licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
docs
2206
```@meta CurrentModule = EarthSciData ``` # EarthSciData: Earth Science Data Loaders and Interpolators Documentation for [EarthSciData](https://github.com/EarthSciML/EarthSciData.jl). ## Installation ```julia using Pkg Pkg.add("EarthSciMLData") ``` ## Feature Summary This package contains data loaders for use with the [EarthSciML](https://earthsci.dev/) ecosystem. ## Feature List * Loader for [GEOS-FP](https://gmao.gsfc.nasa.gov/GMAO_products/NRT_products.php) data. * Loader for [2016 NEI](https://gaftp.epa.gov/Air/) emissions data. * Data outputters: * [`NetCDFOutputter`](@ref) ## Contributing * Please refer to the [SciML ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://github.com/SciML/ColPrac/blob/master/README.md) for guidance on PRs, issues, and other matters relating to contributing. ## Reproducibility ```@raw html <details><summary>The documentation of this EarthSciML package was built using these direct dependencies,</summary> ``` ```@example using Pkg # hide Pkg.status() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>and using this machine and Julia version.</summary> ``` ```@example using InteractiveUtils # hide versioninfo() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>A more complete overview of all dependencies and their versions is also provided.</summary> ``` ```@example using Pkg # hide Pkg.status(;mode = PKGMODE_MANIFEST) # hide ``` ```@raw html </details> ``` ```@raw html You can also download the <a href=" ``` ```@eval using TOML using Markdown version = TOML.parse(read("../../Project.toml",String))["version"] name = TOML.parse(read("../../Project.toml",String))["name"] link = Markdown.MD("https://github.com/EarthSciML/"*name*".jl/tree/gh-pages/v"*version*"/assets/Manifest.toml") ``` ```@raw html ">manifest</a> file and the <a href=" ``` ```@eval using TOML using Markdown version = TOML.parse(read("../../Project.toml",String))["version"] name = TOML.parse(read("../../Project.toml",String))["name"] link = Markdown.MD("https://github.com/EarthSciML/"*name*".jl/tree/gh-pages/v"*version*"/assets/Project.toml") ``` ```@raw html ">project</a> file. ```
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
docs
1351
# 2016 US EPA National Emissions Inventory (NEI) data We have a data loader for CMAQ-formatted monthly US National Emissions Inventory data for year 2016,[`NEI2016MonthlyEmis`](@ref). ## Download Configuration Because there is an issue with the EPA's FTP server that we download the data from you may need to set the following environment variable before using it: In Julia: ```julia ENV["JULIA_NO_VERIFY_HOSTS"] = "gaftp.epa.gov" ``` or in a bash shell: ```bash export JULIA_NO_VERIFY_HOSTS=gaftp.epa.gov ``` ## Equations This is what its equation system looks like: ```@example nei2016 using EarthSciData, ModelingToolkit, DynamicQuantities, DataFrames using ModelingToolkit: t using DynamicQuantities: dimension @parameters lat, [unit=u"rad"], lon, [unit=u"rad"], lev [unit=u"rad"] emis, emis_updater = NEI2016MonthlyEmis("mrggrid_withbeis_withrwc", lon, lat, lev) ``` ## Variables Here are the variables in tabular format: ```@example nei2016 table(vars) = DataFrame( :Name => [string(Symbolics.tosymbol(v, escape=false)) for v ∈ vars], :Units => [dimension(ModelingToolkit.get_unit(v)) for v ∈ vars], :Description => [ModelingToolkit.getdescription(v) for v in vars], ) table(unknowns(emis)) ``` ## Parameters Finally, here are the parameters in tabular format: ```@example nei2016 table(parameters(emis)) ```
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.1.0
a320d7857f292ebcb970b71c628dadf5a6e6e6e6
code
68
module CStructures include("layout.jl") include("cstruct.jl") end
CStructures
https://github.com/KlausC/CStructures.jl.git
[ "MIT" ]
0.1.0
a320d7857f292ebcb970b71c628dadf5a6e6e6e6
code
9753
export Caccessor, CStruct, CVector, CStructAccess, CStructGuarded import Base: length, size, pointer, show, unsafe_convert, Fix1 import Base: propertynames, getproperty, setproperty!, getindex, setindex! abstract type CStructAccess{T} end """ CStruct{T}(p::Ptr) Given a C-type pointer `p` to a C-struct and the equivalent Julia struct with the same memory layout `T`, provide read and write access to the fields. `T` must be a bits type. Example: struct T <: Layout a::Cint b::Cdouble end a = Vector{UInt8}(undef, 100) p = pointer(a) # usually the data are coming from C cs = CStruct{T}(p) cs.a = 1234 cs.b = 3.5 """ struct CStruct{T} <: CStructAccess{T} pointer::Ptr{Nothing} function CStruct{T}(p::Ptr) where T isbitstype(T) || throw(ArgumentError("$T is not a bitstype")) new{T}(p) end CStruct{T}(data) where T = CStruct{T}(pointer(data)) CStruct(data) = CStruct(pointer(data)) CStruct(p::Ptr{T}) where T = CStruct{T}(p) end struct CStructGuarded{T,D} <: CStructAccess{T} cs::CStruct{T} guard::Vector{D} function CStructGuarded{T}(data::Vector{D}) where {T,D<:Union{Integer,Ptr}} new{T,D}(CStruct{T}(data), data) end end CStructGuarded(::Type{T}, src=()) where T = CStructGuarded{T}(Cserialize(T, src)) """ CVector Abstract vector type for julia objects used to access elements of C-vectors, which are based by plain C memory. Memory layout is described by `Layout` structs. """ struct CVector{T} <: AbstractVector{T} pointer::Ptr{Nothing} length::Int function CVector{T}(p::Ptr, length::Integer=-1) where T isbitstype(T) || throw(ArgumentError("$T is not a bitstype")) new{T}(p, length) end end # accessing the fields represented by CStruct # to access the pointer use function `pointer` propertynames(::CStruct{T}) where T = fieldnames(T) propertynames(::CStructGuarded{T}) where T = fieldnames(T) function getproperty(cs::CStruct{T}, field::Symbol) where T fp = pointer_for_field(cs, field) get_from_pointer(fp, cs) end getproperty(sg::CStructGuarded, field::Symbol) = getproperty(getfield(sg, :cs), field) function setproperty!(cs::CStruct{T}, field::Symbol, v) where T fp = pointer_for_field(cs, field) set_at_pointer!(fp, v) end setproperty!(sg::CStructGuarded, field::Symbol, v) = setproperty!(getfield(sg, :cs), field, v) function getindex(cv::CVector{T}, i::Integer) where T p = pointer_for_index(cv, i) get_from_pointer(p, cv) end function getindex(cv::CVector{T}, r::OrdinalRange) where T [getindex(cv, i) for i in r] end function setindex!(cv::CVector{T}, v, i::Integer) where T p = pointer_for_index(cv, i) set_at_pointer!(p, v) end size(cv::CVector) = (length(cv),) """ pointer(::Union{CStruct,CVector}) length(::CVector) get the internal fields of accessors """ pointer(cs::CStruct) = getfield(cs, :pointer) pointer(cs::CVector) = getfield(cs, :pointer) length(cv::CVector) = getfield(cv, :length) pointer(sg::CStructGuarded) = pointer(getfield(sg, :cs)) function show(io::IO, x::CStructAccess{T}) where T show(io, typeof(x)) print(io, '(') nf = length(T.types) if !Base.show_circular(io, x) recur_io = IOContext(io, Pair{Symbol,Any}(:SHOWN_SET, x), Pair{Symbol,Any}(:typeinfo, Any)) for i in 1:nf f = fieldname(T, i) show(recur_io, getproperty(x, f)) if i < nf print(io, ", ") end end end print(io, ')') end function show(io::IO, x::CVector{T}) where T show(io, typeof(x)) print(io, '[') nf = length(x) if nf < 0 print(io, "#= unknown length =#") elseif !Base.show_circular(io, x) recur_io = IOContext(io, Pair{Symbol,Any}(:SHOWN_SET, x), Pair{Symbol,Any}(:typeinfo, Any)) for i in 1:nf show(recur_io, getindex(x, i)) if i < nf print(io, ", ") end end end print(io, ']') end """ get_from_pointer(::Ptr{T}) For bits types simply load value, convert to Julia accessor if required. For struct types, create CStruct accessor. For vector types, create CVector accessor. """ function get_from_pointer(fp::Ptr{FT}, parent) where FT <: Ptr v = unsafe_load(fp) v == C_NULL ? nothing : get_from_pointer(v, parent) end function get_from_pointer(fp::Ptr{FT}, parent) where {T,FT<:LVector{T}} CVector{T}(fp, get_length(FT, parent)) end function get_from_pointer(fp::Ptr{FT}, parent) where FT <: Layout CStruct{FT}(fp) end function get_from_pointer(fp::Ptr{FT}, parent) where FT <: Cstring v = unsafe_load(fp) v == Cstring(C_NULL) ? "" : unsafe_string(Ptr{UInt8}(v)) end function get_from_pointer(fp::Ptr{FT}, parent) where FT if FT <: Nothing fp elseif isbitstype(FT) unsafe_load(fp) else throw(ArgumentError("not supported layout type: $FT")) end end """ set_at_pointer(:Ptr, value) Convert to C primitive or composed object. Store bytes at memory position. """ function set_at_pointer!(fp::Ptr{FT}, v) where FT w = unsafe_convert(FT, Base.cconvert(FT, v)) unsafe_store!(fp, w) end """ pointer_for_field(cs::CStruct{T}, fieldname) where T For `cs` return pointer to member field `fieldname`. The pointer has type `Ptr{fieldtype(T, i)}` with `i` the number of the field within struct type `T`. """ function pointer_for_field(cs::CStruct{T}, field::Symbol) where T i = findfirst(Fix1(isequal, field), fieldnames(T)) i === nothing && throw(ArgumentError("type $T has no field $field")) Ptr{fieldtype(T, i)}(getfield(cs, :pointer) + fieldoffset(T, i)) end function pointer_for_index(cv::CVector{T}, i::Integer) where T Ptr{T}(getfield(cv, :pointer) + sizeof(T) * (i - 1)) end unsafe_convert(::Type{Ptr{T}}, cs::CStructAccess{T}) where T = Ptr{T}(pointer(cs)) unsafe_convert(::Type{Ptr{Vector{T}}}, cs::CVector{T}) where T = Ptr{Vector{T}}(pointer(cs)) """ p = pointer(a::Vector{T})::Ptr{T} return pointer to `a[1]`. The existence of the resulting Ptr will not protect the object from garbage collection, so you must ensure that the object remains referenced for the whole time that the Ptr will be used. The condition `a[i] === unsafe_load(p, i)` is usually true. Given `p` it is possible to access arbitrary bits data by byte offset and type `S` using `unsafe_load(Ptr{S}(p + offset))`. This function is mainly used to simulate a C memory in the data area of vector `a`. """ pointer_from_vector_obs(a::Vector{T}) where T = unsafe_convert(Ptr{T}, a) export default_value, default_type, construct function default_type(::Type{T}) where T isconcretetype(T) || throw(ArgumentError("no default type defined for $T")) T end default_type(::Type{<:AbstractArray{T,N}}) where {T,N} = Array{T,N} default_type(::Type{T}) where T<:Real = isconcretetype(T) ? T : Bool default_type(::Type{T}) where T<:AbstractIrrational = isconcretetype(T) ? T : Irrational default_type(::Type{T}) where T<:AbstractFloat = isconcretetype(T) ? T : Float64 default_type(::Type{T}) where T<:Signed = isconcretetype(T) ? T : Int default_type(::Type{T}) where T<:Unsigned = isconcretetype(T) ? T : UInt default_type(::Type{T}) where T<:Rational = isconcretetype(T) ? T : Rational{default_type(Signed)} default_type(::Type{T}) where {S,T<:Rational{S}} = isconcretetype(T) ? T : Rational{default_type(S)} default_type(::Type{T}) where T<:Complex = Complex{default_type(Real)} default_type(::Type{T}) where {S,T<:Complex{S}} = Complex{default_type(S)} default_type(::Type{T}) where T<:AbstractString = isconcretetype(T) ? T : String default_value(::Type{T}) where T = _default_value(default_type(T)) default_value(::Type{A}) where {T,N,A<:AbstractArray{T,N}} = default_type(A)(undef,zeros(Int,N)...) default_value(::Type{T}) where T<:Number = default_type(T)(0) default_value(::Type{T}) where T<:AbstractIrrational = default_type(T)(ℯ) default_value(::Type{T}) where {S,T<:Complex{S}} = default_type(T)(default_value(S)) default_value(::Type{T}) where T<:AbstractString = default_type(T)("") function _default_value(::Type{T}) where T @assert isconcretetype(T) ft = fieldtypes(T) fv = default_value.(ft) construct(T, fv...) end default_value(::Type{T}, v) where T<:Union{Number,AbstractString} = convert(T, v) function default_value(::Type{T}, v) where {S,T<:AbstractArray{S}} convert(T, [default_value(S, x) for x in v]) end function default_value(::Type{T}, v) where T f = fieldnames(T) n = length(f) r = Vector{Any}(undef, n) for i in 1:n fn = fieldname(T, i) ft = fieldtype(T, i) r[i] = hasproperty(v, fn) ? default_value(ft, getproperty(v, fn)) : default_value(ft) end construct(T, r...) end construct(::Type{T}, args...) where T = construct(Val(!ismutabletype(T)), T, args...) function construct(::Val{true}, ::Type{T}, args...) where T r = Vector{T}(undef, 1) p = pointer(r) _construct!(T, p, args) r[1] end function construct(::Val{false}, ::Type{T}, args...) where T r = _construct_any(T) p = pointer_from_objref(r) _construct!(T, p, args) r end function _construct!(::Type{T}, p::Ptr, args) where T n = min(length(args), fieldcount(T)) for i = 1:n off = fieldoffset(T, i) ft = fieldtype(T, i) v = convert(ft, args[i]) q = p + off if isbitstype(ft) unsafe_store!(Ptr{ft}(q), v) else unsafe_store!(Ptr{Ptr{Nothing}}(q), pointer_from_objref(v)) end end end function _construct_any(::Type{T}) where T m = first(methods(T)) at = m.sig.types[2:end] T(default_value.(at)...) end
CStructures
https://github.com/KlausC/CStructures.jl.git
[ "MIT" ]
0.1.0
a320d7857f292ebcb970b71c628dadf5a6e6e6e6
code
11556
export Layout, LForwardReference, LFixedVector, LVarVector export is_layout_fixed, is_layout_variable, simple_size, total_size, Cserialize """ Layout All structs used to describe the memory layout (of a C-data structure) need to be subtypes of this. Some controlling objects used in such templates to describe vectors and pointers have also this type. A `Layout` structure and a memory pointer are needed to construct an `CAccessor` object. """ abstract type Layout end abstract type LVector{T} <: Layout end Base.eltype(::Type{<:LVector{T}}) where T = T # Layout Elements """ LFixedVector{T,N} Denote a fixed size vector with element type `T` and size `N`. """ struct LFixedVector{T,N} <: LVector{T} p::NTuple{N,T} end get_length(::Type{LFixedVector{T,N}}, ::Any) where {T,N} = N Base.eltype(::Type{LFixedVector{T,N}}) where {T,N} = T """ LVarVector{T,F} Denote a variable length vector with element type `T` in a template. `F` is a function, which calculates the length of the vector, given the accessor object containing the vector. Example: struct A <: Layout len::Int vec::NVarVector{Float64, (x) -> x.len} end """ struct LVarVector{T,F} <: LVector{T} p::NTuple{1,T} end function get_length(::Type{LVarVector{T,F}}, x) where {T,F} F isa Symbol ? getproperty(x, F) : F isa Integer ? getindex(x, F) : F isa Function ? F(x) : 0 end function set_length!(::Type{LVarVector{T,F}}, t::Tuple{U,Ptr}, v) where {T,F,U} S, p = t ix = 1 G = Nothing if F isa Symbol # setproperty!(x, v, F) S <: Layout || return v i = findfirst(isequal(F), fieldnames(S)) i === nothing && return v G = fieldtype(S, i) p += fieldoffset(S, i) elseif F isa Integer # setindex!(x, v, F) S <: LFixedVector || return v G = eltype(S) ix = Int(F) ix <= 0 && return v end G === Nothing && return v vv = G(v) unsafe_store!(Ptr{G}(p), vv, ix) vv end Base.eltype(::Type{LVarVector{T,F}}) where {T,F} = T struct LForwardReference{M,L} <: Layout p::Ptr{Nothing} end Base.eltype(::Type{LForwardReference{M,L}}) where {M,L} = M.name.module.eval(L) const TEMPLATE_FIXED = true const TEMPLATE_VAR = false """ is_template_variable(type) Has the layout described by `type` a variable size (for example variable sized vector in last field of a struct)? """ is_layout_variable(T::Type, deep::Bool=false) = !is_layout_fixed(T, deep) """ is_template_fixed(type) Has the layout described by `type` a fixed size. """ is_layout_fixed(T::Type, deep::Bool=false) = is_layout_fixed(T, deep, Dict()) function is_layout_fixed(::Type{T}, deep::Bool, dup) where T isprimitivetype(T) || throw(ArgumentError("$T is not a supported layout type")) TEMPLATE_FIXED end function is_layout_fixed(::Type{S}, deep::Bool, dup) where {T,S<:Ptr{T}} T <: Ptr && throw(ArgumentError("$S is not a supported layout type")) get!(dup, S) do dup[S] = TEMPLATE_FIXED d = is_layout_fixed(T, deep, dup) deep ? d : TEMPLATE_FIXED end end function is_layout_fixed(::Type{S}, deep::Bool, dup) where {S<:LForwardReference} is_layout_fixed(Ptr{eltype(S)}, deep, dup) end function is_layout_fixed(::Type{S}, deep::Bool, dup) where {T,N,S<:LFixedVector{T,N}} get!(dup, S) do dup[S] = TEMPLATE_FIXED k = is_layout_fixed(T, deep, dup) if N > 1 && k == TEMPLATE_VAR throw(ArgumentError("$S with variable length elements")) end N == 0 ? TEMPLATE_FIXED : k end end function is_layout_fixed(::Type{S}, deep::Bool, dup) where {T,S<:LVarVector{T}} get!(dup, S) do dup[S] = TEMPLATE_VAR is_layout_fixed(T, deep, dup) TEMPLATE_VAR end end function is_layout_fixed(::Type{T}, deep::Bool, dup) where {T<:Layout} get!(dup, T) do k = dup[T] = TEMPLATE_FIXED if !isbitstype(T) text = isconcretetype(T) ? "bits" : "concrete" throw(ArgumentError("$T is not a $text type struct")) end fields = fieldnames(T) n = length(fields) for i = 1:n f = fields[i] F = fieldtype(T, f) k = is_layout_fixed(F, deep, dup) if i < n && k == TEMPLATE_VAR throw(ArgumentError("$F has variable length in '$T.$f' - not last field")) end end k end end function align(p::Integer, s::Integer=sizeof(Ptr)) # s must be 2^n t = s - 1 (p + t ) & ~t end function align(p::Integer, ::Type{T}) where T align(p, Base.aligned_sizeof(T)) end simple_size(T::Type, veclens) = blength(T, veclens, Val(false)) total_size(T::Type, veclens) = blength(T, veclens, Val(true)) function blength(::Type{T}, veclens, v::Val{P}) where {P,F,N,T<:LFixedVector{F,N}} s = sizeof(T) j = 0 for _ = 1:N j, s = blength_helper(F, veclens, j, s, v, T) end if j < length(veclens) throw(ArgumentError("too many variable length specifiers for $T only $j are needed")) end s end function blength(::Type{T}, veclens, v::Val{P}) where {P,S,T<:LVarVector{S}} isempty(veclens) && return 0 n = first(veclens) n == 0 && return 0 n < 0 && throw(ArgumentError("negative vector length '$n' not allowed")) vl(i) = i < length(veclens) ? veclens[i+1] : () sum(blength(S, vl(i), v) for i = 1:n) end blength(::Type{Ptr{T}}, veclens, v::Val{P}) where {P,T} = P ? blength(T, veclens, v) : 0 function blength(::Type{T}, veclens, v::Val{P}) where {P,T<:Layout} s = sizeof(T) j = 0 for i = 1:fieldcount(T) F = fieldtype(T, i) j, s = blength_helper(F, veclens, j, s, v, T) end if j < length(veclens) throw(ArgumentError("too many variable length specifiers for $T- only $j are needed")) end s end blength(::Type{T}, veclens, ::Val) where T = sizeof(T) function blength_helper(::Type{F}, veclens, j, s, v::Val{P}, T) where {P,F} if is_layout_variable(F, true) j += 1 if j > length(veclens) throw(ArgumentError("not enough variable length specifiers for $T")) end vl = veclens[j] else vl = () end al = Base.datatype_alignment(F) s = align(s, al) s += F <: LVarVector ? blength(F, vl, v) : P && F <: Union{Ptr,LForwardReference} ? blength(eltype(F), vl, v) : 0 j, s end """ Cserialize(::Type{T}, source::Any) Convert the julia object `source` into a byte vector to be used in C. The process is controlled by the layout type recursively. The resulting vector contains only data described in `T`. The field, vector element or bit data required by `T` are taken from `source` if available in a corresponding part. Other data are filled with 0-bytes. If `T` is a structure, corresponding fields in source are by the same name. If `T` is a vector, corresponding elements in source are by the same index. If `T` is a `Ptr{S}`, the space for a pointer is reserved and filled with the offset integer (of same size), while the `S` object is appended at the end of the serialization stream. Finally all offset integers are replaced by actual pointers. """ function Cserialize(::Type{T}, src) where T buf = UInt8[] rea = Int[] off = Cserialize!(T, src, buf, 0, rea) resize!(buf, off) relocate!(buf, rea) end function Cserialize!(::Type{T}, src, buf, off, rea::Vector{Int}) where T ctx = Tuple{Integer,Type,Any}[] noff = _Cserialize!(T, src, buf, off, rea, ctx) for (poff, F, src) in ctx noff = align(noff) ensure!(buf, poff, sizeof(Ptr)) p = pointer(buf) + poff q = noff Base.unsafe_store!(Ptr{Ptr{F}}(p), Ptr{F}(q)) noff = Cserialize!(F, src, buf, noff, rea) end align(noff) end function _Cserialize!(::Type{T}, src::S, buf::Vector{UInt8}, off::Integer, rea, ctx) where {T<:Layout,S} ensure!(buf, off, sizeof(T)) noff = off for i = 1:fieldcount(T) F = fieldtype(T, i) f = fieldname(T, i) x = fieldoffset(T, i) if hasproperty(src, f) noff = _Cserialize!(F, getproperty(src, f), buf, off + x, rea, ctx) elseif F <: LVarVector throw(ArgumentError("need src vector $f to determine length")) else noff = off + x + Base.aligned_sizeof(F) end end noff end function _Cserialize!(::Type{<:LFixedVector{T,N}}, src::AbstractVector, buf::Vector{UInt8}, off::Integer, rea, ctx) where {T,N} as = Base.aligned_sizeof(T) ensure!(buf, off, as * N) n = length(src) for i = 1:min(N, n) off = _Cserialize!(T, src[i], buf, off, rea, ctx) off = align(off, T) end if N > n off += as * (N - n) end off end function _Cserialize!(::Type{S}, src::AbstractVector, buf::Vector{UInt8}, off::Integer, rea, ctx) where {T,F,S<:LVarVector{T,F}} for i = 1:length(src) off = _Cserialize!(T, src[i], buf, off, rea, ctx) off = align(off, T) end off end function _Cserialize!(::Type{Cstring}, src::Nothing, buf::Vector{UInt8}, off::Integer, rea, ctx) alignptr(off) end function _Cserialize!(::Type{Cstring}, src, buf::Vector{UInt8}, off::Integer, rea, ctx) s = string(src) n = length(s) + 1 v = codeunits(s) pushall!(rea, ctx, off, LFixedVector{UInt8,n}, v) alignptr(off) end function _Cserialize!(::Type{T}, src, buf::Vector{UInt8}, off::Integer, rea, ctx) where T if isbitstype(T) s = Base.aligned_sizeof(T) ensure!(buf, off, s) p = pointer(buf) + off Base.unsafe_store!(Ptr{T}(p), convert(T, src)) off + s else throw(ArgumentError("cannot serialize type $T")) end end function _Cserialize!(::Type{Ptr{T}}, src::Nothing, buf::Vector{UInt8}, off::Integer, rea, ctx) where T alignptr(off) end function _Cserialize!(::Type{Ptr{T}}, src, buf::Vector{UInt8}, off::Integer, rea, ctx) where T pushall!(rea, ctx, off, T, src) alignptr(off) end alignptr(off) = align(off + sizeof(Ptr)) """ pushall!(relocs::Vector{Int}, ctx::Vector{Tuple}, offset, Type, value} push! the `offset` to `relocs` and the tuple `(offset, Type, value)` in `ctx`. The `relocs` are finally used to replace offset values by pointers. The `ctx` is used push back processing for later serializing. """ function pushall!(rea::Vector{<:Integer}, ctx::Vector{<:Tuple}, off, T, v) push!(rea, off) push!(ctx, (off, T, v)) end """ ensure!(buf::Vector, off, size) Ensure that the size of `buf` is at least `off + size` by maybe resizing `buf`. Added space is filled with zero bytes. """ function ensure!(buf::Vector{UInt8}, off::Integer, siz::Integer) n = sizeof(buf) m = off + siz if n < m resize!(buf, m) for i = n+1:m buf[i] = 0 end end buf end """ relocate!(buffer::Vector, offsets) In vector `buffer`, at the byte offsets stored in `offsets`, offset values (into buffer) are stored as `Int` values. The are replaced by `Ptr` values into the data area of `buffer`. It is essential, that the data area is not changed after this process, that means no `resize!`, `push!`, etc. are allowed after this final fix of pointer values to be used in C-calls. """ function relocate!(buf::AbstractVector, rea::AbstractVector{<:Integer}) p0 = pointer(buf) for off in rea p = p0 + off q = unsafe_load(Ptr{UInt}(p)) + p0 unsafe_store!(Ptr{Ptr{UInt8}}(p), q) end buf end
CStructures
https://github.com/KlausC/CStructures.jl.git
[ "MIT" ]
0.1.0
a320d7857f292ebcb970b71c628dadf5a6e6e6e6
code
2566
struct A1 <: Layout a::Bool b::Cint c::Float64 d::Cstring end @testset "field access" begin a = fill(UInt64(0), 3) p = pointer(a) cs = CStruct{A1}(p) @test cs.a == 0 @test cs.b == 0 @test cs.c == 0 @test cs.d == "" v1 = true v2 = 0x12345678 v3 = 47.11 v4 = "hallo" cs.a = v1 cs.b = v2 cs.c = v3 cs.d = v4 @test cs.a == v1 @test cs.b == v2 @test cs.c == v3 @test cs.d == v4 end @testset "index access" begin a = fill(UInt64(0), 100) p = pointer(a) cv = CVector{Int}(p, 3) @test length(cv) == 3 cv[1:3] .= (1, 2, 3) @test cv[2] == 2 @test cv[[1,3]] == [1, 3] end struct A2 <: Layout a::Ptr{A2} end @testset "self-referencing" begin a = fill(UInt8(0), 100) p = pointer(a) cs = CStruct{A2}(p) @test cs.a === nothing io = IOBuffer() show(io, cs) @test String(take!(io)) == "CStruct{A2}(nothing)" cs.a = cs @test cs.a === cs show(io, cs) @test String(take!(io)) == "CStruct{A2}(CStruct{A2}(#= circular reference @-1 =#))" end struct A3 <: Layout len::Int vec::LVarVector{Float64, (x) -> x.len} end @testset "variable vector at end of struct" begin a = fill(Int(0), 1024) p = pointer(a) LEN = 25 cs = CStruct{A3}(p) cs.len = LEN @test cs.vec isa CVector{Float64} @test length(cs.vec) == cs.len == LEN end struct A4 <: Layout len::Int vec::Ptr{LVarVector{Float64, (x) -> x.len}} end @testset "pointer to variable vector" begin a = fill(Int(0), 1024) p = pointer(a) a[2] = p + 32 LEN = 25 cs = CStruct{A4}(p) cs.len = LEN @test cs.vec isa CVector{Float64} @test length(cs.vec) == cs.len == LEN end struct B <: Layout a::Int b::LVarVector{Float64, :a} end @testset "variable length vector in struct" begin @test_throws ArgumentError Cserialize(B, ()) cs = CStruct{B}(Cserialize(B, (a=0, b=Float64[]))) @test length(cs.b) == cs.a == 0 cs = CStruct{B}(Cserialize(B, (a=2, b=[1.0; 2; 3]))) @test length(cs.b) == cs.a == 2 cs.a = 3 @test length(cs.b) == cs.a == 3 end struct I1 a::Int8 b::Int16 I1() = new(1, 1) end mutable struct M1 a::Int8 b::Float64 M1() = new(2, 2) end struct I2 a::Int16 b::M1 I2() = new(3, M1()) end mutable struct M2 a::Int16 b::M1 M2() = new(4, M1()) end @testset "construct function $T" for (T, a1, a2) in ((I1, 12, 12), (M1, 12, 12), (I2, 12, M1()), (M2, 12, M1())) @test construct(T, a1, a2) isa T end
CStructures
https://github.com/KlausC/CStructures.jl.git
[ "MIT" ]
0.1.0
a320d7857f292ebcb970b71c628dadf5a6e6e6e6
code
1347
struct L0 a::Int end struct L1 <: Layout a::Int end struct L2 <: Layout a::LForwardReference{L2, :L3} end struct L3 <: Layout a::L2 end struct L4 <: Layout a::LForwardReference{L4, :L_not_defined} end struct L5 <: Layout a::LVarVector{Int,1} end struct L6 <: Layout a::LVarVector{Int,1} b::Int end struct L7 <: Layout a::Ptr{Ptr{Int}} end @testset "simple layout templates" begin @test_throws ArgumentError is_layout_fixed(L0) @test_throws ArgumentError is_layout_fixed(Vector{Int}) @test is_layout_fixed(Float64) @test is_layout_fixed(L1) @test is_layout_fixed(Ptr{L1}) @test is_layout_fixed(Ptr{L5}) @test is_layout_fixed(LFixedVector{Int,10}) @test_throws ArgumentError is_layout_fixed(LFixedVector{Int}) @test is_layout_variable(LVarVector{Int,1}) @test is_layout_fixed(L2) @test_throws UndefVarError is_layout_fixed(L4) @test !is_layout_fixed(L5) @test_throws ArgumentError is_layout_fixed(L6) @test_throws ArgumentError is_layout_fixed(L7) @test is_layout_fixed(LFixedVector{L1,1}) @test is_layout_fixed(LFixedVector{L5,0}) @test !is_layout_fixed(LFixedVector{L5,1}) @test_throws ArgumentError !is_layout_fixed(LFixedVector{L5,2}) @test !is_layout_fixed(LVarVector{L1,1}) @test !is_layout_fixed(LVarVector{L5,0}) end
CStructures
https://github.com/KlausC/CStructures.jl.git
[ "MIT" ]
0.1.0
a320d7857f292ebcb970b71c628dadf5a6e6e6e6
code
114
using CStructures using Test @testset "CStructures" begin include("cstruct.jl") include("layout.jl") end
CStructures
https://github.com/KlausC/CStructures.jl.git
[ "MIT" ]
0.1.0
a320d7857f292ebcb970b71c628dadf5a6e6e6e6
docs
4152
# CStructures [![Build Status](https://github.com/KlausC/CStructures.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/KlausC/CStructures.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/KlausC/CStructures.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/KlausC/CStructures.jl) ## Purpose C data structures are different from Julia structures in that they do not keep type information. While most primitive types and bitstype structures of Julia have an identical memory layout as the corresponding C data, complexities arise when pointers and strings are embedded. This package handles the situation, when pointered C-data generated in C have to be accessed in Julia code. It is also possible in Julia to construct a byte array, which can be processed by a C program given the layout of the C-structures. This package was fundamental to implementing the [FuseApi](https://github.com/KlausC/FuseApi.jl) package. ## Installation ]add CStructures ## Usage using CStructures struct LayoutType <: Layout field::Int end cs = CStruct{LayoutType}(c_data) cs.field = cs.field + 1 se = Cserialize(LayoutType, (field = 42,)) ccall((:cf, :libc), Cvoid, (Ptr{LayoutType},), se) cg = CStructGuarded(se) cg.field = 43 ## Layout Elements A data layout is described by a Julia bitstype struct, a fixed or variable vector descriptor, a `Cstring`, or a reference descriptor. ### Bits Types All primitve types defined in Julia, which have an identical C-representation can be used as layout descriptions. That includes immutable structs of such types, which have the `isbitstype` attribute. ### String Type The special type `Cstring` is used to represent a `char*` pointer. It occupies the space of any `Ptr`. ### Reference Types To describe `C`-pointers to primitive objects or C-structures, the `Ptr{T}` notion is used. Here `T` is a Julia type name. It needs to be defined in the code before the usage. To support referencing types, which will be defined later, as is possible in `C`, the special construct `LForwardReference{:S}` was introduced which uses the symbolized name `:S` of the referenced type, which can be defined later. This feature will become obsolete, as soon as `Julia` will support forward references [PR#32658](https://github.com/JuliaLang/julia/pull/32658). Element type `T` must be a reference type. ### Vector Types A fixed length vector of `N` elements of type `T` is denoted `LFixedVector{T,N}`. It has the size of `NTuple{N,T}`, where `T` is any of the supported types. A pointer to a vector is `Ptr{LFixedVector{T,N}}` or `LForwardReference{LFixedVector{T,N}}`. A variable length vector is denoted `LVarVector{T,F}` with the same restrictions to `T` as for fixed vectors. It can be embedded as the last element of a layout structure or the element type of a reference. The actual length can be calculated by `F(x)` with `x` the current structure, where the vector is referenced. Typically that uses to be `F = (x) -> x.fieldname`, the vector length stored in an integer field. ### Layout Types An bitstype struct, which is a subtype of `Layout` is composed of fields, which have an identical memory layout as a corresponding C-struct. The fields may be any of the mentioned layout types, but not directly self-referential (only via `Ptr` or `LForwardReference`). ## Accessor Objects ### Accessing C-Data ### Serializing Julia-Data according to Layout Complex Layout types don't have instances in general. ## Example struct Commandline <: Layout argc::CInt argv::Ptr{LVarVector{Cstring, (x)->x.argc + 1}} end # Note `argv[1:argc]` correspond to argv[0] ... argv[argc-1] in `C` and `argv[argc+1] = CNull`. Assuming a `C`-function returns a pointer to a `C`-structure with the layout of `Commandline`, that could be `C`-code like struct Commandline { size_t argc; char** argv } The in `Julia` that could be accessed: p = ccall(:argfunction, Ptr{Commandline}, ()) cline = CStruct(p) cline.argc::CInt cline.argv[i]::Union{String,Nothing}
CStructures
https://github.com/KlausC/CStructures.jl.git
[ "MIT" ]
0.4.2
efe21f9d2c9b928ec77d9cbbea50b648d274a6a9
code
282
using ArtifactUtils, Artifacts add_artifact!( "../Artifacts.toml", "refractiveindex.info", "https://github.com/polyanskiy/refractiveindex.info-database/archive/v2024-08-14.tar.gz", # lazy=true, # need to use LazyArtifacts for this force=true, clear=false, )
RefractiveIndex
https://github.com/stillyslalom/RefractiveIndex.jl.git
[ "MIT" ]
0.4.2
efe21f9d2c9b928ec77d9cbbea50b648d274a6a9
code
681
using RefractiveIndex using Documenter DocMeta.setdocmeta!(RefractiveIndex, :DocTestSetup, :(using RefractiveIndex); recursive=true) makedocs(; modules=[RefractiveIndex], authors="Alex Ames <alexander.m.ames@gmail.com> and contributors", repo="https://github.com/stillyslalom/RefractiveIndex.jl/blob/{commit}{path}#{line}", sitename="RefractiveIndex.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://stillyslalom.github.io/RefractiveIndex.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/stillyslalom/RefractiveIndex.jl", )
RefractiveIndex
https://github.com/stillyslalom/RefractiveIndex.jl.git
[ "MIT" ]
0.4.2
efe21f9d2c9b928ec77d9cbbea50b648d274a6a9
code
9211
module RefractiveIndex using HTTP.URIs: unescapeuri using PrecompileTools using DelimitedFiles: readdlm using Serialization using Scratch using Pkg.Artifacts using YAML # using Interpolations # using Interpolations: deduplicate_knots! using BasicInterpolators using Unitful: @u_str, uparse, uconvert, ustrip, AbstractQuantity import Base: getindex, show export RefractiveMaterial, dispersion, extinction, showmetadata, specifications const RI_INFO_ROOT = Ref{String}() const RI_LIB = Dict{Tuple{String, String, String}, NamedTuple{(:name, :path), Tuple{String, String}}}() const DB_VERSION = "refractiveindex.info-database-2024-08-14" const DB_INDEX_CACHE_PATH = joinpath(@get_scratch!(DB_VERSION), "RI_index_cache.jls") RI_INFO_ROOT[] = joinpath(artifact"refractiveindex.info", DB_VERSION, "database") include("init.jl") include("dispersionformulas.jl") _init_cache() copy!(RI_LIB, Serialization.deserialize(DB_INDEX_CACHE_PATH)) struct RefractiveMaterial{DF<:DispersionFormula} name::String reference::String comment::String dispersion::DF λrange::Tuple{Float64, Float64} specs::Dict{Symbol, Any} data::Dict{Symbol, Any} end const DISPERSIONFORMULAE = Dict( "formula 1" => Sellmeier, "formula 2" => Sellmeier2, "formula 3" => Polynomial, "formula 4" => RIInfo, "formula 5" => Cauchy, "formula 6" => Gases, "formula 7" => Herzberger, "formula 8" => Retro, "formula 9" => Exotic, "tabulated nk" => TabulatedNK, "tabulated n" => TabulatedN, "tabulated k" => TabulatedK, ) function str2tuple(str) arr = parse.(Float64, split(str)) ntuple(i -> arr[i], length(arr)) end function DispersionFormula(data) DF = DISPERSIONFORMULAE[data[:type]] if haskey(data, :coefficients) λrange = str2tuple(data[:wavelength_range]) return DF(str2tuple(data[:coefficients])), λrange else raw = readdlm(IOBuffer(data[:data]), Float64) λrange = extrema(@view raw[:, 1]) return DF(raw), λrange end end """ RefractiveMaterial(shelf, book, page) Load the refractive index data for the material corresponding to the specified shelf, book, and page within the [refractiveindex.info](https://refractiveindex.info/) database. The data can be queried by calling the returned `RefractiveMaterial` object at a given wavelength. In the case of database entries with multiple types of dispersion data (e.g. both raw dispersion data and dispersion formula coefficients), a vector of `RefractiveMaterial`s is returned for each data type. # Examples ```julia-repl julia> MgLiTaO3 = RefractiveMaterial("other", "Mg-LiTaO3", "Moutzouris-o") "Mg-LiTaO3 (Moutzouris et al. 2011: n(o) 0.450-1.551 µm; 8 mol.% Mg)" julia> MgLiTaO3(0.45) # default unit is microns 2.2373000025056826 julia> using Unitful julia> MgLiTaO3(450u"nm") # auto-conversion from generic Unitful.jl length units 2.2373000025056826 julia> MgLiTaO3(450e-9, "m") # strings can be used to specify units (parsing is cached) 2.2373000025056826 julia> Hikari_F1 = RefractiveMaterial("glass", "HIKARI-F", "F1") 2-element Vector{RefractiveMaterial}: HIKARI-F (F1) - Polynomial HIKARI-F (F1) - TabulatedK ``` """ function RefractiveMaterial(shelf, book, page) metadata = RI_LIB[(shelf, book, page)] path = joinpath(RI_INFO_ROOT[], "data-nk", metadata.path) isfile(path) || @error "Specified material does not exist" yaml = YAML.load_file(path; dicttype=Dict{Symbol, Any}) reference = get(yaml, :REFERENCES, "") comment = get(yaml, :COMMENTS, "") specs = get(yaml, :SPECS, Dict{Symbol, Any}()) data = get(yaml, :DATA, Dict{Symbol, String}[]) if length(data) == 1 DF, λrange = DispersionFormula(only(data)) return RefractiveMaterial( string(book, " ($(metadata.name))"), reference, comment, DF, λrange, specs, only(data) ) else return map(data) do datum DF, λrange = DispersionFormula(datum) RefractiveMaterial( string(book, " ($(metadata.name))"), reference, comment, DF, λrange, specs, datum ) end end end """ RefractiveMaterial(url::String) Extracts the shelf, book, and page from a refractiveindex.info URL and loads the corresponding data from the local database (does not require an active internet connection). !!! warning The refractiveindex.info website is regularly updated and may contain materials not yet available in the local copy of the database, which is updated on a roughly annual basis. Future versions of this package may allow these new entries to be automatically downloaded on demand. # Examples ```julia-repl julia> Ar = RefractiveMaterial("https://refractiveindex.info/?shelf=main&book=Ar&page=Peck-15C") "Ar (Peck and Fisher 1964: n 0.47-2.06 µm; 15 °C)" julia> describe(Ar) Name: Ar (Peck and Fisher 1964: n 0.47–2.06 µm; 15 °C) Reference: E. R. Peck and D. J. Fisher. Dispersion of argon, <a href="https://doi.org/10.1364/JOSA.54.001362"><i>J. Opt. Soc. Am.</i> <b>54</b>, 1362-1364 (1964)</a> Comments: 15 °C, 760 torr (101.325 kPa) Dispersion Formula: Gases Wavelength Range: (0.4679, 2.0587) Specifications: Dict{Symbol, Any}(:temperature => "15 °C", :wavelength_vacuum => true, :pressure => "101325 Pa", :n_absolute => true) ``` """ function RefractiveMaterial(url::String) ue_url = unescapeuri(url) r = r"refractiveindex.info\/\?shelf=(?'shelf'\w+)&book=(?'book'.*)&page=(?'page'.*)" m = match(r, ue_url) isnothing(m) && @error "Invalid refractiveindex.info url" RefractiveMaterial(String(m["shelf"]), String(m["book"]), String(m["page"])) end show(io::IO, ::MIME"text/plain", m::RefractiveMaterial{DF}) where {DF} = print(io, m.name, " - ", nameof(typeof(m.dispersion))) """ showmetadata(rm::RefractiveMaterial) Prints the metadata for the material `rm` to the terminal. # Examples ```julia-repl julia> Ar = RefractiveMaterial("main", "Ar", "Peck-15C") Ar (Peck and Fisher 1964: n 0.47–2.06 µm; 15 °C) - Gases julia> showmetadata(Ar) Name: Ar (Peck and Fisher 1964: n 0.47–2.06 µm; 15 °C) Reference: E. R. Peck and D. J. Fisher. Dispersion of argon, <a href="https://doi.org/10.1364/JOSA.54.001362"><i>J. Opt. Soc. Am.</i> <b>54</b>, 1362-1364 (1964)</a> Comments: 15 °C, 760 torr (101.325 kPa) Dispersion Formula: Gases Wavelength Range: (0.4679, 2.0587) Specifications: Dict{Symbol, Any}(:temperature => "15 °C", :wavelength_vacuum => true, :pressure => "101325 Pa", :n_absolute => true) ``` """ function showmetadata(rm::RefractiveMaterial) println("Name: ", rm.name) println("Reference: ", rm.reference) println("Comments: ", rm.comment) println("Dispersion Formula: ", nameof(typeof(rm.dispersion))) println("Wavelength Range: ", rm.λrange) println("Specifications: ", rm.specs) end """ specifications(rm::RefractiveMaterial) Returns a `Dict` containing the measurement specifications for the material `rm`. # Examples ```julia-repl julia> using Unitful julia> specs = specifications(Ar) Dict{Symbol, Any} with 4 entries: :temperature => "15 °C" :wavelength_vacuum => true :pressure => "101325 Pa" :n_absolute => true julia> T, P = [uparse(replace(specs[s], ' ' => '*')) for s in (:temperature, :pressure)] 2-element Vector{Quantity{Int64}}: 15 °C 101325 Pa ``` """ function specifications(rm::RefractiveMaterial) rm.specs end """ dispersion(m::RefractiveMaterial, λ::Float64) Returns the refractive index of the material `m` at the wavelength `λ` (in microns). An error is thrown if the material does not have refractive index data. """ dispersion(m::RefractiveMaterial, λ::Float64) = m.dispersion(λ) dispersion(m::RefractiveMaterial{T}, λ::Float64) where {T <: Union{TabulatedN, TabulatedNK}} = m.dispersion.n(λ) dispersion(m::RefractiveMaterial{TabulatedK}, λ::Float64) = throw(ArgumentError("Material does not have refractive index data")) """ extinction(m::RefractiveMaterial, λ::Float64) Returns the extinction coefficient of the material `m` at the wavelength `λ` (in microns). An error is thrown if the material does not have extinction data. """ extinction(m::RefractiveMaterial{T}, λ::Float64) where {T <: Union{TabulatedK, TabulatedNK}} = m.dispersion.k(λ) extinction(m::RefractiveMaterial, λ::Float64) = throw(ArgumentError("Material does not have extinction data")) (m::RefractiveMaterial)(λ::Float64) = dispersion(m, λ) (m::RefractiveMaterial)(λ::AbstractQuantity) = dispersion(m, ustrip(Float64, u"μm", λ)) const DIM_TO_MICRON = Dict("nm" => 1e-3, "um" => 1.0, "mm" => 1e3, "cm" => 1e4, "m" => 1e6) _to_micron(dim) = get!(DIM_TO_MICRON, dim) do ustrip(Float64, u"μm", 1.0*uparse(dim))::Float64 end # ustrip(Float64, uparse(dim), 1.0u"μm") (m::RefractiveMaterial)(λ, dim::String) = m(λ*_to_micron(dim))#*_dim_to_micron(dim)) # (m::RefractiveMaterial{T})(λ::Float64) where {T <: Union{TabulatedN, TabulatedNK}} = m.dispersion.n(λ) include("precompile.jl") end
RefractiveIndex
https://github.com/stillyslalom/RefractiveIndex.jl.git
[ "MIT" ]
0.4.2
efe21f9d2c9b928ec77d9cbbea50b648d274a6a9
code
3785
abstract type DispersionFormula end getindex(d::DispersionFormula, i) = getindex(d.coefs, i) struct Sellmeier{N} <: DispersionFormula coefs::NTuple{N,Float64} end function (c::Sellmeier{N})(λ) where {N} rhs = c[1] for i = 2:2:N rhs += c[i]*λ^2 / (λ^2 - c[i+1]^2) end return sqrt(rhs + 1) end struct Sellmeier2{N} <: DispersionFormula coefs::NTuple{N,Float64} end function (c::Sellmeier2{N})(λ) where {N} rhs = c[1] for i = 2:2:N rhs += c[i]*λ^2 / (λ^2 - c[i+1]) end return sqrt(rhs + 1) end struct Polynomial{N} <: DispersionFormula coefs::NTuple{N,Float64} end function (c::Polynomial{N})(λ) where {N} rhs = c[1] for i = 2:2:N rhs += c[i]*λ^c[i+1] end return sqrt(rhs) end struct RIInfo{N} <: DispersionFormula coefs::NTuple{N,Float64} end function (c::RIInfo{N})(λ) where {N} rhs = c[1] for i = 2:4:min(N, 9) rhs += (c[i]*λ^c[i+1]) / (λ^2 - c[i+2]^c[i+3]) end for i = 10:2:N rhs += c[i]*λ^c[i+1] end return sqrt(rhs) end struct Cauchy{N} <: DispersionFormula coefs::NTuple{N,Float64} end function (c::Cauchy{N})(λ) where {N} rhs = c[1] for i = 2:2:N rhs += c[i]*λ^c[i+1] end return rhs end struct Gases{N} <: DispersionFormula coefs::NTuple{N,Float64} end function (c::Gases{N})(λ) where {N} rhs = c[1] for i = 2:2:N rhs += c[i] / (c[i+1] - 1/λ^2) end return rhs + 1 end struct Herzberger{N} <: DispersionFormula coefs::NTuple{N,Float64} end function (c::Herzberger{N})(λ) where {N} rhs = c[1] rhs += c[2] / (λ^2 - 0.028) rhs += c[3] * (1/(λ^2 - 0.028))^2 for i = 4:N pow = 2*(i - 3) rhs += c[i]*λ^pow end return rhs end struct Retro{N} <: DispersionFormula coefs::NTuple{N,Float64} end function (c::Retro{N})(λ) where {N} rhs = c[1] + c[2]*λ^2 / (λ^2 - c[3]) + c[4]*λ^2 return sqrt((-2rhs - 1) / (rhs - 1)) end struct Exotic{N} <: DispersionFormula coefs::NTuple{N,Float64} end function (c::Exotic{N})(λ) where {N} rhs = c[1] + c[2]/(λ^2 - c[3]) + c[4]*(λ - c[5]) / ((λ - c[5])^2 + c[6]) return sqrt(rhs) end abstract type Tabulated <: DispersionFormula end # _linear_itp(knots, values) = extrapolate(interpolate((deduplicate_knots!(knots),), values, Gridded(Linear())), Throw()) # const ITP_TYPE = typeof(_linear_itp([1.0, 2.0], [1.0, 2.0])) _linear_itp(knots, values) = LinearInterpolator(knots, values, WeakBoundaries()) const ITP_TYPE = LinearInterpolator{Float64, WeakBoundaries} function _fix_sorting(raw) # several entries are not sorted by wavelength, so we need to sort them if !issorted(@views raw[:, 1]) raw = sortslices(raw, dims=1, by=first) end # workaround for two bad entries with only one wavelength: # ("other", "CR-39", "poly") => (name = "Polymer; n 0.58929 µm", path = "other/commercial plastics/CR-39/poly.yml") # ("other", "CR-39", "mono") => (name = "Monomer; n 0.58929 µm", path = "other/commercial plastics/CR-39/mono.yml") if size(raw, 1) == 1 raw = [raw; raw] end return raw end struct TabulatedNK <: Tabulated n::ITP_TYPE k::ITP_TYPE end function TabulatedNK(raw::Matrix{Float64}) raw = _fix_sorting(raw) λ = raw[:, 1] n = raw[:, 2] k = raw[:, 3] TabulatedNK(_linear_itp(λ, n), _linear_itp(λ, k)) end struct TabulatedN <: Tabulated n::ITP_TYPE end function TabulatedN(raw::Matrix{Float64}) raw = _fix_sorting(raw) λ = raw[:, 1] n = raw[:, 2] TabulatedN(_linear_itp(λ, n)) end struct TabulatedK <: Tabulated k::ITP_TYPE end function TabulatedK(raw::Matrix{Float64}) raw = _fix_sorting(raw) λ = raw[:, 1] k = raw[:, 2] TabulatedK(_linear_itp(λ, k)) end
RefractiveIndex
https://github.com/stillyslalom/RefractiveIndex.jl.git
[ "MIT" ]
0.4.2
efe21f9d2c9b928ec77d9cbbea50b648d274a6a9
code
759
function _init_cache() if !isfile(DB_INDEX_CACHE_PATH) lib = YAML.load_file(joinpath(RI_INFO_ROOT[], "catalog-nk.yml"), dicttype=Dict{String, Any}) for shelf in lib shelfname = shelf["SHELF"] for book in shelf["content"] haskey(book, "DIVIDER") && continue bookname = book["BOOK"] for page in book["content"] haskey(page, "DIVIDER") && continue pagename = string(page["PAGE"]) RI_LIB[(shelfname, bookname, pagename)] = (name = page["name"], path=page["data"]) end end end Serialization.serialize(DB_INDEX_CACHE_PATH, RI_LIB) end end function __init__() end
RefractiveIndex
https://github.com/stillyslalom/RefractiveIndex.jl.git
[ "MIT" ]
0.4.2
efe21f9d2c9b928ec77d9cbbea50b648d274a6a9
code
1274
## Precompilation @setup_workload begin # Putting some things in `setup` can reduce the size of the # precompile file and potentially make loading faster. function midrange(material) λmin, λmax = material.λrange return λmin + 0.5(λmax - λmin) end function exercise(material) @show material material(midrange(material)) end @compile_workload begin redirect_stdout(devnull) do exercise(RefractiveMaterial("main", "Ar", "Grace-liquid-90K")) exercise(RefractiveMaterial("main", "CdTe", "Marple")) exercise(RefractiveMaterial("other", "Mg-LiTaO3", "Moutzouris-o")) exercise(RefractiveMaterial("main", "ZnTe", "Li")) exercise(RefractiveMaterial("main", "SF6", "Vukovic")) exercise(RefractiveMaterial("main", "He", "Mansfield")) exercise(RefractiveMaterial("main", "Si", "Edwards")) exercise(RefractiveMaterial("main", "AgBr", "Schröter")) exercise(RefractiveMaterial("organic", "urea","Rosker-e")) exercise(RefractiveMaterial("main", "ZnO", "Stelling")) exercise(RefractiveMaterial("https://refractiveindex.info/?shelf=main&book=MgAl2O4&page=Tropf")) end end end
RefractiveIndex
https://github.com/stillyslalom/RefractiveIndex.jl.git
[ "MIT" ]
0.4.2
efe21f9d2c9b928ec77d9cbbea50b648d274a6a9
code
2305
using RefractiveIndex using Test using Aqua function midrange(material) λmin, λmax = material.λrange return λmin + 0.5(λmax - λmin) end function testRM(material, n_ref) n = material(midrange(material)) # Compare only fractional parts isapprox(n_ref % 1, n % 1, rtol=1e-3) end @testset "RefractiveIndex.jl" begin @testset "Dispersion formulas" begin # Sellmeier @test testRM(RefractiveMaterial("main", "Ar", "Grace-liquid-90K"), 1.2281) # Sellmeier-2 @test testRM(RefractiveMaterial("main", "CdTe", "Marple"), 2.7273) # Polynomial @test testRM(RefractiveMaterial("other", "Mg-LiTaO3", "Moutzouris-o"), 2.1337) # RefractiveIndex.INFO @test testRM(RefractiveMaterial("main", "ZnTe", "Li"), 2.6605) # Cauchy @test testRM(RefractiveMaterial("main", "SF6", "Vukovic"), 1.00072071) # Gases @test testRM(RefractiveMaterial("main", "He", "Mansfield"), 1.000034724) # Herzberger @test testRM(RefractiveMaterial("main", "Si", "Edwards"), 3.4208) # Retro @test testRM(RefractiveMaterial("main", "AgBr", "Schröter"), 2.2600) # Exotic @test testRM(RefractiveMaterial("organic", "urea","Rosker-e"), 1.6000) end @testset "Tabular data" begin # RefractiveNK @test testRM(RefractiveMaterial("main", "ZnO", "Stelling"), 1.5970) end @testset "Multiple dispersion data entries" begin # (https://github.com/stillyslalom/RefractiveIndex.jl/issues/14) # Hikari-F1 (Polynomial, TabulatedK) HikariF1 = @test_nowarn RefractiveMaterial("glass", "HIKARI-F", "F1") @test length(HikariF1) == 2 @test isapprox(extinction(HikariF1[2], 0.35), 4.5265e-7, rtol=1e-3) end @testset "Unit parsing" begin MgLiTaO3 = RefractiveMaterial("other", "Mg-LiTaO3", "Moutzouris-o") @test MgLiTaO3(450e-9, "m") ≈ 2.2373000025056826 @test MgLiTaO3(1.771653543e-5, "inch") ≈ 2.2373000025056826 end end @testset "Database" begin # Load all database entries for (shelf, book, page) in keys(RefractiveIndex.RI_LIB) @test_nowarn RefractiveMaterial(shelf, book, page) end end @testset "Aqua" begin Aqua.test_all(RefractiveIndex; ambiguities=false) end
RefractiveIndex
https://github.com/stillyslalom/RefractiveIndex.jl.git
[ "MIT" ]
0.4.2
efe21f9d2c9b928ec77d9cbbea50b648d274a6a9
docs
1793
# RefractiveIndex [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://stillyslalom.github.io/RefractiveIndex.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://stillyslalom.github.io/RefractiveIndex.jl/dev) [![Build Status](https://github.com/stillyslalom/RefractiveIndex.jl/workflows/CI/badge.svg)](https://github.com/stillyslalom/RefractiveIndex.jl/actions) Provides an offline interface to [refractiveindex.info](http://refractiveindex.info). ### Examples ``` julia> MgLiTaO3 = RefractiveMaterial("other", "Mg-LiTaO3", "Moutzouris-o") Mg-LiTaO3 (Moutzouris et al. 2011: n(o) 0.450–1.551 µm; 8 mol.% Mg) - Polynomial julia> MgLiTaO3(0.45) # default unit is microns 2.2373000025056826 julia> using Unitful julia> MgLiTaO3(450u"nm") # auto-conversion from generic Unitful.jl length units 2.2373000025056826 julia> MgLiTaO3(450e-9, "m") # strings can be used to specify units (parsing is cached) 2.2373000025056826 julia> Ar = RefractiveMaterial("https://refractiveindex.info/?shelf=main&book=Ar&page=Peck-15C") Ar (Peck and Fisher 1964: n 0.47–2.06 µm; 15 °C) - Gases julia> Ar(532, "nm") 1.0002679711455778 ``` In the case of database entries with multiple types of dispersion data (e.g. both raw dispersion data and dispersion formula coefficients), a vector of `RefractiveMaterial`s is returned for each data type: ```julia julia> RefractiveMaterial("glass", "HIKARI-F", "F1") 2-element Vector{RefractiveMaterial}: HIKARI-F (F1) - Polynomial HIKARI-F (F1) - TabulatedK ``` The database is currently limited to dispersion and extinction ('n-k') data. Future versions of the package may include the new [n₂](https://refractiveindex.info/n2) (nonlinear index) database - please file an issue if this functionality is important to you.
