licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1432 | struct DoubleNumWiltonBogaertQStrat{R}
outer_rule_far::R
inner_rule_far::R
outer_rule_near::R
inner_rule_near::R
end
function quaddata(op::IntegralOperator,
test_local_space::RefSpace, trial_local_space::RefSpace,
test_charts, trial_charts, qs::DoubleNumWiltonBogaertQStrat)
T = coordtype(test_charts[1])
tqd = quadpoints(test_local_space, test_charts, (qs.outer_rule_far,qs.outer_rule_near))
bqd = quadpoints(trial_local_space, trial_charts, (qs.inner_rule_far,qs.inner_rule_near))
return (tpoints=tqd, bpoints=bqd)
end
function quadrule(op::IntegralOperator, g::RTRefSpace, f::RTRefSpace, i, τ, j, σ, qd,
qs::DoubleNumWiltonBogaertQStrat)
dtol = 1.0e3 * eps(eltype(eltype(τ.vertices)))
xtol = 0.2
k = norm(gamma(op))
hits = 0
xmin = xtol
for t in τ.vertices
for s in σ.vertices
d = norm(t-s)
xmin = min(xmin, k*d)
if d < dtol
hits +=1
break
end
end
end
hits == 3 && return BogaertSelfPatchStrategy(5)
hits == 2 && return BogaertEdgePatchStrategy(8, 4)
hits == 1 && return BogaertPointPatchStrategy(2, 3)
rmin = xmin/k
xmin < xtol && return WiltonSERule(
qd.tpoints[1,i],
DoubleQuadRule(
qd.tpoints[2,i],
qd.bpoints[2,j],
),
)
return DoubleQuadRule(
qd.tpoints[1,i],
qd.bpoints[1,j],
)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1769 | function quaddata(op::IntegralOperator,
test_local_space::RefSpace, trial_local_space::RefSpace,
test_charts, trial_charts, qs::DoubleNumWiltonSauterQStrat)
T = coordtype(test_charts[1])
tqd = quadpoints(test_local_space, test_charts, (qs.outer_rule_far,qs.outer_rule_near))
bqd = quadpoints(trial_local_space, trial_charts, (qs.inner_rule_far,qs.inner_rule_near))
leg = (
convert.(NTuple{2,T},_legendre(qs.sauter_schwab_common_vert,0,1)),
convert.(NTuple{2,T},_legendre(qs.sauter_schwab_common_edge,0,1)),
convert.(NTuple{2,T},_legendre(qs.sauter_schwab_common_face,0,1)),)
return (tpoints=tqd, bpoints=bqd, gausslegendre=leg)
end
function quadrule(op::IntegralOperator, g::RefSpace, f::RefSpace, i, τ, j, σ, qd,
qs::DoubleNumWiltonSauterQStrat)
T = eltype(eltype(τ.vertices))
hits = 0
dtol = 1.0e3 * eps(T)
dmin2 = floatmax(T)
for t in τ.vertices
for s in σ.vertices
d2 = LinearAlgebra.norm_sqr(t-s)
d = norm(t-s)
dmin2 = min(dmin2, d2)
# hits += (d2 < dtol)
hits += (d < dtol)
end
end
@assert hits <= 3
hits == 3 && return SauterSchwabQuadrature.CommonFace(qd.gausslegendre[3])
hits == 2 && return SauterSchwabQuadrature.CommonEdge(qd.gausslegendre[2])
hits == 1 && return SauterSchwabQuadrature.CommonVertex(qd.gausslegendre[1])
h2 = volume(σ)
xtol2 = 0.2 * 0.2
k2 = abs2(gamma(op))
if max(dmin2*k2, dmin2/16h2) < xtol2
return WiltonSERule(
qd.tpoints[2,i],
DoubleQuadRule(
qd.tpoints[2,i],
qd.bpoints[2,j],),)
end
return DoubleQuadRule(
qd.tpoints[1,i],
qd.bpoints[1,j],)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 807 | struct NonConformingIntegralOpQStrat{S}
conforming_qstrat::S
end
function quaddata(a, X, Y, tels, bels, qs::NonConformingIntegralOpQStrat)
return quaddata(a, X, Y, tels, bels, qs.conforming_qstrat)
end
function quadrule(a, 𝒳, 𝒴, i, τ, j, σ, qd,
qs::NonConformingIntegralOpQStrat)
if CompScienceMeshes.overlap(τ, σ)
return NonConformingOverlapQRule(qs.conforming_qstrat)
end
for (i,λ) in pairs(faces(τ))
for (j,μ) in pairs(faces(σ))
if CompScienceMeshes.overlap(λ, μ)
return NonConformingTouchQRule(qs.conforming_qstrat, i, j)
end end end
# Either positive distance or common vertex, both can
# be handled directly by the parent quadrature strategy
return quadrule(a, 𝒳, 𝒴, i, τ, j, σ, qd, qs.conforming_qstrat)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2187 | struct NonConformingOverlapQRule{S}
conforming_qstrat::S
end
function momintegrals!(op, test_local_space, basis_local_space,
test_chart::CompScienceMeshes.Simplex, basis_chart::CompScienceMeshes.Simplex,
out, qrule::NonConformingOverlapQRule)
test_charts, tclps = CompScienceMeshes.intersection_keep_clippings(test_chart, basis_chart)
_, bclps = CompScienceMeshes.intersection_keep_clippings(basis_chart, test_chart)
bsis_charts = copy(test_charts)
for tclp in tclps append!(test_charts, tclp) end
for bclp in bclps append!(bsis_charts, bclp) end
T = coordtype(test_chart)
h = max(volume(test_chart), volume(test_chart))
test_charts = [ch for ch in test_charts if volume(ch) .> 1e6 * eps(T) * h]
bsis_charts = [ch for ch in bsis_charts if volume(ch) .> 1e6 * eps(T) * h]
test_charts = [ch for ch in test_charts if volume(ch) .> 1e6 * eps(T)]
bsis_charts = [ch for ch in bsis_charts if volume(ch) .> 1e6 * eps(T)]
# @assert volume(test_chart) ≈ sum(volume.(test_charts))
# if volume(basis_chart) ≈ sum(volume.(bsis_charts)) else
# @show volume(basis_chart)
# @show sum(volume.(bsis_charts))
# error()
# end
qstrat = CommonFaceOverlappingEdgeQStrat(qrule.conforming_qstrat)
qdata = quaddata(op, test_local_space, basis_local_space,
test_charts, bsis_charts, qstrat)
for (p,tchart) in enumerate(test_charts)
for (q,bchart) in enumerate(bsis_charts)
qrule = quadrule(op, test_local_space, basis_local_space,
p, tchart, q, bchart, qdata, qstrat)
# @show qrule
P = restrict(test_local_space, test_chart, tchart)
Q = restrict(basis_local_space, basis_chart, bchart)
zlocal = zero(out)
momintegrals!(op, test_local_space, basis_local_space,
tchart, bchart, zlocal, qrule)
for i in axes(P,1)
for j in axes(Q,1)
for k in axes(P,2)
for l in axes(Q,2)
out[i,j] += P[i,k] * zlocal[k,l] * Q[j,l]
# out .+= P * zlocal * Q'
end end end end end end end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 7166 | struct NonConformingTouchQRule{S}
conforming_qstrat::S
test_overlapping_edge_index::Int
bsis_overlapping_edge_index::Int
end
function momintegrals!(op, test_locspace, bsis_locspace,
τ::CompScienceMeshes.Simplex, σ::CompScienceMeshes.Simplex,
out, qrule::NonConformingTouchQRule)
T = coordtype(τ)
P = eltype(τ.vertices)
i = qrule.test_overlapping_edge_index
j = qrule.bsis_overlapping_edge_index
@assert volume(τ) > eps(T) * 1e3
@assert volume(σ) > eps(T) * 1e3
τs, σs = _conforming_refinement_touching_triangles(τ,σ,i,j)
isempty(τs) && return
isempty(σs) && return
# test conformity
for a in τs
for b in σs
if !_test_conformity(a, b)
@infiltrate
end
end
end
# volume(σ) ≈ sum(volume.(σs)) || @infiltrate
# if volume(τ) ≈ sum(volume.(τs)) else
# @show volume(τ)
# @show sum(volume.(τs))
# error()
# end
# @assert volume(σ) ≈ sum(volume.(σs))
@assert all(volume.(τs) .> 1e3 * eps(T) * (volume(τ)))
@assert all(volume.(σs) .> 1e3 * eps(T) * (volume(σ)))
qstrat = qrule.conforming_qstrat
qdata = quaddata(op, test_locspace, bsis_locspace, τs, σs, qstrat)
any(volume.(τs) .< 1e-13) && @infiltrate
any(volume.(σs) .< 1e-13) && @infiltrate
for (p,tchart) in enumerate(τs)
for (q,bchart) in enumerate(σs)
qrule = quadrule(op, test_locspace, bsis_locspace,
p, tchart, q, bchart, qdata, qstrat)
# @show qrule
P = restrict(test_locspace, τ, tchart)
Q = restrict(bsis_locspace, σ, bchart)
zlocal = zero(out)
momintegrals!(op, test_locspace, bsis_locspace,
tchart, bchart, zlocal, qrule)
# out .+= P * zlocal * Q'
for i in axes(P,1)
for j in axes(Q,1)
for k in axes(P,2)
for l in axes(Q,2)
out[i,j] += P[i,k] * zlocal[k,l] * Q[j,l]
end end end end end end end
function _conforming_refinement_touching_triangles_bak(τ,σ,i,j)
λ = faces(τ)[i]
μ = faces(σ)[j]
ρ = CompScienceMeshes.intersection(λ,μ)[1]
τ_verts = [τ[mod1(i+2,3)], τ[mod1(i,3)], τ[mod1(i+1,3)]]
σ_verts = [σ[mod1(j+2,3)], σ[mod1(j,3)], σ[mod1(j+1,3)]]
T = coordtype(τ)
P = eltype(τ.vertices)
U = T[]
V = P[]
for v in ρ.vertices
if CompScienceMeshes.isinside(λ,v)
push!(V,v)
push!(U, carttobary(λ,v)[1])
end end
if length(U) == 2
if U[1] < U[2]
temp = V[1]
V[1] = V[2]
V[2] = temp
end end
append!(τ_verts, V)
U = T[]
V = P[]
for v in ρ.vertices
if CompScienceMeshes.isinside(μ,v)
push!(V,v)
push!(U, carttobary(μ,v)[1])
end end
if length(U) == 2
if U[1] < U[2]
temp = V[1]
V[1] = V[2]
V[2] = temp
end end
append!(σ_verts, V)
τ_verts = push!(τ_verts[2:end], τ_verts[1])
σ_verts = push!(σ_verts[2:end], σ_verts[1])
# @show τ_verts
τ_charts = [ simplex(τ_verts[1], τ_verts[i], τ_verts[i+1]) for i in 2:length(τ_verts)-1 ]
σ_charts = [ simplex(σ_verts[1], σ_verts[i], σ_verts[i+1]) for i in 2:length(σ_verts)-1 ]
signs = Int.(sign.(dot.(normal.(τ_charts),Ref(normal(τ)))))
τ_charts = flip_normal.(τ_charts,signs)
signs = Int.(sign.(dot.(normal.(σ_charts),Ref(normal(σ)))))
σ_charts = flip_normal.(σ_charts,signs)
h = sqrt(volume(τ))
τ_charts = τ_charts[volume.(τ_charts) .> 1e3 * eps(T) * h]
σ_charts = τ_charts[volume.(σ_charts) .> 1e3 * eps(T) * h]
return τ_charts, σ_charts
end
function _conforming_refinement_touching_triangles(τ,σ,i,j)
λ = faces(τ)[i]
μ = faces(σ)[j]
ρ = CompScienceMeshes.intersection(λ,μ)[1]
# τ_verts = [τ[mod1(i+2,3)], τ[mod1(i,3)], τ[mod1(i+1,3)]]
# σ_verts = [σ[mod1(j+2,3)], σ[mod1(j,3)], σ[mod1(j+1,3)]]
# τ_verts = [v for v in τ.vertices]
# σ_verts = [v for v in σ.vertices]
τ_verts = Array(τ.vertices)
σ_verts = Array(σ.vertices)
# @show typeof(τ_verts)
T = coordtype(τ)
P = eltype(τ.vertices)
U = T[]
V = P[]
for v in ρ.vertices
push!(V,v)
push!(U, carttobary(λ,v)[1])
end
if U[1] < U[2]
temp = V[1]
V[1] = V[2]
V[2] = temp
end
p = mod1(i+2,3)
new_i = p <= i ? i+2 : i
insert!(τ_verts, p, V[2])
insert!(τ_verts, p, V[1])
U = T[]
V = P[]
for v in ρ.vertices
push!(V,v)
push!(U, carttobary(μ,v)[1])
end
if U[1] < U[2]
temp = V[1]
V[1] = V[2]
V[2] = temp
end
p = mod1(j+2,3)
new_j = p <= j ? j+2 : j
insert!(σ_verts, p, V[2])
insert!(σ_verts, p, V[1])
# println(τ_verts)
# println(σ_verts)
τ_charts = [ simplex(τ_verts[mod1(new_i,5)], τ_verts[mod1(new_i+s,5)], τ_verts[mod1(new_i+s+1,5)]) for s in 1:3 ]
σ_charts = [ simplex(σ_verts[mod1(new_j,5)], σ_verts[mod1(new_j+s,5)], σ_verts[mod1(new_j+s+1,5)]) for s in 1:3 ]
# σ_charts = [ simplex(σ_verts[1], σ_verts[i], σ_verts[i+1]) for i in 2:length(σ_verts)-1 ]
h = volume(τ)
τ_charts = [ch for ch in τ_charts if volume(ch) .> 1e6 * eps(T) * h]
σ_charts = [ch for ch in σ_charts if volume(ch) .> 1e6 * eps(T) * h]
τ_charts = [ch for ch in τ_charts if volume(ch) .> 1e6 * eps(T)]
σ_charts = [ch for ch in σ_charts if volume(ch) .> 1e6 * eps(T)]
signs = Int.(sign.(dot.(normal.(τ_charts),Ref(normal(τ)))))
τ_charts = flip_normal.(τ_charts,signs)
signs = Int.(sign.(dot.(normal.(σ_charts),Ref(normal(σ)))))
σ_charts = flip_normal.(σ_charts,signs)
# τ_charts = τ_charts[volume.(τ_charts) .> 1e3 * eps(T) * h]
# σ_charts = τ_charts[volume.(σ_charts) .> 1e3 * eps(T) * h]
return τ_charts, σ_charts
end
function _num_common_vertices(τ, σ)
hits = 0
T = coordtype(σ)
tol = eps(T) * 10^3
for v in τ.vertices
for w in σ.vertices
if norm(v - w) < tol
hits += 1
break
end end end
return hits
end
function _test_conformity(τ, σ)
if CompScienceMeshes.overlap(τ, σ)
# if _num_common_vertices(τ, σ) != 3
# @infiltrate
# end
return _num_common_vertices(τ, σ) == 3
end
for eτ in faces(τ)
for eσ in faces(σ)
if CompScienceMeshes.overlap(eτ, eσ)
# if _num_common_vertices(τ, σ) != 2
# @infiltrate
# end
return _num_common_vertices(τ, σ) == 2
end
end end
for u in τ.vertices
for v in σ.vertices
su = simplex([u], Val{0})
sv = simplex([v], Val{0})
if CompScienceMeshes.overlap(su, sv)
# if _num_common_vertices(τ, σ) != 1
# @infiltrate
# end
return _num_common_vertices(τ, σ) == 1
end end end
@assert _num_common_vertices(τ, σ) == 0
return _num_common_vertices(τ, σ) == 0
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3068 | using InteractiveUtils
struct DoubleNumWiltonSauterQStrat{R,S}
outer_rule_far::R
inner_rule_far::R
outer_rule_near::R
inner_rule_near::R
sauter_schwab_common_tetr::S
sauter_schwab_common_face::S
sauter_schwab_common_edge::S
sauter_schwab_common_vert::S
end
struct DoubleNumQStrat{R}
outer_rule::R
inner_rule::R
end
struct SauterSchwab3DQStrat{R,S}
outer_rule::R
inner_rule::R
sauter_schwab_1D::S
sauter_schwab_2D::S
sauter_schwab_3D::S
sauter_schwab_4D::S
end
struct OuterNumInnerAnalyticQStrat{R}
outer_rule::R
end
defaultquadstrat(op, tfs, bfs) = defaultquadstrat(op, refspace(tfs), refspace(bfs))
macro defaultquadstrat(dop, body)
@assert dop.head == :tuple
@assert length(dop.args) == 3
op = dop.args[1]
tfs = dop.args[2]
bfs = dop.args[3]
ex = quote
function BEAST.defaultquadstrat(::typeof($op), ::typeof($tfs), ::typeof($bfs))
$body
end
end
return esc(ex)
end
struct SingleNumQStrat
quad_rule::Int
end
function quadinfo(op, tfs, bfs; quadstrat=defaultquadstrat(op, tfs, bfs))
tels, tad = assemblydata(tfs)
bels, bad = assemblydata(bfs)
tref = refspace(tfs)
bref = refspace(bfs)
i, τ = 1, first(tels)
j, σ = 1, first(bels)
@show quadstrat
println(@which BEAST.quaddata(op,tref,bref,tels,bels,quadstrat))
qd = quaddata(op,tref,bref,tels,bels,quadstrat)
println(@which quadrule(op,tref,bref,i,τ,j,σ,qd,quadstrat))
nothing
end
"""
quaddata(operator, test_refspace, trial_refspace, test_elements, trial_elements)
Returns an object cashing data required for the computation of boundary element
interactions. It is up to the client programmer to decide what (if any) data is
cached. For double numberical quadrature, storing the integration points for
example can significantly speed up matrix assembly.
- `operator` is an integration kernel.
- `test_refspace` and `trial_refspace` are reference space objects. `quadata`
is typically overloaded on the type of these local spaces of shape functions.
(See the implementation in `maxwell.jl` for an example).
- `test_elements` and `trial_elements` are iterable collections of the geometric
elements on which the finite element space are defined. These are provided to
allow computation of the actual integrations points - as opposed to only their
coordinates.
"""
function quaddata end
"""
quadrule(operator, test_refspace, trial_refspace, test_index, test_chart, trial_index, trial_chart, quad_data)
Based on the operator kernel and the test and trial elements, this function builds
an object whose type and data fields specify the quadrature rule that needs to be
used to accurately compute the interaction integrals. The `quad_data` object created
by `quaddata` is passed to allow reuse of any precomputed data such as quadrature
points and weights, geometric quantities, etc.
The type of the returned quadrature rule will help in deciding which method of
`momintegrals` to dispatch to.
"""
function quadrule end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 7740 | struct Integrand{Op,LSt,LSb,Elt,Elb}
operator::Op
local_test_space::LSt
local_trial_space::LSb
test_chart::Elt
trial_chart::Elb
end
function (igd::Integrand)(u,v)
x = neighborhood(igd.test_chart,u)
y = neighborhood(igd.trial_chart,v)
f = igd.local_test_space(x)
g = igd.local_trial_space(y)
return jacobian(x) * jacobian(y) * igd(x,y,f,g)
end
# For divergence conforming basis and trial functions, an alternative evaluation
# of the integrand is possible that avoids the computation of the chart jacobian
# determinants.
function (igd::Integrand{<:IntegralOperator,<:DivRefSpace,<:DivRefSpace})(u,v)
test_domain = CompScienceMeshes.domain(igd.test_chart)
bsis_domain = CompScienceMeshes.domain(igd.trial_chart)
x = CompScienceMeshes.neighborhood_lazy(igd.test_chart,u)
y = CompScienceMeshes.neighborhood_lazy(igd.trial_chart,v)
p = neighborhood(test_domain, u)
q = neighborhood(bsis_domain, v)
f̂ = igd.local_test_space(p)
ĝ = igd.local_trial_space(q)
Dx = tangents(x)
Dy = tangents(y)
f = map(f̂) do fi
(value = Dx * fi.value, divergence = fi.divergence) end
g = map(ĝ) do gi
(value = Dy * gi.value, divergence = gi.divergence) end
igd(x,y,f,g)
end
getvalue(a::SVector{N}) where {N} = SVector{N}(getvalue(a.data))
getvalue(a::NTuple{1}) = (a[1].value,)
getvalue(a::NTuple{N}) where {N} = tuple(a[1].value, getvalue(Base.tail(a))...)
getdivergence(a::SVector{N}) where {N} = SVector{N}(getdivergence(a.data))
getdivergence(a::NTuple{1}) = (a[1].divergence,)
getdivergence(a::NTuple{N}) where {N} = tuple(a[1].divergence, getdivergence(Base.tail(a))...)
function _krondot_gen(a::Type{U}, b::Type{V}) where {U<:SVector{N}, V<:SVector{M}} where {M,N}
ex = :(SMatrix{N,M}(()))
for m in 1:M
for n in 1:N
push!(ex.args[2].args, :(dot(a[$n], b[$m])))
end
end
return ex
end
@generated function _krondot(a::SVector{N}, b::SVector{M}) where {M,N}
ex = _krondot_gen(a,b)
return ex
end
function _integrands_gen(::Type{U}, ::Type{V}) where {U<:SVector{N}, V<:SVector{M}} where {M,N}
ex = :(SMatrix{N,M}(()))
for m in 1:M
for n in 1:N
# push!(ex.args[2].args, :(dot(a[$n], b[$m])))
push!(ex.args[2].args, :(f(a[$n], b[$m])))
end
end
return ex
end
@generated function _integrands(f, a::SVector{N}, b::SVector{M}) where {M,N}
ex = _integrands_gen(a,b)
# println(ex)
return ex
end
function _integrands_leg_gen(f::Type{U}, g::Type{V}) where {U<:SVector{N}, V<:SVector{M}} where {M,N}
ex = :(SMatrix{N,M}(()))
for m in 1:M
for n in 1:N
push!(ex.args[2].args, :(integrand(op, kervals, f[$n], x, g[$m], y)))
end
end
return ex
end
@generated function _integrands_leg(op, kervals, f::SVector{N}, x, g::SVector{M}, y) where {M,N}
_integrands_leg_gen(f, g)
end
# Support for legacy kernels
function (igd::Integrand)(x,y,f,g)
op = igd.operator
kervals = kernelvals(op, x, y)
_integrands_leg(op, kervals, f, x, g, y)
end
function momintegrals!(op::Operator,
test_local_space::RefSpace, trial_local_space::RefSpace,
test_chart, trial_chart, out, rule::SauterSchwabStrategy)
I, J, _, _ = SauterSchwabQuadrature.reorder(
vertices(test_chart),
vertices(trial_chart), rule)
# permute_vertices reparametrizes the simplex without affecting the normal
if 0 in I || 0 in J
@show typeof(rule) I J
@show test_chart.vertices
@show trial_chart.vertices
@infiltrate
# error("on purpose")
end
test_chart = CompScienceMeshes.permute_vertices(test_chart, I)
trial_chart = CompScienceMeshes.permute_vertices(trial_chart, J)
if rule isa SauterSchwabQuadrature.CommonEdge
@assert test_chart.vertices[1] ≈ trial_chart.vertices[1]
@assert test_chart.vertices[3] ≈ trial_chart.vertices[3]
end
igd = Integrand(op, test_local_space, trial_local_space, test_chart, trial_chart)
G = SauterSchwabQuadrature.sauterschwab_parameterized(igd, rule)
QTest = dof_perm_matrix(test_local_space, I)
QTrial = dof_perm_matrix(trial_local_space, J)
out_temp = zeros(eltype(out), numfunctions(test_local_space),numfunctions(trial_local_space))
out_temp = QTest*G*QTrial'
out[1:numfunctions(test_local_space),1:numfunctions(trial_local_space)] .+= out_temp
nothing
end
function momintegrals_test_refines_trial!(out, op,
test_functions, test_cell, test_chart,
trial_functions, trial_cell, trial_chart,
quadrule, quadstrat)
test_local_space = refspace(test_functions)
trial_local_space = refspace(trial_functions)
momintegrals!(op, test_local_space, trial_local_space,
test_chart, trial_chart, out, quadrule)
end
# const MWOperator3D = Union{MWSingleLayer3D, MWDoubleLayer3D}
function momintegrals_test_refines_trial!(out, op,
test_functions, test_cell, test_chart,
trial_functions, trial_cell, trial_chart,
qr::SauterSchwabStrategy, quadstrat)
test_local_space = refspace(test_functions)
trial_local_space = refspace(trial_functions)
test_mesh = geometry(test_functions)
trial_mesh = geometry(trial_functions)
parent_mesh = CompScienceMeshes.parent(test_mesh)
trial_charts = [chart(test_mesh, p) for p in CompScienceMeshes.children(parent_mesh, trial_cell)]
qd = quaddata(op, test_local_space, trial_local_space,
[test_chart], trial_charts, quadstrat)
for (q,chart) in enumerate(trial_charts)
qr = quadrule(op, test_local_space, trial_local_space,
1, test_chart, q ,chart, qd, quadstrat)
# @show qr
Q = restrict(trial_local_space, trial_chart, chart)
zlocal = zero(out)
momintegrals!(op, test_local_space, trial_local_space,
test_chart, chart, zlocal, qr)
for j in 1:numfunctions(trial_local_space)
for i in 1:numfunctions(test_local_space)
for k in 1:size(Q, 2)
out[i,j] += zlocal[i,k] * Q[j,k]
end end end end end
function momintegrals_trial_refines_test!(out, op,
test_functions, test_cell, test_chart,
trial_functions, trial_cell, trial_chart,
quadrule, quadstrat)
test_local_space = refspace(test_functions)
trial_local_space = refspace(trial_functions)
momintegrals!(op, test_local_space, trial_local_space,
test_chart, trial_chart, out, quadrule)
end
function momintegrals_trial_refines_test!(out, op,
test_functions, test_cell, test_chart,
trial_functions, trial_cell, trial_chart,
qr::SauterSchwabStrategy, quadstrat)
test_local_space = refspace(test_functions)
trial_local_space = refspace(trial_functions)
test_mesh = geometry(test_functions)
trial_mesh = geometry(trial_functions)
parent_mesh = CompScienceMeshes.parent(trial_mesh)
test_charts = [chart(trial_mesh, p) for p in CompScienceMeshes.children(parent_mesh, test_cell)]
qd = quaddata(op, test_local_space, trial_local_space,
test_charts, [trial_chart], quadstrat)
for (p,chart) in enumerate(test_charts)
qr = quadrule(op, test_local_space, trial_local_space,
p, chart, 1, trial_chart, qd, quadstrat)
Q = restrict(test_local_space, test_chart, chart)
zlocal = zero(out)
momintegrals!(op, test_local_space, trial_local_space,
chart, trial_chart, zlocal, qr)
for j in 1:numfunctions(trial_local_space)
for i in 1:numfunctions(test_local_space)
for k in 1:size(Q, 2)
out[i,j] += Q[i,k] * zlocal[k,j]
end end end
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1265 | struct SelfSauterOtherwiseDNumQStrat{R,S}
outer_rule::R
inner_rule::R
sauter_schwab_common::S
end
function quaddata(op::IntegralOperator,
test_local_space::RefSpace, trial_local_space::RefSpace,
test_charts, trial_charts, qs::SelfSauterOtherwiseDNumQStrat)
T = coordtype(test_charts[1])
tqd = quadpoints(test_local_space, test_charts, (qs.outer_rule,))
bqd = quadpoints(trial_local_space, trial_charts, (qs.inner_rule,))
leg = (
convert.(NTuple{2,T},_legendre(qs.sauter_schwab_common,0,1)),
)
return (tpoints=tqd, bpoints=bqd, gausslegendre=leg)
end
function quadrule(op::IntegralOperator, g::RefSpace, f::RefSpace, i, τ, j, σ, qd,
qs::SelfSauterOtherwiseDNumQStrat)
T = eltype(eltype(τ.vertices))
hits = 0
dtol = 1.0e3 * eps(T)
dmin2 = floatmax(T)
for t in τ.vertices
for s in σ.vertices
d2 = LinearAlgebra.norm_sqr(t-s)
d = norm(t-s)
dmin2 = min(dmin2, d2)
# hits += (d2 < dtol)
hits += (d < dtol)
end
end
@assert hits <= 3
hits == 3 && return SauterSchwabQuadrature.CommonFace(qd.gausslegendre[1])
return DoubleQuadRule(
qd.tpoints[1,i],
qd.bpoints[1,j],)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 541 | abstract type SingularityExtractionRule end
regularpart_quadrule(qr::SingularityExtractionRule) = qr.regularpart_quadrule
function momintegrals!(op, g, f, t, s, z, qrule::SingularityExtractionRule)
womps = qrule.outer_quad_points
sop = singularpart(op)
rop = regularpart(op)
regqrule = regularpart_quadrule(qrule)
momintegrals!(rop, g, f, t, s, z, regqrule)
for p in 1 : length(womps)
x = womps[p].point
dx = womps[p].weight
innerintegrals!(sop, x, g, f, t, s, z, qrule, dx)
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2154 | struct CommonFaceVertexSauterCommonEdgeWiltonPostitiveDistanceNumQStrat{R,S}
outer_rule_far::R
inner_rule_far::R
outer_rule_near::R
inner_rule_near::R
sauter_schwab_common_tetr::S
sauter_schwab_common_face::S
sauter_schwab_common_edge::S
sauter_schwab_common_vert::S
end
function quaddata(op::IntegralOperator, test_local_space, bsis_local_space,
test_charts, bsis_charts, qs::CommonFaceVertexSauterCommonEdgeWiltonPostitiveDistanceNumQStrat)
return quaddata(op, test_local_space, bsis_local_space,
test_charts, bsis_charts, DoubleNumWiltonSauterQStrat(
qs.outer_rule_far,
qs.inner_rule_far,
qs.outer_rule_near,
qs.inner_rule_near,
qs.sauter_schwab_common_tetr,
qs.sauter_schwab_common_face,
qs.sauter_schwab_common_edge,
qs.sauter_schwab_common_vert,))
end
function quadrule(op::IntegralOperator, g, f, i, τ, j, σ,
qd, qs::CommonFaceVertexSauterCommonEdgeWiltonPostitiveDistanceNumQStrat)
T = eltype(eltype(τ.vertices))
hits = 0
dtol = 1.0e3 * eps(T)
dmin2 = floatmax(T)
for t in τ.vertices
for s in σ.vertices
d2 = LinearAlgebra.norm_sqr(t-s)
d = norm(t-s)
dmin2 = min(dmin2, d2)
# hits += (d2 < dtol)
hits += (d < dtol)
end
end
@assert hits <= 3
hits == 3 && return SauterSchwabQuadrature.CommonFace(qd.gausslegendre[3])
# hits == 2 && return SauterSchwabQuadrature.CommonEdge(qd.gausslegendre[2])
if hits == 2
return WiltonSERule(
qd.tpoints[2,i],
SauterSchwabQuadrature.CommonEdge(qd.gausslegendre[2]),)
end
hits == 1 && return SauterSchwabQuadrature.CommonVertex(qd.gausslegendre[1])
h2 = volume(σ)
xtol2 = 0.2 * 0.2
k2 = abs2(gamma(op))
if max(dmin2*k2, dmin2/16h2) < xtol2
return WiltonSERule(
qd.tpoints[2,i],
DoubleQuadRule(
qd.tpoints[2,i],
qd.bpoints[2,j],),)
end
return DoubleQuadRule(
qd.tpoints[1,i],
qd.bpoints[1,j],)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4950 | import IterativeSolvers
struct GMRESSolver{T,L,R,P} <: LinearMap{T}
linear_operator::L
maxiter::Int
restart::Int
abstol::R
reltol::R
verbose::Bool
left_preconditioner::P
end
Base.axes(A::GMRESSolver) = reverse(axes(A.linear_operator))
function GMRESSolver(op::L;
left_preconditioner = nothing,
Pl = nothing,
maxiter=0,
restart=0,
abstol::R = zero(real(eltype(op))),
reltol::R = sqrt(eps(real(eltype(op)))),
verbose=true) where {L,R<:Real}
if left_preconditioner == nothing
Pl == nothing && (Pl = IterativeSolvers.Identity())
else
if Pl == nothing
Pl = BEAST.Preconditioner(left_preconditioner)
else
error("Either supply Pl or left_preconditioner, not both.")
end
end
@assert Pl != nothing
m, n = size(op)
@assert m == n
maxiter == 0 && (maxiter = div(n, 5))
restart == 0 && (restart = n)
P = typeof(Pl)
T = eltype(op)
GMRESSolver{T,L,R,P}(op, maxiter, restart, abstol, reltol, verbose, Pl)
end
operator(solver::GMRESSolver) = solver.linear_operator
function solve(solver::GMRESSolver, b; abstol=solver.abstol, reltol=solver.reltol)
T = promote_type(eltype(solver), eltype(b))
x = similar(Array{T}, axes(solver)[2])
fill!(x,0)
x, ch = solve!(x, solver, b; abstol, reltol)
end
function solve!(x, solver::GMRESSolver, b; abstol=solver.abstol, reltol=solver.reltol)
op = operator(solver)
x, ch = IterativeSolvers.gmres!(x, op, b;
log=true,
maxiter=solver.maxiter,
restart=solver.restart,
reltol=reltol,
abstol=abstol,
verbose=solver.verbose,
Pl=solver.left_preconditioner)
return x, ch
end
function Base.:*(A::GMRESSolver, b::AbstractVector)
T = promote_type(eltype(A), eltype(b))
y = PseudoBlockVector{T}(undef, (axes(A,2),))
mul!(y, A, b)
end
Base.size(solver::GMRESSolver) = reverse(size(solver.linear_operator))
function LinearAlgebra.mul!(y::AbstractVecOrMat, solver::GMRESSolver, x::AbstractVector)
fill!(y,0)
y, ch = solve!(y, solver, x)
solver.verbose && println("Number of iterations: ", ch.iters)
ch.isconverged || error("Iterative solver did not converge.")
return y
end
LinearAlgebra.adjoint(A::GMRESSolver) = GMRESSolver(adjoint(A.linear_operator), A.maxiter, A.restart, A.abstol, A.reltol, A.verbose)
LinearAlgebra.transpose(A::GMRESSolver) = GMRESSolver(transpose(A.linear_operator), A.maxiter, A.restart, A.abstol, A.reltol, A.verbose)
function gmres_ch(eq::DiscreteEquation; maxiter=0, restart=0, tol=0)
lhs = eq.equation.lhs
rhs = eq.equation.rhs
X = _spacedict_to_directproductspace(eq.test_space_dict)
Y = _spacedict_to_directproductspace(eq.trial_space_dict)
b = assemble(rhs, X)
Z = assemble(lhs, X, Y)
if tol == 0
invZ = GMRESSolver(Z, maxiter=maxiter, restart=restart)
else
invZ = GMRESSolver(Z, maxiter=maxiter, restart=restart, tol=tol)
end
x, ch = solve(invZ, b)
# x = invZ * b
ax = nestedrange(Y, 1, numfunctions)
return PseudoBlockVector(x, (ax,)), ch
end
gmres(eq::DiscreteEquation; maxiter=0, restart=0, tol=0) = gmres_ch(eq; maxiter, restart, tol)[1]
struct CGSolver{L,M,T} <: LinearMap{T}
A::L
Pl::M
abstol::T
reltol::T
maxiter::Int
verbose::Bool
end
Base.size(solver::CGSolver) = reverse(size(solver.A))
Base.axes(solver::CGSolver) = reverse(axes(solver.A))
operator(solver::CGSolver) = solver.A
cg(A;
Pl = IterativeSolvers.Identity(),
abstol::Real = zero(real(eltype(A))),
reltol::Real = sqrt(eps(real(eltype(A)))),
maxiter::Int = size(A,2),
verbose::Bool = false) = CGSolver(A, Pl, abstol, reltol, maxiter, verbose)
function solve(solver::CGSolver, b)
T = promote_type(eltype(solver), eltype(b))
x = similar(Vector{T}, size(solver)[2])
fill!(x,0)
x, ch = solve!(x, solver, b)
z = similar(Array{T}, axes(solver)[2])
copyto!(z,x)
return z, ch
end
function solve!(x, solver::CGSolver, b)
op = operator(solver)
x, ch = IterativeSolvers.cg!(x, op, b;
Pl = solver.Pl,
abstol = solver.abstol,
reltol = solver.reltol,
maxiter = solver.maxiter,
verbose = solver.verbose,
log = true)
return x, ch
end
function LinearAlgebra.mul!(y::AbstractVecOrMat, solver::CGSolver, x::AbstractVector)
fill!(y,0)
y, ch = solve!(y, solver, x)
return y
end
struct Preconditioner{L,T} <: LinearMap{T}
A::L
end
Preconditioner(A::L) where {L} = Preconditioner{L,eltype(A)}(A)
function LinearAlgebra.ldiv!(y, P::Preconditioner, x)
mul!(y, P.A, x)
end
function LinearAlgebra.ldiv!(P::Preconditioner, b)
c = deepcopy(b)
mul!(b, P.A, c)
end
function Base.size(p::Preconditioner)
reverse(size(p.A))
end
function solve(iA::AbstractMatrix, b)
ch = nothing
x = iA * b
return x, ch
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 908 | using LinearAlgebra
lusolve(eq) = solve(eq)
"""
Solves a variational equation by simply creating the full system matrix
and calling a traditional lu decomposition.
"""
function solve(eq)
time_domain = isa(first(eq.trial_space_dict).second, BEAST.SpaceTimeBasis)
if time_domain
return td_solve(eq)
end
test_space_dict = eq.test_space_dict
trial_space_dict = eq.trial_space_dict
lhs = eq.equation.lhs
rhs = eq.equation.rhs
X = _spacedict_to_directproductspace(eq.test_space_dict)
Y = _spacedict_to_directproductspace(eq.trial_space_dict)
b = assemble(rhs, X)
Z = assemble(lhs, X, Y)
print("Converting system to Matrix...")
M = Matrix(Z)
println("done.")
print("LU solution of the linear system...")
u = M \ Vector(b)
println("done.")
ax = nestedrange(Y, 1, numfunctions)
return PseudoBlockVector(u, (ax,))
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 7952 | using .Variational
mutable struct DiscreteEquation
equation
trial_space_dict # dictionary mapping indices into trial space to FE spaces
test_space_dict # dictionary mapping indices into test space to FE spaces
end
struct DiscreteBilform
bilform
trial_space_dict # dictionary mapping indices into trial space to FE spaces
test_space_dict # dictionary mapping indices into test space to FE spaces
end
struct DiscreteLinform
linform
test_space_dict
end
function _expand_space_mappings(sms)
esms = []
for sm in sms
if first(sm) isa Vector
j = first(sm)
X = last(sm)
@assert X isa BEAST.DirectProductSpace
append!(esms, [(ji => Xi) for (ji,Xi) in zip(j,X.factors)])
else
append!(esms, [sm])
end
end
return esms
end
function discretise(bf::BilForm, space_mappings::Pair...)
space_mappings = _expand_space_mappings(space_mappings)
trial_space_dict = Dict()
test_space_dict = Dict()
for sm in space_mappings
found = false
sm.first.space == bf.trial_space && (dict = trial_space_dict; found = true)
sm.first.space == bf.test_space && (dict = test_space_dict; found = true)
@assert found "Vector $(sm.first) neither in test nor in trial space"
@assert !haskey(dict, sm.first.idx) "multiple mappings for $(sm.first)"
dict[sm.first.idx] = sm.second
end
# check that all symbols where mapped
for p in eachindex(bf.trial_space) @assert haskey(trial_space_dict,p) end
for p in eachindex(bf.test_space) @assert haskey(test_space_dict, p) end
DiscreteBilform(bf, trial_space_dict, test_space_dict)
end
function discretise(lf::LinForm, space_mappings::Pair...)
space_mappings = _expand_space_mappings(space_mappings)
test_space_dict = Dict()
for sm in space_mappings
found = false
sm.first.space == lf.test_space && (dict = test_space_dict; found = true)
@assert found "Vector $(sm.first) not found in test space"
@assert !haskey(dict, sm.first.idx) "multiple mappings for $(sm.first)"
dict[sm.first.idx] = sm.second
end
# check that all symbols where mapped
for p in eachindex(lf.test_space) @assert haskey(test_space_dict, p) end
DiscreteLinform(lf, test_space_dict)
end
function discretise(eq, space_mappings::Pair...)
space_mappings = _expand_space_mappings(space_mappings)
trial_space_dict = Dict()
test_space_dict = Dict()
for sm in space_mappings
found = false
sm.first.space == eq.lhs.trial_space && (dict = trial_space_dict; found = true)
sm.first.space == eq.lhs.test_space && (dict = test_space_dict; found = true)
@assert found "Vector $(sm.first) neither in test nor in trial space"
@assert !haskey(dict, sm.first.idx) "multiple mappings for $(sm.first)"
dict[sm.first.idx] = sm.second
end
# check that all symbols where mapped
for p in 1:length(eq.lhs.trial_space) @assert haskey(trial_space_dict,p) end
for p in 1:length(eq.lhs.test_space) @assert haskey(test_space_dict, p) end
DiscreteEquation(eq, trial_space_dict, test_space_dict)
end
"""
discr(eq, pairs...)
