spl.c[end-order+1:end] .= 0.0 end return SplinePairPotential(spl) end SplinePairPotential(fname::AbstractString; kwargs...) = SplinePairPotential(load_ppfile(fname)...; kwargs...) function load_ppfile(fname::AbstractString) if fname[end-3:end] == ".plt" return load_plt(fname) else error("unknown file type: $(fname[end-3:end])") end nothing end function load_plt(fname::AbstractString) data = readdlm(fname, Float64; comments=true) return data[:, 1], data[:, 2] end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
7788
# NOTE: this is a quick and dirty implementation of the Stillinger-Weber model; # in the future it will be good to do this more elegantly / more efficiently # there is huge overhead in this code that can be # significantly improved in terms of performance, but for now we just # want a correct and readable code # [Stillinger/Weber, PRB 1985] # --------------------------------------------------- # v2 = ϵ f2(r_ij / σ); f2(r) = A (B r^{-p} - r^{-q}) exp( (r-a)^{-1} ) # v3 = ϵ f3(ri/σ, rj/σ, rk/σ); f3 = h(rij, rij, Θjik) + ... + ... # h(rij, rik, Θjik) = λ exp[ γ (rij-a)^{-1} + γ (rik-a)^{-1} ] * (cosΘjik+1/3)^2 # >>> # V2 = 0.5 * ϵ * A (B r^{-p} - r^{-q}) * exp( (r-a)^{-1} ) # V3 = √ϵ * λ exp[ γ (r-a)^{-1} ] # # Parameters from QUIP database: # ------------------------------- # <per_pair_data atnum_i="14" atnum_j="14" AA="7.049556277" BB="0.6022245584" # p="4" q="0" a="1.80" sigma="2.0951" eps="2.1675" /> # <per_triplet_data atnum_c="14" atnum_j="14" atnum_k="14" lambda="21.0" # gamma="1.20" eps="2.1675" /> using ForwardDiff using LinearAlgebra: dot using JuLIP: JVecF export StillingerWeber """ `bondangle(S1, S2) -> (dot(S1, S2) + 1.0/3.0)^2` * not this assumes that `S1, S2` are normalised * see `bondangle_d` for the derivative """ bondangle(S1, S2) = (dot(S1, S2) + 1.0/3.0)^2 """ `b := bondangle(S1, S2)` then `bondangle_d(S1, S2, r1, r2) -> b, db1, db2` where `dbi` is the derivative of `b` w.r.t. `Ri` where `Si= Ri/ri`. """ function bondangle_d(S1, S2, r1, r2) d = dot(S1, S2) b1 = (1.0/r1) * S2 - (d/r1) * S1 b2 = (1.0/r2) * S1 - (d/r2) * S2 return (d+1.0/3.0)^2, 2.0*(d+1.0/3.0)*b1, 2.0*(d+1.0/3.0)*b2 end function _ad_bondangle_(R) R1, R2 = R[1:3], R[4:6] r1, r2 = norm(R1), norm(R2) return bondangle(R1/r1, R2/r2) end # TODO: need a faster implementation of bondangle_dd function bondangle_dd(R1, R2) R = [R1; R2] hh = ForwardDiff.hessian(_ad_bondangle_, R) h = zeros(JMatF, 2,2) h[1,1] = JMatF(hh[1:3,1:3]) h[1,2] = JMatF(hh[1:3, 4:6]) h[2,1] = JMatF(hh[4:6,1:3]) h[2,2] = JMatF(hh[4:6, 4:6]) return h end """ Stillinger-Weber potential with parameters for Si. Functional form and default parameters match the original SW potential from [Stillinger/Weber, PRB 1985]. The `StillingerWeber` type can also by "abused" to generate arbitrary bond-angle potentials of the form ∑_{i,j} V2(rij) + ∑_{i,j,k} V3(rij) V3(rik) (cos Θijk + 1/3)^2 Constructor admits the following key-word parameters: `ϵ=2.1675, σ = 2.0951, A=7.049556277, B=0.6022245584, p = 4, a = 1.8, λ=21.0, γ=1.20` which enter the potential as follows: ``` V2(r) = 0.5 * ϵ * A * (B * (r/σ)^(-p) - 1.0) * exp(1.0 / (r/σ - a)) V3(r) = sqrt(ϵ * λ) * exp(γ / (r/σ - a)) ``` """ struct StillingerWeber{P1,P2} <: SitePotential V2::P1 V3::P2 end @pot StillingerWeber cutoff(calc::StillingerWeber) = max(cutoff(calc.V2), cutoff(calc.V3)) function StillingerWeber(; brittle = false, ϵ=2.1675, σ = 2.0951, A=7.049556277, B=0.6022245584, p = 4, a = 1.8, λ = brittle ? 