RefractiveIndex
https://github.com/stillyslalom/RefractiveIndex.jl.git
[ "MIT" ]
0.4.2
efe21f9d2c9b928ec77d9cbbea50b648d274a6a9
docs
125
```@meta CurrentModule = RefractiveIndex ``` # RefractiveIndex ```@index ``` ```@autodocs Modules = [RefractiveIndex] ```
RefractiveIndex
https://github.com/stillyslalom/RefractiveIndex.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
2778
const PROJECT_DIR = (@__DIR__) |> dirname const TORCH_LIB_DIR = joinpath(PROJECT_DIR, "csrc/libtorch/lib") const TORCH_LIB_BUILD_DIR = joinpath(PROJECT_DIR, "deps/lib") const JULIA_THC_GENERATOR = joinpath(PROJECT_DIR, "src/thc/thc-generator.jl") function build_locally() LIBTORCH_URL = if Sys.islinux() "https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-1.4.0%2Bcpu.zip" elseif Sys.isapple() "https://download.pytorch.org/libtorch/cpu/libtorch-macos-1.4.0.zip" # elseif Sys.iswindows() # "https://download.pytorch.org/libtorch/cpu/libtorch-win-shared-with-deps-1.4.0.zip" else error("Your OS $(Sys.MACHINE) is not supported.") end if !isdir(TORCH_LIB_DIR) zipfile = download(LIBTORCH_URL) cd(joinpath(PROJECT_DIR, "csrc")) do run(`unzip $(zipfile)`) end isdir(TORCH_LIB_DIR) || error("Failed to get libtorch.") end isdir(TORCH_LIB_BUILD_DIR) || mkdir(TORCH_LIB_BUILD_DIR) cd(TORCH_LIB_BUILD_DIR) do cmd_cmake = `cmake -DCMAKE_PREFIX_PATH=$(joinpath(PROJECT_DIR, "csrc/libtorch")) ../../csrc` run(cmd_cmake) run(`make torch_capi`) end end function include_remote_script(version_str) # build_script_url = "https://github.com/TuringLang/ThArrays.jl/releases/download/v$(version_str)/build_TorchCAPIDylib.v$(version_str).jl" # download, un tar dest = "libtorch_capi.$(version_str).tar.gz" tarball_url = if Sys.islinux() "https://github.com/TuringLang/ThArrays.jl/releases/download/v$(version_str)/TorchCAPIDylib.v$(version_str).x86_64-linux-gnu-gcc8.tar.gz" elseif Sys.isapple() "https://github.com/TuringLang/ThArrays.jl/releases/download/v$(version_str)/TorchCAPIDylib.v$(version_str).x86_64-apple-darwin14.tar.gz" else error("Your OS $(Sys.MACHINE) is not supported.") end try tarball = download(tarball_url, dest) cd(@__DIR__) do run(`tar zxvf $(tarball)`) end catch @warn "download $(tarball_url) failed." return false end return true end function get_version_str() path = joinpath(@__DIR__, "../Project.toml") version_reg = r"version\s*=\s*\"(.*)\"" open(path) do file lines = readlines(file) for line in lines m = match(version_reg, line) if isa(m, RegexMatch) return m.captures[1] end end end end version_str = get_version_str() |> strip |> (x) -> lstrip(x, ['v']) if !isempty(get(ENV, "THARRAYS_DEV", "")) || !include_remote_script(version_str) @warn "try to build libtorch_capi locally." build_locally() end JULIA_EXE = joinpath(Sys.BINDIR, "julia") run(`$(JULIA_EXE) $(JULIA_THC_GENERATOR)`)
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
1966
# Note that this script can accept some limited command-line arguments, run # `julia build_tarballs.jl --help` to see a usage message. using Pkg using BinaryBuilder name = "TorchCAPIDylib" version_str = Pkg.TOML.parsefile(joinpath(@__DIR__, "../Project.toml"))["version"] |> strip |> (x) -> lstrip(x, ['v']) version = VersionNumber(version_str) # see https://github.com/JuliaPackaging/BinaryBuilder.jl/issues/336 ENV["CI_COMMIT_TAG"] = ENV["TRAVIS_TAG"] = "v" * version_str event_file = get(ENV, "GITHUB_EVENT_PATH", "") # run(`cat $event_file`) # Collection of sources required to build Libtask function get_commit_id() ref = "HEAD" gaction = get(ENV, "GITHUB_ACTIONS", "") if !isempty(gaction) # .pull_request.head.sha, .release.tag_name, ref = readlines(`jq --raw-output '.pull_request.head.sha' $event_file`)[1] if ref == "null" ref = readlines(`jq --raw-output '.release.tag_name' $event_file`)[1] end end if ref == "null" ref = "HEAD" end return readlines(`git rev-parse $ref`)[1] end sources = [ "https://github.com/TuringLang/ThArrays.jl.git" => get_commit_id(), ] # Bash recipe for building across all platforms script = read(joinpath(dirname(@__FILE__), "build_dylib.sh"), String) # These are the platforms we will build for by default, unless further # platforms are passed in on the command line platforms = [ Linux(:x86_64, libc=:glibc, compiler_abi=CompilerABI(:gcc8)), # MacOS(:x86_64), # can't build it on MacOS SDK ] # The products that we will ensure are always built products(prefix) = [ LibraryProduct(prefix, "libtorch_capi", :libtorch_capi) ] # Dependencies that must be installed before this package can be built dependencies = [ ] # Build the tarballs, and possibly a `build.jl` as well. # build_file = "products/build_$(name).v$(version_str).jl" build_tarballs(ARGS, name, version, sources, script, platforms, products, dependencies)
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
471
using Documenter, ThArrays makedocs( modules=[ThArrays], sitename="ThArrays", pages = [ "Home" => "index.md", "Tensor" => "tensor.md", "AD" => "ad.md", "TorchScript" => "torchscript.md", "Reference" => "reference.md", ], format = Documenter.HTML(prettyurls = haskey(ENV, "GITHUB_EVENT_PATH"))) deploydocs( repo = "github.com/TuringLang/ThArrays.jl.git", devbranch = "master", devurl = "dev", )
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
1395
module ThArrays using Libdl using Requires export TorchNumber, Tensor, Scalar, eltype_id, ThC, ThAD, TrackerAD, ThJIT, Device, CPU, CUDA, to, on const PROJECT_DIR = (@__DIR__) |> dirname function __init__() push!(Libdl.DL_LOAD_PATH, joinpath(PROJECT_DIR, "deps/lib")) Libdl.dlopen(joinpath(PROJECT_DIR, "deps/lib/libtorch_capi")) @async handle_error_in_julia() @require Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" @eval include("compat/tracker.jl") end function handle_error_in_julia() err_handler = "jl_error" ccall((:set_error_handler, :libtorch_capi), Cvoid, (Cstring, Csize_t), pointer(err_handler), length(err_handler)) end const TYPE_MAP = Dict{Type, Int8}( ### float Float16 => 5, Float32 => 6, Float64 => 7, ### bool and char Bool => 11, # Char => 1, # Char in Julia is not single byte ### int Int8 => 1, # UInt8 => 1, Int16 => 2, # UInt16 => 2, Int32 => 3, # UInt32 => 3, Int64 => 4, # UInt64 => 4, # Int128 => ?, # UInt128 => ?, ) const REVERSE_TYPE_MAP = Dict(reverse(p) for p in TYPE_MAP) TorchNumber = Union{Float16, Float32, Float64, Bool, Int8, Int16, Int32, Int64} include("tensor.jl") include("scalar.jl") include("thc/thc.jl") include("common-methods.jl") include("ad.jl") include("th-jit.jl") end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
2380
module ThAD using MacroTools: @forward using ..ThArrays: Tensor, Scalar, TorchNumber using ..ThC import ..ThC: grad, requires_grad! function has_grad(a::Tensor) ret = ccall((:tensor_method_has_grad, :libtorch_capi), Cint, (Ptr{Cvoid},), a.pointer) return ret != 0 end function get_grad(a::Tensor, default=nothing) if has_grad(a) return grad(a) else default == nothing ? ThC.zeros_like(a) : default end end function backward(a::Tensor, d::Union{Ptr{Nothing}, Tensor}=C_NULL; keep_graph::Bool=false, create_graph::Bool=false) if d isa Tensor d = d.pointer end ccall((:tensor_method_backward, :libtorch_capi), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), a.pointer, d, keep_graph, create_graph) nothing end reset_grad!(t::Tensor) = ThC.zero!(ThC.grad(t)) requires_grad!(t::Tensor, r::Bool) = requires_grad!(t, r ? 1 : 0) function gradient(f, data...; d::Union{Ptr{Nothing}, Tensor}=C_NULL) tensors = map(d -> Tensor(d, requires_grad=true), data) return gradient(f, tensors...; d=d) end function gradient(f, tensors::Vararg{Tensor}; d::Union{Ptr{Nothing}, Tensor}=C_NULL) result = f(tensors...) backward(result, d) return ThC.grad.(tensors) end # tracker compatible API struct Params order::Vector{Any} params::IdDict{Any, Bool} Params() = new([], IdDict()) end @forward Params.order Base.iterate, Base.length function Base.push!(ps::Params, x) if !haskey(ps.params, x) push!(ps.order, x) ps.params[x] = true end return ps end Base.push!(ps::Params, x...) = (foreach(x -> push!(ps, x), x); ps) Params(xs) = push!(Params(), xs...) data(t::Tensor) = convert(Array, t) data(t::Tensor{T, 0}) where T = t[] param(x) = x param(x::Number) = Tensor(float(x); requires_grad=true) param(xs::AbstractArray) = Tensor(float.(xs); requires_grad=true) function forward(f, ps::Params) y = f() back = (d) -> begin g = IdDict() # reset grad! foreach((t) -> has_grad(t) && reset_grad!(t), ps) backward(y, param(d)) foreach((t) -> g[t] = ThC.grad(t), ps) return g end return data(y), back end function forward(f, args...) args = param.(args) y, back = forward(()->f(args...), Params(args)) y, (d) -> getindex.(Ref(back(d)), args) end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
3527
# broadcast Base.Broadcast.broadcasted(f, t::Tensor, args...) = f(t, args...) Base.Broadcast.broadcasted(::typeof(Base.:*), a::Tensor, b::Tensor) = ThC.mul(a, b) # operators Base.:+(r::TorchNumber, t::Tensor) = ThC.add1(t, r) Base.:+(t::Tensor, r::TorchNumber) = r + t Base.:+(a::Tensor{T, N}, b::Tensor{T, N}) where {T, N} = ThC.opt_add(a, b) Base.:-(r::TorchNumber, t::Tensor) = ThC.ones_like(t) * r - t Base.:-(t::Tensor, r::TorchNumber) = ThC.sub1(t, r) Base.:-(a::Tensor{T, N}, b::Tensor{T, N}) where {T, N} = ThC.sub(a, b) Base.:-(a::Tensor) = 0 - a Base.:*(r::TorchNumber, t::Tensor) = ThC.mul1(t, r) Base.:*(t::Tensor, r::TorchNumber) = r * t Base.:*(a::Tensor{T, N}, b::Tensor{T, N}) where {T, N} = ThC.mm(a, b) Base.:/(n::TorchNumber, t::Tensor) = ThC.ones_like(t) * n / t Base.:/(t::Tensor, n::TorchNumber) = ThC.div1(t, n) Base.:/(a::Tensor{T, N}, b::Tensor{T, N}) where {T, N} = ThC.div(a, b) Base.div(n::TorchNumber, t::Tensor, r::RoundingMode=RoundToZero) = n / t Base.div(t::Tensor, n::TorchNumber, r::RoundingMode=RoundToZero) = t / n Base.div(a::Tensor{T, N}, b::Tensor{T, N}, r::RoundingMode=RoundToZero) where {T, N} = div(a, b) Base.:^(t::Tensor, r::TorchNumber) = ThC.pow(t, r) Base.:(==)(t1::Tensor, t2::Tensor) = ThArrays.ThC.all(ThArrays.ThC.eq1(t1, t2))[] function Base.ones(::Type{Tensor{T}}, I::Vararg{Int}; dev::Device=CPU()) where T dims = Int64[I...] ThC.ones(dims, eltype_id(T), convert(Int, dev)) end function Base.zeros(::Type{Tensor{T}}, I::Vararg{Int}; dev::Device=CPU()) where T dims = Int64[I...] ThC.zeros(dims, eltype_id(T), convert(Int, dev)) end function Base.rand(::Type{Tensor{T}}, I::Vararg{Int}; dev::Device=CPU()) where T dims = Int64[I...] ThC.rand(dims, eltype_id(T), convert(Int, dev)) end ThC.eye(::Type{T}, n::Int64; dev::Device=CPU()) where T = ThC.eye(n, eltype_id(T), convert(Int, dev)) ThC.eye(::Type{Tensor{T}}, n::Int64; dev::Device=CPU()) where T = ThC.eye(T, n, dev=dev) Base.sum(t::Tensor{T}) where T = ThC.sum(t, eltype_id(T)) Base.view(t::Tensor{T}, I...) where T = error("Not implement yet.") Base.transpose(t::Tensor{T, 2}) where T = ThC.t(t) Base.adjoint(t::Tensor) = error("Not implement yet.") # LinearAlgebra.det(t::Tensor) = error("Not implement yet.") # LinearAlgebra.logdet(t::Tensor) = error("Not implement yet.") # LinearAlgebra.logabsdet(t::Tensor) = error("Not implement yet.") # Base.repeat(t::Tensor; kw...) = error("Not implement yet.") # Base.reshape(t::Tensor, dims...) = error("Not implement yet.") # Base.permutedims(t::Tensor, perm) = error("Not implement yet.") # Base.PermutedDimsArray(t::Tensor, perm) = error("Not implement yet.") # Base.reverse(t::Tensor; dims) = error("Not implement yet.") # Base.reverse(t::Tensor) = error("Not implement yet.") # Base.reverse(t::Tensor, start, stop) = error("Not implement yet.") # Base.inv(t::Tensor) = error("Not implement yet.") # Base.:\(a::Tensor, b::Tensor) = error("Not implement yet.") # Base.prod(t::Tensor, dim) = error("Not implement yet.") # Base.prod(t::Tensor) = error("Not implement yet.") # Base.prod(f::Union{Function, Type}, t::Tensor) = error("Not implement yet.") # Statistics.mean(t::Tensor; dims = :) = error("Not implement yet.") # Base.maximum(t::Tensor; dims = :) = error("Not implement yet.") # Base.minimum(t::Tensor; dims = :) = error("Not implement yet.") # Base.dot(a::Tensor, b::Tensor) = error("Not implement yet.") # LinearAlgebra.diagm(...) # NNlib # softmax, logsoftmax, depthwiseconv, conv, ∇conv_data, maxpool, meanpool
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
1195
mutable struct Scalar{T} type::Type pointer::Ptr function Scalar{T}(p::Ptr) where T if !haskey(TYPE_MAP, T) error("Type $T is not supported.") end ret = new(T, p) finalizer(ret) do s ccall((:scalar_destroy, :libtorch_capi), Cvoid, (Ptr{Cvoid},), s.pointer) end return ret end end function Scalar{T}(s::U) where {T<:TorchNumber, U<:TorchNumber} if !haskey(TYPE_MAP, T) error("Type $T is not supported.") end data = T[convert(T, s)] ptr = ccall((:scalar_from_data, :libtorch_capi), Ptr{Cvoid}, (Ptr{Cvoid}, Cchar), data, TYPE_MAP[T]) Scalar{T}(ptr) end Scalar(s::T) where T = Scalar{T}(s) function value(s::Scalar{T}) where T data = T[zero(T)] ccall((:scalar_value, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Cchar, Ptr{Cvoid}), s.pointer, TYPE_MAP[T], data) return data[1] end Base.getindex(s::Scalar) = value(s) function Base.show(io::IO, s::Scalar{T}) where {T} write(io, "PyTorch.Scalar{$T} = $(value(s))\n") end function Base.display(s::Scalar) show(stdout, s) end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
8374
mutable struct Tensor{T, N} <: AbstractArray{T, N} type::Type ndims::Int64 pointer::Ptr data::Union{Nothing,Array{T, N}} function Tensor{T, N}(p::Ptr, data) where {T, N} if !haskey(TYPE_MAP, T) error("Type $T is not supported.") end ret = new(T, N, p, data) finalizer(ret) do t ccall((:tensor_destroy, :libtorch_capi), Cvoid, (Ptr{Cvoid},), t.pointer) end return ret end end Base.setproperty!(::Tensor, ::Symbol, x) = error("Can't change field of Tensor.") function Tensor{T}(array::Array{U, N}; detach=false, requires_grad=false) where {T, U, N} if !haskey(TYPE_MAP, T) error("Type $T is not supported.") end dims = collect(size(array)) stri = collect(strides(array)) if T != U array = convert.(T, array) end grad = requires_grad ? 1 : 0 copy_data = detach ? 1 : 0 ptr = ccall((:tensor_from_data, :libtorch_capi), Ptr{Cvoid}, (Ptr{Cvoid}, Csize_t, Cchar, Ptr{Clonglong}, Ptr{Clonglong}, Csize_t, Cint, Cint), array, sizeof(array), TYPE_MAP[T], dims, stri, N, copy_data, grad) Tensor{T, N}(ptr, detach ? nothing : array) end function Tensor(array::Array{T, N}; detach=false, requires_grad=false) where {T, N} Tensor{T}(array, detach=detach, requires_grad=requires_grad) end # 0-dim Tensor function Tensor(s::Int64; requires_grad=false) grad = requires_grad ? 1 : 0 ptr = ccall((:tensor_int64_0dim, :libtorch_capi), Ptr{Cvoid}, (Clonglong, Cint), s, grad) Tensor{Int64, 0}(ptr, nothing) end function Tensor(s::T; requires_grad=false) where {T <: TorchNumber} data = T[s] grad = requires_grad ? 1 : 0 ptr = ccall((:tensor_from_data, :libtorch_capi), Ptr{Cvoid}, (Ptr{Cvoid}, Csize_t, Cchar, Ptr{Clonglong}, Ptr{Clonglong}, Csize_t, Cint, Cint), data, sizeof(T), TYPE_MAP[T], C_NULL, C_NULL, 0, 1, grad) Tensor{T, 0}(ptr, nothing) end function Tensor(a0::Array{T, 0}; requires_grad=false) where {T <: TorchNumber} Tensor(a0[], requires_grad=requires_grad) end function tensor_from_ptr(p::Ptr) n_dims = ccall((:tensor_method_ndimension, :libtorch_capi), Clonglong, (Ptr{Cvoid},), p) # sizes = zeros(Int64, n_dims) # ccall((:tensor_method_sizes, :libtorch_capi), # Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), # p, sizes) dtype = ccall((:tensor_method_dtype, :libtorch_capi), Cchar, (Ptr{Cvoid},), p) Tensor{REVERSE_TYPE_MAP[dtype], n_dims}(p, nothing) end function Base.convert(::Type{Array}, t::Tensor{T, N}) where {T, N} if t.data != nothing return t.data end dims = size(t) ret = Array{T, N}(undef, reverse(dims)) ccall((:tensor_method_data_copy, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Csize_t), t.pointer, ret, sizeof(T) * prod(dims)) if strides(t)[1] != 1 return permutedims(ret, collect(N:-1:1)) end return reshape(ret, dims) end Base.convert(::Type{T}, x::Tensor{T, 0}) where T = x[] function Base.string(t::Tensor) str = ccall((:tensor_to_string, :libtorch_capi), Ptr{UInt8}, (Ptr{Cvoid},), t.pointer) ret = unsafe_string(str) ccall(:free, Cvoid, (Ptr{Cvoid},), str) return ret end function Base.show(io::IO, t::Tensor{T, N}) where {T, N} write(io, "PyTorch.Tensor{$T, $N}:\n") write(io, string(t)) write(io, "\n") end function Base.display(t::Tensor) show(stdout, t) end # array interface Base.eltype(::Type{Tensor{T}}) where {T} = Tensor{T, 0} Base.ndims(t::Tensor{T, N}) where {T, N} = N eltype_id(::Tensor{T}) where {T} = Int(TYPE_MAP[T]) eltype_id(::Type{T}) where {T <: TorchNumber} = Int(TYPE_MAP[T]) function Base.strides(t::Tensor) n_dims = ccall((:tensor_method_ndimension, :libtorch_capi), Clonglong, (Ptr{Cvoid},), t.pointer) strides = zeros(Int64, n_dims) ccall((:tensor_method_strides, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), t.pointer, strides) strides end function Base.size(t::Tensor{T, N}) where {T, N} n_dims = ccall((:tensor_method_ndimension, :libtorch_capi), Clonglong, (Ptr{Cvoid},), t.pointer) @assert N == n_dims "Dimension mismatch!" sizes = zeros(Int64, n_dims) ccall((:tensor_method_sizes, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), t.pointer, sizes) tuple(sizes...) end function _tensor_indices(t::Tensor, I) indices = collect.(to_indices(t, I)) shape = collect(Iterators.flatten(size.(indices))) indices = map(x -> x .- 1, indices) collect(indices), shape end _to_dim_0(t::Tensor) = ThC.opt_reshape(t, Int64[]) _to_dim_1_1(t::Tensor) = ThC.opt_reshape(t, [1, 1]) function Base.getindex(t::Tensor, I...) ts, shape = _tensor_indices(t, I) ret = t for i in 1:length(ts) ret = ThC.opt_index_select(ret, i - 1, ts[i]) end all(x -> x == 1, size(ret)) && shape == Union{}[] && return _to_dim_0(ret) ThC.opt_reshape(ret, shape) end Base.getindex(t::Tensor{T}) where T = item(t) Base.getindex(t::Tensor, i::Int64) = t[eachindex(t)[i]] Base.getindex(t::Tensor{T, 1}, i::Int64) where T = ThC.opt_index_select(t, 0, (i - 1)) |> _to_dim_0 function Base.getindex(t::Tensor, I::UnitRange{Int64}) t = vcat(map(i->_to_dim_1_1(t[i]), eachindex(t)[I])...) ThC.opt_reshape(t, [length(t)]) end function Base.setindex!(t::Tensor{T}, v::Tensor{T}, I...) where T @assert length(I) > 0 "no indices given" @assert(!any(i -> i isa StepRange, I), "StepRange indices are not supported in Tensor assignment") ts, _1 = _tensor_indices(t, I) ret = t for i in 1:(length(ts) - 1) ret = ThC.narrow(ret, i - 1, ts[i][1], length(ts[i])) end dshape = length.(ts) ThC.index_copy!(ret, length(ts) - 1, Tensor(ts[end]), reshape(v, dshape)) v end Base.setindex!(t::Tensor{T}, v::Array, I...) where T = setindex!(t, Tensor{T}(v), I...) Base.setindex!(t::Tensor{T}, v::TorchNumber, i::Int64) where T = setindex!(t, Tensor{T}([v]), (eachindex(t)[i].I)...) Base.setindex!(t::Tensor{T, 1}, v::TorchNumber, i::Int64) where T = setindex!(t, Tensor{T}([v]), i) function Base.setindex!(t::Tensor{T}, v::Array, I::UnitRange{Int64}) where T indices = eachindex(t)[I] @assert length(v) == length(indices) for idx in 1:length(v) setindex!(t, Tensor{T}(v[[idx]]), (indices[idx].I)...) end end function Base.iterate(t::Tensor, state=(eachindex(t),)) y = iterate(state...) y === nothing && return nothing t[y[1]], (state[1], Base.tail(y)...) end Base.cat(I::Vararg{Tensor}; dims) = cat(collect(I), dims) Base.vcat(I::Vararg{Tensor}) = cat(collect(I), 0) Base.hcat(I::Vararg{Tensor}) = cat(collect(I), 1) function Base.hvcat(rows::Tuple{Vararg{Int}}, I::Vararg{Tensor,N}) where N ts = Iterators.Stateful(I) hs = map(n -> collect(Iterators.take(ts, n)), rows) hs = [hcat(t...) for t in hs] vcat(hs...) end # methods function item(t::Tensor{T,N}) where {T,N} @assert(N == 0 || prod(size(t)) == 1, "The Tensor must contain only one element.") data = T[zero(T)] ccall((:tensor_method_item, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Cchar, Ptr{Cvoid}), t.pointer, TYPE_MAP[T], data) return data[1] end # devices abstract type Device end struct CPU <: Device end struct CUDA <: Device index::Int end Base.convert(::Type{Int}, ::CPU) = -1 Base.convert(::Type{Int}, d::CUDA) = d.index to(t::Tensor, d::Device) = ThC.to(t, convert(Int, d)) to(t::Tensor, ::Type{T}) where T <: TorchNumber = ThC.to2(t, eltype_id(T), 0, 0) to(t::Tensor, ::Type{T}, d::Device) where T <: TorchNumber = to(t, d, T) to(t::Tensor, d::Device, ::Type{T}) where T <: TorchNumber = ThC.to4(t, convert(Int, d), eltype_id(T), 0, 0) function on(t::Tensor) data = Int64[0, 0] ccall((:tensor_method_device, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), t.pointer, data) data[1] == -1 && return CPU() return CUDA(data[2]) end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
1602
module ThJIT using ..ThArrays mutable struct CompilationUnit mod::Ptr{Nothing} owner::Ptr{Nothing} function CompilationUnit(m::Ptr{Nothing}, o::Ptr{Nothing}) ret = new(m, o) finalizer(ret) do cu ccall((:cunit_destroy, :libtorch_capi), Cvoid, (Ptr{Cvoid},), cu.owner) end end end function compile(code::AbstractString) fields = [Ptr{Nothing}(0), Ptr{Nothing}(0)] cu = ccall((:cunit_compile, :libtorch_capi), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring), fields, pointer(code)) CompilationUnit(fields[1], fields[2]) end function run_method(cu::CompilationUnit, method::AbstractString, args::Vararg{Tensor}) ptrs = map(x -> x.pointer, collect(args)) tr = ccall((:cunit_run_method, :libtorch_capi), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Ptr{Cvoid}, Cint), cu.mod, pointer(method), ptrs, length(args)) return ThArrays.tensor_from_ptr(tr) end struct Function cu::CompilationUnit method::AbstractString end function (f::Function)(args::Vararg{Tensor}) run_method(f.cu, f.method, args...) end get_method(cu::CompilationUnit, method::AbstractString) = Function(cu, method) Base.getindex(cu::CompilationUnit, method::AbstractString) = Function(cu, method) Base.getindex(cu::CompilationUnit, method::Symbol) = Function(cu, string(method)) function Base.getproperty(cu::CompilationUnit, p::Symbol) p in fieldnames(CompilationUnit) && return getfield(cu, p) return cu[p] end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
6060
module TrackerAD using ..ThArrays using Tracker using Tracker: Tracked, Call, data, track ## Tensor ThArrays.Tensor(x::Tracker.TrackedArray) = Tensor(data(x), requires_grad=true) ## TrackedTensor struct TrackedTensor{T, N} <: AbstractArray{T, N} tracker::Tracked{Tensor{T, N}} data::Tensor{T, N} grad::Tensor{T, N} TrackedTensor{T, N}( t::Tracked{Tensor{T, N}}, data::Tensor{T, N}) where {T, N} = new(t, data) TrackedTensor{T, N}( t::Tracked{Tensor{T, N}}, data::Tensor{T, N}, grad::Tensor{T, N}) where {T, N} = new(t, data, grad) end Tracker.data(x::TrackedTensor) = x.data Tracker.tracker(x::TrackedTensor) = x.tracker Tracker.track(c::Tracker.Call, x::Tensor) = TrackedTensor(c, x) Tracker.track(c::Tracker.Call, x::TrackedTensor) = TrackedTensor(c, data(x)) function TrackedTensor(c::Tracker.Call, t::Tensor{T, N}) where {T, N} TrackedTensor{T, N}(Tracker.Tracked{Tensor{T, N}}(c), t) end function TrackedTensor(c::Tracker.Call, t::Tensor{T, N}, d::Tensor{T, N}) where {T, N} TrackedTensor{T, N}(Tracker.Tracked{Tensor{T, N}}(c, d), t, d) end function TrackedTensor(t::Tensor) TrackedTensor(Tracker.Call(), t, ThC.zeros_like(t)) end Base.eltype(x::Type{<:TrackedTensor{T}}) where T <: Real = TrackedTensor{T, 0} function Base.show(io::IO, x::TrackedTensor) show(io, data(x)) print(io, "(tracked Tensor)") end Base.copy(x::TrackedTensor) = x Base.setindex!(xs::TrackedTensor, v, i...; kwargs...) = error("Can't differentiate `setindex!`") ## Fallthrough methods for f in :[Base.size, Base.ndims, Base.collect].args @eval @inline $f(x::TrackedTensor, a...) = $f(data(x), a...) end ## patches to Tracker.jl Tracker.param(x::Tensor) = TrackedTensor(ThC.requires_grad!(x, true)) Tracker.init_grad(x::Tensor) = ThC.zeros_like(x) Tracker.zero_grad!(x::Tensor) = (x .= 0) """ const __FORWARD_RESULT = IdDict{Any, Any}() Tracker.collectmemaybe(x::TrackedTensor) = begin __FORWARD_RESULT[Tracker.tracker(x)] = x x end function Tracker.back(g::Tracker.Grads, x::Tracker.Tracked{Tensor{T, N}}, Δ) where {T, N} if haskey(__FORWARD_RESULT, x) ThAD.backward(data(__FORWARD_RESULT[x]), Tensor(float.(Δ))) delete!(__FORWARD_RESULT, x) end x.isleaf && (Tracker.accum!(g, x, Δ); return) ref = x.ref -= 1 if ref > 0 || haskey(g, x) Tracker.accum!(g, x, Δ) ref == 0 && Tracker.back_(g, x.f, g[x]) else ref == 0 && Tracker.back_(g, x.f, Δ) end return end # we use `_tr` to instead of the above patch now """ Tracker.collectmemaybe(x::TrackedTensor) = _tr(x) ## Switches _th(x) = track(_th, x) Tracker.@grad function _th(x) r = TrackedTensor(Tensor(x, requires_grad=true)) r, (d) -> begin (ThC.ones_like(data(r)) .* d,) end end _th(x::Tracker.TrackedArray) = track(_th, x) Tracker.@grad function _th(x::Tracker.TrackedArray) r = TrackedTensor(Tensor(data(x), requires_grad=true)) r, (d) -> begin (ThC.ones_like(data(r)) .* d,) end end _tr(x) = track(_tr, x) Tracker.@grad function _tr(x) x, (d) -> begin (ones(size(x)) .* d,) end end _tr(x::TrackedTensor{T, 0}) where {T} = track(_tr, x) Tracker.@grad function _tr(x::TrackedTensor{T, 0}) where {T} r = convert(T, data(x)) r, (d) -> begin ThAD.backward(data(x), Tensor(float(d))) (float(d),) end end _tr(x::TrackedTensor{T, N}) where {T, N} = track(_tr, x) Tracker.@grad function _tr(x::TrackedTensor{T, N}) where {T, N} r = convert(Array, data(x)) r, (d) -> begin ThAD.backward(data(x), Tensor(d)) (ones(size(r)) .* d,) end end ## Methods and Grads Base.Broadcast.broadcasted(f, t::TrackedTensor, args...) = track(Base.Broadcast.broadcasted, f, t, args...) Tracker.@grad function Base.Broadcast.broadcasted(f, t::TrackedTensor, args...) r = Base.Broadcast.broadcasted(f, data(t), data.(args)...) r, (d) -> begin grads = map(args) do arg (arg isa TrackedTensor) ? ThAD.get_grad(data(arg), d) : nothing end (nothing, ThAD.get_grad(data(t), d), grads...) end end macro grad_for_tensor(name) esc(quote $name(t::TrackedTensor, args...) = track($name, t, args...) Tracker.@grad function $name(t::TrackedTensor, args...) r = $name(data(t), data.(args)...) r, (d) -> begin grads = map(args) do arg (arg isa TrackedTensor) ? ThAD.get_grad(data(arg), d) : nothing end (ThAD.get_grad(data(t), d), grads...) end end end) end # # Methods in src/thc/thc.jl, can be extracted by the command: # perl -n -e \ # 'if(m/import (Base\..*)/){ $i++; print "$1, "; print "\n" unless $i % 5;}' \ # src/thc/thc.jl # for name in :[Base.abs, Base.acos, Base.all, Base.angle, Base.any, Base.argmax, Base.argmin, Base.asin, Base.atan, Base.cat, Base.ceil, Base.clamp, Base.clamp!, Base.coalesce, Base.conj, Base.cos, Base.cosh, Base.cumprod, Base.cumsum, Base.detach, Base.empty, Base.exp, Base.expm1, Base.fill!, Base.floor, Base.imag, Base.isfinite, Base.isnan, Base.log, Base.log10, Base.log1p, Base.log2, Base.max, Base.min, Base.mv, Base.ones, Base.prod, Base.put!, Base.rand, Base.randn, Base.range, Base.real, Base.repeat, Base.reshape, Base.resize!, Base.round, Base.sign, Base.sin, Base.sinh, Base.sort, Base.split, Base.sqrt, Base.sum, Base.tan, Base.tanh, Base.transpose, Base.trunc, Base.values, Base.view, Base.zeros, ].args @eval @grad_for_tensor($name) end # # Methods in src/tensor.jl # for name in :[Base.getindex, Base.cat, Base.hcat, Base.vcat].args @eval @grad_for_tensor($name) end # # Methods in src/common-methods.jl # for name in :[Base.:+, Base.:-, Base.:*, Base.:/, Base.div, Base.:^, Base.adjoint,].args @eval @grad_for_tensor($name) end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
8241
""" This file intends to genrate Julia methods according C++ function: void atg_abs_out(tensor *out__, tensor out, tensor self) { ... } -> export abs_out function abs_out(out::Tensor, self::Tensor) outputs = Int[0] ccall((:atg_abs_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), pointer(outputs), out.pointer, self.pointer) return tensor_from_ptr(Ptr{Cvoid}(outputs[1])) end """ const PROJECT_DIR = (@__DIR__) |> dirname |> dirname const CPP_API_FILE = joinpath(PROJECT_DIR, "csrc", "torch_api_generated.cpp.h") const JUL_API_FILE = joinpath(PROJECT_DIR, "src", "thc", "thc.jl") const FUNC_SIG_REG = r"(\w+)\s+(\*?atg_\w+)\((.+)\)\s*{" const JULIA_KEYWORDS = Set(["function", "end"]) const C_TYPE_MAP = Dict( "void" => "Cvoid", "tensor*" => "Ptr{Cvoid}", "tensor" => "Ptr{Cvoid}", "scalar" => "Ptr{Cvoid}", "int" => "Cint", "int*" => "Ptr{Cvoid}", "int64_t" => "Clonglong", "int64_t*" => "Ptr{Cvoid}", "double" => "Cdouble", ) const J_TYPE_MAP = Dict( "void" => "Any", "tensor*" => "Array{Tensor{T,N}}", "tensor" => "Tensor", "scalar" => "TorchNumber", "int" => "Int", "int*" => "Array{Int}", "int64_t" => "Int64", "int64_t*" => "Array{Int64}", "double" => "Float64", ) struct APIFunction cpp_signature::String func_name::String return_type::String output_count::Int args::Vector{Pair{String, String}} # name -> type function APIFunction(m::RegexMatch, n::Int) csig = strip(m.match, [' ', '{', '\n']) args = parse_args(m[3]) ret_type = m[1] fname = m[2] if fname[1] == '*' fname = fname[6:end] ret_type *= '*' else fname = fname[5:end] end new(csig, fname, ret_type, n, args) end end function parse_args(args::AbstractString) arg_list = strip.(split(args, ',')) arg_pairs = map(arg_list) do arg info = strip.(split(arg)) # type, name if info[2][1] == '*' info[1] *= '*' info[2] = info[2][2:end] end info[2] in JULIA_KEYWORDS && (info[2] *= "_") info[2] => info[1] end arg_pairs end function julia_source(f::APIFunction) if length(f.args) < 1 @warn "E1: can't translate function [$(f.cpp_signature)], ignored." return "# $(f.func_name) ignored" end for arg in f.args if !haskey(C_TYPE_MAP, arg.second) @warn "E2: can't translate function [$(f.cpp_signature)], ignored." return "# $(f.func_name) ignored" end end lines = [""] # in-place op: pow_ -> pow!, pow_1 -> pow1!, ... jl_fname = f.func_name sufix_m = match(r"(\w+)_(\d*)$", jl_fname) sufix_m != nothing && (jl_fname = "$(sufix_m[1])$(sufix_m[2])!") if Symbol(jl_fname) in names(Base) if !in(jl_fname, ["div"]) push!(lines, "import Base.$(jl_fname)") end end push!(lines, doc(f, jl_fname)) # docs start = f.args[1].first == "out__" ? 2 : 1 para_type = any(x -> x.second == "tensor*", f.args[start:end]) ? " where {T,N}" : "" ccall_ret = start == 1 ? "Ptr{Int}" : "Cvoid" push!(lines, "function $(jl_fname)($(julia_args(f)))$(para_type)") push!(lines, julia_locals(f)) push!(lines, " __cret = ccall((:atg_$(f.func_name), :libtorch_capi),") push!(lines, " $(ccall_ret), ($(ccall_args(f))),") push!(lines, " $(ccall_julia_args(f)))") push!(lines, return_statement(f)) push!(lines, "end") return join(lines, "\n") end function doc(f::APIFunction, jl_fname::AbstractString) cpp_sig = replace(f.cpp_signature, "_" => "\\\\_") lines = ["\n"] push!(lines, "\"\"\"") push!(lines, " $(jl_fname)($(julia_args(f)))") push!(lines, "") push!(lines, " Wrapper of C++ function $(cpp_sig)") push!(lines, "\"\"\"") join(lines, "\n") end function julia_args(f::APIFunction) args = [] start = f.args[1].first == "out__" ? 2 : 1 for i in start:length(f.args) p = f.args[i] if endswith(p.first, "_len") && endswith(f.args[i-1].first, "_data") nothing else push!(args, "$(p.first)::$(J_TYPE_MAP[p.second])") end end join(args, ", ") end function julia_locals(f::APIFunction) lines = [] for i in 1:length(f.args) p = f.args[i] if endswith(p.first, "_len") && endswith(f.args[i-1].first, "_data") push!(lines, " $(p.first) = length($(f.args[i-1].first))") elseif p.second == "scalar" push!(lines, " $(p.first)_s_ = Scalar($(p.first))") elseif p.second == "tensor*" if p.first == "out__" output_init = join(repeat(["0"], f.output_count), ", ") push!(lines, " outputs__ = Int[$(output_init)]") else push!(lines, " $(p.first)_ta_ = map(x->x.pointer, $(p.first))") end end end join(lines, "\n") end function ccall_args(f::APIFunction) length(f.args) == 1 && return C_TYPE_MAP[f.args[1].second] * "," args = map(p -> C_TYPE_MAP[p.second], f.args) join(args, ", ") end function ccall_julia_args(f::APIFunction) args = map(f.args) do p p.second == "tensor*" && p.first == "out__" && return "outputs__" p.second == "tensor*" && return "$(p.first)_ta_" p.second == "tensor" && return "$(p.first).pointer" p.second == "scalar" && return "$(p.first)_s_.pointer" return p.first end join(args, ", ") end function return_statement(f::APIFunction) if match(r"_\d*$", f.func_name) != nothing return " return self" elseif f.return_type == "void" && f.args[1].first == "out__" lines = [] for i in 1:f.output_count push!(lines, " __o_$(i) = tensor_from_ptr(Ptr{Cvoid}(outputs__[$(i)]))") end push!(lines, " return " * join(map(x-> "__o_$x", 1:f.output_count), ", ")) return join(lines, "\n") elseif f.return_type == "tensor*" lines = [] push!(lines, " ptrs__, i__ = Int[], 1") push!(lines, " while true") push!(lines, " ptr__ = unsafe_load(__cret, i__)") push!(lines, " ptr__ == 0 && break") push!(lines, " push!(ptrs__, ptr__)") push!(lines, " i__ += 1") push!(lines, " end") push!(lines, " ccall(:free, Cvoid, (Ptr{Cvoid},), __cret)") push!(lines, " return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__)") return join(lines, "\n") end return "" end function main() count = 0 source_lines = readlines(CPP_API_FILE) output = open(JUL_API_FILE, "w") func_match = nothing output_count = 0 write(output, "# !!! THIS FILE IS AUTO-GENERATED, PLEASE DO NOT MODIFY. !!!\n\n") write(output, "module ThC\n") # module start write(output, "using ..ThArrays: Tensor, Scalar, TorchNumber, tensor_from_ptr\n") for line in source_lines m = match(FUNC_SIG_REG, line) if m != nothing # start of a function if func_match != nothing # deal with the previous function f = APIFunction(func_match, output_count) write(output, julia_source(f)) output_count = 0 count += 1 end func_match = m end if func_match != nothing # in a function if match(r"out__\[\d+\]\s*=\s*new", line) != nothing output_count += 1 elseif match(r"out__\[\D+\]\s*=\s*new", line) != nothing output_count = 1 end end end if func_match != nothing # the last function f = APIFunction(func_match, output_count) write(output, julia_source(f)) count += 1 end write(output, "\n") write(output, "include(\"thc-opt.jl\")\n") write(output, "\n") write(output, "end\n") # module end close(output) @info "$(count) methods generated!\n" end main()
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
1521
function opt_add(self::Tensor{T, N}, other::Tensor{T, N}) where {T, N} outputs__ = Int[0] __cret = ccall((:atg_add, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return Tensor{T, N}(Ptr{Cvoid}(outputs__[1]), nothing) end function opt_index_select(self::Tensor{T, N}, dim::Int64, index::Int64) where {T, N} ptr = ccall((:tensor_method_index_select_int64, :libtorch_capi), Ptr{Cvoid}, (Ptr{Cvoid}, Clonglong, Clonglong), self.pointer, dim, index) return Tensor{T, N}(ptr, nothing) end function opt_index_select(self::Tensor{T, N}, dim::Int64, i::Array{Int64}) where {T, N} return opt_index_select(self, dim, Tensor(i)) end function opt_index_select(self::Tensor{T, N}, dim::Int64, index::Tensor) where {T, N} outputs__ = Int[0] __cret = ccall((:atg_index_select, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer) return Tensor{T, N}(Ptr{Cvoid}(outputs__[1]), nothing) end function opt_reshape(self::Tensor{T}, shape_data::Array{Int64}) where T outputs__ = Int[0] shape_len = length(shape_data) __cret = ccall((:atg_reshape, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, shape_data, shape_len) return Tensor{T, shape_len}(Ptr{Cvoid}(outputs__[1]), nothing) end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
631370
# !!! THIS FILE IS AUTO-GENERATED, PLEASE DO NOT MODIFY. !!! module ThC using ..ThArrays: Tensor, Scalar, TorchNumber, tensor_from_ptr import Base.abs """ abs(self::Tensor) Wrapper of C++ function void atg\\_abs(tensor *out\\_\\_, tensor self) """ function abs(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_abs, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ abs!(self::Tensor) Wrapper of C++ function void atg\\_abs\\_(tensor *out\\_\\_, tensor self) """ function abs!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_abs_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ abs_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_abs\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function abs_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_abs_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.acos """ acos(self::Tensor) Wrapper of C++ function void atg\\_acos(tensor *out\\_\\_, tensor self) """ function acos(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_acos, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ acos!(self::Tensor) Wrapper of C++ function void atg\\_acos\\_(tensor *out\\_\\_, tensor self) """ function acos!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_acos_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ acos_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_acos\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function acos_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_acos_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_avg_pool1d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_avg\\_pool1d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_avg_pool1d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_avg_pool1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_avg_pool2d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_avg\\_pool2d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_avg_pool2d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_avg_pool2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_avg_pool2d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_avg\\_pool2d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_avg_pool2d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_avg_pool2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_avg_pool3d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_avg\\_pool3d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_avg_pool3d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_avg_pool3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_avg_pool3d_backward(grad_output::Tensor, self::Tensor) Wrapper of C++ function void atg\\_adaptive\\_avg\\_pool3d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self) """ function adaptive_avg_pool3d_backward(grad_output::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_adaptive_avg_pool3d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_avg_pool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor) Wrapper of C++ function void atg\\_adaptive\\_avg\\_pool3d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self) """ function adaptive_avg_pool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_adaptive_avg_pool3d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_avg_pool3d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_avg\\_pool3d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_avg_pool3d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_avg_pool3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_max_pool1d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_max\\_pool1d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_max_pool1d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0, 0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_max_pool1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ adaptive_max_pool2d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_max\\_pool2d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_max_pool2d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0, 0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_max_pool2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ adaptive_max_pool2d_backward(grad_output::Tensor, self::Tensor, indices::Tensor) Wrapper of C++ function void atg\\_adaptive\\_max\\_pool2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor indices) """ function adaptive_max_pool2d_backward(grad_output::Tensor, self::Tensor, indices::Tensor) outputs__ = Int[0] __cret = ccall((:atg_adaptive_max_pool2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_max_pool2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, indices::Tensor) Wrapper of C++ function void atg\\_adaptive\\_max\\_pool2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor indices) """ function adaptive_max_pool2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, indices::Tensor) outputs__ = Int[0] __cret = ccall((:atg_adaptive_max_pool2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_max_pool2d_out(out::Tensor, indices::Tensor, self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_max\\_pool2d\\_out(tensor *out\\_\\_, tensor out, tensor indices, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_max_pool2d_out(out::Tensor, indices::Tensor, self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0, 0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_max_pool2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, indices.pointer, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ adaptive_max_pool3d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_max\\_pool3d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_max_pool3d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0, 0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_max_pool3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ adaptive_max_pool3d_backward(grad_output::Tensor, self::Tensor, indices::Tensor) Wrapper of C++ function void atg\\_adaptive\\_max\\_pool3d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor indices) """ function adaptive_max_pool3d_backward(grad_output::Tensor, self::Tensor, indices::Tensor) outputs__ = Int[0] __cret = ccall((:atg_adaptive_max_pool3d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_max_pool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, indices::Tensor) Wrapper of C++ function void atg\\_adaptive\\_max\\_pool3d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor indices) """ function adaptive_max_pool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, indices::Tensor) outputs__ = Int[0] __cret = ccall((:atg_adaptive_max_pool3d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ adaptive_max_pool3d_out(out::Tensor, indices::Tensor, self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_adaptive\\_max\\_pool3d\\_out(tensor *out\\_\\_, tensor out, tensor indices, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function adaptive_max_pool3d_out(out::Tensor, indices::Tensor, self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0, 0] output_size_len = length(output_size_data) __cret = ccall((:atg_adaptive_max_pool3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, indices.pointer, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ add(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_add(tensor *out\\_\\_, tensor self, tensor other) """ function add(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_add, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ add1(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_add1(tensor *out\\_\\_, tensor self, scalar other) """ function add1(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_add1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ add!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_add\\_(tensor *out\\_\\_, tensor self, tensor other) """ function add!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_add_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ add1!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_add\\_1(tensor *out\\_\\_, tensor self, scalar other) """ function add1!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_add_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ add_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_add\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function add_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_add_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addbmm(self::Tensor, batch1::Tensor, batch2::Tensor) Wrapper of C++ function void atg\\_addbmm(tensor *out\\_\\_, tensor self, tensor batch1, tensor batch2) """ function addbmm(self::Tensor, batch1::Tensor, batch2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addbmm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, batch1.pointer, batch2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addbmm!(self::Tensor, batch1::Tensor, batch2::Tensor) Wrapper of C++ function void atg\\_addbmm\\_(tensor *out\\_\\_, tensor self, tensor batch1, tensor batch2) """ function addbmm!(self::Tensor, batch1::Tensor, batch2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addbmm_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, batch1.pointer, batch2.pointer) return self end """ addbmm_out(out::Tensor, self::Tensor, batch1::Tensor, batch2::Tensor) Wrapper of C++ function void atg\\_addbmm\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor batch1, tensor batch2) """ function addbmm_out(out::Tensor, self::Tensor, batch1::Tensor, batch2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addbmm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, batch1.pointer, batch2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addcdiv(self::Tensor, tensor1::Tensor, tensor2::Tensor) Wrapper of C++ function void atg\\_addcdiv(tensor *out\\_\\_, tensor self, tensor tensor1, tensor tensor2) """ function addcdiv(self::Tensor, tensor1::Tensor, tensor2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addcdiv, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, tensor1.pointer, tensor2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addcdiv!(self::Tensor, tensor1::Tensor, tensor2::Tensor) Wrapper of C++ function void atg\\_addcdiv\\_(tensor *out\\_\\_, tensor self, tensor tensor1, tensor tensor2) """ function addcdiv!(self::Tensor, tensor1::Tensor, tensor2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addcdiv_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, tensor1.pointer, tensor2.pointer) return self end """ addcdiv_out(out::Tensor, self::Tensor, tensor1::Tensor, tensor2::Tensor) Wrapper of C++ function void atg\\_addcdiv\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor tensor1, tensor tensor2) """ function addcdiv_out(out::Tensor, self::Tensor, tensor1::Tensor, tensor2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addcdiv_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, tensor1.pointer, tensor2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addcmul(self::Tensor, tensor1::Tensor, tensor2::Tensor) Wrapper of C++ function void atg\\_addcmul(tensor *out\\_\\_, tensor self, tensor tensor1, tensor tensor2) """ function addcmul(self::Tensor, tensor1::Tensor, tensor2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addcmul, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, tensor1.pointer, tensor2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addcmul!(self::Tensor, tensor1::Tensor, tensor2::Tensor) Wrapper of C++ function void atg\\_addcmul\\_(tensor *out\\_\\_, tensor self, tensor tensor1, tensor tensor2) """ function addcmul!(self::Tensor, tensor1::Tensor, tensor2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addcmul_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, tensor1.pointer, tensor2.pointer) return self end """ addcmul_out(out::Tensor, self::Tensor, tensor1::Tensor, tensor2::Tensor) Wrapper of C++ function void atg\\_addcmul\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor tensor1, tensor tensor2) """ function addcmul_out(out::Tensor, self::Tensor, tensor1::Tensor, tensor2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addcmul_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, tensor1.pointer, tensor2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addmm(self::Tensor, mat1::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_addmm(tensor *out\\_\\_, tensor self, tensor mat1, tensor mat2) """ function addmm(self::Tensor, mat1::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addmm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mat1.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addmm!(self::Tensor, mat1::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_addmm\\_(tensor *out\\_\\_, tensor self, tensor mat1, tensor mat2) """ function addmm!(self::Tensor, mat1::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addmm_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mat1.pointer, mat2.pointer) return self end """ addmm_out(out::Tensor, self::Tensor, mat1::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_addmm\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor mat1, tensor mat2) """ function addmm_out(out::Tensor, self::Tensor, mat1::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addmm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, mat1.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addmv(self::Tensor, mat::Tensor, vec::Tensor) Wrapper of C++ function void atg\\_addmv(tensor *out\\_\\_, tensor self, tensor mat, tensor vec) """ function addmv(self::Tensor, mat::Tensor, vec::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addmv, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mat.pointer, vec.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addmv!(self::Tensor, mat::Tensor, vec::Tensor) Wrapper of C++ function void atg\\_addmv\\_(tensor *out\\_\\_, tensor self, tensor mat, tensor vec) """ function addmv!(self::Tensor, mat::Tensor, vec::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addmv_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mat.pointer, vec.pointer) return self end """ addmv_out(out::Tensor, self::Tensor, mat::Tensor, vec::Tensor) Wrapper of C++ function void atg\\_addmv\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor mat, tensor vec) """ function addmv_out(out::Tensor, self::Tensor, mat::Tensor, vec::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addmv_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, mat.pointer, vec.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addr(self::Tensor, vec1::Tensor, vec2::Tensor) Wrapper of C++ function void atg\\_addr(tensor *out\\_\\_, tensor self, tensor vec1, tensor vec2) """ function addr(self::Tensor, vec1::Tensor, vec2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addr, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, vec1.pointer, vec2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ addr!(self::Tensor, vec1::Tensor, vec2::Tensor) Wrapper of C++ function void atg\\_addr\\_(tensor *out\\_\\_, tensor self, tensor vec1, tensor vec2) """ function addr!(self::Tensor, vec1::Tensor, vec2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addr_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, vec1.pointer, vec2.pointer) return self end """ addr_out(out::Tensor, self::Tensor, vec1::Tensor, vec2::Tensor) Wrapper of C++ function void atg\\_addr\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor vec1, tensor vec2) """ function addr_out(out::Tensor, self::Tensor, vec1::Tensor, vec2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_addr_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, vec1.pointer, vec2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ affine_grid_generator(theta::Tensor, size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_affine\\_grid\\_generator(tensor *out\\_\\_, tensor theta, int64\\_t *size\\_data, int size\\_len, int align\\_corners) """ function affine_grid_generator(theta::Tensor, size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_affine_grid_generator, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, theta.pointer, size_data, size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ affine_grid_generator_backward(grad::Tensor, size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_affine\\_grid\\_generator\\_backward(tensor *out\\_\\_, tensor grad, int64\\_t *size\\_data, int size\\_len, int align\\_corners) """ function affine_grid_generator_backward(grad::Tensor, size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_affine_grid_generator_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, grad.pointer, size_data, size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ alias(self::Tensor) Wrapper of C++ function void atg\\_alias(tensor *out\\_\\_, tensor self) """ function alias(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_alias, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ align_as(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_align\\_as(tensor *out\\_\\_, tensor self, tensor other) """ function align_as(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_align_as, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ align_tensors(tensors_data::Array{Tensor{T,N}}) Wrapper of C++ function tensor *atg\\_align\\_tensors(tensor *tensors\\_data, int tensors\\_len) """ function align_tensors(tensors_data::Array{Tensor{T,N}}) where {T,N} tensors_data_ta_ = map(x->x.pointer, tensors_data) tensors_len = length(tensors_data) __cret = ccall((:atg_align_tensors, :libtorch_capi), Ptr{Int}, (Ptr{Cvoid}, Cint), tensors_data_ta_, tensors_len) ptrs__, i__ = Int[], 1 while true ptr__ = unsafe_load(__cret, i__) ptr__ == 0 && break push!(ptrs__, ptr__) i__ += 1 end ccall(:free, Cvoid, (Ptr{Cvoid},), __cret) return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__) end import Base.all """ all(self::Tensor) Wrapper of C++ function void atg\\_all(tensor *out\\_\\_, tensor self) """ function all(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_all, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ all1(self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_all1(tensor *out\\_\\_, tensor self, int64\\_t dim, int keepdim) """ function all1(self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0] __cret = ccall((:atg_all1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ all_out(out::Tensor, self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_all\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t dim, int keepdim) """ function all_out(out::Tensor, self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0] __cret = ccall((:atg_all_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, out.pointer, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ alpha_dropout(input::Tensor, p::Float64, train::Int) Wrapper of C++ function void atg\\_alpha\\_dropout(tensor *out\\_\\_, tensor input, double p, int train) """ function alpha_dropout(input::Tensor, p::Float64, train::Int) outputs__ = Int[0] __cret = ccall((:atg_alpha_dropout, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, input.pointer, p, train) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ alpha_dropout!(self::Tensor, p::Float64, train::Int) Wrapper of C++ function void atg\\_alpha\\_dropout\\_(tensor *out\\_\\_, tensor self, double p, int train) """ function alpha_dropout!(self::Tensor, p::Float64, train::Int) outputs__ = Int[0] __cret = ccall((:atg_alpha_dropout_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, self.pointer, p, train) return self end import Base.angle """ angle(self::Tensor) Wrapper of C++ function void atg\\_angle(tensor *out\\_\\_, tensor self) """ function angle(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_angle, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ angle_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_angle\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function angle_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_angle_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.any """ any(self::Tensor) Wrapper of C++ function void atg\\_any(tensor *out\\_\\_, tensor self) """ function any(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_any, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ any1(self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_any1(tensor *out\\_\\_, tensor self, int64\\_t dim, int keepdim) """ function any1(self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0] __cret = ccall((:atg_any1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ any_out(out::Tensor, self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_any\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t dim, int keepdim) """ function any_out(out::Tensor, self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0] __cret = ccall((:atg_any_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, out.pointer, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ arange(end_::TorchNumber, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_arange(tensor *out\\_\\_, scalar end, int options\\_kind, int options\\_device) """ function arange(end_::TorchNumber, options_kind::Int, options_device::Int) outputs__ = Int[0] end__s_ = Scalar(end_) __cret = ccall((:atg_arange, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, end__s_.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ arange1(start::TorchNumber, end_::TorchNumber, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_arange1(tensor *out\\_\\_, scalar start, scalar end, int options\\_kind, int options\\_device) """ function arange1(start::TorchNumber, end_::TorchNumber, options_kind::Int, options_device::Int) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) __cret = ccall((:atg_arange1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, start_s_.pointer, end__s_.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ arange2(start::TorchNumber, end_::TorchNumber, step::TorchNumber, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_arange2(tensor *out\\_\\_, scalar start, scalar end, scalar step, int options\\_kind, int options\\_device) """ function arange2(start::TorchNumber, end_::TorchNumber, step::TorchNumber, options_kind::Int, options_device::Int) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) step_s_ = Scalar(step) __cret = ccall((:atg_arange2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, start_s_.pointer, end__s_.pointer, step_s_.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ arange_out(out::Tensor, end_::TorchNumber) Wrapper of C++ function void atg\\_arange\\_out(tensor *out\\_\\_, tensor out, scalar end) """ function arange_out(out::Tensor, end_::TorchNumber) outputs__ = Int[0] end__s_ = Scalar(end_) __cret = ccall((:atg_arange_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, end__s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ arange_out1(out::Tensor, start::TorchNumber, end_::TorchNumber) Wrapper of C++ function void atg\\_arange\\_out1(tensor *out\\_\\_, tensor out, scalar start, scalar end) """ function arange_out1(out::Tensor, start::TorchNumber, end_::TorchNumber) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) __cret = ccall((:atg_arange_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, start_s_.pointer, end__s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.argmax """ argmax(self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_argmax(tensor *out\\_\\_, tensor self, int64\\_t dim, int keepdim) """ function argmax(self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0] __cret = ccall((:atg_argmax, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.argmin """ argmin(self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_argmin(tensor *out\\_\\_, tensor self, int64\\_t dim, int keepdim) """ function argmin(self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0] __cret = ccall((:atg_argmin, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ argsort(self::Tensor, dim::Int64, descending::Int) Wrapper of C++ function void atg\\_argsort(tensor *out\\_\\_, tensor self, int64\\_t dim, int descending) """ function argsort(self::Tensor, dim::Int64, descending::Int) outputs__ = Int[0] __cret = ccall((:atg_argsort, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, descending) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ as_strided(self::Tensor, size_data::Array{Int64}, stride_data::Array{Int64}, storage_offset::Int64) Wrapper of C++ function void atg\\_as\\_strided(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t storage\\_offset) """ function as_strided(self::Tensor, size_data::Array{Int64}, stride_data::Array{Int64}, storage_offset::Int64) outputs__ = Int[0] size_len = length(size_data) stride_len = length(stride_data) __cret = ccall((:atg_as_strided, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong), outputs__, self.pointer, size_data, size_len, stride_data, stride_len, storage_offset) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ as_strided!(self::Tensor, size_data::Array{Int64}, stride_data::Array{Int64}, storage_offset::Int64) Wrapper of C++ function void atg\\_as\\_strided\\_(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t storage\\_offset) """ function as_strided!(self::Tensor, size_data::Array{Int64}, stride_data::Array{Int64}, storage_offset::Int64) outputs__ = Int[0] size_len = length(size_data) stride_len = length(stride_data) __cret = ccall((:atg_as_strided_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong), outputs__, self.pointer, size_data, size_len, stride_data, stride_len, storage_offset) return self end import Base.asin """ asin(self::Tensor) Wrapper of C++ function void atg\\_asin(tensor *out\\_\\_, tensor self) """ function asin(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_asin, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ asin!(self::Tensor) Wrapper of C++ function void atg\\_asin\\_(tensor *out\\_\\_, tensor self) """ function asin!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_asin_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ asin_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_asin\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function asin_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_asin_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.atan """ atan(self::Tensor) Wrapper of C++ function void atg\\_atan(tensor *out\\_\\_, tensor self) """ function atan(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_atan, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ atan2(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_atan2(tensor *out\\_\\_, tensor self, tensor other) """ function atan2(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_atan2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ atan2!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_atan2\\_(tensor *out\\_\\_, tensor self, tensor other) """ function atan2!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_atan2_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ atan2_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_atan2\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function atan2_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_atan2_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ atan!(self::Tensor) Wrapper of C++ function void atg\\_atan\\_(tensor *out\\_\\_, tensor self) """ function atan!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_atan_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ atan_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_atan\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function atan_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_atan_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ avg_pool1d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int) Wrapper of C++ function void atg\\_avg\\_pool1d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int ceil\\_mode, int count\\_include\\_pad) """ function avg_pool1d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_avg_pool1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, ceil_mode, count_include_pad) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ avg_pool2d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) Wrapper of C++ function void atg\\_avg\\_pool2d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int ceil\\_mode, int count\\_include\\_pad, int64\\_t divisor\\_override) """ function avg_pool2d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_avg_pool2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint, Clonglong), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, ceil_mode, count_include_pad, divisor_override) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ avg_pool2d_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) Wrapper of C++ function void atg\\_avg\\_pool2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int ceil\\_mode, int count\\_include\\_pad, int64\\_t divisor\\_override) """ function avg_pool2d_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_avg_pool2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint, Clonglong), outputs__, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, ceil_mode, count_include_pad, divisor_override) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ avg_pool2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) Wrapper of C++ function void atg\\_avg\\_pool2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int ceil\\_mode, int count\\_include\\_pad, int64\\_t divisor\\_override) """ function avg_pool2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_avg_pool2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint, Clonglong), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, ceil_mode, count_include_pad, divisor_override) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ avg_pool2d_out(out::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) Wrapper of C++ function void atg\\_avg\\_pool2d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int ceil\\_mode, int count\\_include\\_pad, int64\\_t divisor\\_override) """ function avg_pool2d_out(out::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_avg_pool2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint, Clonglong), outputs__, out.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, ceil_mode, count_include_pad, divisor_override) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ avg_pool3d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) Wrapper of C++ function void atg\\_avg\\_pool3d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int ceil\\_mode, int count\\_include\\_pad, int64\\_t divisor\\_override) """ function avg_pool3d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_avg_pool3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint, Clonglong), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, ceil_mode, count_include_pad, divisor_override) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ avg_pool3d_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) Wrapper of C++ function void atg\\_avg\\_pool3d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int ceil\\_mode, int count\\_include\\_pad, int64\\_t divisor\\_override) """ function avg_pool3d_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_avg_pool3d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint, Clonglong), outputs__, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, ceil_mode, count_include_pad, divisor_override) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ avg_pool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) Wrapper of C++ function void atg\\_avg\\_pool3d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int ceil\\_mode, int count\\_include\\_pad, int64\\_t divisor\\_override) """ function avg_pool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_avg_pool3d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint, Clonglong), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, ceil_mode, count_include_pad, divisor_override) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ avg_pool3d_out(out::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) Wrapper of C++ function void atg\\_avg\\_pool3d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int ceil\\_mode, int count\\_include\\_pad, int64\\_t divisor\\_override) """ function avg_pool3d_out(out::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, ceil_mode::Int, count_include_pad::Int, divisor_override::Int64) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_avg_pool3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint, Clonglong), outputs__, out.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, ceil_mode, count_include_pad, divisor_override) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ baddbmm(self::Tensor, batch1::Tensor, batch2::Tensor) Wrapper of C++ function void atg\\_baddbmm(tensor *out\\_\\_, tensor self, tensor batch1, tensor batch2) """ function baddbmm(self::Tensor, batch1::Tensor, batch2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_baddbmm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, batch1.pointer, batch2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ baddbmm!(self::Tensor, batch1::Tensor, batch2::Tensor) Wrapper of C++ function void atg\\_baddbmm\\_(tensor *out\\_\\_, tensor self, tensor batch1, tensor batch2) """ function baddbmm!(self::Tensor, batch1::Tensor, batch2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_baddbmm_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, batch1.pointer, batch2.pointer) return self end """ baddbmm_out(out::Tensor, self::Tensor, batch1::Tensor, batch2::Tensor) Wrapper of C++ function void atg\\_baddbmm\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor batch1, tensor batch2) """ function baddbmm_out(out::Tensor, self::Tensor, batch1::Tensor, batch2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_baddbmm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, batch1.pointer, batch2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bartlett_window(window_length::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_bartlett\\_window(tensor *out\\_\\_, int64\\_t window\\_length, int options\\_kind, int options\\_device) """ function bartlett_window(window_length::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_bartlett_window, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, window_length, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bartlett_window1(window_length::Int64, periodic::Int, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_bartlett\\_window1(tensor *out\\_\\_, int64\\_t window\\_length, int periodic, int options\\_kind, int options\\_device) """ function bartlett_window1(window_length::Int64, periodic::Int, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_bartlett_window1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint, Cint), outputs__, window_length, periodic, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ batch_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, training::Int, momentum::Float64, eps::Float64, cudnn_enabled::Int) Wrapper of C++ function void atg\\_batch\\_norm(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, tensor running\\_mean, tensor running\\_var, int training, double momentum, double eps, int cudnn\\_enabled) """ function batch_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, training::Int, momentum::Float64, eps::Float64, cudnn_enabled::Int) outputs__ = Int[0] __cret = ccall((:atg_batch_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cdouble, Cdouble, Cint), outputs__, input.pointer, weight.pointer, bias.pointer, running_mean.pointer, running_var.pointer, training, momentum, eps, cudnn_enabled) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ batch_norm_backward_elemt(grad_out::Tensor, input::Tensor, mean::Tensor, invstd::Tensor, weight::Tensor, mean_dy::Tensor, mean_dy_xmu::Tensor) Wrapper of C++ function void atg\\_batch\\_norm\\_backward\\_elemt(tensor *out\\_\\_, tensor grad\\_out, tensor input, tensor mean, tensor invstd, tensor weight, tensor mean\\_dy, tensor mean\\_dy\\_xmu) """ function batch_norm_backward_elemt(grad_out::Tensor, input::Tensor, mean::Tensor, invstd::Tensor, weight::Tensor, mean_dy::Tensor, mean_dy_xmu::Tensor) outputs__ = Int[0] __cret = ccall((:atg_batch_norm_backward_elemt, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_out.pointer, input.pointer, mean.pointer, invstd.pointer, weight.pointer, mean_dy.pointer, mean_dy_xmu.