This macro provides syntactical sugar for the definition of a discretisation
of a varational formulation. Given a variational equation EQ: Find j ∈ X such
that for all k ∈ Y a(k,j) = f(k) can be discretised by stating:
eq = @discretise EQ j∈X k∈Y
"""
macro discretise(eq, pairs...)
r = :(BEAST.discretise($eq))
for p in pairs
x = p.args[2]
X = p.args[3]
push!(r.args, :($x=>$X))
end
return esc(r)
end
sysmatrix(eq::DiscreteEquation; materialize=BEAST.assemble) =
assemble(eq.equation.lhs, eq.test_space_dict, eq.trial_space_dict, materialize=materialize)
rhs(eq::DiscreteEquation) = assemble(eq.equation.rhs, eq.test_space_dict)
assemble(dbf::DiscreteBilform; materialize=BEAST.assemble) = assemble(dbf.bilform, dbf.test_space_dict, dbf.trial_space_dict; materialize)
assemble(dlf::DiscreteLinform) = assemble(dlf.linform, dlf.test_space_dict)
function _spacedict_to_directproductspace(spacedict)
xfactors = Vector{AbstractSpace}(undef, length(spacedict))
for (p,x) in spacedict xfactors[p] = x end
X = DirectProductSpace(xfactors)
end
function assemble(lform::LinForm, test_space_dict)
X = _spacedict_to_directproductspace(test_space_dict)
return assemble(lform, X)
end
scalartype(lf::LinForm) = scalartype(lf.terms...)
scalartype(lt::LinTerm) = scalartype(lt.coeff, lt.functional)
function assemble(lform::LinForm, X::DirectProductSpace)
@assert !isempty(lform.terms)
T = scalartype(lform, X)
x = first(AbstractTrees.Leaves(X))
spaceTimeBasis = isa(x, BEAST.SpaceTimeBasis)
if spaceTimeBasis
stagedtimestep = isa(x.time, BEAST.StagedTimeStep)
if stagedtimestep
stages = numstages(x.time)
stagednumfunctions(X) = stages * numfunctions(X)
U = NestedUnitRanges.nestedrange(spatialbasis(X), 1, stagednumfunctions)
else
U = NestedUnitRanges.nestedrange(spatialbasis(X), 1, numfunctions)
end
else
U = NestedUnitRanges.nestedrange(spatialbasis(X), 1, numfunctions)
end
N = Base.OneTo(tensordim(x,2))
ax = _righthandside_axes(x, U, N)
B = BlockArray{T}(undef, ax)
fill!(B, 0)
for t in lform.terms
m = t.test_id
x = X.factors[m]
for op in reverse(t.test_ops) x = op[end](op[1:end-1]..., x) end
b = assemble(t.functional, x)
B[Block(m),Block(1)] = t.coeff * b
end
return B
end
struct SpaceTimeData{T} <: AbstractArray{Vector{T},1}
data::Array{T,2}
end
Base.eltype(x::SpaceTimeData{T}) where {T} = Vector{T}
Base.size(x::SpaceTimeData) = (size(x.data)[1],)
Base.getindex(x::SpaceTimeData, i::Int) = x.data[i,:]
function td_assemble(lform::LinForm, test_space_dict)
X = _spacedict_to_directproductspace(test_space_dict)
return td_assemble(lform, X)
end
_righthandside_axes(x::SpaceTimeBasis, U, N) = (U,N,)
_righthandside_axes(x, U, N) = (U,)
td_assemble(lform::LinForm, X::DirectProductSpace) = assemble(lform, X)
function assemble(bilform::BilForm, test_space_dict, trial_space_dict;
materialize=BEAST.assemble)
X = _spacedict_to_directproductspace(test_space_dict)
Y = _spacedict_to_directproductspace(trial_space_dict)
return assemble(bilform, X, Y; materialize)
end
lift(a,I,J,U,V) = LiftedMaps.LiftedMap(a,I,J,U,V)
lift(a::ConvolutionOperators.AbstractConvOp ,I,J,U,V) =
ConvolutionOperators.LiftedConvOp(a, U, V, I, J)
function assemble(bf::BilForm, X::DirectProductSpace, Y::DirectProductSpace;
materialize=BEAST.assemble)
@assert !isempty(bf.terms)
spaceTimeBasis = isa(X.factors[1], BEAST.SpaceTimeBasis)
if spaceTimeBasis
p = [numstages(temporalbasis(ch)) for ch in X.factors]
else
p = 1
end
M = numfunctions.(spatialbasis(X).factors) .* p
N = numfunctions.(spatialbasis(Y).factors) .* p
MN = numfunctions(X)
U = BlockArrays.blockedrange(M)
V = BlockArrays.blockedrange(N)
sum(bf.terms) do term
x = X.factors[term.test_id]
for op in reverse(term.test_ops)
x = op[end](op[1:end-1]..., x)
end
y = Y.factors[term.trial_id]
for op in reverse(term.trial_ops)
y = op[end](op[1:end-1]..., y)
end
a = term.coeff * term.kernel
z = materialize(a, x, y)
lift(z, Block(term.test_id), Block(term.trial_id), U, V)
end
end
function assemble(bf::BilForm, X::Space, Y::Space)
@assert length(bf.terms) == 1
assemble(bf, BEAST.DirectProductSpace([X]), BEAST.DirectProductSpace([Y]))
end
function assemble(bf::BilForm, pairs::Pair...)
dbf = discretise(bf, pairs...)
assemble(dbf)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1647 | motsolve(eq) = td_solve(eq)
function td_solve(eq)
V = eq.trial_space_dict[1]
A = assemble(eq.equation.lhs, eq.test_space_dict, eq.trial_space_dict)
T = eltype(A)
S = zeros(T, size(A)[1:2])
ConvolutionOperators.timeslice!(S, A, 1)
iS = inv(S)
b = assemble(eq.equation.rhs, eq.test_space_dict)
nt = numfunctions(temporalbasis(V))
marchonintime(iS, A, b, nt)
end
"""
marchonintime(W0,Z,B,I; convhist=false)
Solve by marching-on-in-time the causal convolution problem defined by `(W0,Z,B)`
up to timestep `I`. Here, `Z` is an array of order 3 that contains a discretisation
of a time translation invariant retarded potential operator. `W0` is the inverse of
the slice `Z[:,:,1]`.
Keyword arguments:
- 'convhist': when true, return in addition to the space-time data for the
solution also the vector of convergence histories as returned each time step
by the supplied solver `W0`.
"""
function marchonintime(W0,Z,B,I; convhist=false)
T = eltype(W0)
M,N = size(W0)
@assert M == size(B,1)
x = zeros(T,N,I)
y = zeros(T,N)
csx = zeros(T,N,I)
ch = []
for i in 1:I
R = B[:,i]
k_start = 2
k_stop = I
fill!(y,0)
ConvolutionOperators.convolve!(y,Z,x,csx,i,k_start,k_stop)
b = R - y
xi, chi = BEAST.solve(W0, b)
x[:,i] .+= xi
push!(ch, chi)
if i > 1
csx[:,i] .= csx[:,i-1] .+ x[:,i]
else
csx[:,i] .= x[:,i]
end
(i % 10 == 0) && print(i, "[", I, "] - ")
end
if convhist
return x, ch
else
return x
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3544 |
"""
RungeKuttaConvolutionQuadrature{T,N,NN}
T: the value type of the basis function.
N: the number of stages.
NN: N*N.
Performs a convolution quadrature on a laplaceKernel to represent an operator
in time domain using an implicit Runge-Kutta method.
laplaceKernel: function of the Laplace variable s that returns an IntegralOperator.
A, b: Coefficient matrix and vectors from the Butcher tableau.
Δt: time step.
zTransformedTermCount: Number of terms in the inverse Z-transform.
contourRadius: radius of circle used as integration contour for the inverse Z-transform.
"""
struct RungeKuttaConvolutionQuadrature{}
timedomainKernel :: AbstractSpaceTimeOperator # function of s that returns an IntegralOperator
end
#scalartype(rkcq::RungeKuttaConvolutionQuadrature{LK}) where {LK} = Complex
# M = H*diagm(D)*invH
struct DiagonalizedMatrix{T,N,NN}
H :: SArray{Tuple{N,N},Complex{T},2,NN}
invH :: SArray{Tuple{N,N},Complex{T},2,NN}
D :: SVector{N,Complex{T}}
end
# M = H*diagm(D)*invH
function diagonalizedmatrix(M :: SArray{Tuple{N,N},Complex{T},2,NN}) where {T,N,NN}
ef = eigen(Array{Complex{T},2}(M));
efValues = SVector{N,Complex{T}}(ef.values) :: SVector{N,Complex{T}};
efVectors = SArray{Tuple{N,N},Complex{T},2,NN}(ef.vectors) :: SArray{Tuple{N,N},Complex{T},2,NN};
return DiagonalizedMatrix(efVectors, inv(efVectors), efValues);
end
function assemble(rkcq :: RungeKuttaConvolutionQuadrature,
testfns :: SpaceTimeBasis,
trialfns :: SpaceTimeBasis)
@warn "staged assemble of the left-hand side"
sol = rkcq.timedomainKernel.speed_of_light
numdiffweak = rkcq.timedomainKernel.ws_diffs
numdiffhyper = rkcq.timedomainKernel.hs_diffs
@info "converting time-domain kernel to Laplace-domain kernel"
LaplaceEFIO(s::T) where {T}= MWSingleLayer3D(s/sol, -s^(numdiffweak)/sol, s^(numdiffhyper)*T(sol))
laplaceKernel = LaplaceEFIO
A = testfns.time.A
b = testfns.time.b
Δt = testfns.time.Δt
Q = testfns.time.zTransformedTermCount
rho = testfns.time.contourRadius
p = length(b) # stage count
test_spatial_basis = testfns.space
trial_spatial_basis = trialfns.space
# Compute the Z transformed sequence.
# Assume that the operator applied on the conjugate of s is the same as the
# conjugate of the operator applied on s,
# so that only half of the values are computed
Qmax = Q>>1+1
M = numfunctions(test_spatial_basis)
N = numfunctions(trial_spatial_basis)
#Tz = promote_type(scalartype(rkcq), scalartype(testfns), scalartype(trialfns))
#Tz = promote_type(scalartype(testfns), scalartype(trialfns))
Tz = ComplexF64
Zz = Vector{Array{Tz,2}}(undef,Qmax)
blocksEigenvalues = Vector{Array{Tz,2}}(undef,p)
tmpDiag = Vector{Tz}(undef,p)
for q = 0:Qmax-1
# Build a temporary matrix for each eigenvalue
s = laplace_to_z(rho, q, Q, Δt, A, b)
sFactorized = diagonalizedmatrix(s)
for (i,sD) in enumerate(sFactorized.D)
blocksEigenvalues[i] = assemble(laplaceKernel(sD), test_spatial_basis, trial_spatial_basis)
end
# Compute the Z transformed matrix by block
Zz[q+1] = zeros(Tz, M*p, N*p)
for m = 1:M
for n = 1:N
for i = 1:p
tmpDiag[i] = blocksEigenvalues[i][m,n]
end
D = SVector{p,Tz}(tmpDiag);
Zz[q+1][(m-1)*p.+(1:p),(n-1)*p.+(1:p)] = sFactorized.H * diagm(D) * sFactorized.invH
end
end
end
# return the inverse Z transform
kmax = Q
T = real(Tz)
Z = zeros(T, M*p, N*p, kmax)
for q = 0:kmax-1
Z[:,:,q+1] = real_inverse_z_transform(q, rho, Q, Zz)
end
ZC = ConvolutionOperators.DenseConvOp(Z)
return ZC
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1546 | struct SymmetricQuadStrat{S}
quadstrat::S
end
struct SymmetricQuadRule{R1,R2}
quadrule1::R1
quadrule2::R2
end
function quaddata(op,
test_local_space, trial_local_space, time_local_space,
test_charts, trial_charts, time_charts,
quadstrat::SymmetricQuadStrat)
qd1 = quaddata(op,
test_local_space, trial_local_space, time_local_space,
test_charts, trial_charts, time_charts,
quadstrat.quadstrat)
qd2 = quaddata(op,
trial_local_space, test_local_space, time_local_space,
trial_charts, test_charts, time_charts,
quadstrat.quadstrat)
return qd1, qd2
end
function quadrule(op,
test_local_space, trial_local_space, time_local_space,
p, test_chart, q, trial_chart, r, time_chart,
qd, quadstrat::SymmetricQuadStrat)
qd1 = qd[1]
qd2 = qd[2]
qr1 = quadrule(op, test_local_space, trial_local_space, time_local_space,
p, test_chart, q, trial_chart, r, time_chart,
qd1, quadstrat.quadstrat)
qr2 = quadrule(op, trial_local_space, test_local_space, time_local_space,
q, trial_chart, p, test_chart, r, time_chart,
qd2, quadstrat.quadstrat)
return SymmetricQuadRule(qr1, qr2)
end
function momintegrals!(z, op, U, V, W, τ, σ, ι, qr::SymmetricQuadRule)
qr1 = qr.quadrule1
qr2 = qr.quadrule2
z1 = zero(z)
z2 = zero(z)
momintegrals!(z1, op, U, V, W, τ, σ, ι, qr1)
momintegrals!(z2, op, V, U, W, σ, τ, ι, qr2)
z2 = permutedims(z2, (2,1,3))
z .+= (z1+z2)/2
return nothing
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 5060 | abstract type TDFunctional{T} end
Base.eltype(x::TDFunctional{T}) where {T} = T
function quaddata(exc::TDFunctional, testrefs, timerefs, testels, timeels)
testqd = quadpoints(testrefs, testels, (2,))
timeqd = quadpoints(timerefs, timeels, (10,))
testqd, timeqd
end
function quaddata(excitation::TDFunctional,
test_refspace, time_refspace::DiracBoundary,
test_elements, time_elements)
test_quad_data = quadpoints(test_refspace, test_elements, (2,))
test_quad_data, nothing
end
function quadrule(exc::TDFunctional, testrefs, timerefs, p, τ, r, ρ, qd)
MultiQuadStrategy(
qd[1][1,p],
SingleQuadStrategy2(
qd[2][1,r]
)
)
end
function quadrule(exc::TDFunctional, testrefs, timerefs::DiracBoundary, p, τ, r, ρ, qd)
MultiQuadStrategy(
qd[1][1,p],
nothing
)
end
function assemble(exc::TDFunctional, testST; quaddata=quaddata, quadrule=quadrule)
stagedtimestep = isa(temporalbasis(testST), BEAST.StagedTimeStep)
if stagedtimestep
return staged_assemble(exc, testST; quaddata=quaddata, quadrule=quadrule)
end
testfns = spatialbasis(testST)
timefns = temporalbasis(testST)
Z = zeros(eltype(exc), numfunctions(testfns), numfunctions(timefns))
store(v,m,k) = (Z[m,k] += v)
assemble!(exc, testST, store, quaddata=quaddata, quadrule=quadrule)
return Z
end
function staged_assemble(exc::TDFunctional, testST::SpaceTimeBasis;
quaddata=quaddata, quadrule=quadrule)
@warn "staged assemble of the right-hand side"
testfns = spatialbasis(testST)
timefns = temporalbasis(testST)
stageCount = numstages(timefns)
Nt = timefns.Nt
Δt = timefns.Δt
Z = zeros(eltype(exc), numfunctions(testfns) * stageCount, Nt)
for i = 1:stageCount
store(v,m,k) = (Z[(m-1)*stageCount+i,k] += v)
tbsd = TimeBasisDeltaShifted(timebasisdelta(Δt, Nt), timefns.c[i])
assemble!(exc, testfns ⊗ tbsd, store,
quaddata=quaddata, quadrule=quadrule)
end
return Z
end
function assemble!(exc::TDFunctional, testST, store;
quaddata=quaddata, quadrule=quadrule)
testfns = spatialbasis(testST)
timefns = temporalbasis(testST)
testrefs = refspace(testfns)
timerefs = refspace(timefns)
testels, testad = assemblydata(testfns)
timeels, timead = assemblydata(timefns)
qd = quaddata(exc, testrefs, timerefs, testels, timeels)
z = zeros(eltype(exc), numfunctions(testrefs), numfunctions(timerefs))
for p in eachindex(testels)
τ = testels[p]
for r in eachindex(timeels)
ρ = timeels[r]
fill!(z, 0)
qr = quadrule(exc, testrefs, timerefs, p, τ, r, ρ, qd)
momintegrals!(z, exc, testrefs, timerefs, τ, ρ, qr)
for i in 1 : numfunctions(testrefs)
for d in 1 : numfunctions(timerefs)
v = z[i,d]
for (m,a) in testad[p,i]
for (k,c) in timead[r,d]
store(a*c*v, m, k)
end
end
end
end
end
end
end
abstract type NumQuadStrategy end
mutable struct MultiQuadStrategy{P,R} <: NumQuadStrategy
quad_points::P
inner_rule::R
end
# TODO: consolidate with the existing definition of SingleQuadStrategy
mutable struct SingleQuadStrategy2{P} <: NumQuadStrategy
quad_points::P
end
timequadrule(qr::MultiQuadStrategy, p) = qr.inner_rule
function momintegrals!(z, exc::TDFunctional, testrefs, timerefs, τ, ρ, qr)
for p in qr.quad_points
x = p.point
w = p.weight
f = p.value
dx = w
# try
# @assert ρ.vertices[1][1] <= cartesian(x)[1] <= ρ.vertices[2][1]
# catch
# @show ρ.vertices[1][1]
# @show cartesian(x)[1]
# @show ρ.vertices[2][1]
# error("")
# end
tqr = timequadrule(qr,p)
timeintegrals!(z, exc, testrefs, timerefs, x, ρ, dx, tqr, f)
end
end
function timeintegrals!(z, exc::TDFunctional, testrefs, timerefs, testpoint, timeelement, dx, qr, f)
for p in qr.quad_points
t = p.point
w = p.weight
U = p.value
dt = w #* jacobian(t) # * volume(timeelement)
for i in 1 : numfunctions(testrefs)
for k in 1 : numfunctions(timerefs)
z[i,k] += dot(f[i][1]*U[k], exc(testpoint,t)) * dt * dx
end
end
end
end
function timeintegrals!(z, exc::TDFunctional,
spacerefs, timerefs::DiracBoundary,
testpoint, timeelement,
dx, qr, testvals)
# since timeelement uses barycentric coordinates,
# the first/left vertex has coords u = 1.0!
testtime = neighborhood(timeelement, point(0.0))
@assert cartesian(testtime)[1] ≈ timeelement.vertices[2][1]
for i in 1 : numfunctions(spacerefs)
z[i,1] += dot(testvals[i][1], exc(testpoint, testtime)) * dx
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 9630 | using WiltonInts84
abstract type AbstractSpaceTimeOperator end
abstract type SpaceTimeOperator <: AbstractSpaceTimeOperator end # atomic operator
#TODO RKCQ multithreading
function assemble(operator::AbstractSpaceTimeOperator, test_functions, trial_functions;
storage_policy = Val{:bandedstorage},
long_delays_policy = LongDelays{:compress},
threading = Threading{:multi},
quadstrat=defaultquadstrat(operator, test_functions, trial_functions))
stagedtimestep = isa(test_functions.time, StagedTimeStep)
if stagedtimestep
return assemble(RungeKuttaConvolutionQuadrature(operator), test_functions, trial_functions)
end
Z, store = allocatestorage(operator, test_functions, trial_functions,
storage_policy, long_delays_policy)
assemble!(operator, test_functions, trial_functions, store, threading; quadstrat)
return Z()
end
abstract type RetardedPotential{T} <: SpaceTimeOperator end
# Base.eltype(::RetardedPotential{T}) where {T} = T
scalartype(A::RetardedPotential{T}) where {T} = T
mutable struct EmptyRP{T} <: RetardedPotential{T}
speed_of_light::T
end
Base.eltype(::EmptyRP) = Int
defaultquadstrat(::EmptyRP, tfs, bfs) = nothing
quaddata(op::EmptyRP, xs...) = nothing
quadrule(op::EmptyRP, xs...) = nothing
momintegrals!(z, op::EmptyRP, xs...) = nothing
function allocatestorage(op::RetardedPotential, testST, basisST,
::Type{Val{:densestorage}},
::Type{LongDelays{:ignore}})
tfs = spatialbasis(testST)
bfs = spatialbasis(basisST)
M = numfunctions(tfs)
N = numfunctions(bfs)
K0 = zeros(Int, M, N)
K1 = zeros(Int, M, N)
function store(v,m,n,k)
K0[m,n] = (K0[m,n] == 0) ? K0[m,n] : min(K0[m,n],k)
K1[m,n] = max(K1[m,n],k)
end
aux = EmptyRP(op.speed_of_light)
print("Allocating memory for convolution operator: ")
assemble!(aux, testST, basisST, store)
println("\nAllocated memory for convolution operator.")
kmax = maximum(K1);
T = scalartype(op, testST, basisST)
Z = zeros(T, M, N, kmax)
store1(v,m,n,k) = (Z[m,n,k] += v)
# return ()->MatrixConvolution(Z), store1
return ()->ConvolutionOperators.DenseConvOp(Z), store1
end
# function allocatestorage(op::RetardedPotential, testST, basisST,
# ::Type{Val{:bandedstorage}},
# ::Type{LongDelays{:ignore}})
# tfs = spatialbasis(testST)
# bfs = spatialbasis(basisST)
# M = numfunctions(tfs)
# N = numfunctions(bfs)
# K0 = fill(typemax(Int), M, N)
# K1 = zeros(Int, M, N)
# function store(v,m,n,k)
# K0[m,n] = min(K0[m,n],k)
# K1[m,n] = max(K1[m,n],k)
# end
# aux = EmptyRP(op.speed_of_light)
# print("Allocating memory for convolution operator: ")
# assemble!(aux, testST, basisST, store)
# println("\nAllocated memory for convolution operator.")
# maxk1 = maximum(K1)
# bandwidth = maximum(K1 .- K0 .+ 1)
# data = zeros(eltype(op), bandwidth, M, N)
# Z = SparseND.Banded3D(K0, data, maxk1)
# store1(v,m,n,k) = (Z[m,n,k] += v)
# return ()->Z, store1
# end
struct Storage{T} end
function allocatestorage(op::RetardedPotential, testST, basisST,
::Type{Val{:bandedstorage}},
::Type{LongDelays{:compress}})
@info "Allocating mem for RP op compressing the static tail..."
T = scalartype(op, testST, basisST)
tfs = spatialbasis(testST)
bfs = spatialbasis(basisST)
Δt = timestep(temporalbasis(basisST))
Nt = numfunctions(temporalbasis(basisST))
tbf = convolve(temporalbasis(testST), temporalbasis(basisST))
has_tail = !all(tbf.polys[end].data .== 0)
M = numfunctions(tfs)
N = numfunctions(bfs)
K0 = fill(typemax(Int), M, N)
K1 = zeros(Int, M, N)
function store_alloc(v,m,n,k)
K0[m,n] = min(K0[m,n],k)
K1[m,n] = max(K1[m,n],k)
end
op_alloc = EmptyRP(op.speed_of_light)
tbf_trunc = truncatetail(tbf)
δ = timebasisdelta(Δt, Nt)
print("Allocating memory for convolution operator: ")
assemble!(op_alloc, tfs⊗δ, bfs⊗tbf_trunc, store_alloc)
println("\nAllocated memory for convolution operator.")
bandwidth = maximum(K1 .- K0 .+ 1)
data = zeros(T, bandwidth, M, N)
tail = zeros(T, M, N)
# kmax = maximum(K1)
len = has_tail ? Nt : maximum(K1)
Z = ConvolutionOperators.ConvOp(data, K0, K1, tail, len)
function store1(v,m,n,k)
k0 = Z.k0[m,n]
k < k0 && return
k1 = Z.k1[m,n]
k > k1 + 1 && return
k > k1 && (Z.tail[m,n] += v; return)
Z.data[k - k0 + 1, m,n] += v
# if Z.k0[m,n] ≤ k ≤ Z.k1[m,n]
# Z.data[k - Z.k0[m,n] + 1,m,n] += v
# elseif k == Z.k1[m,n]+1
# Z.tail[m,n] += v
# end
end
return ()->Z, store1
end
function assemble!(op::LinearCombinationOfOperators, tfs::SpaceTimeBasis, bfs::SpaceTimeBasis, store,
threading=Threading{:multi}; quadstrat=defaultquadstrat(op, tfs, bfs))
for (a,A,qs) in zip(op.coeffs, op.ops, quadstrat)
store1(v,m,n,k) = store(a*v,m,n,k)
assemble!(A, tfs, bfs, store1, threading; quadstrat=qs)
end
end
function assemble!(op::RetardedPotential, testST::Space, trialST::Space, store,
threading::Type{Threading{:multi}}=Threading{:multi}; quadstrat=defaultquadstrat(op, testST, trialST))
@show quadstrat
Y, S = spatialbasis(testST), temporalbasis(testST)
X, R = spatialbasis(trialST), temporalbasis(trialST)
T = Threads.nthreads()
M = length(spatialbasis(testST))
N = length(spatialbasis(trialST))
P = max(1, floor(Int, sqrt(M*T/N)))
Q = max(1, floor(Int, sqrt(N*T/M)))
rowsplits = [round(Int,s) for s in range(0, stop=M, length=P+1)]
colsplits = [round(Int,s) for s in range(0, stop=N, length=Q+1)]
idcs = CartesianIndices((1:P, 1:Q))
Threads.@threads for idx in idcs
i = idx[1]
j = idx[2]
rlo, rhi = rowsplits[i]+1, rowsplits[i+1]
rlo <= rhi || continue
clo, chi = colsplits[j]+1, colsplits[j+1]
clo <= chi || continue
Y_p = subset(Y, rlo:rhi)
X_q = subset(X, clo:chi)
store1 = (v,m,n,k) -> store(v,rlo+m-1,clo+n-1,k)
assemble_chunk!(op, Y_p ⊗ S, X_q ⊗ R, store1)
end
println("")
# P = Threads.nthreads()
# splits = [round(Int,s) for s in range(0, stop=numfunctions(Y), length=P+1)]
# @info "Starting assembly with $P threads:"
# Threads.@threads for i in 1:P
# lo, hi = splits[i]+1, splits[i+1]
# lo <= hi || continue
# Y_p = subset(Y, lo:hi)
# store1 = (v,m,n,k) -> store(v,lo+m-1,n,k)
# assemble_chunk!(op, Y_p ⊗ S, trialST, store1)
# end
# assemble_chunk!(op, testST, trialST, store)
end
function assemble_chunk!(op::RetardedPotential, testST, trialST, store;
quadstrat=defaultquadstrat(op, testST, trialST))
myid = Threads.threadid()
testspace = spatialbasis(testST)
trialspace = spatialbasis(trialST)
timebasisfunction = convolve(temporalbasis(testST), temporalbasis(trialST))
testels, testad = assemblydata(testspace)
trialels, trialad = assemblydata(trialspace)
speedoflight = op.speed_of_light
Δt = timestep(timebasisfunction)
ct, hs = boundingbox(vertices(geometry(trialspace)))
diam = 2 * sqrt(3) * hs
#kmax = ceil(Int, diam/speedoflight/timestep(timebasisfunction)) + (numintervals(timebasisfunction)-1)
kmax = ceil(Int, (numintervals(timebasisfunction)-1) + diam/speedoflight/Δt)+1
kmax = max(kmax, numfunctions(timebasisfunction))
timead = temporalassemblydata(timebasisfunction, kmax=kmax)
Δt = timestep(timebasisfunction)
ΔR = Δt * speedoflight
Nt = numfunctions(timebasisfunction)
tmax = (Nt-1) * Δt
U = refspace(testspace)
V = refspace(trialspace)
W = refspace(timebasisfunction)
qd = quaddata(op, U, V, W, testels, trialels, nothing, quadstrat)
udim = numfunctions(U)
vdim = numfunctions(V)
wdim = numfunctions(W)
z = zeros(scalartype(op, testST, trialST), udim, vdim, wdim)
# @show length(testels) length(trialels)
myid == 1 && print("dots out of 10: ")
todo, done, pctg = length(testels), 0, 0
for p in eachindex(testels)
τ = testels[p]
for q in eachindex(trialels)
σ = trialels[q]
for r in rings(τ,σ,ΔR)
r > numfunctions(timebasisfunction) && continue
ι = ring(r,ΔR)
# compute interactions between reference shape functions
fill!(z, 0)
qr = quadrule(op, U, V, W, p, τ, q, σ, r, ι, qd, quadstrat)
momintegrals!(z, op, U, V, W, τ, σ, ι, qr)
# assemble in the global matrix
for d in 1 : wdim
for j in 1 : vdim
for i in 1 : udim
v = z[i,j,d]
for (m,a) in testad[p,i]
av = a*v
for (n,b) in trialad[q,j]
abv = b*av
tad_rd = timead[r,d]
for (k,c) in tad_rd
store(c*abv, m, n, k)
end # next κ
end # next ν
end # next μ
end
end
end
end # next r
end # next q
done += 1
new_pctg = round(Int, done / todo * 100)
if myid == 1 && new_pctg > pctg + 9
print(".")
pctg = new_pctg
end
end # next p
# println("")
end
struct WiltonInts84Strat{T,V,W}
outer_quad_points::T
binomials::V
workspace::W
end
function momintegrals!(z, op, g, f, T, τ, σ, ι, qr::WiltonInts84Strat)
XW = qr.outer_quad_points
for p in 1 : length(XW)
x = XW[p].point
w = XW[p].weight
innerintegrals!(z, op, x, g, f, T, τ, σ, ι, qr, w)
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 5956 |
function assemble(op::Identity,
testnfs::AbstractTimeBasisFunction,
trialfns::AbstractTimeBasisFunction)
tbf = convolve(testnfs, trialfns)
has_zero_tail = all(tbf.polys[end].data .== 0)
# @show has_zero_tail
T = scalartype(tbf)
if has_zero_tail
z = zeros(T, numintervals(tbf)-1)
else
z = zeros(T, numfunctions(tbf))
end
Δt = timestep(tbf)
#for i in eachindex(z)
for i in 1:numintervals(tbf)-1
p = tbf.polys[i]
t = (i-1)*Δt
z[i] = evaluate(p,t)
end
for i in numintervals(tbf):length(z)
p = tbf.polys[end]
t = (i-1)*Δt
z[i] = evaluate(p,t)
end
return z
end
mutable struct TensorOperator <: SpaceTimeOperator
spatial_factor
temporal_factor
end
BEAST.defaultquadstrat(::TensorOperator, tfs, bfs) = nothing
⊗(A::AbstractOperator, B::AbstractOperator) = TensorOperator(A, B)
function scalartype(A::TensorOperator)
promote_type(
scalartype(A.spatial_factor),
scalartype(A.temporal_factor))
end
function Base.:*(alpha::Number, A::TensorOperator)
return TensorOperator(alpha*A.spatial_factor, A.temporal_factor)
end
function allocatestorage(op::TensorOperator, test_functions, trial_functions,
::Type{Val{:bandedstorage}}, long_delay_traits::Any)
M = numfunctions(spatialbasis(test_functions))
N = numfunctions(spatialbasis(trial_functions))
time_basis_function = BEAST.convolve(
temporalbasis(test_functions),
temporalbasis(trial_functions))
space_operator = op.spatial_factor
A = assemble(space_operator, spatialbasis(test_functions), spatialbasis(trial_functions))
K0 = ones(Int, M, N)
bandwidth = numintervals(time_basis_function) - 1
K1 = ones(Int,M,N) .+ (bandwidth - 1)
T = scalartype(op, test_functions, trial_functions)
data = zeros(T, bandwidth, M, N)
tail = zeros(T, M, N)
Nt = numfunctions(temporalbasis(trial_functions))
Z = ConvolutionOperators.ConvOp(data, K0, K1, tail, Nt)
function store1(v,m,n,k)
if Z.k0[m,n] ≤ k ≤ Z.k1[m,n]
Z.data[k - Z.k0[m,n] + 1,m,n] += v
elseif k == Z.k1[m,n]+1
Z.tail[m,n] += v
end
end
return ()->Z, store1
end
function assemble!(operator::TensorOperator, testfns::SpaceTimeBasis, trialfns::SpaceTimeBasis,
store, threading::Type{Threading{:multi}};
quadstrat=defaultquadstrat(operator, testfns, trialfns))
space_operator = operator.spatial_factor
time_operator = operator.temporal_factor
space_testfns = spatialbasis(testfns)
space_trialfns = spatialbasis(trialfns)
time_testfns = temporalbasis(testfns)
time_trialfns = temporalbasis(trialfns)
zt = assemble(time_operator, time_testfns, time_trialfns)
# Truncate to a reasonable size in case the tbf has a semi-infinite support
tbf = convolve(time_testfns, time_trialfns)
has_zero_tail = all(tbf.polys[end].data .== 0)
if !has_zero_tail
speedoflight = 1.0
@warn "Assuming speed of light to be equal to 1!"
Δt = timestep(tbf)
ct, hs = boundingbox(geometry(space_trialfns).vertices)
diam = 2 * sqrt(3) * hs
kmax = ceil(Int, (numintervals(tbf)-1) + diam/speedoflight/Δt)+1
zt = zt[1:kmax]
end
function store1(v,m,n)
for (k,w) in enumerate(zt)
store(w*v,m,n,k)
end
end
assemble!(space_operator, space_testfns, space_trialfns,
store1, threading)
end
mutable struct TemporalDifferentiation <: AbstractOperator
operator
end
derive(op::AbstractOperator) = TemporalDifferentiation(op)
scalartype(op::TemporalDifferentiation) = scalartype(op.operator)
Base.:*(a::Number, op::TemporalDifferentiation) = TemporalDifferentiation(a * op.operator)
defaultquadstrat(op::TemporalDifferentiation, tfs, bfs) = defaultquadstrat(op.operator, tfs, bfs)
function allocatestorage(op::TemporalDifferentiation, testfns, trialfns,
storage_trait, longdelays_trait)
trial_time_fns = temporalbasis(trialfns)
trial_space_fns = spatialbasis(trialfns)
trialfns = SpaceTimeBasis(
trial_space_fns,
derive(trial_time_fns)
)
return allocatestorage(op.operator, testfns, trialfns, storage_trait, longdelays_trait)
end
function assemble!(operator::TemporalDifferentiation, testfns, trialfns, store, threading = Threading{:multi};
quadstrat=defaultquadstrat(operator, testfns, trialfns))
trial_time_fns = temporalbasis(trialfns)
trial_space_fns = spatialbasis(trialfns)
trialfns = SpaceTimeBasis(
trial_space_fns,
derive(trial_time_fns)
)
assemble!(operator.operator, testfns, trialfns, store, threading; quadstrat)
end
struct TemporalIntegration <: AbstractSpaceTimeOperator
operator::AbstractSpaceTimeOperator
end
defaultquadstrat(op::TemporalIntegration, tfs, bfs) = defaultquadstrat(op.operator, tfs, bfs)
integrate(op::SpaceTimeOperator) = TemporalIntegration(op)
derive(op::TemporalIntegration) = op.operator
scalartype(op::TemporalIntegration) = scalartype(op.operator)
Base.:*(a::Number, op::TemporalIntegration) = TemporalIntegration(a * op.operator)
function allocatestorage(op::TemporalIntegration, testfns, trialfns,
storage_trait::Type{Val{S}}, longdelays_trait) where {S}
trial_time_fns = temporalbasis(trialfns)
trial_space_fns = spatialbasis(trialfns)
trialfns = SpaceTimeBasis(
trial_space_fns,
integrate(trial_time_fns)
)
return allocatestorage(op.operator, testfns, trialfns, storage_trait, longdelays_trait)
end
function assemble!(operator::TemporalIntegration, testfns, trialfns, store,
threading = Threading{:multi}; quadstrat=defaultquadstrat(operator, testfns, trialfns))
trial_time_fns = temporalbasis(trialfns)
trial_space_fns = spatialbasis(trialfns)
trialfns = SpaceTimeBasis(
trial_space_fns,
integrate(trial_time_fns)
)
assemble!(operator.operator, testfns, trialfns, store; quadstrat)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1305 |
"""
laplace_to_z(rho, n, N, dt, A, b)
Returns the complex matrix valued Laplace variable s that correspond to the
variable z = rho*exp(2*im*pi*n/N) for a given Butcher tableau (A,b,c) and a time step dt.
"""
function laplace_to_z(rho, n, N, dt, A, b)
z = rho * exp(2*im*pi*n/N)
s = inv(dt * (A + ones(size(b)) * b' / (z-1)))
return s
end
"""
inverse_z_transform(k, rho, N, X)
Returns the k-th term of the inverse z-transform. X is an array of the z-transform
evaluated in the points z=rho*exp(2*im*pi*n/N) for n in 0:(N-1).
"""
function inverse_z_transform(k, rho, N, X::AbstractArray{T,1}) where T
return ((rho^k) / N) * sum(n -> X[n+1] * exp(2*im*pi*k*n/N), 0:(N-1))
end
"""
real_inverse_z_transform(k, rho, N, X)
Returns the k-th term of the inverse z-transform.
It is assumed that X[n+1] = conj(X[N-n]) for each n in 1:(N-1)
so that Nmax = N/2+1 or (N+1)/2 (resp. if N%2==0 or N%2==1) terms are used in X
X is an array of the z-transform
evaluated in the points z=rho*exp(2*im*pi*n/N) for n in 0:(Nmax-1).
"""
function real_inverse_z_transform(k, rho, N, X::AbstractArray{T,1}) where T
Nmax = (N+1)>>1
realTerms = (N%2==0) ? real(X[1]) + (-1)^k * real(X[Nmax+1]) : real(X[1])
return ((rho^k) / N) * (realTerms + 2*sum(n -> real(X[n+1] * exp(2*im*pi*k*n/N)), 1:(Nmax-1)))
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 973 | using StaticArrays
"""
butcher_tableau_radau_2stages()
Returns (A,b,c) corresponding to the Butcher tableau for the 2 stage Radau IIA scheme.
"""
function butcher_tableau_radau_2stages()
A = @SMatrix [5/12 -1/12
3/4 1/4];
b = @SVector [3/4, 1/4];
c = @SVector [1/3, 1.0];
return (A, b, c);
end
"""
butcher_tableau_radau_3stages()
Returns (A,b,c) corresponding to the Butcher tableau for the 3 stage Radau IIA scheme.