42.0 : 21.0, γ=1.20 ) cutoff = a*σ-1e-2 V2 = @analytic(r -> (ϵ*A) * (B*(r/σ)^(-p) - 1.0) * exp(1.0/(r/σ - a))) * HS(cutoff) V3 = @analytic(r -> sqrt(ϵ * λ) * exp( γ / (r/σ - a) )) * HS(cutoff) return StillingerWeber(V2, V3) end alloc_temp(V::StillingerWeber, N::Integer) = ( R = zeros(JVecF, N), S = zeros(JVecF, N), V3 = zeros(Float64, N) ) function evaluate!(tmp, calc::StillingerWeber, R) Es = 0.0 # three-body contributions for i = 1:length(R) r = norm(R[i]) tmp.S[i] = R[i] / r tmp.V3[i] = calc.V3(r) Es += 0.5 * calc.V2(r) end for i1 = 1:(length(R)-1), i2 = (i1+1):length(R) Es += tmp.V3[i1] * tmp.V3[i2] * bondangle(tmp.S[i1], tmp.S[i2]) end return Es end alloc_temp_d(V::StillingerWeber, N::Integer, T = Float64) = ( dV = zeros(JVec{T}, N), R = zeros(JVecF, N), r = zeros(T, N), S = zeros(JVec{T}, N), V3 = zeros(T, N), gV3 = zeros(JVec{T}, N) ) alloc_temp_dd(V::StillingerWeber, N::Integer) = ( r = zeros(Float64, N), S = zeros(JVecF, N), V3 = zeros(Float64, N), gV3 = zeros(JVecF, N) ) function evaluate_d!(dEs, tmp, calc::StillingerWeber, R::AbstractVector{<:JVec}) for i = 1:length(R) tmp.r[i] = r = norm(R[i]) tmp.S[i] = R[i] / r tmp.V3[i] = calc.V3(r) tmp.gV3[i] = grad(calc.V3, r, R[i]) dEs[i] = 0.5 * grad(calc.V2, r, R[i]) end for i1 = 1:(length(R)-1), i2 = (i1+1):length(R) a, b1, b2 = bondangle_d(tmp.S[i1], tmp.S[i2], tmp.r[i1], tmp.r[i2]) dEs[i1] += (tmp.V3[i1] * tmp.V3[i2]) * b1 + (tmp.V3[i2] * a) * tmp.gV3[i1] dEs[i2] += (tmp.V3[i1] * tmp.V3[i2]) * b2 + (tmp.V3[i1] * a) * tmp.gV3[i2] end return dEs end function _ad_dV(V::StillingerWeber, R_dofs) R = vecs( reshape(R_dofs, 3, length(R_dofs) ÷ 3) ) r = norm.(R) dV = zeros(eltype(R), length(R)) tmpd = alloc_temp_d(V, length(R), eltype(R[1])) evaluate_d!(dV, tmpd, V, R) return mat(dV)[:] end function _ad_ddV!(hEs, V::StillingerWeber, R::AbstractVector{JVec{T}}) where {T} ddV = ForwardDiff.jacobian( Rdofs -> _ad_dV(V, Rdofs), mat(R)[:] ) # convert into a block-format n = length(R) for i = 1:n, j = 1:n hEs[i, j] = ddV[ ((i-1)*3).+(1:3), ((j-1)*3).+(1:3) ] end return hEs end evaluate_dd!(hEs, tmp, V::StillingerWeber, R) = _ad_ddV!(hEs, V, R) # function hess(V::StillingerWeber, r, R) # n = length(r) # hV = zeros(JMatF, n, n) # # # two-body contributions # for (i, (r_i, R_i)) in enumerate(zip(r, R)) # hV[i,i] += hess(V.V2, r_i, R_i) # end # # # three-body terms # S = [ R1/r1 for (R1,r1) in zip(R, r) ] # V3 = [ V.V3(r1) for r1 in r ] # dV3 = [ grad(V.V3, r1, R1) for (r1, R1) in zip(r, R) ] # hV3 = [ hess(V.V3, r1, R1) for (r1, R1) in zip(r, R) ] # # for i1 = 1:(length(r)-1), i2 = (i1+1):length(r) # # Es += V3[i1] * V3[i2] * bondangle(S[i1], S[i2]) # # precompute quantities # ψ, Dψ_i1, Dψ_i2 = bondangle_d(S[i1], S[i2], r[i1], r[i2]) # Hψ = bondangle_dd(R[i1], R[i2]) # <<<< this should be SLOW (AD) # # assemble local hessian contributions # hV[i1,i1] += # hV3[i1] * V3[i2] * ψ + dV3[i1] * V3[i2] * Dψ_i1' + # Dψ_i1 * V3[i2] * dV3[i1]' + V3[i1] * V3[i2] * Hψ[1,1] # hV[i2,i2] += # V3[i2] * hV3[i2] * ψ + V3[i1] * dV3[i2] * Dψ_i2' + # Dψ_i2 * V3[i1] * dV3[i2]' + V3[i1] * V3[i2] * Hψ[2,2] # hV[i1,i2] += # dV3[i1] * dV3[i2]' * ψ + V3[i1] * Dψ_i1 * dV3[i2]' + # dV3[i1] * V3[i2] * Dψ_i2' + V3[i1] * V3[i2] * Hψ[1,2] # hV[i2, i1] += # dV3[i2] * dV3[i1]' * ψ + V3[i1] * Dψ_i2 * dV3[i1]' + # dV3[i2] * V3[i1] * Dψ_i1' + V3[i1] * V3[i2] * Hψ[2,1] # end # return hV # end function precon!(hEs, tmp, V::StillingerWeber, R::AbstractVector{JVec{T}}, innerstab=0.0 ) where {T} n = length(R) r = tmp.r V3 = tmp.V3 S = tmp.S # two-body contributions for (i, R1) in enumerate(R) r[i] = norm(R1) V3[i] = V.V3(r[i]) S[i] = R1 / r[i] hEs[i,i] += precon!(nothing, V.V2, r[i], R1) end # three-body terms for i1 = 1:(n-1), i2 = (i1+1):n Θ = dot(S[i1], S[i2]) dΘ1 = (T(1.0)/r[i1]) * S[i2] - (Θ/r[i1]) * S[i1] dΘ2 = (T(1.0)/r[i2]) * S[i1] - (Θ/r[i2]) * S[i2] # ψ = (Θ + 1/3)^2, ψ' = (Θ + 1/3), ψ'' = 2.0 a = abs((V3[i1] * V3[i2] * T(2.0))) hEs[i1,i2] += a * dΘ1 * dΘ2' hEs[i1,i1] += a * dΘ1 * dΘ1' hEs[i2, i2] += a * dΘ2 * dΘ2' hEs[i2, i1] += a * dΘ2 * dΘ1' end return hEs end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git
[ "MIT" ]
0.8.2
2a9bcb7006a0159194d54c9c54c2b933b77ea41d
code
4831
module Utils import JuLIP.Chemistry: rnn using JuLIP: AbstractAtoms, JVec, positions, set_positions!, chemical_symbols, cell, pbc, mat, dofs, set_dofs!, fixedcell, variablecell using LinearAlgebra: norm export rattle!, r_sum, r_dot, swapxy!, swapxz!, swapyz!, dist, displacement, rmin, wrap_pbc! ############################################################ ### Some useful utility functions ############################################################ ### Robust Summation and Dot Products ############################################################ # SWITCH TO KAHAN? "Robust summation." r_sum(a) = sum(a) # NOTE: if I see this correctly, then r_dot allocates a temporary # vector, which is likely quite a performance overhead. # probably, we want to re-implement this. "Robust inner product. Defined as `r_dot(a, b) = r_sum(a .* b)`" r_dot(a, b) = r_sum(a[:] .* b[:]) """ `rattle!(at::AbstractAtoms, r::Float64; rnn = 1.0, respect_constraint = true) -> at` randomly perturbs the atom positions * `r`: magnitude of perturbation * `rnn` : nearest-neighbour distance * `respect_constraint`: set false to also perturb the constrained atom positions """ function rattle!(at::AbstractAtoms, r::AbstractFloat; rnn = 1.0) # TODO: revive the respect_constraint keyword! # respect_constraint = (constraint(at) != nothing)) # if respect_constraint # x = dofs(at) # x += r * rnn * 2.0/sqrt(3) * (rand(Float64, length(x)) .- 0.5) # set_dofs!