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ batch_norm_backward_reduce(grad_out::Tensor, input::Tensor, mean::Tensor, invstd::Tensor, weight::Tensor, input_g::Int, weight_g::Int, bias_g::Int) Wrapper of C++ function void atg\\_batch\\_norm\\_backward\\_reduce(tensor *out\\_\\_, tensor grad\\_out, tensor input, tensor mean, tensor invstd, tensor weight, int input\\_g, int weight\\_g, int bias\\_g) """ function batch_norm_backward_reduce(grad_out::Tensor, input::Tensor, mean::Tensor, invstd::Tensor, weight::Tensor, input_g::Int, weight_g::Int, bias_g::Int) outputs__ = Int[0, 0, 0, 0] __cret = ccall((:atg_batch_norm_backward_reduce, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, grad_out.pointer, input.pointer, mean.pointer, invstd.pointer, weight.pointer, input_g, weight_g, bias_g) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) __o_4 = tensor_from_ptr(Ptr{Cvoid}(outputs__[4])) return __o_1, __o_2, __o_3, __o_4 end """ batch_norm_elemt(input::Tensor, weight::Tensor, bias::Tensor, mean::Tensor, invstd::Tensor, eps::Float64) Wrapper of C++ function void atg\\_batch\\_norm\\_elemt(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, tensor mean, tensor invstd, double eps) """ function batch_norm_elemt(input::Tensor, weight::Tensor, bias::Tensor, mean::Tensor, invstd::Tensor, eps::Float64) outputs__ = Int[0] __cret = ccall((:atg_batch_norm_elemt, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, input.pointer, weight.pointer, bias.pointer, mean.pointer, invstd.pointer, eps) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ batch_norm_elemt_out(out::Tensor, input::Tensor, weight::Tensor, bias::Tensor, mean::Tensor, invstd::Tensor, eps::Float64) Wrapper of C++ function void atg\\_batch\\_norm\\_elemt\\_out(tensor *out\\_\\_, tensor out, tensor input, tensor weight, tensor bias, tensor mean, tensor invstd, double eps) """ function batch_norm_elemt_out(out::Tensor, input::Tensor, weight::Tensor, bias::Tensor, mean::Tensor, invstd::Tensor, eps::Float64) outputs__ = Int[0] __cret = ccall((:atg_batch_norm_elemt_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, out.pointer, input.pointer, weight.pointer, bias.pointer, mean.pointer, invstd.pointer, eps) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ batch_norm_gather_stats(input::Tensor, mean::Tensor, invstd::Tensor, running_mean::Tensor, running_var::Tensor, momentum::Float64, eps::Float64, count::Int64) Wrapper of C++ function void atg\\_batch\\_norm\\_gather\\_stats(tensor *out\\_\\_, tensor input, tensor mean, tensor invstd, tensor running\\_mean, tensor running\\_var, double momentum, double eps, int64\\_t count) """ function batch_norm_gather_stats(input::Tensor, mean::Tensor, invstd::Tensor, running_mean::Tensor, running_var::Tensor, momentum::Float64, eps::Float64, count::Int64) outputs__ = Int[0, 0] __cret = ccall((:atg_batch_norm_gather_stats, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble, Clonglong), outputs__, input.pointer, mean.pointer, invstd.pointer, running_mean.pointer, running_var.pointer, momentum, eps, count) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ batch_norm_gather_stats_with_counts(input::Tensor, mean::Tensor, invstd::Tensor, running_mean::Tensor, running_var::Tensor, momentum::Float64, eps::Float64, counts_data::Array{Int64}) Wrapper of C++ function void atg\\_batch\\_norm\\_gather\\_stats\\_with\\_counts(tensor *out\\_\\_, tensor input, tensor mean, tensor invstd, tensor running\\_mean, tensor running\\_var, double momentum, double eps, int64\\_t *counts\\_data, int counts\\_len) """ function batch_norm_gather_stats_with_counts(input::Tensor, mean::Tensor, invstd::Tensor, running_mean::Tensor, running_var::Tensor, momentum::Float64, eps::Float64, counts_data::Array{Int64}) outputs__ = Int[0, 0] counts_len = length(counts_data) __cret = ccall((:atg_batch_norm_gather_stats_with_counts, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble, Ptr{Cvoid}, Cint), outputs__, input.pointer, mean.pointer, invstd.pointer, running_mean.pointer, running_var.pointer, momentum, eps, counts_data, counts_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ batch_norm_stats(input::Tensor, eps::Float64) Wrapper of C++ function void atg\\_batch\\_norm\\_stats(tensor *out\\_\\_, tensor input, double eps) """ function batch_norm_stats(input::Tensor, eps::Float64) outputs__ = Int[0, 0] __cret = ccall((:atg_batch_norm_stats, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, input.pointer, eps) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ batch_norm_update_stats(input::Tensor, running_mean::Tensor, running_var::Tensor, momentum::Float64) Wrapper of C++ function void atg\\_batch\\_norm\\_update\\_stats(tensor *out\\_\\_, tensor input, tensor running\\_mean, tensor running\\_var, double momentum) """ function batch_norm_update_stats(input::Tensor, running_mean::Tensor, running_var::Tensor, momentum::Float64) outputs__ = Int[0, 0] __cret = ccall((:atg_batch_norm_update_stats, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, input.pointer, running_mean.pointer, running_var.pointer, momentum) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ bernoulli(self::Tensor) Wrapper of C++ function void atg\\_bernoulli(tensor *out\\_\\_, tensor self) """ function bernoulli(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bernoulli, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bernoulli1(self::Tensor, p::Float64) Wrapper of C++ function void atg\\_bernoulli1(tensor *out\\_\\_, tensor self, double p) """ function bernoulli1(self::Tensor, p::Float64) outputs__ = Int[0] __cret = ccall((:atg_bernoulli1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, self.pointer, p) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bernoulli!(self::Tensor, p::Tensor) Wrapper of C++ function void atg\\_bernoulli\\_(tensor *out\\_\\_, tensor self, tensor p) """ function bernoulli!(self::Tensor, p::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bernoulli_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, p.pointer) return self end """ bernoulli1!(self::Tensor, p::Float64) Wrapper of C++ function void atg\\_bernoulli\\_1(tensor *out\\_\\_, tensor self, double p) """ function bernoulli1!(self::Tensor, p::Float64) outputs__ = Int[0] __cret = ccall((:atg_bernoulli_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, self.pointer, p) return self end """ bernoulli_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_bernoulli\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function bernoulli_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bernoulli_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bilinear(input1::Tensor, input2::Tensor, weight::Tensor, bias::Tensor) Wrapper of C++ function void atg\\_bilinear(tensor *out\\_\\_, tensor input1, tensor input2, tensor weight, tensor bias) """ function bilinear(input1::Tensor, input2::Tensor, weight::Tensor, bias::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bilinear, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input1.pointer, input2.pointer, weight.pointer, bias.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ binary_cross_entropy(self::Tensor, target::Tensor, weight::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_binary\\_cross\\_entropy(tensor *out\\_\\_, tensor self, tensor target, tensor weight, int64\\_t reduction) """ function binary_cross_entropy(self::Tensor, target::Tensor, weight::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_binary_cross_entropy, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, target.pointer, weight.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ binary_cross_entropy_backward(grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_binary\\_cross\\_entropy\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, tensor weight, int64\\_t reduction) """ function binary_cross_entropy_backward(grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_binary_cross_entropy_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_output.pointer, self.pointer, target.pointer, weight.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ binary_cross_entropy_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_binary\\_cross\\_entropy\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor target, tensor weight, int64\\_t reduction) """ function binary_cross_entropy_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_binary_cross_entropy_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, target.pointer, weight.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ binary_cross_entropy_out(out::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_binary\\_cross\\_entropy\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor target, tensor weight, int64\\_t reduction) """ function binary_cross_entropy_out(out::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_binary_cross_entropy_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, target.pointer, weight.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ binary_cross_entropy_with_logits(self::Tensor, target::Tensor, weight::Tensor, pos_weight::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_binary\\_cross\\_entropy\\_with\\_logits(tensor *out\\_\\_, tensor self, tensor target, tensor weight, tensor pos\\_weight, int64\\_t reduction) """ function binary_cross_entropy_with_logits(self::Tensor, target::Tensor, weight::Tensor, pos_weight::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_binary_cross_entropy_with_logits, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, target.pointer, weight.pointer, pos_weight.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ binary_cross_entropy_with_logits_backward(grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, pos_weight::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_binary\\_cross\\_entropy\\_with\\_logits\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, tensor weight, tensor pos\\_weight, int64\\_t reduction) """ function binary_cross_entropy_with_logits_backward(grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, pos_weight::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_binary_cross_entropy_with_logits_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_output.pointer, self.pointer, target.pointer, weight.pointer, pos_weight.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bincount(self::Tensor, weights::Tensor, minlength::Int64) Wrapper of C++ function void atg\\_bincount(tensor *out\\_\\_, tensor self, tensor weights, int64\\_t minlength) """ function bincount(self::Tensor, weights::Tensor, minlength::Int64) outputs__ = Int[0] __cret = ccall((:atg_bincount, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, weights.pointer, minlength) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bitwise_not(self::Tensor) Wrapper of C++ function void atg\\_bitwise\\_not(tensor *out\\_\\_, tensor self) """ function bitwise_not(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bitwise_not, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bitwise_not!(self::Tensor) Wrapper of C++ function void atg\\_bitwise\\_not\\_(tensor *out\\_\\_, tensor self) """ function bitwise_not!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bitwise_not_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ bitwise_not_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_bitwise\\_not\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function bitwise_not_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bitwise_not_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bitwise_xor(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_bitwise\\_xor(tensor *out\\_\\_, tensor self, scalar other) """ function bitwise_xor(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_bitwise_xor, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bitwise_xor1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_bitwise\\_xor1(tensor *out\\_\\_, tensor self, tensor other) """ function bitwise_xor1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bitwise_xor1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bitwise_xor!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_bitwise\\_xor\\_(tensor *out\\_\\_, tensor self, scalar other) """ function bitwise_xor!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_bitwise_xor_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ bitwise_xor1!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_bitwise\\_xor\\_1(tensor *out\\_\\_, tensor self, tensor other) """ function bitwise_xor1!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bitwise_xor_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ bitwise_xor_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_bitwise\\_xor\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function bitwise_xor_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bitwise_xor_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bitwise_xor_out1(out::Tensor, self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_bitwise\\_xor\\_out1(tensor *out\\_\\_, tensor out, tensor self, scalar other) """ function bitwise_xor_out1(out::Tensor, self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_bitwise_xor_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ blackman_window(window_length::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_blackman\\_window(tensor *out\\_\\_, int64\\_t window\\_length, int options\\_kind, int options\\_device) """ function blackman_window(window_length::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_blackman_window, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, window_length, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ blackman_window1(window_length::Int64, periodic::Int, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_blackman\\_window1(tensor *out\\_\\_, int64\\_t window\\_length, int periodic, int options\\_kind, int options\\_device) """ function blackman_window1(window_length::Int64, periodic::Int, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_blackman_window1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint, Cint), outputs__, window_length, periodic, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bmm(self::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_bmm(tensor *out\\_\\_, tensor self, tensor mat2) """ function bmm(self::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bmm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ bmm_out(out::Tensor, self::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_bmm\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor mat2) """ function bmm_out(out::Tensor, self::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_bmm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ broadcast_tensors(tensors_data::Array{Tensor{T,N}}) Wrapper of C++ function tensor *atg\\_broadcast\\_tensors(tensor *tensors\\_data, int tensors\\_len) """ function broadcast_tensors(tensors_data::Array{Tensor{T,N}}) where {T,N} tensors_data_ta_ = map(x->x.pointer, tensors_data) tensors_len = length(tensors_data) __cret = ccall((:atg_broadcast_tensors, :libtorch_capi), Ptr{Int}, (Ptr{Cvoid}, Cint), tensors_data_ta_, tensors_len) ptrs__, i__ = Int[], 1 while true ptr__ = unsafe_load(__cret, i__) ptr__ == 0 && break push!(ptrs__, ptr__) i__ += 1 end ccall(:free, Cvoid, (Ptr{Cvoid},), __cret) return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__) end """ cartesian_prod(tensors_data::Array{Tensor{T,N}}) Wrapper of C++ function void atg\\_cartesian\\_prod(tensor *out\\_\\_, tensor *tensors\\_data, int tensors\\_len) """ function cartesian_prod(tensors_data::Array{Tensor{T,N}}) where {T,N} outputs__ = Int[0] tensors_data_ta_ = map(x->x.pointer, tensors_data) tensors_len = length(tensors_data) __cret = ccall((:atg_cartesian_prod, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, tensors_data_ta_, tensors_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.cat """ cat(tensors_data::Array{Tensor{T,N}}, dim::Int64) Wrapper of C++ function void atg\\_cat(tensor *out\\_\\_, tensor *tensors\\_data, int tensors\\_len, int64\\_t dim) """ function cat(tensors_data::Array{Tensor{T,N}}, dim::Int64) where {T,N} outputs__ = Int[0] tensors_data_ta_ = map(x->x.pointer, tensors_data) tensors_len = length(tensors_data) __cret = ccall((:atg_cat, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Clonglong), outputs__, tensors_data_ta_, tensors_len, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cat_out(out::Tensor, tensors_data::Array{Tensor{T,N}}, dim::Int64) Wrapper of C++ function void atg\\_cat\\_out(tensor *out\\_\\_, tensor out, tensor *tensors\\_data, int tensors\\_len, int64\\_t dim) """ function cat_out(out::Tensor, tensors_data::Array{Tensor{T,N}}, dim::Int64) where {T,N} outputs__ = Int[0] tensors_data_ta_ = map(x->x.pointer, tensors_data) tensors_len = length(tensors_data) __cret = ccall((:atg_cat_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Clonglong), outputs__, out.pointer, tensors_data_ta_, tensors_len, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cauchy!(self::Tensor, median::Float64, sigma::Float64) Wrapper of C++ function void atg\\_cauchy\\_(tensor *out\\_\\_, tensor self, double median, double sigma) """ function cauchy!(self::Tensor, median::Float64, sigma::Float64) outputs__ = Int[0] __cret = ccall((:atg_cauchy_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble), outputs__, self.pointer, median, sigma) return self end """ cdist(x1::Tensor, x2::Tensor, p::Float64, compute_mode::Int64) Wrapper of C++ function void atg\\_cdist(tensor *out\\_\\_, tensor x1, tensor x2, double p, int64\\_t compute\\_mode) """ function cdist(x1::Tensor, x2::Tensor, p::Float64, compute_mode::Int64) outputs__ = Int[0] __cret = ccall((:atg_cdist, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Clonglong), outputs__, x1.pointer, x2.pointer, p, compute_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.ceil """ ceil(self::Tensor) Wrapper of C++ function void atg\\_ceil(tensor *out\\_\\_, tensor self) """ function ceil(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ceil, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ceil!(self::Tensor) Wrapper of C++ function void atg\\_ceil\\_(tensor *out\\_\\_, tensor self) """ function ceil!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ceil_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ ceil_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_ceil\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function ceil_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ceil_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ celu(self::Tensor) Wrapper of C++ function void atg\\_celu(tensor *out\\_\\_, tensor self) """ function celu(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_celu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ celu!(self::Tensor) Wrapper of C++ function void atg\\_celu\\_(tensor *out\\_\\_, tensor self) """ function celu!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_celu_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ chain_matmul(matrices_data::Array{Tensor{T,N}}) Wrapper of C++ function void atg\\_chain\\_matmul(tensor *out\\_\\_, tensor *matrices\\_data, int matrices\\_len) """ function chain_matmul(matrices_data::Array{Tensor{T,N}}) where {T,N} outputs__ = Int[0] matrices_data_ta_ = map(x->x.pointer, matrices_data) matrices_len = length(matrices_data) __cret = ccall((:atg_chain_matmul, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, matrices_data_ta_, matrices_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cholesky(self::Tensor, upper::Int) Wrapper of C++ function void atg\\_cholesky(tensor *out\\_\\_, tensor self, int upper) """ function cholesky(self::Tensor, upper::Int) outputs__ = Int[0] __cret = ccall((:atg_cholesky, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, upper) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cholesky_inverse(self::Tensor, upper::Int) Wrapper of C++ function void atg\\_cholesky\\_inverse(tensor *out\\_\\_, tensor self, int upper) """ function cholesky_inverse(self::Tensor, upper::Int) outputs__ = Int[0] __cret = ccall((:atg_cholesky_inverse, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, upper) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cholesky_inverse_out(out::Tensor, self::Tensor, upper::Int) Wrapper of C++ function void atg\\_cholesky\\_inverse\\_out(tensor *out\\_\\_, tensor out, tensor self, int upper) """ function cholesky_inverse_out(out::Tensor, self::Tensor, upper::Int) outputs__ = Int[0] __cret = ccall((:atg_cholesky_inverse_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, upper) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cholesky_out(out::Tensor, self::Tensor, upper::Int) Wrapper of C++ function void atg\\_cholesky\\_out(tensor *out\\_\\_, tensor out, tensor self, int upper) """ function cholesky_out(out::Tensor, self::Tensor, upper::Int) outputs__ = Int[0] __cret = ccall((:atg_cholesky_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, upper) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cholesky_solve(self::Tensor, input2::Tensor, upper::Int) Wrapper of C++ function void atg\\_cholesky\\_solve(tensor *out\\_\\_, tensor self, tensor input2, int upper) """ function cholesky_solve(self::Tensor, input2::Tensor, upper::Int) outputs__ = Int[0] __cret = ccall((:atg_cholesky_solve, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, input2.pointer, upper) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cholesky_solve_out(out::Tensor, self::Tensor, input2::Tensor, upper::Int) Wrapper of C++ function void atg\\_cholesky\\_solve\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor input2, int upper) """ function cholesky_solve_out(out::Tensor, self::Tensor, input2::Tensor, upper::Int) outputs__ = Int[0] __cret = ccall((:atg_cholesky_solve_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, input2.pointer, upper) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ chunk(self::Tensor, chunks::Int64, dim::Int64) Wrapper of C++ function tensor *atg\\_chunk(tensor self, int64\\_t chunks, int64\\_t dim) """ function chunk(self::Tensor, chunks::Int64, dim::Int64) __cret = ccall((:atg_chunk, :libtorch_capi), Ptr{Int}, (Ptr{Cvoid}, Clonglong, Clonglong), self.pointer, chunks, dim) ptrs__, i__ = Int[], 1 while true ptr__ = unsafe_load(__cret, i__) ptr__ == 0 && break push!(ptrs__, ptr__) i__ += 1 end ccall(:free, Cvoid, (Ptr{Cvoid},), __cret) return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__) end import Base.clamp """ clamp(self::Tensor, min::TorchNumber, max::TorchNumber) Wrapper of C++ function void atg\\_clamp(tensor *out\\_\\_, tensor self, scalar min, scalar max) """ function clamp(self::Tensor, min::TorchNumber, max::TorchNumber) outputs__ = Int[0] min_s_ = Scalar(min) max_s_ = Scalar(max) __cret = ccall((:atg_clamp, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, min_s_.pointer, max_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.clamp! """ clamp!(self::Tensor, min::TorchNumber, max::TorchNumber) Wrapper of C++ function void atg\\_clamp\\_(tensor *out\\_\\_, tensor self, scalar min, scalar max) """ function clamp!(self::Tensor, min::TorchNumber, max::TorchNumber) outputs__ = Int[0] min_s_ = Scalar(min) max_s_ = Scalar(max) __cret = ccall((:atg_clamp_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, min_s_.pointer, max_s_.pointer) return self end """ clamp_max(self::Tensor, max::TorchNumber) Wrapper of C++ function void atg\\_clamp\\_max(tensor *out\\_\\_, tensor self, scalar max) """ function clamp_max(self::Tensor, max::TorchNumber) outputs__ = Int[0] max_s_ = Scalar(max) __cret = ccall((:atg_clamp_max, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, max_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ clamp_max!(self::Tensor, max::TorchNumber) Wrapper of C++ function void atg\\_clamp\\_max\\_(tensor *out\\_\\_, tensor self, scalar max) """ function clamp_max!(self::Tensor, max::TorchNumber) outputs__ = Int[0] max_s_ = Scalar(max) __cret = ccall((:atg_clamp_max_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, max_s_.pointer) return self end """ clamp_max_out(out::Tensor, self::Tensor, max::TorchNumber) Wrapper of C++ function void atg\\_clamp\\_max\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar max) """ function clamp_max_out(out::Tensor, self::Tensor, max::TorchNumber) outputs__ = Int[0] max_s_ = Scalar(max) __cret = ccall((:atg_clamp_max_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, max_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ clamp_min(self::Tensor, min::TorchNumber) Wrapper of C++ function void atg\\_clamp\\_min(tensor *out\\_\\_, tensor self, scalar min) """ function clamp_min(self::Tensor, min::TorchNumber) outputs__ = Int[0] min_s_ = Scalar(min) __cret = ccall((:atg_clamp_min, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, min_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ clamp_min!(self::Tensor, min::TorchNumber) Wrapper of C++ function void atg\\_clamp\\_min\\_(tensor *out\\_\\_, tensor self, scalar min) """ function clamp_min!(self::Tensor, min::TorchNumber) outputs__ = Int[0] min_s_ = Scalar(min) __cret = ccall((:atg_clamp_min_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, min_s_.pointer) return self end """ clamp_min_out(out::Tensor, self::Tensor, min::TorchNumber) Wrapper of C++ function void atg\\_clamp\\_min\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar min) """ function clamp_min_out(out::Tensor, self::Tensor, min::TorchNumber) outputs__ = Int[0] min_s_ = Scalar(min) __cret = ccall((:atg_clamp_min_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, min_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ clamp_out(out::Tensor, self::Tensor, min::TorchNumber, max::TorchNumber) Wrapper of C++ function void atg\\_clamp\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar min, scalar max) """ function clamp_out(out::Tensor, self::Tensor, min::TorchNumber, max::TorchNumber) outputs__ = Int[0] min_s_ = Scalar(min) max_s_ = Scalar(max) __cret = ccall((:atg_clamp_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, min_s_.pointer, max_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ clone(self::Tensor) Wrapper of C++ function void atg\\_clone(tensor *out\\_\\_, tensor self) """ function clone(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_clone, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.coalesce """ coalesce(self::Tensor) Wrapper of C++ function void atg\\_coalesce(tensor *out\\_\\_, tensor self) """ function coalesce(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_coalesce, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ col2im(self::Tensor, output_size_data::Array{Int64}, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) Wrapper of C++ function void atg\\_col2im(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len) """ function col2im(self::Tensor, output_size_data::Array{Int64}, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) kernel_size_len = length(kernel_size_data) dilation_len = length(dilation_data) padding_len = length(padding_data) stride_len = length(stride_data) __cret = ccall((:atg_col2im, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len, kernel_size_data, kernel_size_len, dilation_data, dilation_len, padding_data, padding_len, stride_data, stride_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ col2im_backward(grad_output::Tensor, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) Wrapper of C++ function void atg\\_col2im\\_backward(tensor *out\\_\\_, tensor grad\\_output, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len) """ function col2im_backward(grad_output::Tensor, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) dilation_len = length(dilation_data) padding_len = length(padding_data) stride_len = length(stride_data) __cret = ccall((:atg_col2im_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, kernel_size_data, kernel_size_len, dilation_data, dilation_len, padding_data, padding_len, stride_data, stride_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ col2im_backward_out(grad_input::Tensor, grad_output::Tensor, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) Wrapper of C++ function void atg\\_col2im\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len) """ function col2im_backward_out(grad_input::Tensor, grad_output::Tensor, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) dilation_len = length(dilation_data) padding_len = length(padding_data) stride_len = length(stride_data) __cret = ccall((:atg_col2im_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, kernel_size_data, kernel_size_len, dilation_data, dilation_len, padding_data, padding_len, stride_data, stride_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ col2im_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) Wrapper of C++ function void atg\\_col2im\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len) """ function col2im_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) kernel_size_len = length(kernel_size_data) dilation_len = length(dilation_data) padding_len = length(padding_data) stride_len = length(stride_data) __cret = ccall((:atg_col2im_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len, kernel_size_data, kernel_size_len, dilation_data, dilation_len, padding_data, padding_len, stride_data, stride_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ combinations(self::Tensor, r::Int64, with_replacement::Int) Wrapper of C++ function void atg\\_combinations(tensor *out\\_\\_, tensor self, int64\\_t r, int with\\_replacement) """ function combinations(self::Tensor, r::Int64, with_replacement::Int) outputs__ = Int[0] __cret = ccall((:atg_combinations, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, r, with_replacement) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.conj """ conj(self::Tensor) Wrapper of C++ function void atg\\_conj(tensor *out\\_\\_, tensor self) """ function conj(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_conj, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ conj_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_conj\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function conj_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_conj_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ constant_pad_nd(self::Tensor, pad_data::Array{Int64}) Wrapper of C++ function void atg\\_constant\\_pad\\_nd(tensor *out\\_\\_, tensor self, int64\\_t *pad\\_data, int pad\\_len) """ function constant_pad_nd(self::Tensor, pad_data::Array{Int64}) outputs__ = Int[0] pad_len = length(pad_data) __cret = ccall((:atg_constant_pad_nd, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, pad_data, pad_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ contiguous(self::Tensor) Wrapper of C++ function void atg\\_contiguous(tensor *out\\_\\_, tensor self) """ function contiguous(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_contiguous, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ conv1d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) Wrapper of C++ function void atg\\_conv1d(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups) """ function conv1d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) outputs__ = Int[0] stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_conv1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong), outputs__, input.pointer, weight.pointer, bias.pointer, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, groups) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ conv2d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) Wrapper of C++ function void atg\\_conv2d(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups) """ function conv2d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) outputs__ = Int[0] stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_conv2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong), outputs__, input.pointer, weight.pointer, bias.pointer, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, groups) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ conv3d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) Wrapper of C++ function void atg\\_conv3d(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups) """ function conv3d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) outputs__ = Int[0] stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_conv3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong), outputs__, input.pointer, weight.pointer, bias.pointer, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, groups) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ conv_tbc(self::Tensor, weight::Tensor, bias::Tensor, pad::Int64) Wrapper of C++ function void atg\\_conv\\_tbc(tensor *out\\_\\_, tensor self, tensor weight, tensor bias, int64\\_t pad) """ function conv_tbc(self::Tensor, weight::Tensor, bias::Tensor, pad::Int64) outputs__ = Int[0] __cret = ccall((:atg_conv_tbc, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, weight.pointer, bias.pointer, pad) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ conv_tbc_backward(self::Tensor, input::Tensor, weight::Tensor, bias::Tensor, pad::Int64) Wrapper of C++ function void atg\\_conv\\_tbc\\_backward(tensor *out\\_\\_, tensor self, tensor input, tensor weight, tensor bias, int64\\_t pad) """ function conv_tbc_backward(self::Tensor, input::Tensor, weight::Tensor, bias::Tensor, pad::Int64) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_conv_tbc_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, input.pointer, weight.pointer, bias.pointer, pad) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ conv_transpose1d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, groups::Int64, dilation_data::Array{Int64}) Wrapper of C++ function void atg\\_conv\\_transpose1d(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t groups, int64\\_t *dilation\\_data, int dilation\\_len) """ function conv_transpose1d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, groups::Int64, dilation_data::Array{Int64}) outputs__ = Int[0] stride_len = length(stride_data) padding_len = length(padding_data) output_padding_len = length(output_padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_conv_transpose1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Ptr{Cvoid}, Cint), outputs__, input.pointer, weight.pointer, bias.pointer, stride_data, stride_len, padding_data, padding_len, output_padding_data, output_padding_len, groups, dilation_data, dilation_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ conv_transpose2d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, groups::Int64, dilation_data::Array{Int64}) Wrapper of C++ function void atg\\_conv\\_transpose2d(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t groups, int64\\_t *dilation\\_data, int dilation\\_len) """ function conv_transpose2d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, groups::Int64, dilation_data::Array{Int64}) outputs__ = Int[0] stride_len = length(stride_data) padding_len = length(padding_data) output_padding_len = length(output_padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_conv_transpose2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Ptr{Cvoid}, Cint), outputs__, input.pointer, weight.pointer, bias.pointer, stride_data, stride_len, padding_data, padding_len, output_padding_data, output_padding_len, groups, dilation_data, dilation_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ conv_transpose3d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, groups::Int64, dilation_data::Array{Int64}) Wrapper of C++ function void atg\\_conv\\_transpose3d(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t groups, int64\\_t *dilation\\_data, int dilation\\_len) """ function conv_transpose3d(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, groups::Int64, dilation_data::Array{Int64}) outputs__ = Int[0] stride_len = length(stride_data) padding_len = length(padding_data) output_padding_len = length(output_padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_conv_transpose3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Ptr{Cvoid}, Cint), outputs__, input.pointer, weight.pointer, bias.pointer, stride_data, stride_len, padding_data, padding_len, output_padding_data, output_padding_len, groups, dilation_data, dilation_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ convolution(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, transposed::Int, output_padding_data::Array{Int64}, groups::Int64) Wrapper of C++ function void atg\\_convolution(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int transposed, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t groups) """ function convolution(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, transposed::Int, output_padding_data::Array{Int64}, groups::Int64) outputs__ = Int[0] stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) output_padding_len = length(output_padding_data) __cret = ccall((:atg_convolution, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Ptr{Cvoid}, Cint, Clonglong), outputs__, input.pointer, weight.pointer, bias.pointer, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, transposed, output_padding_data, output_padding_len, groups) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ convolution_overrideable(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, transposed::Int, output_padding_data::Array{Int64}, groups::Int64) Wrapper of C++ function void atg\\_convolution\\_overrideable(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int transposed, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t groups) """ function convolution_overrideable(input::Tensor, weight::Tensor, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, transposed::Int, output_padding_data::Array{Int64}, groups::Int64) outputs__ = Int[0] stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) output_padding_len = length(output_padding_data) __cret = ccall((:atg_convolution_overrideable, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Ptr{Cvoid}, Cint, Clonglong), outputs__, input.pointer, weight.pointer, bias.pointer, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, transposed, output_padding_data, output_padding_len, groups) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ copy_sparse_to_sparse!(self::Tensor, src::Tensor, non_blocking::Int) Wrapper of C++ function void atg\\_copy\\_sparse\\_to\\_sparse\\_(tensor *out\\_\\_, tensor self, tensor src, int non\\_blocking) """ function copy_sparse_to_sparse!(self::Tensor, src::Tensor, non_blocking::Int) outputs__ = Int[0] __cret = ccall((:atg_copy_sparse_to_sparse_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, src.pointer, non_blocking) return self end import Base.cos """ cos(self::Tensor) Wrapper of C++ function void atg\\_cos(tensor *out\\_\\_, tensor self) """ function cos(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_cos, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cos!(self::Tensor) Wrapper of C++ function void atg\\_cos\\_(tensor *out\\_\\_, tensor self) """ function cos!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_cos_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ cos_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_cos\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function cos_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_cos_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.cosh """ cosh(self::Tensor) Wrapper of C++ function void atg\\_cosh(tensor *out\\_\\_, tensor self) """ function cosh(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_cosh, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cosh!(self::Tensor) Wrapper of C++ function void atg\\_cosh\\_(tensor *out\\_\\_, tensor self) """ function cosh!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_cosh_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ cosh_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_cosh\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function cosh_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_cosh_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cosine_embedding_loss(input1::Tensor, input2::Tensor, target::Tensor, margin::Float64, reduction::Int64) Wrapper of C++ function void atg\\_cosine\\_embedding\\_loss(tensor *out\\_\\_, tensor input1, tensor input2, tensor target, double margin, int64\\_t reduction) """ function cosine_embedding_loss(input1::Tensor, input2::Tensor, target::Tensor, margin::Float64, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_cosine_embedding_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Clonglong), outputs__, input1.pointer, input2.pointer, target.pointer, margin, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cosine_similarity(x1::Tensor, x2::Tensor, dim::Int64, eps::Float64) Wrapper of C++ function void atg\\_cosine\\_similarity(tensor *out\\_\\_, tensor x1, tensor x2, int64\\_t dim, double eps) """ function cosine_similarity(x1::Tensor, x2::Tensor, dim::Int64, eps::Float64) outputs__ = Int[0] __cret = ccall((:atg_cosine_similarity, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cdouble), outputs__, x1.pointer, x2.pointer, dim, eps) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cross(self::Tensor, other::Tensor, dim::Int64) Wrapper of C++ function void atg\\_cross(tensor *out\\_\\_, tensor self, tensor other, int64\\_t dim) """ function cross(self::Tensor, other::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_cross, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, other.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cross_out(out::Tensor, self::Tensor, other::Tensor, dim::Int64) Wrapper of C++ function void atg\\_cross\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other, int64\\_t dim) """ function cross_out(out::Tensor, self::Tensor, other::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_cross_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, other.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ctc_loss(log_probs::Tensor, targets::Tensor, input_lengths_data::Array{Int64}, target_lengths_data::Array{Int64}, blank::Int64, reduction::Int64, zero_infinity::Int) Wrapper of C++ function void atg\\_ctc\\_loss(tensor *out\\_\\_, tensor log\\_probs, tensor targets, int64\\_t *input\\_lengths\\_data, int input\\_lengths\\_len, int64\\_t *target\\_lengths\\_data, int target\\_lengths\\_len, int64\\_t blank, int64\\_t reduction, int zero\\_infinity) """ function ctc_loss(log_probs::Tensor, targets::Tensor, input_lengths_data::Array{Int64}, target_lengths_data::Array{Int64}, blank::Int64, reduction::Int64, zero_infinity::Int) outputs__ = Int[0] input_lengths_len = length(input_lengths_data) target_lengths_len = length(target_lengths_data) __cret = ccall((:atg_ctc_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Clonglong, Cint), outputs__, log_probs.pointer, targets.pointer, input_lengths_data, input_lengths_len, target_lengths_data, target_lengths_len, blank, reduction, zero_infinity) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ctc_loss1(log_probs::Tensor, targets::Tensor, input_lengths::Tensor, target_lengths::Tensor, blank::Int64, reduction::Int64, zero_infinity::Int) Wrapper of C++ function void atg\\_ctc\\_loss1(tensor *out\\_\\_, tensor log\\_probs, tensor targets, tensor input\\_lengths, tensor target\\_lengths, int64\\_t blank, int64\\_t reduction, int zero\\_infinity) """ function ctc_loss1(log_probs::Tensor, targets::Tensor, input_lengths::Tensor, target_lengths::Tensor, blank::Int64, reduction::Int64, zero_infinity::Int) outputs__ = Int[0] __cret = ccall((:atg_ctc_loss1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, log_probs.pointer, targets.pointer, input_lengths.pointer, target_lengths.pointer, blank, reduction, zero_infinity) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_affine_grid_generator(theta::Tensor, n::Int64, C::Int64, H::Int64, W::Int64) Wrapper of C++ function void atg\\_cudnn\\_affine\\_grid\\_generator(tensor *out\\_\\_, tensor theta, int64\\_t n, int64\\_t C, int64\\_t H, int64\\_t W) """ function cudnn_affine_grid_generator(theta::Tensor, n::Int64, C::Int64, H::Int64, W::Int64) outputs__ = Int[0] __cret = ccall((:atg_cudnn_affine_grid_generator, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong, Clonglong), outputs__, theta.pointer, n, C, H, W) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_affine_grid_generator_backward(grad::Tensor, n::Int64, C::Int64, H::Int64, W::Int64) Wrapper of C++ function void atg\\_cudnn\\_affine\\_grid\\_generator\\_backward(tensor *out\\_\\_, tensor grad, int64\\_t n, int64\\_t C, int64\\_t H, int64\\_t W) """ function cudnn_affine_grid_generator_backward(grad::Tensor, n::Int64, C::Int64, H::Int64, W::Int64) outputs__ = Int[0] __cret = ccall((:atg_cudnn_affine_grid_generator_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong, Clonglong), outputs__, grad.pointer, n, C, H, W) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_batch_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, training::Int, exponential_average_factor::Float64, epsilon::Float64) Wrapper of C++ function void atg\\_cudnn\\_batch\\_norm(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, tensor running\\_mean, tensor running\\_var, int training, double exponential\\_average\\_factor, double epsilon) """ function cudnn_batch_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, training::Int, exponential_average_factor::Float64, epsilon::Float64) outputs__ = Int[0, 0, 0, 0] __cret = ccall((:atg_cudnn_batch_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cdouble, Cdouble), outputs__, input.pointer, weight.pointer, bias.pointer, running_mean.pointer, running_var.pointer, training, exponential_average_factor, epsilon) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) __o_4 = tensor_from_ptr(Ptr{Cvoid}(outputs__[4])) return __o_1, __o_2, __o_3, __o_4 end """ cudnn_batch_norm_backward(input::Tensor, grad_output::Tensor, weight::Tensor, running_mean::Tensor, running_var::Tensor, save_mean::Tensor, save_var::Tensor, epsilon::Float64, reserveSpace::Tensor) Wrapper of C++ function void atg\\_cudnn\\_batch\\_norm\\_backward(tensor *out\\_\\_, tensor input, tensor grad\\_output, tensor weight, tensor running\\_mean, tensor running\\_var, tensor save\\_mean, tensor save\\_var, double epsilon, tensor reserveSpace) """ function cudnn_batch_norm_backward(input::Tensor, grad_output::Tensor, weight::Tensor, running_mean::Tensor, running_var::Tensor, save_mean::Tensor, save_var::Tensor, epsilon::Float64, reserveSpace::Tensor) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_cudnn_batch_norm_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Ptr{Cvoid}), outputs__, input.pointer, grad_output.pointer, weight.pointer, running_mean.pointer, running_var.pointer, save_mean.pointer, save_var.pointer, epsilon, reserveSpace.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ cudnn_convolution(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_cudnn\\_convolution(tensor *out\\_\\_, tensor self, tensor weight, tensor bias, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function cudnn_convolution(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_cudnn_convolution, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, self.pointer, weight.pointer, bias.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_convolution_backward_bias(grad_output::Tensor) Wrapper of C++ function void atg\\_cudnn\\_convolution\\_backward\\_bias(tensor *out\\_\\_, tensor grad\\_output) """ function cudnn_convolution_backward_bias(grad_output::Tensor) outputs__ = Int[0] __cret = ccall((:atg_cudnn_convolution_backward_bias, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_convolution_backward_input(self_size_data::Array{Int64}, grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_cudnn\\_convolution\\_backward\\_input(tensor *out\\_\\_, int64\\_t *self\\_size\\_data, int self\\_size\\_len, tensor grad\\_output, tensor weight, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function cudnn_convolution_backward_input(self_size_data::Array{Int64}, grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] self_size_len = length(self_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_cudnn_convolution_backward_input, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, self_size_data, self_size_len, grad_output.pointer, weight.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_convolution_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_cudnn\\_convolution\\_backward\\_weight(tensor *out\\_\\_, int64\\_t *weight\\_size\\_data, int weight\\_size\\_len, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function cudnn_convolution_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] weight_size_len = length(weight_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_cudnn_convolution_backward_weight, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, weight_size_data, weight_size_len, grad_output.pointer, self.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_convolution_transpose(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, output_padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_cudnn\\_convolution\\_transpose(tensor *out\\_\\_, tensor self, tensor weight, tensor bias, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function cudnn_convolution_transpose(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, output_padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] padding_len = length(padding_data) output_padding_len = length(output_padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_cudnn_convolution_transpose, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, self.pointer, weight.pointer, bias.pointer, padding_data, padding_len, output_padding_data, output_padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_convolution_transpose_backward_bias(grad_output::Tensor) Wrapper of C++ function void atg\\_cudnn\\_convolution\\_transpose\\_backward\\_bias(tensor *out\\_\\_, tensor grad\\_output) """ function cudnn_convolution_transpose_backward_bias(grad_output::Tensor) outputs__ = Int[0] __cret = ccall((:atg_cudnn_convolution_transpose_backward_bias, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_convolution_transpose_backward_input(grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_cudnn\\_convolution\\_transpose\\_backward\\_input(tensor *out\\_\\_, tensor grad\\_output, tensor weight, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function cudnn_convolution_transpose_backward_input(grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_cudnn_convolution_transpose_backward_input, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, grad_output.pointer, weight.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_convolution_transpose_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_cudnn\\_convolution\\_transpose\\_backward\\_weight(tensor *out\\_\\_, int64\\_t *weight\\_size\\_data, int weight\\_size\\_len, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function cudnn_convolution_transpose_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] weight_size_len = length(weight_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_cudnn_convolution_transpose_backward_weight, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, weight_size_data, weight_size_len, grad_output.pointer, self.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_grid_sampler(self::Tensor, grid::Tensor) Wrapper of C++ function void atg\\_cudnn\\_grid\\_sampler(tensor *out\\_\\_, tensor self, tensor grid) """ function cudnn_grid_sampler(self::Tensor, grid::Tensor) outputs__ = Int[0] __cret = ccall((:atg_cudnn_grid_sampler, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, grid.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cudnn_grid_sampler_backward(self::Tensor, grid::Tensor, grad_output::Tensor) Wrapper of C++ function void atg\\_cudnn\\_grid\\_sampler\\_backward(tensor *out\\_\\_, tensor self, tensor grid, tensor grad\\_output) """ function cudnn_grid_sampler_backward(self::Tensor, grid::Tensor, grad_output::Tensor) outputs__ = Int[0, 0] __cret = ccall((:atg_cudnn_grid_sampler_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, grid.pointer, grad_output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end import Base.cumprod """ cumprod(self::Tensor, dim::Int64, dtype::Int) Wrapper of C++ function void atg\\_cumprod(tensor *out\\_\\_, tensor self, int64\\_t dim, int dtype) """ function cumprod(self::Tensor, dim::Int64, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_cumprod, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cumprod_out(out::Tensor, self::Tensor, dim::Int64, dtype::Int) Wrapper of C++ function void atg\\_cumprod\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t dim, int dtype) """ function cumprod_out(out::Tensor, self::Tensor, dim::Int64, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_cumprod_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, out.pointer, self.pointer, dim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.cumsum """ cumsum(self::Tensor, dim::Int64, dtype::Int) Wrapper of C++ function void atg\\_cumsum(tensor *out\\_\\_, tensor self, int64\\_t dim, int dtype) """ function cumsum(self::Tensor, dim::Int64, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_cumsum, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ cumsum_out(out::Tensor, self::Tensor, dim::Int64, dtype::Int) Wrapper of C++ function void atg\\_cumsum\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t dim, int dtype) """ function cumsum_out(out::Tensor, self::Tensor, dim::Int64, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_cumsum_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, out.pointer, self.pointer, dim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ data(self::Tensor) Wrapper of C++ function void atg\\_data(tensor *out\\_\\_, tensor self) """ function data(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_data, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ dequantize(self::Tensor) Wrapper of C++ function void atg\\_dequantize(tensor *out\\_\\_, tensor self) """ function dequantize(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_dequantize, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ det(self::Tensor) Wrapper of C++ function void atg\\_det(tensor *out\\_\\_, tensor self) """ function det(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_det, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.detach """ detach(self::Tensor) Wrapper of C++ function void atg\\_detach(tensor *out\\_\\_, tensor self) """ function detach(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_detach, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ detach!(self::Tensor) Wrapper of C++ function void atg\\_detach\\_(tensor *out\\_\\_, tensor self) """ function detach!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_detach_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ diag(self::Tensor, diagonal::Int64) Wrapper of C++ function void atg\\_diag(tensor *out\\_\\_, tensor self, int64\\_t diagonal) """ function diag(self::Tensor, diagonal::Int64) outputs__ = Int[0] __cret = ccall((:atg_diag, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, diagonal) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ diag_embed(self::Tensor, offset::Int64, dim1::Int64, dim2::Int64) Wrapper of C++ function void atg\\_diag\\_embed(tensor *out\\_\\_, tensor self, int64\\_t offset, int64\\_t dim1, int64\\_t dim2) """ function diag_embed(self::Tensor, offset::Int64, dim1::Int64, dim2::Int64) outputs__ = Int[0] __cret = ccall((:atg_diag_embed, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong), outputs__, self.pointer, offset, dim1, dim2) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ diag_out(out::Tensor, self::Tensor, diagonal::Int64) Wrapper of C++ function void atg\\_diag\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t diagonal) """ function diag_out(out::Tensor, self::Tensor, diagonal::Int64) outputs__ = Int[0] __cret = ccall((:atg_diag_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, diagonal) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ diagflat(self::Tensor, offset::Int64) Wrapper of C++ function void atg\\_diagflat(tensor *out\\_\\_, tensor self, int64\\_t offset) """ function diagflat(self::Tensor, offset::Int64) outputs__ = Int[0] __cret = ccall((:atg_diagflat, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, offset) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ diagonal(self::Tensor, offset::Int64, dim1::Int64, dim2::Int64) Wrapper of C++ function void atg\\_diagonal(tensor *out\\_\\_, tensor self, int64\\_t offset, int64\\_t dim1, int64\\_t dim2) """ function diagonal(self::Tensor, offset::Int64, dim1::Int64, dim2::Int64) outputs__ = Int[0] __cret = ccall((:atg_diagonal, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong), outputs__, self.pointer, offset, dim1, dim2) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ digamma(self::Tensor) Wrapper of C++ function void atg\\_digamma(tensor *out\\_\\_, tensor self) """ function digamma(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_digamma, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ digamma!(self::Tensor) Wrapper of C++ function void atg\\_digamma\\_(tensor *out\\_\\_, tensor self) """ function digamma!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_digamma_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ digamma_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_digamma\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function digamma_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_digamma_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ dist(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_dist(tensor *out\\_\\_, tensor self, tensor other) """ function dist(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_dist, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ div(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_div(tensor *out\\_\\_, tensor self, tensor other) """ function div(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_div, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ div1(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_div1(tensor *out\\_\\_, tensor self, scalar other) """ function div1(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_div1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ div!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_div\\_(tensor *out\\_\\_, tensor self, tensor other) """ function div!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_div_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ div1!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_div\\_1(tensor *out\\_\\_, tensor self, scalar other) """ function div1!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_div_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ div_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_div\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function div_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_div_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ dot(self::Tensor, tensor::Tensor) Wrapper of C++ function void atg\\_dot(tensor *out\\_\\_, tensor self, tensor tensor) """ function dot(self::Tensor, tensor::Tensor) outputs__ = Int[0] __cret = ccall((:atg_dot, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, tensor.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ dot_out(out::Tensor, self::Tensor, tensor::Tensor) Wrapper of C++ function void atg\\_dot\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor tensor) """ function dot_out(out::Tensor, self::Tensor, tensor::Tensor) outputs__ = Int[0] __cret = ccall((:atg_dot_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, tensor.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ dropout(input::Tensor, p::Float64, train::Int) Wrapper of C++ function void atg\\_dropout(tensor *out\\_\\_, tensor input, double p, int train) """ function dropout(input::Tensor, p::Float64, train::Int) outputs__ = Int[0] __cret = ccall((:atg_dropout, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, input.pointer, p, train) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ dropout!(self::Tensor, p::Float64, train::Int) Wrapper of C++ function void atg\\_dropout\\_(tensor *out\\_\\_, tensor self, double p, int train) """ function dropout!(self::Tensor, p::Float64, train::Int) outputs__ = Int[0] __cret = ccall((:atg_dropout_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, self.pointer, p, train) return self end """ eig(self::Tensor, eigenvectors::Int) Wrapper of C++ function void atg\\_eig(tensor *out\\_\\_, tensor self, int eigenvectors) """ function eig(self::Tensor, eigenvectors::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_eig, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, eigenvectors) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ eig_out(e::Tensor, v::Tensor, self::Tensor, eigenvectors::Int) Wrapper of C++ function void atg\\_eig\\_out(tensor *out\\_\\_, tensor e, tensor v, tensor self, int eigenvectors) """ function eig_out(e::Tensor, v::Tensor, self::Tensor, eigenvectors::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_eig_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, e.pointer, v.pointer, self.pointer, eigenvectors) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ elu(self::Tensor) Wrapper of C++ function void atg\\_elu(tensor *out\\_\\_, tensor self) """ function elu(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_elu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ elu!(self::Tensor) Wrapper of C++ function void atg\\_elu\\_(tensor *out\\_\\_, tensor self) """ function elu!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_elu_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ elu_backward(grad_output::Tensor, alpha::TorchNumber, scale::TorchNumber, input_scale::TorchNumber, output::Tensor) Wrapper of C++ function void atg\\_elu\\_backward(tensor *out\\_\\_, tensor grad\\_output, scalar alpha, scalar scale, scalar input\\_scale, tensor output) """ function elu_backward(grad_output::Tensor, alpha::TorchNumber, scale::TorchNumber, input_scale::TorchNumber, output::Tensor) outputs__ = Int[0] alpha_s_ = Scalar(alpha) scale_s_ = Scalar(scale) input_scale_s_ = Scalar(input_scale) __cret = ccall((:atg_elu_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, alpha_s_.pointer, scale_s_.pointer, input_scale_s_.pointer, output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ elu_backward_out(grad_input::Tensor, grad_output::Tensor, alpha::TorchNumber, scale::TorchNumber, input_scale::TorchNumber, output::Tensor) Wrapper of C++ function void atg\\_elu\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, scalar alpha, scalar scale, scalar input\\_scale, tensor output) """ function elu_backward_out(grad_input::Tensor, grad_output::Tensor, alpha::TorchNumber, scale::TorchNumber, input_scale::TorchNumber, output::Tensor) outputs__ = Int[0] alpha_s_ = Scalar(alpha) scale_s_ = Scalar(scale) input_scale_s_ = Scalar(input_scale) __cret = ccall((:atg_elu_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, alpha_s_.pointer, scale_s_.pointer, input_scale_s_.pointer, output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ elu_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_elu\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function elu_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_elu_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ embedding(weight::Tensor, indices::Tensor, padding_idx::Int64, scale_grad_by_freq::Int, sparse::Int) Wrapper of C++ function void atg\\_embedding(tensor *out\\_\\_, tensor weight, tensor indices, int64\\_t padding\\_idx, int scale\\_grad\\_by\\_freq, int sparse) """ function embedding(weight::Tensor, indices::Tensor, padding_idx::Int64, scale_grad_by_freq::Int, sparse::Int) outputs__ = Int[0] __cret = ccall((:atg_embedding, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, weight.pointer, indices.pointer, padding_idx, scale_grad_by_freq, sparse) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ embedding_backward(grad::Tensor, indices::Tensor, num_weights::Int64, padding_idx::Int64, scale_grad_by_freq::Int, sparse::Int) Wrapper of C++ function void atg\\_embedding\\_backward(tensor *out\\_\\_, tensor grad, tensor indices, int64\\_t num\\_weights, int64\\_t padding\\_idx, int scale\\_grad\\_by\\_freq, int sparse) """ function embedding_backward(grad::Tensor, indices::Tensor, num_weights::Int64, padding_idx::Int64, scale_grad_by_freq::Int, sparse::Int) outputs__ = Int[0] __cret = ccall((:atg_embedding_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint, Cint), outputs__, grad.pointer, indices.pointer, num_weights, padding_idx, scale_grad_by_freq, sparse) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ embedding_bag(weight::Tensor, indices::Tensor, offsets::Tensor, scale_grad_by_freq::Int, mode::Int64, sparse::Int, per_sample_weights::Tensor) Wrapper of C++ function void atg\\_embedding\\_bag(tensor *out\\_\\_, tensor weight, tensor indices, tensor offsets, int scale\\_grad\\_by\\_freq, int64\\_t mode, int sparse, tensor per\\_sample\\_weights) """ function embedding_bag(weight::Tensor, indices::Tensor, offsets::Tensor, scale_grad_by_freq::Int, mode::Int64, sparse::Int, per_sample_weights::Tensor) outputs__ = Int[0, 0, 0, 0] __cret = ccall((:atg_embedding_bag, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Clonglong, Cint, Ptr{Cvoid}), outputs__, weight.pointer, indices.pointer, offsets.pointer, scale_grad_by_freq, mode, sparse, per_sample_weights.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) __o_4 = tensor_from_ptr(Ptr{Cvoid}(outputs__[4])) return __o_1, __o_2, __o_3, __o_4 end """ embedding_dense_backward(grad_output::Tensor, indices::Tensor, num_weights::Int64, padding_idx::Int64, scale_grad_by_freq::Int) Wrapper of C++ function void atg\\_embedding\\_dense\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor indices, int64\\_t num\\_weights, int64\\_t padding\\_idx, int scale\\_grad\\_by\\_freq) """ function embedding_dense_backward(grad_output::Tensor, indices::Tensor, num_weights::Int64, padding_idx::Int64, scale_grad_by_freq::Int) outputs__ = Int[0] __cret = ccall((:atg_embedding_dense_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, grad_output.pointer, indices.pointer, num_weights, padding_idx, scale_grad_by_freq) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ embedding_renorm!(self::Tensor, indices::Tensor, max_norm::Float64, norm_type::Float64) Wrapper of C++ function void atg\\_embedding\\_renorm\\_(tensor *out\\_\\_, tensor self, tensor indices, double max\\_norm, double norm\\_type) """ function embedding_renorm!(self::Tensor, indices::Tensor, max_norm::Float64, norm_type::Float64) outputs__ = Int[0] __cret = ccall((:atg_embedding_renorm_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble), outputs__, self.pointer, indices.pointer, max_norm, norm_type) return self end """ embedding_sparse_backward(grad::Tensor, indices::Tensor, num_weights::Int64, padding_idx::Int64, scale_grad_by_freq::Int) Wrapper of C++ function void atg\\_embedding\\_sparse\\_backward(tensor *out\\_\\_, tensor grad, tensor indices, int64\\_t num\\_weights, int64\\_t padding\\_idx, int scale\\_grad\\_by\\_freq) """ function embedding_sparse_backward(grad::Tensor, indices::Tensor, num_weights::Int64, padding_idx::Int64, scale_grad_by_freq::Int) outputs__ = Int[0] __cret = ccall((:atg_embedding_sparse_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, grad.pointer, indices.pointer, num_weights, padding_idx, scale_grad_by_freq) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.empty """ empty(size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_empty(tensor *out\\_\\_, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function empty(size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_empty, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ empty_like(self::Tensor) Wrapper of C++ function void atg\\_empty\\_like(tensor *out\\_\\_, tensor self) """ function empty_like(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_empty_like, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ empty_like1(self::Tensor, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_empty\\_like1(tensor *out\\_\\_, tensor self, int options\\_kind, int options\\_device) """ function empty_like1(self::Tensor, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_empty_like1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ empty_out(out::Tensor, size_data::Array{Int64}) Wrapper of C++ function void atg\\_empty\\_out(tensor *out\\_\\_, tensor out, int64\\_t *size\\_data, int size\\_len) """ function empty_out(out::Tensor, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_empty_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ empty_strided(size_data::Array{Int64}, stride_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_empty\\_strided(tensor *out\\_\\_, int64\\_t *size\\_data, int size\\_len, int64\\_t *stride\\_data, int stride\\_len, int options\\_kind, int options\\_device) """ function empty_strided(size_data::Array{Int64}, stride_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) stride_len = length(stride_data) __cret = ccall((:atg_empty_strided, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, size_data, size_len, stride_data, stride_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ eq(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_eq(tensor *out\\_\\_, tensor self, scalar other) """ function eq(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_eq, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ eq1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_eq1(tensor *out\\_\\_, tensor self, tensor other) """ function eq1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_eq1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ eq!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_eq\\_(tensor *out\\_\\_, tensor self, scalar other) """ function eq!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_eq_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ eq1!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_eq\\_1(tensor *out\\_\\_, tensor self, tensor other) """ function eq1!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_eq_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ eq_out(out::Tensor, self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_eq\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar other) """ function eq_out(out::Tensor, self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_eq_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ eq_out1(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_eq\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function eq_out1(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_eq_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ erf(self::Tensor) Wrapper of C++ function void atg\\_erf(tensor *out\\_\\_, tensor self) """ function erf(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_erf, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ erf!(self::Tensor) Wrapper of C++ function void atg\\_erf\\_(tensor *out\\_\\_, tensor self) """ function erf!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_erf_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ erf_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_erf\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function erf_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_erf_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ erfc(self::Tensor) Wrapper of C++ function void atg\\_erfc(tensor *out\\_\\_, tensor self) """ function erfc(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_erfc, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ erfc!(self::Tensor) Wrapper of C++ function void atg\\_erfc\\_(tensor *out\\_\\_, tensor self) """ function erfc!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_erfc_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ erfc_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_erfc\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function erfc_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_erfc_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ erfinv(self::Tensor) Wrapper of C++ function void atg\\_erfinv(tensor *out\\_\\_, tensor self) """ function erfinv(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_erfinv, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ erfinv!(self::Tensor) Wrapper of C++ function void atg\\_erfinv\\_(tensor *out\\_\\_, tensor self) """ function erfinv!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_erfinv_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ erfinv_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_erfinv\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function erfinv_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_erfinv_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.exp """ exp(self::Tensor) Wrapper of C++ function void atg\\_exp(tensor *out\\_\\_, tensor self) """ function exp(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_exp, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ exp!(self::Tensor) Wrapper of C++ function void atg\\_exp\\_(tensor *out\\_\\_, tensor self) """ function exp!