"""
function butcher_tableau_radau_3stages()
A = @SMatrix [(88.0-7.0*sqrt(6.0))/360.0 (296.0-169.0*sqrt(6.0))/1800.0 (-2.0+3.0*sqrt(6.0))/225.0
(296.0+169.0*sqrt(6.0))/1800.0 (88.0+7.0*sqrt(6.0))/360.0 (-2.0-3.0*sqrt(6.0))/225.0
(16.0-sqrt(6.0))/36.0 (16.0+sqrt(6.0))/36.0 1/9];
b = @SVector [(16.0-sqrt(6.0))/36.0, (16.0+sqrt(6.0))/36.0, 1/9];
c = @SVector [(4.0-sqrt(6.0))/10.0, (4.0+sqrt(6.0))/10.0, 1.0];
return (A, b, c);
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1376 | # given a simplex and a face returns:
# +v if face is the v-th face of the simplex oriented according to the simplex
# -v if face is the v-th face of the simplex oriented oppositely to the simplex
# 0 is face is not a face of the simplex
function relorientation(face, simplex)
v = setdiff(simplex, face)
length(v) == 1 || return 0
# find the position of the missing vertex
v = v[1]
i = Base.something(findfirst(isequal(v),simplex),0)
s = (-1)^(i-1)
# remove that vertex from the simplex
face2 = Array{Int}(undef,length(simplex)-1)
for j in 1 : i-1
face2[j] = simplex[j]
end
for j in i : length(simplex)-1
face2[j] = simplex[j+1]
end
# get the permutation that maps face to face2
#p = indexin(face, face2)
p = [ something(findfirst(isequal(v),face2),0) for v in face ]
return s * levicivita(p) * i
end
"""
getcommonedge(cell1, cell2) -> e1, e2, edge
Returns in edge the common vertices of cell1 and cell2. e1 contains the index
of the vertex of cell1 opposite to this common edge, and with a plus or minus
sign depending on whether the orientation of the common edge is along or
against the internal orientation of cell1. Similar for e2.
"""
function getcommonedge(cell1, cell2)
isct = intersect(cell1, cell2)
relorientation(isct, cell1), relorientation(isct, cell2), isct
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 113 | function example(name)
fn = joinpath(dirname(@__FILE__),"..","..","examples",name*".jl")
include(fn)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 943 | module LinearSpace
macro linearspace(T,F)
LC = Symbol(T, :(_LC))
TI = Symbol(T, :(_TI))
xp = quote
struct $(LC)
a::Vector{$F}
v::Vector{$T}
end
struct $TI
lc::$LC
end
Base.start(ti::$TI) = 1
Base.next(ti::$TI, st) = ((ti.lc.a[st],ti.lc.v[st]),st+1)
Base.done(ti::$TI,st) = (length(ti.lc.a) < st)
terms(lc::$LC) = ($TI)(lc)
import Base: convert, promote_rule, +, *
convert(::Type{$LC}, u::$T) = $LC(ones($F,1),[u])
promote_rule(::Type{$T}, ::Type{$LC}) = $LC
Base.:+(x::Union{$LC,$T}, y::Union{$LC,$T}) = Base.:+(promote(x,y)...)
Base.:+(x::$LC, y::$LC) = $LC([x.a; y.a], [x.v; y.v])
Base.:*(a, x::$LC) = $LC(a*x.a, x.v)
Base.:*(a, x::$T) = a*convert($LC,x)
lctype(lc::Type{$T}) = $LC
end
#println(xp)
return esc(xp)
end
export @linearspace
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 496 | using Requires
export functionvals
function __init__()
@require PlotlyJS="f0f68f2c-4968-5e81-91da-67840de0976a" begin
@eval function PlotlyJS.cone(xyz::Vector, uvw::Vector;kwargs...)
PlotlyJS.cone(;
x=getindex.(xyz,1),
y=getindex.(xyz,2),
z=getindex.(xyz,3),
u=getindex.(uvw,1),
v=getindex.(uvw,2),
w=getindex.(uvw,3),
kwargs...)
end
end
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3003 | using StaticArrays
struct Polynomial{N,T}
data::SVector{N,T}
end
Polynomial(x::T...) where {T} = Polynomial{length(x),T}(SVector{length(x),T}(x))
Polynomial(a::T) where {T<:Number} = Polynomial{1,T}(SVector{1,T}(a))
Base.copy(p::Polynomial) = p
Base.one(p::Polynomial{N,T}) where{N,T} = Polynomial(@SVector[one(T)])
Base.length(p::Polynomial) = length(p.data)
Base.eltype(p::Polynomial) = eltype(p.data)
Base.getindex(p::Polynomial,i::Int) = p.data[i+1]
Base.setindex!(p::Polynomial,v,i::Int) = (p.data[i+1] = v)
degree(p::Polynomial) = length(p.data)-1
function derive(p)
x = eltype(p)[d*p[d] for d in 1:degree(p)]
Polynomial(x...)
end
function integrate(p::Polynomial{N,T},x0,y0) where {N,T}
coeffs = similar(p.data, length(p.data)+1)
fill!(coeffs, 0)
for i in 2:length(coeffs)
coeffs[i] = p.data[i-1]/(i-1)
end
temp = Polynomial(SVector(coeffs...))
coeffs[1] = y0 - temp(x0)
# TODO: Remove high order terms with zero coefficient
return Polynomial(SVector(coeffs...))
end
function evaluate(p::Polynomial, t)
d = p.data
T = promote_type(typeof(t), eltype(d))
r = zero(T)
for i in 1:length(d)
r += d[i] * t^(i-1)
end
return r
end
(p::Polynomial)(t) = evaluate(p,t)
function integrate(p)
x = zeros(eltype(p), degree(p)+2)
for i in 1:degree(p)+1
x[i+1] = p[i-1]/i
end
Polynomial(x...)
end
import Base: *,+,-,promote_rule
function *(p::Polynomial,q::Polynomial)
T = promote_type(eltype(p), eltype(q))
D = degree(p)+degree(q)+1
x = zeros(T, D)
for d in 0 : D
for k in 0 : D
k <= degree(p) || continue
0 <= d-k <= degree(q) || continue
x[d+1] += p[k] * q[d-k]
end
end
Polynomial(x...)
end
# function *(p::Polynomial{1}, q::Polynomial)
# Polynomial(p.data[1] * q.data)
# end
#
# function *(p::Polynomial, q::Polynomial{1})
# Polynomial(q.data[1] * p.data)
# end
function *(a::Number, q::Polynomial)
T = promote_type(typeof(a), eltype(q))
Polynomial{length(q),T}(a*q.data)
end
function +(p::Polynomial, q::Polynomial)
T = promote_type(eltype(p), eltype(q))
D = max(length(p), length(q))
x = zeros(T,D)
for i in 1 : length(p); x[i] += p.data[i]; end
for i in 1 : length(q); x[i] += q.data[i]; end
Polynomial(x...)
end
+(p::Polynomial, a::Number) = p + Polynomial(a)
-(p::Polynomial, a::Number) = p - Polynomial(a)
+(a::Number, p::Polynomial) = p + a
-(a::Number, p::Polynomial) = Polynomial(a) - p
-(p::Polynomial, q::Polynomial) = p + (-one(eltype(q))*q)
function substitute(p::Polynomial, q::Polynomial)
T = promote_type(eltype(p), eltype(q))
r = Polynomial(p[degree(p)])
for d = degree(p)-1 : -1 : 0
r = q*r + p[d]
end
return r
end
# mutable struct PieceWisePolynomial
# end
# function Bernstein(n,u)
# basis = zeros(n+1,1)
# for i = 0:n
# basis[i+1] = binomial(n,i) * u^i * (1.0-u)^(n-i)
# end
# basis
# end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 650 | import LinearMaps
struct Rank1Map{T,U,V} <: LinearMap{T}
u::U
v::V
end
Rank1Map{T}(u::U, v::V) where {T,U,V} = Rank1Map{T,U,V}(u,v)
LinearMaps.MulStyle(A::Rank1Map) = LinearMaps.FiveArg()
Base.size(A::Rank1Map) = (length(A.u), length(A.v),)
Base.axes(A::Rank1Map) = (axes(A.u)..., axes(A.v)...)
function LinearMaps._unsafe_mul!(y::AbstractVector, L::Rank1Map, x::AbstractVector, α::Number=true, β::Number=false)
y .*= β
y .+= α .* L.u .* dot(L.v, x)
end
function LinearMaps._unsafe_mul!(Y::AbstractMatrix, L::Rank1Map, c::Number, α::Number=true, β::Number=false)
rmul!(Y, β)
Y .+= (L.u * L.v') .* c .* α
return Y
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1552 | import SpecialFunctions: erf
struct Gaussian{T}
scaling::T
width::T
delay::T
end
Gaussian(;scaling=1.0, width, delay) = Gaussian(typeof(width)(scaling), width, delay)
(g::Gaussian)(s::Real) = 4*g.scaling/(g.width*√π) * exp(-(4*(s-g.delay)/g.width)^2)
function creategaussian(width,s0,scaling=one(typeof(width)))
#f(s) = 4*scaling/(width*sqrt(π)) * exp(-(4*(s-s0)/width)^2)
Gaussian(scaling, width, s0)
#f(s) = scaling * exp(-(4*(s-s0)/width)^2)
end
function fouriertransform(g::Gaussian; numdiff=0)
scaling = g.scaling
width = g.width
s0 = g.delay
ft(w) = (im*w)^numdiff * scaling * exp(-im*w*s0 - (width*w/8)^2) / sqrt(2π)
end
function fouriertransform(a::Array, dt, t0, dim=1)
n = size(a,dim)
dω = 2π / (n*dt)
b = fftshift(fft(a, dim), dim) * dt / sqrt(2π)
ω0 = -dω * div(n,2)
b, dω, ω0
end
function inversefouriertransform(a::Array, dω, ω0, dim=1)
n = size(a,dim)
dt = 2π/ (n*dω)
b = ifft(a,dim) * sqrt(2π) / dt
t0 = -dt * div(n,2)
b, dt, t0
end
fouriertransform(a::Array; stepsize, offset, dim=1) = fouriertransform(a, stepsize, offset, dim)
derive(g::Gaussian) = s -> g(s) * (-8 * (s-g.delay)/g.width) * (4/g.width)
derive2(g::Gaussian) = s -> -(8*4)/g.width^2 * (g(s) + (s-g.delay) * derive(g)(s))
struct ErrorFunction{T}
scaling::T
width::T
delay::T
end
function (f::ErrorFunction)(s)
f.scaling * 0.5 * (1 + erf(4*(s-f.delay)/f.width))
end
function integrate(f::Gaussian)
return ErrorFunction(f.scaling, f.width, f.delay)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 11211 | module Variational
using BlockArrays
import BEAST
# import Base: start, done, next
export transposecalls!
# aux methods to hide the separation in head and args
numchds(xp) = length(xp.args) + 1
child(xp, idx) = idx == 1 ? xp.head : xp.args[idx-1]
mutable struct DepthFirst
xp::Expr
end
"""
depthfirst(xp)
Returns an iterator that visits all nodes in an Expr depth first. head and
args are visited before the Expr they define.
"""
depthfirst(xp) = DepthFirst(xp)
mutable struct DepthFirstState
val
par
idx
end
import Base: iterate
function iterate(itr::DepthFirst)
head = DepthFirstState(itr.xp, nothing, -1)
state = DepthFirstState(itr.xp, head, 0)
return iterate(itr, state)
end
function iterate(itr::DepthFirst, state)
state.par == nothing && return nothing
return next(itr, state)
end
function next(itr::DepthFirst, state::DepthFirstState)
# if all children processed, move up on level
if state.idx == numchds(state.val)
return state.val, state.par
end
# move to next child
state = DepthFirstState(state.val, state.par, state.idx+1)
# if the next child is a leaf, return it
chd = child(state.val, state.idx)
if !isa(chd, Expr)
return chd, state
end
# the next child is an expression; descend into it
# and find the next valid state. There will always
# be at least one, pointing to the child itself.
state = DepthFirstState(chd, state, 0)
return next(itr, state)
end
"""
transposecall!(xp, skip=[])
Goes through the syntax tree and replace all function calls
`f(p1,p2,...,x)` with `x(f,p1,p2,...)`.
"""
function transposecalls!(xp, skip=[])
isa(xp, Expr) || return xp
for x in depthfirst(xp)
if isa(x, Expr) && x.head == :call && !(x.args[1] in skip)
@assert length(x.args) >= 2
tmp = x.args[1]
x.args[1] = x.args[end]
x.args[end] = tmp
end
end
return xp
end
import Base.==
export hilbertspace, @hilbertspace
export @varform, Equation
export LinForm, LinTerm, BilForm, BilTerm
import Base: +, -, *, getindex, ^, print
import LinearAlgebra: dot
mutable struct HilbertVector
idx
space
opstack
end
Base.Int(hv::HilbertVector) = hv.idx
function hilbertspace(s::Symbol, numcomponents::Int)
syms = [Symbol(s,i) for i in 1:numcomponents]
return [HilbertVector(i,syms,[]) for i in 1:numcomponents]
end
Base.getindex(A::AbstractBlockArray, p::HilbertVector, q::HilbertVector) = A[Block(Int(p),Int(q))]
Base.getindex(u::AbstractBlockArray, p::HilbertVector) = u[Block(Int(p))]
Base.setindex!(A::AbstractBlockArray, v, p::HilbertVector, q::HilbertVector) = setindex!(A, v, Block(Int(p),Int(q)))
Base.setindex!(A::AbstractBlockArray, v, p::HilbertVector) = setindex!(A, v, Block(Int(p)))
Base.view(A::AbstractBlockArray, p::HilbertVector, q::HilbertVector) = view(A, Block(Int(p), Int(q)))
Base.view(A::AbstractBlockArray, p::HilbertVector) = view(A, Block(Int(p)))
mutable struct LinForm
test_space
terms
end
mutable struct LinTerm
test_id
test_ops
coeff
functional
end
mutable struct BilForm
test_space
trial_space
terms
end
mutable struct BilTerm
test_id
trial_id
test_ops
trial_ops
coeff
kernel
end
mutable struct Equation
lhs
rhs
end
"""
==(lhs::BilForm, rhs::LinForm)
Build an equation from a left hand and right hand side
"""
==(lhs::BilForm, rhs::LinForm) = Equation(lhs, rhs)
# """
# hilbert_space(type, g1, g2, ...)
# Returns generators defining a Hilbert space of field `type`
# """
# hilbertspace(vars::Symbol...) = [HilbertVector(i, [vars...], []) for i in 1:length(vars)]
function genspace(syms...)
space = Vector{Symbol}()
lengths = Int[]
starts = Int[]
stops = Int[]
for sym in syms
if sym isa Symbol
push!(space, sym)
push!(lengths,1)
push!(starts,1)
push!(stops,1)
elseif sym isa Expr && sym.head == :ref
base = sym.args[1]
start = sym.args[2].args[2]
stop = sym.args[2].args[3]
for k in start:stop
sym = Symbol(base,k)
push!(space, sym)
end
push!(lengths,stop-start+1)
push!(starts,start)
push!(stops,stop)
end
end
return space, starts, stops
end
macro hilbertspace(syms...)
space, starts, stops = genspace(syms...)
ex = quote end
k = 1
for (s, (start,stop)) in enumerate(zip(starts,stops))
len = stop-start+1
if syms[s] isa Symbol
sym = syms[s]
push!(ex.args, :($(esc(sym)) = HilbertVector($k,$space,[])))
k += 1
else
sym = syms[s].args[1]
push!(ex.args, :($(esc(sym)) = [HilbertVector(i,$space,[]) for i in $k:$(k+len-1)]))
k += len
end
end
return ex
end
# macro hilbertspace(syms...)
# for sym in syms
# @assert isa(sym, Symbol) "@hilbertspace takes a list of Symbols"
# end
# rhs = :(hilbertspace())
# for sym in syms
# push!(rhs.args, QuoteNode(sym))
# end
# vars = gensym()
# xp = quote
# $vars = $rhs
# end
# for (i,s) in enumerate(syms)
# push!(xp.args, :($(esc(s)) = $vars[$i]))
# end
# xp
# end
"""
call(u::HilbertVector, f, params...)
u(f, params...)
Add another operation to the opstack of `u`.
"""
(u::HilbertVector)(f, params...) = HilbertVector(u.idx, u.space, [(f, params...); u.opstack])
"""
getindex(f, v::HilbertVector)
f[v]
Return a LinForm corresponding to f[v]
"""
getindex(f, v::HilbertVector) = LinForm(v.space, [LinTerm(v.idx, v.opstack, 1, f)])
function getindex(f, V::Vector{HilbertVector})
terms = Vector{LinTerm}()
for v in V
term = LinTerm(v.idx, v.opstack, 1, f)
push!(terms, term)
end
return LinForm(first(V).space, terms)
end
"""
getindex(A, v::HilbertVector, u::HilbertVector)
Create a BilForm corresponding to A[v,u]
"""
function getindex(A, v::HilbertVector, u::HilbertVector)
terms = [ BilTerm(v.idx, u.idx, v.opstack, u.opstack, 1, A) ]
BilForm(v.space, u.space, terms)
end
function getindex(A::BEAST.BlockDiagonalOperator, V::Vector{HilbertVector}, U::Vector{HilbertVector})
op = A.op
terms = Vector{BilTerm}()
@assert length(V) == length(U)
for (v,u) in zip(V,U)
term = BilTerm(v.idx, u.idx, v.opstack, u.opstack, 1, op)
push!(terms, term)
end
return BilForm(first(V).space, first(U).space, terms)
end
function getindex(A::BEAST.BlockFullOperators, V::Vector{HilbertVector}, U::Vector{HilbertVector})
op = A.op
terms = Vector{BilTerm}()
# @assert length(V) == length(U)
for v in V
for u in U
term = BilTerm(v.idx, u.idx, v.opstack, u.opstack, 1, op)
push!(terms, term)
end
end
return BilForm(first(V).space, first(U).space, terms)
end
function getindex(op::Any, V::Vector{HilbertVector}, U::Vector{HilbertVector})
terms = Vector{BilTerm}()
for v in V
for u in U
term = BilTerm(v.idx, u.idx, v.opstack, u.opstack, 1, op)
push!(terms, term)
end
end
return BilForm(first(V).space, first(U).space, terms)
end
function getindex(A::Matrix, v::HilbertVector, u::HilbertVector)
terms = [ BilTerm(v.idx, u.idx, v.opstack, u.opstack, 1, A) ]
BilForm(v.space, u.space, terms)
end
"Add two BilForms together"
function +(a::BilForm, b::BilForm)
@assert a.test_space == b.test_space
@assert a.trial_space == b.trial_space
BilForm(a.test_space, a.trial_space, [a.terms; b.terms])
end
function+(a::LinForm, b::LinForm)
@assert a.test_space == b.test_space
LinForm(a.test_space, [a.terms; b.terms])
end
function *(α::Number, a::BilForm)
b = deepcopy(a)
for t in b.terms t.coeff *= α end
return b
end
function *(α::Number, a::LinForm)
b = deepcopy(a)
for t in b.terms t.coeff *= α end
return b
end
-(a::BilForm) = (-1 * a)
-(a::BilForm, b::BilForm) = a + (-b)
-(a::LinForm) = (-1 * a)
-(a::LinForm, b::LinForm) = a + (-b)
function print(io::IO, v::HilbertVector)
sym = v.space[v.idx]
ops = v.opstack
for op in ops
print(io, op[1], "(")
end
print(io, sym)
for op in reverse(ops)
for p in op[2:end]
print(io, ", ", p)
end
print(io, ")")
end
end
function print(io::IO, a::LinForm)
N = length(a.terms)
#T = typeof(a.terms[1].coeff)
for (n,t) in enumerate(a.terms)
u = HilbertVector(t.test_id, a.test_space, t.test_ops)
t.coeff != 1 && print(io, t.coeff, "*")
print(io, t.functional, "[", u, "]")
n == N || print(io, " + ")
end
end
function print(io::IO, f::BilForm)
N = length(f.terms)
#T = typeof(f.terms[1].coeff)
for (n,t) in enumerate(f.terms)
u = HilbertVector(t.test_id, f.test_space, t.test_ops)
v = HilbertVector(t.trial_id, f.trial_space, t.trial_ops)
t.coeff != 1 && print(io, t.coeff, "*")
print(io, t.kernel, "[", u, ", ", v, "]")
n == N || print(io, " + ")
end
end
function print(io::IO, eq::Equation)
print(io, eq.lhs)
print(io, " == ")
print(io, eq.rhs)
end
"""
@varform <form-definition>
The Julia form compiler uses the Julia parser and meta-programming
based traversal of the AST to create a structure containing all
information required for the description of a variational formulation
from an Expr that follows closely widespread mathematical convention.
E.g:
EFIE = @varform T[k,j] = e[k]
MFIE = @varform 0.5*I[k,j] + K[k,j] = h[k]
PMCH = @varform M[k,j] - η*T[k,m] + 1/η*T[l,j] + M[l,m] = e[k] + h[l]
"""
macro varform(x)
y = transposecalls!(x, [:+, :-, :*, :^, :(==)])
esc(y)
end
struct DirectProductKernel
bilforms
end
function Base.getindex(A::DirectProductKernel, V::Vector{HilbertVector}, U::Vector{HilbertVector})
terms = Vector{BilTerm}()
@assert length(V) == length(U) == length(A.bilforms)
for (v,u,op) in zip(V,U, A.bilforms)
term = BilTerm(v.idx, u.idx, v.opstack, u.opstack, 1, op)
push!(terms, term)
end
return BilForm(first(V).space, first(U).space, terms)
end
struct BlockDiagKernel
bilform
end
function Base.getindex(A::BlockDiagKernel, V::Vector{HilbertVector}, U::Vector{HilbertVector})
terms = Vector{BilTerm}()
@assert length(V) == length(U)
op = A.bilform
for (v,u) in zip(V,U)
term = BilTerm(v.idx, u.idx, v.opstack, u.opstack, 1, op)
push!(terms, term)
end
return BilForm(first(V).space, first(U).space, terms)
end
struct OffDiagKernel
bilform
end
function getindex(op::OffDiagKernel, V::Vector{HilbertVector}, U::Vector{HilbertVector})
terms = Vector{BilTerm}()
for (i,v) in enumerate(V)
for (j,u) in enumerate(U)
i == j && continue
term = BilTerm(v.idx, u.idx, v.opstack, u.opstack, 1, op.bilform)
push!(terms, term)
end
end
return BilForm(first(V).space, first(U).space, terms)
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1657 | import LinearMaps
struct ZeroMap{T,U,V} <: LinearMap{T}
range::U
domain::V
end
ZeroMap{T}(range::U, domain::V) where {T,U,V} = ZeroMap{T,U,V}(range, domain)
LinearMaps.MulStyle(A::ZeroMap) = LinearMaps.FiveArg()
Base.size(A::ZeroMap) = (length(A.range), length(A.domain),)
Base.axes(A::ZeroMap) = (A.range, A.domain)
function LinearMaps._unsafe_mul!(y::AbstractVector, L::ZeroMap, x::AbstractVector, α::Number, β::Number)
y .*= β
end
# function LinearAlgebra.mul!(Y::PseudoBlockMatrix, c::Number, X::ZeroMap, a::Number, b::Number)
# @assert b == 1
# return Y
# end
function LinearMaps._unsafe_mul!(Y::AbstractMatrix, X::ZeroMap, c::Number, a::Number, b::Number)
rmul!(Y, b)
return Y
end
function LinearMaps._unsafe_mul!(Y::AbstractMatrix, X::ZeroMap, c::Number)
fill!(Y, false)
return Y
end
# function LinearAlgebra.mul!(y::AbstractVector,
# Lt::LinearMaps.TransposeMap{<:Any,<:ZeroMap},
# x::AbstractVector, α::Number, β::Number)
# y .*= β
# end
function LinearMaps._unsafe_mul!(y::AbstractVector, L::ZeroMap, x::AbstractVector)
y .= 0
end
# function LinearAlgebra.mul!(y::AbstractVector,
# Lt::LinearMaps.TransposeMap{<:Any,<:ZeroMap}, x::AbstractVector)
# y .= 0
# end
LinearAlgebra.adjoint(A::ZeroMap{T}) where {T} = ZeroMap{T}(A.domain, A.range)
LinearAlgebra.transpose(A::ZeroMap{T}) where {T} = ZeroMap{T}(A.domain, A.range)
# function Base.:(*)(A::ZeroMap, x::AbstractVector)
# T = eltype(A)
# y = similar(A.range, T)
# fill!(y, zero(T))
# LinearAlgebra.mul!(y,A,x)
# end
# Base.Matrix{T}(A::ZeroMap) where {T} = zeros(T, length(A.range), length(A.domain))
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1004 | """
Operator to compute the far field of a current distribution. In particular, given the current distribution ``j`` this operator allows for the computation of
```math
A j = n × ∫_Ω j e^{γ ̂x ⋅ y} dy
```
where ``̂x`` is the unit vector in the direction of observation. Note that the assembly routing expects the observation directions to be normalised by the caller.
"""
struct VIEFarField3D{K,P}
gamma::K
tau::P
end
function VIEFarField3D(;wavenumber=error("wavenumber is a required argument"), tau=nothing)
gamma = nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = wavenumber*im
end
tau == nothing && (tau = x->1.0)
VIEFarField3D(gamma, tau)
end
quaddata(op::VIEFarField3D,rs,els) = quadpoints(rs,els,(3,))
quadrule(op::VIEFarField3D,refspace,p,y,q,el,qdata) = qdata[1,q]
kernelvals(op::VIEFarField3D,y,p) = exp(op.gamma*dot(y,cartesian(p)))
function integrand(op::VIEFarField3D,krn,y,f,p)
(y × (op.tau(cartesian(p)) * krn * f[1])) × y
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 5322 | #TODO: rename to reorder_dof and make it depending on RefSpace
function reorder_dof(space::NDLCDRefSpace,I)
n = length(I)
K = zeros(MVector{4,Int64})
for i in 1:n
for j in 1:n
if I[j] == i
K[i] = j
break
end
end
end
return SVector(K),SVector{4,Int64}(1,1,1,1)
end
function reorder_dof(space::NDLCCRefSpace, I )
n = length(I)
J = zeros(MVector{4,Int64})
for i in 1:n
for j in 1:n
if I[j] == i
J[i] = j
break
end
end
end
edges = collect(combinations(J,2))
ref_edges = collect(combinations(SVector{4,Int64}(1,2,3,4),2))
n = length(edges)
K = zeros(MVector{6,Int64})
O = zeros(MVector{6,Int64})
for i in 1:n
for j in 1:n
if edges[i] == ref_edges[j]
K[i] = j
O[i] = 1
break
elseif reverse(edges[i]) == ref_edges[j]
K[i] = j
O[i] = -1
break
end
end
end
return SVector(K),SVector(O)
end
function reorder_dof(space::RTRefSpace,I)
n = length(I)
K = zeros(MVector{3,Int64})
for i in 1:n
for j in 1:n
if I[j] == i
K[i] = j
break
end
end
end
return SVector(K),SVector{3,Int64}(1,1,1)
end
function reorder_dof(space::LagrangeRefSpace{Float64,0,3,1},I)
return SVector{1,Int64}(1),SVector{1,Int64}(1)
end
function reorder_dof(space::LagrangeRefSpace{T,1,3,3},I) where T
n = length(I)
K = zeros(MVector{3,Int64})
for i in 1:n
for j in 1:n
if I[j] == i
K[i] = j
break
end
end
end
return SVector(K),SVector{3,Int64}(1,1,1)
end
function reorder_dof(space::LagrangeRefSpace{T,1,4,4},I) where T
n = length(I)
K = zeros(MVector{4,Int64})
for i in 1:n
for j in 1:n
if I[j] == i
K[i] = j
break
end
end
end
return SVector(K),SVector{4,Int64}(1,1,1,1)
end
function momintegrals!(op::VIEOperator,
test_local_space::RefSpace, trial_local_space::RefSpace,
test_tetrahedron_element, trial_tetrahedron_element, out, strat::SauterSchwab3DStrategy)
#Find permutation of vertices to match location of singularity to SauterSchwab
J, I= SauterSchwab3D.reorder(strat.sing)
#Get permutation and rel. orientatio of DoFs
K,O1 = reorder_dof(test_local_space, I)
L,O2 = reorder_dof(trial_local_space, J)
#Apply permuation to elements
if length(I) == 4
test_tetrahedron_element = simplex(
test_tetrahedron_element.vertices[I[1]],
test_tetrahedron_element.vertices[I[2]],
test_tetrahedron_element.vertices[I[3]],
test_tetrahedron_element.vertices[I[4]])
elseif length(I) == 3
test_tetrahedron_element = simplex(
test_tetrahedron_element.vertices[I[1]],
test_tetrahedron_element.vertices[I[2]],
test_tetrahedron_element.vertices[I[3]])
end
#test_tetrahedron_element = simplex(test_tetrahedron_element.vertices[I]...)
if length(J) == 4
trial_tetrahedron_element = simplex(
trial_tetrahedron_element.vertices[J[1]],
trial_tetrahedron_element.vertices[J[2]],
trial_tetrahedron_element.vertices[J[3]],
trial_tetrahedron_element.vertices[J[4]])
elseif length(J) == 3
trial_tetrahedron_element = simplex(
trial_tetrahedron_element.vertices[J[1]],
trial_tetrahedron_element.vertices[J[2]],
trial_tetrahedron_element.vertices[J[3]])
end
#trial_tetrahedron_element = simplex(trial_tetrahedron_element.vertices[J]...)
#Define integral (returns a function that only needs barycentric coordinates)
igd = VIEIntegrand(test_tetrahedron_element, trial_tetrahedron_element,
op, test_local_space, trial_local_space)
#Evaluate integral
Q = SauterSchwab3D.sauterschwab_parameterized(igd, strat)
#Undo permuation on DoFs
for j in 1 : length(L)
for i in 1 : length(K)
out[i,j] += Q[K[i],L[j]]*O1[i]*O2[j]
end
end
nothing
end
function momintegrals!(biop::VIEOperator, tshs, bshs, tcell, bcell, z, strat::DoubleQuadRule)
# memory allocation here is a result from the type instability on strat
# which is on purpose, i.e. the momintegrals! method is chosen based
# on dynamic polymorphism.
womps = strat.outer_quad_points
wimps = strat.inner_quad_points
M, N = size(z)
for womp in womps
tgeo = womp.point
tvals = womp.value
jx = womp.weight
for wimp in wimps
bgeo = wimp.point
bvals = wimp.value
jy = wimp.weight
j = jx * jy
kernel = kernelvals(biop, tgeo, bgeo)
igd = integrand(biop, kernel, tvals, tgeo, bvals, bgeo)
for m in 1 : length(tvals)
for n in 1 : length(bvals)
z[m,n] += j * igd[m,n]
end
end
end
end
return z
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 10192 | module VIE
using ..BEAST
Mod = BEAST
"""
singlelayer(;gamma, alpha, beta, tau)
singlelayer(;wavenumber, alpha, beta, tau)
Bilinear form given by:
```math
α ∬_{Ω×Ω} j(x)⋅τ(y)⋅k(y) G_{γ}(x,y) + β ∬_{Ω×Ω} div j(x) τ(y)⋅k(y)⋅grad G_{γ}(x,y)
```
with ``G_{γ} = e^{-γ|x-y|} / 4π|x-y|``
and ``τ(y)`` contrast dyadic
"""
function singlelayer(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
beta=nothing,
tau=nothing)
if (gamma == nothing) && (wavenumber == nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if (gamma != nothing) && (wavenumber != nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if gamma == nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
@assert gamma != nothing
alpha == nothing && (alpha = wavenumber*wavenumber)
beta == nothing && (beta = 1.0)
tau == nothing && (tau = x->1.0)
Mod.VIESingleLayer(gamma, alpha, beta, tau)
end
function singlelayer2(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
beta=nothing,
tau=nothing)
if (gamma == nothing) && (wavenumber == nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if (gamma != nothing) && (wavenumber != nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if gamma == nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
@assert gamma != nothing
alpha == nothing && (alpha = 1.0)
beta == nothing && (beta = 1.0)
tau == nothing && (tau = x->1.0)
Mod.VIESingleLayer2(gamma, alpha, beta, tau)
end
"""
boundary(;gamma, alpha, tau)
boundary(;wavenumber, alpha, tau)
Bilinear form given by:
```math
α ∬_{Ω×Ω} T_n j(x) grad G_{γ}(x,y)⋅τ(y)⋅k(y)
```
with ``G_{γ} = e^{-γ|x-y|} / 4π|x-y|``
and ``τ(y)`` contrast dyadic
"""
function boundary(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
tau=nothing)
if (gamma == nothing) && (wavenumber == nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if (gamma != nothing) && (wavenumber != nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if gamma == nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
@assert gamma != nothing
alpha == nothing && (alpha = 1.0)
tau == nothing && (tau = x->1.0)
Mod.VIEBoundary(gamma, alpha, tau)
end
function boundary2(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
tau=nothing)
if (gamma == nothing) && (wavenumber == nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if (gamma != nothing) && (wavenumber != nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if gamma == nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
@assert gamma != nothing
alpha == nothing && (alpha = 1.0)
tau == nothing && (tau = x->1.0)
Mod.VIEBoundary2(gamma, alpha, tau)
end
"""
doublelayer(;gamma, alpha, beta, tau)
doublelayer(;wavenumber, alpha, beta, tau)
Bilinear form given by:
```math
α ∬_{Ω×Ω} j(x) ⋅ grad G_{γ}(x,y) × τ(y)⋅k(y)
```
with ``G_{γ} = e^{-γ|x-y|} / 4π|x-y|``
and ``τ(y)`` contrast dyadic
"""
function doublelayer(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
beta=nothing,
tau=nothing)
if (gamma == nothing) && (wavenumber == nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if (gamma != nothing) && (wavenumber != nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if gamma == nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
@assert gamma != nothing
alpha == nothing && (alpha = 1.0)
tau == nothing && (tau = x->1.0)
Mod.VIEDoubleLayer(gamma, alpha, tau)
end
planewave(;
direction = error("missing arguement `direction`"),
polarization = error("missing arguement `polarization`"),
wavenumber = error("missing arguement `wavenumber`"),
amplitude = one(real(typeof(wavenumber)))) =
Mod.PlaneWaveVIE(direction, polarization, wavenumber, amplitude)
farfield(;
wavenumber = error("missing argument: `wavenumber`"),
tau=error("missing argument: `tau`")) =
Mod.VIEFarField3D(wavenumber=wavenumber, tau= tau)
# Operators of the Lippmann Schwinger Volume Integral Equation,
# which is based on the generalized Helmholtz Equation:
"""
hhvolume(;gamma, alpha, tau)
hhvolume(;wavenumber, alpha, tau)
Bilinear form given by:
```math
α ∬_{Ω×Ω} (grad j(x)) ⋅ G_{γ}(x,y)τ(y) (grad k(y))
```
with ``G_{γ} = e^{-γ|x-y|} / 4π|x-y|``
and ``τ(y)`` contrast function
"""
function hhvolume(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
tau=nothing)
if (gamma === nothing) && (wavenumber === nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if (gamma !== nothing) && (wavenumber !== nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if gamma === nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
@assert gamma !== nothing
alpha === nothing && (alpha = -1.0)
tau === nothing && (tau = x->1.0)
Mod.VIEhhVolume(gamma, alpha, tau)
end
"""
hhboundary(;gamma, alpha, tau)
hhboundary(;wavenumber, alpha, tau)
Bilinear form given by:
```math
α ∬_{∂Ω×Ω} n̂(x) ⋅ j(x) G_{γ}(x,y) τ(y) (grad k(y))
```
with ``G_{γ} = e^{-γ|x-y|} / 4π|x-y|``
and ``τ(y)`` contrast function
and ``n̂(x)`` normal vector
"""
function hhboundary(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
tau=nothing)
if (gamma === nothing) && (wavenumber === nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if (gamma !== nothing) && (wavenumber !== nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if gamma === nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
@assert gamma !== nothing
alpha === nothing && (alpha = 1.0)
tau === nothing && (tau = x->1.0)
Mod.VIEhhBoundary(gamma, alpha, tau)
end
"""
hhvolumek0(;gamma, alpha, tau)
hhvolumek0(;wavenumber, alpha, tau)
Bilinear form given by:
```math
α ∬_{Ω×Ω} j(x) G_{γ}(x,y)τ(y) k(y)
```
with ``G_{γ} = e^{-γ|x-y|} / 4π|x-y|``
and ``τ(y)`` contrast function
"""
function hhvolumek0(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
tau=nothing)
if (gamma === nothing) && (wavenumber === nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if (gamma !== nothing) && (wavenumber !== nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if gamma === nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
@assert gamma !== nothing
alpha === nothing && (alpha = wavenumber*wavenumber)
tau === nothing && (tau = x->1.0)
Mod.VIEhhVolumek0(gamma, alpha, tau)
end
"""
hhvolumegradG(;gamma, alpha, tau)
hhvolumegradG(;wavenumber, alpha, tau)
Bilinear form given by:
```math
α ∬_{Ω×Ω} j(x) grad_y(G_{γ}(x,y)) τ(y) ⋅ (grad k(y))
```
with ``G_{γ} = e^{-γ|x-y|} / 4π|x-y|``
and ``τ(y)`` constant function
"""
function hhvolumegradG(;
gamma=nothing,
wavenumber=nothing,
alpha=nothing,
tau=nothing)
if (gamma === nothing) && (wavenumber === nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if (gamma !== nothing) && (wavenumber !== nothing)
error("Supply one of (not both) gamma or wavenumber")
end
if gamma === nothing
if iszero(real(wavenumber))
gamma = -imag(wavenumber)
else
gamma = im*wavenumber
end
end
@assert gamma !== nothing
alpha === nothing && (alpha = -1.0)
tau === nothing && (tau = x->1.0)
Mod.VIEhhVolumegradG(gamma, alpha, tau)
end
linearpotential(;
direction = error("missing arguement `direction`"),
amplitude = one(real(typeof(direction[1])))) =
Mod.LinearPotentialVIE(direction, amplitude)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2019 | mutable struct PlaneWaveVIE{T,P} <: Functional
direction::P
polarisation::P
wavenumber::T
amplitude::T
end
scalartype(x::PlaneWaveVIE{T,P}) where {T,P} = Complex{T}
function PlaneWaveVIE(d,p,k,a = 1)
T = promote_type(eltype(d), eltype(p), typeof(k), typeof(a))
P = similar_type(typeof(d), T)
PlaneWaveVIE{T,P}(d,p,k,a)
end
planewavevie(;
direction = error("missing arguement `direction`"),
polarization = error("missing arguement `polarization`"),
wavenumber = error("missing arguement `wavenumber`"),
amplitude = 1,
) = PlaneWaveVIE(direction, polarization, wavenumber, amplitude)
function (e::PlaneWaveVIE)(p)
k = e.wavenumber
d = e.direction
u = e.polarisation
a = e.amplitude
x = cartesian(p)
a * exp(-im * k * dot(d, x)) * u
end
function curl(field::PlaneWaveVIE)
k = field.wavenumber
d = field.direction
u = field.polarisation
a = field.amplitude
v = d × u
b = -a * im * k
PlaneWaveVIE(d, v, k, b)
end
*(a::Number, e::PlaneWaveVIE) = PlaneWaveVIE(e.direction, e.polarisation, e.wavenumber, a*e.amplitude)
integrand(::PlaneWaveVIE, test_vals, field_val) = test_vals[1] ⋅ field_val
# Excitation for Lippmann Schwinger Volume Integral Equation
mutable struct LinearPotentialVIE{T,P} <: Functional
direction::P
amplitude::T
end
scalartype(x::LinearPotentialVIE{T,P}) where {T,P} = T
function LinearPotentialVIE_(d,a = 1)
T = promote_type(eltype(d), typeof(a))
P = similar_type(typeof(d), T) #SVector{3,T}
return LinearPotentialVIE{T,P}(d,a)
end
linearpotentialvie(;
direction = error("missing argument `direction`"),
amplitude = 1,
) = LinearPotentialVIE_(direction, amplitude)
function (e::LinearPotentialVIE)(p)
d = e.direction
a = e.amplitude
x = cartesian(p)
return a * dot(d, x)
end
*(a::Number, e::LinearPotentialVIE) = LinearPotentialVIE_(e.direction, a*e.amplitude)
integrand(::LinearPotentialVIE, test_vals, field_val) = test_vals[1] ⋅ field_val | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 9802 | abstract type VIEOperator <: IntegralOperator end
abstract type VolumeOperator <: VIEOperator end
abstract type BoundaryOperator <: VIEOperator end
struct KernelValsVIE{T,U,P,Q,K}
gamma::U
vect::P
dist::T
green::U
gradgreen::Q
tau::K
end
function kernelvals(viop::VIEOperator, p ,q)
Y = viop.gamma;
r = cartesian(p)-cartesian(q)
R = norm(r)
yR = Y*R
expn = exp(-yR)
green = expn / (4*pi*R)
gradgreen = - (Y +1/R)*green/R*r # Derivation after p (test variable)
tau = viop.tau(cartesian(q))
KernelValsVIE(Y,r,R, green, gradgreen,tau)
end
struct VIESingleLayer{T,U,P} <: VolumeOperator
gamma::T
α::U
β::U
tau::P
end
struct VIEBoundary{T,U,P} <: BoundaryOperator
gamma::T
α::U
tau::P
end
struct VIESingleLayer2{T,U,P} <: VolumeOperator
gamma::T
α::U
β::U
tau::P
end
struct VIEBoundary2{T,U,P} <: BoundaryOperator
gamma::T
α::U
tau::P
end
struct VIEDoubleLayer{T,U,P} <: VolumeOperator
gamma::T
α::U
tau::P
end
struct VIEhhVolume{T,U,P} <: VolumeOperator
gamma::T
α::U
tau::P
end
struct VIEhhBoundary{T,U,P} <: BoundaryOperator
gamma::T
α::U
tau::P
end
struct VIEhhVolumegradG{T,U,P} <: VolumeOperator
gamma::T
α::U
tau::P
end
struct VIEhhVolumek0{T,U,P} <: VolumeOperator
gamma::T
α::U
tau::P
end
scalartype(op::VIEOperator) = typeof(op.gamma)
export VIE
struct VIEIntegrand{S,T,O,K,L}
test_tetrahedron_element::S
trial_tetrahedron_element::T
op::O
test_local_space::K
trial_local_space::L
end
function (igd::VIEIntegrand)(u,v)
#mesh points
tgeo = neighborhood(igd.test_tetrahedron_element,v)
bgeo = neighborhood(igd.trial_tetrahedron_element,u)
#kernel values
kerneldata = kernelvals(igd.op,tgeo,bgeo)
#values & grad/div/curl of local shape functions
tval = igd.test_local_space(tgeo)
bval = igd.trial_local_space(bgeo)
#jacobian
j = jacobian(tgeo) * jacobian(bgeo)
integrand(igd.op, kerneldata,tval,tgeo,bval,bgeo) * j
end
function integrand(viop::VIESingleLayer, kerneldata, tvals, tgeo, bvals, bgeo)
gx = @SVector[tvals[i].value for i in 1:4]
fy = @SVector[bvals[i].value for i in 1:4]
dgx = @SVector[tvals[i].divergence for i in 1:4]
dfy = @SVector[bvals[i].divergence for i in 1:4]
G = kerneldata.green
gradG = kerneldata.gradgreen
Ty = kerneldata.tau
α = viop.α
β = viop.β
@SMatrix[α * dot(gx[i],Ty*fy[j]) * G - β * dot(dgx[i] * (Ty * fy[j]), gradG) for i in 1:4, j in 1:4]
end
function integrand(viop::VIESingleLayer2, kerneldata, tvals, tgeo, bvals, bgeo)
gx = @SVector[tvals[i].value for i in 1:6]
fy = @SVector[bvals[i].value for i in 1:6]
dgx = @SVector[tvals[i].curl for i in 1:6]
dfy = @SVector[bvals[i].curl for i in 1:6]
G = kerneldata.green
gradG = kerneldata.gradgreen
Ty = kerneldata.tau
α = viop.α
β = viop.β
@SMatrix[dot(dgx[i] , cross(gradG, Ty*fy[j])) for i in 1:6, j in 1:6]
end
function integrand(viop::VIEBoundary, kerneldata, tvals, tgeo, bvals, bgeo)
gx = @SVector[tvals[i].value for i in 1:1]
fy = @SVector[bvals[i].value for i in 1:4]
gradG = kerneldata.gradgreen
Ty = kerneldata.tau
α = viop.α
@SMatrix[α * gx[i] * dot(Ty * fy[j], gradG) for i in 1:1, j in 1:4]
end
function integrand(viop::VIEBoundary2, kerneldata, tvals, tgeo, bvals, bgeo)
gx = @SVector[tvals[i].value for i in 1:3]
fy = @SVector[bvals[i].value for i in 1:6]
gradG = kerneldata.gradgreen
Ty = kerneldata.tau
α = viop.α
@SMatrix[α * dot(gx[i] , cross(gradG, Ty*fy[j])) for i in 1:3, j in 1:6]
end
function integrand(viop::VIEDoubleLayer, kerneldata, tvals, tgeo, bvals, bgeo)
gx = tvals[1]
fy = bvals[1]
gradG = kerneldata.gradgreen
Ty = kerneldata.tau
α = viop.α
t = α * dot(gx, cross(gradG, Ty*fy))
end
# Integrands for the operators of the Lippmann Schwinger Volume Integral Equation:
function integrand(viop::VIEhhVolume, kerneldata, tvals, tgeo, bvals, bgeo)
gx = @SVector[tvals[i].value for i in 1:4]
fy = @SVector[bvals[i].value for i in 1:4]
dgx = @SVector[tvals[i].gradient for i in 1:4]
dfy = @SVector[bvals[i].gradient for i in 1:4]
G = kerneldata.green
gradG = kerneldata.gradgreen
Ty = kerneldata.tau
α = viop.α
return @SMatrix[α * dot(dgx[i], G*Ty*dfy[j]) for i in 1:4, j in 1:4]
end
function integrand(viop::VIEhhBoundary, kerneldata, tvals, tgeo, bvals, bgeo)
gx = @SVector[tvals[i].value for i in 1:3]
dfy = @SVector[bvals[i].gradient for i in 1:4]
G = kerneldata.green
gradG = kerneldata.gradgreen
Ty = kerneldata.tau
α = viop.α
return @SMatrix[α * dot( tgeo.patch.normals[1]*gx[i],G*Ty*dfy[j]) for i in 1:3, j in 1:4]
end
function integrand(viop::VIEhhVolumek0, kerneldata, tvals, tgeo, bvals, bgeo)
gx = @SVector[tvals[i].value for i in 1:4]
fy = @SVector[bvals[i].value for i in 1:4]
dgx = @SVector[tvals[i].gradient for i in 1:4]
dfy = @SVector[bvals[i].gradient for i in 1:4]
G = kerneldata.green
gradG = kerneldata.gradgreen
Ty = kerneldata.tau
α = viop.α
return @SMatrix[α * gx[i]*G*Ty*fy[j] for i in 1:4, j in 1:4]
end
function integrand(viop::VIEhhVolumegradG, kerneldata, tvals, tgeo, bvals, bgeo)
gx = @SVector[tvals[i].value for i in 1:4]
fy = @SVector[bvals[i].value for i in 1:4]
dgx = @SVector[tvals[i].gradient for i in 1:4]
dfy = @SVector[bvals[i].gradient for i in 1:4]
G = kerneldata.green
gradG = -kerneldata.gradgreen # "-" to get nabla'G(r,r')
Ty = kerneldata.tau
α = viop.α
return @SMatrix[α * gx[i] * dot(gradG, Ty*dfy[j]) for i in 1:4, j in 1:4]
end
defaultquadstrat(op::VIEOperator, tfs, bfs) = SauterSchwab3DQStrat(3,3,3,3,3,3)
function quaddata(op::VIEOperator,
test_local_space::RefSpace, trial_local_space::RefSpace,
test_charts, trial_charts, qs::SauterSchwab3DQStrat)