(at, x) # else X = positions(at) |> mat X .+= r * rnn * 2.0/sqrt(3) * (rand(Float64, size(X)) .- 0.5) set_positions!(at, X) if variablecell(at) apply_defm!(at, I + (r/rnn) * (rand(JMatF) .- 0.5)) end return at end """ swap x and y position coordinates """ function swapxy!(at::AbstractAtoms) X = positions(at) |> mat X[[2,1],:] = X[[1,2],:] set_positions!(at, X) return at end """ swap x and z position coordinates """ function swapxz!(at::AbstractAtoms) X = positions(at) |> mat X[[3,1],:] = X[[1,3],:] set_positions!(at, X) return at end """ swap y and z position coordinates """ function swapyz!(at::AbstractAtoms) X = positions(at) |> mat X[[3,2],:] = X[[2,3],:] set_positions!(at, X) return at end """ `dist(at, X1, X2, p = Inf)` `dist(at1, at2, p = Inf)` Returns the maximum distance (p = Inf) or alternatively a p-norm of distances between the two configurations `X1, X2` or `at1, at2`. This implementation accounts for periodic boundary conditions (in those coordinate directions where they are set to `true`) """ function dist(at::AbstractAtoms, X1::AbstractVector{<:JVec}, X2::AbstractVector{<:JVec}, p = Inf) @assert length(X1) == length(X2) == length(at) F = cell(at)' Finv = inv(F) bcrem = [ p ? 1.0 : Inf for p in pbc(at) ] d = [ norm(_project_pbc_(F, Finv, bcrem, x1 - x2)) for (x1, x2) in zip(X1, X2) ] return norm(d, p) end dist(at::AbstractAtoms, X::AbstractVector) = dist(at, positions(at), X) function dist(at1::AbstractAtoms, at2::AbstractAtoms, p = Inf) @assert norm(cell(at1) - cell(at2), Inf) < 1e-14 return dist(at1, positions(at1), positions(at2), p) end function _project_pbc_(F, Finv, bcrem, x) λ = Finv * x # convex coordinates # convex coords projected to the unit λp = JVec(rem(λ[1], bcrem[1]), rem(λ[2], bcrem[2]), rem(λ[3], bcrem[3])) return F * λp # convert back to real coordinates end function _project_coord_min_(λ, p) if !p return λ end λ = mod(λ, 1.0) # project to cell if λ > 0.5 # periodic image with minimal length λ = λ - 1.0 end return λ end function _project_pbc_min_(F, Finv, p, x) λ = Finv * x # convex coordinates # convex coords projected to the unit λp = _project_coord_min_.(λ, JVec{Bool}(p...)) return F * λp # convert back to real coordinates end function displacement(at::AbstractAtoms, X1::AbstractVector{<:JVec}, X2::AbstractVector{<:JVec}) @assert length(X1) == length(X2) == length(at) F = cell(at)' Finv = inv(F) p = pbc(at) U = [ _project_pbc_min_(F, Finv, p, x2-x1) for (x1, x2) in zip(X1, X2) ] return U end project_min(at, u) = _project_pbc_min_(cell(at)', inv(cell(at)'), pbc(at), u) function rnn(at::AbstractAtoms) syms = unique(chemical_symbols(at)) return minimum(rnn.(syms)) end function wrap_pbc!(at) X = positions(at) F = cell(at)' X = [_project_pbc_min_(F, inv(F), pbc(at), x) for x in X] set_positions!(at, X) end function rmin(at::AbstractAtoms) at2 = at * 2 X = positions(at2) r = norm(X[1]-X[2]) for n = 1:length(X)-1, m = n+1:length(X) r = min(r, norm(X[n]-X[m])) end return r end end
JuLIP
https://github.com/JuliaMolSim/JuLIP.jl.git