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_exp_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ exp_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_exp\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function exp_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_exp_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ expand(self::Tensor, size_data::Array{Int64}, implicit::Int) Wrapper of C++ function void atg\\_expand(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len, int implicit) """ function expand(self::Tensor, size_data::Array{Int64}, implicit::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_expand, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, size_data, size_len, implicit) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ expand_as(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_expand\\_as(tensor *out\\_\\_, tensor self, tensor other) """ function expand_as(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_expand_as, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.expm1 """ expm1(self::Tensor) Wrapper of C++ function void atg\\_expm1(tensor *out\\_\\_, tensor self) """ function expm1(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_expm1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ expm1!(self::Tensor) Wrapper of C++ function void atg\\_expm1\\_(tensor *out\\_\\_, tensor self) """ function expm1!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_expm1_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ expm1_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_expm1\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function expm1_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_expm1_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ exponential!(self::Tensor, lambd::Float64) Wrapper of C++ function void atg\\_exponential\\_(tensor *out\\_\\_, tensor self, double lambd) """ function exponential!(self::Tensor, lambd::Float64) outputs__ = Int[0] __cret = ccall((:atg_exponential_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, self.pointer, lambd) return self end """ eye(n::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_eye(tensor *out\\_\\_, int64\\_t n, int options\\_kind, int options\\_device) """ function eye(n::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_eye, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, n, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ eye1(n::Int64, m::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_eye1(tensor *out\\_\\_, int64\\_t n, int64\\_t m, int options\\_kind, int options\\_device) """ function eye1(n::Int64, m::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_eye1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Clonglong, Cint, Cint), outputs__, n, m, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ eye_out(out::Tensor, n::Int64) Wrapper of C++ function void atg\\_eye\\_out(tensor *out\\_\\_, tensor out, int64\\_t n) """ function eye_out(out::Tensor, n::Int64) outputs__ = Int[0] __cret = ccall((:atg_eye_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, n) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ eye_out1(out::Tensor, n::Int64, m::Int64) Wrapper of C++ function void atg\\_eye\\_out1(tensor *out\\_\\_, tensor out, int64\\_t n, int64\\_t m) """ function eye_out1(out::Tensor, n::Int64, m::Int64) outputs__ = Int[0] __cret = ccall((:atg_eye_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, out.pointer, n, m) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fake_quantize_per_channel_affine(self::Tensor, scale::Tensor, zero_point::Tensor, axis::Int64, quant_min::Int64, quant_max::Int64) Wrapper of C++ function void atg\\_fake\\_quantize\\_per\\_channel\\_affine(tensor *out\\_\\_, tensor self, tensor scale, tensor zero\\_point, int64\\_t axis, int64\\_t quant\\_min, int64\\_t quant\\_max) """ function fake_quantize_per_channel_affine(self::Tensor, scale::Tensor, zero_point::Tensor, axis::Int64, quant_min::Int64, quant_max::Int64) outputs__ = Int[0] __cret = ccall((:atg_fake_quantize_per_channel_affine, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong), outputs__, self.pointer, scale.pointer, zero_point.pointer, axis, quant_min, quant_max) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fake_quantize_per_channel_affine_backward(grad::Tensor, self::Tensor, scale::Tensor, zero_point::Tensor, axis::Int64, quant_min::Int64, quant_max::Int64) Wrapper of C++ function void atg\\_fake\\_quantize\\_per\\_channel\\_affine\\_backward(tensor *out\\_\\_, tensor grad, tensor self, tensor scale, tensor zero\\_point, int64\\_t axis, int64\\_t quant\\_min, int64\\_t quant\\_max) """ function fake_quantize_per_channel_affine_backward(grad::Tensor, self::Tensor, scale::Tensor, zero_point::Tensor, axis::Int64, quant_min::Int64, quant_max::Int64) outputs__ = Int[0] __cret = ccall((:atg_fake_quantize_per_channel_affine_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong), outputs__, grad.pointer, self.pointer, scale.pointer, zero_point.pointer, axis, quant_min, quant_max) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fake_quantize_per_tensor_affine(self::Tensor, scale::Float64, zero_point::Int64, quant_min::Int64, quant_max::Int64) Wrapper of C++ function void atg\\_fake\\_quantize\\_per\\_tensor\\_affine(tensor *out\\_\\_, tensor self, double scale, int64\\_t zero\\_point, int64\\_t quant\\_min, int64\\_t quant\\_max) """ function fake_quantize_per_tensor_affine(self::Tensor, scale::Float64, zero_point::Int64, quant_min::Int64, quant_max::Int64) outputs__ = Int[0] __cret = ccall((:atg_fake_quantize_per_tensor_affine, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Clonglong, Clonglong, Clonglong), outputs__, self.pointer, scale, zero_point, quant_min, quant_max) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fake_quantize_per_tensor_affine_backward(grad::Tensor, self::Tensor, scale::Float64, zero_point::Int64, quant_min::Int64, quant_max::Int64) Wrapper of C++ function void atg\\_fake\\_quantize\\_per\\_tensor\\_affine\\_backward(tensor *out\\_\\_, tensor grad, tensor self, double scale, int64\\_t zero\\_point, int64\\_t quant\\_min, int64\\_t quant\\_max) """ function fake_quantize_per_tensor_affine_backward(grad::Tensor, self::Tensor, scale::Float64, zero_point::Int64, quant_min::Int64, quant_max::Int64) outputs__ = Int[0] __cret = ccall((:atg_fake_quantize_per_tensor_affine_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Clonglong, Clonglong, Clonglong), outputs__, grad.pointer, self.pointer, scale, zero_point, quant_min, quant_max) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fbgemm_linear_fp16_weight(input::Tensor, packed_weight::Tensor, bias::Tensor) Wrapper of C++ function void atg\\_fbgemm\\_linear\\_fp16\\_weight(tensor *out\\_\\_, tensor input, tensor packed\\_weight, tensor bias) """ function fbgemm_linear_fp16_weight(input::Tensor, packed_weight::Tensor, bias::Tensor) outputs__ = Int[0] __cret = ccall((:atg_fbgemm_linear_fp16_weight, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, packed_weight.pointer, bias.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fbgemm_linear_fp16_weight_fp32_activation(input::Tensor, packed_weight::Tensor, bias::Tensor) Wrapper of C++ function void atg\\_fbgemm\\_linear\\_fp16\\_weight\\_fp32\\_activation(tensor *out\\_\\_, tensor input, tensor packed\\_weight, tensor bias) """ function fbgemm_linear_fp16_weight_fp32_activation(input::Tensor, packed_weight::Tensor, bias::Tensor) outputs__ = Int[0] __cret = ccall((:atg_fbgemm_linear_fp16_weight_fp32_activation, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, packed_weight.pointer, bias.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fbgemm_linear_int8_weight(input::Tensor, weight::Tensor, packed::Tensor, col_offsets::Tensor, weight_scale::TorchNumber, weight_zero_point::TorchNumber, bias::Tensor) Wrapper of C++ function void atg\\_fbgemm\\_linear\\_int8\\_weight(tensor *out\\_\\_, tensor input, tensor weight, tensor packed, tensor col\\_offsets, scalar weight\\_scale, scalar weight\\_zero\\_point, tensor bias) """ function fbgemm_linear_int8_weight(input::Tensor, weight::Tensor, packed::Tensor, col_offsets::Tensor, weight_scale::TorchNumber, weight_zero_point::TorchNumber, bias::Tensor) outputs__ = Int[0] weight_scale_s_ = Scalar(weight_scale) weight_zero_point_s_ = Scalar(weight_zero_point) __cret = ccall((:atg_fbgemm_linear_int8_weight, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, weight.pointer, packed.pointer, col_offsets.pointer, weight_scale_s_.pointer, weight_zero_point_s_.pointer, bias.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fbgemm_linear_int8_weight_fp32_activation(input::Tensor, weight::Tensor, packed::Tensor, col_offsets::Tensor, weight_scale::TorchNumber, weight_zero_point::TorchNumber, bias::Tensor) Wrapper of C++ function void atg\\_fbgemm\\_linear\\_int8\\_weight\\_fp32\\_activation(tensor *out\\_\\_, tensor input, tensor weight, tensor packed, tensor col\\_offsets, scalar weight\\_scale, scalar weight\\_zero\\_point, tensor bias) """ function fbgemm_linear_int8_weight_fp32_activation(input::Tensor, weight::Tensor, packed::Tensor, col_offsets::Tensor, weight_scale::TorchNumber, weight_zero_point::TorchNumber, bias::Tensor) outputs__ = Int[0] weight_scale_s_ = Scalar(weight_scale) weight_zero_point_s_ = Scalar(weight_zero_point) __cret = ccall((:atg_fbgemm_linear_int8_weight_fp32_activation, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, weight.pointer, packed.pointer, col_offsets.pointer, weight_scale_s_.pointer, weight_zero_point_s_.pointer, bias.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fbgemm_pack_gemm_matrix_fp16(input::Tensor) Wrapper of C++ function void atg\\_fbgemm\\_pack\\_gemm\\_matrix\\_fp16(tensor *out\\_\\_, tensor input) """ function fbgemm_pack_gemm_matrix_fp16(input::Tensor) outputs__ = Int[0] __cret = ccall((:atg_fbgemm_pack_gemm_matrix_fp16, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fbgemm_pack_quantized_matrix(input::Tensor) Wrapper of C++ function void atg\\_fbgemm\\_pack\\_quantized\\_matrix(tensor *out\\_\\_, tensor input) """ function fbgemm_pack_quantized_matrix(input::Tensor) outputs__ = Int[0] __cret = ccall((:atg_fbgemm_pack_quantized_matrix, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fbgemm_pack_quantized_matrix1(input::Tensor, K::Int64, n::Int64) Wrapper of C++ function void atg\\_fbgemm\\_pack\\_quantized\\_matrix1(tensor *out\\_\\_, tensor input, int64\\_t K, int64\\_t n) """ function fbgemm_pack_quantized_matrix1(input::Tensor, K::Int64, n::Int64) outputs__ = Int[0] __cret = ccall((:atg_fbgemm_pack_quantized_matrix1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, input.pointer, K, n) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ feature_alpha_dropout(input::Tensor, p::Float64, train::Int) Wrapper of C++ function void atg\\_feature\\_alpha\\_dropout(tensor *out\\_\\_, tensor input, double p, int train) """ function feature_alpha_dropout(input::Tensor, p::Float64, train::Int) outputs__ = Int[0] __cret = ccall((:atg_feature_alpha_dropout, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, input.pointer, p, train) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ feature_alpha_dropout!(self::Tensor, p::Float64, train::Int) Wrapper of C++ function void atg\\_feature\\_alpha\\_dropout\\_(tensor *out\\_\\_, tensor self, double p, int train) """ function feature_alpha_dropout!(self::Tensor, p::Float64, train::Int) outputs__ = Int[0] __cret = ccall((:atg_feature_alpha_dropout_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, self.pointer, p, train) return self end """ feature_dropout(input::Tensor, p::Float64, train::Int) Wrapper of C++ function void atg\\_feature\\_dropout(tensor *out\\_\\_, tensor input, double p, int train) """ function feature_dropout(input::Tensor, p::Float64, train::Int) outputs__ = Int[0] __cret = ccall((:atg_feature_dropout, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, input.pointer, p, train) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ feature_dropout!(self::Tensor, p::Float64, train::Int) Wrapper of C++ function void atg\\_feature\\_dropout\\_(tensor *out\\_\\_, tensor self, double p, int train) """ function feature_dropout!(self::Tensor, p::Float64, train::Int) outputs__ = Int[0] __cret = ccall((:atg_feature_dropout_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, self.pointer, p, train) return self end """ fft(self::Tensor, signal_ndim::Int64, normalized::Int) Wrapper of C++ function void atg\\_fft(tensor *out\\_\\_, tensor self, int64\\_t signal\\_ndim, int normalized) """ function fft(self::Tensor, signal_ndim::Int64, normalized::Int) outputs__ = Int[0] __cret = ccall((:atg_fft, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, signal_ndim, normalized) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.fill! """ fill!(self::Tensor, value::TorchNumber) Wrapper of C++ function void atg\\_fill\\_(tensor *out\\_\\_, tensor self, scalar value) """ function fill!(self::Tensor, value::TorchNumber) outputs__ = Int[0] value_s_ = Scalar(value) __cret = ccall((:atg_fill_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, value_s_.pointer) return self end """ fill1!(self::Tensor, value::Tensor) Wrapper of C++ function void atg\\_fill\\_1(tensor *out\\_\\_, tensor self, tensor value) """ function fill1!(self::Tensor, value::Tensor) outputs__ = Int[0] __cret = ccall((:atg_fill_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, value.pointer) return self end """ fill_diagonal!(self::Tensor, fill_value::TorchNumber, wrap::Int) Wrapper of C++ function void atg\\_fill\\_diagonal\\_(tensor *out\\_\\_, tensor self, scalar fill\\_value, int wrap) """ function fill_diagonal!(self::Tensor, fill_value::TorchNumber, wrap::Int) outputs__ = Int[0] fill_value_s_ = Scalar(fill_value) __cret = ccall((:atg_fill_diagonal_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, fill_value_s_.pointer, wrap) return self end """ flatten(self::Tensor, start_dim::Int64, end_dim::Int64) Wrapper of C++ function void atg\\_flatten(tensor *out\\_\\_, tensor self, int64\\_t start\\_dim, int64\\_t end\\_dim) """ function flatten(self::Tensor, start_dim::Int64, end_dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_flatten, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, self.pointer, start_dim, end_dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ flip(self::Tensor, dims_data::Array{Int64}) Wrapper of C++ function void atg\\_flip(tensor *out\\_\\_, tensor self, int64\\_t *dims\\_data, int dims\\_len) """ function flip(self::Tensor, dims_data::Array{Int64}) outputs__ = Int[0] dims_len = length(dims_data) __cret = ccall((:atg_flip, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, dims_data, dims_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.floor """ floor(self::Tensor) Wrapper of C++ function void atg\\_floor(tensor *out\\_\\_, tensor self) """ function floor(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_floor, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ floor!(self::Tensor) Wrapper of C++ function void atg\\_floor\\_(tensor *out\\_\\_, tensor self) """ function floor!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_floor_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ floor_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_floor\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function floor_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_floor_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fmod(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_fmod(tensor *out\\_\\_, tensor self, scalar other) """ function fmod(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_fmod, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fmod1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_fmod1(tensor *out\\_\\_, tensor self, tensor other) """ function fmod1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_fmod1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fmod!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_fmod\\_(tensor *out\\_\\_, tensor self, scalar other) """ function fmod!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_fmod_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ fmod1!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_fmod\\_1(tensor *out\\_\\_, tensor self, tensor other) """ function fmod1!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_fmod_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ fmod_out(out::Tensor, self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_fmod\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar other) """ function fmod_out(out::Tensor, self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_fmod_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fmod_out1(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_fmod\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function fmod_out1(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_fmod_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ frac(self::Tensor) Wrapper of C++ function void atg\\_frac(tensor *out\\_\\_, tensor self) """ function frac(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_frac, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ frac!(self::Tensor) Wrapper of C++ function void atg\\_frac\\_(tensor *out\\_\\_, tensor self) """ function frac!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_frac_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ frac_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_frac\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function frac_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_frac_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fractional_max_pool2d(self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, random_samples::Tensor) Wrapper of C++ function void atg\\_fractional\\_max\\_pool2d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *output\\_size\\_data, int output\\_size\\_len, tensor random\\_samples) """ function fractional_max_pool2d(self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, random_samples::Tensor) outputs__ = Int[0, 0] kernel_size_len = length(kernel_size_data) output_size_len = length(output_size_data) __cret = ccall((:atg_fractional_max_pool2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, self.pointer, kernel_size_data, kernel_size_len, output_size_data, output_size_len, random_samples.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ fractional_max_pool2d_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, indices::Tensor) Wrapper of C++ function void atg\\_fractional\\_max\\_pool2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *output\\_size\\_data, int output\\_size\\_len, tensor indices) """ function fractional_max_pool2d_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, indices::Tensor) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) output_size_len = length(output_size_data) __cret = ccall((:atg_fractional_max_pool2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, output_size_data, output_size_len, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fractional_max_pool2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, indices::Tensor) Wrapper of C++ function void atg\\_fractional\\_max\\_pool2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *output\\_size\\_data, int output\\_size\\_len, tensor indices) """ function fractional_max_pool2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, indices::Tensor) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) output_size_len = length(output_size_data) __cret = ccall((:atg_fractional_max_pool2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, output_size_data, output_size_len, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fractional_max_pool2d_out(output::Tensor, indices::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, random_samples::Tensor) Wrapper of C++ function void atg\\_fractional\\_max\\_pool2d\\_out(tensor *out\\_\\_, tensor output, tensor indices, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *output\\_size\\_data, int output\\_size\\_len, tensor random\\_samples) """ function fractional_max_pool2d_out(output::Tensor, indices::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, random_samples::Tensor) outputs__ = Int[0, 0] kernel_size_len = length(kernel_size_data) output_size_len = length(output_size_data) __cret = ccall((:atg_fractional_max_pool2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, output.pointer, indices.pointer, self.pointer, kernel_size_data, kernel_size_len, output_size_data, output_size_len, random_samples.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ fractional_max_pool3d(self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, random_samples::Tensor) Wrapper of C++ function void atg\\_fractional\\_max\\_pool3d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *output\\_size\\_data, int output\\_size\\_len, tensor random\\_samples) """ function fractional_max_pool3d(self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, random_samples::Tensor) outputs__ = Int[0, 0] kernel_size_len = length(kernel_size_data) output_size_len = length(output_size_data) __cret = ccall((:atg_fractional_max_pool3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, self.pointer, kernel_size_data, kernel_size_len, output_size_data, output_size_len, random_samples.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ fractional_max_pool3d_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, indices::Tensor) Wrapper of C++ function void atg\\_fractional\\_max\\_pool3d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *output\\_size\\_data, int output\\_size\\_len, tensor indices) """ function fractional_max_pool3d_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, indices::Tensor) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) output_size_len = length(output_size_data) __cret = ccall((:atg_fractional_max_pool3d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, output_size_data, output_size_len, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fractional_max_pool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, indices::Tensor) Wrapper of C++ function void atg\\_fractional\\_max\\_pool3d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *output\\_size\\_data, int output\\_size\\_len, tensor indices) """ function fractional_max_pool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, indices::Tensor) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) output_size_len = length(output_size_data) __cret = ccall((:atg_fractional_max_pool3d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, output_size_data, output_size_len, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ fractional_max_pool3d_out(output::Tensor, indices::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, random_samples::Tensor) Wrapper of C++ function void atg\\_fractional\\_max\\_pool3d\\_out(tensor *out\\_\\_, tensor output, tensor indices, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *output\\_size\\_data, int output\\_size\\_len, tensor random\\_samples) """ function fractional_max_pool3d_out(output::Tensor, indices::Tensor, self::Tensor, kernel_size_data::Array{Int64}, output_size_data::Array{Int64}, random_samples::Tensor) outputs__ = Int[0, 0] kernel_size_len = length(kernel_size_data) output_size_len = length(output_size_data) __cret = ccall((:atg_fractional_max_pool3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, output.pointer, indices.pointer, self.pointer, kernel_size_data, kernel_size_len, output_size_data, output_size_len, random_samples.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ frobenius_norm(self::Tensor) Wrapper of C++ function void atg\\_frobenius\\_norm(tensor *out\\_\\_, tensor self) """ function frobenius_norm(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_frobenius_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ frobenius_norm1(self::Tensor, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_frobenius\\_norm1(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function frobenius_norm1(self::Tensor, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_frobenius_norm1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ frobenius_norm_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_frobenius\\_norm\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function frobenius_norm_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_frobenius_norm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, self.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ full(size_data::Array{Int64}, fill_value::TorchNumber, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_full(tensor *out\\_\\_, int64\\_t *size\\_data, int size\\_len, scalar fill\\_value, int options\\_kind, int options\\_device) """ function full(size_data::Array{Int64}, fill_value::TorchNumber, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) fill_value_s_ = Scalar(fill_value) __cret = ccall((:atg_full, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, size_data, size_len, fill_value_s_.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ full_like(self::Tensor, fill_value::TorchNumber) Wrapper of C++ function void atg\\_full\\_like(tensor *out\\_\\_, tensor self, scalar fill\\_value) """ function full_like(self::Tensor, fill_value::TorchNumber) outputs__ = Int[0] fill_value_s_ = Scalar(fill_value) __cret = ccall((:atg_full_like, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, fill_value_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ full_like1(self::Tensor, fill_value::TorchNumber, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_full\\_like1(tensor *out\\_\\_, tensor self, scalar fill\\_value, int options\\_kind, int options\\_device) """ function full_like1(self::Tensor, fill_value::TorchNumber, options_kind::Int, options_device::Int) outputs__ = Int[0] fill_value_s_ = Scalar(fill_value) __cret = ccall((:atg_full_like1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, fill_value_s_.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ full_out(out::Tensor, size_data::Array{Int64}, fill_value::TorchNumber) Wrapper of C++ function void atg\\_full\\_out(tensor *out\\_\\_, tensor out, int64\\_t *size\\_data, int size\\_len, scalar fill\\_value) """ function full_out(out::Tensor, size_data::Array{Int64}, fill_value::TorchNumber) outputs__ = Int[0] size_len = length(size_data) fill_value_s_ = Scalar(fill_value) __cret = ccall((:atg_full_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, out.pointer, size_data, size_len, fill_value_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ gather(self::Tensor, dim::Int64, index::Tensor, sparse_grad::Int) Wrapper of C++ function void atg\\_gather(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, int sparse\\_grad) """ function gather(self::Tensor, dim::Int64, index::Tensor, sparse_grad::Int) outputs__ = Int[0] __cret = ccall((:atg_gather, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Cint), outputs__, self.pointer, dim, index.pointer, sparse_grad) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ gather_out(out::Tensor, self::Tensor, dim::Int64, index::Tensor, sparse_grad::Int) Wrapper of C++ function void atg\\_gather\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t dim, tensor index, int sparse\\_grad) """ function gather_out(out::Tensor, self::Tensor, dim::Int64, index::Tensor, sparse_grad::Int) outputs__ = Int[0] __cret = ccall((:atg_gather_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, dim, index.pointer, sparse_grad) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ge(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_ge(tensor *out\\_\\_, tensor self, scalar other) """ function ge(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_ge, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ge1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_ge1(tensor *out\\_\\_, tensor self, tensor other) """ function ge1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ge1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ge!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_ge\\_(tensor *out\\_\\_, tensor self, scalar other) """ function ge!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_ge_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ ge1!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_ge\\_1(tensor *out\\_\\_, tensor self, tensor other) """ function ge1!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ge_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ ge_out(out::Tensor, self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_ge\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar other) """ function ge_out(out::Tensor, self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_ge_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ge_out1(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_ge\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function ge_out1(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ge_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ gelu(self::Tensor) Wrapper of C++ function void atg\\_gelu(tensor *out\\_\\_, tensor self) """ function gelu(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_gelu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ gelu_backward(grad::Tensor, self::Tensor) Wrapper of C++ function void atg\\_gelu\\_backward(tensor *out\\_\\_, tensor grad, tensor self) """ function gelu_backward(grad::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_gelu_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ geometric!(self::Tensor, p::Float64) Wrapper of C++ function void atg\\_geometric\\_(tensor *out\\_\\_, tensor self, double p) """ function geometric!(self::Tensor, p::Float64) outputs__ = Int[0] __cret = ccall((:atg_geometric_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, self.pointer, p) return self end """ geqrf(self::Tensor) Wrapper of C++ function void atg\\_geqrf(tensor *out\\_\\_, tensor self) """ function geqrf(self::Tensor) outputs__ = Int[0, 0] __cret = ccall((:atg_geqrf, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ geqrf_out(a::Tensor, tau::Tensor, self::Tensor) Wrapper of C++ function void atg\\_geqrf\\_out(tensor *out\\_\\_, tensor a, tensor tau, tensor self) """ function geqrf_out(a::Tensor, tau::Tensor, self::Tensor) outputs__ = Int[0, 0] __cret = ccall((:atg_geqrf_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, a.pointer, tau.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ ger(self::Tensor, vec2::Tensor) Wrapper of C++ function void atg\\_ger(tensor *out\\_\\_, tensor self, tensor vec2) """ function ger(self::Tensor, vec2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ger, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, vec2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ger_out(out::Tensor, self::Tensor, vec2::Tensor) Wrapper of C++ function void atg\\_ger\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor vec2) """ function ger_out(out::Tensor, self::Tensor, vec2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ger_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, vec2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ glu(self::Tensor, dim::Int64) Wrapper of C++ function void atg\\_glu(tensor *out\\_\\_, tensor self, int64\\_t dim) """ function glu(self::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_glu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ glu_backward(grad_output::Tensor, self::Tensor, dim::Int64) Wrapper of C++ function void atg\\_glu\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t dim) """ function glu_backward(grad_output::Tensor, self::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_glu_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_output.pointer, self.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ glu_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, dim::Int64) Wrapper of C++ function void atg\\_glu\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t dim) """ function glu_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_glu_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ glu_out(out::Tensor, self::Tensor, dim::Int64) Wrapper of C++ function void atg\\_glu\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t dim) """ function glu_out(out::Tensor, self::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_glu_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ grad(self::Tensor) Wrapper of C++ function void atg\\_grad(tensor *out\\_\\_, tensor self) """ function grad(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_grad, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ grid_sampler(input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) Wrapper of C++ function void atg\\_grid\\_sampler(tensor *out\\_\\_, tensor input, tensor grid, int64\\_t interpolation\\_mode, int64\\_t padding\\_mode, int align\\_corners) """ function grid_sampler(input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) outputs__ = Int[0] __cret = ccall((:atg_grid_sampler, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, input.pointer, grid.pointer, interpolation_mode, padding_mode, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ grid_sampler_2d(input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) Wrapper of C++ function void atg\\_grid\\_sampler\\_2d(tensor *out\\_\\_, tensor input, tensor grid, int64\\_t interpolation\\_mode, int64\\_t padding\\_mode, int align\\_corners) """ function grid_sampler_2d(input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) outputs__ = Int[0] __cret = ccall((:atg_grid_sampler_2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, input.pointer, grid.pointer, interpolation_mode, padding_mode, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ grid_sampler_2d_backward(grad_output::Tensor, input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) Wrapper of C++ function void atg\\_grid\\_sampler\\_2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor input, tensor grid, int64\\_t interpolation\\_mode, int64\\_t padding\\_mode, int align\\_corners) """ function grid_sampler_2d_backward(grad_output::Tensor, input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_grid_sampler_2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, grad_output.pointer, input.pointer, grid.pointer, interpolation_mode, padding_mode, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ grid_sampler_3d(input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) Wrapper of C++ function void atg\\_grid\\_sampler\\_3d(tensor *out\\_\\_, tensor input, tensor grid, int64\\_t interpolation\\_mode, int64\\_t padding\\_mode, int align\\_corners) """ function grid_sampler_3d(input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) outputs__ = Int[0] __cret = ccall((:atg_grid_sampler_3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, input.pointer, grid.pointer, interpolation_mode, padding_mode, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ grid_sampler_3d_backward(grad_output::Tensor, input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) Wrapper of C++ function void atg\\_grid\\_sampler\\_3d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor input, tensor grid, int64\\_t interpolation\\_mode, int64\\_t padding\\_mode, int align\\_corners) """ function grid_sampler_3d_backward(grad_output::Tensor, input::Tensor, grid::Tensor, interpolation_mode::Int64, padding_mode::Int64, align_corners::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_grid_sampler_3d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, grad_output.pointer, input.pointer, grid.pointer, interpolation_mode, padding_mode, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ group_norm(input::Tensor, num_groups::Int64, weight::Tensor, bias::Tensor, eps::Float64, cudnn_enabled::Int) Wrapper of C++ function void atg\\_group\\_norm(tensor *out\\_\\_, tensor input, int64\\_t num\\_groups, tensor weight, tensor bias, double eps, int cudnn\\_enabled) """ function group_norm(input::Tensor, num_groups::Int64, weight::Tensor, bias::Tensor, eps::Float64, cudnn_enabled::Int) outputs__ = Int[0] __cret = ccall((:atg_group_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, input.pointer, num_groups, weight.pointer, bias.pointer, eps, cudnn_enabled) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ gru(input::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) Wrapper of C++ function void atg\\_gru(tensor *out\\_\\_, tensor input, tensor hx, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional, int batch\\_first) """ function gru(input::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) where {T,N} outputs__ = Int[0, 0] params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_gru, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint, Cint), outputs__, input.pointer, hx.pointer, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional, batch_first) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ gru1(data::Tensor, batch_sizes::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) Wrapper of C++ function void atg\\_gru1(tensor *out\\_\\_, tensor data, tensor batch\\_sizes, tensor hx, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional) """ function gru1(data::Tensor, batch_sizes::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) where {T,N} outputs__ = Int[0, 0] params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_gru1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint), outputs__, data.pointer, batch_sizes.pointer, hx.pointer, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ gru_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor) Wrapper of C++ function void atg\\_gru\\_cell(tensor *out\\_\\_, tensor input, tensor hx, tensor w\\_ih, tensor w\\_hh, tensor b\\_ih, tensor b\\_hh) """ function gru_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor) outputs__ = Int[0] __cret = ccall((:atg_gru_cell, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, hx.pointer, w_ih.pointer, w_hh.pointer, b_ih.pointer, b_hh.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ gt(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_gt(tensor *out\\_\\_, tensor self, scalar other) """ function gt(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_gt, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ gt1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_gt1(tensor *out\\_\\_, tensor self, tensor other) """ function gt1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_gt1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ gt!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_gt\\_(tensor *out\\_\\_, tensor self, scalar other) """ function gt!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_gt_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ gt1!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_gt\\_1(tensor *out\\_\\_, tensor self, tensor other) """ function gt1!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_gt_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ gt_out(out::Tensor, self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_gt\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar other) """ function gt_out(out::Tensor, self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_gt_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ gt_out1(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_gt\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function gt_out1(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_gt_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hamming_window(window_length::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_hamming\\_window(tensor *out\\_\\_, int64\\_t window\\_length, int options\\_kind, int options\\_device) """ function hamming_window(window_length::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_hamming_window, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, window_length, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hamming_window1(window_length::Int64, periodic::Int, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_hamming\\_window1(tensor *out\\_\\_, int64\\_t window\\_length, int periodic, int options\\_kind, int options\\_device) """ function hamming_window1(window_length::Int64, periodic::Int, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_hamming_window1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint, Cint), outputs__, window_length, periodic, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hamming_window2(window_length::Int64, periodic::Int, alpha::Float64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_hamming\\_window2(tensor *out\\_\\_, int64\\_t window\\_length, int periodic, double alpha, int options\\_kind, int options\\_device) """ function hamming_window2(window_length::Int64, periodic::Int, alpha::Float64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_hamming_window2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cdouble, Cint, Cint), outputs__, window_length, periodic, alpha, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hamming_window3(window_length::Int64, periodic::Int, alpha::Float64, beta::Float64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_hamming\\_window3(tensor *out\\_\\_, int64\\_t window\\_length, int periodic, double alpha, double beta, int options\\_kind, int options\\_device) """ function hamming_window3(window_length::Int64, periodic::Int, alpha::Float64, beta::Float64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_hamming_window3, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cdouble, Cdouble, Cint, Cint), outputs__, window_length, periodic, alpha, beta, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hann_window(window_length::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_hann\\_window(tensor *out\\_\\_, int64\\_t window\\_length, int options\\_kind, int options\\_device) """ function hann_window(window_length::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_hann_window, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, window_length, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hann_window1(window_length::Int64, periodic::Int, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_hann\\_window1(tensor *out\\_\\_, int64\\_t window\\_length, int periodic, int options\\_kind, int options\\_device) """ function hann_window1(window_length::Int64, periodic::Int, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_hann_window1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint, Cint), outputs__, window_length, periodic, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hardshrink(self::Tensor) Wrapper of C++ function void atg\\_hardshrink(tensor *out\\_\\_, tensor self) """ function hardshrink(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_hardshrink, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hardshrink_backward(grad_out::Tensor, self::Tensor, lambd::TorchNumber) Wrapper of C++ function void atg\\_hardshrink\\_backward(tensor *out\\_\\_, tensor grad\\_out, tensor self, scalar lambd) """ function hardshrink_backward(grad_out::Tensor, self::Tensor, lambd::TorchNumber) outputs__ = Int[0] lambd_s_ = Scalar(lambd) __cret = ccall((:atg_hardshrink_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_out.pointer, self.pointer, lambd_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hardtanh(self::Tensor) Wrapper of C++ function void atg\\_hardtanh(tensor *out\\_\\_, tensor self) """ function hardtanh(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_hardtanh, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hardtanh!(self::Tensor) Wrapper of C++ function void atg\\_hardtanh\\_(tensor *out\\_\\_, tensor self) """ function hardtanh!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_hardtanh_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ hardtanh_backward(grad_output::Tensor, self::Tensor, min_val::TorchNumber, max_val::TorchNumber) Wrapper of C++ function void atg\\_hardtanh\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, scalar min\\_val, scalar max\\_val) """ function hardtanh_backward(grad_output::Tensor, self::Tensor, min_val::TorchNumber, max_val::TorchNumber) outputs__ = Int[0] min_val_s_ = Scalar(min_val) max_val_s_ = Scalar(max_val) __cret = ccall((:atg_hardtanh_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, min_val_s_.pointer, max_val_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hardtanh_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, min_val::TorchNumber, max_val::TorchNumber) Wrapper of C++ function void atg\\_hardtanh\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, scalar min\\_val, scalar max\\_val) """ function hardtanh_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, min_val::TorchNumber, max_val::TorchNumber) outputs__ = Int[0] min_val_s_ = Scalar(min_val) max_val_s_ = Scalar(max_val) __cret = ccall((:atg_hardtanh_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, min_val_s_.pointer, max_val_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hardtanh_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_hardtanh\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function hardtanh_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_hardtanh_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hinge_embedding_loss(self::Tensor, target::Tensor, margin::Float64, reduction::Int64) Wrapper of C++ function void atg\\_hinge\\_embedding\\_loss(tensor *out\\_\\_, tensor self, tensor target, double margin, int64\\_t reduction) """ function hinge_embedding_loss(self::Tensor, target::Tensor, margin::Float64, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_hinge_embedding_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Clonglong), outputs__, self.pointer, target.pointer, margin, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ histc(self::Tensor, bins::Int64) Wrapper of C++ function void atg\\_histc(tensor *out\\_\\_, tensor self, int64\\_t bins) """ function histc(self::Tensor, bins::Int64) outputs__ = Int[0] __cret = ccall((:atg_histc, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, bins) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ histc_out(out::Tensor, self::Tensor, bins::Int64) Wrapper of C++ function void atg\\_histc\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t bins) """ function histc_out(out::Tensor, self::Tensor, bins::Int64) outputs__ = Int[0] __cret = ccall((:atg_histc_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, bins) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hspmm(mat1::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_hspmm(tensor *out\\_\\_, tensor mat1, tensor mat2) """ function hspmm(mat1::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_hspmm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, mat1.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ hspmm_out(out::Tensor, mat1::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_hspmm\\_out(tensor *out\\_\\_, tensor out, tensor mat1, tensor mat2) """ function hspmm_out(out::Tensor, mat1::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_hspmm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, mat1.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ifft(self::Tensor, signal_ndim::Int64, normalized::Int) Wrapper of C++ function void atg\\_ifft(tensor *out\\_\\_, tensor self, int64\\_t signal\\_ndim, int normalized) """ function ifft(self::Tensor, signal_ndim::Int64, normalized::Int) outputs__ = Int[0] __cret = ccall((:atg_ifft, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, signal_ndim, normalized) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ im2col(self::Tensor, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) Wrapper of C++ function void atg\\_im2col(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len) """ function im2col(self::Tensor, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) dilation_len = length(dilation_data) padding_len = length(padding_data) stride_len = length(stride_data) __cret = ccall((:atg_im2col, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, dilation_data, dilation_len, padding_data, padding_len, stride_data, stride_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ im2col_backward(grad_output::Tensor, input_size_data::Array{Int64}, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) Wrapper of C++ function void atg\\_im2col\\_backward(tensor *out\\_\\_, tensor grad\\_output, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len) """ function im2col_backward(grad_output::Tensor, input_size_data::Array{Int64}, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) outputs__ = Int[0] input_size_len = length(input_size_data) kernel_size_len = length(kernel_size_data) dilation_len = length(dilation_data) padding_len = length(padding_data) stride_len = length(stride_data) __cret = ccall((:atg_im2col_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, input_size_data, input_size_len, kernel_size_data, kernel_size_len, dilation_data, dilation_len, padding_data, padding_len, stride_data, stride_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ im2col_backward_out(grad_input::Tensor, grad_output::Tensor, input_size_data::Array{Int64}, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) Wrapper of C++ function void atg\\_im2col\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len) """ function im2col_backward_out(grad_input::Tensor, grad_output::Tensor, input_size_data::Array{Int64}, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) outputs__ = Int[0] input_size_len = length(input_size_data) kernel_size_len = length(kernel_size_data) dilation_len = length(dilation_data) padding_len = length(padding_data) stride_len = length(stride_data) __cret = ccall((:atg_im2col_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, input_size_data, input_size_len, kernel_size_data, kernel_size_len, dilation_data, dilation_len, padding_data, padding_len, stride_data, stride_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ im2col_out(out::Tensor, self::Tensor, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) Wrapper of C++ function void atg\\_im2col\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len) """ function im2col_out(out::Tensor, self::Tensor, kernel_size_data::Array{Int64}, dilation_data::Array{Int64}, padding_data::Array{Int64}, stride_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) dilation_len = length(dilation_data) padding_len = length(padding_data) stride_len = length(stride_data) __cret = ccall((:atg_im2col_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, kernel_size_data, kernel_size_len, dilation_data, dilation_len, padding_data, padding_len, stride_data, stride_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.imag """ imag(self::Tensor) Wrapper of C++ function void atg\\_imag(tensor *out\\_\\_, tensor self) """ function imag(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_imag, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ imag_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_imag\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function imag_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_imag_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ index(self::Tensor, indices_data::Array{Tensor{T,N}}) Wrapper of C++ function void atg\\_index(tensor *out\\_\\_, tensor self, tensor *indices\\_data, int indices\\_len) """ function index(self::Tensor, indices_data::Array{Tensor{T,N}}) where {T,N} outputs__ = Int[0] indices_data_ta_ = map(x->x.pointer, indices_data) indices_len = length(indices_data) __cret = ccall((:atg_index, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, indices_data_ta_, indices_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ index_add(self::Tensor, dim::Int64, index::Tensor, source::Tensor) Wrapper of C++ function void atg\\_index\\_add(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor source) """ function index_add(self::Tensor, dim::Int64, index::Tensor, source::Tensor) outputs__ = Int[0] __cret = ccall((:atg_index_add, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, source.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ index_add!(self::Tensor, dim::Int64, index::Tensor, source::Tensor) Wrapper of C++ function void atg\\_index\\_add\\_(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor source) """ function index_add!(self::Tensor, dim::Int64, index::Tensor, source::Tensor) outputs__ = Int[0] __cret = ccall((:atg_index_add_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, source.pointer) return self end """ index_copy(self::Tensor, dim::Int64, index::Tensor, source::Tensor) Wrapper of C++ function void atg\\_index\\_copy(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor source) """ function index_copy(self::Tensor, dim::Int64, index::Tensor, source::Tensor) outputs__ = Int[0] __cret = ccall((:atg_index_copy, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, source.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ index_copy!(self::Tensor, dim::Int64, index::Tensor, source::Tensor) Wrapper of C++ function void atg\\_index\\_copy\\_(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor source) """ function index_copy!(self::Tensor, dim::Int64, index::Tensor, source::Tensor) outputs__ = Int[0] __cret = ccall((:atg_index_copy_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, source.pointer) return self end """ index_fill(self::Tensor, dim::Int64, index::Tensor, value::TorchNumber) Wrapper of C++ function void atg\\_index\\_fill(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, scalar value) """ function index_fill(self::Tensor, dim::Int64, index::Tensor, value::TorchNumber) outputs__ = Int[0] value_s_ = Scalar(value) __cret = ccall((:atg_index_fill, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, value_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ index_fill1(self::Tensor, dim::Int64, index::Tensor, value::Tensor) Wrapper of C++ function void atg\\_index\\_fill1(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor value) """ function index_fill1(self::Tensor, dim::Int64, index::Tensor, value::Tensor) outputs__ = Int[0] __cret = ccall((:atg_index_fill1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, value.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ index_fill!(self::Tensor, dim::Int64, index::Tensor, value::TorchNumber) Wrapper of C++ function void atg\\_index\\_fill\\_(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, scalar value) """ function index_fill!(self::Tensor, dim::Int64, index::Tensor, value::TorchNumber) outputs__ = Int[0] value_s_ = Scalar(value) __cret = ccall((:atg_index_fill_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, value_s_.pointer) return self end """ index_fill1!(self::Tensor, dim::Int64, index::Tensor, value::Tensor) Wrapper of C++ function void atg\\_index\\_fill\\_1(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor value) """ function index_fill1!(self::Tensor, dim::Int64, index::Tensor, value::Tensor) outputs__ = Int[0] __cret = ccall((:atg_index_fill_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, value.pointer) return self end """ index_put(self::Tensor, indices_data::Array{Tensor{T,N}}, values::Tensor, accumulate::Int) Wrapper of C++ function void atg\\_index\\_put(tensor *out\\_\\_, tensor self, tensor *indices\\_data, int indices\\_len, tensor values, int accumulate) """ function index_put(self::Tensor, indices_data::Array{Tensor{T,N}}, values::Tensor, accumulate::Int) where {T,N} outputs__ = Int[0] indices_data_ta_ = map(x->x.pointer, indices_data) indices_len = length(indices_data) __cret = ccall((:atg_index_put, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, indices_data_ta_, indices_len, values.pointer, accumulate) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ index_put!(self::Tensor, indices_data::Array{Tensor{T,N}}, values::Tensor, accumulate::Int) Wrapper of C++ function void atg\\_index\\_put\\_(tensor *out\\_\\_, tensor self, tensor *indices\\_data, int indices\\_len, tensor values, int accumulate) """ function index_put!(self::Tensor, indices_data::Array{Tensor{T,N}}, values::Tensor, accumulate::Int) where {T,N} outputs__ = Int[0] indices_data_ta_ = map(x->x.pointer, indices_data) indices_len = length(indices_data) __cret = ccall((:atg_index_put_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, indices_data_ta_, indices_len, values.pointer, accumulate) return self end """ index_select(self::Tensor, dim::Int64, index::Tensor) Wrapper of C++ function void atg\\_index\\_select(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index) """ function index_select(self::Tensor, dim::Int64, index::Tensor) outputs__ = Int[0] __cret = ccall((:atg_index_select, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ index_select_out(out::Tensor, self::Tensor, dim::Int64, index::Tensor) Wrapper of C++ function void atg\\_index\\_select\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t dim, tensor index) """ function index_select_out(out::Tensor, self::Tensor, dim::Int64, index::Tensor) outputs__ = Int[0] __cret = ccall((:atg_index_select_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, dim, index.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ indices(self::Tensor) Wrapper of C++ function void atg\\_indices(tensor *out\\_\\_, tensor self) """ function indices(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_indices, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ instance_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, use_input_stats::Int, momentum::Float64, eps::Float64, cudnn_enabled::Int) Wrapper of C++ function void atg\\_instance\\_norm(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, tensor running\\_mean, tensor running\\_var, int use\\_input\\_stats, double momentum, double eps, int cudnn\\_enabled) """ function instance_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, use_input_stats::Int, momentum::Float64, eps::Float64, cudnn_enabled::Int) outputs__ = Int[0] __cret = ccall((:atg_instance_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cdouble, Cdouble, Cint), outputs__, input.pointer, weight.pointer, bias.pointer, running_mean.pointer, running_var.pointer, use_input_stats, momentum, eps, cudnn_enabled) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ int_repr(self::Tensor) Wrapper of C++ function void atg\\_int\\_repr(tensor *out\\_\\_, tensor self) """ function int_repr(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_int_repr, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ inverse(self::Tensor) Wrapper of C++ function void atg\\_inverse(tensor *out\\_\\_, tensor self) """ function inverse(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_inverse, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ inverse_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_inverse\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function inverse_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_inverse_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ irfft(self::Tensor, signal_ndim::Int64, normalized::Int, onesided::Int, signal_sizes_data::Array{Int64}) Wrapper of C++ function void atg\\_irfft(tensor *out\\_\\_, tensor self, int64\\_t signal\\_ndim, int normalized, int onesided, int64\\_t *signal\\_sizes\\_data, int signal\\_sizes\\_len) """ function irfft(self::Tensor, signal_ndim::Int64, normalized::Int, onesided::Int, signal_sizes_data::Array{Int64}) outputs__ = Int[0] signal_sizes_len = length(signal_sizes_data) __cret = ccall((:atg_irfft, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, signal_ndim, normalized, onesided, signal_sizes_data, signal_sizes_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ isclose(self::Tensor, other::Tensor, rtol::Float64, atol::Float64, equal_nan::Int) Wrapper of C++ function void atg\\_isclose(tensor *out\\_\\_, tensor self, tensor other, double rtol, double atol, int equal\\_nan) """ function isclose(self::Tensor, other::Tensor, rtol::Float64, atol::Float64, equal_nan::Int) outputs__ = Int[0] __cret = ccall((:atg_isclose, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble, Cint), outputs__, self.pointer, other.pointer, rtol, atol, equal_nan) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.isfinite """ isfinite(self::Tensor) Wrapper of C++ function void atg\\_isfinite(tensor *out\\_\\_, tensor self) """ function isfinite(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_isfinite, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.isnan """ isnan(self::Tensor) Wrapper of C++ function void atg\\_isnan(tensor *out\\_\\_, tensor self) """ function isnan(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_isnan, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ kl_div(self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_kl\\_div(tensor *out\\_\\_, tensor self, tensor target, int64\\_t reduction) """ function kl_div(self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_kl_div, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ kl_div_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_kl\\_div\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction) """ function kl_div_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_kl_div_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_output.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ kthvalue(self::Tensor, k::Int64, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_kthvalue(tensor *out\\_\\_, tensor self, int64\\_t k, int64\\_t dim, int keepdim) """ function kthvalue(self::Tensor, k::Int64, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_kthvalue, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, self.pointer, k, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ kthvalue_out(values::Tensor, indices::Tensor, self::Tensor, k::Int64, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_kthvalue\\_out(tensor *out\\_\\_, tensor values, tensor indices, tensor self, int64\\_t k, int64\\_t dim, int keepdim) """ function kthvalue_out(values::Tensor, indices::Tensor, self::Tensor, k::Int64, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_kthvalue_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint), outputs__, values.pointer, indices.pointer, self.pointer, k, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ l1_loss(self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_l1\\_loss(tensor *out\\_\\_, tensor self, tensor target, int64\\_t reduction) """ function l1_loss(self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_l1_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ l1_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_l1\\_loss\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction) """ function l1_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_l1_loss_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_output.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ l1_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_l1\\_loss\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction) """ function l1_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_l1_loss_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ l1_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_l1\\_loss\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor target, int64\\_t reduction) """ function l1_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_l1_loss_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ layer_norm(input::Tensor, normalized_shape_data::Array{Int64}, weight::Tensor, bias::Tensor, eps::Float64, cudnn_enable::Int) Wrapper of C++ function void atg\\_layer\\_norm(tensor *out\\_\\_, tensor input, int64\\_t *normalized\\_shape\\_data, int normalized\\_shape\\_len, tensor weight, tensor bias, double eps, int cudnn\\_enable) """ function layer_norm(input::Tensor, normalized_shape_data::Array{Int64}, weight::Tensor, bias::Tensor, eps::Float64, cudnn_enable::Int) outputs__ = Int[0] normalized_shape_len = length(normalized_shape_data) __cret = ccall((:atg_layer_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, input.pointer, normalized_shape_data, normalized_shape_len, weight.pointer, bias.pointer, eps, cudnn_enable) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ le(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_le(tensor *out\\_\\_, tensor self, scalar other) """ function le(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_le, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ le1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_le1(tensor *out\\_\\_, tensor self, tensor other) """ function le1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_le1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ le!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_le\\_(tensor *out\\_\\_, tensor self, scalar other) """ function le!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_le_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ le1!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_le\\_1(tensor *out\\_\\_, tensor self, tensor other) """ function le1!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_le_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ le_out(out::Tensor, self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_le\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar other) """ function le_out(out::Tensor, self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_le_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ le_out1(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_le\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function le_out1(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_le_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ leaky_relu(self::Tensor) Wrapper of C++ function void atg\\_leaky\\_relu(tensor *out\\_\\_, tensor self) """ function leaky_relu(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_leaky_relu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ leaky_relu!(self::Tensor) Wrapper of C++ function void atg\\_leaky\\_relu\\_(tensor *out\\_\\_, tensor self) """ function leaky_relu!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_leaky_relu_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ leaky_relu_backward(grad_output::Tensor, self::Tensor, negative_slope::TorchNumber) Wrapper of C++ function void atg\\_leaky\\_relu\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, scalar negative\\_slope) """ function leaky_relu_backward(grad_output::Tensor, self::Tensor, negative_slope::TorchNumber) outputs__ = Int[0] negative_slope_s_ = Scalar(negative_slope) __cret = ccall((:atg_leaky_relu_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, negative_slope_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ leaky_relu_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, negative_slope::TorchNumber) Wrapper of C++ function void atg\\_leaky\\_relu\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, scalar negative\\_slope) """ function leaky_relu_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, negative_slope::TorchNumber) outputs__ = Int[0] negative_slope_s_ = Scalar(negative_slope) __cret = ccall((:atg_leaky_relu_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, negative_slope_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ leaky_relu_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_leaky\\_relu\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function leaky_relu_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_leaky_relu_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lerp(self::Tensor, end_::Tensor, weight::TorchNumber) Wrapper of C++ function void atg\\_lerp(tensor *out\\_\\_, tensor self, tensor end, scalar weight) """ function lerp(self::Tensor, end_::Tensor, weight::TorchNumber) outputs__ = Int[0] weight_s_ = Scalar(weight) __cret = ccall((:atg_lerp, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, end_.pointer, weight_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lerp1(self::Tensor, end_::Tensor, weight::Tensor) Wrapper of C++ function void atg\\_lerp1(tensor *out\\_\\_, tensor self, tensor end, tensor weight) """ function lerp1(self::Tensor, end_::Tensor, weight::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lerp1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, end_.pointer, weight.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lerp!(self::Tensor, end_::Tensor, weight::TorchNumber) Wrapper of C++ function void atg\\_lerp\\_(tensor *out\\_\\_, tensor self, tensor end, scalar weight) """ function lerp!(self::Tensor, end_::Tensor, weight::TorchNumber) outputs__ = Int[0] weight_s_ = Scalar(weight) __cret = ccall((:atg_lerp_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, end_.pointer, weight_s_.pointer) return self end """ lerp1!(self::Tensor, end_::Tensor, weight::Tensor) Wrapper of C++ function void atg\\_lerp\\_1(tensor *out\\_\\_, tensor self, tensor end, tensor weight) """ function lerp1!(self::Tensor, end_::Tensor, weight::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lerp_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, end_.pointer, weight.pointer) return self end """ lerp_out(out::Tensor, self::Tensor, end_::Tensor, weight::TorchNumber) Wrapper of C++ function void atg\\_lerp\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor end, scalar weight) """ function lerp_out(out::Tensor, self::Tensor, end_::Tensor, weight::TorchNumber) outputs__ = Int[0] weight_s_ = Scalar(weight) __cret = ccall((:atg_lerp_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, end_.pointer, weight_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lerp_out1(out::Tensor, self::Tensor, end_::Tensor, weight::Tensor) Wrapper of C++ function void atg\\_lerp\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor end, tensor weight) """ function lerp_out1(out::Tensor, self::Tensor, end_::Tensor, weight::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lerp_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, end_.pointer, weight.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lgamma(self::Tensor) Wrapper of C++ function void atg\\_lgamma(tensor *out\\_\\_, tensor self) """ function lgamma(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lgamma, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lgamma!(self::Tensor) Wrapper of C++ function void atg\\_lgamma\\_(tensor *out\\_\\_, tensor self) """ function lgamma!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lgamma_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ lgamma_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_lgamma\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function lgamma_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lgamma_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ linear(input::Tensor, weight::Tensor, bias::Tensor) Wrapper of C++ function void atg\\_linear(tensor *out\\_\\_, tensor input, tensor weight, tensor bias) """ function linear(input::Tensor, weight::Tensor, bias::Tensor) outputs__ = Int[0] __cret = ccall((:atg_linear, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, weight.pointer, bias.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ linspace(start::TorchNumber, end_::TorchNumber, steps::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_linspace(tensor *out\\_\\_, scalar start, scalar end, int64\\_t steps, int options\\_kind, int options\\_device) """ function linspace(start::TorchNumber, end_::TorchNumber, steps::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) __cret = ccall((:atg_linspace, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, start_s_.pointer, end__s_.pointer, steps, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ linspace_out(out::Tensor, start::TorchNumber, end_::TorchNumber, steps::Int64) Wrapper of C++ function void atg\\_linspace\\_out(tensor *out\\_\\_, tensor out, scalar start, scalar end, int64\\_t steps) """ function linspace_out(out::Tensor, start::TorchNumber, end_::TorchNumber, steps::Int64) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) __cret = ccall((:atg_linspace_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, start_s_.pointer, end__s_.pointer, steps) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.log """ log(self::Tensor) Wrapper of C++ function void atg\\_log(tensor *out\\_\\_, tensor self) """ function log(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.log10 """ log10(self::Tensor) Wrapper of C++ function void atg\\_log10(tensor *out\\_\\_, tensor self) """ function log10(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log10, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ log10!(self::Tensor) Wrapper of C++ function void atg\\_log10\\_(tensor *out\\_\\_, tensor self) """ function log10!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log10_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ log10_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_log10\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function log10_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log10_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.log1p """ log1p(self::Tensor) Wrapper of C++ function void atg\\_log1p(tensor *out\\_\\_, tensor self) """ function log1p(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log1p, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ log1p!(self::Tensor) Wrapper of C++ function void atg\\_log1p\\_(tensor *out\\_\\_, tensor self) """ function log1p!