#The combinations of rules (6,7) and (5,7 are) BAAAADDDD
# they result in many near singularity evaluations with any
# resemblence of accuracy going down the drain! Simply don't!
# (same for (5,7) btw...).
t_qp = quadpoints(test_local_space, test_charts, (qs.outer_rule,))
b_qp = quadpoints(trial_local_space, trial_charts, (qs.inner_rule,))
sing_qp = (SauterSchwab3D._legendre(qs.sauter_schwab_1D,0,1),
SauterSchwab3D._shunnham2D(qs.sauter_schwab_2D),
SauterSchwab3D._shunnham3D(qs.sauter_schwab_3D),
SauterSchwab3D._shunnham4D(qs.sauter_schwab_4D),)
return (tpoints=t_qp, bpoints=b_qp, sing_qp=sing_qp)
end
quadrule(op::VolumeOperator, g::RefSpace, f::RefSpace, i, τ, j, σ, qd, qs) = qr_volume(op, g, f, i, τ, j, σ, qd, qs)
function qr_volume(op::VolumeOperator, g::RefSpace, f::RefSpace, i, τ, j, σ, qd,
qs::SauterSchwab3DQStrat)
dtol = 1.0e3 * eps(eltype(eltype(τ.vertices)))
hits = 0
idx_t = Int64[]
idx_s = Int64[]
sizehint!(idx_t,4)
sizehint!(idx_s,4)
dmin2 = floatmax(eltype(eltype(τ.vertices)))
D = dimension(τ)+dimension(σ)
for (i,t) in enumerate(τ.vertices)
for (j,s) in enumerate(σ.vertices)
d2 = LinearAlgebra.norm_sqr(t-s)
d = norm(t-s)
dmin2 = min(dmin2, d2)
# if d2 < dtol
if d < dtol
push!(idx_t,i)
push!(idx_s,j)
hits +=1
break
end
end
end
#singData = SauterSchwab3D.Singularity{D,hits}(idx_t, idx_s )
@assert hits <= 4
hits == 4 && return SauterSchwab3D.CommonVolume6D_S(SauterSchwab3D.Singularity6DVolume(idx_t,idx_s),(qd.sing_qp[1],qd.sing_qp[2],qd.sing_qp[4]))
hits == 3 && return SauterSchwab3D.CommonFace6D_S(SauterSchwab3D.Singularity6DFace(idx_t,idx_s),(qd.sing_qp[1],qd.sing_qp[2],qd.sing_qp[3]))
hits == 2 && return SauterSchwab3D.CommonEdge6D_S(SauterSchwab3D.Singularity6DEdge(idx_t,idx_s),(qd.sing_qp[1],qd.sing_qp[2],qd.sing_qp[3],qd.sing_qp[4]))
hits == 1 && return SauterSchwab3D.CommonVertex6D_S(SauterSchwab3D.Singularity6DPoint(idx_t,idx_s),qd.sing_qp[3])
return DoubleQuadRule(
qd[1][1,i],
qd[2][1,j])
end
quadrule(op::BoundaryOperator, g::RefSpace, f::RefSpace, i, τ, j, σ, qd, qs) = qr_boundary(op, g, f, i, τ, j, σ, qd, qs)
function qr_boundary(op::BoundaryOperator, g::RefSpace, f::RefSpace, i, τ, j, σ, qd,
qs::SauterSchwab3DQStrat)
dtol = 1.0e3 * eps(eltype(eltype(τ.vertices)))
hits = 0
idx_t = Int64[]
idx_s = Int64[]
sizehint!(idx_t,4)
sizehint!(idx_s,4)
dmin2 = floatmax(eltype(eltype(τ.vertices)))
D = dimension(τ)+dimension(σ)
for (i,t) in enumerate(τ.vertices)
for (j,s) in enumerate(σ.vertices)
d2 = LinearAlgebra.norm_sqr(t-s)
d = norm(t-s)
dmin2 = min(dmin2, d2)
# if d2 < dtol
if d < dtol
push!(idx_t,i)
push!(idx_s,j)
hits +=1
break
end
end
end
@assert hits <= 3
#singData = SauterSchwab3D.Singularity{D,hits}(idx_t, idx_s )
hits == 3 && return SauterSchwab3D.CommonFace5D_S(SauterSchwab3D.Singularity5DFace(idx_t,idx_s),(qd.sing_qp[1],qd.sing_qp[2],qd.sing_qp[3]))
hits == 2 && return SauterSchwab3D.CommonEdge5D_S(SauterSchwab3D.Singularity5DEdge(idx_t,idx_s),(qd.sing_qp[1],qd.sing_qp[2],qd.sing_qp[3]))
hits == 1 && return SauterSchwab3D.CommonVertex5D_S(SauterSchwab3D.Singularity5DPoint(idx_t,idx_s),(qd.sing_qp[3],qd.sing_qp[2]))
return DoubleQuadRule(
qd[1][1,i],
qd[2][1,j])
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2062 | # write your own tests here
using StaticArrays
module PkgTests
using Distributed
using LinearAlgebra
using SparseArrays
using Test
using Pkg
import BEAST
include("test_fourier.jl")
include("test_specials.jl")
include("test_basis.jl")
include("test_directproduct.jl")
include("test_raviartthomas.jl")
include("test_rt.jl")
include("test_rtx.jl")
include("test_subd_basis.jl")
include("test_rt2.jl")
include("test_nd2.jl")
include("test_dvg.jl")
include("test_bcspace.jl")
include("test_trace.jl")
include("test_ttrace.jl")
include("test_timebasis.jl")
include("test_rtports.jl")
include("test_ndjunction.jl")
include("test_ndspace.jl")
include("test_restrict.jl")
include("test_ndlcd_restrict.jl")
include("test_interpolate_and_restrict.jl")
include("test_rt3d.jl")
include("test_gradient.jl")
include("test_mult.jl")
include("test_gram.jl")
include("test_vector_gram.jl")
include("test_local_storage.jl")
include("test_embedding.jl")
include("test_assemblerow.jl")
include("test_mixed_blkassm.jl")
include("test_local_assembly.jl")
include("test_assemble_refinements.jl")
include("test_dipole.jl")
include("test_wiltonints.jl")
include("test_sauterschwabints.jl")
include("test_hh3dints.jl")
include("test_ss_nested_meshes.jl")
include("test_nitsche.jl")
include("test_nitschehh3d.jl")
include("test_curlcurlgreen.jl")
include("test_hh3dtd_exc.jl")
include("test_hh3dexc.jl")
include("test_hh3d_nearfield.jl")
include("test_tdassembly.jl")
include("test_tdhhdbl.jl")
include("test_tdmwdbl.jl")
include("test_compressed_storage.jl")
include("test_tdefie_irk.jl")
include("test_dyadicop.jl")
# include("test_matrixconv.jl")
include("test_tdop_scaling.jl")
include("test_tdrhs_scaling.jl")
include("test_td_tensoroperator.jl")
include("test_variational.jl")
include("test_handlers.jl")
using TestItemRunner
@run_package_tests
try
Pkg.installed("BogaertInts10")
@info "`BogaertInts10` detected. Including relevant tests."
include("test_bogaertints.jl")
catch
@info "`Could not load BogaertInts10`. Related tests skipped."
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2331 | using StaticArrays
using CompScienceMeshes
using BEAST
# using SauterSchwabQuadrature
using LinearAlgebra
using Test
function generate_refpair(;angle=180)
vertices = [
SVector(0.0, 1.0, 0.0),
SVector(-0.5, 0.0, 0.0),
SVector(+0.5, 0.0, 0.0),
SVector(0.0, 1.0*cos(angle/180*π), 1.0*sin(angle/180*π))
]
triangles = [
SVector(1, 2, 3),
SVector(2, 4, 3)
]
return Mesh(vertices, triangles)
end
Γ = generate_refpair(angle=45)
X = raviartthomas(Γ)
Y = buffachristiansen(Γ)
Kop = Maxwell3D.doublelayer(wavenumber=0.0)
qs = BEAST.defaultquadstrat(Kop, X, Y)
qs = BEAST.DoubleNumWiltonSauterQStrat(1, 1, 12, 13, 12, 12, 12, 12)
K1 = assemble(Kop, X, Y; quadstrat=qs)
K2 = assemble(Kop, Y, X; quadstrat=qs)
K1[1,1] - K2[1,1]
@test K1[1,1] ≈ K2[1,1] rtol=1e-7
# Verify that quadrature strategy is passed through
qds(i) = BEAST.DoubleNumWiltonSauterQStrat(3,3,8,8,i,i,i,i)
Kxy_1 = (assemble(Kop, X, Y, quadstrat=qds(1)))[1,1]
Kxy_2 = (assemble(Kop, X, Y, quadstrat=qds(5)))[1,1]
Kxy_3 = (assemble(Kop, X, Y, quadstrat=qds(10)))[1,1]
# Kxy_4 = (assemble(Kop, X, Y, quadstrat=qds(15)))[1,1]
@test 0.1 < abs(Kxy_1 - Kxy_3)/abs(Kxy_3) < 0.4
@test 0.0008 < abs(Kxy_2 - Kxy_3)/abs(Kxy_3) < 0.002
Kyx_1 = (assemble(Kop, Y, X, quadstrat=qds(1)))[1,1]
Kyx_2 = (assemble(Kop, Y, X, quadstrat=qds(5)))[1,1]
Kyx_3 = (assemble(Kop, Y, X, quadstrat=qds(10)))[1,1]
# Kyx_4 = (assemble(Kop, Y, X, quadstrat=qds(15)))[1,1]
@test 0.2 < abs(Kyx_1 - Kyx_3)/abs(Kyx_3) < 0.3
@test 0.0006 < abs(Kyx_2 - Kyx_3)/abs(Kyx_3) < 0.0007
Γtr = CompScienceMeshes.translate(Γ, SVector(2.0, 0.0, 0.0))
Γ2 = weld(Γ, Γtr)
X2 = raviartthomas(Γ2)
Y2 = buffachristiansen(Γ2)
qds2(i) = BEAST.DoubleNumWiltonSauterQStrat(i,i,i,i,10,10,10,10)
K2xy_1 = (assemble(Kop, X2, Y2, quadstrat=qds2(1)))[1,2]
K2xy_2 = (assemble(Kop, X2, Y2, quadstrat=qds2(5)))[1,2]
K2xy_3 = (assemble(Kop, X2, Y2, quadstrat=qds2(10)))[1,2]
@test 0.06 < abs(K2xy_1 - K2xy_3)/abs(K2xy_3) < 0.07
@test 1e-6 < abs(K2xy_2 - K2xy_3)/abs(K2xy_3) < 1e-5
K2yx_1 = (assemble(Kop, Y2, X2, quadstrat=qds2(1)))[1,2]
K2yx_2 = (assemble(Kop, Y2, X2, quadstrat=qds2(5)))[1,2]
K2yx_3 = (assemble(Kop, Y2, X2, quadstrat=qds2(10)))[1,2]
@test 0.06 < abs(K2yx_1 - K2yx_3)/abs(K2yx_3) < 0.07
@test 1e-6 < abs(K2yx_2 - K2yx_3)/abs(K2yx_3) < 1e-5 | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1526 | @info "Executing test_assemblerow.jl"
using CompScienceMeshes, BEAST
using Test
fn = joinpath(dirname(@__FILE__),"assets","sphere35.in")
for T in [Float32, Float64]
local m = readmesh(fn,T=T)
t = Maxwell3D.singlelayer(wavenumber=T(1.0))
local X = raviartthomas(m)
numfunctions(X)
##
X1 = subset(X,1:1)
numfunctions(X1)
T1 = assemble(t,X1,X)
T2 = BEAST.assemblerow(t,X1,X)
#
# T3 = assemble(t,X,X1)
# T4 = BEAST.assemblecol(t,X,X1)
#
# @test T1 == T2
# T2 = BEAST.assembleblock(t,X,X)
@test T1≈T2 atol=sqrt(eps(T))
local I = [3,2,7]
X1 = subset(X,I)
T2 = zeros(scalartype(t,X1,X1),numfunctions(X1),numfunctions(X1))
store(v,m,n) = (T2[m,n] += v)
qs = BEAST.defaultquadstrat(t,X,X)
test_elements, test_assembly_data,
trial_elements, trial_assembly_data,
quadrature_data, zlocal = BEAST.assembleblock_primer(t,X,X, quadstrat=qs)
BEAST.assembleblock_body!(t,
X, I, test_elements, test_assembly_data,
X, I, trial_elements, trial_assembly_data,
quadrature_data, zlocal, store, quadstrat=qs)
T1 = assemble(t,X1,X1)
@test T1 == T2
# @time BEAST.assembleblock_body!(t,
# X, I, test_elements, test_assembly_data,
# X, I, trial_elements, trial_assembly_data,
# quadrature_data, zlocal, store)
# @time assemble(t,X1,X1)
T3 = zeros(scalartype(t,X1,X1),numfunctions(X1),numfunctions(X1))
store3(v,m,n) = (T3[m,n] += v)
blkasm = BEAST.blockassembler(t,X,X)
blkasm(I,I,store3)
T4 = assemble(t,X,X)
@test T3 == T4[I,I]
# @time blkasm(I,I)
# @time assemble(t,X1,X1)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 6767 | ## Preamble
using Test
using LinearAlgebra
using CompScienceMeshes
using BEAST
## The actual tests
for T in [Float32, Float64]
κ = ω = T(1.0)
Γ = meshsegment(T(1.0), T(0.5))
X = lagrangec0d1(Γ)
@test numvertices(Γ)-2 == numfunctions(X)
hypersingular = HyperSingular(κ)
identityop = Identity()
doublelayer = DoubleLayer(κ)
@time N = assemble(hypersingular, X, X)
@time I = assemble(identityop, X, X)
@test size(N) == (numfunctions(X), numfunctions(X))
@test size(I) == (numfunctions(X), numfunctions(X))
@test rank(I) == numfunctions(X)
@time e = assemble(PlaneWaveNeumann(κ, point(0.0, 1.0)), X)
@test length(e) == numfunctions(X)
x1 = N \ e;
# Testing duallagrangec0d1
if T == Float64
Γ1 = meshcircle(T(1.0), T(2.5),3) # creating a triangle
Γ2 = barycentric_refinement(Γ1) # creating the refined mesh
X1 =duallagrangec0d1(Γ1,Γ2) # creating the basis functions
X1 = duallagrangec0d1(Γ1, Γ2, x->false, Val{2})
@test numcells(Γ1) == numfunctions(X1) # making sure it is assigned according to the coarse mesh segments
@test length(X1.fns[1])== 6 # making sure each segment represent 6 shapes inside it
@test length(X1.fns[numfunctions(X1)])== 6 # making sure the last segment functions contains 6 shapes as well
end
end
## Test linear Lagrange elements on triangles and the computation of their curl
for T in [Float32, Float64]
Degr = 1
Dim1 = 3
NumF = 3
f = BEAST.LagrangeRefSpace{T,Degr,Dim1,NumF}()
sphere = readmesh(joinpath(dirname(@__FILE__),"assets","sphere5.in"),T=T)
s = chart(sphere, first(sphere))
t = neighborhood(s, T.([1,1]/3))
# v = f(t, Val{:withcurl})
v = f(t)
A = volume(s)
@test v[1][2] == (s[3]-s[2])/2A
@test v[2][2] == (s[1]-s[3])/2A
@test v[3][2] == (s[2]-s[1])/2A
@test v[1][1] ≈ 1/3
@test v[2][1] ≈ 1/3
@test v[3][1] ≈ 1/3
end
## Test the construction of continuous linear Lagrange elements on 2D surfaces
using CompScienceMeshes
using BEAST
using Test
for T in [Float32, Float64]
m = meshrectangle(T(1.0), T(1.0), T(0.5), 3)
X = lagrangec0d1(m)
x = refspace(X)
@test numfunctions(x) == 3
@test numfunctions(X) == 1
@test length(X.fns[1]) == 6
end
## Test unitfunction
using CompScienceMeshes
using BEAST
using Test
for T in [Float32, Float64]
m = meshrectangle(T(1.0), T(1.0), T(0.5), 3)
X = unitfunctioncxd0(m)
@test numfunctions(X) == 1
@test length(X.fns[1]) == numcells(m)
@test assemble(Identity(), X, X) ≈ [1.0]
X1 = unitfunctionc0d1(m)
@test numfunctions(X1) == 1
@test length(X1.fns[1]) == 6
@test assemble(Identity(), X1, X1) ≈ [0.125]
X2 = unitfunctionc0d1(m; dirichlet=false)
@test numfunctions(X2) == 1
@test length(X2.fns[1]) == numcells(m) * 3
@test assemble(Identity(), X2, X2) ≈ [1.0]
end
## test the scalar trace for Lagrange functions
using CompScienceMeshes
using BEAST
using Test
for T in [Float64]
p1 = point(T,0,0,0)
p2 = point(T,1,0,0)
p3 = point(T,0,1,0)
p4 = point(T,1,1,1)
c1 = index(1,2,3)
m = Mesh([p1,p2,p3,p4],[c1])
b = Mesh([p1,p2], [index(1,2)])
X = lagrangec0d1(m, boundary(m))
@test numfunctions(X) == 3
Y = BEAST.strace(X, b)
@test numfunctions(X) == 3
@test numfunctions(Y) == 3
@test length(Y.fns[1]) == 1
@test length(Y.fns[2]) == 1
@test length(Y.fns[3]) == 0
sh = Y.fns[1][1]; @test (sh.cellid, sh.refid, sh.coeff) == (1, 1, 1.0)
sh = Y.fns[2][1]; @test (sh.cellid, sh.refid, sh.coeff) == (1, 2, 1.0)
x = refspace(X)
cell = chart(m, first(m))
face = chart(b, first(b))
Q = BEAST.strace(x, cell, 3, face)
@test Q == [1 0 0; 0 1 0]
end
## test Lagrange construction on Junctions
using CompScienceMeshes
using BEAST
using Test
for T in [Float64]
m1 = meshrectangle(T(1.0), T(0.5), T(0.5))
m2 = CompScienceMeshes.rotate(m1, T(0.5π)*[1,0,0])
m3 = CompScienceMeshes.rotate(m1, T(1.0π)*[1,0,0])
m = weld(m1, m2, m3)
X = lagrangec0d1(m)
x = refspace(X)
@test numfunctions(X) == 1
@test length(X.fns[1]) == 9
p = point(T, 0.5, 0.0, 0.0)
for _s in X.fns[1]
# _cell = m.faces[_s.cellid]
patch = chart(m, _s.cellid)
bary = carttobary(patch, p)
mp = neighborhood(patch, bary)
end
end
## Test the dual pieweise constant lagrange elemetns
using CompScienceMeshes
using BEAST
using Test
width, height = 1.0, 1.0
h = 0.5
m = meshrectangle(width, height, h)
b = meshsegment(width, width, 3)
X = duallagrangecxd0(m, b)
@test numfunctions(X) == 2
@test isa(refspace(X), BEAST.LagrangeRefSpace)
@test length(X.fns[1]) == 6
@test length(X.fns[2]) == 12
fine = geometry(X)
for _fn in X.fns
_n = length(_fn)
for _sh in _fn
@test _sh.refid == 1
cellid = _sh.cellid
# _cell = cells(fine)[cellid]
ptch = chart(fine, cellid)
@test _sh.coeff * volume(ptch) ≈ 1/_n
end
end
## Test the construction of dual piecewise linear, globally continuous elements
using CompScienceMeshes
using BEAST
using Test
m = meshrectangle(1.0, 1.0, 0.25)
j = meshsegment(1.0, 1.0, 3)
X = duallagrangec0d1(m,j)
x = refspace(X)
@test numfunctions(X) == numcells(m)
isonjunction = inclosure_gpredicate(j)
els, ad = BEAST.assemblydata(X)
for _p in 1:numcells(m)
el = els[_p]
for r in 1:numfunctions(x)
vert = el[r]
isonjunction(vert) || continue
for (i,w) in ad[_p,r]
@test w == 0
end
end
end
## Test gradient and curl of continuous lagrange elements
m = meshrectangle(1.0, 1.0, 0.5, 3)
int_nodes = submesh(!in(skeleton(boundary(m),0)), skeleton(m,0))
@test length(int_nodes) == 1
lag = lagrangec0d1(m, int_nodes)
@test numfunctions(lag) == 1
rs = refspace(lag)
# cl = cells(m)[2]
p = 2
cl = CompScienceMeshes.indices(m,p)
ch = chart(m, p)
nbd = neighborhood(ch, carttobary(ch, [0.5, 0.5, 0]))
vals = getfield.(rs(nbd), :value)
@test vals ≈ [0, 1, 0]
crl = BEAST.curl(lag)
# BEAST.gradient(lag)
nxgrad = BEAST.n × BEAST.gradient(lag)
for i in eachindex(crl.fns)
crli = sort(crl.fns[i], by=sh->(sh.cellid, sh.refid))
nxgradi = sort(nxgrad.fns[i], by=sh->(sh.cellid, sh.refid))
for j in eachindex(crl.fns[i])
# @test crl.fns[i][j] == nxgrad.fns[i][j]
@test crli[j].coeff == -nxgradi[j].coeff
end
end
m = Mesh([
point(1,0,0),
point(0,1,0),
point(0,0,1),
point(0,0,0)],
[index(1,2,3,4)])
lag = lagrangec0d1(m, skeleton(m,0))
@test numfunctions(lag) == 4
gradlag = gradient(lag)
edg = skeleton(m,1)
nd3d1 = BEAST.nedelec(m,edg)
nd3d2 = BEAST.nedelecc3d(m,edg)
## end of file
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4438 | using Test
using SparseArrays
using CompScienceMeshes
using BEAST
using StaticArrays
"""
isdivconforming(space)
Returns for every basis functions in the space the total of the absolute
values of non-compensated skeleton flux, i.e. flux flowing into from one
side of an edge and not flowing out on the other side. Should be all zeros
for divergence conforming functions, at least on a closed surface.
"""
function isdivconforming(space)
geo = geometry(space)
mesh = geo
T=eltype(vertextype(mesh))
edges = skeleton(mesh,1)
D = connectivity(edges, mesh, abs)
rows = rowvals(D)
vals = nonzeros(D)
Flux = zeros(T, numcells(mesh),3)
TotalFlux = zeros(T, numcells(edges), numfunctions(space))
for i in 1 : numfunctions(space)
fill!(Flux, 0)
bfs = BEAST.basisfunction(space,i)
for bf in bfs
c = bf.cellid
e = bf.refid
x = bf.coeff
Flux[c,e] += x
end
for E in 1 : numcells(edges)
for j in nzrange(D,E)
F = rows[j]
e = vals[j]
@assert 1 <= e <= 3
TotalFlux[E,i] += Flux[F,e]
end
end
end
return TotalFlux
end
function touches_predicate(mesh)
verts = skeleton(mesh,0)
verts = sort(verts.faces, lt=isless)
edges = skeleton(mesh,1)
edges = sort(edges.faces, lt=isless)
function pred(s)
num_hits = 0
for i in 1:length(s)
if !isempty(searchsorted(verts, SVector(s[i]), lt=isless))
num_hits += 1
end
end
@assert num_hits < 3
num_hits == 0 && return false
num_hits == 1 && return true
isempty(searchsorted(edges, s, lt=isless)) && return true
return false
end
return pred
end
function interior(mesh::Mesh)
D = dimension(mesh)
edges = skeleton(mesh, D-1)
pred = interior_tpredicate(mesh)
submesh(pred, edges)
end
#meshfile = Pkg.dir("BEAST","test","sphere2.in")
for T in [Float32, Float64]
meshfile = joinpath(dirname(@__FILE__),"assets","sphere316.in")
mesh = readmesh(meshfile,T=T)
@test numvertices(mesh) == 160
@test numcells(mesh) == 316
rt = raviartthomas(mesh)
@test numfunctions(rt) == 316 * 3 / 2
local fine = barycentric_refinement(mesh)
local edges = skeleton(mesh, 1)
bc = buffachristiansen(mesh)
@test numfunctions(bc) == 316 * 3 / 2
lc = isdivconforming(rt)
@test maximum(lc) < eps(T) * 1000
println("RT space is div-conforming")
lc = isdivconforming(bc);
@test maximum(lc) < eps(T) * 1000
println("BC space is div-conforming")
# Now repeat the exercise with an open mesh
mesh = meshrectangle(T(1.0), T(1.0), T(0.2));
fine = barycentric_refinement(mesh);
rt = raviartthomas(mesh)
bc = buffachristiansen(mesh)
@test numfunctions(rt) == 65
@test numfunctions(bc) == 65
int_pred = interior_tpredicate(mesh)
bnd_pred(s) = !int_pred(s)
leaky_edges = findall(sum(abs.(isdivconforming(rt)),dims=1) .!= 0)
@test length(leaky_edges) == 0
bnd = boundary(mesh)
bndtch_pred = touches_predicate(bnd)
edges = interior(mesh)
bndtch_edges = findall(bndtch_pred, cells(edges))
leaky_edges = findall(vec(sum(abs.(isdivconforming(bc)),dims=1)) .!= 0)
@test bndtch_edges == leaky_edges
## Test the charge of BC functions
#meshfile = Pkg.dir("BEAST","test","sphere2.in")
meshfile = joinpath(dirname(@__FILE__),"assets","sphere316.in")
mesh = readmesh(meshfile,T=T)
bc = buffachristiansen(mesh)
fine = geometry(bc)
charges = zeros(numcells(fine))
for fn in bc.fns
abs_charge = T(0.0)
net_charge = T(0.0)
fill!(charges,0)
for _sh in fn
cellid = _sh.cellid
#cell = simplex(vertices(fine, fine.faces[cellid]))
net_charge += _sh.coeff
charges[cellid] += _sh.coeff
end
abs_charge = sum(abs.(charges))
@test net_charge + 1 ≈ 1
@test abs_charge ≈ 2
end
end
# THe BC construction function should throw for non-oriented surfaces
# width, height, h = 1.0, 0.5, 0.05
G1 = meshrectangle(1.0, 1.0, 0.25)
G2 = CompScienceMeshes.rotate(G1, 0.5π * x̂)
G = CompScienceMeshes.weld(G1,G2)
@test_throws AssertionError buffachristiansen(G)
# G3 = CompScienceMeshes.rotate(G1, 1.0π * x̂)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 629 | using BEAST
using CompScienceMeshes
using LinearAlgebra
using Test
r = 10.0
λ = 20 * r
k = 2 * π / λ
sphere = readmesh(joinpath(dirname(@__FILE__),"assets","sphere5.in"), T=Float64)
D = Maxwell3D.doublelayer(wavenumber=k)
X = raviartthomas(sphere)
Y = buffachristiansen(sphere)
A = assemble(D, X, X)
@views blkasm = BEAST.blockassembler(D, X, X)
@views function assembler(Z, tdata, sdata)
@views store(v,m,n) = (Z[m,n] += v)
blkasm(tdata,sdata,store)
end
A_blk = zeros(ComplexF64, length(X.fns), length(Y.fns))
assembler(A_blk, [1:length(X.fns);], [1:length(Y.fns);])
@test norm(A - A_blk) ≈ 0 atol=eps(Float64)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4711 | using Test
using CompScienceMeshes
using StaticArrays
import BEAST
BE = BEAST
Γ = readmesh(joinpath(dirname(@__FILE__),"assets","sphere2.in"))
nc = numcells(Γ)
t = chart(Γ, Γ.faces[1])
s = chart(Γ, Γ.faces[nc])
X = BEAST.raviartthomas(Γ)
x = BEAST.refspace(X)
κ = 1.0
op = BEAST.MWSingleLayer3D(κ)
n = BE.numfunctions(x)
z1 = zeros(ComplexF64, n, n)
z2 = zeros(z1)
tqd = BE.quadpoints(x, [t], (12,13))
bqd = BE.quadpoints(x, [t], (13,))
SE_strategy = BE.WiltonSERule(
tqd[2,1],
BE.DoubleQuadRule(
tqd[1,1],
bqd[1,1],
),
)
BEAST.momintegrals!(op, x, x, t, t, z1, SE_strategy)
EE_strategy = BEAST.BogaertSelfPatchStrategy(20)
BEAST.momintegrals!(op, x, x, t, t, z2, EE_strategy)
Γ = meshrectangle(1.0, 1.0, 1.0)
t = chart(Γ, Γ.faces[1])
s = chart(Γ, Γ.faces[2])
z3 = zeros(ComplexF64, n, n)
EE_strategy = BEAST.BogaertEdgePatchStrategy(13,30)
BEAST.momintegrals!(op, x, x, t, s, z3, EE_strategy)
z4 = zeros(ComplexF64, n, n)
tqd = BE.quadpoints(x, [t], (12,13))
bqd = BE.quadpoints(x, [s], (13,))
SE_strategy = BE.WiltonSERule(
tqd[2,1],
BE.DoubleQuadRule(
tqd[1,1],
bqd[1,1],
),
)
BEAST.momintegrals!(op, x, x, t, s, z4, SE_strategy)
p = [
point(0.0, 0.0, 0.0),
point(0.0, 1.0, 0.0),
point(1.0, 1.0, 0.0),
point(0.0, -1.0, 0.0),
point(1.0, -1.0, 0.0)]
t = simplex(p[1], p[2], p[3])
s = simplex(p[1], p[4], p[5])
z5 = zeros(ComplexF64, n, n)
EE_strategy = BEAST.BogaertPointPatchStrategy(9,10)
BEAST.momintegrals!(op, x, x, t, s, z5, EE_strategy)
z6 = zeros(ComplexF64, n, n)
tqd = BE.quadpoints(x, [t], (12,13))
bqd = BE.quadpoints(x, [s], (13,))
SE_strategy = BE.WiltonSERule(
tqd[2,1],
BE.DoubleQuadRule(
tqd[1,1],
bqd[1,1],
),
)
BEAST.momintegrals!(op, x, x, t, s, z6, SE_strategy)
@test norm(z1-z2)/norm(z1) < 1.0e-6
@test norm(z3-z4)/norm(z3) < 3.0e-6
@test norm(z5-z6)/norm(z5) < 1.0e-8
@show norm(z1-z2)/norm(z1)
@show norm(z3-z4)/norm(z3)
@show norm(z5-z6)/norm(z5)
# repeat the test for the MFIE interactions
κ = 1.0
op = BEAST.MWDoubleLayer3D(0.0)
p = [
point(0.0, 0.0, 0.0),
point(1.0, 0.0, 0.0),
point(1.0, 1.0, 0.0),
point(0.0, 1.0, 1.0),
point(1.0,-1.0, 0.0)
]
t1 = simplex(p[1], p[2], p[3])
t2 = simplex(p[1], p[3], p[4])
t3 = simplex(p[1], p[2], p[5])
# test the edge patch integral
z1 = zeros(ComplexF64, BE.numfunctions(x), BE.numfunctions(x))
z2 = zeros(ComplexF64, BE.numfunctions(x), BE.numfunctions(x))
z3 = zeros(ComplexF64, BE.numfunctions(x), BE.numfunctions(x))
s1 = BEAST.BogaertEdgePatchStrategy(13, 30)
tqd = BE.quadpoints(x, [t1], (12,13))
bqd = BE.quadpoints(x, [t2], (13,))
s2 = BE.WiltonSERule(
tqd[2,1],
BE.DoubleQuadRule(
tqd[1,1],
bqd[1,1],
),
)
s3 = BE.DoubleQuadRule(
tqd[1,1],
tqd[1,1],
)
BEAST.momintegrals!(op, x, x, t1, t2, z1, s1)
BEAST.momintegrals!(op, x, x, t1, t2, z2, s2)
BEAST.momintegrals!(op, x, x, t1, t2, z3, s3)
@test norm(z2-z1)/norm(z2) < 1.0e-3
s1 = BEAST.BogaertPointPatchStrategy(9,10)
tqd = BE.quadpoints(x, [t2], (12,13))
bqd = BE.quadpoints(x, [t3], (13,))
s2 = BE.WiltonSERule(
tqd[2,1],
BE.DoubleQuadRule(
tqd[1,1],
bqd[1,1],
),
)
s3 = BE.DoubleQuadRule(
tqd[1,1],
tqd[1,1],
)
fill!(z1, 0); BEAST.momintegrals!(op, x, x, t2, t3, z1, s1)
fill!(z2, 0); BEAST.momintegrals!(op, x, x, t2, t3, z2, s2)
fill!(z3, 0); BEAST.momintegrals!(op, x, x, t2, t3, z3, s3)
@test norm(z2-z1)/norm(z2) < 2.0e-6
s1 = BEAST.BogaertSelfPatchStrategy(20)
tqd = BE.quadpoints(x, [t1], (12,13))
bqd = BE.quadpoints(x, [t1], (13,))
s2 = BE.WiltonSERule(
tqd[2,1],
BE.DoubleQuadRule(
tqd[1,1],
bqd[1,1],
),
)
s3 = BE.DoubleQuadRule(
tqd[1,1],
tqd[1,1],
)
fill!(z1, 0); BEAST.momintegrals!(op, x, x, t1, t1, z1, s1)
fill!(z2, 0); BEAST.momintegrals!(op, x, x, t1, t1, z2, s2)
fill!(z3, 0); BEAST.momintegrals!(op, x, x, t1, t1, z3, s3)
# Test if IBPP gives the correct value for ∫∫∇G
t2 = simplex(p[3], p[4], p[1])
t3 = simplex(p[2], p[5], p[1])
s1 = BEAST.BogaertPointPatchStrategy(9, 10)
_, I = BEAST.GetIntegrals(t2[1],t2[2],t2[3],t3[1],t3[2], 0.0, s1)
#I = I.GG
Rpnt = eltype(p)
Cplx = typeof(complex(zero(eltype(p[1]))))
Cpnt = similar_type(Rpnt, Cplx, Size(length(Rpnt),))
u, w = BEAST.trgauss(10)
J = zeros(Cpnt, 3, 3)
for i in 1:length(w)
p = neighborhood(t2, u[:,i])
x = cartesian(p)
λ = barycentric(p)
dx = w[i] * jacobian(p)
for j in 1:length(w)
q = neighborhood(t3, u[:,j])
y = cartesian(q)
μ = barycentric(q)
dy = w[j] * jacobian(q)
r = norm(x-y)
for i in 1:3
for j in 1:3
J[i,j] += dx * dy / r^3 * (x-y) / 4π * λ[i] * μ[j]
end
end
end
end
@test maximum([real(norm(x-y)) for (x,y) in zip(I,J)]) < 2.0e-6
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 5260 | using CompScienceMeshes
using BEAST
using LinearAlgebra
using Test
# Γ = meshcuboid(1.0, 1.0, 1.0, 0.25)
# Γ = meshsphere(1.0, 0.3)
Γ = meshrectangle(1.0, 1.0, 1/3, 3)
Γ1 = CompScienceMeshes.rotate(Γ, pi/2*point(1,0,0))
Γ2 = CompScienceMeshes.weld(Γ,Γ1)
sol = 1.0
SL0 = TDMaxwell3D.singlelayer(speedoflight=sol, numdiffs=0)
SL1 = TDMaxwell3D.singlelayer(speedoflight=sol, numdiffs=1)
DL0 = TDMaxwell3D.doublelayer(speedoflight=sol, numdiffs=0)
Δt, Nt = 0.6, 80
duration = 20 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ, x̂
E = BEAST.planewave(polarisation, direction, gaussian, 1.0)
E1 = BEAST.planewave(polarisation, direction, derive(gaussian), 1.0)
δ = timebasisdelta(Δt, Nt)
T0 = timebasisshiftedlagrange(Δt, Nt, 0)
T1 = timebasisshiftedlagrange(Δt, Nt, 1)
T2 = timebasisshiftedlagrange(Δt, Nt, 2)
T3 = timebasisshiftedlagrange(Δt, Nt, 3)
iT1 = integrate(T1)
iT2 = integrate(T2)
X = raviartthomas(Γ)
Y = buffachristiansen(Γ, ibscaled=false)
fr1, store1 = BEAST.allocatestorage(SL0, X⊗δ, X⊗T1,
BEAST.Val{:bandedstorage},
BEAST.LongDelays{:compress})
fr2, store2 = BEAST.allocatestorage(SL0, X⊗δ, X⊗T1,
BEAST.Val{:densestorage},
BEAST.LongDelays{:ignore})
BEAST.assemble!(SL0, X⊗δ, X⊗T1, store1); Z1 = fr1()
BEAST.assemble!(SL0, X⊗δ, X⊗T1, store2); Z2 = fr2()
for k in axes(Z1,3)
local T = scalartype(SL0, X⊗δ, X⊗T1)
Z1k = zeros(T, size(Z1)[1:2])
Z2k = zeros(T, size(Z2)[1:2])
BEAST.ConvolutionOperators.timeslice!(Z1k, Z1, k)
BEAST.ConvolutionOperators.timeslice!(Z2k, Z2, k)
@test norm(Z1k .- Z2k, Inf) < 1e-12
end
# for m in axes(Z1,1)
# for n in axes(Z1,2)
# for k in axes(Z1,3)
# @test norm(Z1[m,n,k] - Z2[m,n,k]) < 1e-12
# end end end
# @test norm(Z1-Z2,Inf) < 1e-12
fr3, store7 = BEAST.allocatestorage(SL1, X⊗δ, X⊗T2,
BEAST.Val{:bandedstorage},
BEAST.LongDelays{:compress})
fr4, store8 = BEAST.allocatestorage(SL1, X⊗δ, X⊗T2,
BEAST.Val{:densestorage},
BEAST.LongDelays{:ignore})
BEAST.assemble!(SL1, X⊗δ, X⊗T2, store7); Z3 = fr3()
BEAST.assemble!(SL1, X⊗δ, X⊗T2, store8); Z4 = fr4()