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log1p_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ log1p_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_log1p\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function log1p_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log1p_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.log2 """ log2(self::Tensor) Wrapper of C++ function void atg\\_log2(tensor *out\\_\\_, tensor self) """ function log2(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ log2!(self::Tensor) Wrapper of C++ function void atg\\_log2\\_(tensor *out\\_\\_, tensor self) """ function log2!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log2_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ log2_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_log2\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function log2_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log2_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ log!(self::Tensor) Wrapper of C++ function void atg\\_log\\_(tensor *out\\_\\_, tensor self) """ function log!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ log_normal!(self::Tensor, mean::Float64, std::Float64) Wrapper of C++ function void atg\\_log\\_normal\\_(tensor *out\\_\\_, tensor self, double mean, double std) """ function log_normal!(self::Tensor, mean::Float64, std::Float64) outputs__ = Int[0] __cret = ccall((:atg_log_normal_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble), outputs__, self.pointer, mean, std) return self end """ log_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_log\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function log_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ log_sigmoid(self::Tensor) Wrapper of C++ function void atg\\_log\\_sigmoid(tensor *out\\_\\_, tensor self) """ function log_sigmoid(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log_sigmoid, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ log_sigmoid_backward(grad_output::Tensor, self::Tensor, buffer::Tensor) Wrapper of C++ function void atg\\_log\\_sigmoid\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor buffer) """ function log_sigmoid_backward(grad_output::Tensor, self::Tensor, buffer::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log_sigmoid_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, buffer.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ log_sigmoid_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, buffer::Tensor) Wrapper of C++ function void atg\\_log\\_sigmoid\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor buffer) """ function log_sigmoid_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, buffer::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log_sigmoid_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, buffer.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ log_sigmoid_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_log\\_sigmoid\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function log_sigmoid_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_log_sigmoid_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ log_softmax(self::Tensor, dim::Int64, dtype::Int) Wrapper of C++ function void atg\\_log\\_softmax(tensor *out\\_\\_, tensor self, int64\\_t dim, int dtype) """ function log_softmax(self::Tensor, dim::Int64, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_log_softmax, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ logdet(self::Tensor) Wrapper of C++ function void atg\\_logdet(tensor *out\\_\\_, tensor self) """ function logdet(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_logdet, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ logical_not(self::Tensor) Wrapper of C++ function void atg\\_logical\\_not(tensor *out\\_\\_, tensor self) """ function logical_not(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_logical_not, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ logical_not!(self::Tensor) Wrapper of C++ function void atg\\_logical\\_not\\_(tensor *out\\_\\_, tensor self) """ function logical_not!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_logical_not_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ logical_not_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_logical\\_not\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function logical_not_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_logical_not_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ logical_xor(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_logical\\_xor(tensor *out\\_\\_, tensor self, tensor other) """ function logical_xor(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_logical_xor, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ logical_xor!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_logical\\_xor\\_(tensor *out\\_\\_, tensor self, tensor other) """ function logical_xor!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_logical_xor_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ logical_xor_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_logical\\_xor\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function logical_xor_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_logical_xor_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ logspace(start::TorchNumber, end_::TorchNumber, steps::Int64, base::Float64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_logspace(tensor *out\\_\\_, scalar start, scalar end, int64\\_t steps, double base, int options\\_kind, int options\\_device) """ function logspace(start::TorchNumber, end_::TorchNumber, steps::Int64, base::Float64, options_kind::Int, options_device::Int) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) __cret = ccall((:atg_logspace, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cdouble, Cint, Cint), outputs__, start_s_.pointer, end__s_.pointer, steps, base, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ logspace_out(out::Tensor, start::TorchNumber, end_::TorchNumber, steps::Int64, base::Float64) Wrapper of C++ function void atg\\_logspace\\_out(tensor *out\\_\\_, tensor out, scalar start, scalar end, int64\\_t steps, double base) """ function logspace_out(out::Tensor, start::TorchNumber, end_::TorchNumber, steps::Int64, base::Float64) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) __cret = ccall((:atg_logspace_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cdouble), outputs__, out.pointer, start_s_.pointer, end__s_.pointer, steps, base) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ logsumexp(self::Tensor, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_logsumexp(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function logsumexp(self::Tensor, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_logsumexp, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ logsumexp_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_logsumexp\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function logsumexp_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_logsumexp_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, self.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lstm(input::Tensor, hx_data::Array{Tensor{T,N}}, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) Wrapper of C++ function void atg\\_lstm(tensor *out\\_\\_, tensor input, tensor *hx\\_data, int hx\\_len, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional, int batch\\_first) """ function lstm(input::Tensor, hx_data::Array{Tensor{T,N}}, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) where {T,N} outputs__ = Int[0, 0, 0] hx_data_ta_ = map(x->x.pointer, hx_data) hx_len = length(hx_data) params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_lstm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint, Cint), outputs__, input.pointer, hx_data_ta_, hx_len, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional, batch_first) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ lstm1(data::Tensor, batch_sizes::Tensor, hx_data::Array{Tensor{T,N}}, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) Wrapper of C++ function void atg\\_lstm1(tensor *out\\_\\_, tensor data, tensor batch\\_sizes, tensor *hx\\_data, int hx\\_len, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional) """ function lstm1(data::Tensor, batch_sizes::Tensor, hx_data::Array{Tensor{T,N}}, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) where {T,N} outputs__ = Int[0, 0, 0] hx_data_ta_ = map(x->x.pointer, hx_data) hx_len = length(hx_data) params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_lstm1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint), outputs__, data.pointer, batch_sizes.pointer, hx_data_ta_, hx_len, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ lstm_cell(input::Tensor, hx_data::Array{Tensor{T,N}}, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor) Wrapper of C++ function void atg\\_lstm\\_cell(tensor *out\\_\\_, tensor input, tensor *hx\\_data, int hx\\_len, tensor w\\_ih, tensor w\\_hh, tensor b\\_ih, tensor b\\_hh) """ function lstm_cell(input::Tensor, hx_data::Array{Tensor{T,N}}, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor) where {T,N} outputs__ = Int[0, 0] hx_data_ta_ = map(x->x.pointer, hx_data) hx_len = length(hx_data) __cret = ccall((:atg_lstm_cell, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, hx_data_ta_, hx_len, w_ih.pointer, w_hh.pointer, b_ih.pointer, b_hh.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ lstsq(self::Tensor, A::Tensor) Wrapper of C++ function void atg\\_lstsq(tensor *out\\_\\_, tensor self, tensor A) """ function lstsq(self::Tensor, A::Tensor) outputs__ = Int[0, 0] __cret = ccall((:atg_lstsq, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, A.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ lstsq_out(X::Tensor, qr::Tensor, self::Tensor, A::Tensor) Wrapper of C++ function void atg\\_lstsq\\_out(tensor *out\\_\\_, tensor X, tensor qr, tensor self, tensor A) """ function lstsq_out(X::Tensor, qr::Tensor, self::Tensor, A::Tensor) outputs__ = Int[0, 0] __cret = ccall((:atg_lstsq_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, X.pointer, qr.pointer, self.pointer, A.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ lt(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_lt(tensor *out\\_\\_, tensor self, scalar other) """ function lt(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_lt, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lt1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_lt1(tensor *out\\_\\_, tensor self, tensor other) """ function lt1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lt1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lt!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_lt\\_(tensor *out\\_\\_, tensor self, scalar other) """ function lt!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_lt_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ lt1!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_lt\\_1(tensor *out\\_\\_, tensor self, tensor other) """ function lt1!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lt_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ lt_out(out::Tensor, self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_lt\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar other) """ function lt_out(out::Tensor, self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_lt_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lt_out1(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_lt\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function lt_out1(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lt_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lu_solve(self::Tensor, LU_data::Tensor, LU_pivots::Tensor) Wrapper of C++ function void atg\\_lu\\_solve(tensor *out\\_\\_, tensor self, tensor LU\\_data, tensor LU\\_pivots) """ function lu_solve(self::Tensor, LU_data::Tensor, LU_pivots::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lu_solve, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, LU_data.pointer, LU_pivots.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ lu_solve_out(out::Tensor, self::Tensor, LU_data::Tensor, LU_pivots::Tensor) Wrapper of C++ function void atg\\_lu\\_solve\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor LU\\_data, tensor LU\\_pivots) """ function lu_solve_out(out::Tensor, self::Tensor, LU_data::Tensor, LU_pivots::Tensor) outputs__ = Int[0] __cret = ccall((:atg_lu_solve_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, LU_data.pointer, LU_pivots.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ margin_ranking_loss(input1::Tensor, input2::Tensor, target::Tensor, margin::Float64, reduction::Int64) Wrapper of C++ function void atg\\_margin\\_ranking\\_loss(tensor *out\\_\\_, tensor input1, tensor input2, tensor target, double margin, int64\\_t reduction) """ function margin_ranking_loss(input1::Tensor, input2::Tensor, target::Tensor, margin::Float64, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_margin_ranking_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Clonglong), outputs__, input1.pointer, input2.pointer, target.pointer, margin, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ masked_fill(self::Tensor, mask::Tensor, value::TorchNumber) Wrapper of C++ function void atg\\_masked\\_fill(tensor *out\\_\\_, tensor self, tensor mask, scalar value) """ function masked_fill(self::Tensor, mask::Tensor, value::TorchNumber) outputs__ = Int[0] value_s_ = Scalar(value) __cret = ccall((:atg_masked_fill, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mask.pointer, value_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ masked_fill1(self::Tensor, mask::Tensor, value::Tensor) Wrapper of C++ function void atg\\_masked\\_fill1(tensor *out\\_\\_, tensor self, tensor mask, tensor value) """ function masked_fill1(self::Tensor, mask::Tensor, value::Tensor) outputs__ = Int[0] __cret = ccall((:atg_masked_fill1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mask.pointer, value.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ masked_fill!(self::Tensor, mask::Tensor, value::TorchNumber) Wrapper of C++ function void atg\\_masked\\_fill\\_(tensor *out\\_\\_, tensor self, tensor mask, scalar value) """ function masked_fill!(self::Tensor, mask::Tensor, value::TorchNumber) outputs__ = Int[0] value_s_ = Scalar(value) __cret = ccall((:atg_masked_fill_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mask.pointer, value_s_.pointer) return self end """ masked_fill1!(self::Tensor, mask::Tensor, value::Tensor) Wrapper of C++ function void atg\\_masked\\_fill\\_1(tensor *out\\_\\_, tensor self, tensor mask, tensor value) """ function masked_fill1!(self::Tensor, mask::Tensor, value::Tensor) outputs__ = Int[0] __cret = ccall((:atg_masked_fill_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mask.pointer, value.pointer) return self end """ masked_scatter(self::Tensor, mask::Tensor, source::Tensor) Wrapper of C++ function void atg\\_masked\\_scatter(tensor *out\\_\\_, tensor self, tensor mask, tensor source) """ function masked_scatter(self::Tensor, mask::Tensor, source::Tensor) outputs__ = Int[0] __cret = ccall((:atg_masked_scatter, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mask.pointer, source.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ masked_scatter!(self::Tensor, mask::Tensor, source::Tensor) Wrapper of C++ function void atg\\_masked\\_scatter\\_(tensor *out\\_\\_, tensor self, tensor mask, tensor source) """ function masked_scatter!(self::Tensor, mask::Tensor, source::Tensor) outputs__ = Int[0] __cret = ccall((:atg_masked_scatter_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mask.pointer, source.pointer) return self end """ masked_select(self::Tensor, mask::Tensor) Wrapper of C++ function void atg\\_masked\\_select(tensor *out\\_\\_, tensor self, tensor mask) """ function masked_select(self::Tensor, mask::Tensor) outputs__ = Int[0] __cret = ccall((:atg_masked_select, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mask.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ masked_select_out(out::Tensor, self::Tensor, mask::Tensor) Wrapper of C++ function void atg\\_masked\\_select\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor mask) """ function masked_select_out(out::Tensor, self::Tensor, mask::Tensor) outputs__ = Int[0] __cret = ccall((:atg_masked_select_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, mask.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ matmul(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_matmul(tensor *out\\_\\_, tensor self, tensor other) """ function matmul(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_matmul, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ matmul_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_matmul\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function matmul_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_matmul_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ matrix_power(self::Tensor, n::Int64) Wrapper of C++ function void atg\\_matrix\\_power(tensor *out\\_\\_, tensor self, int64\\_t n) """ function matrix_power(self::Tensor, n::Int64) outputs__ = Int[0] __cret = ccall((:atg_matrix_power, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, n) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ matrix_rank(self::Tensor, symmetric::Int) Wrapper of C++ function void atg\\_matrix\\_rank(tensor *out\\_\\_, tensor self, int symmetric) """ function matrix_rank(self::Tensor, symmetric::Int) outputs__ = Int[0] __cret = ccall((:atg_matrix_rank, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, symmetric) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ matrix_rank1(self::Tensor, tol::Float64, symmetric::Int) Wrapper of C++ function void atg\\_matrix\\_rank1(tensor *out\\_\\_, tensor self, double tol, int symmetric) """ function matrix_rank1(self::Tensor, tol::Float64, symmetric::Int) outputs__ = Int[0] __cret = ccall((:atg_matrix_rank1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cint), outputs__, self.pointer, tol, symmetric) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.max """ max(self::Tensor) Wrapper of C++ function void atg\\_max(tensor *out\\_\\_, tensor self) """ function max(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_max, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_max1(tensor *out\\_\\_, tensor self, tensor other) """ function max1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_max1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max2(self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_max2(tensor *out\\_\\_, tensor self, int64\\_t dim, int keepdim) """ function max2(self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_max2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ max_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_max\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function max_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_max_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_out1(max::Tensor, max_values::Tensor, self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_max\\_out1(tensor *out\\_\\_, tensor max, tensor max\\_values, tensor self, int64\\_t dim, int keepdim) """ function max_out1(max::Tensor, max_values::Tensor, self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_max_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, max.pointer, max_values.pointer, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ max_pool1d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_max\\_pool1d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function max_pool1d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_pool1d_with_indices(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_max\\_pool1d\\_with\\_indices(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function max_pool1d_with_indices(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0, 0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool1d_with_indices, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ max_pool2d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_max\\_pool2d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function max_pool2d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_pool2d_with_indices(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_max\\_pool2d\\_with\\_indices(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function max_pool2d_with_indices(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0, 0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool2d_with_indices, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ max_pool2d_with_indices_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int, indices::Tensor) Wrapper of C++ function void atg\\_max\\_pool2d\\_with\\_indices\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode, tensor indices) """ function max_pool2d_with_indices_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int, indices::Tensor) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool2d_with_indices_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_pool2d_with_indices_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int, indices::Tensor) Wrapper of C++ function void atg\\_max\\_pool2d\\_with\\_indices\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode, tensor indices) """ function max_pool2d_with_indices_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int, indices::Tensor) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool2d_with_indices_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_pool2d_with_indices_out(out::Tensor, indices::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_max\\_pool2d\\_with\\_indices\\_out(tensor *out\\_\\_, tensor out, tensor indices, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function max_pool2d_with_indices_out(out::Tensor, indices::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0, 0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool2d_with_indices_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, indices.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ max_pool3d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_max\\_pool3d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function max_pool3d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_pool3d_with_indices(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_max\\_pool3d\\_with\\_indices(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function max_pool3d_with_indices(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0, 0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool3d_with_indices, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ max_pool3d_with_indices_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int, indices::Tensor) Wrapper of C++ function void atg\\_max\\_pool3d\\_with\\_indices\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode, tensor indices) """ function max_pool3d_with_indices_backward(grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int, indices::Tensor) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool3d_with_indices_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_pool3d_with_indices_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int, indices::Tensor) Wrapper of C++ function void atg\\_max\\_pool3d\\_with\\_indices\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode, tensor indices) """ function max_pool3d_with_indices_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int, indices::Tensor) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool3d_with_indices_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode, indices.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_pool3d_with_indices_out(out::Tensor, indices::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_max\\_pool3d\\_with\\_indices\\_out(tensor *out\\_\\_, tensor out, tensor indices, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function max_pool3d_with_indices_out(out::Tensor, indices::Tensor, self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0, 0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_max_pool3d_with_indices_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, indices.pointer, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ max_unpool2d(self::Tensor, indices::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_max\\_unpool2d(tensor *out\\_\\_, tensor self, tensor indices, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function max_unpool2d(self::Tensor, indices::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_max_unpool2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, indices.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_unpool2d_backward(grad_output::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_max\\_unpool2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor indices, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function max_unpool2d_backward(grad_output::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_max_unpool2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, self.pointer, indices.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_unpool2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_max\\_unpool2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor indices, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function max_unpool2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_max_unpool2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, indices.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_unpool2d_out(out::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_max\\_unpool2d\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor indices, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function max_unpool2d_out(out::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_max_unpool2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, indices.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_unpool3d(self::Tensor, indices::Tensor, output_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_max\\_unpool3d(tensor *out\\_\\_, tensor self, tensor indices, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len) """ function max_unpool3d(self::Tensor, indices::Tensor, output_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_max_unpool3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, indices.pointer, output_size_data, output_size_len, stride_data, stride_len, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_unpool3d_backward(grad_output::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_max\\_unpool3d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor indices, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len) """ function max_unpool3d_backward(grad_output::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_max_unpool3d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, self.pointer, indices.pointer, output_size_data, output_size_len, stride_data, stride_len, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_unpool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_max\\_unpool3d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor indices, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len) """ function max_unpool3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_max_unpool3d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, indices.pointer, output_size_data, output_size_len, stride_data, stride_len, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_unpool3d_out(out::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_max\\_unpool3d\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor indices, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len) """ function max_unpool3d_out(out::Tensor, self::Tensor, indices::Tensor, output_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_max_unpool3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, indices.pointer, output_size_data, output_size_len, stride_data, stride_len, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ max_values(self::Tensor, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_max\\_values(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function max_values(self::Tensor, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_max_values, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mean(self::Tensor, dtype::Int) Wrapper of C++ function void atg\\_mean(tensor *out\\_\\_, tensor self, int dtype) """ function mean(self::Tensor, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_mean, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mean1(self::Tensor, dim_data::Array{Int64}, keepdim::Int, dtype::Int) Wrapper of C++ function void atg\\_mean1(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim, int dtype) """ function mean1(self::Tensor, dim_data::Array{Int64}, keepdim::Int, dtype::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_mean1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, keepdim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mean_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int, dtype::Int) Wrapper of C++ function void atg\\_mean\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim, int dtype) """ function mean_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int, dtype::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_mean_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, out.pointer, self.pointer, dim_data, dim_len, keepdim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ median(self::Tensor) Wrapper of C++ function void atg\\_median(tensor *out\\_\\_, tensor self) """ function median(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_median, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ median1(self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_median1(tensor *out\\_\\_, tensor self, int64\\_t dim, int keepdim) """ function median1(self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_median1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ median_out(values::Tensor, indices::Tensor, self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_median\\_out(tensor *out\\_\\_, tensor values, tensor indices, tensor self, int64\\_t dim, int keepdim) """ function median_out(values::Tensor, indices::Tensor, self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_median_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, values.pointer, indices.pointer, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ meshgrid(tensors_data::Array{Tensor{T,N}}) Wrapper of C++ function tensor *atg\\_meshgrid(tensor *tensors\\_data, int tensors\\_len) """ function meshgrid(tensors_data::Array{Tensor{T,N}}) where {T,N} tensors_data_ta_ = map(x->x.pointer, tensors_data) tensors_len = length(tensors_data) __cret = ccall((:atg_meshgrid, :libtorch_capi), Ptr{Int}, (Ptr{Cvoid}, Cint), tensors_data_ta_, tensors_len) ptrs__, i__ = Int[], 1 while true ptr__ = unsafe_load(__cret, i__) ptr__ == 0 && break push!(ptrs__, ptr__) i__ += 1 end ccall(:free, Cvoid, (Ptr{Cvoid},), __cret) return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__) end import Base.min """ min(self::Tensor) Wrapper of C++ function void atg\\_min(tensor *out\\_\\_, tensor self) """ function min(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_min, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ min1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_min1(tensor *out\\_\\_, tensor self, tensor other) """ function min1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_min1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ min2(self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_min2(tensor *out\\_\\_, tensor self, int64\\_t dim, int keepdim) """ function min2(self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_min2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ min_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_min\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function min_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_min_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ min_out1(min::Tensor, min_indices::Tensor, self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_min\\_out1(tensor *out\\_\\_, tensor min, tensor min\\_indices, tensor self, int64\\_t dim, int keepdim) """ function min_out1(min::Tensor, min_indices::Tensor, self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_min_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, min.pointer, min_indices.pointer, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ min_values(self::Tensor, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_min\\_values(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function min_values(self::Tensor, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_min_values, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_batch_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, training::Int, exponential_average_factor::Float64, epsilon::Float64) Wrapper of C++ function void atg\\_miopen\\_batch\\_norm(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, tensor running\\_mean, tensor running\\_var, int training, double exponential\\_average\\_factor, double epsilon) """ function miopen_batch_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, training::Int, exponential_average_factor::Float64, epsilon::Float64) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_miopen_batch_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cdouble, Cdouble), outputs__, input.pointer, weight.pointer, bias.pointer, running_mean.pointer, running_var.pointer, training, exponential_average_factor, epsilon) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ miopen_batch_norm_backward(input::Tensor, grad_output::Tensor, weight::Tensor, running_mean::Tensor, running_var::Tensor, save_mean::Tensor, save_var::Tensor, epsilon::Float64) Wrapper of C++ function void atg\\_miopen\\_batch\\_norm\\_backward(tensor *out\\_\\_, tensor input, tensor grad\\_output, tensor weight, tensor running\\_mean, tensor running\\_var, tensor save\\_mean, tensor save\\_var, double epsilon) """ function miopen_batch_norm_backward(input::Tensor, grad_output::Tensor, weight::Tensor, running_mean::Tensor, running_var::Tensor, save_mean::Tensor, save_var::Tensor, epsilon::Float64) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_miopen_batch_norm_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, input.pointer, grad_output.pointer, weight.pointer, running_mean.pointer, running_var.pointer, save_mean.pointer, save_var.pointer, epsilon) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ miopen_convolution(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_miopen\\_convolution(tensor *out\\_\\_, tensor self, tensor weight, tensor bias, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function miopen_convolution(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_miopen_convolution, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, self.pointer, weight.pointer, bias.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_convolution_backward_bias(grad_output::Tensor) Wrapper of C++ function void atg\\_miopen\\_convolution\\_backward\\_bias(tensor *out\\_\\_, tensor grad\\_output) """ function miopen_convolution_backward_bias(grad_output::Tensor) outputs__ = Int[0] __cret = ccall((:atg_miopen_convolution_backward_bias, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_convolution_backward_input(self_size_data::Array{Int64}, grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_miopen\\_convolution\\_backward\\_input(tensor *out\\_\\_, int64\\_t *self\\_size\\_data, int self\\_size\\_len, tensor grad\\_output, tensor weight, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function miopen_convolution_backward_input(self_size_data::Array{Int64}, grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] self_size_len = length(self_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_miopen_convolution_backward_input, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, self_size_data, self_size_len, grad_output.pointer, weight.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_convolution_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_miopen\\_convolution\\_backward\\_weight(tensor *out\\_\\_, int64\\_t *weight\\_size\\_data, int weight\\_size\\_len, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function miopen_convolution_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] weight_size_len = length(weight_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_miopen_convolution_backward_weight, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, weight_size_data, weight_size_len, grad_output.pointer, self.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_convolution_transpose(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, output_padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_miopen\\_convolution\\_transpose(tensor *out\\_\\_, tensor self, tensor weight, tensor bias, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function miopen_convolution_transpose(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, output_padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] padding_len = length(padding_data) output_padding_len = length(output_padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_miopen_convolution_transpose, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, self.pointer, weight.pointer, bias.pointer, padding_data, padding_len, output_padding_data, output_padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_convolution_transpose_backward_input(grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_miopen\\_convolution\\_transpose\\_backward\\_input(tensor *out\\_\\_, tensor grad\\_output, tensor weight, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function miopen_convolution_transpose_backward_input(grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_miopen_convolution_transpose_backward_input, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, grad_output.pointer, weight.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_convolution_transpose_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_miopen\\_convolution\\_transpose\\_backward\\_weight(tensor *out\\_\\_, int64\\_t *weight\\_size\\_data, int weight\\_size\\_len, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function miopen_convolution_transpose_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] weight_size_len = length(weight_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_miopen_convolution_transpose_backward_weight, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, weight_size_data, weight_size_len, grad_output.pointer, self.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_depthwise_convolution(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_miopen\\_depthwise\\_convolution(tensor *out\\_\\_, tensor self, tensor weight, tensor bias, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function miopen_depthwise_convolution(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_miopen_depthwise_convolution, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, self.pointer, weight.pointer, bias.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_depthwise_convolution_backward_input(self_size_data::Array{Int64}, grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_miopen\\_depthwise\\_convolution\\_backward\\_input(tensor *out\\_\\_, int64\\_t *self\\_size\\_data, int self\\_size\\_len, tensor grad\\_output, tensor weight, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function miopen_depthwise_convolution_backward_input(self_size_data::Array{Int64}, grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] self_size_len = length(self_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_miopen_depthwise_convolution_backward_input, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, self_size_data, self_size_len, grad_output.pointer, weight.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_depthwise_convolution_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) Wrapper of C++ function void atg\\_miopen\\_depthwise\\_convolution\\_backward\\_weight(tensor *out\\_\\_, int64\\_t *weight\\_size\\_data, int weight\\_size\\_len, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int benchmark, int deterministic) """ function miopen_depthwise_convolution_backward_weight(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, benchmark::Int, deterministic::Int) outputs__ = Int[0] weight_size_len = length(weight_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_miopen_depthwise_convolution_backward_weight, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint, Cint), outputs__, weight_size_data, weight_size_len, grad_output.pointer, self.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, benchmark, deterministic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ miopen_rnn(input::Tensor, weight_data::Array{Tensor{T,N}}, weight_stride0::Int64, hx::Tensor, cx::Tensor, mode::Int64, hidden_size::Int64, num_layers::Int64, batch_first::Int, dropout::Float64, train::Int, bidirectional::Int, batch_sizes_data::Array{Int64}, dropout_state::Tensor) Wrapper of C++ function void atg\\_miopen\\_rnn(tensor *out\\_\\_, tensor input, tensor *weight\\_data, int weight\\_len, int64\\_t weight\\_stride0, tensor hx, tensor cx, int64\\_t mode, int64\\_t hidden\\_size, int64\\_t num\\_layers, int batch\\_first, double dropout, int train, int bidirectional, int64\\_t *batch\\_sizes\\_data, int batch\\_sizes\\_len, tensor dropout\\_state) """ function miopen_rnn(input::Tensor, weight_data::Array{Tensor{T,N}}, weight_stride0::Int64, hx::Tensor, cx::Tensor, mode::Int64, hidden_size::Int64, num_layers::Int64, batch_first::Int, dropout::Float64, train::Int, bidirectional::Int, batch_sizes_data::Array{Int64}, dropout_state::Tensor) where {T,N} outputs__ = Int[0, 0, 0, 0, 0] weight_data_ta_ = map(x->x.pointer, weight_data) weight_len = length(weight_data) batch_sizes_len = length(batch_sizes_data) __cret = ccall((:atg_miopen_rnn, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong, Cint, Cdouble, Cint, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}), outputs__, input.pointer, weight_data_ta_, weight_len, weight_stride0, hx.pointer, cx.pointer, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes_data, batch_sizes_len, dropout_state.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) __o_4 = tensor_from_ptr(Ptr{Cvoid}(outputs__[4])) __o_5 = tensor_from_ptr(Ptr{Cvoid}(outputs__[5])) return __o_1, __o_2, __o_3, __o_4, __o_5 end """ mkldnn_adaptive_avg_pool2d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_mkldnn\\_adaptive\\_avg\\_pool2d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function mkldnn_adaptive_avg_pool2d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_mkldnn_adaptive_avg_pool2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mkldnn_convolution(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) Wrapper of C++ function void atg\\_mkldnn\\_convolution(tensor *out\\_\\_, tensor self, tensor weight, tensor bias, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups) """ function mkldnn_convolution(self::Tensor, weight::Tensor, bias::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) outputs__ = Int[0] padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_mkldnn_convolution, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong), outputs__, self.pointer, weight.pointer, bias.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mkldnn_convolution_backward_input(self_size_data::Array{Int64}, grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, bias_defined::Int) Wrapper of C++ function void atg\\_mkldnn\\_convolution\\_backward\\_input(tensor *out\\_\\_, int64\\_t *self\\_size\\_data, int self\\_size\\_len, tensor grad\\_output, tensor weight, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int bias\\_defined) """ function mkldnn_convolution_backward_input(self_size_data::Array{Int64}, grad_output::Tensor, weight::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, bias_defined::Int) outputs__ = Int[0] self_size_len = length(self_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_mkldnn_convolution_backward_input, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint), outputs__, self_size_data, self_size_len, grad_output.pointer, weight.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, bias_defined) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mkldnn_convolution_backward_weights(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, bias_defined::Int) Wrapper of C++ function void atg\\_mkldnn\\_convolution\\_backward\\_weights(tensor *out\\_\\_, int64\\_t *weight\\_size\\_data, int weight\\_size\\_len, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups, int bias\\_defined) """ function mkldnn_convolution_backward_weights(weight_size_data::Array{Int64}, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64, bias_defined::Int) outputs__ = Int[0, 0] weight_size_len = length(weight_size_data) padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_mkldnn_convolution_backward_weights, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong, Cint), outputs__, weight_size_data, weight_size_len, grad_output.pointer, self.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups, bias_defined) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ mkldnn_linear(input::Tensor, weight::Tensor, bias::Tensor) Wrapper of C++ function void atg\\_mkldnn\\_linear(tensor *out\\_\\_, tensor input, tensor weight, tensor bias) """ function mkldnn_linear(input::Tensor, weight::Tensor, bias::Tensor) outputs__ = Int[0] __cret = ccall((:atg_mkldnn_linear, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, weight.pointer, bias.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mkldnn_max_pool2d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_mkldnn\\_max\\_pool2d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function mkldnn_max_pool2d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_mkldnn_max_pool2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mkldnn_reorder_conv2d_weight(self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) Wrapper of C++ function void atg\\_mkldnn\\_reorder\\_conv2d\\_weight(tensor *out\\_\\_, tensor self, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int64\\_t groups) """ function mkldnn_reorder_conv2d_weight(self::Tensor, padding_data::Array{Int64}, stride_data::Array{Int64}, dilation_data::Array{Int64}, groups::Int64) outputs__ = Int[0] padding_len = length(padding_data) stride_len = length(stride_data) dilation_len = length(dilation_data) __cret = ccall((:atg_mkldnn_reorder_conv2d_weight, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Clonglong), outputs__, self.pointer, padding_data, padding_len, stride_data, stride_len, dilation_data, dilation_len, groups) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mm(self::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_mm(tensor *out\\_\\_, tensor self, tensor mat2) """ function mm(self::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_mm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mm_out(out::Tensor, self::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_mm\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor mat2) """ function mm_out(out::Tensor, self::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_mm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mode(self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_mode(tensor *out\\_\\_, tensor self, int64\\_t dim, int keepdim) """ function mode(self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_mode, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ mode_out(values::Tensor, indices::Tensor, self::Tensor, dim::Int64, keepdim::Int) Wrapper of C++ function void atg\\_mode\\_out(tensor *out\\_\\_, tensor values, tensor indices, tensor self, int64\\_t dim, int keepdim) """ function mode_out(values::Tensor, indices::Tensor, self::Tensor, dim::Int64, keepdim::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_mode_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, values.pointer, indices.pointer, self.pointer, dim, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ mse_loss(self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_mse\\_loss(tensor *out\\_\\_, tensor self, tensor target, int64\\_t reduction) """ function mse_loss(self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_mse_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mse_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_mse\\_loss\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction) """ function mse_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_mse_loss_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_output.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mse_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_mse\\_loss\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction) """ function mse_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_mse_loss_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mse_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_mse\\_loss\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor target, int64\\_t reduction) """ function mse_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_mse_loss_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mul(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_mul(tensor *out\\_\\_, tensor self, tensor other) """ function mul(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_mul, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mul1(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_mul1(tensor *out\\_\\_, tensor self, scalar other) """ function mul1(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_mul1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mul!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_mul\\_(tensor *out\\_\\_, tensor self, tensor other) """ function mul!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_mul_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ mul1!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_mul\\_1(tensor *out\\_\\_, tensor self, scalar other) """ function mul1!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_mul_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ mul_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_mul\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function mul_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_mul_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ multi_margin_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, p::TorchNumber, margin::TorchNumber, weight::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_multi\\_margin\\_loss\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, scalar p, scalar margin, tensor weight, int64\\_t reduction) """ function multi_margin_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, p::TorchNumber, margin::TorchNumber, weight::Tensor, reduction::Int64) outputs__ = Int[0] p_s_ = Scalar(p) margin_s_ = Scalar(margin) __cret = ccall((:atg_multi_margin_loss_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_output.pointer, self.pointer, target.pointer, p_s_.pointer, margin_s_.pointer, weight.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ multi_margin_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, p::TorchNumber, margin::TorchNumber, weight::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_multi\\_margin\\_loss\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor target, scalar p, scalar margin, tensor weight, int64\\_t reduction) """ function multi_margin_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, p::TorchNumber, margin::TorchNumber, weight::Tensor, reduction::Int64) outputs__ = Int[0] p_s_ = Scalar(p) margin_s_ = Scalar(margin) __cret = ccall((:atg_multi_margin_loss_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, target.pointer, p_s_.pointer, margin_s_.pointer, weight.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ multilabel_margin_loss(self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_multilabel\\_margin\\_loss(tensor *out\\_\\_, tensor self, tensor target, int64\\_t reduction) """ function multilabel_margin_loss(self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_multilabel_margin_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ multilabel_margin_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64, is_target::Tensor) Wrapper of C++ function void atg\\_multilabel\\_margin\\_loss\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction, tensor is\\_target) """ function multilabel_margin_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64, is_target::Tensor) outputs__ = Int[0] __cret = ccall((:atg_multilabel_margin_loss_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, target.pointer, reduction, is_target.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ multilabel_margin_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64, is_target::Tensor) Wrapper of C++ function void atg\\_multilabel\\_margin\\_loss\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction, tensor is\\_target) """ function multilabel_margin_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64, is_target::Tensor) outputs__ = Int[0] __cret = ccall((:atg_multilabel_margin_loss_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, target.pointer, reduction, is_target.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ multilabel_margin_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_multilabel\\_margin\\_loss\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor target, int64\\_t reduction) """ function multilabel_margin_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_multilabel_margin_loss_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ multinomial(self::Tensor, num_samples::Int64, replacement::Int) Wrapper of C++ function void atg\\_multinomial(tensor *out\\_\\_, tensor self, int64\\_t num\\_samples, int replacement) """ function multinomial(self::Tensor, num_samples::Int64, replacement::Int) outputs__ = Int[0] __cret = ccall((:atg_multinomial, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, num_samples, replacement) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ multinomial_out(out::Tensor, self::Tensor, num_samples::Int64, replacement::Int) Wrapper of C++ function void atg\\_multinomial\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t num\\_samples, int replacement) """ function multinomial_out(out::Tensor, self::Tensor, num_samples::Int64, replacement::Int) outputs__ = Int[0] __cret = ccall((:atg_multinomial_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, out.pointer, self.pointer, num_samples, replacement) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.mv """ mv(self::Tensor, vec::Tensor) Wrapper of C++ function void atg\\_mv(tensor *out\\_\\_, tensor self, tensor vec) """ function mv(self::Tensor, vec::Tensor) outputs__ = Int[0] __cret = ccall((:atg_mv, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, vec.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mv_out(out::Tensor, self::Tensor, vec::Tensor) Wrapper of C++ function void atg\\_mv\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor vec) """ function mv_out(out::Tensor, self::Tensor, vec::Tensor) outputs__ = Int[0] __cret = ccall((:atg_mv_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, vec.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mvlgamma(self::Tensor, p::Int64) Wrapper of C++ function void atg\\_mvlgamma(tensor *out\\_\\_, tensor self, int64\\_t p) """ function mvlgamma(self::Tensor, p::Int64) outputs__ = Int[0] __cret = ccall((:atg_mvlgamma, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, p) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ mvlgamma!(self::Tensor, p::Int64) Wrapper of C++ function void atg\\_mvlgamma\\_(tensor *out\\_\\_, tensor self, int64\\_t p) """ function mvlgamma!(self::Tensor, p::Int64) outputs__ = Int[0] __cret = ccall((:atg_mvlgamma_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, p) return self end """ narrow(self::Tensor, dim::Int64, start::Int64, length::Int64) Wrapper of C++ function void atg\\_narrow(tensor *out\\_\\_, tensor self, int64\\_t dim, int64\\_t start, int64\\_t length) """ function narrow(self::Tensor, dim::Int64, start::Int64, length::Int64) outputs__ = Int[0] __cret = ccall((:atg_narrow, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong), outputs__, self.pointer, dim, start, length) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ narrow_copy(self::Tensor, dim::Int64, start::Int64, length::Int64) Wrapper of C++ function void atg\\_narrow\\_copy(tensor *out\\_\\_, tensor self, int64\\_t dim, int64\\_t start, int64\\_t length) """ function narrow_copy(self::Tensor, dim::Int64, start::Int64, length::Int64) outputs__ = Int[0] __cret = ccall((:atg_narrow_copy, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong), outputs__, self.pointer, dim, start, length) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ native_batch_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, training::Int, momentum::Float64, eps::Float64) Wrapper of C++ function void atg\\_native\\_batch\\_norm(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, tensor running\\_mean, tensor running\\_var, int training, double momentum, double eps) """ function native_batch_norm(input::Tensor, weight::Tensor, bias::Tensor, running_mean::Tensor, running_var::Tensor, training::Int, momentum::Float64, eps::Float64) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_native_batch_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cdouble, Cdouble), outputs__, input.pointer, weight.pointer, bias.pointer, running_mean.pointer, running_var.pointer, training, momentum, eps) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ native_layer_norm(input::Tensor, weight::Tensor, bias::Tensor, M::Int64, n::Int64, eps::Float64) Wrapper of C++ function void atg\\_native\\_layer\\_norm(tensor *out\\_\\_, tensor input, tensor weight, tensor bias, int64\\_t M, int64\\_t n, double eps) """ function native_layer_norm(input::Tensor, weight::Tensor, bias::Tensor, M::Int64, n::Int64, eps::Float64) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_native_layer_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cdouble), outputs__, input.pointer, weight.pointer, bias.pointer, M, n, eps) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ native_norm(self::Tensor) Wrapper of C++ function void atg\\_native\\_norm(tensor *out\\_\\_, tensor self) """ function native_norm(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_native_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ne(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_ne(tensor *out\\_\\_, tensor self, scalar other) """ function ne(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_ne, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ne1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_ne1(tensor *out\\_\\_, tensor self, tensor other) """ function ne1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ne1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ne!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_ne\\_(tensor *out\\_\\_, tensor self, scalar other) """ function ne!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_ne_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ ne1!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_ne\\_1(tensor *out\\_\\_, tensor self, tensor other) """ function ne1!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ne_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ ne_out(out::Tensor, self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_ne\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar other) """ function ne_out(out::Tensor, self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_ne_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ne_out1(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_ne\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function ne_out1(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ne_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ neg(self::Tensor) Wrapper of C++ function void atg\\_neg(tensor *out\\_\\_, tensor self) """ function neg(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_neg, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ neg!(self::Tensor) Wrapper of C++ function void atg\\_neg\\_(tensor *out\\_\\_, tensor self) """ function neg!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_neg_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ neg_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_neg\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function neg_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_neg_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ new_empty(self::Tensor, size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_new\\_empty(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function new_empty(self::Tensor, size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_new_empty, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ new_full(self::Tensor, size_data::Array{Int64}, fill_value::TorchNumber, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_new\\_full(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len, scalar fill\\_value, int options\\_kind, int options\\_device) """ function new_full(self::Tensor, size_data::Array{Int64}, fill_value::TorchNumber, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) fill_value_s_ = Scalar(fill_value) __cret = ccall((:atg_new_full, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, size_data, size_len, fill_value_s_.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ new_zeros(self::Tensor, size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_new\\_zeros(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function new_zeros(self::Tensor, size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_new_zeros, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nll_loss(self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64) Wrapper of C++ function void atg\\_nll\\_loss(tensor *out\\_\\_, tensor self, tensor target, tensor weight, int64\\_t reduction, int64\\_t ignore\\_index) """ function nll_loss(self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64) outputs__ = Int[0] __cret = ccall((:atg_nll_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, self.pointer, target.pointer, weight.pointer, reduction, ignore_index) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nll_loss2d(self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64) Wrapper of C++ function void atg\\_nll\\_loss2d(tensor *out\\_\\_, tensor self, tensor target, tensor weight, int64\\_t reduction, int64\\_t ignore\\_index) """ function nll_loss2d(self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64) outputs__ = Int[0] __cret = ccall((:atg_nll_loss2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, self.pointer, target.pointer, weight.pointer, reduction, ignore_index) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nll_loss2d_backward(grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64, total_weight::Tensor) Wrapper of C++ function void atg\\_nll\\_loss2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, tensor weight, int64\\_t reduction, int64\\_t ignore\\_index, tensor total\\_weight) """ function nll_loss2d_backward(grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64, total_weight::Tensor) outputs__ = Int[0] __cret = ccall((:atg_nll_loss2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, target.pointer, weight.pointer, reduction, ignore_index, total_weight.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nll_loss2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64, total_weight::Tensor) Wrapper of C++ function void atg\\_nll\\_loss2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor target, tensor weight, int64\\_t reduction, int64\\_t ignore\\_index, tensor total\\_weight) """ function nll_loss2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64, total_weight::Tensor) outputs__ = Int[0] __cret = ccall((:atg_nll_loss2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, target.pointer, weight.pointer, reduction, ignore_index, total_weight.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nll_loss2d_out(out::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64) Wrapper of C++ function void atg\\_nll\\_loss2d\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor target, tensor weight, int64\\_t reduction, int64\\_t ignore\\_index) """ function nll_loss2d_out(out::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64) outputs__ = Int[0] __cret = ccall((:atg_nll_loss2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, out.pointer, self.pointer, target.pointer, weight.pointer, reduction, ignore_index) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nll_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64, total_weight::Tensor) Wrapper of C++ function void atg\\_nll\\_loss\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, tensor weight, int64\\_t reduction, int64\\_t ignore\\_index, tensor total\\_weight) """ function nll_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64, total_weight::Tensor) outputs__ = Int[0] __cret = ccall((:atg_nll_loss_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, target.pointer, weight.pointer, reduction, ignore_index, total_weight.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nll_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64, total_weight::Tensor) Wrapper of C++ function void atg\\_nll\\_loss\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor target, tensor weight, int64\\_t reduction, int64\\_t ignore\\_index, tensor total\\_weight) """ function nll_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64, total_weight::Tensor) outputs__ = Int[0] __cret = ccall((:atg_nll_loss_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, target.pointer, weight.pointer, reduction, ignore_index, total_weight.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nll_loss_out(out::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64) Wrapper of C++ function void atg\\_nll\\_loss\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor target, tensor weight, int64\\_t reduction, int64\\_t ignore\\_index) """ function nll_loss_out(out::Tensor, self::Tensor, target::Tensor, weight::Tensor, reduction::Int64, ignore_index::Int64) outputs__ = Int[0] __cret = ccall((:atg_nll_loss_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, out.pointer, self.pointer, target.pointer, weight.pointer, reduction, ignore_index) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nonzero(self::Tensor) Wrapper of C++ function void atg\\_nonzero(tensor *out\\_\\_, tensor self) """ function nonzero(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_nonzero, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nonzero_numpy(self::Tensor) Wrapper of C++ function tensor *atg\\_nonzero\\_numpy(tensor self) """ function nonzero_numpy(self::Tensor) __cret = ccall((:atg_nonzero_numpy, :libtorch_capi), Ptr{Int}, (Ptr{Cvoid},), self.pointer) ptrs__, i__ = Int[], 1 while true ptr__ = unsafe_load(__cret, i__) ptr__ == 0 && break push!(ptrs__, ptr__) i__ += 1 end ccall(:free, Cvoid, (Ptr{Cvoid},), __cret) return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__) end """ nonzero_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_nonzero\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function nonzero_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_nonzero_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ norm(self::Tensor) Wrapper of C++ function void atg\\_norm(tensor *out\\_\\_, tensor self) """ function norm(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ norm1(self::Tensor, p::TorchNumber, dtype::Int) Wrapper of C++ function void atg\\_norm1(tensor *out\\_\\_, tensor self, scalar p, int dtype) """ function norm1(self::Tensor, p::TorchNumber, dtype::Int) outputs__ = Int[0] p_s_ = Scalar(p) __cret = ccall((:atg_norm1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, p_s_.pointer, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ norm2(self::Tensor, p::TorchNumber, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_norm2(tensor *out\\_\\_, tensor self, scalar p, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function norm2(self::Tensor, p::TorchNumber, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] p_s_ = Scalar(p) dim_len = length(dim_data) __cret = ccall((:atg_norm2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, p_s_.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ norm3(self::Tensor, p::TorchNumber, dim_data::Array{Int64}, keepdim::Int, dtype::Int) Wrapper of C++ function void atg\\_norm3(tensor *out\\_\\_, tensor self, scalar p, int64\\_t *dim\\_data, int dim\\_len, int keepdim, int dtype) """ function norm3(self::Tensor, p::TorchNumber, dim_data::Array{Int64}, keepdim::Int, dtype::Int) outputs__ = Int[0] p_s_ = Scalar(p) dim_len = length(dim_data) __cret = ccall((:atg_norm3, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, p_s_.pointer, dim_data, dim_len, keepdim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ norm_except_dim(v::Tensor, pow::Int64, dim::Int64) Wrapper of C++ function void atg\\_norm\\_except\\_dim(tensor *out\\_\\_, tensor v, int64\\_t pow, int64\\_t dim) """ function norm_except_dim(v::Tensor, pow::Int64, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_norm_except_dim, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, v.pointer, pow, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ norm_out(out::Tensor, self::Tensor, p::TorchNumber, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_norm\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar p, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function norm_out(out::Tensor, self::Tensor, p::TorchNumber, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] p_s_ = Scalar(p) dim_len = length(dim_data) __cret = ccall((:atg_norm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, self.pointer, p_s_.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ norm_out1(out::Tensor, self::Tensor, p::TorchNumber, dim_data::Array{Int64}, keepdim::Int, dtype::Int) Wrapper of C++ function void atg\\_norm\\_out1(tensor *out\\_\\_, tensor out, tensor self, scalar p, int64\\_t *dim\\_data, int dim\\_len, int keepdim, int dtype) """ function norm_out1(out::Tensor, self::Tensor, p::TorchNumber, dim_data::Array{Int64}, keepdim::Int, dtype::Int) outputs__ = Int[0] p_s_ = Scalar(p) dim_len = length(dim_data) __cret = ccall((:atg_norm_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, out.pointer, self.pointer, p_s_.pointer, dim_data, dim_len, keepdim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ normal!(self::Tensor, mean::Float64, std::Float64) Wrapper of C++ function void atg\\_normal\\_(tensor *out\\_\\_, tensor self, double mean, double std) """ function normal!(self::Tensor, mean::Float64, std::Float64) outputs__ = Int[0] __cret = ccall((:atg_normal_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble), outputs__, self.pointer, mean, std) return self end """ normal_out(out::Tensor, mean::Tensor, std::Float64) Wrapper of C++ function void atg\\_normal\\_out(tensor *out\\_\\_, tensor out, tensor mean, double std) """ function normal_out(out::Tensor, mean::Tensor, std::Float64) outputs__ = Int[0] __cret = ccall((:atg_normal_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, out.pointer, mean.pointer, std) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ normal_out1(out::Tensor, mean::Float64, std::Tensor) Wrapper of C++ function void atg\\_normal\\_out1(tensor *out\\_\\_, tensor out, double mean, tensor std) """ function normal_out1(out::Tensor, mean::Float64, std::Tensor) outputs__ = Int[0] __cret = ccall((:atg_normal_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Ptr{Cvoid}), outputs__, out.pointer, mean, std.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ normal_out2(out::Tensor, mean::Tensor, std::Tensor) Wrapper of C++ function void atg\\_normal\\_out2(tensor *out\\_\\_, tensor out, tensor mean, tensor std) """ function normal_out2(out::Tensor, mean::Tensor, std::Tensor) outputs__ = Int[0] __cret = ccall((:atg_normal_out2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, mean.pointer, std.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ normal_out3(out::Tensor, mean::Float64, std::Float64, size_data::Array{Int64}) Wrapper of C++ function void atg\\_normal\\_out3(tensor *out\\_\\_, tensor out, double mean, double std, int64\\_t *size\\_data, int size\\_len) """ function normal_out3(out::Tensor, mean::Float64, std::Float64, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_normal_out3, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble, Ptr{Cvoid}, Cint), outputs__, out.pointer, mean, std, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nuclear_norm(self::Tensor, keepdim::Int) Wrapper of C++ function void atg\\_nuclear\\_norm(tensor *out\\_\\_, tensor self, int keepdim) """ function nuclear_norm(self::Tensor, keepdim::Int) outputs__ = Int[0] __cret = ccall((:atg_nuclear_norm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nuclear_norm1(self::Tensor, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_nuclear\\_norm1(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function nuclear_norm1(self::Tensor, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_nuclear_norm1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nuclear_norm_out(out::Tensor, self::Tensor, keepdim::Int) Wrapper of C++ function void atg\\_nuclear\\_norm\\_out(tensor *out\\_\\_, tensor out, tensor self, int keepdim) """ function nuclear_norm_out(out::Tensor, self::Tensor, keepdim::Int) outputs__ = Int[0] __cret = ccall((:atg_nuclear_norm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ nuclear_norm_out1(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int) Wrapper of C++ function void atg\\_nuclear\\_norm\\_out1(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim) """ function nuclear_norm_out1(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_nuclear_norm_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, self.pointer, dim_data, dim_len, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ numpy_t(self::Tensor) Wrapper of C++ function void atg\\_numpy\\_t(tensor *out\\_\\_, tensor self) """ function numpy_t(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_numpy_t, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ one_hot(self::Tensor, num_classes::Int64) Wrapper of C++ function void atg\\_one\\_hot(tensor *out\\_\\_, tensor self, int64\\_t num\\_classes) """ function one_hot(self::Tensor, num_classes::Int64) outputs__ = Int[0] __cret = ccall((:atg_one_hot, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, num_classes) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.ones """ ones(size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_ones(tensor *out\\_\\_, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function ones(size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_ones, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ones_like(self::Tensor) Wrapper of C++ function void atg\\_ones\\_like(tensor *out\\_\\_, tensor self) """ function ones_like(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_ones_like, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ones_like1(self::Tensor, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_ones\\_like1(tensor *out\\_\\_, tensor self, int options\\_kind, int options\\_device) """ function ones_like1(self::Tensor, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_ones_like1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ones_out(out::Tensor, size_data::Array{Int64}) Wrapper of C++ function void atg\\_ones\\_out(tensor *out\\_\\_, tensor out, int64\\_t *size\\_data, int size\\_len) """ function ones_out(out::Tensor, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_ones_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ orgqr(self::Tensor, input2::Tensor) Wrapper of C++ function void atg\\_orgqr(tensor *out\\_\\_, tensor self, tensor input2) """ function orgqr(self::Tensor, input2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_orgqr, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, input2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ orgqr_out(out::Tensor, self::Tensor, input2::Tensor) Wrapper of C++ function void atg\\_orgqr\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor input2) """ function orgqr_out(out::Tensor, self::Tensor, input2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_orgqr_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, input2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ormqr(self::Tensor, input2::Tensor, input3::Tensor, left::Int, transpose::Int) Wrapper of C++ function void atg\\_ormqr(tensor *out\\_\\_, tensor self, tensor input2, tensor input3, int left, int transpose) """ function ormqr(self::Tensor, input2::Tensor, input3::Tensor, left::Int, transpose::Int) outputs__ = Int[0] __cret = ccall((:atg_ormqr, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, input2.pointer, input3.pointer, left, transpose) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ ormqr_out(out::Tensor, self::Tensor, input2::Tensor, input3::Tensor, left::Int, transpose::Int) Wrapper of C++ function void atg\\_ormqr\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor input2, tensor input3, int left, int transpose) """ function ormqr_out(out::Tensor, self::Tensor, input2::Tensor, input3::Tensor, left::Int, transpose::Int) outputs__ = Int[0] __cret = ccall((:atg_ormqr_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, self.pointer, input2.pointer, input3.pointer, left, transpose) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pairwise_distance(x1::Tensor, x2::Tensor, p::Float64, eps::Float64, keepdim::Int) Wrapper of C++ function void atg\\_pairwise\\_distance(tensor *out\\_\\_, tensor x1, tensor x2, double p, double eps, int keepdim) """ function pairwise_distance(x1::Tensor, x2::Tensor, p::Float64, eps::Float64, keepdim::Int) outputs__ = Int[0] __cret = ccall((:atg_pairwise_distance, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble, Cint), outputs__, x1.pointer, x2.pointer, p, eps, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pdist(self::Tensor, p::Float64) Wrapper of C++ function void atg\\_pdist(tensor *out\\_\\_, tensor self, double p) """ function pdist(self::Tensor, p::Float64) outputs__ = Int[0] __cret = ccall((:atg_pdist, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, self.pointer, p) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ permute(self::Tensor, dims_data::Array{Int64}) Wrapper of C++ function void atg\\_permute(tensor *out\\_\\_, tensor self, int64\\_t *dims\\_data, int dims\\_len) """ function permute(self::Tensor, dims_data::Array{Int64}) outputs__ = Int[0] dims_len = length(dims_data) __cret = ccall((:atg_permute, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, dims_data, dims_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pin_memory(self::Tensor) Wrapper of C++ function void atg\\_pin\\_memory(tensor *out\\_\\_, tensor self) """ function pin_memory(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_pin_memory, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pinverse(self::Tensor, rcond::Float64) Wrapper of C++ function void atg\\_pinverse(tensor *out\\_\\_, tensor self, double rcond) """ function pinverse(self::Tensor, rcond::Float64) outputs__ = Int[0] __cret = ccall((:atg_pinverse, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble), outputs__, self.pointer, rcond) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pixel_shuffle(self::Tensor, upscale_factor::Int64) Wrapper of C++ function void atg\\_pixel\\_shuffle(tensor *out\\_\\_, tensor self, int64\\_t upscale\\_factor) """ function pixel_shuffle(self::Tensor, upscale_factor::Int64) outputs__ = Int[0] __cret = ccall((:atg_pixel_shuffle, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, upscale_factor) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ poisson(self::Tensor) Wrapper of C++ function void atg\\_poisson(tensor *out\\_\\_, tensor self) """ function poisson(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_poisson, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ poisson_nll_loss(input::Tensor, target::Tensor, log_input::Int, full::Int, eps::Float64, reduction::Int64) Wrapper of C++ function void atg\\_poisson\\_nll\\_loss(tensor *out\\_\\_, tensor input, tensor target, int log\\_input, int full, double eps, int64\\_t reduction) """ function poisson_nll_loss(input::Tensor, target::Tensor, log_input::Int, full::Int, eps::Float64, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_poisson_nll_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cdouble, Clonglong), outputs__, input.pointer, target.pointer, log_input, full, eps, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ polygamma(n::Int64, self::Tensor) Wrapper of C++ function void atg\\_polygamma(tensor *out\\_\\_, int64\\_t n, tensor self) """ function polygamma(n::Int64, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_polygamma, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, n, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ polygamma!(self::Tensor, n::Int64) Wrapper of C++ function void atg\\_polygamma\\_(tensor *out\\_\\_, tensor self, int64\\_t n) """ function polygamma!(self::Tensor, n::Int64) outputs__ = Int[0] __cret = ccall((:atg_polygamma_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, n) return self end """ polygamma_out(out::Tensor, n::Int64, self::Tensor) Wrapper of C++ function void atg\\_polygamma\\_out(tensor *out\\_\\_, tensor out, int64\\_t n, tensor self) """ function polygamma_out(out::Tensor, n::Int64, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_polygamma_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, out.pointer, n, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pow(self::Tensor, exponent::TorchNumber) Wrapper of C++ function void atg\\_pow(tensor *out\\_\\_, tensor self, scalar exponent) """ function pow(self::Tensor, exponent::TorchNumber) outputs__ = Int[0] exponent_s_ = Scalar(exponent) __cret = ccall((:atg_pow, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, exponent_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pow1(self::Tensor, exponent::Tensor) Wrapper of C++ function void atg\\_pow1(tensor *out\\_\\_, tensor self, tensor exponent) """ function pow1(self::Tensor, exponent::Tensor) outputs__ = Int[0] __cret = ccall((:atg_pow1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, exponent.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pow2(self::TorchNumber, exponent::Tensor) Wrapper of C++ function void atg\\_pow2(tensor *out\\_\\_, scalar self, tensor exponent) """ function pow2(self::TorchNumber, exponent::Tensor) outputs__ = Int[0] self_s_ = Scalar(self) __cret = ccall((:atg_pow2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self_s_.pointer, exponent.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pow!(self::Tensor, exponent::TorchNumber) Wrapper of C++ function void atg\\_pow\\_(tensor *out\\_\\_, tensor self, scalar exponent) """ function pow!(self::Tensor, exponent::TorchNumber) outputs__ = Int[0] exponent_s_ = Scalar(exponent) __cret = ccall((:atg_pow_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, exponent_s_.pointer) return self end """ pow1!(self::Tensor, exponent::Tensor) Wrapper of C++ function void atg\\_pow\\_1(tensor *out\\_\\_, tensor self, tensor exponent) """ function pow1!(self::Tensor, exponent::Tensor) outputs__ = Int[0] __cret = ccall((:atg_pow_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, exponent.pointer) return self end """ pow_out(out::Tensor, self::Tensor, exponent::TorchNumber) Wrapper of C++ function void atg\\_pow\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar exponent) """ function pow_out(out::Tensor, self::Tensor, exponent::TorchNumber) outputs__ = Int[0] exponent_s_ = Scalar(exponent) __cret = ccall((:atg_pow_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, exponent_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pow_out1(out::Tensor, self::Tensor, exponent::Tensor) Wrapper of C++ function void atg\\_pow\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor exponent) """ function pow_out1(out::Tensor, self::Tensor, exponent::Tensor) outputs__ = Int[0] __cret = ccall((:atg_pow_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, exponent.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ pow_out2(out::Tensor, self::TorchNumber, exponent::Tensor) Wrapper of C++ function void atg\\_pow\\_out2(tensor *out\\_\\_, tensor out, scalar self, tensor exponent) """ function pow_out2(out::Tensor, self::TorchNumber, exponent::Tensor) outputs__ = Int[0] self_s_ = Scalar(self) __cret = ccall((:atg_pow_out2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self_s_.pointer, exponent.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ prelu(self::Tensor, weight::Tensor) Wrapper of C++ function void atg\\_prelu(tensor *out\\_\\_, tensor self, tensor weight) """ function prelu(self::Tensor, weight::Tensor) outputs__ = Int[0] __cret = ccall((:atg_prelu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, weight.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ prelu_backward(grad_output::Tensor, self::Tensor, weight::Tensor) Wrapper of C++ function void atg\\_prelu\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor weight) """ function prelu_backward(grad_output::Tensor, self::Tensor, weight::Tensor) outputs__ = Int[0, 0] __cret = ccall((:atg_prelu_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, weight.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end import Base.prod """ prod(self::Tensor, dtype::Int) Wrapper of C++ function void atg\\_prod(tensor *out\\_\\_, tensor self, int dtype) """ function prod(self::Tensor, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_prod, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ prod1(self::Tensor, dim::Int64, keepdim::Int, dtype::Int) Wrapper of C++ function void atg\\_prod1(tensor *out\\_\\_, tensor self, int64\\_t dim, int keepdim, int dtype) """ function prod1(self::Tensor, dim::Int64, keepdim::Int, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_prod1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, self.pointer, dim, keepdim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ prod_out(out::Tensor, self::Tensor, dim::Int64, keepdim::Int, dtype::Int) Wrapper of C++ function void atg\\_prod\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t dim, int keepdim, int dtype) """ function prod_out(out::Tensor, self::Tensor, dim::Int64, keepdim::Int, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_prod_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, out.pointer, self.pointer, dim, keepdim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.put! """ put!(self::Tensor, index::Tensor, source::Tensor, accumulate::Int) Wrapper of C++ function void atg\\_put\\_(tensor *out\\_\\_, tensor self, tensor index, tensor source, int accumulate) """ function put!(self::Tensor, index::Tensor, source::Tensor, accumulate::Int) outputs__ = Int[0] __cret = ccall((:atg_put_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, index.pointer, source.pointer, accumulate) return self end """ q_per_channel_scales(self::Tensor) Wrapper of C++ function void atg\\_q\\_per\\_channel\\_scales(tensor *out\\_\\_, tensor self) """ function q_per_channel_scales(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_q_per_channel_scales, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ q_per_channel_zero_points(self::Tensor) Wrapper of C++ function void atg\\_q\\_per\\_channel\\_zero\\_points(tensor *out\\_\\_, tensor self) """ function q_per_channel_zero_points(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_q_per_channel_zero_points, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ qr(self::Tensor, some::Int) Wrapper of C++ function void atg\\_qr(tensor *out\\_\\_, tensor self, int some) """ function qr(self::Tensor, some::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_qr, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, some) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ qr_out(Q::Tensor, R::Tensor, self::Tensor, some::Int) Wrapper of C++ function void atg\\_qr\\_out(tensor *out\\_\\_, tensor Q, tensor R, tensor self, int some) """ function qr_out(Q::Tensor, R::Tensor, self::Tensor, some::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_qr_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, Q.pointer, R.pointer, self.pointer, some) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ quantize_per_channel(self::Tensor, scales::Tensor, zero_points::Tensor, axis::Int64, dtype::Int) Wrapper of C++ function void atg\\_quantize\\_per\\_channel(tensor *out\\_\\_, tensor self, tensor scales, tensor zero\\_points, int64\\_t axis, int dtype) """ function quantize_per_channel(self::Tensor, scales::Tensor, zero_points::Tensor, axis::Int64, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_quantize_per_channel, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, scales.pointer, zero_points.pointer, axis, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ quantize_per_tensor(self::Tensor, scale::Float64, zero_point::Int64, dtype::Int) Wrapper of C++ function void atg\\_quantize\\_per\\_tensor(tensor *out\\_\\_, tensor self, double scale, int64\\_t zero\\_point, int dtype) """ function quantize_per_tensor(self::Tensor, scale::Float64, zero_point::Int64, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_quantize_per_tensor, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Clonglong, Cint), outputs__, self.pointer, scale, zero_point, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ quantized_gru(input::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) Wrapper of C++ function void atg\\_quantized\\_gru(tensor *out\\_\\_, tensor input, tensor hx, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional, int batch\\_first) """ function quantized_gru(input::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) where {T,N} outputs__ = Int[0, 0] params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_quantized_gru, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint, Cint), outputs__, input.pointer, hx.pointer, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional, batch_first) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ quantized_gru1(data::Tensor, batch_sizes::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) Wrapper of C++ function void atg\\_quantized\\_gru1(tensor *out\\_\\_, tensor data, tensor batch\\_sizes, tensor hx, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional) """ function quantized_gru1(data::Tensor, batch_sizes::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) where {T,N} outputs__ = Int[0, 0] params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_quantized_gru1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint), outputs__, data.pointer, batch_sizes.pointer, hx.pointer, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ quantized_gru_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor, packed_ih::Tensor, packed_hh::Tensor, col_offsets_ih::Tensor, col_offsets_hh::Tensor, scale_ih::TorchNumber, scale_hh::TorchNumber, zero_point_ih::TorchNumber, zero_point_hh::TorchNumber) Wrapper of C++ function void atg\\_quantized\\_gru\\_cell(tensor *out\\_\\_, tensor input, tensor hx, tensor w\\_ih, tensor w\\_hh, tensor b\\_ih, tensor b\\_hh, tensor packed\\_ih, tensor packed\\_hh, tensor col\\_offsets\\_ih, tensor col\\_offsets\\_hh, scalar scale\\_ih, scalar scale\\_hh, scalar zero\\_point\\_ih, scalar zero\\_point\\_hh) """ function quantized_gru_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor, packed_ih::Tensor, packed_hh::Tensor, col_offsets_ih::Tensor, col_offsets_hh::Tensor, scale_ih::TorchNumber, scale_hh::TorchNumber, zero_point_ih::TorchNumber, zero_point_hh::TorchNumber) outputs__ = Int[0] scale_ih_s_ = Scalar(scale_ih) scale_hh_s_ = Scalar(scale_hh) zero_point_ih_s_ = Scalar(zero_point_ih) zero_point_hh_s_ = Scalar(zero_point_hh) __cret = ccall((:atg_quantized_gru_cell, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, hx.pointer, w_ih.pointer, w_hh.pointer, b_ih.pointer, b_hh.pointer, packed_ih.pointer, packed_hh.pointer, col_offsets_ih.pointer, col_offsets_hh.pointer, scale_ih_s_.pointer, scale_hh_s_.pointer, zero_point_ih_s_.pointer, zero_point_hh_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ quantized_lstm(input::Tensor, hx_data::Array{Tensor{T,N}}, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int, dtype::Int, use_dynamic::Int) Wrapper of C++ function void atg\\_quantized\\_lstm(tensor *out\\_\\_, tensor input, tensor *hx\\_data, int hx\\_len, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional, int batch\\_first, int dtype, int use\\_dynamic) """ function quantized_lstm(input::Tensor, hx_data::Array{Tensor{T,N}}, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int, dtype::Int, use_dynamic::Int) where {T,N} outputs__ = Int[0, 0, 0] hx_data_ta_ = map(x->x.pointer, hx_data) hx_len = length(hx_data) params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_quantized_lstm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint, Cint, Cint, Cint), outputs__, input.pointer, hx_data_ta_, hx_len, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional, batch_first, dtype, use_dynamic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ quantized_lstm1(data::Tensor, batch_sizes::Tensor, hx_data::Array{Tensor{T,N}}, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, dtype::Int, use_dynamic::Int) Wrapper of C++ function void atg\\_quantized\\_lstm1(tensor *out\\_\\_, tensor data, tensor batch\\_sizes, tensor *hx\\_data, int hx\\_len, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional, int dtype, int use\\_dynamic) """ function quantized_lstm1(data::Tensor, batch_sizes::Tensor, hx_data::Array{Tensor{T,N}}, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, dtype::Int, use_dynamic::Int) where {T,N} outputs__ = Int[0, 0, 0] hx_data_ta_ = map(x->x.pointer, hx_data) hx_len = length(hx_data) params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_quantized_lstm1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint, Cint, Cint), outputs__, data.pointer, batch_sizes.pointer, hx_data_ta_, hx_len, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional, dtype, use_dynamic) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ quantized_lstm_cell(input::Tensor, hx_data::Array{Tensor{T,N}}, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor, packed_ih::Tensor, packed_hh::Tensor, col_offsets_ih::Tensor, col_offsets_hh::Tensor, scale_ih::TorchNumber, scale_hh::TorchNumber, zero_point_ih::TorchNumber, zero_point_hh::TorchNumber) Wrapper of C++ function void atg\\_quantized\\_lstm\\_cell(tensor *out\\_\\_, tensor input, tensor *hx\\_data, int hx\\_len, tensor w\\_ih, tensor w\\_hh, tensor b\\_ih, tensor b\\_hh, tensor packed\\_ih, tensor packed\\_hh, tensor col\\_offsets\\_ih, tensor col\\_offsets\\_hh, scalar scale\\_ih, scalar scale\\_hh, scalar zero\\_point\\_ih, scalar zero\\_point\\_hh) """ function quantized_lstm_cell(input::Tensor, hx_data::Array{Tensor{T,N}}, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor, packed_ih::Tensor, packed_hh::Tensor, col_offsets_ih::Tensor, col_offsets_hh::Tensor, scale_ih::TorchNumber, scale_hh::TorchNumber, zero_point_ih::TorchNumber, zero_point_hh::TorchNumber) where {T,N} outputs__ = Int[0, 0] hx_data_ta_ = map(x->x.pointer, hx_data) hx_len = length(hx_data) scale_ih_s_ = Scalar(scale_ih) scale_hh_s_ = Scalar(scale_hh) zero_point_ih_s_ = Scalar(zero_point_ih) zero_point_hh_s_ = Scalar(zero_point_hh) __cret = ccall((:atg_quantized_lstm_cell, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, hx_data_ta_, hx_len, w_ih.pointer, w_hh.pointer, b_ih.pointer, b_hh.pointer, packed_ih.pointer, packed_hh.pointer, col_offsets_ih.pointer, col_offsets_hh.pointer, scale_ih_s_.pointer, scale_hh_s_.pointer, zero_point_ih_s_.pointer, zero_point_hh_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ quantized_max_pool2d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) Wrapper of C++ function void atg\\_quantized\\_max\\_pool2d(tensor *out\\_\\_, tensor self, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len, int ceil\\_mode) """ function quantized_max_pool2d(self::Tensor, kernel_size_data::Array{Int64}, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}, ceil_mode::Int) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_quantized_max_pool2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, kernel_size_data, kernel_size_len, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len, ceil_mode) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ quantized_rnn_relu_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor, packed_ih::Tensor, packed_hh::Tensor, col_offsets_ih::Tensor, col_offsets_hh::Tensor, scale_ih::TorchNumber, scale_hh::TorchNumber, zero_point_ih::TorchNumber, zero_point_hh::TorchNumber) Wrapper of C++ function void atg\\_quantized\\_rnn\\_relu\\_cell(tensor *out\\_\\_, tensor input, tensor hx, tensor w\\_ih, tensor w\\_hh, tensor b\\_ih, tensor b\\_hh, tensor packed\\_ih, tensor packed\\_hh, tensor col\\_offsets\\_ih, tensor col\\_offsets\\_hh, scalar scale\\_ih, scalar scale\\_hh, scalar zero\\_point\\_ih, scalar zero\\_point\\_hh) """ function quantized_rnn_relu_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor, packed_ih::Tensor, packed_hh::Tensor, col_offsets_ih::Tensor, col_offsets_hh::Tensor, scale_ih::TorchNumber, scale_hh::TorchNumber, zero_point_ih::TorchNumber, zero_point_hh::TorchNumber) outputs__ = Int[0] scale_ih_s_ = Scalar(scale_ih) scale_hh_s_ = Scalar(scale_hh) zero_point_ih_s_ = Scalar(zero_point_ih) zero_point_hh_s_ = Scalar(zero_point_hh) __cret = ccall((:atg_quantized_rnn_relu_cell, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, hx.pointer, w_ih.pointer, w_hh.pointer, b_ih.pointer, b_hh.pointer, packed_ih.pointer, packed_hh.pointer, col_offsets_ih.pointer, col_offsets_hh.pointer, scale_ih_s_.pointer, scale_hh_s_.pointer, zero_point_ih_s_.pointer, zero_point_hh_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ quantized_rnn_tanh_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor, packed_ih::Tensor, packed_hh::Tensor, col_offsets_ih::Tensor, col_offsets_hh::Tensor, scale_ih::TorchNumber, scale_hh::TorchNumber, zero_point_ih::TorchNumber, zero_point_hh::TorchNumber) Wrapper of C++ function void atg\\_quantized\\_rnn\\_tanh\\_cell(tensor *out\\_\\_, tensor input, tensor hx, tensor w\\_ih, tensor w\\_hh, tensor b\\_ih, tensor b\\_hh, tensor packed\\_ih, tensor packed\\_hh, tensor col\\_offsets\\_ih, tensor col\\_offsets\\_hh, scalar scale\\_ih, scalar scale\\_hh, scalar zero\\_point\\_ih, scalar zero\\_point\\_hh) """ function quantized_rnn_tanh_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor, packed_ih::Tensor, packed_hh::Tensor, col_offsets_ih::Tensor, col_offsets_hh::Tensor, scale_ih::TorchNumber, scale_hh::TorchNumber, zero_point_ih::TorchNumber, zero_point_hh::TorchNumber) outputs__ = Int[0] scale_ih_s_ = Scalar(scale_ih) scale_hh_s_ = Scalar(scale_hh) zero_point_ih_s_ = Scalar(zero_point_ih) zero_point_hh_s_ = Scalar(zero_point_hh) __cret = ccall((:atg_quantized_rnn_tanh_cell, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, hx.pointer, w_ih.pointer, w_hh.pointer, b_ih.pointer, b_hh.pointer, packed_ih.pointer, packed_hh.pointer, col_offsets_ih.pointer, col_offsets_hh.pointer, scale_ih_s_.pointer, scale_hh_s_.pointer, zero_point_ih_s_.pointer, zero_point_hh_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.rand """ rand(size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_rand(tensor *out\\_\\_, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function rand(size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_rand, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rand_like(self::Tensor) Wrapper of C++ function void atg\\_rand\\_like(tensor *out\\_\\_, tensor self) """ function rand_like(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_rand_like, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rand_like1(self::Tensor, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_rand\\_like1(tensor *out\\_\\_, tensor self, int options\\_kind, int options\\_device) """ function rand_like1(self::Tensor, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_rand_like1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rand_out(out::Tensor, size_data::Array{Int64}) Wrapper of C++ function void atg\\_rand\\_out(tensor *out\\_\\_, tensor out, int64\\_t *size\\_data, int size\\_len) """ function rand_out(out::Tensor, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_rand_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randint(high::Int64, size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_randint(tensor *out\\_\\_, int64\\_t high, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function randint(high::Int64, size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_randint, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, high, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randint1(low::Int64, high::Int64, size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_randint1(tensor *out\\_\\_, int64\\_t low, int64\\_t high, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function randint1(low::Int64, high::Int64, size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_randint1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Clonglong, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, low, high, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randint_like(self::Tensor, high::Int64) Wrapper of C++ function void atg\\_randint\\_like(tensor *out\\_\\_, tensor self, int64\\_t high) """ function randint_like(self::Tensor, high::Int64) outputs__ = Int[0] __cret = ccall((:atg_randint_like, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, high) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randint_like1(self::Tensor, low::Int64, high::Int64) Wrapper of C++ function void atg\\_randint\\_like1(tensor *out\\_\\_, tensor self, int64\\_t low, int64\\_t high) """ function randint_like1(self::Tensor, low::Int64, high::Int64) outputs__ = Int[0] __cret = ccall((:atg_randint_like1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, self.pointer, low, high) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randint_like2(self::Tensor, high::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_randint\\_like2(tensor *out\\_\\_, tensor self, int64\\_t high, int options\\_kind, int options\\_device) """ function randint_like2(self::Tensor, high::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_randint_like2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, self.pointer, high, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randint_like3(self::Tensor, low::Int64, high::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_randint\\_like3(tensor *out\\_\\_, tensor self, int64\\_t low, int64\\_t high, int options\\_kind, int options\\_device) """ function randint_like3(self::Tensor, low::Int64, high::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_randint_like3, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint, Cint), outputs__, self.pointer, low, high, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randint_out(out::Tensor, high::Int64, size_data::Array{Int64}) Wrapper of C++ function void atg\\_randint\\_out(tensor *out\\_\\_, tensor out, int64\\_t high, int64\\_t *size\\_data, int size\\_len) """ function randint_out(out::Tensor, high::Int64, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_randint_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Cint), outputs__, out.pointer, high, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randint_out1(out::Tensor, low::Int64, high::Int64, size_data::Array{Int64}) Wrapper of C++ function void atg\\_randint\\_out1(tensor *out\\_\\_, tensor out, int64\\_t low, int64\\_t high, int64\\_t *size\\_data, int size\\_len) """ function randint_out1(out::Tensor, low::Int64, high::Int64, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_randint_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Ptr{Cvoid}, Cint), outputs__, out.pointer, low, high, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.randn """ randn(size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_randn(tensor *out\\_\\_, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function randn(size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_randn, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randn_like(self::Tensor) Wrapper of C++ function void atg\\_randn\\_like(tensor *out\\_\\_, tensor self) """ function randn_like(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_randn_like, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randn_like1(self::Tensor, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_randn\\_like1(tensor *out\\_\\_, tensor self, int options\\_kind, int options\\_device) """ function randn_like1(self::Tensor, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_randn_like1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randn_out(out::Tensor, size_data::Array{Int64}) Wrapper of C++ function void atg\\_randn\\_out(tensor *out\\_\\_, tensor out, int64\\_t *size\\_data, int size\\_len) """ function randn_out(out::Tensor, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_randn_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ random!(self::Tensor) Wrapper of C++ function void atg\\_random\\_(tensor *out\\_\\_, tensor self) """ function random!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_random_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ random1!(self::Tensor, to::Int64) Wrapper of C++ function void atg\\_random\\_1(tensor *out\\_\\_, tensor self, int64\\_t to) """ function random1!(self::Tensor, to::Int64) outputs__ = Int[0] __cret = ccall((:atg_random_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, to) return self end """ random2!(self::Tensor, from::Int64, to::Int64) Wrapper of C++ function void atg\\_random\\_2(tensor *out\\_\\_, tensor self, int64\\_t from, int64\\_t to) """ function random2!(self::Tensor, from::Int64, to::Int64) outputs__ = Int[0] __cret = ccall((:atg_random_2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, self.pointer, from, to) return self end """ randperm(n::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_randperm(tensor *out\\_\\_, int64\\_t n, int options\\_kind, int options\\_device) """ function randperm(n::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_randperm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, n, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ randperm_out(out::Tensor, n::Int64) Wrapper of C++ function void atg\\_randperm\\_out(tensor *out\\_\\_, tensor out, int64\\_t n) """ function randperm_out(out::Tensor, n::Int64) outputs__ = Int[0] __cret = ccall((:atg_randperm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, n) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.range """ range(start::TorchNumber, end_::TorchNumber, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_range(tensor *out\\_\\_, scalar start, scalar end, int options\\_kind, int options\\_device) """ function range(start::TorchNumber, end_::TorchNumber, options_kind::Int, options_device::Int) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) __cret = ccall((:atg_range, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, start_s_.pointer, end__s_.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ range1(start::TorchNumber, end_::TorchNumber, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_range1(tensor *out\\_\\_, scalar start, scalar end, int options\\_kind, int options\\_device) """ function range1(start::TorchNumber, end_::TorchNumber, options_kind::Int, options_device::Int) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) __cret = ccall((:atg_range1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, start_s_.pointer, end__s_.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ range_out(out::Tensor, start::TorchNumber, end_::TorchNumber) Wrapper of C++ function void atg\\_range\\_out(tensor *out\\_\\_, tensor out, scalar start, scalar end) """ function range_out(out::Tensor, start::TorchNumber, end_::TorchNumber) outputs__ = Int[0] start_s_ = Scalar(start) end__s_ = Scalar(end_) __cret = ccall((:atg_range_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, start_s_.pointer, end__s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.real """ real(self::Tensor) Wrapper of C++ function void atg\\_real(tensor *out\\_\\_, tensor self) """ function real(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_real, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ real_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_real\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function real_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_real_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reciprocal(self::Tensor) Wrapper of C++ function void atg\\_reciprocal(tensor *out\\_\\_, tensor self) """ function reciprocal(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_reciprocal, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reciprocal!(self::Tensor) Wrapper of C++ function void atg\\_reciprocal\\_(tensor *out\\_\\_, tensor self) """ function reciprocal!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_reciprocal_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ reciprocal_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_reciprocal\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function reciprocal_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_reciprocal_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reflection_pad1d(self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_reflection\\_pad1d(tensor *out\\_\\_, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function reflection_pad1d(self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_reflection_pad1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reflection_pad1d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_reflection\\_pad1d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function reflection_pad1d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_reflection_pad1d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reflection_pad1d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_reflection\\_pad1d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function reflection_pad1d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_reflection_pad1d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reflection_pad1d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_reflection\\_pad1d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function reflection_pad1d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_reflection_pad1d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reflection_pad2d(self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_reflection\\_pad2d(tensor *out\\_\\_, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function reflection_pad2d(self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_reflection_pad2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reflection_pad2d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_reflection\\_pad2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function reflection_pad2d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_reflection_pad2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reflection_pad2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_reflection\\_pad2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function reflection_pad2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_reflection_pad2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reflection_pad2d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_reflection\\_pad2d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function reflection_pad2d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_reflection_pad2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ relu(self::Tensor) Wrapper of C++ function void atg\\_relu(tensor *out\\_\\_, tensor self) """ function relu(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_relu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ relu!(self::Tensor) Wrapper of C++ function void atg\\_relu\\_(tensor *out\\_\\_, tensor self) """ function relu!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_relu_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ remainder(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_remainder(tensor *out\\_\\_, tensor self, scalar other) """ function remainder(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_remainder, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ remainder1(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_remainder1(tensor *out\\_\\_, tensor self, tensor other) """ function remainder1(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_remainder1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ remainder!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_remainder\\_(tensor *out\\_\\_, tensor self, scalar other) """ function remainder!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_remainder_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ remainder1!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_remainder\\_1(tensor *out\\_\\_, tensor self, tensor other) """ function remainder1!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_remainder_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ remainder_out(out::Tensor, self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_remainder\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar other) """ function remainder_out(out::Tensor, self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_remainder_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ remainder_out1(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_remainder\\_out1(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function remainder_out1(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_remainder_out1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ renorm(self::Tensor, p::TorchNumber, dim::Int64, maxnorm::TorchNumber) Wrapper of C++ function void atg\\_renorm(tensor *out\\_\\_, tensor self, scalar p, int64\\_t dim, scalar maxnorm) """ function renorm(self::Tensor, p::TorchNumber, dim::Int64, maxnorm::TorchNumber) outputs__ = Int[0] p_s_ = Scalar(p) maxnorm_s_ = Scalar(maxnorm) __cret = ccall((:atg_renorm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, self.pointer, p_s_.pointer, dim, maxnorm_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ renorm!(self::Tensor, p::TorchNumber, dim::Int64, maxnorm::TorchNumber) Wrapper of C++ function void atg\\_renorm\\_(tensor *out\\_\\_, tensor self, scalar p, int64\\_t dim, scalar maxnorm) """ function renorm!(self::Tensor, p::TorchNumber, dim::Int64, maxnorm::TorchNumber) outputs__ = Int[0] p_s_ = Scalar(p) maxnorm_s_ = Scalar(maxnorm) __cret = ccall((:atg_renorm_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, self.pointer, p_s_.pointer, dim, maxnorm_s_.pointer) return self end """ renorm_out(out::Tensor, self::Tensor, p::TorchNumber, dim::Int64, maxnorm::TorchNumber) Wrapper of C++ function void atg\\_renorm\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar p, int64\\_t dim, scalar maxnorm) """ function renorm_out(out::Tensor, self::Tensor, p::TorchNumber, dim::Int64, maxnorm::TorchNumber) outputs__ = Int[0] p_s_ = Scalar(p) maxnorm_s_ = Scalar(maxnorm) __cret = ccall((:atg_renorm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, p_s_.pointer, dim, maxnorm_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.repeat """ repeat(self::Tensor, repeats_data::Array{Int64}) Wrapper of C++ function void atg\\_repeat(tensor *out\\_\\_, tensor self, int64\\_t *repeats\\_data, int repeats\\_len) """ function repeat(self::Tensor, repeats_data::Array{Int64}) outputs__ = Int[0] repeats_len = length(repeats_data) __cret = ccall((:atg_repeat, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, repeats_data, repeats_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ repeat_interleave(repeats::Tensor) Wrapper of C++ function void atg\\_repeat\\_interleave(tensor *out\\_\\_, tensor repeats) """ function repeat_interleave(repeats::Tensor) outputs__ = Int[0] __cret = ccall((:atg_repeat_interleave, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, repeats.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ repeat_interleave1(self::Tensor, repeats::Tensor, dim::Int64) Wrapper of C++ function void atg\\_repeat\\_interleave1(tensor *out\\_\\_, tensor self, tensor repeats, int64\\_t dim) """ function repeat_interleave1(self::Tensor, repeats::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_repeat_interleave1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, repeats.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ repeat_interleave2(self::Tensor, repeats::Int64, dim::Int64) Wrapper of C++ function void atg\\_repeat\\_interleave2(tensor *out\\_\\_, tensor self, int64\\_t repeats, int64\\_t dim) """ function repeat_interleave2(self::Tensor, repeats::Int64, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_repeat_interleave2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, self.pointer, repeats, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad1d(self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad1d(tensor *out\\_\\_, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad1d(self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad1d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad1d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad1d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad1d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad1d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad1d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad1d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad1d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad1d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad1d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad1d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad1d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad2d(self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad2d(tensor *out\\_\\_, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad2d(self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad2d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad2d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad2d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad2d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad2d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad2d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad3d(self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad3d(tensor *out\\_\\_, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad3d(self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad3d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad3d\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad3d_backward(grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad3d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad3d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad3d_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad3d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ replication_pad3d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_replication\\_pad3d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *padding\\_data, int padding\\_len) """ function replication_pad3d_out(out::Tensor, self::Tensor, padding_data::Array{Int64}) outputs__ = Int[0] padding_len = length(padding_data) __cret = ccall((:atg_replication_pad3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ requires_grad!(self::Tensor, _requires_grad::Int) Wrapper of C++ function void atg\\_requires\\_grad\\_(tensor *out\\_\\_, tensor self, int \\_requires\\_grad) """ function requires_grad!(self::Tensor, _requires_grad::Int) outputs__ = Int[0] __cret = ccall((:atg_requires_grad_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, _requires_grad) return self end import Base.reshape """ reshape(self::Tensor, shape_data::Array{Int64}) Wrapper of C++ function void atg\\_reshape(tensor *out\\_\\_, tensor self, int64\\_t *shape\\_data, int shape\\_len) """ function reshape(self::Tensor, shape_data::Array{Int64}) outputs__ = Int[0] shape_len = length(shape_data) __cret = ccall((:atg_reshape, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, shape_data, shape_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ reshape_as(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_reshape\\_as(tensor *out\\_\\_, tensor self, tensor other) """ function reshape_as(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_reshape_as, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.resize! """ resize!(self::Tensor, size_data::Array{Int64}) Wrapper of C++ function void atg\\_resize\\_(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len) """ function resize!(self::Tensor, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_resize_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, size_data, size_len) return self end """ resize_as!(self::Tensor, the_template::Tensor) Wrapper of C++ function void atg\\_resize\\_as\\_(tensor *out\\_\\_, tensor self, tensor the\\_template) """ function resize_as!(self::Tensor, the_template::Tensor) outputs__ = Int[0] __cret = ccall((:atg_resize_as_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, the_template.pointer) return self end """ rfft(self::Tensor, signal_ndim::Int64, normalized::Int, onesided::Int) Wrapper of C++ function void atg\\_rfft(tensor *out\\_\\_, tensor self, int64\\_t signal\\_ndim, int normalized, int onesided) """ function rfft(self::Tensor, signal_ndim::Int64, normalized::Int, onesided::Int) outputs__ = Int[0] __cret = ccall((:atg_rfft, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, self.pointer, signal_ndim, normalized, onesided) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rnn_relu(input::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) Wrapper of C++ function void atg\\_rnn\\_relu(tensor *out\\_\\_, tensor input, tensor hx, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional, int batch\\_first) """ function rnn_relu(input::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) where {T,N} outputs__ = Int[0, 0] params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_rnn_relu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint, Cint), outputs__, input.pointer, hx.pointer, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional, batch_first) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ rnn_relu1(data::Tensor, batch_sizes::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) Wrapper of C++ function void atg\\_rnn\\_relu1(tensor *out\\_\\_, tensor data, tensor batch\\_sizes, tensor hx, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional) """ function rnn_relu1(data::Tensor, batch_sizes::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) where {T,N} outputs__ = Int[0, 0] params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_rnn_relu1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint), outputs__, data.pointer, batch_sizes.pointer, hx.pointer, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ rnn_relu_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor) Wrapper of C++ function void atg\\_rnn\\_relu\\_cell(tensor *out\\_\\_, tensor input, tensor hx, tensor w\\_ih, tensor w\\_hh, tensor b\\_ih, tensor b\\_hh) """ function rnn_relu_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor) outputs__ = Int[0] __cret = ccall((:atg_rnn_relu_cell, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, hx.pointer, w_ih.pointer, w_hh.pointer, b_ih.pointer, b_hh.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rnn_tanh(input::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) Wrapper of C++ function void atg\\_rnn\\_tanh(tensor *out\\_\\_, tensor input, tensor hx, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional, int batch\\_first) """ function rnn_tanh(input::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int, batch_first::Int) where {T,N} outputs__ = Int[0, 0] params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_rnn_tanh, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint, Cint), outputs__, input.pointer, hx.pointer, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional, batch_first) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ rnn_tanh1(data::Tensor, batch_sizes::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) Wrapper of C++ function void atg\\_rnn\\_tanh1(tensor *out\\_\\_, tensor data, tensor batch\\_sizes, tensor hx, tensor *params\\_data, int params\\_len, int has\\_biases, int64\\_t num\\_layers, double dropout, int train, int bidirectional) """ function rnn_tanh1(data::Tensor, batch_sizes::Tensor, hx::Tensor, params_data::Array{Tensor{T,N}}, has_biases::Int, num_layers::Int64, dropout::Float64, train::Int, bidirectional::Int) where {T,N} outputs__ = Int[0, 0] params_data_ta_ = map(x->x.pointer, params_data) params_len = length(params_data) __cret = ccall((:atg_rnn_tanh1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Clonglong, Cdouble, Cint, Cint), outputs__, data.pointer, batch_sizes.pointer, hx.pointer, params_data_ta_, params_len, has_biases, num_layers, dropout, train, bidirectional) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ rnn_tanh_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor) Wrapper of C++ function void atg\\_rnn\\_tanh\\_cell(tensor *out\\_\\_, tensor input, tensor hx, tensor w\\_ih, tensor w\\_hh, tensor b\\_ih, tensor b\\_hh) """ function rnn_tanh_cell(input::Tensor, hx::Tensor, w_ih::Tensor, w_hh::Tensor, b_ih::Tensor, b_hh::Tensor) outputs__ = Int[0] __cret = ccall((:atg_rnn_tanh_cell, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, input.pointer, hx.pointer, w_ih.pointer, w_hh.pointer, b_ih.pointer, b_hh.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ roll(self::Tensor, shifts_data::Array{Int64}, dims_data::Array{Int64}) Wrapper of C++ function void atg\\_roll(tensor *out\\_\\_, tensor self, int64\\_t *shifts\\_data, int shifts\\_len, int64\\_t *dims\\_data, int dims\\_len) """ function roll(self::Tensor, shifts_data::Array{Int64}, dims_data::Array{Int64}) outputs__ = Int[0] shifts_len = length(shifts_data) dims_len = length(dims_data) __cret = ccall((:atg_roll, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, shifts_data, shifts_len, dims_data, dims_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rot90(self::Tensor, k::Int64, dims_data::Array{Int64}) Wrapper of C++ function void atg\\_rot90(tensor *out\\_\\_, tensor self, int64\\_t k, int64\\_t *dims\\_data, int dims\\_len) """ function rot90(self::Tensor, k::Int64, dims_data::Array{Int64}) outputs__ = Int[0] dims_len = length(dims_data) __cret = ccall((:atg_rot90, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Cint), outputs__, self.pointer, k, dims_data, dims_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.round """ round(self::Tensor) Wrapper of C++ function void atg\\_round(tensor *out\\_\\_, tensor self) """ function round(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_round, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ round!(self::Tensor) Wrapper of C++ function void atg\\_round\\_(tensor *out\\_\\_, tensor self) """ function round!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_round_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ round_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_round\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function round_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_round_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rrelu(self::Tensor, training::Int) Wrapper of C++ function void atg\\_rrelu(tensor *out\\_\\_, tensor self, int training) """ function rrelu(self::Tensor, training::Int) outputs__ = Int[0] __cret = ccall((:atg_rrelu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, training) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rrelu!(self::Tensor, training::Int) Wrapper of C++ function void atg\\_rrelu\\_(tensor *out\\_\\_, tensor self, int training) """ function rrelu!(self::Tensor, training::Int) outputs__ = Int[0] __cret = ccall((:atg_rrelu_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, training) return self end """ rrelu_with_noise(self::Tensor, noise::Tensor, training::Int) Wrapper of C++ function void atg\\_rrelu\\_with\\_noise(tensor *out\\_\\_, tensor self, tensor noise, int training) """ function rrelu_with_noise(self::Tensor, noise::Tensor, training::Int) outputs__ = Int[0] __cret = ccall((:atg_rrelu_with_noise, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, noise.pointer, training) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rrelu_with_noise!(self::Tensor, noise::Tensor, training::Int) Wrapper of C++ function void atg\\_rrelu\\_with\\_noise\\_(tensor *out\\_\\_, tensor self, tensor noise, int training) """ function rrelu_with_noise!(self::Tensor, noise::Tensor, training::Int) outputs__ = Int[0] __cret = ccall((:atg_rrelu_with_noise_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, noise.pointer, training) return self end """ rrelu_with_noise_backward(grad_output::Tensor, self::Tensor, noise::Tensor, lower::TorchNumber, upper::TorchNumber, training::Int) Wrapper of C++ function void atg\\_rrelu\\_with\\_noise\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor noise, scalar lower, scalar upper, int training) """ function rrelu_with_noise_backward(grad_output::Tensor, self::Tensor, noise::Tensor, lower::TorchNumber, upper::TorchNumber, training::Int) outputs__ = Int[0] lower_s_ = Scalar(lower) upper_s_ = Scalar(upper) __cret = ccall((:atg_rrelu_with_noise_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, self.pointer, noise.pointer, lower_s_.pointer, upper_s_.pointer, training) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rrelu_with_noise_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, noise::Tensor, lower::TorchNumber, upper::TorchNumber, training::Int) Wrapper of C++ function void atg\\_rrelu\\_with\\_noise\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor noise, scalar lower, scalar upper, int training) """ function rrelu_with_noise_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, noise::Tensor, lower::TorchNumber, upper::TorchNumber, training::Int) outputs__ = Int[0] lower_s_ = Scalar(lower) upper_s_ = Scalar(upper) __cret = ccall((:atg_rrelu_with_noise_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, noise.pointer, lower_s_.pointer, upper_s_.pointer, training) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rrelu_with_noise_out(out::Tensor, self::Tensor, noise::Tensor, training::Int) Wrapper of C++ function void atg\\_rrelu\\_with\\_noise\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor noise, int training) """ function rrelu_with_noise_out(out::Tensor, self::Tensor, noise::Tensor, training::Int) outputs__ = Int[0] __cret = ccall((:atg_rrelu_with_noise_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, noise.pointer, training) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rsqrt(self::Tensor) Wrapper of C++ function void atg\\_rsqrt(tensor *out\\_\\_, tensor self) """ function rsqrt(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_rsqrt, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rsqrt!(self::Tensor) Wrapper of C++ function void atg\\_rsqrt\\_(tensor *out\\_\\_, tensor self) """ function rsqrt!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_rsqrt_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ rsqrt_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_rsqrt\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function rsqrt_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_rsqrt_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rsub(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_rsub(tensor *out\\_\\_, tensor self, tensor other) """ function rsub(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_rsub, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ rsub1(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_rsub1(tensor *out\\_\\_, tensor self, scalar other) """ function rsub1(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_rsub1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ scalar_tensor(s::TorchNumber, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_scalar\\_tensor(tensor *out\\_\\_, scalar s, int options\\_kind, int options\\_device) """ function scalar_tensor(s::TorchNumber, options_kind::Int, options_device::Int) outputs__ = Int[0] s_s_ = Scalar(s) __cret = ccall((:atg_scalar_tensor, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, s_s_.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ scatter(self::Tensor, dim::Int64, index::Tensor, src::Tensor) Wrapper of C++ function void atg\\_scatter(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor src) """ function scatter(self::Tensor, dim::Int64, index::Tensor, src::Tensor) outputs__ = Int[0] __cret = ccall((:atg_scatter, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, src.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ scatter1(self::Tensor, dim::Int64, index::Tensor, value::TorchNumber) Wrapper of C++ function void atg\\_scatter1(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, scalar value) """ function scatter1(self::Tensor, dim::Int64, index::Tensor, value::TorchNumber) outputs__ = Int[0] value_s_ = Scalar(value) __cret = ccall((:atg_scatter1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, value_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ scatter!(self::Tensor, dim::Int64, index::Tensor, src::Tensor) Wrapper of C++ function void atg\\_scatter\\_(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor src) """ function scatter!(self::Tensor, dim::Int64, index::Tensor, src::Tensor) outputs__ = Int[0] __cret = ccall((:atg_scatter_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, src.pointer) return self end """ scatter1!(self::Tensor, dim::Int64, index::Tensor, value::TorchNumber) Wrapper of C++ function void atg\\_scatter\\_1(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, scalar value) """ function scatter1!(self::Tensor, dim::Int64, index::Tensor, value::TorchNumber) outputs__ = Int[0] value_s_ = Scalar(value) __cret = ccall((:atg_scatter_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, value_s_.pointer) return self end """ scatter_add(self::Tensor, dim::Int64, index::Tensor, src::Tensor) Wrapper of C++ function void atg\\_scatter\\_add(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor src) """ function scatter_add(self::Tensor, dim::Int64, index::Tensor, src::Tensor) outputs__ = Int[0] __cret = ccall((:atg_scatter_add, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, src.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ scatter_add!(self::Tensor, dim::Int64, index::Tensor, src::Tensor) Wrapper of C++ function void atg\\_scatter\\_add\\_(tensor *out\\_\\_, tensor self, int64\\_t dim, tensor index, tensor src) """ function scatter_add!(self::Tensor, dim::Int64, index::Tensor, src::Tensor) outputs__ = Int[0] __cret = ccall((:atg_scatter_add_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, dim, index.pointer, src.pointer) return self end """ select(self::Tensor, dim::Int64, index::Int64) Wrapper of C++ function void atg\\_select(tensor *out\\_\\_, tensor self, int64\\_t dim, int64\\_t index) """ function select(self::Tensor, dim::Int64, index::Int64) outputs__ = Int[0] __cret = ccall((:atg_select, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, self.pointer, dim, index) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ selu(self::Tensor) Wrapper of C++ function void atg\\_selu(tensor *out\\_\\_, tensor self) """ function selu(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_selu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ selu!(self::Tensor) Wrapper of C++ function void atg\\_selu\\_(tensor *out\\_\\_, tensor self) """ function selu!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_selu_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ set!(self::Tensor) Wrapper of C++ function void atg\\_set\\_(tensor *out\\_\\_, tensor self) """ function set!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_set_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ set1!(self::Tensor, source::Tensor) Wrapper of C++ function void atg\\_set\\_1(tensor *out\\_\\_, tensor self, tensor source) """ function set1!(self::Tensor, source::Tensor) outputs__ = Int[0] __cret = ccall((:atg_set_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, source.pointer) return self end """ set_requires_grad(self::Tensor, r::Int) Wrapper of C++ function void atg\\_set\\_requires\\_grad(tensor *out\\_\\_, tensor self, int r) """ function set_requires_grad(self::Tensor, r::Int) outputs__ = Int[0] __cret = ccall((:atg_set_requires_grad, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, r) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sigmoid(self::Tensor) Wrapper of C++ function void atg\\_sigmoid(tensor *out\\_\\_, tensor self) """ function sigmoid(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sigmoid, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sigmoid!(self::Tensor) Wrapper of C++ function void atg\\_sigmoid\\_(tensor *out\\_\\_, tensor self) """ function sigmoid!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sigmoid_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ sigmoid_backward(grad_output::Tensor, output::Tensor) Wrapper of C++ function void atg\\_sigmoid\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor output) """ function sigmoid_backward(grad_output::Tensor, output::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sigmoid_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sigmoid_backward_out(grad_input::Tensor, grad_output::Tensor, output::Tensor) Wrapper of C++ function void atg\\_sigmoid\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor output) """ function sigmoid_backward_out(grad_input::Tensor, grad_output::Tensor, output::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sigmoid_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sigmoid_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_sigmoid\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function sigmoid_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sigmoid_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.sign """ sign(self::Tensor) Wrapper of C++ function void atg\\_sign(tensor *out\\_\\_, tensor self) """ function sign(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sign, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sign!(self::Tensor) Wrapper of C++ function void atg\\_sign\\_(tensor *out\\_\\_, tensor self) """ function sign!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sign_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ sign_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_sign\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function sign_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sign_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.sin """ sin(self::Tensor) Wrapper of C++ function void atg\\_sin(tensor *out\\_\\_, tensor self) """ function sin(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sin, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sin!(self::Tensor) Wrapper of C++ function void atg\\_sin\\_(tensor *out\\_\\_, tensor self) """ function sin!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sin_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ sin_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_sin\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function sin_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sin_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.sinh """ sinh(self::Tensor) Wrapper of C++ function void atg\\_sinh(tensor *out\\_\\_, tensor self) """ function sinh(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sinh, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sinh!(self::Tensor) Wrapper of C++ function void atg\\_sinh\\_(tensor *out\\_\\_, tensor self) """ function sinh!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sinh_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ sinh_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_sinh\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function sinh_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sinh_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ slice(self::Tensor, dim::Int64, start::Int64, end_::Int64, step::Int64) Wrapper of C++ function void atg\\_slice(tensor *out\\_\\_, tensor self, int64\\_t dim, int64\\_t start, int64\\_t end, int64\\_t step) """ function slice(self::Tensor, dim::Int64, start::Int64, end_::Int64, step::Int64) outputs__ = Int[0] __cret = ccall((:atg_slice, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong, Clonglong), outputs__, self.pointer, dim, start, end_, step) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ slogdet(self::Tensor) Wrapper of C++ function void atg\\_slogdet(tensor *out\\_\\_, tensor self) """ function slogdet(self::Tensor) outputs__ = Int[0, 0] __cret = ccall((:atg_slogdet, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ slow_conv3d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_slow\\_conv3d(tensor *out\\_\\_, tensor self, tensor weight, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len) """ function slow_conv3d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_slow_conv3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, weight.pointer, kernel_size_data, kernel_size_len, bias.pointer, stride_data, stride_len, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ slow_conv3d_out(out::Tensor, self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}) Wrapper of C++ function void atg\\_slow\\_conv3d\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor weight, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len) """ function slow_conv3d_out(out::Tensor, self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) __cret = ccall((:atg_slow_conv3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, weight.pointer, kernel_size_data, kernel_size_len, bias.pointer, stride_data, stride_len, padding_data, padding_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ slow_conv_dilated2d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}) Wrapper of C++ function void atg\\_slow\\_conv\\_dilated2d(tensor *out\\_\\_, tensor self, tensor weight, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len) """ function slow_conv_dilated2d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_slow_conv_dilated2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, weight.pointer, kernel_size_data, kernel_size_len, bias.pointer, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ slow_conv_dilated3d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}) Wrapper of C++ function void atg\\_slow\\_conv\\_dilated3d(tensor *out\\_\\_, tensor self, tensor weight, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len) """ function slow_conv_dilated3d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, dilation_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_slow_conv_dilated3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, weight.pointer, kernel_size_data, kernel_size_len, bias.pointer, stride_data, stride_len, padding_data, padding_len, dilation_data, dilation_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ slow_conv_transpose2d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, dilation_data::Array{Int64}) Wrapper of C++ function void atg\\_slow\\_conv\\_transpose2d(tensor *out\\_\\_, tensor self, tensor weight, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len) """ function slow_conv_transpose2d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, dilation_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) output_padding_len = length(output_padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_slow_conv_transpose2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, weight.pointer, kernel_size_data, kernel_size_len, bias.pointer, stride_data, stride_len, padding_data, padding_len, output_padding_data, output_padding_len, dilation_data, dilation_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ slow_conv_transpose2d_out(out::Tensor, self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, dilation_data::Array{Int64}) Wrapper of C++ function void atg\\_slow\\_conv\\_transpose2d\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor weight, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len) """ function slow_conv_transpose2d_out(out::Tensor, self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, dilation_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) output_padding_len = length(output_padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_slow_conv_transpose2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, weight.pointer, kernel_size_data, kernel_size_len, bias.pointer, stride_data, stride_len, padding_data, padding_len, output_padding_data, output_padding_len, dilation_data, dilation_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ slow_conv_transpose3d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, dilation_data::Array{Int64}) Wrapper of C++ function void atg\\_slow\\_conv\\_transpose3d(tensor *out\\_\\_, tensor self, tensor weight, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len) """ function slow_conv_transpose3d(self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, dilation_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) output_padding_len = length(output_padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_slow_conv_transpose3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, weight.pointer, kernel_size_data, kernel_size_len, bias.pointer, stride_data, stride_len, padding_data, padding_len, output_padding_data, output_padding_len, dilation_data, dilation_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ slow_conv_transpose3d_out(out::Tensor, self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, dilation_data::Array{Int64}) Wrapper of C++ function void atg\\_slow\\_conv\\_transpose3d\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor weight, int64\\_t *kernel\\_size\\_data, int kernel\\_size\\_len, tensor bias, int64\\_t *stride\\_data, int stride\\_len, int64\\_t *padding\\_data, int padding\\_len, int64\\_t *output\\_padding\\_data, int output\\_padding\\_len, int64\\_t *dilation\\_data, int dilation\\_len) """ function slow_conv_transpose3d_out(out::Tensor, self::Tensor, weight::Tensor, kernel_size_data::Array{Int64}, bias::Tensor, stride_data::Array{Int64}, padding_data::Array{Int64}, output_padding_data::Array{Int64}, dilation_data::Array{Int64}) outputs__ = Int[0] kernel_size_len = length(kernel_size_data) stride_len = length(stride_data) padding_len = length(padding_data) output_padding_len = length(output_padding_data) dilation_len = length(dilation_data) __cret = ccall((:atg_slow_conv_transpose3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, weight.pointer, kernel_size_data, kernel_size_len, bias.pointer, stride_data, stride_len, padding_data, padding_len, output_padding_data, output_padding_len, dilation_data, dilation_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ smm(self::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_smm(tensor *out\\_\\_, tensor self, tensor mat2) """ function smm(self::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_smm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ smooth_l1_loss(self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_smooth\\_l1\\_loss(tensor *out\\_\\_, tensor self, tensor target, int64\\_t reduction) """ function smooth_l1_loss(self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_smooth_l1_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ smooth_l1_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_smooth\\_l1\\_loss\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction) """ function smooth_l1_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_smooth_l1_loss_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_output.