# x = rand(size(Z1)[1:2]...)
# csx = cumsum(x, dims = 2)
#
# j, k_start = 10, 2
# y1 = zeros(eltype(Z1), size(Z1,1))
# y2 = zeros(eltype(Z2), size(Z2,1))
# BEAST.convolve!(y1, Z1, x, csx, j, k_start)
# y2 = convolve(Z2, x, j, k_start)
# @show norm(y2 - y1)
b = assemble(E, X⊗δ)
b1 = assemble(E1, X⊗δ)
function timeslice(T,Z,k)
Zk = zeros(T, size(Z)[1:2])
BEAST.ConvolutionOperators.timeslice!(Zk, Z, k)
end
T = scalartype(SL0, X⊗δ, X⊗T1)
W1 = inv(timeslice(T,Z1,1))
W2 = inv(timeslice(T,Z2,1))
# W1 = inv(AbstractArray(Z1)[:,:,1])
# W2 = inv(AbstractArray(Z2)[:,:,1])
# W1 = inv(BEAST.timeslice(Z1,1))
# W2 = inv(BEAST.timeslice(Z2,1))
@test norm(W1-W2,Inf) < 1e-12
T = scalartype(SL1, X⊗δ, X⊗T2)
W3 = inv(timeslice(T,Z3,1))
W4 = inv(timeslice(T,Z4,1))
# W3 = inv(AbstractArray(Z3)[:,:,1])
# W4 = inv(AbstractArray(Z4)[:,:,1])
# W3 = inv(BEAST.timeslice(Z3,1))
# W4 = inv(BEAST.timeslice(Z4,1))
@test norm(W3-W4) < 1e-12
x1 = marchonintime(W1, Z1, b, Nt)
x2 = marchonintime(W2, Z2, b, Nt)
@test norm(x1-x2,Inf) < 1e-12
x3 = marchonintime(W3, Z3, b1, Nt)
x4 = marchonintime(W4, Z4, b1, Nt)
@test norm(x3-x4,Inf) < 1e-12
@test norm(vec(x1)-vec(x3)) / norm(vec(x3)) < 0.1
@test norm(vec(x1)-vec(x4)) / norm(vec(x4)) < 0.1
X2 = raviartthomas(Γ2)
Y2 = raviartthomas(Γ2)
DLh = (DL0, X2⊗δ, X2⊗iT2)
fr9, store9 = BEAST.allocatestorage(DLh...,
BEAST.Val{:bandedstorage},
BEAST.LongDelays{:compress})
fr10, store10 = BEAST.allocatestorage(DLh...,
BEAST.Val{:densestorage},
BEAST.LongDelays{:ignore})
@time BEAST.assemble!(DLh..., store9)
@time BEAST.assemble!(DLh..., store10)
Z9 = fr9()
Z10 = fr10()
for k in axes(Z9,3)
local T = scalartype(DLh...)
Z9k = zeros(T, size(Z9)[1:2])
Z10k = zeros(T, size(Z10)[1:2])
BEAST.ConvolutionOperators.timeslice!(Z9k, Z9, k)
BEAST.ConvolutionOperators.timeslice!(Z10k, Z10, k)
@test norm(Z9k .- Z10k, Inf) < 1e-12
end
# # @test norm(Z9-Z10,Inf) < 1e-12
# for m in axes(Z9,1)
# for n in axes(Z9,2)
# for k in axes(Z9,3)
# @test norm(Z9[m,n,k] - Z10[m,n,k]) < 1e-12
# end end end
iDLh = (integrate(DL0), Y2⊗δ, X2⊗T1)
fr11, store11 = BEAST.allocatestorage(iDLh..., BEAST.Val{:densestorage}, BEAST.LongDelays{:ignore})
fr12, store12 = BEAST.allocatestorage(iDLh..., BEAST.Val{:bandedstorage}, BEAST.LongDelays{:compress})
# fr13, store13 = BEAST.allocatestorage(iDLh..., BEAST.Val{:bandedstorage}, BEAST.LongDelays{:ignore})
BEAST.assemble!(iDLh..., store11); Z11 = fr11()
BEAST.assemble!(iDLh..., store12); Z12 = fr12()
# BEAST.assemble!(iDLh..., store13); Z13 = fr13()
# @test norm(Z11-Z12,Inf) < 1e-8
# for m in axes(Z11,1)
# for n in axes(Z11,2)
# for k in axes(Z11,3)
# @test norm(Z11[m,n,k] - Z12[m,n,k]) < 1e-12
# end end end
# @test norm(Z11-Z13,Inf) < 1e-8
for k in axes(Z11,3)
local T = scalartype(iDLh...)
Z11k = zeros(T, size(Z11)[1:2])
Z12k = zeros(T, size(Z12)[1:2])
BEAST.ConvolutionOperators.timeslice!(Z11k, Z11, k)
BEAST.ConvolutionOperators.timeslice!(Z12k, Z12, k)
@test norm(Z11k .- Z12k, Inf) < 1e-12
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 287 | using Test
using BEAST
using CompScienceMeshes
Γ = meshrectangle(1.0, 1.0, 0.5, 3)
X = raviartthomas(Γ)
SL = derive(TDMaxwell3D.singlelayer(speedoflight=1.0))
Δt, Nt = 1.01, 10
δ = timebasisdelta(Δt,Nt)
h = timebasisc0d1(Δt,Nt)
SLh = (SL, X⊗δ, X⊗h)
A = assemble(SLh...)
@show size(A) | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1386 | #test curl lagc0d2
using CompScienceMeshes
using BEAST
using Test
for T in [Float32, Float64]
for j in [1,2,3]
local o, x, y, z = euclidianbasis(3,T)
triang = simplex(x,y,o)
ctr = center(triang)
iref1 = BEAST.LagrangeRefSpace{T,2,3,6}()
oref1 = BEAST.BDMRefSpace{T}()
ishp1 = [BEAST.Shape{T}(1, j, 1.0), BEAST.Shape{T}(1, mod1(j+1,3)+3, 0.5), BEAST.Shape{T}(1, mod1(j+2,3)+3, 0.5)]
# we use the property that a nodal lagc0d2 function plus 1/2 times the two adiacent edge lagc0d2 functions is equal to the nodal lagc0d1 function at the same nodes, and the same must be true for their surfcurl
outputbdm = [BEAST.curl(iref1, ishp1[1], triang), BEAST.curl(iref1, ishp1[2], triang), BEAST.curl(iref1, ishp1[3], triang)]
global obdm = point(T,0,0,0)
for i in [1,2,3]
for oshp in outputbdm[i]
obdm += oref1(ctr)[oshp.refid].value * oshp.coeff
end
end
iref2 = BEAST.LagrangeRefSpace{T,1,3,3}()
oref2 = BEAST.RTRefSpace{T}()
ishp2 = BEAST.Shape{T}(1, j, 1.0)
outputrt = BEAST.curl(iref2, ishp2, triang)
global ort = point(T,0,0,0)
for oshp in outputrt
ort += oref2(ctr)[oshp.refid].value * oshp.coeff
end
@test ort ≈ obdm
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1005 | using Test
using LinearAlgebra
using BEAST
using CompScienceMeshes
using StaticArrays
for T in [Float32, Float64]
local y = point(T,2,0,0)
local j = ẑ
local κ = T(1.0)
gj(x) = exp(-im*κ*norm(x-y))/(4*π*norm(x-y)) * j
ccg = BEAST.CurlCurlGreen(κ, j, y)
function curlh(f,x,h)
e1 = point(T,1,0,0)
e2 = point(T,0,1,0)
e3 = point(T,0,0,1)
d1f = (f(x+h*e1) - f(x-h*e1))/(2*h)
d2f = (f(x+h*e2) - f(x-h*e2))/(2*h)
d3f = (f(x+h*e3) - f(x-h*e3))/(2*h)
return @SVector[
d2f[3] - d3f[2],
d3f[1] - d1f[3],
d1f[2] - d2f[1]]
end
cgh(x) = curlh(gj,x,h)
ccgh(x) = curlh(cgh,x,h)
local h = T(0.01)
local x = point(T,1,1,1)
a = ccg(x)
local b = ccgh(x)
@show norm(x-y)
T == Float64 ? atol=1e-5 : atol=1e-4
@test norm(a-b) < atol
cccg = curl(ccg)
cccgh(x) = curlh(ccg,x,h)
# @show a = cccg(x)
# @show b = cccgh(x)
@test norm(a-b) < atol
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4829 | using Test
using CompScienceMeshes
using BEAST
using StaticArrays
using LinearAlgebra
using BlockArrays
for U in [Float32,Float64]
c = U(3e8)
μ0 = U(4*π*1e-7)
μr = U(1.0)
μ = μ0*μr
ε0 = U(8.854187812e-12)
εr = U(5)
ε = ε0*εr
c = U(1)/sqrt(ε*μ)
local f = U(5e7)
λ = c/f
k = U(2*π/λ)
local ω = k*c
η = sqrt(μ/ε)
a = U(1)
Γ_orig = CompScienceMeshes.meshcuboid(a,a,a,U(0.1))
local Γ = translate(Γ_orig,SVector(U(-a/2),U(-a/2),U(-a/2)))
Φ, Θ = U.([0.0]), range(U(0),stop=U(π),length=100)
pts = [point(U,cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for ϕ in Φ for θ in Θ]
# This is an electric dipole
# The pre-factor (1/ε) is used to resemble
# (9.18) in Jackson's Classical Electrodynamics
local E = U(1/ε) * dipolemw3d(location=SVector(U(0.4),U(0.2),U(0)),
orientation=U(1e-9).*SVector(U(0.5),U(0.5),U(0)),
wavenumber=k)
local n = BEAST.NormalVector()
𝒆 = (n × E) × n
local H = (-1/(im*μ*ω))*curl(E)
𝒉 = (n × H) × n
𝓣 = Maxwell3D.singlelayer(wavenumber=k, alpha=-im*ω*μ, beta=-1/(im*ω*ε))
𝓝 = BEAST.NCross()
𝓚 = Maxwell3D.doublelayer(wavenumber=k)
local X = raviartthomas(Γ)
local Y = buffachristiansen(Γ)
local T = Matrix(assemble(𝓣,X,X))
e = Vector(assemble(𝒆,X))
j_EFIE = T\e
nf_E_EFIE = potential(MWSingleLayerField3D(𝓣), pts, j_EFIE, X)
nf_H_EFIE = potential(BEAST.MWDoubleLayerField3D(𝓚), pts, j_EFIE, X)
ff_E_EFIE = potential(MWFarField3D(𝓣), pts, j_EFIE, X)
ff_H_EFIE = potential(BEAST.MWDoubleLayerFarField3D(𝓚), pts, j_EFIE, X)
ff_H_EFIE_rotated = potential(n × BEAST.MWDoubleLayerFarField3D(𝓚), pts, -j_EFIE, n × X)
ff_H_EFIE_doublerotated = potential(n × BEAST.MWDoubleLayerRotatedFarField3D(n × 𝓚), pts, -j_EFIE, X)
@test norm(nf_E_EFIE - E.(pts))/norm(E.(pts)) ≈ 0 atol=0.01
@test norm(nf_H_EFIE - H.(pts))/norm(H.(pts)) ≈ 0 atol=0.01
@test norm(ff_E_EFIE - E.(pts, isfarfield=true))/norm(E.(pts, isfarfield=true)) ≈ 0 atol=0.001
@test norm(ff_H_EFIE - H.(pts, isfarfield=true))/norm(H.(pts, isfarfield=true)) ≈ 0 atol=0.001
@test norm(ff_H_EFIE_rotated - H.(pts, isfarfield=true))/norm(H.(pts, isfarfield=true)) ≈ 0 atol=0.001
@test norm(ff_H_EFIE_doublerotated - H.(pts, isfarfield=true))/norm(H.(pts, isfarfield=true)) ≈ 0 atol=0.001
@test ff_H_EFIE ≈ ff_H_EFIE_rotated rtol=1e-7
@test ff_H_EFIE_rotated ≈ ff_H_EFIE_doublerotated rtol=1e-7
K_bc = Matrix(assemble(𝓚,Y,X))
G_nxbc_rt = Matrix(assemble(𝓝,Y,X))
h_bc = Vector(assemble(𝒉,Y))
M_bc = -U(0.5)*G_nxbc_rt + K_bc
j_BCMFIE = M_bc\h_bc
nf_E_BCMFIE = potential(MWSingleLayerField3D(𝓣), pts, j_BCMFIE, X)
nf_H_BCMFIE = potential(BEAST.MWDoubleLayerField3D(𝓚), pts, j_BCMFIE, X)
ff_E_BCMFIE = potential(MWFarField3D(𝓣), pts, j_BCMFIE, X)
@test norm(nf_E_BCMFIE - E.(pts))/norm(E.(pts)) ≈ 0 atol=0.01
@test norm(nf_H_BCMFIE - H.(pts))/norm(H.(pts)) ≈ 0 atol=0.01
@test norm(ff_E_BCMFIE - E.(pts, isfarfield=true))/norm(E.(pts, isfarfield=true)) ≈ 0 atol=0.01
H = dipolemw3d(location=SVector(U(0.0),U(0.0),U(0.3)),
orientation=U(1e-9).*SVector(U(0.5),U(0.5),U(0)),
wavenumber=k)
# This time, we do not specify alpha and beta
# We include η in the magnetic RHS
𝓣 = Maxwell3D.singlelayer(wavenumber=k)
𝒉 = (n × H) × n
E = (1/(im*ε*ω))*curl(H)
𝒆 = (n × E) × n
X = raviartthomas(Γ)
Y = buffachristiansen(Γ)
T = Matrix(assemble(𝓣,X,X))
e = Vector(assemble(𝒆,X))
j_EFIE = T\e
nf_E_EFIE = potential(MWSingleLayerField3D(wavenumber=k), pts, j_EFIE, X)
nf_H_EFIE = potential(BEAST.MWDoubleLayerField3D(wavenumber=k), pts, j_EFIE, X) ./ η
ff_E_EFIE = potential(MWFarField3D(wavenumber=k), pts, j_EFIE, X)
@test norm(nf_E_EFIE - E.(pts))/norm(E.(pts)) ≈ 0 atol=0.01
@test norm(nf_H_EFIE - H.(pts))/norm(H.(pts)) ≈ 0 atol=0.01
@test norm(ff_E_EFIE - E.(pts, isfarfield=true))/norm(E.(pts, isfarfield=true)) ≈ 0 atol=0.01
@hilbertspace s
@hilbertspace t
MFIE_discretebilform = @discretise(
-U(0.5)*𝓝[t, s] + 𝓚[t, s] == η*𝒉[t],
s∈X, t∈Y
)
j_BCMFIE = solve(MFIE_discretebilform)[Block(1)]
nf_E_BCMFIE = potential(MWSingleLayerField3D(wavenumber=k), pts, j_BCMFIE, X)
nf_H_BCMFIE = potential(BEAST.MWDoubleLayerField3D(wavenumber=k), pts, j_BCMFIE, X) ./ η
ff_E_BCMFIE = potential(MWFarField3D(wavenumber=k), pts, j_BCMFIE, X)
@test norm(j_BCMFIE - j_EFIE)/norm(j_EFIE) ≈ 0 atol=0.02
@test norm(nf_E_BCMFIE - E.(pts))/norm(E.(pts)) ≈ 0 atol=0.01
@test norm(nf_H_BCMFIE - H.(pts))/norm(H.(pts)) ≈ 0 atol=0.01
@test norm(ff_E_BCMFIE - E.(pts, isfarfield=true))/norm(E.(pts, isfarfield=true)) ≈ 0 atol=0.01
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 659 | using CompScienceMeshes
using BEAST
using Test
for U in [Float32, Float64]
m1 = meshrectangle(U(1.0), U(1.0), U(0.5))
m2 = CompScienceMeshes.translate!(meshrectangle(U(1.0), U(1.0), U(0.5)), point(U,0,0,1))
m3 = CompScienceMeshes.translate!(meshrectangle(U(1.0), U(1.0), U(0.5)), point(U,0,0,2))
X1 = raviartthomas(m1)
X2 = raviartthomas(m2)
X3 = raviartthomas(m3)
local X = X1 × X2 × X3
n1 = numfunctions(X1)
n2 = numfunctions(X2)
n3 = numfunctions(X3)
@test numfunctions(X) == n1 + n2 + n3
nt = numfunctions(X)
T = MWSingleLayer3D(U(1.0))
t = assemble(T, X, X)
@test size(t) == (nt,nt)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1604 | using BEAST
using CompScienceMeshes
using SparseArrays
using Test
Γ = meshrectangle(1.0,1.0,1.0)
γ = meshsegment(1.0,1.0,3)
in_interior = CompScienceMeshes.interior_tpredicate(Γ)
on_junction = CompScienceMeshes.overlap_gpredicate(γ)
edges = submesh(skeleton(Γ,1)) do m,e
in_interior(m, e) ||on_junction(chart(m, e))
end
# edges = skeleton(Γ,1) do m, e
# in_interior(m, e) ||on_junction(chart(m, e))
# end
length(edges)
X = raviartthomas(Γ, edges)
x = divergence(X)
@test numfunctions(X) == 2
@test numfunctions(x) == numfunctions(X)
for (_f,_g) in zip(x.fns, X.fns)
@test length(_f) == length(_g)
if length(_f) == 1
c = _f[1].cellid
_s = chart(Γ, c)
@test _f[1].coeff == 1 / volume(_s)
else
@test _f[1].coeff + _f[2].coeff == 0
end
end
edges = skeleton(Γ, 1)
vps = cellpairs(Γ, edges)
rwg = raviartthomas(Γ, vps)
dvg = divergence(rwg)
D = spzeros(Int,numcells(edges), numcells(Γ))
for (_m,_f) in enumerate(dvg.fns)
for _s in _f
_e = _s.cellid
D[_m,_e] = _s.coeff
end
end
C = connectivity(edges, Γ)
@test size(C) == size(D')
## Test the curl of the linear Lagrange elements
using CompScienceMeshes
using BEAST
using Test
m = meshrectangle(1.0, 1.0, 0.25)
X = duallagrangec0d1(m)
@test numfunctions(X) == numcells(m)
Y = curl(X)
@test numfunctions(X) == numfunctions(Y)
@test isa(Y, BEAST.RTBasis)
@test isa(refspace(Y), BEAST.BEAST.RTRefSpace)
# test the chain property
Z = divergence(Y)
for fn ∈ Z.fns
total = zero(scalartype(Z))
for _sh ∈ fn
total += _sh.coeff
end
@test total ≈ 0
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 608 | using Test
using LinearAlgebra
using CompScienceMeshes
using BEAST
@testset begin
m = meshsphere(radius=1.0, h=0.35)
X = lagrangec0d1(m)
F = x -> 1.0
f = BEAST.ScalarTrace{Float64}(F)
g = BEAST.ScalarTrace{Float64}(F)
op = 2*BEAST.DyadicOp(f,g)
A = assemble(op, X, X)
b = assemble(f,X)
c = assemble(f,X)
M = Matrix(A)
@test norm(M - 2*b*c') ≤ 1e-8
@hilbertspace j[1:2]
@hilbertspace k[1:2]
X2 = X × X
A2 = assemble(@discretise(BEAST.diag(op)[k,j], k∈X2, j∈X2))
M2 = Matrix(A2)
nX = length(X)
@test size(M2) == (2*nX, 2*nX)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1195 | using Test
using CompScienceMeshes
using BEAST
# G0 is the interior of the metal (no simulation required here)
# G1 is the unbounded exterior
# G2 is the bounded interior
fn = joinpath(@__DIR__, "assets", "thick_cladding.msh")
G01 = CompScienceMeshes.read_gmsh_mesh(fn, physical="Gamma01")
G02 = CompScienceMeshes.read_gmsh_mesh(fn, physical="Gamma02")
G12 = CompScienceMeshes.read_gmsh_mesh(fn, physical="Gamma12")
G = CompScienceMeshes.read_gmsh_mesh(fn)
@test numcells(G01) + numcells(G02) + numcells(G12) == numcells(G)
# Build region boundaries with normals pointing inward:
G1 = weld(-G01, -G12)
@test CompScienceMeshes.isoriented(G1)
G2 = weld(-G02, G12)
@test CompScienceMeshes.isoriented(G2)
isclosed(m) = (numcells(boundary(m)) == 0)
@test isclosed(G1)
@test isclosed(G2)
# Test the validity of the embedding matrices
E = skeleton(G,1)
E1 = skeleton(G1,1)
A1 = CompScienceMeshes.embedding(E1,E)
nd = BEAST.nedelec(G,E)
@test numfunctions(nd) == numcells(E)
nd1 = BEAST.nedelec(G1,E1)
@test numfunctions(nd1) == numcells(E1)
Z_direct = assemble(BEAST.Identity(), nd1, nd)
Z_expand = assemble(BEAST.Identity(), nd1, nd1) * A1
@test norm(Z_direct - Z_expand, Inf) ≤ √(eps(1.0))
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1631 | using BEAST
using CompScienceMeshes
using Test
using DelimitedFiles
using LinearAlgebra
m = readmesh(joinpath(dirname(@__FILE__),"assets","sphere824.in"))
X = raviartthomas(m)
κ = ω = c = 1.0
fn = joinpath(dirname(@__FILE__),"efie_solution.txt")
u = map(x->eval(Meta.parse(x)), readdlm(fn,','))
fcr = facecurrents(u,X)
T, P = range(0.0,stop=π,length=7), 0.0
points = vec([point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for θ in T, ϕ in P])
utheta = vec([point(cos(ϕ)*cos(θ), sin(ϕ)*cos(θ), -sin(θ)) for θ in T, ϕ in P])
uphi = vec([point(-sin(ϕ)*sin(θ), cos(ϕ)*sin(θ), 0) for θ in T, ϕ in P])
for i in eachindex(uphi)
uphi[i] /= norm(uphi[i])
end
FF = BEAST.MWFarField3D(1.0im)
ff = potential(FF, points, u, X)
ff *= im*ω/(4π*c)
a = Float64[real(norm(f)) for f in ff]
b = Float64[sqrt(abs(dot(ff[i],utheta[i]))^2 + abs(dot(ff[i],uphi[i]))^2) for i in eachindex(ff)]
c = [dot(uphi[i], uphi[i]) for i in eachindex(ff)]
tol = eps() * 10000
@test a[1] ≈ 0.6426645162880508 atol=tol
@test a[2] ≈ 0.5222644345134998 atol=tol
@test a[3] ≈ 0.28287430186444407 atol=tol
@test a[4] ≈ 0.3873439919314161 atol=tol
@test a[5] ≈ 0.6788129041674158 atol=tol
@test a[6] ≈ 0.8800967217249486 atol=tol
@test a[7] ≈ 0.9487895695366841 atol=tol
# NF = BEAST.MWSingleLayerField3D(κ)
# xs = linspace(-8.0, 8.0, 100)
# ys = linspace(-8.0, 8.0, 100)
# points = [point(x,y,0) for x in xs, y in ys]
# nf = BEAST.potential(NF, points, u, X)
#
# pw = PlaneWaveMW(point(0,0,1),point(1,0,0),1.0,complex(1.0))
# for i in eachindex(points); nf[i] -= pw(points[i]); end
# a = Float64[abs(norm(f[1])) for f in nf]
# b = reshape(a,size(points)...)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 550 | using Test
using CompScienceMeshes
using BEAST
s = simplex(
point(5,1,0),
point(-1,3,0),
point(0,0,2),
)
locspace = BEAST.RTRefSpace{Float64}()
t = Maxwell3D.singlelayer(wavenumber=1.0)
igd = BEAST.Integrand(t, locspace, locspace, s, s)
u = point(1/3,1/3)
v = point(1/4,2/3)
igd(u,v)
dom = CompScienceMeshes.domain(s)
p = CompScienceMeshes.neighborhood(dom, u)
f̂ = locspace(p)
Dx = tangents(s, u)
f = map(f̂) do fi
(value = Dx * fi.value, divergence = fi.divergence) end
q = neighborhood(s, u)
g = locspace(q)
J = jacobian(q) | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 539 | using BEAST
using Test
using LinearAlgebra
for T in [Float32, Float64]
width = T(4.0)
delay = T(6.0)
g = BEAST.creategaussian(width, delay)
G = BEAST.fouriertransform(g)
dx = width / 15
x0 = T(0.0)
x = x0 : dx : 3*delay
n = length(x)
y = g.(x)
Y, dω, ω0 = BEAST.fouriertransform(y, dx, x0)
ω = collect(ω0 .+ (0:n-1)*dω)
Z = G.(ω)
# using Plots
# plot(ω, real(Y))
# scatter!(ω, real(Z))
# plot!(ω, imag(Y))
# scatter!(ω, imag(Z))
@test norm(Y-Z) < sqrt(eps(T))
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 498 | using CompScienceMeshes
using BEAST
using Test
for T in [Float32, Float64]
local o, x, y, z = euclidianbasis(3,T)
tet = simplex(x,y,z,o)
local ctr = center(tet)
iref = BEAST.LagrangeRefSpace{T,1,4,4}()
oref = BEAST.NDLCCRefSpace{T}()
ishp = BEAST.Shape{T}(1, 3, 1.0)
output = BEAST.gradient(iref, ishp, tet)
global oval = point(T,0,0,0)
for oshp in output
oval += oref(ctr)[oshp.refid].value * oshp.coeff
end
@test oval ≈ point(T,0,0,1)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1457 | using Test
using CompScienceMeshes
using BEAST
using StaticArrays
using LinearAlgebra
ω = 1.0
l1 = meshsegment(1.0,1/2)
l2 = meshsegment(1.0,1/4)
idcs = BEAST.interior_and_junction_vertices(l1, boundary(l1))
@test length(idcs) == 3
# lag1 = lagrangec0d1(l1, boundary(l1))
lag1 = lagrangec0d1(l1, skeleton(l1,0))
lag2 = lagrangecxd0(l2)
# @show numfunctions(lag1)
@test numfunctions(lag1) == 3
@test numfunctions(lag2) == 4
id = Identity()
G = assemble(id, lag1, lag2)
H = assemble(id, lag2, lag1)
Gt = [
3 1 0 0
1 3 3 1
0 0 1 3] // 16
@test norm(G-H') ≈ 0.0 atol = sqrt(eps()) #G == H'
@test norm(G-Gt) ≈ 0.0 atol = sqrt(eps())
# Test whether localoperator and localoperator 2 give the same result
# for test and basis functions defined on the same mesh.
id = Identity()
nc = NCross()
#fn = Pkg.dir("BEAST","test","sphere2.in")
fn = joinpath(dirname(@__FILE__),"assets","sphere316.in")
m = readmesh(fn)
rt = raviartthomas(m)
G1 = zeros(ComplexF64, numfunctions(rt), numfunctions(rt))
BEAST.assemble_local_matched!(id, rt, rt, (v,m,n)->(G1[m,n]+=v))
G2 = zeros(ComplexF64, numfunctions(rt), numfunctions(rt))
BEAST.assemble_local_mixed!(id, rt, rt, (v,m,n)->(G2[m,n]+=v))
# Test wether the gram matrix assembled works for
# different but overlapping meshes
m1 = meshrectangle(1.0,1.0,1.0)
m2 = translate(m1, point(0.5,0.5,0.0))
Id = Identity()
x1 = lagrangecxd0(m1)
x2 = lagrangecxd0(m2)
G = assemble(Id,x1,x2)
@test sum(G) ≈ 1/4
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3642 | using BEAST
using StaticArrays
using Test
for T in [Float16, Float32, Float64]
@test_throws ErrorException BEAST.gamma_wavenumber_handler(T(1), T(2))
gamma, wavenumber = BEAST.gamma_wavenumber_handler(T(1), nothing)
@test gamma === T(1)
gamma, wavenumber = BEAST.gamma_wavenumber_handler(nothing, T(2))
@test gamma === T(2) * im
gamma, wavenumber = BEAST.gamma_wavenumber_handler(nothing, nothing)
@test BEAST.isstatic(gamma)
@test gamma === Val(0)
gamma, wavenumber = BEAST.gamma_wavenumber_handler(T(0), nothing)
@test gamma === T(0)
@test !BEAST.isstatic(gamma)
gamma, wavenumber = BEAST.gamma_wavenumber_handler(nothing, T(1))
@test gamma === T(1) * im
@test !BEAST.isstatic(gamma)
@test_throws ErrorException BEAST.operator_parameter_handler(T(1), T(1), T(1))
alpha, gamma = BEAST.operator_parameter_handler(nothing, T(1), nothing)
@test alpha === T(1)
@test gamma === T(1)
alpha, gamma = BEAST.operator_parameter_handler(nothing, nothing, nothing)
@test alpha === 1.0
@test BEAST.isstatic(gamma)
alpha, gamma = BEAST.operator_parameter_handler(nothing, im * T(0), nothing)
@test alpha === T(1)
@test !BEAST.isstatic(gamma)
# Helmholtz3D
operator = Helmholtz3D.hypersingular(; alpha=nothing, beta=nothing, gamma=nothing,
wavenumber=nothing
)
@test BEAST.isstatic(operator)
@test operator.alpha === 0.0
@test operator.beta === 1.0
@test BEAST.gamma(operator) === 0.0
operator = Helmholtz3D.hypersingular(; alpha=T(1), beta=T(2))
@test BEAST.isstatic(operator)
@test operator.alpha === T(1)
@test operator.beta === T(2)
@test BEAST.gamma(operator) === T(0)
@test scalartype(operator) == T
pwave = Helmholtz3D.planewave(; direction=SVector(T(0), T(0), T(1)))
@test pwave.direction == SVector(T(0), T(0), T(1))
@test pwave.gamma === T(0)
@test pwave.amplitude === T(1)
mpol = Helmholtz3D.monopole(; position=SVector(T(0), T(0), T(0)), amplitude=T(1))
@test mpol.position === SVector(T(0), T(0), T(0))
@test mpol.gamma === T(0)
@test mpol.amplitude === T(1)
gradmpol = Helmholtz3D.grad_monopole(; position=SVector(T(0), T(0), T(0)),
amplitude=T(1))
@test gradmpol.position === SVector(T(0), T(0), T(0))
@test gradmpol.gamma === T(0)
@test gradmpol.amplitude === T(1)
# FarFields
@test_throws AssertionError BEAST.MWFarField3D()
@test_throws AssertionError BEAST.MWDoubleLayerFarField3D()
@test_throws AssertionError BEAST.MWDoubleLayerRotatedFarField3D()
# Maxwell3D
operator = Maxwell3D.singlelayer(; alpha=T(1), beta=T(2))
@test BEAST.isstatic(operator)
@test operator.α === T(1)
@test operator.β === T(2)
@test BEAST.gamma(operator) === T(0)
operator = Maxwell3D.doublelayer()
@test BEAST.isstatic(operator)
@test BEAST.gamma(operator) === 0.0
operator = Maxwell3D.doublelayer(; alpha=T(1))
@test BEAST.isstatic(operator)
@test operator.alpha === T(1)
@test BEAST.gamma(operator) === T(0)
# BEAST
pwave = BEAST.planewavemw3d(;
direction=SVector(T(1), T(0), T(0)),
polarization=SVector(T(0), T(1), T(0))
)
@test pwave.direction === SVector(T(1), T(0), T(0))
@test pwave.polarisation === SVector(T(0), T(1), T(0))
@test pwave.gamma === T(0)
dpole = BEAST.dipolemw3d(location=SVector(T(0), T(0), T(0)),
orientation=SVector(T(0), T(0), T(1)))
@test dpole.location === SVector(T(0), T(0), T(0))
@test dpole.orientation === SVector(T(0), T(0), T(1))
@test dpole.gamma === T(0)
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 12436 | using BEAST
using CompScienceMeshes
using StaticArrays
using LinearAlgebra
using Test
@testset "Helmholtz potential operators" begin
# r = 10.0
# λ = 20 * r
# k = 2 * π / λ
# sphere = meshsphere(r, 0.2 * r)
k = 0.031415926535897934
sphere = readmesh(joinpath(dirname(pathof(BEAST)),"../test/assets/sphere_rad=10_h=2.in"))
X0 = lagrangecxd0(sphere)
X1 = lagrangec0d1(sphere)
S = Helmholtz3D.singlelayer(; gamma=im * k)
D = Helmholtz3D.doublelayer(; gamma=im * k)
Dt = Helmholtz3D.doublelayer_transposed(; gamma=im * k)
N = Helmholtz3D.hypersingular(; gamma=im * k)
q = 100.0
ϵ = 1.0
# Interior problem
# Formulations from Sauter and Schwab, Boundary Element Methods(2011), Chapter 3.4.1.1
r = 10.0
pos1 = SVector(r * 1.5, 0.0, 0.0) # positioning of point charges
pos2 = SVector(-r * 1.5, 0.0, 0.0)
charge1 = Helmholtz3D.monopole(position=pos1, amplitude=q/(4*π*ϵ), wavenumber=k)
charge2 = Helmholtz3D.monopole(position=pos2, amplitude=-q/(4*π*ϵ), wavenumber=k)
# Potential of point charges
Φ_inc(x) = charge1(x) + charge2(x)
gD0 = assemble(DirichletTrace(charge1), X0) + assemble(DirichletTrace(charge2), X0)
gD1 = assemble(DirichletTrace(charge1), X1) + assemble(DirichletTrace(charge2), X1)
gN = assemble(∂n(charge1), X1) + assemble(BEAST.n ⋅ grad(charge2), X1)
G = assemble(Identity(), X1, X1)
o = ones(numfunctions(X1))
# Interior Dirichlet problem - compare Sauter & Schwab eqs. 3.81
M_IDPSL = assemble(S, X0, X0) # Single layer (SL)
M_IDPDL = (-1 / 2 * assemble(Identity(), X1, X1) + assemble(D, X1, X1)) # Double layer (DL)
# Interior Neumann problem
# Neumann derivative from DL potential with deflected nullspace
M_INPDL = assemble(N, X1, X1) + G * o * o' * G
# Neumann derivative from SL potential with deflected nullspace
M_INPSL = (1 / 2 * assemble(Identity(), X1, X1) + assemble(Dt, X1, X1)) + G * o * o' * G
ρ_IDPSL = M_IDPSL \ (-gD0)
ρ_IDPDL = M_IDPDL \ (-gD1)
ρ_INPDL = M_INPDL \ (gN)
ρ_INPSL = M_INPSL \ (-gN)
pts = meshsphere(0.8 * r, 0.8 * 0.6 * r).vertices # sphere inside on which the potential and field are evaluated
pot_IDPSL = potential(HH3DSingleLayerNear(im * k), pts, ρ_IDPSL, X0; type=ComplexF64)
pot_IDPDL = potential(HH3DDoubleLayerNear(im * k), pts, ρ_IDPDL, X1; type=ComplexF64)
pot_INPSL = potential(HH3DSingleLayerNear(im * k), pts, ρ_INPSL, X1; type=ComplexF64)
pot_INPDL = potential(HH3DDoubleLayerNear(im * k), pts, ρ_INPDL, X1; type=ComplexF64)
# Total field inside should be zero
err_IDPSL_pot = norm(pot_IDPSL + Φ_inc.(pts)) / norm(Φ_inc.(pts))
err_IDPDL_pot = norm(pot_IDPDL + Φ_inc.(pts)) / norm(Φ_inc.(pts))
err_INPSL_pot = norm(pot_INPSL + Φ_inc.(pts)) / norm(Φ_inc.(pts))
err_INPDL_pot = norm(pot_INPDL + Φ_inc.(pts)) / norm(Φ_inc.(pts))
# Efield(x) = - grad Φ_inc(x)
Efield(x) = -grad(charge1)(x) + -grad(charge2)(x)
field_IDPSL = -potential(HH3DDoubleLayerTransposedNear(im * k), pts, ρ_IDPSL, X0)
field_IDPDL = -potential(HH3DHyperSingularNear(im * k), pts, ρ_IDPDL, X1)
field_INPSL = -potential(HH3DDoubleLayerTransposedNear(im * k), pts, ρ_INPSL, X1)
field_INPDL = -potential(HH3DHyperSingularNear(im * k), pts, ρ_INPDL, X1)
err_IDPSL_field = norm(field_IDPSL + Efield.(pts)) / norm(Efield.(pts))
err_IDPDL_field = norm(field_IDPDL + Efield.(pts)) / norm(Efield.(pts))
err_INPSL_field = norm(field_INPSL + Efield.(pts)) / norm(Efield.(pts))
err_INPDL_field = norm(field_INPDL + Efield.(pts)) / norm(Efield.(pts))
# Exterior problem
# formulations from Sauter and Schwab, Boundary Element Methods(2011), Chapter 3.4.1.2
pos1 = SVector(r * 0.5, 0.0, 0.0)
pos2 = SVector(-r * 0.5, 0.0, 0.0)
charge1 = Helmholtz3D.monopole(position=pos1, amplitude=q/(4*π*ϵ), wavenumber=k)
charge2 = Helmholtz3D.monopole(position=pos2, amplitude=-q/(4*π*ϵ), wavenumber=k)
gD0 = assemble(DirichletTrace(charge1), X0) + assemble(DirichletTrace(charge2), X0)
gD1 = assemble(DirichletTrace(charge1), X1) + assemble(DirichletTrace(charge2), X1)
gN = assemble(∂n(charge1), X1) + assemble(∂n(charge2), X1)
G = assemble(Identity(), X1, X1)
o = ones(numfunctions(X1))
M_EDPSL = assemble(S, X0, X0)
M_EDPDL = (1 / 2 * assemble(Identity(), X1, X1) + assemble(D, X1, X1))
M_ENPDL = assemble(N, X1, X1) + G * o * o' * G
M_ENPSL = -1 / 2 * assemble(Identity(), X1, X1) + assemble(Dt, X1, X1) + G * o * o' * G
ρ_EDPSL = M_EDPSL \ (-gD0)
ρ_EDPDL = M_EDPDL \ (-gD1)
ρ_ENPDL = M_ENPDL \ gN
ρ_ENPSL = M_ENPSL \ (-gN)
testsphere = meshsphere(1.2 * r, 1.2 * 0.6 * r)
pts = testsphere.vertices[norm.(testsphere.vertices) .> r]
pot_EDPSL = potential(HH3DSingleLayerNear(im * k), pts, ρ_EDPSL, X0; type=ComplexF64)
pot_EDPDL = potential(HH3DDoubleLayerNear(im * k), pts, ρ_EDPDL, X1; type=ComplexF64)
pot_ENPDL = potential(HH3DDoubleLayerNear(im * k), pts, ρ_ENPDL, X1; type=ComplexF64)
pot_ENPSL = potential(HH3DSingleLayerNear(im * k), pts, ρ_ENPSL, X1; type=ComplexF64)
err_EDPSL_pot = norm(pot_EDPSL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts))
err_EDPDL_pot = norm(pot_EDPDL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts))
err_ENPSL_pot = norm(pot_ENPSL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts))
err_ENPDL_pot = norm(pot_ENPDL + Φ_inc.(pts)) ./ norm(Φ_inc.(pts))
field_EDPSL = -potential(HH3DDoubleLayerTransposedNear(im * k), pts, ρ_EDPSL, X0)
field_EDPDL = -potential(HH3DHyperSingularNear(im * k), pts, ρ_EDPDL, X1)
field_ENPSL = -potential(HH3DDoubleLayerTransposedNear(im * k), pts, ρ_ENPSL, X1)
field_ENPDL = -potential(HH3DHyperSingularNear(im * k), pts, ρ_ENPDL, X1)
err_EDPSL_field = norm(field_EDPSL + Efield.(pts)) / norm(Efield.(pts))
err_EDPDL_field = norm(field_EDPDL + Efield.(pts)) / norm(Efield.(pts))
err_ENPSL_field = norm(field_ENPSL + Efield.(pts)) / norm(Efield.(pts))
err_ENPDL_field = norm(field_ENPDL + Efield.(pts)) / norm(Efield.(pts))
# errors of interior problems
@test err_IDPSL_pot < 0.01
@test err_IDPDL_pot < 0.01
@test err_INPSL_pot < 0.02
@test err_INPDL_pot < 0.01
@test err_IDPSL_field < 0.01
@test err_IDPDL_field < 0.02
@test err_INPSL_field < 0.02
@test err_INPDL_field < 0.01
# errors of exterior problems
@test err_EDPSL_pot < 0.01
@test err_EDPDL_pot < 0.02
@test err_ENPSL_pot < 0.01
@test err_ENPDL_pot < 0.01
@test err_EDPSL_field < 0.01
@test err_EDPDL_field < 0.03
@test err_ENPSL_field < 0.01
@test err_ENPDL_field < 0.02
end
## Test here some of the mixed discretizatinos
#@testset "Helmholtz potential operators: mixed discretizations with duallagrangecxd0" begin
# r = 10.0
# sphere = meshsphere(r, 0.2 * r)
# λ = 20 * r
# k = 2 * π / λ
k = 0.031415926535897934
sphere = readmesh(joinpath(dirname(pathof(BEAST)),"../test/assets/sphere_rad=10_h=2.in"))
X0 = lagrangecxd0(sphere)
X1 = lagrangec0d1(sphere)
Y0 = duallagrangecxd0(sphere; interpolatory=true)
S = Helmholtz3D.singlelayer(; gamma=im * k)
D = Helmholtz3D.doublelayer(; gamma=im * k)
Dt = Helmholtz3D.doublelayer_transposed(; gamma=im * k)
N = Helmholtz3D.hypersingular(; gamma=im * k)
q = 100.0
ϵ = 1.0
# Interior problem
# Formulations from Sauter and Schwab, Boundary Element Methods(2011), Chapter 3.4.1.1
r = 10.0
pos1 = SVector(r * 1.5, 0.0, 0.0) # positioning of point charges
pos2 = SVector(-r * 1.5, 0.0, 0.0)
charge1 = Helmholtz3D.monopole(position=pos1, amplitude=q/(4*π*ϵ), wavenumber=k)
charge2 = Helmholtz3D.monopole(position=pos2, amplitude=-q/(4*π*ϵ), wavenumber=k)
# Potential of point charges
Φ_inc(x) = charge1(x) + charge2(x)
gD1 = assemble(DirichletTrace(charge1), Y0) + assemble(DirichletTrace(charge2), Y0)
gN = assemble(∂n(charge1), X1) + assemble(BEAST.n ⋅ grad(charge2), X1)
G = assemble(Identity(), X1, Y0)
o = ones(numfunctions(X1))
# Interior Dirichlet problem - compare Sauter & Schwab eqs. 3.81
M_IDPDL = (-1 / 2 * assemble(Identity(), Y0, X1) + assemble(D, Y0, X1)) # Double layer (DL)
# Interior Neumann problem
# Neumann derivative from SL potential with deflected nullspace
M_INPSL = (1 / 2 * assemble(Identity(), X1, Y0) + assemble(Dt, X1, Y0)) + G * o * o' * G
ρ_IDPDL = M_IDPDL \ (-gD1)
ρ_INPSL = M_INPSL \ (-gN)
pts = meshsphere(0.8 * r, 0.8 * 0.6 * r).vertices # sphere inside on which the potential and field are evaluated
@show length(pts)
pot_IDPDL = potential(HH3DDoubleLayerNear(im * k), pts, ρ_IDPDL, X1; type=ComplexF64)
pot_INPSL = potential(HH3DSingleLayerNear(im * k), pts, ρ_INPSL, Y0; type=ComplexF64)
# Total field inside should be zero
err_IDPDL_pot = norm(pot_IDPDL + Φ_inc.(pts)) / norm(Φ_inc.(pts))
err_INPSL_pot = norm(pot_INPSL + Φ_inc.(pts)) / norm(Φ_inc.(pts))
# Efield(x) = - grad Φ_inc(x)
Efield(x) = -grad(charge1)(x) + -grad(charge2)(x)
field_IDPDL = -potential(HH3DHyperSingularNear(im * k), pts, ρ_IDPDL, X1)
field_INPSL = -potential(HH3DDoubleLayerTransposedNear(im * k), pts, ρ_INPSL, Y0)
err_IDPDL_field = norm(field_IDPDL + Efield.(pts)) / norm(Efield.(pts))
err_INPSL_field = norm(field_INPSL + Efield.(pts)) / norm(Efield.(pts))
# errors of interior problems
@test err_IDPDL_pot < 0.005
@test err_INPSL_pot < 0.002
@test err_IDPDL_field < 0.0095
@test err_INPSL_field < 0.002
#end
## Test here some of the mixed discretizatinos
#@testset "Helmholtz potential operators: mixed discretizations with duallagrangec0d1" begin
# r = 10.0
# λ = 20 * r
# k = 2 * π / λ
# sphere = meshsphere(r, 0.2 * r)
k = 0.031415926535897934
sphere = readmesh(joinpath(dirname(pathof(BEAST)),"../test/assets/sphere_rad=10_h=2.in"))
X0 = lagrangecxd0(sphere)
Y1 = duallagrangec0d1(sphere)
S = Helmholtz3D.singlelayer(; gamma=im * k)
D = Helmholtz3D.doublelayer(; gamma=im * k)
Dt = Helmholtz3D.doublelayer_transposed(; gamma=im * k)
N = Helmholtz3D.hypersingular(; gamma=im * k)
q = 100.0
ϵ = 1.0
# Interior problem
# Formulations from Sauter and Schwab, Boundary Element Methods(2011), Chapter 3.4.1.1
r = 10.0
pos1 = SVector(r * 1.5, 0.0, 0.0) # positioning of point charges
pos2 = SVector(-r * 1.5, 0.0, 0.0)
charge1 = Helmholtz3D.monopole(position=pos1, amplitude=q/(4*π*ϵ), wavenumber=k)
charge2 = Helmholtz3D.monopole(position=pos2, amplitude=-q/(4*π*ϵ), wavenumber=k)
# Potential of point charges
Φ_inc(x) = charge1(x) + charge2(x)
gD1 = assemble(DirichletTrace(charge1), X0) + assemble(DirichletTrace(charge2), X0)
gN = assemble(∂n(charge1), Y1) + assemble(BEAST.n ⋅ grad(charge2), Y1)
G = assemble(Identity(), Y1, X0)
o = ones(numfunctions(X0))
# Interior Dirichlet problem - compare Sauter & Schwab eqs. 3.81
M_IDPDL = (-1 / 2 * assemble(Identity(), X0, Y1) + assemble(D, X0, Y1)) # Double layer (DL)
# Interior Neumann problem
# Neumann derivative from SL potential with deflected nullspace
M_INPSL = (1 / 2 * assemble(Identity(), Y1, X0) + assemble(Dt, Y1, X0)) + G * o * o' * G
ρ_IDPDL = M_IDPDL \ (-gD1)
ρ_INPSL = M_INPSL \ (-gN)
pts = meshsphere(0.8 * r, 0.8 * 0.6 * r).vertices # sphere inside on which the potential and field are evaluated
pot_IDPDL = potential(HH3DDoubleLayerNear(im * k), pts, ρ_IDPDL, Y1; type=ComplexF64)
pot_INPSL = potential(HH3DSingleLayerNear(im * k), pts, ρ_INPSL, X0; type=ComplexF64)
# Total field inside should be zero
err_IDPDL_pot = norm(pot_IDPDL + Φ_inc.(pts)) / norm(Φ_inc.(pts))
err_INPSL_pot = norm(pot_INPSL + Φ_inc.(pts)) / norm(Φ_inc.(pts))
# Efield(x) = - grad Φ_inc(x)
Efield(x) = -grad(charge1)(x) + -grad(charge2)(x)
field_IDPDL = -potential(HH3DHyperSingularNear(im * k), pts, ρ_IDPDL, Y1)
field_INPSL = -potential(HH3DDoubleLayerTransposedNear(im * k), pts, ρ_INPSL, X0)
err_IDPDL_field = norm(field_IDPDL + Efield.(pts)) / norm(Efield.(pts))
err_INPSL_field = norm(field_INPSL + Efield.(pts)) / norm(Efield.(pts))
# errors of interior problems
@test err_IDPDL_pot < 0.02
@test err_INPSL_pot < 0.025
@test err_IDPDL_field < 0.02
@test err_INPSL_field < 0.025
#end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1058 | using CompScienceMeshes
using BEAST
using Test
for T in [Float32, Float64]
sphere = readmesh(joinpath(dirname(@__FILE__),"assets","sphere5.in"), T=T)
numcells(sphere)
local κ = T(2π)
direction = point(T,0,0,1)
local f = BEAST.HH3DPlaneWave(direction, im*κ, T(1.0))
v1 = f(point(T,0,0,0))
v2 = f(point(T,0,0,0.5))
@test v1 ≈ +1
@test v2 ≈ -1
lp = HH3DLinearPotential(point(T,0,1,0), 2.0)
@test lp(point(T,1,1,0)) == T(2.0)
gradlp = grad(lp)
@test gradlp(point(T,1,1,0)) == point(T, 0, 2, 0)
γnlp = dot(BEAST.NormalVector(), gradlp)
import BEAST.∂n
p = ∂n(f)
local s = chart(sphere,first(sphere))
local c = neighborhood(s, T.([1,1]/3))
r = cartesian(c)
local n = normal(s)
w1 = p(c)
w2 = -im*κ*dot(direction, n)*f(r)
w1 ≈ w2
local N = BEAST.HH3DHyperSingularFDBIO(im*κ)
local X = BEAST.lagrangec0d1(sphere)
numfunctions(X)
BEAST.quadinfo(N, X, X)
Nxx = assemble(N, X, X)
@test size(Nxx) == (numfunctions(X), numfunctions(X))
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 25193 | using Test
using LinearAlgebra
using BEAST, CompScienceMeshes, SauterSchwabQuadrature, StaticArrays
T=Float64
# operators
op1 = Helmholtz3D.singlelayer(gamma=T(1.0)im+T(1.0))
op2 = Helmholtz3D.doublelayer(gamma=T(1.0)im+T(1.0))
op3 = Helmholtz3D.doublelayer_transposed(gamma=T(1.0)im+T(1.0))
op4 = Helmholtz3D.hypersingular(gamma=T(1.0)im+T(1.0))
## Common face case:
@testset "Common Face" begin
# triangles
t1 = simplex(
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.0, -0.980785, -0.19509]),
T.(@SVector [0.0, -0.92388, -0.382683]))
lag0 = BEAST.LagrangeRefSpace{T,0,3,1}() # patch basis
lag1 = BEAST.LagrangeRefSpace{T,1,3,3}() #pyramid basis
tqd0 = BEAST.quadpoints(lag0, [t1], (13,)) #test quadrature data
tqd1 = BEAST.quadpoints(lag1, [t1], (13,))
bqd0 = BEAST.quadpoints(lag0, [t1], (12,)) #basis quadrature data
bqd1 = BEAST.quadpoints(lag1, [t1], (12,))
SE_strategy = BEAST.WiltonSERule( #wilton
tqd0[1,1],
BEAST.DoubleQuadRule(
tqd0[1,1],
bqd0[1,1],
),
)
SS_strategy = SauterSchwabQuadrature.CommonFace(BEAST._legendre(12,T(0.0),T(1.0))) #sauter
#single layer with patch-patch
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd0[1,1],
bqd0[1,1]
)
z_se = [0.0im]
z_ss = [0.0im]
z_double = [0.0im]
BEAST.momintegrals!(op1, lag0, lag0, t1, t1, z_se, SE_strategy)
BEAST.momintegrals!(op1, lag0, lag0, t1, t1, z_ss, SS_strategy)
BEAST.momintegrals!(op1, lag0, lag0, t1, t1, z_double, Double_strategy)
@test z_se ≈ z_ss rtol=1e-5
@test z_double ≈ z_ss rtol = 1e-1
@test norm(z_se-z_ss) < norm(z_double-z_ss)
#single layer with patch-pyramid
SE_strategy = BEAST.WiltonSERule( #wilton
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd0[1,1],
),)
Double_strategy = BEAST.DoubleQuadRule(
tqd1[1,1],
bqd0[1,1],
)
z_se = zeros(complex(T),3,1)
z_ss = zeros(complex(T),3,1)
z_double = zeros(complex(T),3,1)
BEAST.momintegrals!(op1, lag1, lag0, t1, t1, z_ss, SS_strategy)
BEAST.momintegrals!(op1, lag1, lag0, t1, t1, z_se, SE_strategy)
BEAST.momintegrals!(op1, lag1, lag0, t1, t1, z_double, Double_strategy)
@test z_ss ≈ z_se rtol = 1e-5
@test z_ss ≈ z_double rtol = 1e-1
@test norm(z_ss-z_se) < norm(z_ss-z_double)
#single layer with pyramid-patch
SE_strategy = BEAST.WiltonSERule( #wilton
tqd0[1,1],
BEAST.DoubleQuadRule(
tqd0[1,1],
bqd1[1,1],
),)
Double_strategy = BEAST.DoubleQuadRule(
tqd0[1,1],
bqd1[1,1],
)
z_se = zeros(complex(T),1,3)
z_ss = zeros(complex(T),1,3)
z_double = zeros(complex(T),1,3)
BEAST.momintegrals!(op1, lag0, lag1, t1, t1, z_ss, SS_strategy)
BEAST.momintegrals!(op1, lag0, lag1, t1, t1, z_se, SE_strategy)
BEAST.momintegrals!(op1, lag0, lag1, t1, t1, z_double, Double_strategy)
@test z_ss ≈ z_se rtol = 1e-5
@test z_ss ≈ z_double rtol = 1e-1
@test norm(z_ss-z_se) < norm(z_ss-z_double)
#single layer with pyramid pyramid
SE_strategy = BEAST.WiltonSERule( #wilton
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,1],
),)
Double_strategy = BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,1],
)
z_se = zeros(complex(T),3,3)
z_ss = zeros(complex(T),3,3)
z_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op1, lag1, lag1, t1, t1, z_ss, SS_strategy)
BEAST.momintegrals!(op1, lag1, lag1, t1, t1, z_se, SE_strategy)
BEAST.momintegrals!(op1, lag1, lag1, t1, t1, z_double, Double_strategy)
@test z_ss ≈ z_se rtol = 1e-5
@test z_ss ≈ z_double rtol = 1e-1
@test norm(z_ss-z_se) < norm(z_ss-z_double)
end
# common vertex case
# In the common vertex case, for the single layer and hypersingular,
# the double quadrature apparently is better than the wilton method.
# It is not clear to me why this is. If someone knows why this happens
# I would be grateful for an explanation.
@testset "Common vertex" begin
t1 = simplex(
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.0, -0.980785, -0.19509]),
T.(@SVector [0.0, -0.92388, -0.382683]))
t2 = simplex(
T.(@SVector [0.373086, -0.881524, -0.289348]),
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.294908, -0.944921, -0.141962]))
lag0 = BEAST.LagrangeRefSpace{T,0,3,1}() # patch basis
lag1 = BEAST.LagrangeRefSpace{T,1,3,3}() #pyramid basis
tqd0 = BEAST.quadpoints(lag0, [t1,t2], (12,)) #test quadrature data
tqd1 = BEAST.quadpoints(lag1, [t1,t2], (12,))
bqd0 = BEAST.quadpoints(lag0, [t1,t2], (13,)) #basis quadrature data
bqd1 = BEAST.quadpoints(lag1, [t1,t2], (13,))
#patch patch
SE_strategy = BEAST.WiltonSERule(
tqd0[1,1],
BEAST.DoubleQuadRule(
tqd0[1,1],
bqd0[1,2]))
SS_strategy = SauterSchwabQuadrature.CommonVertex(BEAST._legendre(8,T(0.0),T(1.0)))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd0[1,1],
bqd0[1,2]
)
#single layer
z_cv_se = zeros(complex(T),1,1)
z_cv_ss = zeros(complex(T),1,1)
z_cv_double = zeros(complex(T),1,1)
BEAST.momintegrals!(op1, lag0, lag0, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op1, lag0, lag0, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op1, lag0, lag0, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test_broken norm(z_cv_ss-z_cv_se)/norm(z_cv_ss) < norm(z_cv_ss-z_cv_double)/norm(z_cv_ss)
#doublelayer
z_cv_se = zeros(complex(T),1,1)
z_cv_ss = zeros(complex(T),1,1)
z_cv_double = zeros(complex(T),1,1)
BEAST.momintegrals!(op2, lag0, lag0, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op2, lag0, lag0, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op2, lag0, lag0, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_double rtol=1e-4
@test norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
# doublelayer_transposed
z_cv_se = zeros(complex(T),1,1)
z_cv_ss = zeros(complex(T),1,1)
z_cv_double = zeros(complex(T),1,1)
BEAST.momintegrals!(op3, lag0, lag0, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op3, lag0, lag0, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op3, lag0, lag0, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
#pyramid pyramid
# singlelayer
SE_strategy = BEAST.WiltonSERule(
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,2]))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd1[1,1],
bqd1[1,2]
)
z_cv_se = zeros(complex(T),3,3)
z_cv_ss = zeros(complex(T),3,3)
z_cv_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op1, lag1, lag1, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op1, lag1, lag1, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op1, lag1, lag1, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_double rtol=1e-4
@test_broken norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
#doublelayer
z_cv_se = zeros(complex(T),3,3)
z_cv_ss = zeros(complex(T),3,3)
z_cv_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op2, lag1, lag1, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op2, lag1, lag1, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op2, lag1, lag1, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
#doublelayer_transposed
z_cv_se = zeros(complex(T),3,3)
z_cv_ss = zeros(complex(T),3,3)
z_cv_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op3, lag1, lag1, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op3, lag1, lag1, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op3, lag1, lag1, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-3
@test z_cv_double ≈ z_cv_se rtol = 1e-5
@test norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
#hypersingular
z_cv_se = zeros(complex(T),3,3)
z_cv_ss = zeros(complex(T),3,3)
z_cv_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op4, lag1, lag1, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op4, lag1, lag1, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op4, lag1, lag1, t1, t2, z_cv_double, Double_strategy)
# @show z_cv_double
# @show z_cv_se
# @show z_cv_ss
# @show 2 * norm(z_cv_double + z_cv_ss) / norm(z_cv_double - z_cv_ss)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test_broken norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
#pyramid test patch basis
SE_strategy = BEAST.WiltonSERule(
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd0[1,2]))
SS_strategy = SauterSchwabQuadrature.CommonVertex(BEAST._legendre(8,T(0.0),T(1.0)))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd1[1,1],
bqd0[1,2]
)
#singlelayer
z_cv_se = zeros(complex(T),3,1)
z_cv_ss = zeros(complex(T),3,1)
z_cv_double = zeros(complex(T),3,1)
BEAST.momintegrals!(op1, lag1, lag0, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op1, lag1, lag0, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op1, lag1, lag0, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test_broken norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
#doublelayer
z_cv_se = zeros(complex(T),3,1)
z_cv_ss = zeros(complex(T),3,1)
z_cv_double = zeros(complex(T),3,1)
BEAST.momintegrals!(op2, lag1, lag0, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op2, lag1, lag0, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op2, lag1, lag0, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test norm(z_cv_ss-z_cv_se)/norm(z_cv_ss) < norm(z_cv_ss-z_cv_double)/norm(z_cv_ss)
#doublelayer_transposed
z_cv_se = zeros(complex(T),3,1)
z_cv_ss = zeros(complex(T),3,1)
z_cv_double = zeros(complex(T),3,1)
BEAST.momintegrals!(op3, lag1, lag0, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op3, lag1, lag0, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op3, lag1, lag0, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
#pyramid basis patch test
SE_strategy = BEAST.WiltonSERule(
tqd0[1,1],
BEAST.DoubleQuadRule(
tqd0[1,1],
bqd1[1,2]))
SS_strategy = SauterSchwabQuadrature.CommonVertex(BEAST._legendre(8,T(0.0),T(1.0)))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd0[1,1],
bqd1[1,2]
)
#singlelayer
z_cv_se = zeros(complex(T),1,3)
z_cv_ss = zeros(complex(T),1,3)
z_cv_double = zeros(complex(T),1,3)
BEAST.momintegrals!(op1, lag0, lag1, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op1, lag0, lag1, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op1, lag0, lag1, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test_broken norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
#double layer
z_cv_se = zeros(complex(T),1,3)
z_cv_ss = zeros(complex(T),1,3)
z_cv_double = zeros(complex(T),1,3)
BEAST.momintegrals!(op2, lag0, lag1, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op2, lag0, lag1, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op2, lag0, lag1, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
#double layer transposed
z_cv_se = zeros(complex(T),1,3)
z_cv_ss = zeros(complex(T),1,3)
z_cv_double = zeros(complex(T),1,3)
BEAST.momintegrals!(op3, lag0, lag1, t1, t2, z_cv_se, SE_strategy)
BEAST.momintegrals!(op3, lag0, lag1, t1, t2, z_cv_ss, SS_strategy)
BEAST.momintegrals!(op3, lag0, lag1, t1, t2, z_cv_double, Double_strategy)
@test z_cv_double ≈ z_cv_ss rtol = 1e-4
@test z_cv_se ≈ z_cv_ss rtol=1e-4
@test norm(z_cv_ss-z_cv_se) < norm(z_cv_ss-z_cv_double)
end
@testset "Common edge" begin
# common edge
t1 = simplex(
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.0, -0.980785, -0.19509]),
T.(@SVector [0.0, -0.92388, -0.382683])
)
t2 = simplex(
T.(@SVector [0.158174, -0.881178, -0.44554]),
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.0, -0.92388, -0.382683])
)
lag0 = BEAST.LagrangeRefSpace{T,0,3,1}() # patch basis
lag1 = BEAST.LagrangeRefSpace{T,1,3,3}() #pyramid basis
tqd0 = BEAST.quadpoints(lag0, [t1,t2], (12,)) #test quadrature data
tqd1 = BEAST.quadpoints(lag1, [t1,t2], (12,))
bqd0 = BEAST.quadpoints(lag0, [t1,t2], (13,)) #basis quadrature data
bqd1 = BEAST.quadpoints(lag1, [t1,t2], (13,))
#patch patch
SE_strategy = BEAST.WiltonSERule(
tqd0[1,1],
BEAST.DoubleQuadRule(
tqd0[1,1],
bqd0[1,2]))
SS_strategy = SauterSchwabQuadrature.CommonEdge(BEAST._legendre(8,T(0.0),T(1.0)))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd0[1,1],
bqd0[1,2]
)
#single layer
z_ce_se = zeros(complex(T),1,1)
z_ce_ss = zeros(complex(T),1,1)
z_ce_double = zeros(complex(T),1,1)
BEAST.momintegrals!(op1, lag0, lag0, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op1, lag0, lag0, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op1, lag0, lag0, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-3
@test z_ce_se ≈ z_ce_ss rtol=1e-4
@test norm(z_ce_ss-z_ce_se) < norm(z_ce_ss-z_ce_double)
#doublelayer
z_ce_se = zeros(complex(T),1,1)
z_ce_ss = zeros(complex(T),1,1)
z_ce_double = zeros(complex(T),1,1)
BEAST.momintegrals!(op2, lag0, lag0, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op2, lag0, lag0, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op2, lag0, lag0, t1, t2, z_ce_double, Double_strategy)
@test z_ce_ss ≈ z_ce_double rtol = 1e-1
@test z_ce_se ≈ z_ce_ss rtol = 1e-2
@test norm(z_ce_ss-z_ce_se) < norm(z_ce_ss-z_ce_double)
# doublelayer_transposed
z_ce_se = zeros(complex(T),1,1)
z_ce_ss = zeros(complex(T),1,1)
z_ce_double = zeros(complex(T),1,1)
BEAST.momintegrals!(op3, lag0, lag0, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op3, lag0, lag0, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op3, lag0, lag0, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-1
@test z_ce_se ≈ z_ce_ss rtol=1e-2
@test norm(z_ce_ss-z_ce_se) < norm(z_ce_ss-z_ce_double)
#pyramid pyramid
# singlelayer
SE_strategy = BEAST.WiltonSERule(
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,2]))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd1[1,1],
bqd1[1,2]
)
z_ce_se = zeros(complex(T),3,3)
z_ce_ss = zeros(complex(T),3,3)
z_ce_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op1, lag1, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op1, lag1, lag1, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op1, lag1, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-3
@test z_ce_se ≈ z_ce_double rtol=1e-3
@test norm(z_ce_ss-z_ce_se) < norm(z_ce_ss-z_ce_double)
#doublelayer
z_ce_se = zeros(complex(T),3,3)
z_ce_ss = zeros(complex(T),3,3)
z_ce_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op2, lag1, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op2, lag1, lag1, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op2, lag1, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-1
@test z_ce_se ≈ z_ce_ss rtol=1e-4
@test norm(z_ce_ss-z_ce_se)/norm(z_ce_ss) < norm(z_ce_ss-z_ce_double)/norm(z_ce_ss)
#doublelayer_transposed
z_ce_se = zeros(complex(T),3,3)
z_ce_ss = zeros(complex(T),3,3)
z_ce_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op3, lag1, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op3, lag1, lag1, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op3, lag1, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-1
@test z_ce_ss ≈ z_ce_se rtol = 1e-2
@test norm(z_ce_ss-z_ce_se) < norm(z_ce_ss-z_ce_double)
#hypersingular
z_ce_se = zeros(complex(T),3,3)
z_ce_ss = zeros(complex(T),3,3)
z_ce_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op4, lag1, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op4, lag1, lag1, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op4, lag1, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-3
@test z_ce_se ≈ z_ce_ss rtol=1e-4
@test norm(z_ce_ss-z_ce_se) < norm(z_ce_ss-z_ce_double)
#pyramid test patch basis
SE_strategy = BEAST.WiltonSERule(
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd0[1,2]))
SS_strategy = SauterSchwabQuadrature.CommonEdge(BEAST._legendre(8,T(0.0),T(1.0)))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd1[1,1],
bqd0[1,2]
)
#singlelayer
z_ce_se = zeros(complex(T),3,1)
z_ce_ss = zeros(complex(T),3,1)
z_ce_double = zeros(complex(T),3,1)
BEAST.momintegrals!(op1, lag1, lag0, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op1, lag1, lag0, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op1, lag1, lag0, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-3
@test z_ce_se ≈ z_ce_ss rtol=1e-4
@test norm(z_ce_ss-z_ce_se) < norm(z_ce_ss-z_ce_double)
#doublelayer
z_ce_se = zeros(complex(T),3,1)
z_ce_ss = zeros(complex(T),3,1)
z_ce_double = zeros(complex(T),3,1)
BEAST.momintegrals!(op2, lag1, lag0, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op2, lag1, lag0, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op2, lag1, lag0, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-1
@test z_ce_se ≈ z_ce_ss rtol=1e-4
@test norm(z_ce_ss-z_ce_se)/norm(z_ce_ss) < norm(z_ce_ss-z_ce_double)/norm(z_ce_ss)
#doublelayer_transposed
z_ce_se = zeros(complex(T),3,1)
z_ce_ss = zeros(complex(T),3,1)
z_ce_double = zeros(complex(T),3,1)
BEAST.momintegrals!(op3, lag1, lag0, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op3, lag1, lag0, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op3, lag1, lag0, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-1
@test z_ce_se ≈ z_ce_ss rtol=1e-2
@test norm(z_ce_ss-z_ce_se)/norm(z_ce_ss) < norm(z_ce_ss-z_ce_double)/norm(z_ce_ss)
#pyramid basis patch test
SE_strategy = BEAST.WiltonSERule(
tqd0[1,1],
BEAST.DoubleQuadRule(
tqd0[1,1],
bqd1[1,2]))
SS_strategy = SauterSchwabQuadrature.CommonEdge(BEAST._legendre(8,T(0.0),T(1.0)))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd0[1,1],
bqd1[1,2]
)
#singlelayer
z_ce_se = zeros(complex(T),1,3)
z_ce_ss = zeros(complex(T),1,3)
z_ce_double = zeros(complex(T),1,3)
BEAST.momintegrals!(op1, lag0, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op1, lag0, lag1, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op1, lag0, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-3
@test z_ce_se ≈ z_ce_ss rtol=1e-4
@test norm(z_ce_ss-z_ce_se)/norm(z_ce_ss) < norm(z_ce_ss-z_ce_double)/norm(z_ce_ss)
#double layer
z_ce_se = zeros(complex(T),1,3)
z_ce_ss = zeros(complex(T),1,3)
z_ce_double = zeros(complex(T),1,3)
BEAST.momintegrals!(op2, lag0, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op2, lag0, lag1, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op2, lag0, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-1
@test z_ce_se ≈ z_ce_ss rtol=1e-4
@test norm(z_ce_ss-z_ce_se)/norm(z_ce_ss) < norm(z_ce_ss-z_ce_double)/norm(z_ce_ss)
#double layer transposed
z_ce_se = zeros(complex(T),1,3)
z_ce_ss = zeros(complex(T),1,3)
z_ce_double = zeros(complex(T),1,3)
BEAST.momintegrals!(op3, lag0, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op3, lag0, lag1, t1, t2, z_ce_ss, SS_strategy)
BEAST.momintegrals!(op3, lag0, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_double ≈ z_ce_ss rtol = 1e-1
@test z_ce_se ≈ z_ce_ss rtol=1e-1
@test norm(z_ce_ss-z_ce_se)/norm(z_ce_ss) < norm(z_ce_ss-z_ce_double)/norm(z_ce_ss)
end
@testset "Seperated triangles" begin
t1 = simplex(
T.(@SVector [0.0, -0.980785, -0.19509]),
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.0, -0.92388, -0.382683]))
t2 = simplex(
T.(@SVector [0.0, -0.980785, -0.230102]),
T.(@SVector [0.180878, -0.941848, -0.383207]),
T.(@SVector [0.0, -0.92388, -0.411962]))
lag0 = BEAST.LagrangeRefSpace{T,0,3,1}() # patch basis
lag1 = BEAST.LagrangeRefSpace{T,1,3,3}() #pyramid basis
tqd0 = BEAST.quadpoints(lag0, [t1,t2], (12,)) #test quadrature data
tqd1 = BEAST.quadpoints(lag1, [t1,t2], (12,))
bqd0 = BEAST.quadpoints(lag0, [t1,t2], (13,)) #basis quadrature data
bqd1 = BEAST.quadpoints(lag1, [t1,t2], (13,))
# singlelayer
SE_strategy = BEAST.WiltonSERule(
tqd0[1,1],
BEAST.DoubleQuadRule(
tqd0[1,1],
bqd0[1,2]))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd0[1,1],
bqd0[1,2]
)
z_ce_se = zeros(complex(T),1,1)
z_ce_double = zeros(complex(T),1,1)
BEAST.momintegrals!(op1, lag0, lag0, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op1, lag0, lag0, t1, t2, z_ce_double, Double_strategy)
@test z_ce_se ≈ z_ce_double rtol=1e-6
# calculate a reference value with hcubature to desired accuracy
#=using HCubature
r(u,v,t) = (1-u)*t[1]+u*((1-v)*t[2]+v*t[3])
gamma=1.0+1.0im
jac(u,v,t) = u * norm(cross(t[1],t[2])+cross(t[2],t[3])+cross(t[3],t[1]))
function outerf(x)
r2(x2) = r(x2[1],x2[2],t1) - r(x[1],x[2],t2)
innerf(x2) = exp(-gamma*norm(r2(x2)))/(4*pi*norm(r2(x2))) * jac(x2[1],x2[2],t1)
hcubature(innerf, (0.0,0.0), (1.0,1.0), rtol = 1e-8)[1] * jac(x[1],x[2],t2)
end
@show refval = hcubature(outerf, (0.0,0.0), (1.0,1.0), rtol = 1e-8)[1] =#
refval = 0.00033563892481993545 - 2.22592609372769e-5im # can be calculated with above code
@test z_ce_se[1] ≈ refval rtol = 1e-7
@test z_ce_double[1] ≈ refval rtol = 1e-6
SE_strategy = BEAST.WiltonSERule(
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,2]))
Double_strategy = BEAST.DoubleQuadRule( #doublequadstrat
tqd1[1,1],
bqd1[1,2]
)
z_ce_se = zeros(complex(T),3,3)
z_ce_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op1, lag1, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op1, lag1, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_se ≈ z_ce_double rtol=1e-4
# doublelayer
SE_strategy = BEAST.WiltonSERule(
tqd0[1,1],
BEAST.DoubleQuadRule(
tqd0[1,1],
bqd1[1,2]))
Double_strategy = BEAST.DoubleQuadRule(
tqd0[1,1],
bqd1[1,2])
z_ce_se = zeros(complex(T),1,3)
z_ce_double = zeros(complex(T),1,3)
BEAST.momintegrals!(op2, lag0, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op2, lag0, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_se ≈ z_ce_double rtol = 1e-4
SE_strategy = BEAST.WiltonSERule(
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,2]))
Double_strategy = BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,2])
z_ce_se = zeros(complex(T),3,3)
z_ce_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op2, lag1, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op2, lag1, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_se ≈ z_ce_double rtol = 1e-4
# doublelayer transposed
SE_strategy = BEAST.WiltonSERule(
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd0[1,2]))
Double_strategy = BEAST.DoubleQuadRule(
tqd1[1,1],
bqd0[1,2])
z_ce_se = zeros(complex(T),3,1)
z_ce_double = zeros(complex(T),3,1)
BEAST.momintegrals!(op3, lag1, lag0, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op3, lag1, lag0, t1, t2, z_ce_double, Double_strategy)
@test z_ce_se ≈ z_ce_double rtol=1e-4
SE_strategy = BEAST.WiltonSERule(
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,2]))
Double_strategy = BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,2])
z_ce_se = zeros(complex(T),3,3)
z_ce_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op3, lag1, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op3, lag1, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_se ≈ z_ce_double rtol=1e-4
# hypersingular
SE_strategy = BEAST.WiltonSERule(
tqd1[1,1],
BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,2]))
Double_strategy = BEAST.DoubleQuadRule(
tqd1[1,1],
bqd1[1,2])
z_ce_se = zeros(complex(T),3,3)
z_ce_double = zeros(complex(T),3,3)
BEAST.momintegrals!(op4, lag1, lag1, t1, t2, z_ce_se, SE_strategy)
BEAST.momintegrals!(op4, lag1, lag1, t1, t2, z_ce_double, Double_strategy)
@test z_ce_se ≈ z_ce_double rtol = 1e-5
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 854 | using BEAST
using CompScienceMeshes
using Test
for T in [Float32, Float64]
dir = point(T,0,0,1)
local width = T(1.0)
delay = T(1.5)
scaling = T(1.0)
sig = creategaussian(width, delay, scaling)
pw = BEAST.planewave(dir, T(1.0), sig)
CompScienceMeshes.cartesian(p::typeof(dir)) = p
CompScienceMeshes.cartesian(p::Number) = p
local x = point(T,1,0,0)
local t = T(1.0)
@test pw(x,t) ≈ sig(t-dot(dir,x))
pw2 = BEAST.gradient(pw)
@test pw2.direction ≈ dir
@test pw2.polarisation ≈ -dir
@test pw2.speedoflight ≈ pw.speed_of_light
dsig = derive(sig)
@test pw2(x,t) ≈ -dir*dsig(t-dot(dir,x))
trc = dot(BEAST.n,pw2)
ch = simplex(
point(T,0,0,0),
point(T,1,0,0),
point(T,0,1,0))
ctr = center(ch)
val = trc(ctr,t)
@test val ≈ -dsig(t-dot(dir,x))
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2422 | using BEAST
using CompScienceMeshes
using StaticArrays
using LinearAlgebra
using SphericalScattering
using Test
# Homogeneous Dielectic Sphere Unit Test
@testset "Lippmann Schwinger Volume Integral Equation" begin
# Environment
ε1 = 1.0*ε0
μ1 = μ0
# Dielectic Sphere
ε2 = 5.0*ε0
μ2 = μ0
r = 1.0
sp = DielectricSphere(; radius = r, filling = Medium(ε2, μ2))
# Mesh, Basis
h = 0.35
mesh = CompScienceMeshes.tetmeshsphere(r,h)
bnd = boundary(mesh)
X = lagrangec0d1(mesh; dirichlet = false)
#@show numfunctions(X)
strc = X -> strace(X,bnd)
# VIE operators
function generate_tau(ε_ins, ε_env)
contr = 1.0 - ε_ins/ε_env
function tau(x::SVector{U,T}) where {U,T}
return T(contr)
end
return tau
end
τ = generate_tau(ε2, ε1)
I, V, B = Identity(), VIE.hhvolume(tau = τ, wavenumber = 0.0), VIE.hhboundary(tau = τ, wavenumber = 0.0)
Y = VIE.hhvolumegradG(tau = τ, wavenumber = 0.0)
# Exitation
dirE = SVector(1.0, 0.0, 0.0)
dirgradΦ = -dirE
amp = 1.0
# SphericalScattering exitation
ex = UniformField(direction = dirE, amplitude = amp, embedding = Medium(ε1, μ1))
# VIE exitation
Φ_inc = VIE.linearpotential(direction=dirgradΦ, amplitude=amp)
# Assembly
b = assemble(Φ_inc, X)
Z_I = assemble(I, X, X)
Z_V = assemble(V, X, X)
Z_B = assemble(B, strc(X), X)
Z_Y = assemble(Y, X, X)
Z_version1 = Z_I + Z_V + Z_B
Z_version2 = Z_I + Z_Y
# MoM solution
u_version1 = Z_version1 \ Vector(b)
u_version2 = Z_version2 \ Vector(b)
# Observation points
range_ = range(-1.0*r,stop=1.0*r,length=14)
points = [point(x,y,z) for x in range_ for y in range_ for z in range_]
points_sp=[]
for p in points
norm(p)<0.97*r && push!(points_sp,p)
end
# SphericalScattering solution inside the dielectric sphere
Φ = field(sp, ex, ScalarPotential(points_sp))
# MoM solution inside the dielectric sphere
Φ_MoM_version1 = BEAST.grideval(points_sp, u_version1, X, type=Float64)
Φ_MoM_version2 = BEAST.grideval(points_sp, u_version2, X, type=Float64)
err_Φ_version1 = norm(Φ - Φ_MoM_version1) / norm(Φ)
err_Φ_version2 = norm(Φ - Φ_MoM_version2) / norm(Φ)
@show err_Φ_version1
@show err_Φ_version2
@test err_Φ_version1 < 0.02
@test err_Φ_version2 < 0.01
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1380 | using Test
using BEAST
using CompScienceMeshes
chart1 = simplex(
point(1,0,0),
point(0,1,0),
point(0,0,0))
chart2 = simplex(
point(1/2,0,0),
point(0,1/2,0),
point(1,1,0))
X = BEAST.RTRefSpace{Float64}()
@time Q1 = BEAST.restrict(X, chart1, chart2)
@time Q2 = BEAST.interpolate(X, chart2, X, chart1)
@test Q1 ≈ Q2
constant_vector_field = point(1,2,0)
Q3 = BEAST.interpolate(X, chart2) do p
return [constant_vector_field]
end
ctr = center(chart2)
vals = [f.value for f in X(ctr)]
itpol = sum(w*val for (w,val) in zip(Q3,vals))
@test itpol ≈ constant_vector_field
using TestItems
@testitem "restrict RT0" begin
using CompScienceMeshes
ref_vertices = [
point(1,0),
point(0,1),
point(0,0),
]
vertices = [
point(1,0,0),
point(0,1,0),
point(0,0,0),
]
chart1 = simplex(vertices...)