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ smooth_l1_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_smooth\\_l1\\_loss\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction) """ function smooth_l1_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_smooth_l1_loss_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ smooth_l1_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_smooth\\_l1\\_loss\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor target, int64\\_t reduction) """ function smooth_l1_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_smooth_l1_loss_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ soft_margin_loss(self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_soft\\_margin\\_loss(tensor *out\\_\\_, tensor self, tensor target, int64\\_t reduction) """ function soft_margin_loss(self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_soft_margin_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ soft_margin_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_soft\\_margin\\_loss\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction) """ function soft_margin_loss_backward(grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_soft_margin_loss_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_output.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ soft_margin_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_soft\\_margin\\_loss\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, tensor target, int64\\_t reduction) """ function soft_margin_loss_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_soft_margin_loss_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ soft_margin_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) Wrapper of C++ function void atg\\_soft\\_margin\\_loss\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor target, int64\\_t reduction) """ function soft_margin_loss_out(out::Tensor, self::Tensor, target::Tensor, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_soft_margin_loss_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, target.pointer, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ softmax(self::Tensor, dim::Int64, dtype::Int) Wrapper of C++ function void atg\\_softmax(tensor *out\\_\\_, tensor self, int64\\_t dim, int dtype) """ function softmax(self::Tensor, dim::Int64, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_softmax, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ softplus(self::Tensor) Wrapper of C++ function void atg\\_softplus(tensor *out\\_\\_, tensor self) """ function softplus(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_softplus, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ softplus_backward(grad_output::Tensor, self::Tensor, beta::TorchNumber, threshold::TorchNumber, output::Tensor) Wrapper of C++ function void atg\\_softplus\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, scalar beta, scalar threshold, tensor output) """ function softplus_backward(grad_output::Tensor, self::Tensor, beta::TorchNumber, threshold::TorchNumber, output::Tensor) outputs__ = Int[0] beta_s_ = Scalar(beta) threshold_s_ = Scalar(threshold) __cret = ccall((:atg_softplus_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, beta_s_.pointer, threshold_s_.pointer, output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ softplus_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, beta::TorchNumber, threshold::TorchNumber, output::Tensor) Wrapper of C++ function void atg\\_softplus\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, scalar beta, scalar threshold, tensor output) """ function softplus_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, beta::TorchNumber, threshold::TorchNumber, output::Tensor) outputs__ = Int[0] beta_s_ = Scalar(beta) threshold_s_ = Scalar(threshold) __cret = ccall((:atg_softplus_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, beta_s_.pointer, threshold_s_.pointer, output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ softplus_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_softplus\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function softplus_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_softplus_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ softshrink(self::Tensor) Wrapper of C++ function void atg\\_softshrink(tensor *out\\_\\_, tensor self) """ function softshrink(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_softshrink, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ softshrink_backward(grad_output::Tensor, self::Tensor, lambd::TorchNumber) Wrapper of C++ function void atg\\_softshrink\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, scalar lambd) """ function softshrink_backward(grad_output::Tensor, self::Tensor, lambd::TorchNumber) outputs__ = Int[0] lambd_s_ = Scalar(lambd) __cret = ccall((:atg_softshrink_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, lambd_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ softshrink_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, lambd::TorchNumber) Wrapper of C++ function void atg\\_softshrink\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor self, scalar lambd) """ function softshrink_backward_out(grad_input::Tensor, grad_output::Tensor, self::Tensor, lambd::TorchNumber) outputs__ = Int[0] lambd_s_ = Scalar(lambd) __cret = ccall((:atg_softshrink_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, self.pointer, lambd_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ softshrink_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_softshrink\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function softshrink_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_softshrink_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ solve(self::Tensor, A::Tensor) Wrapper of C++ function void atg\\_solve(tensor *out\\_\\_, tensor self, tensor A) """ function solve(self::Tensor, A::Tensor) outputs__ = Int[0, 0] __cret = ccall((:atg_solve, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, A.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ solve_out(solution::Tensor, lu::Tensor, self::Tensor, A::Tensor) Wrapper of C++ function void atg\\_solve\\_out(tensor *out\\_\\_, tensor solution, tensor lu, tensor self, tensor A) """ function solve_out(solution::Tensor, lu::Tensor, self::Tensor, A::Tensor) outputs__ = Int[0, 0] __cret = ccall((:atg_solve_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, solution.pointer, lu.pointer, self.pointer, A.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end import Base.sort """ sort(self::Tensor, dim::Int64, descending::Int) Wrapper of C++ function void atg\\_sort(tensor *out\\_\\_, tensor self, int64\\_t dim, int descending) """ function sort(self::Tensor, dim::Int64, descending::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_sort, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, self.pointer, dim, descending) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ sort_out(values::Tensor, indices::Tensor, self::Tensor, dim::Int64, descending::Int) Wrapper of C++ function void atg\\_sort\\_out(tensor *out\\_\\_, tensor values, tensor indices, tensor self, int64\\_t dim, int descending) """ function sort_out(values::Tensor, indices::Tensor, self::Tensor, dim::Int64, descending::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_sort_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint), outputs__, values.pointer, indices.pointer, self.pointer, dim, descending) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ sparse_coo_tensor(size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_sparse\\_coo\\_tensor(tensor *out\\_\\_, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function sparse_coo_tensor(size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_sparse_coo_tensor, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sparse_coo_tensor1(indices::Tensor, values::Tensor, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_sparse\\_coo\\_tensor1(tensor *out\\_\\_, tensor indices, tensor values, int options\\_kind, int options\\_device) """ function sparse_coo_tensor1(indices::Tensor, values::Tensor, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_sparse_coo_tensor1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, indices.pointer, values.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sparse_coo_tensor2(indices::Tensor, values::Tensor, size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_sparse\\_coo\\_tensor2(tensor *out\\_\\_, tensor indices, tensor values, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function sparse_coo_tensor2(indices::Tensor, values::Tensor, size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_sparse_coo_tensor2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, indices.pointer, values.pointer, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sparse_mask(self::Tensor, mask::Tensor) Wrapper of C++ function void atg\\_sparse\\_mask(tensor *out\\_\\_, tensor self, tensor mask) """ function sparse_mask(self::Tensor, mask::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sparse_mask, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mask.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sparse_resize!(self::Tensor, size_data::Array{Int64}, sparse_dim::Int64, dense_dim::Int64) Wrapper of C++ function void atg\\_sparse\\_resize\\_(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len, int64\\_t sparse\\_dim, int64\\_t dense\\_dim) """ function sparse_resize!(self::Tensor, size_data::Array{Int64}, sparse_dim::Int64, dense_dim::Int64) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_sparse_resize_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Clonglong, Clonglong), outputs__, self.pointer, size_data, size_len, sparse_dim, dense_dim) return self end """ sparse_resize_and_clear!(self::Tensor, size_data::Array{Int64}, sparse_dim::Int64, dense_dim::Int64) Wrapper of C++ function void atg\\_sparse\\_resize\\_and\\_clear\\_(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len, int64\\_t sparse\\_dim, int64\\_t dense\\_dim) """ function sparse_resize_and_clear!(self::Tensor, size_data::Array{Int64}, sparse_dim::Int64, dense_dim::Int64) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_sparse_resize_and_clear_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Clonglong, Clonglong), outputs__, self.pointer, size_data, size_len, sparse_dim, dense_dim) return self end import Base.split """ split(self::Tensor, split_size::Int64, dim::Int64) Wrapper of C++ function tensor *atg\\_split(tensor self, int64\\_t split\\_size, int64\\_t dim) """ function split(self::Tensor, split_size::Int64, dim::Int64) __cret = ccall((:atg_split, :libtorch_capi), Ptr{Int}, (Ptr{Cvoid}, Clonglong, Clonglong), self.pointer, split_size, dim) ptrs__, i__ = Int[], 1 while true ptr__ = unsafe_load(__cret, i__) ptr__ == 0 && break push!(ptrs__, ptr__) i__ += 1 end ccall(:free, Cvoid, (Ptr{Cvoid},), __cret) return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__) end """ split_with_sizes(self::Tensor, split_sizes_data::Array{Int64}, dim::Int64) Wrapper of C++ function tensor *atg\\_split\\_with\\_sizes(tensor self, int64\\_t *split\\_sizes\\_data, int split\\_sizes\\_len, int64\\_t dim) """ function split_with_sizes(self::Tensor, split_sizes_data::Array{Int64}, dim::Int64) split_sizes_len = length(split_sizes_data) __cret = ccall((:atg_split_with_sizes, :libtorch_capi), Ptr{Int}, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Clonglong), self.pointer, split_sizes_data, split_sizes_len, dim) ptrs__, i__ = Int[], 1 while true ptr__ = unsafe_load(__cret, i__) ptr__ == 0 && break push!(ptrs__, ptr__) i__ += 1 end ccall(:free, Cvoid, (Ptr{Cvoid},), __cret) return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__) end import Base.sqrt """ sqrt(self::Tensor) Wrapper of C++ function void atg\\_sqrt(tensor *out\\_\\_, tensor self) """ function sqrt(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sqrt, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sqrt!(self::Tensor) Wrapper of C++ function void atg\\_sqrt\\_(tensor *out\\_\\_, tensor self) """ function sqrt!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sqrt_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ sqrt_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_sqrt\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function sqrt_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sqrt_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ squeeze(self::Tensor) Wrapper of C++ function void atg\\_squeeze(tensor *out\\_\\_, tensor self) """ function squeeze(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_squeeze, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ squeeze1(self::Tensor, dim::Int64) Wrapper of C++ function void atg\\_squeeze1(tensor *out\\_\\_, tensor self, int64\\_t dim) """ function squeeze1(self::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_squeeze1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ squeeze!(self::Tensor) Wrapper of C++ function void atg\\_squeeze\\_(tensor *out\\_\\_, tensor self) """ function squeeze!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_squeeze_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ squeeze1!(self::Tensor, dim::Int64) Wrapper of C++ function void atg\\_squeeze\\_1(tensor *out\\_\\_, tensor self, int64\\_t dim) """ function squeeze1!(self::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_squeeze_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, dim) return self end """ sspaddmm(self::Tensor, mat1::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_sspaddmm(tensor *out\\_\\_, tensor self, tensor mat1, tensor mat2) """ function sspaddmm(self::Tensor, mat1::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sspaddmm, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, mat1.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sspaddmm_out(out::Tensor, self::Tensor, mat1::Tensor, mat2::Tensor) Wrapper of C++ function void atg\\_sspaddmm\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor mat1, tensor mat2) """ function sspaddmm_out(out::Tensor, self::Tensor, mat1::Tensor, mat2::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sspaddmm_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, mat1.pointer, mat2.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ stack(tensors_data::Array{Tensor{T,N}}, dim::Int64) Wrapper of C++ function void atg\\_stack(tensor *out\\_\\_, tensor *tensors\\_data, int tensors\\_len, int64\\_t dim) """ function stack(tensors_data::Array{Tensor{T,N}}, dim::Int64) where {T,N} outputs__ = Int[0] tensors_data_ta_ = map(x->x.pointer, tensors_data) tensors_len = length(tensors_data) __cret = ccall((:atg_stack, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Clonglong), outputs__, tensors_data_ta_, tensors_len, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ stack_out(out::Tensor, tensors_data::Array{Tensor{T,N}}, dim::Int64) Wrapper of C++ function void atg\\_stack\\_out(tensor *out\\_\\_, tensor out, tensor *tensors\\_data, int tensors\\_len, int64\\_t dim) """ function stack_out(out::Tensor, tensors_data::Array{Tensor{T,N}}, dim::Int64) where {T,N} outputs__ = Int[0] tensors_data_ta_ = map(x->x.pointer, tensors_data) tensors_len = length(tensors_data) __cret = ccall((:atg_stack_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Clonglong), outputs__, out.pointer, tensors_data_ta_, tensors_len, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ std(self::Tensor, unbiased::Int) Wrapper of C++ function void atg\\_std(tensor *out\\_\\_, tensor self, int unbiased) """ function std(self::Tensor, unbiased::Int) outputs__ = Int[0] __cret = ccall((:atg_std, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, unbiased) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ std1(self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) Wrapper of C++ function void atg\\_std1(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int unbiased, int keepdim) """ function std1(self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_std1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, unbiased, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ std_mean(self::Tensor, unbiased::Int) Wrapper of C++ function void atg\\_std\\_mean(tensor *out\\_\\_, tensor self, int unbiased) """ function std_mean(self::Tensor, unbiased::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_std_mean, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, unbiased) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ std_mean1(self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) Wrapper of C++ function void atg\\_std\\_mean1(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int unbiased, int keepdim) """ function std_mean1(self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) outputs__ = Int[0, 0] dim_len = length(dim_data) __cret = ccall((:atg_std_mean1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, unbiased, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ std_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) Wrapper of C++ function void atg\\_std\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *dim\\_data, int dim\\_len, int unbiased, int keepdim) """ function std_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_std_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, out.pointer, self.pointer, dim_data, dim_len, unbiased, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ stft(self::Tensor, n_fft::Int64, hop_length::Int64, win_length::Int64, window::Tensor, normalized::Int, onesided::Int) Wrapper of C++ function void atg\\_stft(tensor *out\\_\\_, tensor self, int64\\_t n\\_fft, int64\\_t hop\\_length, int64\\_t win\\_length, tensor window, int normalized, int onesided) """ function stft(self::Tensor, n_fft::Int64, hop_length::Int64, win_length::Int64, window::Tensor, normalized::Int, onesided::Int) outputs__ = Int[0] __cret = ccall((:atg_stft, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, n_fft, hop_length, win_length, window.pointer, normalized, onesided) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sub(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_sub(tensor *out\\_\\_, tensor self, tensor other) """ function sub(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sub, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sub1(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_sub1(tensor *out\\_\\_, tensor self, scalar other) """ function sub1(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_sub1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sub!(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_sub\\_(tensor *out\\_\\_, tensor self, tensor other) """ function sub!(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sub_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) return self end """ sub1!(self::Tensor, other::TorchNumber) Wrapper of C++ function void atg\\_sub\\_1(tensor *out\\_\\_, tensor self, scalar other) """ function sub1!(self::Tensor, other::TorchNumber) outputs__ = Int[0] other_s_ = Scalar(other) __cret = ccall((:atg_sub_1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other_s_.pointer) return self end """ sub_out(out::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_sub\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor other) """ function sub_out(out::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_sub_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.sum """ sum(self::Tensor, dtype::Int) Wrapper of C++ function void atg\\_sum(tensor *out\\_\\_, tensor self, int dtype) """ function sum(self::Tensor, dtype::Int) outputs__ = Int[0] __cret = ccall((:atg_sum, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sum1(self::Tensor, dim_data::Array{Int64}, keepdim::Int, dtype::Int) Wrapper of C++ function void atg\\_sum1(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim, int dtype) """ function sum1(self::Tensor, dim_data::Array{Int64}, keepdim::Int, dtype::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_sum1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, keepdim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sum_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int, dtype::Int) Wrapper of C++ function void atg\\_sum\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *dim\\_data, int dim\\_len, int keepdim, int dtype) """ function sum_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, keepdim::Int, dtype::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_sum_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, out.pointer, self.pointer, dim_data, dim_len, keepdim, dtype) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ sum_to_size(self::Tensor, size_data::Array{Int64}) Wrapper of C++ function void atg\\_sum\\_to\\_size(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len) """ function sum_to_size(self::Tensor, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_sum_to_size, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ svd(self::Tensor, some::Int, compute_uv::Int) Wrapper of C++ function void atg\\_svd(tensor *out\\_\\_, tensor self, int some, int compute\\_uv) """ function svd(self::Tensor, some::Int, compute_uv::Int) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_svd, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, some, compute_uv) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ svd_out(U::Tensor, S::Tensor, V::Tensor, self::Tensor, some::Int, compute_uv::Int) Wrapper of C++ function void atg\\_svd\\_out(tensor *out\\_\\_, tensor U, tensor S, tensor V, tensor self, int some, int compute\\_uv) """ function svd_out(U::Tensor, S::Tensor, V::Tensor, self::Tensor, some::Int, compute_uv::Int) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_svd_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, U.pointer, S.pointer, V.pointer, self.pointer, some, compute_uv) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ symeig(self::Tensor, eigenvectors::Int, upper::Int) Wrapper of C++ function void atg\\_symeig(tensor *out\\_\\_, tensor self, int eigenvectors, int upper) """ function symeig(self::Tensor, eigenvectors::Int, upper::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_symeig, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, eigenvectors, upper) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ symeig_out(e::Tensor, V::Tensor, self::Tensor, eigenvectors::Int, upper::Int) Wrapper of C++ function void atg\\_symeig\\_out(tensor *out\\_\\_, tensor e, tensor V, tensor self, int eigenvectors, int upper) """ function symeig_out(e::Tensor, V::Tensor, self::Tensor, eigenvectors::Int, upper::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_symeig_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, e.pointer, V.pointer, self.pointer, eigenvectors, upper) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ t(self::Tensor) Wrapper of C++ function void atg\\_t(tensor *out\\_\\_, tensor self) """ function t(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_t, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ t!(self::Tensor) Wrapper of C++ function void atg\\_t\\_(tensor *out\\_\\_, tensor self) """ function t!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_t_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ take(self::Tensor, index::Tensor) Wrapper of C++ function void atg\\_take(tensor *out\\_\\_, tensor self, tensor index) """ function take(self::Tensor, index::Tensor) outputs__ = Int[0] __cret = ccall((:atg_take, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, index.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ take_out(out::Tensor, self::Tensor, index::Tensor) Wrapper of C++ function void atg\\_take\\_out(tensor *out\\_\\_, tensor out, tensor self, tensor index) """ function take_out(out::Tensor, self::Tensor, index::Tensor) outputs__ = Int[0] __cret = ccall((:atg_take_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, index.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.tan """ tan(self::Tensor) Wrapper of C++ function void atg\\_tan(tensor *out\\_\\_, tensor self) """ function tan(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_tan, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ tan!(self::Tensor) Wrapper of C++ function void atg\\_tan\\_(tensor *out\\_\\_, tensor self) """ function tan!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_tan_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ tan_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_tan\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function tan_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_tan_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.tanh """ tanh(self::Tensor) Wrapper of C++ function void atg\\_tanh(tensor *out\\_\\_, tensor self) """ function tanh(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_tanh, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ tanh!(self::Tensor) Wrapper of C++ function void atg\\_tanh\\_(tensor *out\\_\\_, tensor self) """ function tanh!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_tanh_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ tanh_backward(grad_output::Tensor, output::Tensor) Wrapper of C++ function void atg\\_tanh\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor output) """ function tanh_backward(grad_output::Tensor, output::Tensor) outputs__ = Int[0] __cret = ccall((:atg_tanh_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ tanh_backward_out(grad_input::Tensor, grad_output::Tensor, output::Tensor) Wrapper of C++ function void atg\\_tanh\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, tensor output) """ function tanh_backward_out(grad_input::Tensor, grad_output::Tensor, output::Tensor) outputs__ = Int[0] __cret = ccall((:atg_tanh_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_input.pointer, grad_output.pointer, output.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ tanh_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_tanh\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function tanh_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_tanh_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ tensordot(self::Tensor, other::Tensor, dims_self_data::Array{Int64}, dims_other_data::Array{Int64}) Wrapper of C++ function void atg\\_tensordot(tensor *out\\_\\_, tensor self, tensor other, int64\\_t *dims\\_self\\_data, int dims\\_self\\_len, int64\\_t *dims\\_other\\_data, int dims\\_other\\_len) """ function tensordot(self::Tensor, other::Tensor, dims_self_data::Array{Int64}, dims_other_data::Array{Int64}) outputs__ = Int[0] dims_self_len = length(dims_self_data) dims_other_len = length(dims_other_data) __cret = ccall((:atg_tensordot, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, self.pointer, other.pointer, dims_self_data, dims_self_len, dims_other_data, dims_other_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ threshold(self::Tensor, threshold::TorchNumber, value::TorchNumber) Wrapper of C++ function void atg\\_threshold(tensor *out\\_\\_, tensor self, scalar threshold, scalar value) """ function threshold(self::Tensor, threshold::TorchNumber, value::TorchNumber) outputs__ = Int[0] threshold_s_ = Scalar(threshold) value_s_ = Scalar(value) __cret = ccall((:atg_threshold, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, threshold_s_.pointer, value_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ threshold!(self::Tensor, threshold::TorchNumber, value::TorchNumber) Wrapper of C++ function void atg\\_threshold\\_(tensor *out\\_\\_, tensor self, scalar threshold, scalar value) """ function threshold!(self::Tensor, threshold::TorchNumber, value::TorchNumber) outputs__ = Int[0] threshold_s_ = Scalar(threshold) value_s_ = Scalar(value) __cret = ccall((:atg_threshold_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, threshold_s_.pointer, value_s_.pointer) return self end """ threshold_backward(grad_output::Tensor, self::Tensor, threshold::TorchNumber) Wrapper of C++ function void atg\\_threshold\\_backward(tensor *out\\_\\_, tensor grad\\_output, tensor self, scalar threshold) """ function threshold_backward(grad_output::Tensor, self::Tensor, threshold::TorchNumber) outputs__ = Int[0] threshold_s_ = Scalar(threshold) __cret = ccall((:atg_threshold_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad_output.pointer, self.pointer, threshold_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ threshold_out(out::Tensor, self::Tensor, threshold::TorchNumber, value::TorchNumber) Wrapper of C++ function void atg\\_threshold\\_out(tensor *out\\_\\_, tensor out, tensor self, scalar threshold, scalar value) """ function threshold_out(out::Tensor, self::Tensor, threshold::TorchNumber, value::TorchNumber) outputs__ = Int[0] threshold_s_ = Scalar(threshold) value_s_ = Scalar(value) __cret = ccall((:atg_threshold_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer, threshold_s_.pointer, value_s_.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to(self::Tensor, device::Int) Wrapper of C++ function void atg\\_to(tensor *out\\_\\_, tensor self, int device) """ function to(self::Tensor, device::Int) outputs__ = Int[0] __cret = ccall((:atg_to, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to1(self::Tensor, options_kind::Int, options_device::Int, non_blocking::Int, copy::Int) Wrapper of C++ function void atg\\_to1(tensor *out\\_\\_, tensor self, int options\\_kind, int options\\_device, int non\\_blocking, int copy) """ function to1(self::Tensor, options_kind::Int, options_device::Int, non_blocking::Int, copy::Int) outputs__ = Int[0] __cret = ccall((:atg_to1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint, Cint), outputs__, self.pointer, options_kind, options_device, non_blocking, copy) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to2(self::Tensor, dtype::Int, non_blocking::Int, copy::Int) Wrapper of C++ function void atg\\_to2(tensor *out\\_\\_, tensor self, int dtype, int non\\_blocking, int copy) """ function to2(self::Tensor, dtype::Int, non_blocking::Int, copy::Int) outputs__ = Int[0] __cret = ccall((:atg_to2, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, dtype, non_blocking, copy) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to3(self::Tensor, other::Tensor, non_blocking::Int, copy::Int) Wrapper of C++ function void atg\\_to3(tensor *out\\_\\_, tensor self, tensor other, int non\\_blocking, int copy) """ function to3(self::Tensor, other::Tensor, non_blocking::Int, copy::Int) outputs__ = Int[0] __cret = ccall((:atg_to3, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, other.pointer, non_blocking, copy) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to4(self::Tensor, device::Int, dtype::Int, non_blocking::Int, copy::Int) Wrapper of C++ function void atg\\_to4(tensor *out\\_\\_, tensor self, int device, int dtype, int non\\_blocking, int copy) """ function to4(self::Tensor, device::Int, dtype::Int, non_blocking::Int, copy::Int) outputs__ = Int[0] __cret = ccall((:atg_to4, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint, Cint), outputs__, self.pointer, device, dtype, non_blocking, copy) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to_dense(self::Tensor) Wrapper of C++ function void atg\\_to\\_dense(tensor *out\\_\\_, tensor self) """ function to_dense(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_to_dense, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to_dense_backward(grad::Tensor, input::Tensor) Wrapper of C++ function void atg\\_to\\_dense\\_backward(tensor *out\\_\\_, tensor grad, tensor input) """ function to_dense_backward(grad::Tensor, input::Tensor) outputs__ = Int[0] __cret = ccall((:atg_to_dense_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad.pointer, input.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to_mkldnn(self::Tensor) Wrapper of C++ function void atg\\_to\\_mkldnn(tensor *out\\_\\_, tensor self) """ function to_mkldnn(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_to_mkldnn, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to_mkldnn_backward(grad::Tensor, input::Tensor) Wrapper of C++ function void atg\\_to\\_mkldnn\\_backward(tensor *out\\_\\_, tensor grad, tensor input) """ function to_mkldnn_backward(grad::Tensor, input::Tensor) outputs__ = Int[0] __cret = ccall((:atg_to_mkldnn_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, grad.pointer, input.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to_sparse(self::Tensor) Wrapper of C++ function void atg\\_to\\_sparse(tensor *out\\_\\_, tensor self) """ function to_sparse(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_to_sparse, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ to_sparse1(self::Tensor, sparse_dim::Int64) Wrapper of C++ function void atg\\_to\\_sparse1(tensor *out\\_\\_, tensor self, int64\\_t sparse\\_dim) """ function to_sparse1(self::Tensor, sparse_dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_to_sparse1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, sparse_dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ topk(self::Tensor, k::Int64, dim::Int64, largest::Int, sorted::Int) Wrapper of C++ function void atg\\_topk(tensor *out\\_\\_, tensor self, int64\\_t k, int64\\_t dim, int largest, int sorted) """ function topk(self::Tensor, k::Int64, dim::Int64, largest::Int, sorted::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_topk, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint, Cint), outputs__, self.pointer, k, dim, largest, sorted) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ topk_out(values::Tensor, indices::Tensor, self::Tensor, k::Int64, dim::Int64, largest::Int, sorted::Int) Wrapper of C++ function void atg\\_topk\\_out(tensor *out\\_\\_, tensor values, tensor indices, tensor self, int64\\_t k, int64\\_t dim, int largest, int sorted) """ function topk_out(values::Tensor, indices::Tensor, self::Tensor, k::Int64, dim::Int64, largest::Int, sorted::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_topk_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Cint, Cint), outputs__, values.pointer, indices.pointer, self.pointer, k, dim, largest, sorted) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ totype(self::Tensor, scalar_type::Int) Wrapper of C++ function void atg\\_totype(tensor *out\\_\\_, tensor self, int scalar\\_type) """ function totype(self::Tensor, scalar_type::Int) outputs__ = Int[0] __cret = ccall((:atg_totype, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, scalar_type) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ trace(self::Tensor) Wrapper of C++ function void atg\\_trace(tensor *out\\_\\_, tensor self) """ function trace(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_trace, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.transpose """ transpose(self::Tensor, dim0::Int64, dim1::Int64) Wrapper of C++ function void atg\\_transpose(tensor *out\\_\\_, tensor self, int64\\_t dim0, int64\\_t dim1) """ function transpose(self::Tensor, dim0::Int64, dim1::Int64) outputs__ = Int[0] __cret = ccall((:atg_transpose, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, self.pointer, dim0, dim1) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ transpose!(self::Tensor, dim0::Int64, dim1::Int64) Wrapper of C++ function void atg\\_transpose\\_(tensor *out\\_\\_, tensor self, int64\\_t dim0, int64\\_t dim1) """ function transpose!(self::Tensor, dim0::Int64, dim1::Int64) outputs__ = Int[0] __cret = ccall((:atg_transpose_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong), outputs__, self.pointer, dim0, dim1) return self end """ trapz(y::Tensor, x::Tensor, dim::Int64) Wrapper of C++ function void atg\\_trapz(tensor *out\\_\\_, tensor y, tensor x, int64\\_t dim) """ function trapz(y::Tensor, x::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_trapz, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, y.pointer, x.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ trapz1(y::Tensor, dx::Float64, dim::Int64) Wrapper of C++ function void atg\\_trapz1(tensor *out\\_\\_, tensor y, double dx, int64\\_t dim) """ function trapz1(y::Tensor, dx::Float64, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_trapz1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Clonglong), outputs__, y.pointer, dx, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ triangular_solve(self::Tensor, A::Tensor, upper::Int, transpose::Int, unitriangular::Int) Wrapper of C++ function void atg\\_triangular\\_solve(tensor *out\\_\\_, tensor self, tensor A, int upper, int transpose, int unitriangular) """ function triangular_solve(self::Tensor, A::Tensor, upper::Int, transpose::Int, unitriangular::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_triangular_solve, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, A.pointer, upper, transpose, unitriangular) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ triangular_solve_out(X::Tensor, M::Tensor, self::Tensor, A::Tensor, upper::Int, transpose::Int, unitriangular::Int) Wrapper of C++ function void atg\\_triangular\\_solve\\_out(tensor *out\\_\\_, tensor X, tensor M, tensor self, tensor A, int upper, int transpose, int unitriangular) """ function triangular_solve_out(X::Tensor, M::Tensor, self::Tensor, A::Tensor, upper::Int, transpose::Int, unitriangular::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_triangular_solve_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, X.pointer, M.pointer, self.pointer, A.pointer, upper, transpose, unitriangular) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ tril(self::Tensor, diagonal::Int64) Wrapper of C++ function void atg\\_tril(tensor *out\\_\\_, tensor self, int64\\_t diagonal) """ function tril(self::Tensor, diagonal::Int64) outputs__ = Int[0] __cret = ccall((:atg_tril, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, diagonal) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ tril!(self::Tensor, diagonal::Int64) Wrapper of C++ function void atg\\_tril\\_(tensor *out\\_\\_, tensor self, int64\\_t diagonal) """ function tril!(self::Tensor, diagonal::Int64) outputs__ = Int[0] __cret = ccall((:atg_tril_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, diagonal) return self end """ tril_indices(row::Int64, col::Int64, offset::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_tril\\_indices(tensor *out\\_\\_, int64\\_t row, int64\\_t col, int64\\_t offset, int options\\_kind, int options\\_device) """ function tril_indices(row::Int64, col::Int64, offset::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_tril_indices, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Clonglong, Clonglong, Cint, Cint), outputs__, row, col, offset, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ tril_out(out::Tensor, self::Tensor, diagonal::Int64) Wrapper of C++ function void atg\\_tril\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t diagonal) """ function tril_out(out::Tensor, self::Tensor, diagonal::Int64) outputs__ = Int[0] __cret = ccall((:atg_tril_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, diagonal) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ triplet_margin_loss(anchor::Tensor, positive::Tensor, negative::Tensor, margin::Float64, p::Float64, eps::Float64, swap::Int, reduction::Int64) Wrapper of C++ function void atg\\_triplet\\_margin\\_loss(tensor *out\\_\\_, tensor anchor, tensor positive, tensor negative, double margin, double p, double eps, int swap, int64\\_t reduction) """ function triplet_margin_loss(anchor::Tensor, positive::Tensor, negative::Tensor, margin::Float64, p::Float64, eps::Float64, swap::Int, reduction::Int64) outputs__ = Int[0] __cret = ccall((:atg_triplet_margin_loss, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble, Cdouble, Cint, Clonglong), outputs__, anchor.pointer, positive.pointer, negative.pointer, margin, p, eps, swap, reduction) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ triu(self::Tensor, diagonal::Int64) Wrapper of C++ function void atg\\_triu(tensor *out\\_\\_, tensor self, int64\\_t diagonal) """ function triu(self::Tensor, diagonal::Int64) outputs__ = Int[0] __cret = ccall((:atg_triu, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, diagonal) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ triu!(self::Tensor, diagonal::Int64) Wrapper of C++ function void atg\\_triu\\_(tensor *out\\_\\_, tensor self, int64\\_t diagonal) """ function triu!(self::Tensor, diagonal::Int64) outputs__ = Int[0] __cret = ccall((:atg_triu_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, diagonal) return self end """ triu_indices(row::Int64, col::Int64, offset::Int64, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_triu\\_indices(tensor *out\\_\\_, int64\\_t row, int64\\_t col, int64\\_t offset, int options\\_kind, int options\\_device) """ function triu_indices(row::Int64, col::Int64, offset::Int64, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_triu_indices, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Clonglong, Clonglong, Clonglong, Cint, Cint), outputs__, row, col, offset, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ triu_out(out::Tensor, self::Tensor, diagonal::Int64) Wrapper of C++ function void atg\\_triu\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t diagonal) """ function triu_out(out::Tensor, self::Tensor, diagonal::Int64) outputs__ = Int[0] __cret = ccall((:atg_triu_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, out.pointer, self.pointer, diagonal) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.trunc """ trunc(self::Tensor) Wrapper of C++ function void atg\\_trunc(tensor *out\\_\\_, tensor self) """ function trunc(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_trunc, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ trunc!(self::Tensor) Wrapper of C++ function void atg\\_trunc\\_(tensor *out\\_\\_, tensor self) """ function trunc!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_trunc_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end """ trunc_out(out::Tensor, self::Tensor) Wrapper of C++ function void atg\\_trunc\\_out(tensor *out\\_\\_, tensor out, tensor self) """ function trunc_out(out::Tensor, self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_trunc_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, out.pointer, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ type_as(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_type\\_as(tensor *out\\_\\_, tensor self, tensor other) """ function type_as(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_type_as, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ unbind(self::Tensor, dim::Int64) Wrapper of C++ function tensor *atg\\_unbind(tensor self, int64\\_t dim) """ function unbind(self::Tensor, dim::Int64) __cret = ccall((:atg_unbind, :libtorch_capi), Ptr{Int}, (Ptr{Cvoid}, Clonglong), self.pointer, dim) ptrs__, i__ = Int[], 1 while true ptr__ = unsafe_load(__cret, i__) ptr__ == 0 && break push!(ptrs__, ptr__) i__ += 1 end ccall(:free, Cvoid, (Ptr{Cvoid},), __cret) return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__) end """ unfold(self::Tensor, dimension::Int64, size::Int64, step::Int64) Wrapper of C++ function void atg\\_unfold(tensor *out\\_\\_, tensor self, int64\\_t dimension, int64\\_t size, int64\\_t step) """ function unfold(self::Tensor, dimension::Int64, size::Int64, step::Int64) outputs__ = Int[0] __cret = ccall((:atg_unfold, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Clonglong, Clonglong), outputs__, self.pointer, dimension, size, step) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ uniform!(self::Tensor, from::Float64, to::Float64) Wrapper of C++ function void atg\\_uniform\\_(tensor *out\\_\\_, tensor self, double from, double to) """ function uniform!(self::Tensor, from::Float64, to::Float64) outputs__ = Int[0] __cret = ccall((:atg_uniform_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cdouble, Cdouble), outputs__, self.pointer, from, to) return self end """ unique_consecutive(self::Tensor, return_inverse::Int, return_counts::Int, dim::Int64) Wrapper of C++ function void atg\\_unique\\_consecutive(tensor *out\\_\\_, tensor self, int return\\_inverse, int return\\_counts, int64\\_t dim) """ function unique_consecutive(self::Tensor, return_inverse::Int, return_counts::Int, dim::Int64) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_unique_consecutive, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Clonglong), outputs__, self.pointer, return_inverse, return_counts, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ unique_dim(self::Tensor, dim::Int64, sorted::Int, return_inverse::Int, return_counts::Int) Wrapper of C++ function void atg\\_unique\\_dim(tensor *out\\_\\_, tensor self, int64\\_t dim, int sorted, int return\\_inverse, int return\\_counts) """ function unique_dim(self::Tensor, dim::Int64, sorted::Int, return_inverse::Int, return_counts::Int) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_unique_dim, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint, Cint, Cint), outputs__, self.pointer, dim, sorted, return_inverse, return_counts) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ unique_dim_consecutive(self::Tensor, dim::Int64, return_inverse::Int, return_counts::Int) Wrapper of C++ function void atg\\_unique\\_dim\\_consecutive(tensor *out\\_\\_, tensor self, int64\\_t dim, int return\\_inverse, int return\\_counts) """ function unique_dim_consecutive(self::Tensor, dim::Int64, return_inverse::Int, return_counts::Int) outputs__ = Int[0, 0, 0] __cret = ccall((:atg_unique_dim_consecutive, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong, Cint, Cint), outputs__, self.pointer, dim, return_inverse, return_counts) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) __o_3 = tensor_from_ptr(Ptr{Cvoid}(outputs__[3])) return __o_1, __o_2, __o_3 end """ unsqueeze(self::Tensor, dim::Int64) Wrapper of C++ function void atg\\_unsqueeze(tensor *out\\_\\_, tensor self, int64\\_t dim) """ function unsqueeze(self::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_unsqueeze, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, dim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ unsqueeze!(self::Tensor, dim::Int64) Wrapper of C++ function void atg\\_unsqueeze\\_(tensor *out\\_\\_, tensor self, int64\\_t dim) """ function unsqueeze!(self::Tensor, dim::Int64) outputs__ = Int[0] __cret = ccall((:atg_unsqueeze_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Clonglong), outputs__, self.pointer, dim) return self end """ upsample_bicubic2d(self::Tensor, output_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_bicubic2d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int align\\_corners) """ function upsample_bicubic2d(self::Tensor, output_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_bicubic2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, output_size_data, output_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_bicubic2d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_bicubic2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int align\\_corners) """ function upsample_bicubic2d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_bicubic2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_bicubic2d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_bicubic2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int align\\_corners) """ function upsample_bicubic2d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_bicubic2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, grad_input.pointer, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_bicubic2d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_bicubic2d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int align\\_corners) """ function upsample_bicubic2d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_bicubic2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_bilinear2d(self::Tensor, output_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_bilinear2d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int align\\_corners) """ function upsample_bilinear2d(self::Tensor, output_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_bilinear2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, output_size_data, output_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_bilinear2d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_bilinear2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int align\\_corners) """ function upsample_bilinear2d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_bilinear2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_bilinear2d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_bilinear2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int align\\_corners) """ function upsample_bilinear2d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_bilinear2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, grad_input.pointer, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_bilinear2d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_bilinear2d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int align\\_corners) """ function upsample_bilinear2d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_bilinear2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_linear1d(self::Tensor, output_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_linear1d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int align\\_corners) """ function upsample_linear1d(self::Tensor, output_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_linear1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, output_size_data, output_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_linear1d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_linear1d\\_backward(tensor *out\\_\\_, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int align\\_corners) """ function upsample_linear1d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_linear1d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_linear1d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_linear1d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int align\\_corners) """ function upsample_linear1d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_linear1d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, grad_input.pointer, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_linear1d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_linear1d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int align\\_corners) """ function upsample_linear1d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_linear1d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest1d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest1d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function upsample_nearest1d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_nearest1d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest1d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest1d\\_backward(tensor *out\\_\\_, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len) """ function upsample_nearest1d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_nearest1d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest1d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest1d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len) """ function upsample_nearest1d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_nearest1d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest1d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest1d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function upsample_nearest1d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_nearest1d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest2d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest2d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function upsample_nearest2d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_nearest2d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest2d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest2d\\_backward(tensor *out\\_\\_, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len) """ function upsample_nearest2d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_nearest2d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest2d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest2d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len) """ function upsample_nearest2d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_nearest2d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest2d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest2d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function upsample_nearest2d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_nearest2d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest3d(self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest3d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function upsample_nearest3d(self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_nearest3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest3d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest3d\\_backward(tensor *out\\_\\_, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len) """ function upsample_nearest3d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_nearest3d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest3d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest3d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len) """ function upsample_nearest3d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_nearest3d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint), outputs__, grad_input.pointer, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_nearest3d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) Wrapper of C++ function void atg\\_upsample\\_nearest3d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len) """ function upsample_nearest3d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_nearest3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_trilinear3d(self::Tensor, output_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_trilinear3d(tensor *out\\_\\_, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int align\\_corners) """ function upsample_trilinear3d(self::Tensor, output_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_trilinear3d, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, output_size_data, output_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_trilinear3d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_trilinear3d\\_backward(tensor *out\\_\\_, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int align\\_corners) """ function upsample_trilinear3d_backward(grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_trilinear3d_backward, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_trilinear3d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_trilinear3d\\_backward\\_out(tensor *out\\_\\_, tensor grad\\_input, tensor grad\\_output, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int64\\_t *input\\_size\\_data, int input\\_size\\_len, int align\\_corners) """ function upsample_trilinear3d_backward_out(grad_input::Tensor, grad_output::Tensor, output_size_data::Array{Int64}, input_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) input_size_len = length(input_size_data) __cret = ccall((:atg_upsample_trilinear3d_backward_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Ptr{Cvoid}, Cint, Cint), outputs__, grad_input.pointer, grad_output.pointer, output_size_data, output_size_len, input_size_data, input_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ upsample_trilinear3d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, align_corners::Int) Wrapper of C++ function void atg\\_upsample\\_trilinear3d\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *output\\_size\\_data, int output\\_size\\_len, int align\\_corners) """ function upsample_trilinear3d_out(out::Tensor, self::Tensor, output_size_data::Array{Int64}, align_corners::Int) outputs__ = Int[0] output_size_len = length(output_size_data) __cret = ccall((:atg_upsample_trilinear3d_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, out.pointer, self.pointer, output_size_data, output_size_len, align_corners) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.values """ values(self::Tensor) Wrapper of C++ function void atg\\_values(tensor *out\\_\\_, tensor self) """ function values(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_values, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ var(self::Tensor, unbiased::Int) Wrapper of C++ function void atg\\_var(tensor *out\\_\\_, tensor self, int unbiased) """ function var(self::Tensor, unbiased::Int) outputs__ = Int[0] __cret = ccall((:atg_var, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, unbiased) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ var1(self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) Wrapper of C++ function void atg\\_var1(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int unbiased, int keepdim) """ function var1(self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_var1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, unbiased, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ var_mean(self::Tensor, unbiased::Int) Wrapper of C++ function void atg\\_var\\_mean(tensor *out\\_\\_, tensor self, int unbiased) """ function var_mean(self::Tensor, unbiased::Int) outputs__ = Int[0, 0] __cret = ccall((:atg_var_mean, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, unbiased) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ var_mean1(self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) Wrapper of C++ function void atg\\_var\\_mean1(tensor *out\\_\\_, tensor self, int64\\_t *dim\\_data, int dim\\_len, int unbiased, int keepdim) """ function var_mean1(self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) outputs__ = Int[0, 0] dim_len = length(dim_data) __cret = ccall((:atg_var_mean1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, self.pointer, dim_data, dim_len, unbiased, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) __o_2 = tensor_from_ptr(Ptr{Cvoid}(outputs__[2])) return __o_1, __o_2 end """ var_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) Wrapper of C++ function void atg\\_var\\_out(tensor *out\\_\\_, tensor out, tensor self, int64\\_t *dim\\_data, int dim\\_len, int unbiased, int keepdim) """ function var_out(out::Tensor, self::Tensor, dim_data::Array{Int64}, unbiased::Int, keepdim::Int) outputs__ = Int[0] dim_len = length(dim_data) __cret = ccall((:atg_var_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, out.pointer, self.pointer, dim_data, dim_len, unbiased, keepdim) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end import Base.view """ view(self::Tensor, size_data::Array{Int64}) Wrapper of C++ function void atg\\_view(tensor *out\\_\\_, tensor self, int64\\_t *size\\_data, int size\\_len) """ function view(self::Tensor, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_view, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, self.pointer, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ view_as(self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_view\\_as(tensor *out\\_\\_, tensor self, tensor other) """ function view_as(self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_view_as, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ where(condition::Tensor) Wrapper of C++ function tensor *atg\\_where(tensor condition) """ function where(condition::Tensor) __cret = ccall((:atg_where, :libtorch_capi), Ptr{Int}, (Ptr{Cvoid},), condition.pointer) ptrs__, i__ = Int[], 1 while true ptr__ = unsafe_load(__cret, i__) ptr__ == 0 && break push!(ptrs__, ptr__) i__ += 1 end ccall(:free, Cvoid, (Ptr{Cvoid},), __cret) return map(x -> tensor_from_ptr(Ptr{Nothing}(x)), ptrs__) end """ where1(condition::Tensor, self::Tensor, other::Tensor) Wrapper of C++ function void atg\\_where1(tensor *out\\_\\_, tensor condition, tensor self, tensor other) """ function where1(condition::Tensor, self::Tensor, other::Tensor) outputs__ = Int[0] __cret = ccall((:atg_where1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), outputs__, condition.pointer, self.pointer, other.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ zero!(self::Tensor) Wrapper of C++ function void atg\\_zero\\_(tensor *out\\_\\_, tensor self) """ function zero!(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_zero_, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) return self end import Base.zeros """ zeros(size_data::Array{Int64}, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_zeros(tensor *out\\_\\_, int64\\_t *size\\_data, int size\\_len, int options\\_kind, int options\\_device) """ function zeros(size_data::Array{Int64}, options_kind::Int, options_device::Int) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_zeros, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint, Cint), outputs__, size_data, size_len, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ zeros_like(self::Tensor) Wrapper of C++ function void atg\\_zeros\\_like(tensor *out\\_\\_, tensor self) """ function zeros_like(self::Tensor) outputs__ = Int[0] __cret = ccall((:atg_zeros_like, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}), outputs__, self.pointer) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ zeros_like1(self::Tensor, options_kind::Int, options_device::Int) Wrapper of C++ function void atg\\_zeros\\_like1(tensor *out\\_\\_, tensor self, int options\\_kind, int options\\_device) """ function zeros_like1(self::Tensor, options_kind::Int, options_device::Int) outputs__ = Int[0] __cret = ccall((:atg_zeros_like1, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Cint, Cint), outputs__, self.pointer, options_kind, options_device) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end """ zeros_out(out::Tensor, size_data::Array{Int64}) Wrapper of C++ function void atg\\_zeros\\_out(tensor *out\\_\\_, tensor out, int64\\_t *size\\_data, int size\\_len) """ function zeros_out(out::Tensor, size_data::Array{Int64}) outputs__ = Int[0] size_len = length(size_data) __cret = ccall((:atg_zeros_out, :libtorch_capi), Cvoid, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), outputs__, out.pointer, size_data, size_len) __o_1 = tensor_from_ptr(Ptr{Cvoid}(outputs__[1])) return __o_1 end include("thc-opt.jl") end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
1359
using ThArrays using Random using Test @testset "Tensor Gradient" begin Random.seed!(0); a = rand(3, 2) b = rand(3, 2) ad_reseult = [4.647295015954825 3.354657692932529; 4.820713075852873 3.557760218662402; 3.3291315962673704 3.4069531160838453] @testset "Simple AD" begin ta = Tensor(a, requires_grad=true) tb = Tensor(b) tc = ta^2 + 3ta + sin(tb) - tb tg = Tensor(ones(3, 2)) ThAD.backward(tc, tg) @test ThC.grad(ta) == Tensor(ad_reseult) end @testset "ThAD.gradient" begin f(x, y) = x^2 + 3x + sin(y) - y grads = ThAD.gradient(f, a, b; d=Tensor(ones(3,2))) @test grads[1] == Tensor(ad_reseult) end @testset "Reset gradient" begin t = Tensor(a, requires_grad=true) grads = ThAD.gradient(x -> sum(2x), t) @test grads[1] == Tensor(ones(3, 2)) * 2 grads = ThAD.gradient(x -> sum(2x), t) @test grads[1] == Tensor(ones(3, 2)) * 4 ThAD.reset_grad!(t) grads = ThAD.gradient(x -> sum(2x), t) @test grads[1] == Tensor(ones(3, 2)) * 2 end @testset "ThAD.forward" begin f(x, y) = sum(2x + 2y) y, back = ThAD.forward(f, a, b) grads = back(1) @test grads[1] == grads[2] == Tensor(ones(3, 2)) * 2 end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
529
using ThArrays using Test @testset "Issues Regression" begin @testset "Issue 7" begin Test.@test_throws ErrorException Tensor(3, requires_grad=true) end @testset "Issue 8" begin x = Tensor(rand(1, 10), requires_grad=true); f(x) = begin y = Tensor(0.0, requires_grad=true) for i = 1:length(x) y += x[i] end y end y = f(x) ThAD.backward(y) @test ThAD.grad(x) == Tensor(ones(1, 10)) end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
190
include("scalar-creation.jl") include("tensor-creation.jl") include("tensor-arrayif.jl") include("tensor-indexing.jl") include("grad.jl") include("simple-script.jl") include("issues.jl")
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
401
using ThArrays using Test @testset "Scalar Creation" begin @testset "Scalar creation" begin s = Scalar(1.0) @test s[] == 1.0 end @testset "Scalar data type" begin for typ in [Float16, Float32, Float64, Bool, Int8, Int16, Int32, Int64] s = Scalar(typ(1)) @test s.type == typ end end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
374
using ThArrays using Test @testset "Simple TorchScript" begin @testset "Run simple method" begin script = """ def main(a, b): return a + b """ cu = ThJIT.compile(script) ta = Tensor(rand(3, 2)) tb = Tensor(rand(3, 2)) # cu["main"], cu[:main], cu.main res = cu.main(ta, tb) @test res == ta + tb end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
881
using ThArrays using Test @testset "Tensor Array interface (except indexing)" begin @testset "Tensor array interface" begin ary = rand(2, 3) ten = Tensor(ary) @test eltype(ten) == eltype(ary) @test ndims(ten) == ndims(ary) @test size(ten) == size(ary) end @testset "Tensor iteration" begin ary = rand(2, 3) ten = Tensor(ary) for (idx, val) in enumerate(ten) @test ary[idx] == val[] end end @testset "Tensor concatenation" begin a1 = rand(2, 3) a2 = rand(2, 3) a3 = rand(2, 3) a4 = rand(2, 3) t1 = Tensor(a1) t2 = Tensor(a2) t3 = Tensor(a3) t4 = Tensor(a4) @test [t1 t2] == Tensor([a1 a2]) @test [t1; t2] == Tensor([a1; a2]) @test [t1 t2; t3 t4] == Tensor([a1 a2; a3 a4]) end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
794
using ThArrays using Test @testset "Tensor Creation" begin @testset "Creation with Array" begin ary = rand(2, 3) @test Tensor(ary) == Tensor(ary) @test convert(Array, Tensor(ary)) == ary end @testset "Creation with Array (sharing data)" begin ary = rand(2, 3) t = Tensor(ary) ThArrays.ThC.sin!(t) @test t == Tensor(ary) end @testset "Creation with Array (copying data)" begin ary = rand(2, 3) t = Tensor(ary, detach=true) ThArrays.ThC.sin!(t) @test isapprox(convert(Array, t), sin.(ary), atol=0.001) end @testset "Create with Number (0-dim Tensor)" begin t = Tensor(1.0) @test size(t) == () @test length(t) == 1 @test t[] == 1.0 end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
1478
using ThArrays using Test @testset "Tensor Indexing" begin j_vect = rand(10) t_vect = Tensor(j_vect) j_data = rand(2, 3, 4) t_data = Tensor(j_data) @testset "Indexing with Int" begin for i in 1:length(j_vect) @test t_vect[i][] == j_vect[i] end for i in 1:length(j_data) @test t_data[i][] == j_data[i] end end @testset "Indexing with Range" begin @test t_data[1:6] == Tensor(j_data[1:6]) @test t_data[8:12] == Tensor(j_data[8:12]) @test t_data[18:24] == Tensor(j_data[18:24]) end @testset "Indexing with CartesianIndex" begin @test t_data[1, 2, :] == Tensor(j_data[1, 2, :]) @test t_data[[1], 2, :] == Tensor(j_data[[1], 2, :]) @test t_data[:, 2, :] == Tensor(j_data[:, 2, :]) @test t_data[:, [2], :] == Tensor(j_data[:, [2], :]) @test t_data[1:2, 2:3, 2:4] == Tensor(j_data[1:2, 2:3, 2:4]) end @testset "Set Index with Int" begin for i in 1:length(j_data) t_data[i] = i end for i in 1:length(j_data) @test t_data[i][] == i end end @testset "Set Index with Range" begin t_data[1:4] = collect(1:4) for i in 1:4 @test t_data[i][] == i end end @testset "Set Index with CartesianIndex" begin t_data[1, 1:2, 1:2] = zeros(2, 2) @test t_data[1, 1:2, 1:2] == Tensor(zeros(2, 2)) end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
code
1163
using ThArrays using Tracker: forward, data using Random using Test using ThArrays.TrackerAD: _th, _tr @testset "Torch and Tracker Mixed Gradient" begin Random.seed!(0); a = rand(3, 2) b = rand(3, 2) @testset "Simple Mixed AD" begin # all with th(PyTorch Backend) f1(x, y) = sum(sin.(_th(x)) + sin.(_th(y))) # sin with tr, (+, sum) wtih th f2(x, y) = sum(_th(sin.(x)) + _th(sin.(y))) # all with tr(Tracker Backend) f3(x, y) = sum((sin.(x)) + (sin.(y))) # (sin, +) with th, sum with tr f4(x, y) = sum(_tr(sin.(_th(x)) + sin.(_th(y)))) # (sin, +) with tr, sum with th f5(x, y) = sum(_th(sin.(x) + sin.(y))) y1, back1 = forward(f1, a, b) y2, back2 = forward(f2, a, b) y3, back3 = forward(f3, a, b) y4, back4 = forward(f4, a, b) y5, back5 = forward(f5, a, b) b1 = data(back1(2)) b2 = data(back2(2)) b3 = data(back3(2)) b4 = data(back4(2)) b5 = data(back5(2)) # @show y1, y2, y3, y4, y5 # @show b1, b2, b3, b4, b5 @test b1 == b2 == b3 == b4 == b5 end end
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
docs
1371
<!-- # ( -*- mode: markdown; mode: auto-fill -*- ) --> # ThArrays A Julia interface for PyTorch's C++ backend. ![Unit Testing](https://github.com/TuringLang/ThArrays.jl/workflows/Unit%20Testing/badge.svg?branch=master) ## Features - `ThArrays.Tensor`: PyTorch Tensor as an Array-like data type in Julia - `ThArrays.ThAD`: AD using PyTorch C++ backend - `ThArrays.TrackerAD`: AD using Tracker.jl and PyTorch C++ backend mixed, on your choice - `ThArrays.ThJIT`: using TorchScript in Julia ## Getting Started 1. Install the package: `] add ThArrays` 2. Read the docs [here](https://turinglang.github.io/ThArrays.jl), or 3. Experiment in the Julia REPL directly: ```julia julia> using ThArrays julia> t = Tensor( -rand(3, 3) ) PyTorch.Tensor{Float64, 2}: -0.1428 -0.7099 -0.1446 -0.3447 -0.0686 -0.8287 -0.2692 -0.0501 -0.2092 [ CPUDoubleType{3,3} ] julia> sin(t)^2 + cos(t)^2 PyTorch.Tensor{Float64, 2}: 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 [ CPUDoubleType{3,3} ] julia> ThAD.gradient(x->sum(sin(x)+x^2), rand(3,3)) (PyTorch.Tensor{Float64, 2}: 2.3776 1.5465 2.0206 1.2542 1.2081 2.1156 2.1034 1.1568 2.2599 [ CPUDoubleType{3,3} ] ,) julia> ``` You can find more examples under the `test` directory.