for I in BEAST._dof_perms_rt
chart2 = simplex(
chart1.vertices[I[1]],
chart1.vertices[I[2]],
chart1.vertices[I[3]],)
chart2tochart1 = CompScienceMeshes.simplex(ref_vertices[collect(I)]...)
rs = BEAST.RTRefSpace{Float64}()
Q1 = BEAST.dof_perm_matrix(rs, I)
Q2 = BEAST.restrict(rs, chart1, chart2)
Q3 = BEAST.restrict(rs, chart1, chart2, chart2tochart1)
@test Q1 ≈ Q2
@test Q1 ≈ Q3
end
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 602 | using BEAST
using CompScienceMeshes
using Test
Γ = meshrectangle(1.0, 1.0, 0.4)
XN = lagrangecxd0(Γ) # lagrangec0d1(Γₑ₁; dirichlet=true) # Dirichlet=true -> no boundary function
XD = lagrangec0d1(Γ)
mp = Helmholtz3D.monopole(position=SVector(0.0, 0.0, 3.0))
gradmp = grad(mp)
φ = DofInterpolate(XD, mp)
@test eltype(φ) == Float64
for i in eachindex(φ)
@test mp(XD.pos[i]) == φ[i]
end
σ = DofInterpolate(XN, gradmp)
@test eltype(σ) == Float64
for i in eachindex(σ)
# Orientation of meshrectangle is in -z direction
@test dot(SVector(0.0, 0.0, -1.0), gradmp(XN.pos[i])) == σ[i]
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1282 | @info "Executing test_local_assembly.jl"
using CompScienceMeshes
using BEAST
using Test
m = meshrectangle(1.0, 1.0, 0.5, 3)
nodes = skeleton(m,0)
int_nodes = submesh(!in(skeleton(boundary(m),0)), nodes)
# srt_bnd_nodes = sort.(skeleton(boundary(m),0))
# int_nodes = submesh(nodes) do node
# !(sort(node) in srt_bnd_nodes)
# end
@test length(int_nodes) == 1
L0 = BEAST.lagrangec0d1(m, int_nodes)
@test numfunctions(L0) == 1
@test length(L0.fns[1]) == 6
@test length(m) == 8
Lx = BEAST.lagrangecxd0(m)
@test numfunctions(Lx) == 8
Id = BEAST.Identity()
fr1, st1 = BEAST.allocatestorage(Id, L0, Lx, Val{:bandedstorage}, BEAST.LongDelays{:ignore})
BEAST.assemble_local_matched!(Id, L0, Lx, st1)
Q1 = fr1()
fr2, st2 = BEAST.allocatestorage(Id, L0, Lx, Val{:bandedstorage}, BEAST.LongDelays{:ignore})
BEAST.assemble_local_mixed!(Id, L0, Lx, st2)
Q2 = fr2()
@test isapprox(Q1, Q2, atol=1e-8)
RT = raviartthomas(m)
BC = buffachristiansen(m)
fr1, st1 = BEAST.allocatestorage(Id, BC, RT, Val{:bandedstorage}, BEAST.LongDelays{:ignore})
BEAST.assemble_local_refines!(Id, BC, RT, st1)
Q1 = fr1()
fr2, st2 = BEAST.allocatestorage(Id, BC, RT, Val{:bandedstorage}, BEAST.LongDelays{:ignore})
BEAST.assemble_local_mixed!(Id, BC, RT, st2)
Q2 = fr2()
@test isapprox(Q1, Q2, atol=1e-8)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 591 | using Test
using BEAST
using CompScienceMeshes
using SparseArrays
for T in [Float32, Float64]
local fn = joinpath(@__DIR__, "assets/sphere5.in")
local m = readmesh(fn, T=T)
Id = BEAST.Identity()
local X = BEAST.raviartthomas(m)
Z1 = assemble(Id, X, X, storage_policy=Val{:densestorage})
Z2 = assemble(Id, X, X, storage_policy=Val{:bandedstorage})
Z3 = assemble(Id, X, X, storage_policy=Val{:sparsedicts})
@test Z1 isa DenseMatrix
@test Z2 isa SparseMatrixCSC
@test Z3 isa SparseMatrixCSC
@test Z1 ≈ Z2 atol=1e-8
@test Z1 ≈ Z3 atol=1e-8
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 273 | using Test
using BEAST
A11 = BEAST.MatrixConvolution(rand(2,3,10))
A21 = BEAST.MatrixConvolution(rand(4,3,8))
A12 = BEAST.MatrixConvolution(rand(2,5,12))
A22 = BEAST.MatrixConvolution(rand(4,5,14))
A = BEAST.hvcat((2,2), A11, A12, A21, A22)
@test A[3,5,6] == A22[1,2,6] | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1942 | # test resolutuion of #66
using BEAST
using Test
using CompScienceMeshes
using LinearAlgebra
function hassemble(operator::BEAST.AbstractOperator,
test_functions,
trial_functions)
blkasm = BEAST.blockassembler(operator, test_functions, trial_functions)
function assembler(Z, tdata, sdata)
store(v,m,n) = (Z[m,n] += v)
blkasm(tdata,sdata,store)
end
mat = zeros(scalartype(operator),
numfunctions(test_functions),
numfunctions(trial_functions))
assembler(mat, 1:numfunctions(test_functions), 1:numfunctions(trial_functions))
return mat
end
for T in [Float32, Float64]
c = T(3e8)
μ = T(4π * 1e-7)
ε = T(1/(μ*c^2))
local f = T(1e8)
λ = T(c/f)
k = T(2π/λ)
local ω = T(k*c)
η = T(sqrt(μ/ε))
a = T(1)
local Γ = CompScienceMeshes.meshcuboid(a,a,a,T(0.2))
𝓣 = Maxwell3D.singlelayer(wavenumber=k)
𝓚 = Maxwell3D.doublelayer(wavenumber=k)
local X = raviartthomas(Γ)
local Y = buffachristiansen(Γ)
println("Number of RWG functions: ", numfunctions(X))
T_blockassembler = hassemble(𝓣, X, X)
T_standardassembler = assemble(𝓣, X, X)
@test norm(T_blockassembler - T_standardassembler)/norm(T_standardassembler) ≈ 0.0 atol=100*eps(T)
T_bc_blockassembler = hassemble(𝓣, Y, Y)
T_bc_standardassembler = assemble(𝓣, Y, Y)
@test norm(T_bc_blockassembler - T_bc_standardassembler)/norm(T_bc_standardassembler) ≈ 0.0 atol=100*eps(T)
K_mix_blockassembler = hassemble(𝓚,Y,X)
K_mix_standardassembler = assemble(𝓚,Y,X)
T_mix_blockassembler = hassemble(𝓣, Y, X)
T_mix_standardassembler = assemble(𝓣, Y, X)
if T==Float64
@test norm(K_mix_blockassembler - K_mix_standardassembler)/norm(K_mix_standardassembler) ≈ 0.0 atol=100*eps(T)
@test norm(T_mix_blockassembler - T_mix_standardassembler)/norm(T_mix_standardassembler) ≈ 0.0 atol=100*eps(T)
end
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 748 | using CompScienceMeshes
using BEAST
using Test
using LinearAlgebra
for T in [Float32, Float64]
faces = meshrectangle(T(1.0), T(1.0), T(0.5), 3)
local bnd = boundary(faces)
local edges = submesh(!in(bnd), skeleton(faces,1))
local bnd_nodes = skeleton(bnd, 0)
@test length(bnd_nodes) == 8
local nodes = submesh(!in(bnd_nodes), skeleton(faces,0))
@test length(nodes) == 1
Conn = connectivity(nodes, edges, sign)
local X = raviartthomas(faces, cellpairs(faces,edges))
@test numfunctions(X) == 8
divX = divergence(X)
Id = BEAST.Identity()
DD = assemble(Id, divX, divX)
@test rank(DD) == 7
L = divX * Conn
for sh in L.fns[1]
@test isapprox(sh.coeff, 0, atol=1e-8)
end
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1245 | using Test
using BEAST
using CompScienceMeshes
#testing local value in the center of a triangle
for T in [Float64]
for j in [1,2,3,4,5,6]
local o, x, y, z = euclidianbasis(3,T)
triang = simplex(x,y,o)
ctr = center(triang)
n = normal(triang)
oref = BEAST.NCrossBDMRefSpace{T}()
oref2= BEAST.BDMRefSpace{T}()
oshp=BEAST.Shape(1,j,1.0)
oshp2=BEAST.Shape(1,j,1.0)
o1 = oref(ctr)[oshp.refid].value * oshp.coeff
o2=n × oref2(ctr)[oshp2.refid].value * oshp2.coeff
@test o1 ≈ o2
end
end
#testing their connectivity on a mesh
m=meshsphere(radius=1,h=1.0)
nodes = skeleton(m,0)
edges = skeleton(m,1)
Z = BEAST.brezzidouglasmarini(m)
NZ = BEAST.ncrossbdm(m)
for i=(1,11,36,52,111)
for j=(1,2)
@test Z.fns[i][j].coeff ≈ NZ.fns[i][j].coeff
@test Z.fns[i][j].refid ≈ NZ.fns[i][j].refid
@test Z.fns[i][j].cellid ≈ NZ.fns[i][j].cellid
end
end
#testing the values on a mesh through Gram matrices
Id = BEAST.Identity()
qs = BEAST.SingleNumQStrat(8)
Gzz= assemble(Id,Z,Z,quadstrat=qs)
Gnznz= assemble(Id,NZ,NZ,quadstrat=qs)
@test Gzz ≈ Gnznz
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 765 | using CompScienceMeshes
using BEAST
using LinearAlgebra
using Test
#= """
This test is achieved by projecting the coefficients of 1st degree
curl conforming basis functions onto the 2nd degree basis functions
and then projecting back the obtained coefficients of the 2nd degree
basis functions onto the 1st degree basis functions. The resultant
operator should be an Identity operator.
""" =#
m = meshrectangle(1.0,1.0,0.5)
tol = 1e-10
X2 = BEAST.nedelec2(m)
X1 = BEAST.nedelec(m)
G11 = assemble(Identity(), X1, X1)
G12 = assemble(Identity(), X1, X2)
G21 = assemble(Identity(), X2, X1)
G22 = assemble(Identity(), X2, X2)
Id = Matrix{eltype(G11)}(LinearAlgebra.I, numfunctions(X1), numfunctions(X1))
@test norm(inv(Matrix(G11))*G12*inv(Matrix(G22))*G21-Id)<tol
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 995 | using Test
using BEAST
using CompScienceMeshes
V = [
point(0,0,0),
point(1,0,0),
point(0,1,0)]
F = [index(1,2,3)]
m1 = Mesh(V,F)
m2 = CompScienceMeshes.rotate(m1, 0.5pi*point(1,0,0))
m3 = CompScienceMeshes.rotate(m1, 1.0pi*point(1,0,0))
m = weld(m1,m2,m3)
@test numcells(skeleton(m,0)) == 5
@test numcells(m) == 3
Nd = BEAST.nedelec(m)
@test numfunctions(Nd) == 7
function interior(mesh::Mesh, edges=skeleton(mesh,1))
@assert dimension(mesh) == 2
@assert vertices(mesh) === vertices(edges)
C = connectivity(edges, mesh)
@assert size(C) == (numcells(mesh), numcells(edges))
nn = vec(sum(abs.(C), dims=1))
T = CompScienceMeshes.indextype(edges)
interior_edges = Vector{T}()
for (i,edge) in pairs(cells(edges))
nn[i] > 1 && push!(interior_edges, edge)
end
Mesh(vertices(mesh), interior_edges)
end
interior_edges = interior(m)
@test numcells(interior_edges) == 1
Nd = BEAST.nedelec(m, interior_edges)
@test numfunctions(Nd) == 1
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1007 | using CompScienceMeshes
using BEAST
using Test
using LinearAlgebra
for T in [Float32, Float64]
local o, x, y, z = CompScienceMeshes.euclidianbasis(3,T)
tet = simplex(x,y,z,o)
rs = BEAST.NDLCDRefSpace{T}()
Q = BEAST.restrict(rs, tet, tet)
@test Q ≈ Matrix(T(1.0)LinearAlgebra.I, 4, 4)
rs = BEAST.NDLCCRefSpace{T}()
Q = BEAST.restrict(rs, tet, tet)
@test Q ≈ Matrix(T(1.0)LinearAlgebra.I, 6, 6)
c = cartesian(center(tet))
smalltet = simplex(x,y,z,c)
p_smalltet = center(smalltet)
p_tet = neighborhood(tet, carttobary(tet, cartesian(p_smalltet)))
@show cartesian(p_smalltet)
@show cartesian(p_tet)
@assert cartesian(p_tet) ≈ cartesian(p_smalltet)
@assert volume(tet) / volume(smalltet) ≈ 4
Q = BEAST.restrict(rs, tet, smalltet)
Fp = rs(p_tet)
fp = rs(p_smalltet)
for j in axes(Q,1)
x = Fp[j].value
y = sum(Q[j,i]*fp[i].value for i in axes(Q,2))
@show x
@show y
@test x ≈ y
end
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1183 | using CompScienceMeshes
using BEAST
using Test
using LinearAlgebra
for T in [Float32, Float64]
fn = joinpath(dirname(@__FILE__),"assets","rect1.in")
mesh = readmesh(fn, T=T)
edgs = skeleton(mesh,1)
charts = [chart(edgs,edg) for edg in edgs]
ctrs = [cartesian(center(cht)) for cht in charts]
ND = BEAST.nedelec(mesh, edgs)
@test numfunctions(ND) == numcells(edgs)
@test length(ND.fns[1]) == 1
@test length(ND.fns[2]) == 1
@test length(ND.fns[3]) == 2
@test length(ND.fns[4]) == 1
@test length(ND.fns[5]) == 1
# center of the diagonal
ctr = center(charts[3])
face_charts = [chart(mesh,fce) for fce in mesh]
nbd1 = neighborhood(face_charts[1], carttobary(face_charts[1], cartesian(ctr)))
nbd2 = neighborhood(face_charts[2], carttobary(face_charts[2], cartesian(ctr)))
t = tangents(ctr,1)
ut = t / norm(t)
ndlocal = refspace(ND)
fn = ND.fns[3]
v1 = dot(fn[1].coeff*ndlocal(nbd1)[1][1],ut)
v2 = dot(fn[2].coeff*ndlocal(nbd2)[2][1],ut)
@test v1 ≈ v2 ≈ -1/√2 ≈ -1/volume(charts[3])
curlND = curl(ND)
@test curlND.fns[3][1].coeff ≈ +2
@test curlND.fns[3][2].coeff ≈ -2
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2262 | @info "Executing test_nitsche.jl"
using Test
using LinearAlgebra
using CompScienceMeshes
using BEAST
x = point(1.0, 0.0, 0.0)
y = point(0.0, 1.0, 0.0)
z = point(0.0, 0.0, 1.0)
κ = 1.0
S = SingleLayerTrace(im*κ)
h = 0.25
Γ = meshrectangle(1.0,1.0,h)
γ = meshsegment(1.0,1.0,3)
in_interior = CompScienceMeshes.interior_tpredicate(Γ)
on_junction = CompScienceMeshes.overlap_gpredicate(γ)
edges = submesh(skeleton(Γ,1)) do m, edge
in_interior(m,edge) || on_junction(chart(m,edge))
end
# edges = skeleton(Γ,1) do edge
# in_interior(edge) ||on_junction(chart(Γ,edge))
# end
X = raviartthomas(Γ, edges)
x = divergence(X)
y = ntrace(X,γ)
Z = assemble(S,y,x; threading = BEAST.Threading{:single})
# test for the correct sparsity pattern
# I, J, V = findall(!iszero, Z)
Q = findall(!iszero, Z)
I = getindex.(Q,1)
J = getindex.(Q,2)
@test length(unique(I)) == 4
@test length(unique(J)) == 44
## test the acutal value of the penalty terms
using CompScienceMeshes
using BEAST
using Test
p1 = point(0,0,0)
p2 = point(1,0,0)
p3 = point(0,1,0)
q1 = point(0,0,0)
q2 = point(1,0,0)
m = Mesh([p1,p2,p3],[index(1,2,3)])
n = Mesh([q1,q2], [index(1,2)])
translate!(n, point(0,0,20))
X = lagrangecxd0(m)
Y = lagrangecxd0(n)
x = refspace(X)
y = refspace(Y)
N = BEAST.SingleLayerTrace(0.0)
Nyx = assemble(N,Y,X)
@test size(Nyx) == (1,1)
sx = chart(m, first(m))
sy = chart(n, first(n))
cx = neighborhood(sx, [1,1]/3)
cy = neighborhood(sy, [1]/2)
vx = x(cx)
vy = y(cy)
R = norm(cartesian(cx) - cartesian(cy))
estimate = volume(sx) * volume(sy) * vx[1][1] * vy[1][1] / (4π*R)
actual = Nyx[1,1]
@test norm(estimate - actual) / norm(actual) < 5e-4
# test that the trace and divergence work as advetised
X = raviartthomas(m,boundary(m))
D = divergence(X)
Y = ntrace(X,boundary(m))
@test numfunctions(D) == 3
@test isa(refspace(X), BEAST.RTRefSpace)
for _f in D.fns
@test length(_f) == 1
@test _f[1].cellid == 1
@test _f[1].refid == 1
@test _f[1].coeff ≈ (1 / volume(sx))
end
Σ = geometry(Y)
@test numfunctions(Y) == 3
@test isa(refspace(Y), BEAST.LagrangeRefSpace)
for _f in Y.fns
@test length(_f) == 1
@test 0 < _f[1].cellid < 4
seg = chart(Σ, _f[1].cellid)
@test _f[1].refid == 1
@test _f[1].coeff ≈ (1 / volume(seg))
end
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1482 | using CompScienceMeshes
using BEAST
using Test
p1 = point(0,0,0)
p2 = point(1/3,0,0)
p3 = point(0,1/3,0)
q1 = point(0,0,0)
q2 = point(0.125,0,0)
m = Mesh([p1,p2,p3], [index(1,2,3)])
n = Mesh([q1,q2], [index(1,2)])
translate!(n, point(0,0,20))
X = lagrangec0d1(m, boundary(m))
@test numfunctions(X) == 3
x = refspace(X)
s = chart(m, X.fns[1][1].cellid)
c = neighborhood(s, [1,1]/3) # get the barycenter of that patch
v = x(c) # evaluate the Lagrange elements in c, together with their curls
@test (s[3] - s[2]) / (2 * volume(s)) ≈ v[1][2]
@test (s[1] - s[3]) / (2 * volume(s)) ≈ v[2][2]
@test (s[2] - s[1]) / (2 * volume(s)) ≈ v[3][2]
Y = lagrangec0d1(n, boundary(n))
@test numfunctions(Y) == 2
y = refspace(Y)
t = chart(n, Y.fns[1][1].cellid)
d = neighborhood(t, [1]/2)
tg = normalize(tangents(d,1))
w = y(d)
@test w[1][1] ≈ 0.5
@test w[2][1] ≈ 0.5
κ = 0.0
T = BEAST.NitscheHH3(κ)
Tyx = assemble(T, Y, X)
@test size(Tyx) == (numfunctions(Y), numfunctions(X))
R = norm(cartesian(c)-cartesian(d))
estimate = volume(t) * volume(s) * dot(v[1][2], w[1][1] * tg) / (4π*R)
actual = Tyx[1,1]
@test (estimate - actual) / actual < 0.005
## test the value of the skeleton gram matrix
I = BEAST.Identity()
Iyy = assemble(I, Y, Y)
@test size(Iyy) == (2,2)
qps = BEAST.quadpoints(y, [t], (10,))[1,1]
estimate = 0.0
for qp in qps
igd = qp.value[1][1] * qp.value[2][1]
global estimate += qp.weight * igd
end
actual = Iyy[1,2]
@test norm(estimate - actual) < 1e-6
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2907 | using Test
using CompScienceMeshes
using BEAST
using StaticArrays
using LinearAlgebra
c = 3e8
μ = 4*π*1e-7
ε = 1/(μ*c^2)
f = 5e7
λ = c/f
k = 2*π/λ
ω = k*c
η = sqrt(μ/ε)
a = 1
Γ_orig = CompScienceMeshes.meshcuboid(a,a,a,0.1)
Γ = translate(Γ_orig,SVector(-a/2,-a/2,-a/2))
Φ, Θ = [0.0], range(0,stop=π,length=100)
pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for ϕ in Φ for θ in Θ]
# This is an electric dipole
# The pre-factor (1/ε) is used to resemble
# (9.18) in Jackson's Classical Electrodynamics
E = (1/ε) * dipolemw3d(location=SVector(0.4,0.2,0),
orientation=1e-9.*SVector(0.5,0.5,0),
wavenumber=k)
n = BEAST.NormalVector()
𝒆 = (n × E) × n
H = (-1/(im*μ*ω))*curl(E)
𝒉 = (n × H) × n
𝓣 = Maxwell3D.singlelayer(wavenumber=k)
X = raviartthomas(Γ)
T = Matrix(assemble(𝓣,X,X))
e = Vector(assemble(𝒆,X))
j_EFIE = T\e
nf_E_EFIE = potential(MWSingleLayerField3D(wavenumber=k), pts, j_EFIE, X)
nf_H_EFIE = potential(BEAST.MWDoubleLayerField3D(wavenumber=k), pts, j_EFIE, X) ./ η
ff_E_EFIE = potential(MWFarField3D(wavenumber=k), pts, j_EFIE, X)
accuracy_default_quadrature_nf_e = norm(nf_E_EFIE - E.(pts))/norm(E.(pts))
accuracy_default_quadrature_nf_h = norm(nf_H_EFIE - H.(pts))/norm(H.(pts))
accuracy_default_quadrature_ff_e =
norm(ff_E_EFIE - E.(pts, isfarfield=true))/norm(E.(pts, isfarfield=true))
function fastquaddata(op::BEAST.MaxwellOperator3D,
test_local_space::BEAST.RefSpace, trial_local_space::BEAST.RefSpace,
test_charts, trial_charts)
a, b = 0.0, 1.0
# CommonVertex, CommonEdge, CommonFace rules
println("Fast quadrule is called")
tqd = quadpoints(test_local_space, test_charts, (1,2))
bqd = quadpoints(trial_local_space, trial_charts, (1,2))
leg = (BEAST._legendre(3,a,b), BEAST._legendre(4,a,b), BEAST._legendre(5,a,b),)
return (tpoints=tqd, bpoints=bqd, gausslegendre=leg)
end
function fastquaddata(fn::BEAST.Functional, refs, cells)
println("Fast RHS quadrature")
return quadpoints(refs, cells, [1])
end
fastT = Matrix(assemble(𝓣,X,X, quaddata=fastquaddata))
faste = Vector(assemble(𝒆,X, quaddata=fastquaddata))
fastj_EFIE = fastT\faste
fastnf_E_EFIE = potential(MWSingleLayerField3D(wavenumber=k), pts, fastj_EFIE, X)
fastnf_H_EFIE = potential(BEAST.MWDoubleLayerField3D(wavenumber=k), pts, fastj_EFIE, X) ./ η
fastff_E_EFIE = potential(MWFarField3D(wavenumber=k), pts, fastj_EFIE, X)
accuracy_fast_quadrature_nf_e = norm(fastnf_E_EFIE - E.(pts))/norm(E.(pts))
accuracy_fast_quadrature_nf_h = norm(fastnf_H_EFIE - H.(pts))/norm(H.(pts))
accuracy_fast_quadrature_ff_e =
norm(fastff_E_EFIE - E.(pts, isfarfield=true))/norm(E.(pts, isfarfield=true))
@test accuracy_fast_quadrature_nf_e > accuracy_default_quadrature_nf_e
@test accuracy_fast_quadrature_nf_h > accuracy_default_quadrature_nf_h
@test accuracy_fast_quadrature_ff_e > accuracy_default_quadrature_ff_e
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1288 | using Test
using BEAST
using CompScienceMeshes
function neighbortest(X)
Γ = X.geo
for (e,f) in enumerate(X.fns)
i = Γ.faces[f[1].cellid]
j = Γ.faces[f[2].cellid]
ij = intersect(i,j)
@assert length(ij) == 2
ri = f[1].refid
rj = f[2].refid
#@assert !(i[ri] in ij)
if (j[rj] in ij)
@show e
@show f
@show i, ri
@show j, rj
@assert false
end
end
end
for T in [Float32,Float64]
tol = eps(T) * 10^3
mesh = meshrectangle(T(1.0), T(1.0), T(0.5))
@test numvertices(mesh) == 9
idcs = mesh.faces[1]
@test size(idcs) == (3,)
verts = vertices(mesh, idcs)
@test size(verts) == (3,)
faces = skeleton(mesh, 2)
idcs = faces.faces[1]
verts = vertices(mesh, idcs)
local p = simplex(verts, Val{2})
@test volume(p) == T(1/8)
local edges = skeleton(mesh,1)
@test numcells(edges) == 16
local cps = cellpairs(mesh, edges)
@test size(cps) == (2,16)
# select only inner edges
I = findall(x->(x>0), cps[2,:])
cps = cps[:,I]
@test size(cps) == (2,8)
# build the Raviart-Thomas elements
rt = raviartthomas(mesh, cps)
@test numfunctions(rt) == 8
neighbortest(rt)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1761 | using Test
using CompScienceMeshes
using BEAST
const e0 = point(0.0,0.0,0.0)
const e1 = point(1.0,0.0,0.0)
const e2 = point(0.0,1.0,0.0)
const e3 = point(0.0,0.0,1.0)
for T in [Float32, Float64]
p = simplex(
[
point(T,0.0,0.0,0.0),
point(T,1.0,0.0,0.0)
],
Val{1}
)
q = simplex(
[
point(T,0.0,0.0,0.0),
point(T,0.5,0.0,0.0)
],
Val{1}
)
f = BEAST.LagrangeRefSpace{T,1,2,2}()
local x = neighborhood(p, T.([0.0]))
v = f(x)
@test v[1].value == 0
@test v[2].value == 1
@test v[1].derivative == -1
@test v[2].derivative == +1
Q = restrict(f, p, q)
@test Q == [
T(1.0) T(0.5)
T(0.0) T(0.5)]
# Test restriction of RT elements
ni, no = 6, 7;
ui = transpose([triangleGaussA[ni] triangleGaussB[ni] ]);
uo = transpose([triangleGaussA[no] triangleGaussB[no] ]);
wi = triangleGaussW[ni];
wo = triangleGaussW[no];
# universe = Universe(1.0, ui, wi, uo, wo);
p = simplex([T.(2*e0),T.(2*e1),T.(2*e2)], Val{2})
x = neighborhood(p,T.([0.5, 0.5]))
ϕ = BEAST.RTRefSpace{T}()
v = ϕ(x)
Q = restrict(ϕ, p, p)
if T==Float64
@test Q == Matrix(LinearAlgebra.I, 3, 3)
q = simplex([T.(e0+e1), T.(2*e1), T.(e1+e2)], Val{2})
Q = restrict(ϕ, p, q)
@test Q == [
2 -1 0
0 1 0
0 -1 2] // 4
end
# Test restriction of Nedelec elements
ψ = BEAST.NDRefSpace{T}()
Q = restrict(ψ, p, p)
if T==Float64
@test Q == Matrix(LinearAlgebra.I, 3, 3)
q = simplex([T.(e0+e1), T.(2*e1), T.(e1+e2)], Val{2})
Q = restrict(ψ, p, q)
@test Q == [
2 -1 0
0 1 0
0 -1 2] // 4
end
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1768 | using CompScienceMeshes
using BEAST
using Test
using StaticArrays
const third = one(Float64)/3
for T in [Float32, Float64]
P = SVector{3,T}
tol = eps(T) * 10^3
function shapevals(ϕ, ts)
numpoints = length(ts)
numshapes = numfunctions(ϕ)
y = Array{P}(undef, numshapes, numpoints)
for i in 1 : numpoints
t = ts[i]
u = ϕ(t)
for j in 1 : numshapes
y[j,i] = u[j][1]
end
end
return y
end
local m = meshrectangle(T(1.0),T(1.0),T(0.5));
rwg = raviartthomas(m)
ref = refspace(rwg)
# vrts = vertices(m, first(cells(m)))
# ptch = simplex(vrts[1], vrts[2], vrts[3])
ptch = chart(m, first(m))
ctrd = neighborhood(ptch, T.([1,1]/3))
local vals = shapevals(ref, [ctrd])
# test edge detection
edges = skeleton(m, 1)
vp = cellpairs(m,edges)
# test function evaluation
v = [
point(T, 0.0, 0.0, 0.0),
point(T, 2.0, 0.0, 0.0),
point(T, 0.0, 3.0, 0.0)]
cell = simplex(v[1], v[2], v[3])
mp = neighborhood(cell,[T(third), T(third)]);
ϕ = BEAST.RTRefSpace{T}()
fx = ϕ(mp)[2][1]
A = volume(cell)
r = cartesian(mp)
gx = (r - v[2]) / 2A
@test norm(fx - gx) < tol
@test norm((r - v[1])/2A - ϕ(mp)[1][1]) < tol
@test norm((r - v[2])/2A - ϕ(mp)[2][1]) < tol
@test norm((r - v[3])/2A - ϕ(mp)[3][1]) < tol
# repeat the test but now on a random cell
randpoint() = point(2*rand(T)-1, 2*rand(T)-1, 2*rand(T)-1)
v = [randpoint(), randpoint(), randpoint()]
cell = simplex(v[1], v[2], v[3])
mp = neighborhood(cell,[T(third), T(third)]);
fx = ϕ(mp)[2][1]
#fx = evalfun(rs, mp)
A = volume(cell)
r = cartesian(mp)
gx = (r-v[2]) / 2A
@test norm(fx - gx) < tol
@test norm((r - v[1])/2A - ϕ(mp)[1][1]) < tol
@test norm((r - v[2])/2A - ϕ(mp)[2][1]) < tol
@test norm((r - v[3])/2A - ϕ(mp)[3][1]) < tol
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 770 | using CompScienceMeshes
using BEAST
using LinearAlgebra
using Test
#= """
This test is achieved by projecting the coefficients of 1st degree
div conforming basis functions onto the 2nd degree basis functions
and then projecting back the obtained coefficients of the 2nd degree
basis functions onto the 1st degree basis functions. The resultant
operator should be an Identity operator.
""" =#
m = meshrectangle(1.0,1.0,0.5)
tol = 1e-10
X2 = BEAST.raviartthomas2(m)
X1 = raviartthomas(m)
G11 = assemble(Identity(), X1, X1)
G12 = assemble(Identity(), X1, X2)
G21 = assemble(Identity(), X2, X1)
G22 = assemble(Identity(), X2, X2)
Id = Matrix{eltype(G11)}(LinearAlgebra.I, numfunctions(X1), numfunctions(X1))
@test norm(inv(Matrix(G11))*G12*inv(Matrix(G22))*G21-Id)<tol
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2131 | using CompScienceMeshes
using BEAST
using Test
for T in [Float32, Float64]
local o, x, y, z = euclidianbasis(3,T)
tet = simplex(x,y,z,o)
nbd1 = neighborhood(tet, T.([0,1,1]/3))
nbd2 = neighborhood(tet, T.([1,0,1]/3))
nbd3 = neighborhood(tet, T.([1,1,0]/3))
nbd4 = neighborhood(tet, T.([1,1,1]/3))
local rs = BEAST.NDLCDRefSpace{T}()
local fcs = BEAST.faces(tet)
@test dot(rs(nbd1)[1].value, normal(fcs[1])) > 0
@test dot(rs(nbd2)[2].value, normal(fcs[2])) > 0
@test dot(rs(nbd3)[3].value, normal(fcs[3])) > 0
@test dot(rs(nbd4)[4].value, normal(fcs[4])) > 0
dot(rs(nbd1)[1].value, normal(fcs[1])) * volume(fcs[1]) ≈ 1
dot(rs(nbd2)[2].value, normal(fcs[2])) * volume(fcs[2]) ≈ 1
dot(rs(nbd3)[3].value, normal(fcs[3])) * volume(fcs[2]) ≈ 1
dot(rs(nbd4)[4].value, normal(fcs[4])) * volume(fcs[4]) ≈ 1
@test dot(rs(nbd1)[2].value, normal(fcs[1])) * volume(fcs[1]) ≈ 0 atol=eps(T)
@test dot(rs(nbd1)[3].value, normal(fcs[1])) * volume(fcs[1]) ≈ 0 atol=eps(T)
@test dot(rs(nbd1)[4].value, normal(fcs[1])) * volume(fcs[1]) ≈ 0 atol=eps(T)
@test dot(rs(nbd2)[1].value, normal(fcs[2])) * volume(fcs[2]) ≈ 0 atol=eps(T)
@test dot(rs(nbd2)[3].value, normal(fcs[2])) * volume(fcs[2]) ≈ 0 atol=eps(T)
@test dot(rs(nbd2)[4].value, normal(fcs[2])) * volume(fcs[2]) ≈ 0 atol=eps(T)
@test dot(rs(nbd3)[1].value, normal(fcs[3])) * volume(fcs[3]) ≈ 0 atol=eps(T)
@test dot(rs(nbd3)[2].value, normal(fcs[3])) * volume(fcs[3]) ≈ 0 atol=eps(T)
@test dot(rs(nbd3)[4].value, normal(fcs[3])) * volume(fcs[3]) ≈ 0 atol=eps(T)
@test dot(rs(nbd4)[1].value, normal(fcs[4])) * volume(fcs[4]) ≈ 0 atol=eps(T)
@test dot(rs(nbd4)[2].value, normal(fcs[4])) * volume(fcs[4]) ≈ 0 atol=eps(T)
@test dot(rs(nbd4)[3].value, normal(fcs[4])) * volume(fcs[4]) ≈ 0 atol=eps(T)
local ctr = cartesian(center(tet))
@test dot(cartesian(nbd1)-ctr, normal(fcs[1])) > 0
@test dot(cartesian(nbd2)-ctr, normal(fcs[2])) > 0
@test dot(cartesian(nbd3)-ctr, normal(fcs[3])) > 0
@test dot(cartesian(nbd4)-ctr, normal(fcs[4])) > 0
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1593 | using Test
using BEAST
using CompScienceMeshes
meshZ = meshrectangle(1.0,1.0,0.5)
@test numvertices(meshZ) == 9
translate!(meshZ,point(0.0,0.0,0.5))
mesh0 = meshrectangle(1.0,1.0,0.5)
@test numvertices(mesh0) == 9
idcsZ = meshZ.faces[1]
@test size(idcsZ) == (3,)
vertsZ = vertices(meshZ, idcsZ)
@test size(vertsZ) == (3,)
Γ = meshsegment(1.0,0.5,3)
@test numvertices(Γ) == 3
translate!(Γ,point(0.0,0.0,0.5))
γ = meshsegment(1.0,0.5,3)
@test numvertices(γ) == 3
idcsΓ = Γ.faces[1]
@test size(idcsΓ) == (2,)
vertsΓ = vertices(Γ, idcsΓ)
@test size(vertsΓ) == (2,)
sum_mesh = weld(meshZ,mesh0)
@test numvertices(sum_mesh) == 18
edges = skeleton(sum_mesh,1)
@test numcells(edges) == 32
cps = cellpairs(sum_mesh, edges)
@test size(cps) == (2,32)
# select only outer edges
overlaps = overlap_gpredicate(Γ)
on_junction = (m,c) -> overlaps(chart(m,c))
# pred = x -> on_junction(x)
edges = submesh(on_junction, skeleton(meshZ,1))
# edges = skeleton(pred, meshZ, 1)
@test length(edges) == 2
# @test size(edges.faces[1]) == (2,)
@test dimension(edges) == 1
cps = cellpairs(sum_mesh, edges)
@test size(cps) == (2,2)
# test portcells function
pc = portcells(sum_mesh, Γ)
@test size(pc) == (2,2)
# #test rt_vedge function
# ce1 = rt_vedge(pc,1.0)
# @test size(ce1) == (1,)
#
# #test rt_cedge function
# ce1 = rt_cedge(pc,1.0)
# @test size(ce1) == (2,)
# build the Raviart-Thomas elements
rt = rt_ports(sum_mesh, [Γ, γ])
@test numfunctions(rt) == 19
rt = rt_ports(sum_mesh, [Γ, γ], [Γ, γ]) #Don't do this normally.
@test numfunctions(rt) == 22 #Only used here to check numfunctions
#
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 492 | using CompScienceMeshes
using BEAST
using Test
for T in [Float32, Float64]
local m = meshrectangle(T(1.0), T(1.0), T(0.25))
local X = raviartthomas(m, BEAST.Continuity{:none})
@test numfunctions(X) == 16*2*3
@test all(length.(X.fns) .== 1)
local p = positions(X)
i = 12
c = X.fns[i][1].cellid
local ch = chart(m, c)
local ctr = cartesian(center(ch))
@test ctr ≈ p[i]
for (i,f) in enumerate(X.fns)
@test f[1].coeff == T(1.0)
end
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 4109 | using Test
using LinearAlgebra
using BEAST, CompScienceMeshes, SauterSchwabQuadrature, StaticArrays
#for T in [Float64]
T=Float64
t1 = simplex(
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.0, -0.980785, -0.19509]),
T.(@SVector [0.0, -0.92388, -0.382683]))
t2 = simplex(
T.(@SVector [0.373086, -0.881524, -0.289348]),
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.294908, -0.944921, -0.141962]))
# s1 = simplex(
# @SVector[0.180878, -0.941848, -0.283207],
# @SVector[0.0, -0.980785, -0.19509],
# @SVector[0.0, -0.92388, -0.382683])
# s2 = simplex(
# @SVector[0.180878, -0.941848, -0.283207],
# @SVector[0.373086, -0.881524, -0.289348],
# @SVector[0.294908, -0.944921, -0.141962])
# Common face case:
rt = BEAST.RTRefSpace{T}()
tqd = BEAST.quadpoints(rt, [t1,t2], (12,))
bqd = BEAST.quadpoints(rt, [t1,t2], (13,))
op1 = BEAST.MWSingleLayer3D(T(1.0), T(250.0), T(1.0))
op2 = BEAST.MWSingleLayer3D(T(1.0))
op3 = BEAST.MWDoubleLayer3D(T(0.0))
SE_strategy = BEAST.WiltonSERule(
tqd[1,1],
BEAST.DoubleQuadRule(
tqd[1,1],
bqd[1,1],
),
)
SS_strategy = SauterSchwabQuadrature.CommonFace(BEAST._legendre(8,T(0.0),T(1.0)))
z_se = zeros(3,3)
z_ss = zeros(3,3)
BEAST.momintegrals!(op1, rt, rt, t1, t1, z_se, SE_strategy)
BEAST.momintegrals!(op1, rt, rt, t1, t1, z_ss, SS_strategy)
@test z_se ≈ z_ss atol=1e-4
z_se2 = zeros(3,3)
z_ss2 = zeros(3,3)
BEAST.momintegrals!(op2, rt, rt, t1, t1, z_se2, SE_strategy)
BEAST.momintegrals!(op2, rt, rt, t1, t1, z_ss2, SS_strategy)
@test z_se2 ≈ z_ss2 atol=1e-4
## Common Vertex Case
SE_strategy = BEAST.WiltonSERule(
tqd[1,1],
BEAST.DoubleQuadRule(
tqd[1,1],
bqd[1,2]))
SS_strategy = SauterSchwabQuadrature.CommonVertex(BEAST._legendre(12,T(0.0),T(1.0)))
z_cv_se_1 = zeros(3,3)
z_cv_ss_1 = zeros(3,3)
z_cv_se_2 = zeros(3,3)
z_cv_ss_2 = zeros(3,3)
z_cv_se_3 = zeros(3,3)
z_cv_ss_3 = zeros(3,3)
BEAST.momintegrals!(op1, rt, rt, t1, t2, z_cv_se_1, SE_strategy)
BEAST.momintegrals!(op1, rt, rt, t1, t2, z_cv_ss_1, SS_strategy)
@test z_cv_se_1 ≈ z_cv_ss_1 atol=1e-7
BEAST.momintegrals!(op2, rt, rt, t1, t2, z_cv_se_2, SE_strategy)
BEAST.momintegrals!(op2, rt, rt, t1, t2, z_cv_ss_2, SS_strategy)
@test z_cv_se_2 ≈ z_cv_ss_2 atol=1e-7
BEAST.momintegrals!(op3, rt, rt, t1, t2, z_cv_se_3, SE_strategy)
BEAST.momintegrals!(op3, rt, rt, t1, t2, z_cv_ss_3, SS_strategy)
@show z_cv_se_3
@show z_cv_ss_3
@test z_cv_se_3 ≈ z_cv_ss_3 atol=1e-7
## Common Edge Case:
t1 = simplex(
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.0, -0.980785, -0.19509]),
T.(@SVector [0.0, -0.92388, -0.382683])
)
t2 = simplex(
T.(@SVector [0.180878, -0.941848, -0.283207]),
T.(@SVector [0.158174, -0.881178, -0.44554]),
T.(@SVector [0.0, -0.92388, -0.382683])
)
tqd = BEAST.quadpoints(rt, [t1,t2], (12,))
bqd = BEAST.quadpoints(rt, [t1,t2], (13,))
SE_strategy = BEAST.WiltonSERule(
tqd[1,1],
BEAST.DoubleQuadRule(
tqd[1,1],
bqd[1,2]))
SS_strategy = SauterSchwabQuadrature.CommonEdge(BEAST._legendre(12,T(0.0),T(1.0)))
z_ce_se_1 = zeros(3,3)
z_ce_ss_1 = zeros(3,3)
z_ce_se_2 = zeros(3,3)
z_ce_ss_2 = zeros(3,3)
z_ce_se_3 = zeros(3,3)
z_ce_ss_3 = zeros(3,3)
BEAST.momintegrals!(op1, rt, rt, t1, t2, z_ce_se_1, SE_strategy)
BEAST.momintegrals!(op1, rt, rt, t1, t2, z_ce_ss_1, SS_strategy)
@show norm(z_ce_se_1 - z_ce_ss_1)
@test z_ce_se_1 ≈ z_ce_ss_1 atol=1e-5
BEAST.momintegrals!(op2, rt, rt, t1, t2, z_ce_se_2, SE_strategy)
BEAST.momintegrals!(op2, rt, rt, t1, t2, z_ce_ss_2, SS_strategy)
@show norm(z_ce_se_2 - z_ce_ss_2)
@test z_ce_se_2 ≈ z_ce_ss_2 atol=1e-5
BEAST.momintegrals!(op3, rt, rt, t1, t2, z_ce_se_3, SE_strategy)
BEAST.momintegrals!(op3, rt, rt, t1, t2, z_ce_ss_3, SS_strategy)
@show norm(z_ce_se_3 - z_ce_ss_3)
@test z_ce_se_3 ≈ z_ce_ss_3 atol=1e-5
SS_strategy = SauterSchwabQuadrature.CommonEdge(BEAST._legendre(18,T(0.0),T(1.0)))
z_ce_ss_3_18 = zeros(3,3)
BEAST.momintegrals!(op3, rt, rt, t1, t2, z_ce_ss_3_18, SS_strategy)
@show norm(z_ce_ss_3 - z_ce_ss_3_18)
@test z_ce_ss_3 ≈ z_ce_ss_3_18 atol=1e-14
#end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 971 | using Test
using BEAST
const B3D = BEAST.SparseND.Banded3D
k0 = [2 2; 3 2]
k1 = [2 3; 3 3]
M = 2
N = 2
bandwidth = maximum(k1 - k0 .+ 1)
data = collect(begin
k = k0[i,j] + l - 1
v = (k > k1[i,j]) ? 0.0 : Float64((i-1) + (j-1)*M + (k-1)*M*N)
end for l in 1:bandwidth, i in axes(k0,1), j in axes(k0,2))
A = B3D(k0,data,maximum(k1))
@test size(A) == (2,2,3)
@test eltype(A) == Float64
@test A[1,1,1] == 0
@test A[1,1,2] == M*N
@test A[1,1,2] == M*N
@test A[1,1,3] == 0
slice = A[:,:,2]
@test slice == [4 6; 0 7]
F = Array(A)
for m in axes(F,1)
for n in axes(F,2)
for l in axes(F,3)
@test F[m,n,l] ≈ A[m,n,l]
end
end
end
st_data = rand(2,5)
cv1 = BEAST.convolve(F, st_data, 4, 2)
cv2 = BEAST.convolve(A, st_data, 4, 2)
@test cv1 ≈ cv2
cv1 = BEAST.convolve(F, st_data, 4, 1)
cv2 = BEAST.convolve(A, st_data, 4, 1)
@test cv1 ≈ cv2
cv1 = BEAST.convolve(F, st_data, 4, 3)
cv2 = BEAST.convolve(A, st_data, 4, 3)
@test cv1 ≈ cv2
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 383 | using BEAST
for T in [Float32, Float64]
width, delay = T(4.0), T(6.0)
f = BEAST.Gaussian(width=width, delay=delay)
g = BEAST.integrate(f)
step = width/150
x = range(delay-2*width, stop=delay+2*width, step=step)
# xc = 0.5*(x[1:end-1] + x[2:end])
y1 = g.(x)
y2 = cumsum(f.(x))*step
using LinearAlgebra
@assert norm(y1-y2, Inf) < T(1e-2)
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 6706 | using Test
# Write a test that compares the momintegrals_nested approach with applying the
# Wilton singularity extraction to a non-conforming mesh.
# Conclusion: WiltonSERule should not be applied to deal with overlapping
# charts in the case of geometrically non-conforming meshes; the result of the
# inner integral is not analytic, crippling the accuracy of the outer integration,
# which is done with triangular Gauss-Legendre points.
using CompScienceMeshes, BEAST
using LinearAlgebra
o = point(0,0,0)
c = point(1/3,1/3,0)
e = point(1/2,0,0)
d = point(1/3,-1/3,0)
# Relative weights chosen to make the two terms equally important
𝒜 = Maxwell3D.singlelayer(wavenumber=0.0, alpha=22.0, beta=1.0)
coarse = Mesh([o,x̂,ŷ], [CompScienceMeshes.index(1,2,3)])
fine = barycentric_refinement(coarse)
X = raviartthomas(coarse, skeleton(coarse,1))
Y = raviartthomas(fine, skeleton(fine,1))
𝒳 = refspace(X)
T = scalartype(𝒜, 𝒳, 𝒳)
@test 𝒳 == refspace(Y)
@test CompScienceMeshes.parent(geometry(Y)) == geometry(X)
p = 6
trial_chart = chart(coarse,1)
test_chart = chart(fine,p)
# @show test_chart.vertices
# test_chart_old = simplex(e,x̂,c)
# trial_chart_old = simplex(o,x̂,ŷ)
test_quadpoints = BEAST.quadpoints(𝒳, [test_chart], (12,))[1,1]
trial_quadpoints = BEAST.quadpoints(𝒳, [trial_chart], (13,))[1,1]
function BEAST.quaddata(op::BEAST.MaxwellOperator3D,
test_local_space::BEAST.RefSpace, trial_local_space::BEAST.RefSpace,
test_charts, trial_charts)
a, b = 0.0, 1.0
tqd = quadpoints(test_local_space, test_charts, (12,12))
bqd = quadpoints(trial_local_space, trial_charts, (13,13))
leg = (BEAST._legendre(10,a,b), BEAST._legendre(10,a,b), BEAST._legendre(10,a,b),)
return (tpoints=tqd, bpoints=bqd, gausslegendre=leg)
end
qs_strat = BEAST.DoubleNumWiltonSauterQStrat(1,1,6,7,10,10,10,10)
sauterschwab = BEAST.SauterSchwabQuadrature.CommonFace(BEAST._legendre(10,0.0,1.0))
out_ss = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals_test_refines_trial!(out_ss, 𝒜,
Y, p, test_chart,
X, 1, trial_chart,
sauterschwab, qs_strat)
wiltonsingext = BEAST.WiltonSERule(test_quadpoints, BEAST.DoubleQuadRule(test_quadpoints, trial_quadpoints))
out_dw = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals_test_refines_trial!(out_dw, 𝒜,
Y, p, test_chart,
X, 1, trial_chart,
wiltonsingext, qs_strat)
@show norm(out_ss-out_dw) / norm(out_dw)
test_chart = simplex(e,x̂,c)
trial_chart = simplex(e,x̂,c)
test_quadpoints = BEAST.quadpoints(𝒳, [test_chart], (12,))[1,1]
trial_quadpoints = BEAST.quadpoints(𝒳, [trial_chart], (13,))[1,1]
sauterschwab = BEAST.SauterSchwabQuadrature.CommonFace(BEAST._legendre(10,0.0,1.0))
out_ss1 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_ss1,sauterschwab)
wiltonsingext = BEAST.WiltonSERule(test_quadpoints, BEAST.DoubleQuadRule(test_quadpoints, trial_quadpoints))
out_dw1 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_dw1,wiltonsingext)
@test out_ss1 ≈ out_dw1 rtol=3e-6
# Test accuracy CommonEdge
test_chart = simplex(e,x̂,c)
trial_chart = simplex(c,x̂,(x̂+ŷ)/2)
test_quadpoints = BEAST.quadpoints(𝒳, [test_chart], (12,))[1,1]
trial_quadpoints = BEAST.quadpoints(𝒳, [trial_chart], (13,))[1,1]
sauterschwab = BEAST.SauterSchwabQuadrature.CommonEdge(BEAST._legendre(10,0.0,1.0))
out_ss2 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_ss2,sauterschwab)
wiltonsingext = BEAST.WiltonSERule(test_quadpoints, BEAST.DoubleQuadRule(test_quadpoints, trial_quadpoints))
out_dw2 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_dw2,wiltonsingext)
@test out_ss2 ≈ out_dw2 rtol=4e-6
test_chart = simplex(e,x̂,c)
trial_chart = simplex(o,e,c)
test_quadpoints = BEAST.quadpoints(𝒳, [test_chart], (12,))[1,1]
trial_quadpoints = BEAST.quadpoints(𝒳, [trial_chart], (13,))[1,1]
sauterschwab = BEAST.SauterSchwabQuadrature.CommonEdge(BEAST._legendre(10,0.0,1.0))
out_ss3 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_ss3,sauterschwab)
wiltonsingext = BEAST.WiltonSERule(test_quadpoints, BEAST.DoubleQuadRule(test_quadpoints, trial_quadpoints))
out_dw3 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_dw3,wiltonsingext)
@test out_ss3 ≈ out_dw3 rtol=3e-6
# Test the CommonVertex cases
test_chart = simplex(e,x̂,c)
trial_chart = simplex(c,(x̂+ŷ)/2,ŷ)
test_quadpoints = BEAST.quadpoints(𝒳, [test_chart], (12,))[1,1]
trial_quadpoints = BEAST.quadpoints(𝒳, [trial_chart], (13,))[1,1]
sauterschwab = BEAST.SauterSchwabQuadrature.CommonVertex(BEAST._legendre(10,0.0,1.0))
out_ss4 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_ss4,sauterschwab)
wiltonsingext = BEAST.WiltonSERule(test_quadpoints, BEAST.DoubleQuadRule(test_quadpoints, trial_quadpoints))
out_dw4 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_dw4,wiltonsingext)
@test out_ss4 ≈ out_dw4 rtol=2e-9
test_chart = simplex(e,x̂,c)
trial_chart = simplex(c,ŷ,ŷ/2)
test_quadpoints = BEAST.quadpoints(𝒳, [test_chart], (12,))[1,1]
trial_quadpoints = BEAST.quadpoints(𝒳, [trial_chart], (13,))[1,1]
sauterschwab = BEAST.SauterSchwabQuadrature.CommonVertex(BEAST._legendre(10,0.0,1.0))
out_ss5 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_ss5,sauterschwab)
wiltonsingext = BEAST.WiltonSERule(test_quadpoints, BEAST.DoubleQuadRule(test_quadpoints, trial_quadpoints))
out_dw5 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_dw5,wiltonsingext)
@test out_ss4 ≈ out_dw4 rtol=3e-8
test_chart = simplex(e,x̂,c)
trial_chart = simplex(c,ŷ/2,o)
test_quadpoints = BEAST.quadpoints(𝒳, [test_chart], (12,))[1,1]
trial_quadpoints = BEAST.quadpoints(𝒳, [trial_chart], (13,))[1,1]
sauterschwab = BEAST.SauterSchwabQuadrature.CommonVertex(BEAST._legendre(10,0.0,1.0))
out_ss6 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_ss6,sauterschwab)
wiltonsingext = BEAST.WiltonSERule(test_quadpoints, BEAST.DoubleQuadRule(test_quadpoints, trial_quadpoints))
out_dw6 = zeros(T, numfunctions(𝒳), numfunctions(𝒳))
BEAST.momintegrals!(𝒜,𝒳,𝒳,test_chart,trial_chart,out_dw6,wiltonsingext)
@test out_ss4 ≈ out_dw4 rtol=6e-8
out_ss = out_ss1 + out_ss2 + out_ss3 + out_ss4 + out_ss5 + out_ss6
out_dw = out_dw1 + out_dw2 + out_dw3 + out_dw4 + out_dw5 + out_dw6
@test out_ss ≈ out_dw rtol=4e-7
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1048 | using CompScienceMeshes
using BEAST
using Test
using LinearAlgebra
@warn "CompScienceMeshes being patched..."
import StaticArrays
function CompScienceMeshes.chart(Smesh::CompScienceMeshes.subdMesh,E)
element = Smesh.elements[E]
Svertices = Smesh.vertices
nodes = element.RingNodes
N = length(nodes)
verticecoords = Vector{StaticArrays.SVector{3,Float64}}(undef,N)
for i = 1:N
verticecoords[i] = Svertices[nodes[i]].Coords
end
return chart = CompScienceMeshes.subd_chart(E,N,nodes,verticecoords)
end
for T in [Float32, Float64]
G = readmesh(joinpath(dirname(@__FILE__),"assets","sphere872.in"),T=T)
# G0 = readmesh(fn)
# G0 = meshsphere(1.0, 0.5)
#G = readmesh("/Users/Benjamin/Documents/sphere.in")
# G = Loop_subdivision(G0)
local X = subdsurface(G)
#els, ad = BEAST.assemblydata(X)
identityop = Identity()
singlelayer = Helmholtz3D.singlelayer(gamma=T(1.0))
I = assemble(identityop, X, X)
#S = assemble(singlelayer, X, X)
ncd = cond(Matrix(I))
@test ncd ≈ T(64.50401358713235) rtol=sqrt(eps(T))
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 727 | using CompScienceMeshes
using BEAST
using Test
@testset "Assembly of TensorOperator wrt SpaceTimeBasis" begin
m = Mesh(
[
point(0,0,0),
point(1,0,0),
point(1,1,0),
point(0,1,0)
],
[
index(1,2,3),
index(1,3,4)
],
)
X = raviartthomas(m)
δ = timebasisdelta(0.01234, 10)
T = timebasisshiftedlagrange(0.1234, 10, 1)
U = X ⊗ T
V = X ⊗ δ
Id = BEAST.Identity()
# Nx = BEAST.NCross()
op = Id ⊗ Id
Z = assemble(op, V, U)
A = BEAST.ConvolutionOperators.ConvOpAsArray(Z)
@test size(A) == (1,1,10)
for i in 2:10
@test A[1,1,i] ≈ 0 atol=sqrt(eps(eltype(A)))
end
end | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2496 | using Test
using CompScienceMeshes
using BEAST
using LinearAlgebra
sol = 1.0
G = BEAST.HH3DSingleLayerTDBIO(sol)
S = readmesh(joinpath(@__DIR__, "assets", "sphere2.in"))
S1 = meshrectangle(1.0, 1.0, 0.25, 3)
S2 = CompScienceMeshes.translate(S1, point(1.0,1.0,1.0))
@show numcells(S1)
@show numcells(S2)
X1 = lagrangecxd0(S1)
x1 = refspace(X1)
X2 = lagrangecxd0(S2)
x2 = refspace(X2)
Δt = 0.2
Nt = 300
ΔR = sol*Δt
P = timebasiscxd0(Δt, Nt)
H = timebasisc0d1(Δt, Nt)
Q = convolve(P, H)
q = refspace(Q)
# Overwrite the default quadrature strategy for
# this operator/space combination
τ1 = chart(S1, first(Iterators.drop(S1,0)))
τ2 = chart(S2, first(Iterators.drop(S2,0)))
ι = BEAST.ring(first(BEAST.rings(τ1, τ2, ΔR)), ΔR)
struct DoubleQuadTimeDomainRule end
function momintegrals!(z, op::typeof(G),
g::typeof(x1), f::typeof(x2), T::typeof(q),
τ::typeof(τ1), σ::typeof(τ2), ι::typeof(ι),
qr::DoubleQuadTimeDomainRule)
qp_τ = quadpoints(g, [τ], (3,))[1]
qp_σ = quadpoints(f, [σ], (4,))[1]
for wpv_τ in qp_τ
x = wpv_τ.point
gx = wpv_τ.value[1]
for wpv_σ in qp_σ
y = wpv_σ.point
fy = wpv_σ.value[1]
R = norm(cartesian(x)-cartesian(y))
first(ι) <= R <= last(ι) || continue
maxdegree = numfunctions(T)-1
TR = [(-R)^d for d in 0:maxdegree]
dxdy = wpv_τ.weight * wpv_σ.weight
for i in 1 : numfunctions(g)
for j in 1 : numfunctions(f)
for k in 1 : numfunctions(T)
z[i,j,k] += dxdy * gx[i] * fy[j] * TR[k] / (4π*R)
end end end end end end
# Compare results for a single monomial
z1 = zeros(numfunctions(x1), numfunctions(x2), numfunctions(q))
for r in BEAST.rings(τ1, τ2, ΔR)
local ι = BEAST.ring(r, ΔR)
momintegrals!(z1, G, x1, x2, q, τ1, τ2, ι, DoubleQuadTimeDomainRule())
end
qs = BEAST.defaultquadstrat(G,X1,X2)
qd = quaddata(G, x1, x2, q, [τ1], [τ2], nothing, qs)
z2 = zeros(numfunctions(x1), numfunctions(x2), numfunctions(q))
for r in BEAST.rings(τ1, τ2, ΔR)
local ι = BEAST.ring(r, ΔR)
quad_rule = quadrule(G, x1, x2, q, 1, τ1, 1, τ2, r, ι, qd, qs)
BEAST.momintegrals!(z2, G, x1, x2, q, τ1, τ2, ι, quad_rule)
end
@test z1≈z2 rtol=1e-6
# Compare results for a single basis function
CSM = CompScienceMeshes
distance = norm(cartesian(CSM.center(τ1)) - cartesian(CSM.center(τ2)))
k = floor(Int, distance/Δt/sol)
timead = BEAST.temporalassemblydata(Q, kmax=k)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1405 | using CompScienceMeshes
using BEAST
using StaticArrays
using LinearAlgebra
using Test
# Γ = meshsphere(radius=1.0, h=0.45)
Γ = readmesh(joinpath(dirname(pathof(BEAST)),"../test/assets/sphere45.in"))
X = raviartthomas(Γ)
sol = 1.0 # Speed of light (for sake of simplicity, set to one)
# Note that certain choices of Δt, Nt, as well as the excitation
# can lead to late-time instabilities
Δt, Nt = 10.0, 200
(A, b, c) = butcher_tableau_radau_2stages()
T = StagedTimeStep(Δt, Nt, c, A, b, 5, 1.0001)
V = X ⊗ T
duration = 2 * 20 * Δt
delay = 1.5 * duration
amplitude = 1.0
gaussian = creategaussian(duration, delay, amplitude)
direction, polarisation = ẑ , x̂
E = planewave(polarisation, direction, derive(gaussian), sol)
T = TDMaxwell3D.singlelayer(speedoflight=sol, numdiffs=1)
@hilbertspace j
@hilbertspace j′
tdefie_irk = @discretise T[j′,j] == -1E[j′] j∈V j′∈V
xefie_irk = solve(tdefie_irk)
# Set up Space-Time-Galerkin MOT for comparison
T = timebasisshiftedlagrange(Δt, Nt, 3)
U = timebasisdelta(Δt, Nt)
V = X ⊗ T
W = X ⊗ U
SL = TDMaxwell3D.singlelayer(speedoflight=1.0, numdiffs=1)
tdefie = @discretise SL[j′,j] == -1.0E[j′] j∈V j′∈W
xefie = BEAST.motsolve(tdefie)
xefie_irk = xefie_irk[1:size(c,1):end,:]
diff_MOT_max = maximum((norm.(xefie_irk[:,1:end] - xefie[:,1:end])) ./ maximum(xefie[:,1:end]))
# @test diff_MOT_max ≈ 0.137252874891817 atol=1e-8
@test diff_MOT_max < 0.16 | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1235 | using Test
using BEAST
using CompScienceMeshes
o, x, y = point(0,0,0), point(1,0,0), point(0,1,0)
G = Mesh([o,x,y,x+y],[index(1,2,3)])
@test numvertices(G) == 4
@test numcells(G) == 1
c = 1.0
K = BEAST.HH3DDoubleLayerTDBIO(speed_of_light=c)
X = lagrangecxd0(G)
@test numfunctions(refspace(X)) == 1
Y = duallagrangec0d1(G)
@test numfunctions(Y) == 1
@test numfunctions(refspace(Y)) == 3
# X = duallagrangecxd0(G, boundary(G))
# Y = lagrangec0d1(G, dirichlet=false)
# @test numfunctions(X) == 3
# @test numfunctions(Y) == 3
Δt = 20.0
Nt = 5
T = timebasiscxd0(Δt, Nt)
V = X ⊗ T
W = Y ⊗ T
fr2, store2 = BEAST.allocatestorage(K, V, V, Val{:densestorage}, BEAST.LongDelays{:ignore})
BEAST.assemble!(K, W, V, store2)
Z = fr2()
T = scalartype(K,V,V)
Z1 = zeros(T, size(Z)[1:2])
BEAST.ConvolutionOperators.timeslice!(Z1, Z, 1)
@test all(==(0), Z1)
# import WiltonInts84
# trial_element = chart(G, first(cells(G)))
# x = neighborhood(trial_element,(1/3,1/3))
# x = neighborhood(trial_element,(0.0,0.0))
# r, R = 0.0, 20.0
# workspace = WiltonInts84.workspace(eltype(τ.vertices))
# G, vG, GG = WiltonInts84.wiltonints(
# trial_element[1],
# trial_element[2],
# trial_element[3],
# cartesian(x), r, R, Val{0},workspace)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 2379 | using Test
using BEAST
using CompScienceMeshes
o, x, y = point(0,0,0), point(1,0,0), point(0,1,0)
G = Mesh([o,x,y],[index(1,2,3)])
@test numvertices(G) == 3
@test numcells(G) == 1
K = MWDoubleLayerTDIO(1.0, 1.0, 0)
X = raviartthomas(G, skeleton(G,1))
Y = buffachristiansen(G, boundary(G))
@test numfunctions(X) == 3
@test numfunctions(Y) == 3
Δt = 20.0
Nt = 5
δ = timebasisdelta(Δt, Nt)
T = timebasiscxd0(Δt, Nt)
T2 = timebasisshiftedlagrange(Δt, Nt, 2)
V = X ⊗ T
W = Y ⊗ T
fr1, store1 = BEAST.allocatestorage(K, W, V,
Val{:densestorage}, BEAST.LongDelays{:ignore})
BEAST.assemble!(K, W, V, store1)
Z = fr1()
T = scalartype(K,W,V)
Z1 = zeros(T, size(Z)[1:2])
BEAST.ConvolutionOperators.timeslice!(Z1, Z, 1)
@test all(==(0), Z1)
W = X⊗δ
V = Y⊗T2
K = TDMaxwell3D.doublelayer(speedoflight=1.0, numdiffs=1)
fr2, store2 = BEAST.allocatestorage(K, W, V, Val{:densestorage}, BEAST.LongDelays{:ignore})
BEAST.assemble!(K, W, V, store2)
Z2 = fr2()
T = scalartype(K,W,V)
Z21 = zeros(T, size(Z)[1:2])
BEAST.ConvolutionOperators.timeslice!(Z21, Z2, 1)
@test all(==(0), Z21)
# @test all(==(0), Z2[:,:,1])
γ = geometry(Y)
ch1 = chart(G, first(G))
qps = quadpoints(ch1, 3)
x = qps[1][1]
w = qps[1][2]
test_els = BEAST.elements(G)
trial_els = BEAST.elements(γ)
time_els = [(0.0, 20.0)]
qs = BEAST.defaultquadstrat(K,X,Y)
qdt = BEAST.quaddata(K, refspace(X), refspace(Y), refspace(T2), test_els, trial_els, nothing, qs)
qrl = BEAST.quadrule(K, refspace(X), refspace(Y), refspace(T2),
1, test_els[1], 1, trial_els[1], 1, time_els[1], qdt, qs)
z = zeros(Float64, 3, 3, 10)
BEAST.innerintegrals!(z, K, x, refspace(X), refspace(Y), refspace(T2), test_els[1], trial_els[1], (0.0, 20.0), qrl, w)
@test_broken !any(isnan.(z))
verts = trial_els[1].vertices
import WiltonInts84
iG, ivG, igG = WiltonInts84.wiltonints(verts[1], verts[2], verts[3], cartesian(x), 0.0, 20.0, Val{2}, qrl.workspace)
@test_broken !any(isnan(iG))
ctr = WiltonInts84.contour!(verts[1],verts[2],verts[3],cartesian(x),0.0,20.0,qrl.workspace)
iG, ivG, igG = WiltonInts84.wiltonints(ctr,cartesian(x),Val{2})
@test_broken !any(isnan(iG))
import WiltonInts84
a = -0.23570226039551564
b = 1.5700924586837734e-16
p = -6.371760312437358e-16
h = 0.0
using StaticArrays
m = SVector(-0.7071067811865474, 0.7071067811865478, -0.0)
iG, vG = WiltonInts84.segintsg(a, b, p, h, m, Val{2})
@test_broken !any(isnan.(iG))
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 956 | using CompScienceMeshes, BEAST, Test
fn = joinpath(dirname(@__FILE__),"assets","sphere35.in")
sol = 1.0
D, Δx = 1.0, 0.35
#Γ = meshsphere(D, Δx)
Γ = readmesh(fn)
X = raviartthomas(Γ)
Xm = subset(X,[1])
Xn = subset(X,[100])
Δt, Nt = 0.13/sol, 40
T = timebasisshiftedlagrange(Δt, Nt, 3)
U = timebasisdelta(Δt, Nt)
W = Xm ⊗ U
V = Xn ⊗ T
t = MWSingleLayerTDIO(sol,-1/sol,-sol,2,0)
Z1 = assemble(t, W, V)
## Run again, this time scales with another speedOfLight
sol = 3.0
D, Δx = 1.0, 0.35
#Γ = meshsphere(D, Δx)
Γ = readmesh(fn)
X = raviartthomas(Γ)
Xm = subset(X,[1])
Xn = subset(X,[100])
Δt, Nt = 0.13/sol, 40
T = timebasisshiftedlagrange(Δt, Nt, 3)
U = timebasisdelta(Δt, Nt)
W = Xm ⊗ U
V = Xn ⊗ T
t = MWSingleLayerTDIO(sol,-1/sol,-sol,2,0)
Z3 = assemble(t, W, V)
m = n = 1
M1 = AbstractArray(Z1)
M3 = AbstractArray(Z3)
@test findall(M1[m,n,:] .!= 0) == findall(M3[m,n,:] .!= 0)
I = findall(M1[m,n,:] .!= 0)
@test all(sol*M1[m,n,I] .≈ M3[m,n,I])
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 1426 | using CompScienceMeshes
using BEAST
using Test
D, Δx = 1.0, 0.35
fn = joinpath(dirname(@__FILE__),"assets","sphere35.in")
#Γ = meshsphere(D, Δx)
Γ = readmesh(fn)
X = raviartthomas(Γ)
Y = subset(X,[1])
o, x, y, z = euclidianbasis(3)
direction, polarisation = z, x
Nt = 200
sol1 = 1.0
Δt1= 0.08/sol1
U1 = timebasisdelta(Δt1, Nt)
W1 = Y ⊗ U1
duration1, delay1, amplitude1 = 8.0/sol1, 12.0/sol1, 1.0
gaussian1 = creategaussian(duration1, delay1, duration1)
E1 = BEAST.planewave(polarisation, direction, derive(gaussian1), sol1)
b1 = assemble(E1,W1)
taxis1 = collect((0:Nt-1)*Δt1)
sol2 = 36.0
Δt2 = 0.08/sol2
U2 = timebasisdelta(Δt2, Nt)
W2 = Y ⊗ U2
duration2, delay2, amplitude2 = 8.0/sol2, 12.0/sol2, 1.0
gaussian2 = creategaussian(duration2, delay2, duration2)
E2 = BEAST.planewave(polarisation, direction, derive(gaussian2), sol2)
b2 = assemble(E2,W2)
taxis2 = collect((0:Nt-1)*Δt2)
gaussian1.(taxis1)[120]
gaussian2.(taxis2)[120]
@test all(gaussian1.(taxis1) .≈ gaussian2.(taxis2))
derive(gaussian1).(taxis1)[120]
derive(gaussian2).(taxis2)[120]/sol2
@test all(derive(gaussian1).(taxis1)/sol1 .≈ derive(gaussian2).(taxis2)/sol2)
timeels1, timead1 = BEAST.assemblydata(U1)
@test timeels1[100][1][1] ≈ Δt1*100
@test timeels1[100][2][1] ≈ Δt1*101
timeels2, timead2 = BEAST.assemblydata(U2)
@test timeels2[100][1][1] ≈ Δt2*100
@test timeels2[100][2][1] ≈ Δt2*101
b1[120]/sol1
b2[120]/sol2
@test all(b1/sol1 .≈ b2/sol2)
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 300 | using Test
using BEAST
using CompScienceMeshes
Γ = meshrectangle(1.0, 1.0, 0.5, 3)
X = raviartthomas(Γ)
fns = numfunctions(X)
id = Identity()⊗Identity()
Δt, Nt = 1.01, 10
δ = timebasisdelta(Δt,Nt)
h = timebasisc0d1(Δt,Nt)
idop = (id, X⊗δ, X⊗h)
G = assemble(idop...)
@test size(G) == (fns, fns, Nt) | BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 683 | using BEAST
using CompScienceMeshes
using Test
# function Base.length(it::BEAST.ADIterator)
# l = 0
# for (m,w) in it
# l += 1
# end
# l
# end
#
# tbf = BEAST.timeaxisc0d1(0,10.0,50)
#
# @test numfunctions(tbf) == 49
# @test refspace(tbf) == LagrangeRefSpace{Float64,1}()
#
# ad = assemblydata(tbf)
# @test size(ad.data) == (1,2,50)
# @test length(ad[1,1]) == 0
# @test length(ad[1,2]) == 1
# @test length(ad[50,1]) == 1
# @test length(ad[50,2]) == 0
# for c in 2:49
# for r in 1:2
# @test length(ad[c,r]) == 1
# end
# end
tbf = BEAST.timebasisc0d1(1.0, 10)
timeels, timead = BEAST.assemblydata(tbf)
#ad = BEAST.temporalassemblydata(tbf)
;
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 998 | using CompScienceMeshes
using BEAST
using Test
m = meshrectangle(1.0, 1.0, 0.5)
b = meshsegment(1.0, 0.3, 3)
edges = skeleton(m, 1)
vps = cellpairs(m, edges)
rwg = raviartthomas(m, vps)
nt = ntrace(rwg, b)
#nt = BEAST.ntrace2(rwg, b)
n = 0
Σ = geometry(nt)
on_bnd = overlap_gpredicate(b)
for i in eachindex(rwg.fns)
length(nt.fns[i]) == 1 || continue
global n += 1
c = nt.fns[i][1].cellid
edge = chart(Σ, c)
@test on_bnd(edge)
@test nt.fns[i][1].refid == 1
@test nt.fns[i][1].coeff == 2.0
end
@test n == 2
## test the scalar trace of a lgrange basis
using CompScienceMeshes
using BEAST
using Test
m = meshrectangle(1.0, 1.0, 0.5)
b = meshsegment(1.0, 0.3, 3)
X = lagrangec0d1(m,b)
@test numfunctions(X) == 2
@test length(X.fns[1]) == 3
@test length(X.fns[2]) == 6
Y = strace(X,b)
#A = findall(length(f) for f in Y.fns)
A = findall(length.(Y.fns) .!= 0)
@test length(A) == 1
@test length(Y.fns[1]) == 2
@test Y.fns[1][1].coeff ≈ 1
@test Y.fns[1][2].coeff ≈ 1
| BEAST | https://github.com/krcools/BEAST.jl.git |
|
[
"MIT"
] | 2.5.0 | 757efc563022d39e95f751b7e5a29d020a57e049 | code | 3045 | using CompScienceMeshes
using BEAST
using LinearAlgebra
using Test
using StaticArrays
for T in [Float32, Float64]
local o, x, y, z = euclidianbasis(3, T)
p1 = 2x
p2 = y
p3 = 3z
p4 = o
tet = simplex(p1, p2, p3, p4)
q = abs(CompScienceMeshes.relorientation([1,2,3],[1,2,3,4]))
tri = simplex(p1, p2, p3)
local n = normal(tri)
i = 3
local j = 3
local edg = simplex(p1, p2)
x = BEAST.NDLCDRefSpace{T}()
y = BEAST.NDRefSpace{T}()
local p = neighborhood(tet, T.([0.5, 0.5, 0.0]))
r = neighborhood(tri, T.([0.5, 0.5]))
@test carttobary(edg, cartesian(p)) ≈ T.([0.5])
@test carttobary(edg, cartesian(r)) ≈ T.([0.5])
xp = x(p)[j].value
yr = y(r)[i].value
local a, b = extrema((n × xp) ./ yr)
@test a ≈ b
tgt = p2 - p1
a2 = dot(n × xp, tgt) / dot(yr, tgt)
@test a ≈ a2
z = a * yr
@test z ≈ n × xp
volume(simplex(p1,p2,p4))
volume(simplex(p1,p2))
Q = BEAST.ttrace(x, tet, q, tri)
p = neighborhood(tet, T.([1/3, 1/3, 1/3]))
r = neighborhood(tri, T.([1/3, 1/3]))
@test cartesian(p) ≈ cartesian(r)
xp = n × x(p)[j].value
yr = y(r)[i].value
@test xp ≈ yr * Q[i,j]
x = BEAST.NDLCCRefSpace{T}()
y = BEAST.RTRefSpace{T}()
for q in 1:4
q = 3
fc = BEAST.faces(tet)[q]
Q = BEAST.ttrace(x, tet, q, fc)
nbdi = CompScienceMeshes.center(fc)
nbdj = neighborhood(tet, carttobary(tet, cartesian(nbdi)))
xvals = x(nbdj)
yvals = y(nbdi)
for j in 1:6
trc = sum(Q[i,j]*yvals[i].value for i in 1:3)
@test isapprox(trc, normal(fc) × xvals[j].value, atol=1e-4)
end
end
# test the case where intrinsic and extrinsic orientations differ
o, x, y, z = euclidianbasis(3, T)
fc = simplex(z,o,y)
x = BEAST.NDLCCRefSpace{T}()
y = BEAST.RTRefSpace{T}()
Q = BEAST.ttrace(x, tet, 3000, fc)
nbdi = CompScienceMeshes.center(fc)
nbdj = neighborhood(tet, carttobary(tet, cartesian(nbdi)))
@test cartesian(nbdi) ≈ cartesian(nbdj)
xvals = x(nbdj)
yvals = y(nbdi)
for j in 1:6
trc = sum(Q[i,j]*yvals[i].value for i in 1:3)
@test isapprox(trc, -normal(fc) × xvals[j].value, atol=1e-4)
end
o, x, y, z = euclidianbasis(3)
local m = Mesh([x,y,z,o], [@SVector[1,2,3,4]])
m1 = skeleton(m,1)
local X = BEAST.nedelecc3d(m, m1)
@test numfunctions(X) == 6
# m2 = skeleton(m,2)
m2 = boundary(m)
local Y = BEAST.ttrace(X,m2)
@test numfunctions(Y) == 6
pa = Y.fns[1][1].cellid
pb = Y.fns[1][2].cellid
tria = chart(m2, pa)
trib = chart(m2, pb)
ra = Y.fns[1][1].refid
rb = Y.fns[1][2].refid
ctra = cartesian(CompScienceMeshes.center(CompScienceMeshes.edges(tria)[ra]))
ctrb = cartesian(CompScienceMeshes.center(CompScienceMeshes.edges(trib)[rb]))
@test ctra ≈ ctrb
# tri1 = chart(m, cells(m)[Y.fns[1][1].cellid])
# ctr1 = cartesian(center(CompScienceMeshes.edges(tri)[]))
end | BEAST | https://github.com/krcools/BEAST.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.