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
docs
122
<!-- # ( -*- mode: markdown; mode: auto-fill -*- ) --> # Auto Differentiation ## `ThArrays.AD` ## `ThArrays.TrackerAD`
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
docs
4848
<!-- # ( -*- mode: markdown; mode: auto-fill -*- ) --> # ThArrays ThArrays is a Julia interface for the PyTorch's C++ backend. It aims on bringing the fundamental facilities, e.g., `Tensor`, `AutoGrad`, `TorchScript`, etc., to the Julia ecosystem. ## Getting Started 1. Install the package by `] add Tharrays`, or if you cloned the code repository and intend to build it from source, set the environment variable `export THARRAYS_DEV=1` and run `] build ThArrays`. The build script will download the libtorch zip file, compile the shared library, and generate many Julia methods in module `ThArrays.ThC`. Without setting `THARRAYS_DEV`, the build script will download the pre-built binary library instead of building it locally. 2. Run a simple example: ```julia julia> using ThArrays julia> t = Tensor( -rand(3, 3) ) PyTorch.Tensor{Float64, 2}: -0.1428 -0.7099 -0.1446 -0.3447 -0.0686 -0.8287 -0.2692 -0.0501 -0.2092 [ CPUDoubleType{3,3} ] julia> abs(t) PyTorch.Tensor{Float64, 2}: 0.1428 0.7099 0.1446 0.3447 0.0686 0.8287 0.2692 0.0501 0.2092 [ CPUDoubleType{3,3} ] julia> sin(t)^2 + cos(t)^2 PyTorch.Tensor{Float64, 2}: 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 [ CPUDoubleType{3,3} ] julia> t PyTorch.Tensor{Float64, 2}: -0.1428 -0.7099 -0.1446 -0.3447 -0.0686 -0.8287 -0.2692 -0.0501 -0.2092 [ CPUDoubleType{3,3} ] julia> ThC.abs!(t) PyTorch.Tensor{Float64, 2}: 0.1428 0.7099 0.1446 0.3447 0.0686 0.8287 0.2692 0.0501 0.2092 [ CPUDoubleType{3,3} ] julia> t PyTorch.Tensor{Float64, 2}: 0.1428 0.7099 0.1446 0.3447 0.0686 0.8287 0.2692 0.0501 0.2092 [ CPUDoubleType{3,3} ] julia> ThAD.gradient(x->sum(sin(x)+x^2), rand(3,3)) (PyTorch.Tensor{Float64, 2}: 2.3776 1.5465 2.0206 1.2542 1.2081 2.1156 2.1034 1.1568 2.2599 [ CPUDoubleType{3,3} ] ,) julia> ``` Read on the documents to learn more about ThArrays. ## Features ThArrays provides: - `ThArrays.Tensor`: PyTorch Tensor as an Array-like data type in Julia - `ThArrays.ThAD`: AD using PyTorch C++ backend - `ThArrays.TrackerAD`: AD using Tracker.jl and PyTorch C++ backend mixed, on your choice - `ThArrays.ThJIT`: using TorchScript in Julia ## The shared library We wrap libtorch to a shared library (`libtorch_capi`) to expose symbols that can be called by Julia's `ccall` directly. That shared library depends on nothing but the libtorch C++ library, that is, it does NOT depend on Julia either, so every language or platform who has an FFI facility like Juiia's `ccall` can use it to wrap a PyTorch library. The files `csrc/torch_capi*` are maintianed by this project and they are used to provide consturctors and several crucial functions of the `Tensor` and `Scalar` types. The files `csrc/torch_api*` are copied from project [ocaml-torch](https://github.com/LaurentMazare/ocaml-torch) (the `src/wrapper` directory) with a few minor modifications (remove ocaml dependency, add a generic error handling approach, etc.). ## The auto-generated `ThArrays.ThC` module As we said in the last section, we borrowed some C++ sources from the ocaml-torch project, and these files are auto-generated (by a program in the ocaml-torch project and based on the YAML declaration files, for example the file [native_functions.yaml](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/native_functions.yaml), in the PyTorch project). In this project, we use a Julia program, `src/thc/thc-generator.jl` to generate Julia functions who call the auto-generated C/C++ functions via `ccall`, and put them into module `ThArrays.ThC` (`src/thc/thc.jl`). Beside the functions in `ThArrays.ThC` module, we can find the Python API of type `Tensor` [here](https://pytorch.org/docs/stable/tensors.html), and extract a list by running: ``` cat tensors.html | perl -n -e 'print "$1\n" if (m{<code class="sig-name descname">(.+)</code>.*x2192; Tensor}i);' | uniq ``` The result of this command is saved as `python-api-tensor.txt` under this directory, if you found any convenient API in it but not in this package, tell us and we can add it in. Another place to find functions on `Tensor` is [the C++ API document](https://pytorch.org/cppdocs/api/namespace_at.html#functions). ## Build with CUDA support By default, if you install this package using Julia's package manager(`Pkg`), it only supports Tensor on CPU. But it also supports Tensors on CUDA GPU if you: 1. have CUDA installed on your machine 2. download libtorch with CUDA support and unzip it to the `csrc/libtorch` directory of this package 3. `export THARRAYS_DEV=1` 4. start Julia, run `] build ThArrays`
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
docs
187
<!-- # ( -*- mode: markdown; mode: auto-fill -*- ) --> # API Reference This page provides a comprehensive reference for ThArrays functionality. ## Tensor ```@docs ThArrays.Tensor ```
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
docs
93
<!-- # ( -*- mode: markdown; mode: auto-fill -*- ) --> # Tensor ## Tensor ## Tensor on GPU
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.2.0
86d52c13ec76988df8b02ff8c247eac6cedd0021
docs
96
<!-- # ( -*- mode: markdown; mode: auto-fill -*- ) --> # TorchScript Support: `ThArrays.ThJIT`
ThArrays
https://github.com/TuringLang/ThArrays.jl.git
[ "MIT" ]
0.3.2
139b29d9ca2af86113a901a4fff40f8c4ba00d71
code
812
#Test code #------------------------------------------------------------------------------- using SpiceData include("importCppSimData.jl") #No real test code yet... just demonstrate use: stdout_ct = IOContext(stdout, :compact=>true) testpath(testfile::String) = joinpath(CppSimData.rootpath, "core/data", testfile) testfile = "test.tr0" filepath = testpath(testfile) println("\nLoad $filepath:") reader = SpiceData._open(filepath) @show(reader) println("\nCompact output:") show(stdout_ct, reader) println("\n") println("\nRead in list of signal names:") @show names(reader) signame = reader.sweepname println("\nRead in sweep vector \"$signame\":") t = reader.sweep @show t[1], t[end] signame = "vin" println("\nRead in \"$signame\" vector:") v = read(reader, signame) @show v[1], v[end] :Test_Complete
SpiceData
https://github.com/ma-laforge/SpiceData.jl.git
[ "MIT" ]
0.3.2
139b29d9ca2af86113a901a4fff40f8c4ba00d71
code
346
#Import CppSimData or explain how to install. try eval(:(import CppSimData)) catch e msg = "This sample requires data installed in the CppSimData module." msg *= "\nTo continue demo, install with the following:\n\n" msg *= " Pkg.clone(\"git://github.com/ma-laforge/CppSimData.jl\")" @info(msg) println();println() rethrow(e) end #Last line
SpiceData
https://github.com/ma-laforge/SpiceData.jl.git
[ "MIT" ]
0.3.2
139b29d9ca2af86113a901a4fff40f8c4ba00d71
code
975
#SpiceData: A pure Julia SPICE data reader #------------------------------------------------------------------------------- __precompile__(true) #= TAGS: #WANTCONST, HIDEWARN_0.7 =# module SpiceData include("base.jl") include("show.jl") #==DataReader object: public members ================================================================================ .sweepname .signalnames .sweep #Sweep values ==# #==Exported symbols ===============================================================================# #==Un-"exported" symbols ================================================================================ _open(filepath::String)::DataReader ==# #==Other interface tools (symbols not exported to avoid collisions): ================================================================================ #Already in base: Base.names(reader::DataReader) Base.read(reader::DataReader, signum::Int) Base.read(reader::DataReader, signame::String) ==# end #module
SpiceData
https://github.com/ma-laforge/SpiceData.jl.git
[ "MIT" ]
0.3.2
139b29d9ca2af86113a901a4fff40f8c4ba00d71
code
2042
#Tools to help get a feel for Tr0 module Tr0Tools #==Aliases ===============================================================================# const DataWord = UInt32 #==Constants ===============================================================================# const WRITEBLOCK_SYNCWORD = DataWord(0x4) #==Main Types ===============================================================================# struct BlockHeader _type::DataWord _size::DataWord end #==Helper Functions ===============================================================================# function corruptword_exception(io::IO, w::DataWord, expected::DataWord) pos = position(io) - sizeof(DataWord) pos = hex(pos) w = hex(w) expected = hex(expected) return "Corrupt word @ 0x$pos: 0x$w, 0x$expected" end function readsyncword(io::IO) w = read(io, DataWord) if w != WRITEBLOCK_SYNCWORD throw(corruptword_exception(io, w, WRITEBLOCK_SYNCWORD)) end end #Data read: function _dread(io::IO, ::Type{BlockHeader}) readsyncword(io) _type = read(io, DataWord) readsyncword(io) _size = read(io, DataWord) return BlockHeader(_type, _size) end function _show(io::IO, hdr::BlockHeader, pos::Int) print(io, "Block: 0x", hex(WRITEBLOCK_SYNCWORD)) print(io, " 0x", hex(hdr._type)) print(io, " 0x", hex(WRITEBLOCK_SYNCWORD)) print(io, " 0x", hex(hdr._size)) print(io, " (start 0x", hex(pos), ")") println(io) end #==Main functions ===============================================================================# function dumpsegments(io::IO, filepath::String) r = open(filepath) blockcount = 0 totalsize = 0 while !eof(r) pos = position(r) hdr = _dread(r, BlockHeader) _show(io, hdr, pos) blockcount += 1 totalsize += hdr._size seek(r, position(r)+hdr._size) blksize = read(r, DataWord) if blksize != hdr._size throw(corruptword_exception(r, blksize, hdr._size)) end end close(r) println(io, "Blocks read: $blockcount, total size: $totalsize.") end dumpsegments(filepath::String) = dumpsegments(STDOUT, filepath) end #module
SpiceData
https://github.com/ma-laforge/SpiceData.jl.git
[ "MIT" ]
0.3.2
139b29d9ca2af86113a901a4fff40f8c4ba00d71
code
11734
#SpiceData: Base types & core functions #------------------------------------------------------------------------------- #==Aliases ===============================================================================# const DataWord = UInt32 #==Constants ===============================================================================# const SIGNAME_BUFSIZE = 256 #Maximum supported length const WRITEBLOCK_SYNCWORD = DataWord(0x4) const WRITEBLOCK_HEADERSIZE = 4*sizeof(DataWord) #TODO: Not convinced this code is really "block type"... or if ids match their meaning. const BLOCKTYPEID_HEADER = DataWord(0x70) const BLOCKTYPEID_DATA = DataWord(0x80) const DATATYPEID_VOLTAGE = 1 const DATATYPEID_CURRENT = 8 const SWEEPDATA_LASTPOINT = 1e30 #Can detect end of data with this. #==Main Types ===============================================================================# abstract type Endianness end #Of data file struct BigEndian <: Endianness; end struct LittleEndian <: Endianness; end const NetworkEndianness = BigEndian #Informative only #=Comment: Apparently SPICE files used to use network endianness (big-endian), but are now little-endian. =# abstract type SpiceFormat end struct Format_Unknown <: SpiceFormat; end struct Format_9601 <: SpiceFormat; end #x: 32-bit floats, y: 32-bit floats struct Format_9602 <: SpiceFormat; end #x: 64-bit floats, y: 64-bit floats struct Format_2001 <: SpiceFormat; end #x: 64-bit floats, y: 64-bit floats struct Format_2013 <: SpiceFormat; end #x: 64-bit floats, y: 32-bit floats #=Comment: I believe 9602 is a non-standard format used by CppSim. =# struct BlockHeader typeid::DataWord #TODO: is this really type id? _size::DataWord #Number of bits in current block end mutable struct BlockReader{T<:Endianness} io::IO header::BlockHeader endpos::Int end #NOTE: Parameterized so we can specialize (dispatch) on endianness. #Convenience: Endianness(::BlockReader{E}) where E<:Endianness = E #TODO: Not sure if the SpiceTags are named correctly: mutable struct SpiceTags id::String date::String time::String comments::String end SpiceTags() = SpiceTags("", "", "", "") #SPICE file reader: Main object #------------------------------------------------------------------------------- mutable struct DataReader io::IOStream filepath::String #Informative only format::SpiceFormat sweepname::String signalnames::Vector{String} sweep::Vector tags::SpiceTags datastart::Int rowsize::Int endianness::Endianness end #==Helper Functions ===============================================================================# hex(x::Integer) = string(x, base=16) printable(v::String) = isprint(v) ? v : "" _reorder(v::T, ::BigEndian) where T = ntoh(v) _reorder(v::T, ::LittleEndian) where T = ltoh(v) #Debug: show block header info function _show(io::IO, hdr::BlockHeader, pos::Int) print(io, "Block: 0x", hex(WRITEBLOCK_SYNCWORD)) print(io, " 0x", hex(hdr.typeid)) print(io, " 0x", hex(WRITEBLOCK_SYNCWORD)) print(io, " 0x", hex(hdr._size)) print(io, " (start 0x", hex(pos), ")") println(io) end #==Exceptions ===============================================================================# function corruptword_exception(io::IO, w::DataWord, expected::DataWord) pos = position(io) - sizeof(DataWord) pos = hex(pos) w = hex(w) expected = hex(expected) return "Corrupt word 0x$w @ 0x$pos (expected 0x$expected)" end function stringboundary_exception(io::IO, ) hpos = hex(position(io)) return "Reading string across block boundary: 0x$hpos" end #== ===============================================================================# #------------------------------------------------------------------------------- xtype(::Format_9601) = Float32 ytype(::Format_9601) = Float32 xtype(::Format_9602) = Float64 ytype(::Format_9602) = Float64 xtype(::Format_2001) = Float64 ytype(::Format_2001) = Float64 xtype(::Format_2013) = Float64 ytype(::Format_2013) = Float32 #IO reads #------------------------------------------------------------------------------- _read(io::IO, ::Type{T}, endianness::Endianness) where T<:Real = _reorder(read(io, T), endianness) #Read in a WRITEBLOCK_SYNCWORD & validate: function readsyncword(io::IO, endianness::Endianness) w = _read(io, DataWord, endianness) if w != WRITEBLOCK_SYNCWORD throw(corruptword_exception(io, w, WRITEBLOCK_SYNCWORD)) end end #Read in a block header: function _read(io::IO, ::Type{BlockHeader}, endianness::Endianness) readsyncword(io, endianness) typeid = _read(io, DataWord, endianness) readsyncword(io, endianness) _size = _read(io, DataWord, endianness) return BlockHeader(typeid, _size) end #Block reader #------------------------------------------------------------------------------- bytesleft(r::BlockReader) = (r.endpos - position(r.io)) canread(r::BlockReader, nbytes::Int) = bytesleft(r) >= nbytes function nextblock(r::BlockReader{E}) where E seek(r.io, r.endpos) sz = _read(r.io, DataWord, E()) if sz != r.header._size hpos = hex(position(r.io) - 1) throw("Inconsistent block size @ 0x$hpos.") end r.header = _read(r.io, BlockHeader, E()) r.endpos = position(r.io) + r.header._size return r end function _skip(r::BlockReader, offset::Int) while offset > 0 rmg = offset - bytesleft(r) if rmg > 0 nextblock(r) offset = rmg else return skip(r.io, offset) end end end function _read(r::BlockReader{E}, ::Type{T}) where {E, T<:Number} #NOTE: don't check if bytesleft<0... checked by reading BlockHeader if bytesleft(r) < 1 nextblock(r) end if !canread(r, sizeof(T)) hpos = hex(position(r.io)) throw("Cannot read $T @ 0x$hpos") end return _read(r.io, T, E()) end #Read in fixed-length string: function _read(r::BlockReader, ::Type{String}, nchars::Int) if !canread(r, nchars) throw(stringboundary_exception(r.io)) end buf = Array{UInt8}(undef, nchars) readbytes!(r.io, buf) return String(buf) end #Read in space-delimited string: function readsigname(r::BlockReader) DELIM = UInt8(' ') #WANTCONST buf = Array{UInt8}(undef, SIGNAME_BUFSIZE) #TODO: improve test? isdelim(v::UInt8) = (v != DELIM) lastchar = DELIM while DELIM == lastchar lastchar = _read(r, UInt8) end if !isdelim(lastchar) hpos = hex(position(r.io)-1) throw("Invalid string @ 0x$hpos") end i = 1 while isdelim(lastchar) buf[i] = lastchar lastchar = _read(r, UInt8) i+=1 if i > SIGNAME_BUFSIZE throw("Insufficient buffer size: 'SIGNAME_BUFSIZE'") end end buf[i] = 0 return unsafe_string(pointer(buf)) end #==Constructors ===============================================================================# #"Construct" a BlockReader, by reading a header from IO: function BlockReader(io::IO, endianness::Endianness; start::Int=0) seek(io, start) hdr = _read(io, BlockHeader, endianness) endpos = position(io) + hdr._size return BlockReader{typeof(endianness)}(io, hdr, endpos) end #==Main functions ===============================================================================# #Detect endianness from first word: function _read(io::IO, ::Type{Endianness}) w = read(io, DataWord) for endianness in [LittleEndian(), BigEndian()] if WRITEBLOCK_SYNCWORD == _reorder(w, endianness) return endianness end end throw(corruptword_exception(io, w, WRITEBLOCK_SYNCWORD)) end #Read in SPICE data file format: function _read(r::BlockReader, ::Type{SpiceFormat}) versiontxt = strip(_read(r, String, 8)) try version = parse(Int, versiontxt) if 9601 == version return Format_9601() elseif 9602 == version return Format_9602() elseif 2001 == version return Format_2001() elseif 2013 == version return Format_2013() end catch end versiontxt = printable(versiontxt) throw("SPICE data format not recognized: '$versiontxt'") end #Read in signal names: function readnames(r::BlockReader, datacolumns::Int) for i in 1:datacolumns sigtype = _read(r, String, 8) try parse(Int, sigtype) catch hpos = hex(position(r.io) - 8) sigtype = printable(sigtype) throw("Non-numerical signal type '$sigtype' @ 0x$hpos") end end sweepname = readsigname(r) nsigs = datacolumns - 1 signalnames = Array{String}(undef, nsigs) for i in 1:length(signalnames) signalnames[i] = readsigname(r) end return (sweepname, signalnames) end #Read in signal data to vector d. function readsignal!(r::BlockReader, d::Vector{T}, offset::Int, rowsize::Int) where T rowskip = rowsize - sizeof(T) _skip(r, offset) lastrowcomplete = false npoints = 0 lastpos = 0 try while npoints <= length(d) val = _read(r, T) npoints += 1 d[npoints] = val lastrowcomplete = false #lastpos=position(r.io) _skip(r, rowskip) lastrowcomplete = true end catch end #When reading main sweep (offset == 0): #Get rid of last value if last row is not completely written: if 0 == offset && !lastrowcomplete #hpos = hex(lastpos); chpos = hex(position(r.io)) #throw("INCOMPLETE DATASET: lastpos @0x$hpos (curpos @0x$chpos)") npoints = max(0, npoints-1) end return resize!(d, npoints) end #Read in main sweep vector: function readsweep(r::BlockReader, fmt::SpiceFormat, rowsize::Int) #Compute estimated signal length: curpos = position(r.io) sz = filesize(r.io) estimatedlen = div(sz - curpos, rowsize) data = Array{xtype(fmt)}(undef, estimatedlen) return readsignal!(r, data, 0, rowsize) end #Read in signal by number: function readsignal(r::DataReader, signum::Int) nsigs = length(r.signalnames) if signum < 1 || signum > nsigs throw("Invalid signal number: $signum ∉ [1, $nsigs].") end blkreader = BlockReader(r.io, r.endianness, start=r.datastart) _xtype = xtype(r.format); _ytype = ytype(r.format) offset = sizeof(_xtype) + (signum-1) * sizeof(_ytype) data = Array{_ytype}(undef, length(r.sweep)) return readsignal!(blkreader, data, offset, r.rowsize) end #Read in a SPICE file from path: function _open(filepath::String) io = open(filepath, "r") endianness = _read(io, Endianness) blkreader = BlockReader(io, endianness, start=0) #Read in signal counts: count1 = _read(blkreader, String, 4) #What are other counts for? Are they counts? count2 = _read(blkreader, String, 4) count3 = _read(blkreader, String, 4) count4 = _read(blkreader, String, 4) try count1 = parse(Int, count1) count2 = parse(Int, count2) catch throw("Invalid signal count.") end datacolumns = Int(count1)+Int(count2) #Read in file format: format = _read(blkreader, SpiceFormat) #Read in "tags": header = SpiceTags( strip(_read(blkreader, String, 4*16)), #id strip(_read(blkreader, String, 16)), #date strip(_read(blkreader, String, 8)), #time strip(_read(blkreader, String, 4*16+8)) #comments ) #Read in signal names: _skip(blkreader, 5*16) #Why? What is here? sweepname, signalnames = readnames(blkreader, datacolumns) #Compute row size: nsigs = length(signalnames) _xtype = xtype(format); _ytype = ytype(format) rowsize = sizeof(_xtype) + nsigs*sizeof(_ytype) #Move to start of first data block: nextblock(blkreader) datastart = position(blkreader.io) - WRITEBLOCK_HEADERSIZE sweep = readsweep(blkreader, format, rowsize) return DataReader(io, filepath, format, sweepname, signalnames, sweep, header, datastart, rowsize, endianness ) end #==Higher-level interface ===============================================================================# #_open(filepath::String) Base.names(r::DataReader) = r.signalnames Base.read(r::DataReader, signum::Int) = readsignal(r, signum) function Base.read(r::DataReader, signame::String) signum = findfirst(isequal(signame), r.signalnames) if nothing == signum throw("Signal not found: $signame.") end return readsignal(r, signum) end Base.close(r::DataReader) = close(r.io) #Last line
SpiceData
https://github.com/ma-laforge/SpiceData.jl.git
[ "MIT" ]
0.3.2
139b29d9ca2af86113a901a4fff40f8c4ba00d71
code
1458
#SpiceData: Show functions #------------------------------------------------------------------------------- Base.show(io::IO, ::BigEndian) = print(io, "BigEndian") Base.show(io::IO, ::LittleEndian) = print(io, "LittleEndian") _showcompact(io::IO, ::SpiceFormat) = print(io, "Format:Unknown") _showcompact(io::IO, ::Format_9601) = print(io, "SPICE:9601") _showcompact(io::IO, ::Format_9602) = print(io, "CppSim:9602") _showcompact(io::IO, ::Format_2001) = print(io, "SPICE:2001") _showcompact(io::IO, ::Format_2013) = print(io, "SPICE:2013") Base.show(io::IO, fmt::Format_Unknown) = _showcompact(io, fmt) function Base.show(io::IO, fmt::SpiceFormat) _showcompact(io, fmt) print(io, " (x: $(xtype(fmt))[], y: $(ytype(fmt))[])") end function _show(io::IO, r::DataReader, compact::Bool = false) #Base (compact) information: print(io, DataReader, "(") print(io, basename(r.filepath)) print(io, ", nsig=", length(r.signalnames)) print(io, ", npts=", length(r.sweep)) print(io, ", ") print(io, r.format) print(io, ")") if compact; return; end #Extended information: println(io) print(io, ">> (", r.endianness, ")") print(io, " sweep = '", r.sweepname, "'") println(io) tags = r.tags println(io, ">> ", tags.date, " (", tags.time, ")") println(io, ">> ", tags.id) println(io, ">> ", tags.comments) end Base.show(io::IO, r::DataReader) = _show(io, r) Base.show(io::IOContext, r::DataReader) = _show(io, r, haskey(io.dict, :compact)) #End
SpiceData
https://github.com/ma-laforge/SpiceData.jl.git
[ "MIT" ]
0.3.2
139b29d9ca2af86113a901a4fff40f8c4ba00d71
code
244
#Test code #------------------------------------------------------------------------------- using SpiceData @warn("No real test code yet... just ensuring that \"using\" works.") @info("See sample/demo*.jl for sample usage.") :Test_Complete
SpiceData
https://github.com/ma-laforge/SpiceData.jl.git
[ "MIT" ]
0.3.2
139b29d9ca2af86113a901a4fff40f8c4ba00d71
docs
1254
# SpiceData.jl [![Build Status](https://travis-ci.org/ma-laforge/SpiceData.jl.svg?branch=master)](https://travis-ci.org/ma-laforge/SpiceData.jl) ## Description The SpiceData.jl module provides a pure-Julia SPICE data file reader inspired by Michael H. Perrott's CppSim reader. ## Sample Usage Examples on how to use the SpiceData.jl capabilities can be found under the [sample directory](sample/). <a name="Installation"></a> ## Installation julia> Pkg.add("SpiceData") ## Resources/Acknowledgments ### CppSim and NGspice Data Modules for Python The following are links to Michael H. Perrott's original tools: - **CppSim**: <http://www.cppsim.com/index.html>. - **Hspice Toolbox**: <http://www.cppsim.com/download_hspice_tools.html>. ## Known Limitations ### Supported file formats SpiceData currently supports the following SPICE file formats: - 9601 (32-bit x-values & 32-bit y-values) - 9602 (CppSim-specific format? 64-bit x-values & 64-bit y-values?) - 2001 (64-bit x-values & 64-bit y-values) - 2013 (64-bit x-values & 32-bit y-values) ### Compatibility Extensive compatibility testing of SpiceData.jl has not been performed. The module has been tested using the following environment(s): - Linux / Julia-1.1.1 (64-bit)
SpiceData
https://github.com/ma-laforge/SpiceData.jl.git
[ "MIT" ]
0.1.0
5810e8b9d35071a43c67cf357730e4467252696c
code
2790
module ChunkedJSONL export parse_file, DebugContext export consume!, setup_tasks!, task_done! using JSON3 using SnoopPrecompile using ChunkedBase using SentinelArrays.BufferedVectors struct ParsingContext <: AbstractParsingContext ignoreemptyrows::Bool end _nonspace(b::UInt8) = !isspace(Char(b)) include("result_buffer.jl") include("consume_context.jl") include("row_parsing.jl") function parse_file( input, consume_ctx::AbstractConsumeContext=DebugContext(); # In bytes. This absolutely has to be larger than any single row. # Much safer if any two consecutive rows are smaller than this threshold. buffersize::Integer=Threads.nthreads() * 1024 * 1024, nworkers::Integer=Threads.nthreads(), limit::Int=0, skipto::Int=0, comment::Union{Nothing,String,Char,UInt8,Vector{UInt8}}=nothing, ignoreemptyrows::Bool=true, newlinechar::Union{UInt8,Char,Nothing}=UInt8('\n'), use_mmap::Bool=false, _force::Symbol=:default, ) _force in (:default, :serial, :parallel) || throw(ArgumentError("`_force` argument must be one of (:default, :serial, :parallel).")) if !isnothing(newlinechar) newlinechar = UInt8(newlinechar) sizeof(newlinechar) > 1 && throw(ArgumentError("`newlinechar` must be a single-byte character.")) end should_close, io = ChunkedBase._input_to_io(input, use_mmap) parsing_ctx = ParsingContext(ignoreemptyrows) chunking_ctx = ChunkingContext(buffersize, nworkers, limit, comment) # chunking_ctx.bytes is now filled with `bytes_read_in` bytes, we've skipped over BOM # and since the third argument is true, we also skipped over any leading whitespace. bytes_read_in = ChunkedBase.initial_read!(io, chunking_ctx, true) newline = isnothing(newlinechar) ? ChunkedBase._detect_newline(chunking_ctx.bytes, 1, bytes_read_in) : UInt8(newlinechar) lexer = Lexer(io, nothing, newline) ChunkedBase.initial_lex!(lexer, chunking_ctx, bytes_read_in) ChunkedBase.skip_rows_init!(lexer, chunking_ctx, skipto, ignoreemptyrows) nrows = length(chunking_ctx.newline_positions) - 1 try if ChunkedBase.should_use_parallel(chunking_ctx, _force) ntasks = tasks_per_chunk(chunking_ctx) nbuffers = total_result_buffers_count(chunking_ctx) result_buffers = TaskResultBuffer[TaskResultBuffer(id, cld(nrows, ntasks)) for id in 1:nbuffers] parse_file_parallel(lexer, parsing_ctx, consume_ctx, chunking_ctx, result_buffers, Tuple{}) else result_buf = TaskResultBuffer(0, nrows) parse_file_serial(lexer, parsing_ctx, consume_ctx, chunking_ctx, result_buf, Tuple{}) end finally should_close && close(io) end return nothing end end # module
ChunkedJSONL
https://github.com/RelationalAI/ChunkedJSONL.jl.git
[ "MIT" ]
0.1.0
5810e8b9d35071a43c67cf357730e4467252696c
code
1578
struct DebugContext <: AbstractConsumeContext; end function ChunkedBase.consume!(consume_ctx::DebugContext, payload::ParsedPayload) task_buf = payload.results io = IOBuffer() write(io, string("Start row: ", payload.row_num, ", nrows: ", length(task_buf.tapeidxs), ", $(Base.current_task()) ")) printstyled(IOContext(io, :color => true), "❚", color=Int(hash(Base.current_task()) % UInt8)) println(io) @info String(take!(io)) return nothing end struct ValueExtractionContext <: AbstractConsumeContext elements::Vector{Union{Dict{Symbol},Vector,String,Nothing,Bool,Float64,Int}} indices::Vector{Int} lock::ReentrantLock end ValueExtractionContext() = ValueExtractionContext([], Int[], ReentrantLock()) function Base.sort!(ctx::ValueExtractionContext) ctx.elements .= @view ctx.elements[sortperm(ctx.indices)] ctx.indices .= 1:length(ctx.indices) return ctx end function ChunkedBase.consume!(consume_ctx::ValueExtractionContext, payload::ParsedPayload) tape = payload.results.tape buf = payload.chunking_ctx.bytes row = Int(payload.row_num) @inbounds for tapeidx in payload.results.tapeidxs t = tape[tapeidx] val = JSON3.getvalue(Any, buf, tape, tapeidx, t) if isa(val, Union{JSON3.Object,JSON3.Array}) val = copy(val) end lock(consume_ctx.lock) try push!(consume_ctx.elements, val) push!(consume_ctx.indices, row) finally unlock(consume_ctx.lock) end row += 1 end return nothing end
ChunkedJSONL
https://github.com/RelationalAI/ChunkedJSONL.jl.git
[ "MIT" ]
0.1.0
5810e8b9d35071a43c67cf357730e4467252696c
code
534
struct TaskResultBuffer <: AbstractResultBuffer id::Int tape::Vector{UInt64} tapeidxs::BufferedVector{Int} end TaskResultBuffer(id::Int) = TaskResultBuffer(id, UInt64[], BufferedVector{Int}()) TaskResultBuffer(id::Int, n) = TaskResultBuffer(id, UInt64[], BufferedVector{Int}(Vector{Int}(undef, n), 0)) function Base.empty!(buf::TaskResultBuffer) empty!(buf.tapeidxs) empty!(buf.tape) return buf end function Base.ensureroom(buf::TaskResultBuffer, n) Base.ensureroom(buf.tapeidxs, n) return buf end
ChunkedJSONL
https://github.com/RelationalAI/ChunkedJSONL.jl.git
[ "MIT" ]
0.1.0
5810e8b9d35071a43c67cf357730e4467252696c
code
1036
function ChunkedBase.populate_result_buffer!( result_buf::TaskResultBuffer, newlines_segment::AbstractVector{Int32}, parsing_ctx::ParsingContext, buf::Vector{UInt8}, comment::Union{Nothing,Vector{UInt8}}=nothing, ::Type{CT}=Tuple{} ) where {CT} tape = result_buf.tape empty!(result_buf) Base.ensureroom(result_buf, ceil(Int, length(newlines_segment) * 1.01)) ignoreemptyrows = parsing_ctx.ignoreemptyrows tapeidx = 1 @inbounds for i in 1:length(newlines_segment) - 1 pos = Int(newlines_segment[i]) + 1 len = Int(newlines_segment[i+1]) - 1 # skip over leading spaces ChunkedBase._startswith(buf, pos - 1, comment) && continue _nonspace(buf[pos]) || (pos = something(findnext(_nonspace, buf, pos), -1)) ignoreemptyrows && (pos == -1 || pos > len) && continue JSON3.@check unsafe_push!(result_buf.tapeidxs, tapeidx) _, tapeidx = JSON3.read!(buf, pos, len, buf[pos], tape, tapeidx, Any) end return nothing end
ChunkedJSONL
https://github.com/RelationalAI/ChunkedJSONL.jl.git
[ "MIT" ]
0.1.0
5810e8b9d35071a43c67cf357730e4467252696c
code
36313
using Test using ChunkedJSONL using ChunkedJSONL: ValueExtractionContext alg=:serial @testset "Single elements" begin for alg in [:serial, :parallel] @testset "Int $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1"), ctx, _force=alg) @test ctx.elements[1] == 1 end @testset "Float64 $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1.0"), ctx, _force=alg) @test ctx.elements[1] == 1.0 end @testset "String $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\"1.0\""), ctx, _force=alg) @test ctx.elements[1] == "1.0" ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\"aaa\\\"aaa\""), ctx, _force=alg) @test ctx.elements[1] == "aaa\"aaa" end @testset "Bool $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("false"), ctx, _force=alg) ChunkedJSONL.parse_file(IOBuffer("true"), ctx, _force=alg) @test ctx.elements[1] == false @test ctx.elements[2] == true end @testset "Null $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("null"), ctx, _force=alg) @test ctx.elements[1] === nothing end @testset "Array $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[]"), ctx, _force=alg) @test ctx.elements[1] == [] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[1, 2]"), ctx, _force=alg) @test ctx.elements[1] == [1, 2] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[1.0, 2.0]"), ctx, _force=alg) @test ctx.elements[1] == [1.0, 2.0] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[\"1\", \"2\"]"), ctx, _force=alg) @test ctx.elements[1] == ["1", "2"] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[\"aaa\\\"aaa\", \"bbb\\\"bbb\"]"), ctx, _force=alg) @test ctx.elements[1] == ["aaa\"aaa", "bbb\"bbb"] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[true, false]"), ctx, _force=alg) @test ctx.elements[1] == [true, false] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[null, null]"), ctx, _force=alg) @test ctx.elements[1] == [nothing, nothing] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[{}]"), ctx, _force=alg) @test ctx.elements[1] == [Dict{Symbol,Any}()] end @testset "Object $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{}"), ctx, _force=alg) @test ctx.elements[1] == Dict{Symbol,Any}() ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": 1}"), ctx, _force=alg) @test ctx.elements[1] == Dict{Symbol,Any}(:a => 1) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\\\"a\": 1}"), ctx, _force=alg) @test ctx.elements[1] == Dict{Symbol,Any}(Symbol("a\"a") => 1) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": 1.0}"), ctx, _force=alg) @test ctx.elements[1] == Dict{Symbol,Any}(:a => 1.0) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": \"1\"}"), ctx, _force=alg) @test ctx.elements[1] == Dict{Symbol,Any}(:a => "1") ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": true}"), ctx, _force=alg) @test ctx.elements[1] == Dict{Symbol,Any}(:a => true) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": null}"), ctx, _force=alg) @test ctx.elements[1] == Dict{Symbol,Any}(:a => nothing) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": []}"), ctx, _force=alg) @test ctx.elements[1] == Dict{Symbol,Any}(:a => []) end end end @testset "Multiple lines small buffer" begin for alg in [:serial, :parallel] @testset "Int $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1\n1"), ctx, _force=alg, buffersize=4) @test ctx.elements == [1,1] end @testset "Float64 $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1.0\n1.0"), ctx, _force=alg, buffersize=4) @test ctx.elements == [1.0, 1.0] end @testset "String $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\"1.0\"\n\"1.0\""), ctx, _force=alg, buffersize=6) @test ctx.elements == ["1.0","1.0"] end @testset "Bool $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("false\ntrue"), ctx, _force=alg, buffersize=6) @test ctx.elements == [false, true] end @testset "Null $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("null\nnull"), ctx, _force=alg, buffersize=5) @test ctx.elements == [nothing,nothing] end @testset "Array $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[]\n[]"), ctx, _force=alg, buffersize=4) @test ctx.elements == [[],[]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[1, 2]\n[1, 2]"), ctx, _force=alg, buffersize=7) @test ctx.elements == [[1, 2],[1, 2]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[1.0, 2.0]\n[1.0, 2.0]"), ctx, _force=alg, buffersize=11) @test ctx.elements == [[1.0, 2.0],[1.0, 2.0]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[\"1\", \"2\"]\n[\"1\", \"2\"]"), ctx, _force=alg, buffersize=11) @test ctx.elements == [["1", "2"],["1", "2"]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[\"1\\\"\", \"2\\\"\"]\n[\"1\\\"\", \"2\\\"\"]"), ctx, _force=alg, buffersize=15) @test ctx.elements == [["1\"", "2\""],["1\"", "2\""]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[true, false]\n[true, false]"), ctx, _force=alg, buffersize=14) @test ctx.elements == [[true, false],[true, false]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[null, null]\n[null, null]"), ctx, _force=alg, buffersize=13) @test ctx.elements == [[nothing, nothing],[nothing, nothing]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[{}]\n[{}]"), ctx, _force=alg, buffersize=5) @test ctx.elements == [[Dict{Symbol,Any}()],[Dict{Symbol,Any}()]] end @testset "Object $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{}\n{}"), ctx, _force=alg, buffersize=4) @test ctx.elements == [Dict{Symbol,Any}(),Dict{Symbol,Any}()] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": 1}\n{\"a\": 1}"), ctx, _force=alg, buffersize=9) @test ctx.elements == [Dict{Symbol,Any}(:a => 1),Dict{Symbol,Any}(:a => 1)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": 1.0}\n{\"a\": 1.0}"), ctx, _force=alg, buffersize=11) @test ctx.elements == [Dict{Symbol,Any}(:a => 1.0),Dict{Symbol,Any}(:a => 1.0)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": \"1\"}\n{\"a\": \"1\"}"), ctx, _force=alg, buffersize=11) @test ctx.elements == [Dict{Symbol,Any}(:a => "1"),Dict{Symbol,Any}(:a => "1")] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\\\"\": \"1\\\"\"}\n{\"a\\\"\": \"1\\\"\"}"), ctx, _force=alg, buffersize=15) @test ctx.elements == [Dict{Symbol,Any}(Symbol("a\"") => "1\""),Dict{Symbol,Any}(Symbol("a\"") => "1\"")] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": true}\n{\"a\": true}"), ctx, _force=alg, buffersize=12) @test ctx.elements == [Dict{Symbol,Any}(:a => true),Dict{Symbol,Any}(:a => true)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": null}\n{\"a\": null}"), ctx, _force=alg, buffersize=12) @test ctx.elements == [Dict{Symbol,Any}(:a => nothing),Dict{Symbol,Any}(:a => nothing)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": []}\n{\"a\": []}"), ctx, _force=alg, buffersize=10) @test ctx.elements == [Dict{Symbol,Any}(:a => []),Dict{Symbol,Any}(:a => [])] end end end @testset "Multiple lines" begin for alg in [:serial, :parallel] @testset "Int $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1\n1"), ctx, _force=alg) @test ctx.elements == [1,1] end @testset "Float64 $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1.0\n1.0"), ctx, _force=alg) @test ctx.elements == [1.0, 1.0] end @testset "String $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\"1.0\"\n\"1.0\""), ctx, _force=alg) @test ctx.elements == ["1.0","1.0"] end @testset "Bool $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("false\ntrue"), ctx, _force=alg) @test ctx.elements == [false, true] end @testset "Null $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("null\nnull"), ctx, _force=alg) @test ctx.elements == [nothing,nothing] end @testset "Array $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[]\n[]"), ctx, _force=alg) @test ctx.elements == [[],[]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[1, 2]\n[1, 2]"), ctx, _force=alg) @test ctx.elements == [[1, 2],[1, 2]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[1.0, 2.0]\n[1.0, 2.0]"), ctx, _force=alg) @test ctx.elements == [[1.0, 2.0],[1.0, 2.0]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[\"1\", \"2\"]\n[\"1\", \"2\"]"), ctx, _force=alg) @test ctx.elements == [["1", "2"],["1", "2"]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[true, false]\n[true, false]"), ctx, _force=alg) @test ctx.elements == [[true, false],[true, false]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[null, null]\n[null, null]"), ctx, _force=alg) @test ctx.elements == [[nothing, nothing],[nothing, nothing]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("[{}]\n[{}]"), ctx, _force=alg) @test ctx.elements == [[Dict{Symbol,Any}()],[Dict{Symbol,Any}()]] end @testset "Object $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{}\n{}"), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(),Dict{Symbol,Any}()] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": 1}\n{\"a\": 1}"), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => 1),Dict{Symbol,Any}(:a => 1)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": 1.0}\n{\"a\": 1.0}"), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => 1.0),Dict{Symbol,Any}(:a => 1.0)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": \"1\"}\n{\"a\": \"1\"}"), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => "1"),Dict{Symbol,Any}(:a => "1")] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": true}\n{\"a\": true}"), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => true),Dict{Symbol,Any}(:a => true)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": null}\n{\"a\": null}"), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => nothing),Dict{Symbol,Any}(:a => nothing)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("{\"a\": []}\n{\"a\": []}"), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => []),Dict{Symbol,Any}(:a => [])] end end end @testset "Multiple lines leading and trailing whitespace" begin for alg in [:serial, :parallel] @testset "Int $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" 1 \n 1 "), ctx, _force=alg) @test ctx.elements == [1,1] end @testset "Float64 $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" 1.0 \n 1.0 "), ctx, _force=alg) @test ctx.elements == [1.0, 1.0] end @testset "String $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" \"1.0\" \n \"1.0\" "), ctx, _force=alg) @test ctx.elements == ["1.0","1.0"] end @testset "Bool $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" false \n true "), ctx, _force=alg) @test ctx.elements == [false, true] end @testset "Null $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" null \n null "), ctx, _force=alg) @test ctx.elements == [nothing,nothing] end @testset "Array $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [] \n [] "), ctx, _force=alg) @test ctx.elements == [[],[]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [1, 2] \n [1, 2] "), ctx, _force=alg) @test ctx.elements == [[1, 2],[1, 2]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [1.0, 2.0] \n [1.0, 2.0] "), ctx, _force=alg) @test ctx.elements == [[1.0, 2.0],[1.0, 2.0]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [\"1\", \"2\"] \n [\"1\", \"2\"] "), ctx, _force=alg) @test ctx.elements == [["1", "2"],["1", "2"]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [true, false] \n [true, false] "), ctx, _force=alg) @test ctx.elements == [[true, false],[true, false]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [null, null] \n [null, null] "), ctx, _force=alg) @test ctx.elements == [[nothing, nothing],[nothing, nothing]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [{}] \n [{}] "), ctx, _force=alg) @test ctx.elements == [[Dict{Symbol,Any}()],[Dict{Symbol,Any}()]] end @testset "Object $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {} \n {} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(),Dict{Symbol,Any}()] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": 1} \n {\"a\": 1} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => 1),Dict{Symbol,Any}(:a => 1)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": 1.0} \n {\"a\": 1.0} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => 1.0),Dict{Symbol,Any}(:a => 1.0)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": \"1\"} \n {\"a\": \"1\"} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => "1"),Dict{Symbol,Any}(:a => "1")] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": true} \n {\"a\": true} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => true),Dict{Symbol,Any}(:a => true)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": null} \n {\"a\": null} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => nothing),Dict{Symbol,Any}(:a => nothing)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": []} \n {\"a\": []} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => []),Dict{Symbol,Any}(:a => [])] end end end @testset "Multiple lines leading and a lot of surrounding whitespace" begin for alg in [:serial, :parallel] @testset "Int $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" 1 \n 1 "), ctx, _force=alg) @test ctx.elements == [1,1] end @testset "Float64 $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" 1.0 \n 1.0 "), ctx, _force=alg) @test ctx.elements == [1.0, 1.0] end @testset "String $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" \"1.0\" \n \"1.0\" "), ctx, _force=alg) @test ctx.elements == ["1.0","1.0"] end @testset "Bool $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" false \n true "), ctx, _force=alg) @test ctx.elements == [false, true] end @testset "Null $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" null \n null "), ctx, _force=alg) @test ctx.elements == [nothing,nothing] end @testset "Array $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [] \n [] "), ctx, _force=alg) @test ctx.elements == [[],[]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [1, 2] \n [1, 2] "), ctx, _force=alg) @test ctx.elements == [[1, 2],[1, 2]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [1.0, 2.0] \n [1.0, 2.0] "), ctx, _force=alg) @test ctx.elements == [[1.0, 2.0],[1.0, 2.0]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [\"1\", \"2\"] \n [\"1\", \"2\"] "), ctx, _force=alg) @test ctx.elements == [["1", "2"],["1", "2"]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [true, false] \n [true, false] "), ctx, _force=alg) @test ctx.elements == [[true, false],[true, false]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [null, null] \n [null, null] "), ctx, _force=alg) @test ctx.elements == [[nothing, nothing],[nothing, nothing]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" [{}] \n [{}] "), ctx, _force=alg) @test ctx.elements == [[Dict{Symbol,Any}()],[Dict{Symbol,Any}()]] end @testset "Object $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {} \n {} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(),Dict{Symbol,Any}()] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": 1} \n {\"a\": 1} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => 1),Dict{Symbol,Any}(:a => 1)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": 1.0} \n {\"a\": 1.0} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => 1.0),Dict{Symbol,Any}(:a => 1.0)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": \"1\"} \n {\"a\": \"1\"} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => "1"),Dict{Symbol,Any}(:a => "1")] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": true} \n {\"a\": true} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => true),Dict{Symbol,Any}(:a => true)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": null} \n {\"a\": null} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => nothing),Dict{Symbol,Any}(:a => nothing)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" {\"a\": []} \n {\"a\": []} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => []),Dict{Symbol,Any}(:a => [])] end end end @testset "Multiple lines leading and trailing whitespace with BOM" begin for alg in [:serial, :parallel] @testset "Int $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf 1 \n 1 "), ctx, _force=alg) @test ctx.elements == [1,1] end @testset "Float64 $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf 1.0 \n 1.0 "), ctx, _force=alg) @test ctx.elements == [1.0, 1.0] end @testset "String $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf \"1.0\" \n \"1.0\" "), ctx, _force=alg) @test ctx.elements == ["1.0","1.0"] end @testset "Bool $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf false \n true "), ctx, _force=alg) @test ctx.elements == [false, true] end @testset "Null $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf null \n null "), ctx, _force=alg) @test ctx.elements == [nothing,nothing] end @testset "Array $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [] \n [] "), ctx, _force=alg) @test ctx.elements == [[],[]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [1, 2] \n [1, 2] "), ctx, _force=alg) @test ctx.elements == [[1, 2],[1, 2]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [1.0, 2.0] \n [1.0, 2.0] "), ctx, _force=alg) @test ctx.elements == [[1.0, 2.0],[1.0, 2.0]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [\"1\", \"2\"] \n [\"1\", \"2\"] "), ctx, _force=alg) @test ctx.elements == [["1", "2"],["1", "2"]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [\"1\\\"\", \"2\\\"\"] \n [\"1\\\"\", \"2\\\"\"] "), ctx, _force=alg) @test ctx.elements == [["1\"", "2\""],["1\"", "2\""]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [true, false] \n [true, false] "), ctx, _force=alg) @test ctx.elements == [[true, false],[true, false]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [null, null] \n [null, null] "), ctx, _force=alg) @test ctx.elements == [[nothing, nothing],[nothing, nothing]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [{}] \n [{}] "), ctx, _force=alg) @test ctx.elements == [[Dict{Symbol,Any}()],[Dict{Symbol,Any}()]] end @testset "Object $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {} \n {} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(),Dict{Symbol,Any}()] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": 1} \n {\"a\": 1} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => 1),Dict{Symbol,Any}(:a => 1)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": 1.0} \n {\"a\": 1.0} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => 1.0),Dict{Symbol,Any}(:a => 1.0)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": \"1\"} \n {\"a\": \"1\"} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => "1"),Dict{Symbol,Any}(:a => "1")] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\\\"\": \"1\\\"\"} \n {\"a\\\"\": \"1\\\"\"} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(Symbol("a\"") => "1\""),Dict{Symbol,Any}(Symbol("a\"") => "1\"")] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": true} \n {\"a\": true} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => true),Dict{Symbol,Any}(:a => true)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": null} \n {\"a\": null} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => nothing),Dict{Symbol,Any}(:a => nothing)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": []} \n {\"a\": []} "), ctx, _force=alg) @test ctx.elements == [Dict{Symbol,Any}(:a => []),Dict{Symbol,Any}(:a => [])] end end end @testset "Multiple lines leading and trailing whitespace with BOM, 2 chunks" begin for alg in [:serial, :parallel] @testset "Int $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf 1 \n 1 "), ctx, _force=alg, buffersize=4) @test ctx.elements == [1,1] end @testset "Float64 $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf 1.0 \n 1.0 "), ctx, _force=alg, buffersize=5) @test ctx.elements == [1.0, 1.0] end @testset "String $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf \"1.0\" \n \"1.0\" "), ctx, _force=alg, buffersize=7) @test ctx.elements == ["1.0","1.0"] end @testset "Bool $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf false \n false "), ctx, _force=alg, buffersize=7) @test ctx.elements == [false, false] end @testset "Null $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf null \n null "), ctx, _force=alg, buffersize=6) @test ctx.elements == [nothing,nothing] end @testset "Array $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [] \n [] "), ctx, _force=alg, buffersize=5) @test ctx.elements == [[],[]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [1, 2] \n [1, 2] "), ctx, _force=alg, buffersize=8) @test ctx.elements == [[1, 2],[1, 2]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [1.0, 2.0] \n [1.0, 2.0] "), ctx, _force=alg, buffersize=13) @test ctx.elements == [[1.0, 2.0],[1.0, 2.0]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [\"1\", \"2\"] \n [\"1\", \"2\"] "), ctx, _force=alg, buffersize=13) @test ctx.elements == [["1", "2"],["1", "2"]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [\"1\\\"\", \"2\\\"\"] \n [\"1\\\"\", \"2\\\"\"] "), ctx, _force=alg, buffersize=17) @test ctx.elements == [["1\"", "2\""],["1\"", "2\""]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [true, false] \n [true, false] "), ctx, _force=alg, buffersize=15) @test ctx.elements == [[true, false],[true, false]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [null, null] \n [null, null] "), ctx, _force=alg, buffersize=14) @test ctx.elements == [[nothing, nothing],[nothing, nothing]] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf [{}] \n [{}] "), ctx, _force=alg, buffersize=14) @test ctx.elements == [[Dict{Symbol,Any}()],[Dict{Symbol,Any}()]] end @testset "Object $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {} \n {} "), ctx, _force=alg, buffersize=5) @test ctx.elements == [Dict{Symbol,Any}(),Dict{Symbol,Any}()] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": 1} \n {\"a\": 1} "), ctx, _force=alg, buffersize=10) @test ctx.elements == [Dict{Symbol,Any}(:a => 1),Dict{Symbol,Any}(:a => 1)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": 1.0} \n {\"a\": 1.0} "), ctx, _force=alg, buffersize=14) @test ctx.elements == [Dict{Symbol,Any}(:a => 1.0),Dict{Symbol,Any}(:a => 1.0)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": \"1\"} \n {\"a\": \"1\"} "), ctx, _force=alg, buffersize=14) @test ctx.elements == [Dict{Symbol,Any}(:a => "1"),Dict{Symbol,Any}(:a => "1")] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\\\"\": \"1\\\"\"} \n {\"a\\\"\": \"1\\\"\"} "), ctx, _force=alg, buffersize=18) @test ctx.elements == [Dict{Symbol,Any}(Symbol("a\"") => "1\""),Dict{Symbol,Any}(Symbol("a\"") => "1\"")] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": true} \n {\"a\": true} "), ctx, _force=alg, buffersize=16) @test ctx.elements == [Dict{Symbol,Any}(:a => true),Dict{Symbol,Any}(:a => true)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": null} \n {\"a\": null} "), ctx, _force=alg, buffersize=16) @test ctx.elements == [Dict{Symbol,Any}(:a => nothing),Dict{Symbol,Any}(:a => nothing)] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf {\"a\": []} \n {\"a\": []} "), ctx, _force=alg, buffersize=11) @test ctx.elements == [Dict{Symbol,Any}(:a => []),Dict{Symbol,Any}(:a => [])] end @testset "Empty input $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(""), ctx, _force=alg, buffersize=4) @test isempty(ctx.elements) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" "), ctx, _force=alg, buffersize=4) @test isempty(ctx.elements) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" "), ctx, _force=alg, buffersize=4) @test isempty(ctx.elements) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" "), ctx, _force=alg, buffersize=4) @test isempty(ctx.elements) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf"), ctx, _force=alg, buffersize=4) @test isempty(ctx.elements) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf "), ctx, _force=alg, buffersize=4) @test isempty(ctx.elements) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf "), ctx, _force=alg, buffersize=4) @test isempty(ctx.elements) ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("\xef\xbb\xbf "), ctx, _force=alg, buffersize=4) @test isempty(ctx.elements) end end end @testset "Skipping comments and whitespace" begin for alg in [:serial, :parallel] for comment in ('#', "#", UInt8('#'), [UInt8('#')]) @testset "comment: $(repr(comment)) $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer(" \n\n\n\n #\n#x\n#xx\n1\n\n\n#x\n1\n\n"), ctx, _force=alg, buffersize=4, comment=comment) @test ctx.elements == [1, 1] end end end end @testset "Limit and skipto" begin for alg in [:serial, :parallel] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1\n2\n3\n4\n5"), ctx, _force=alg, buffersize=4, skipto=2, limit=1) @test ctx.elements == [3] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1\n2\n\n3\n4\n5"), ctx, _force=alg, buffersize=4, skipto=2, limit=2) @test sort(ctx.elements) == [3, 4] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("0\n1\n2\n\n3\n4\n5"), ctx, _force=alg, buffersize=4, skipto=2, limit=2) @test ctx.elements == [2] ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1\n#\n#\n#\n2\n#\n3\n4\n5"), ctx, _force=alg, buffersize=4, skipto=2, limit=3, comment='#') @test sort(ctx.elements) == [2, 3] end end @testset "Newlinechar" begin for alg in [:serial, :parallel] for (arg, nl) in (('\n', "\n"), ('\n', "\r\n"), ('\r', "\r"), (UInt8('\n'), "\n"), (UInt8('\n'), "\r\n"), (UInt8('\r'), "\r"), (nothing, "\r"), (nothing, "\n"), (nothing, "\r\n")) @testset "arg: $(repr(arg)), nl: $(repr(nl)) $alg" begin ctx = ValueExtractionContext() ChunkedJSONL.parse_file(IOBuffer("1 $nl 1"), ctx, _force=alg, buffersize=4, newlinechar=arg) @test ctx.elements == [1, 1] end end end end
ChunkedJSONL
https://github.com/RelationalAI/ChunkedJSONL.jl.git
[ "MIT" ]
0.1.0
5810e8b9d35071a43c67cf357730e4467252696c
code
4237
using ChunkedJSONL using ChunkedBase using ChunkedJSONL: ParsingContext, TaskResultBuffer, AbstractConsumeContext using Test # Throws when a specified row is greater than the first row of a task buffer struct TestThrowingContext <: AbstractConsumeContext tasks::Vector{Task} conds::Vector{ChunkedJSONL.TaskCounter} throw_row::Int end TestThrowingContext(throw_row) = TestThrowingContext(Task[], ChunkedJSONL.TaskCounter[], throw_row) # Throws in the last quarter of the buffer struct ThrowingIO <: IO io::IOBuffer throw_byte::Int end ThrowingIO(s::String) = ThrowingIO(IOBuffer(s), length(s) - cld(length(s), 4)) Base.read(io::ThrowingIO, ::Type{UInt8}) = io.io.ptr > io.throw_byte ? error("That should be enough data for everyone") : read(io.io, UInt8) ChunkedBase.readbytesall!(io::ThrowingIO, buf, n::Int) = io.io.ptr > io.throw_byte ? error("That should be enough data for everyone") : ChunkedBase.readbytesall!(io.io, buf, n) Base.eof(io::ThrowingIO) = Base.eof(io.io) function ChunkedJSONL.consume!(ctx::TestThrowingContext, payload::ParsedPayload) t = current_task() c = payload.chunking_ctx.counter c in ctx.conds || push!(ctx.conds, c) t in ctx.tasks || push!(ctx.tasks, t) payload.row_num >= ctx.throw_row && error("These contexts are for throwing, and that's all what they do") sleep(0.01) # trying to get the task off a fast path to claim everything from the parsing queue return nothing end @testset "Exception handling" begin @testset "consume!" begin @testset "serial" begin throw_ctx = TestThrowingContext(2) @test_throws ErrorException("These contexts are for throwing, and that's all what they do") parse_file(IOBuffer(""" [1,2] [3,4] """), throw_ctx, _force=:serial, buffersize=6 ) @assert !isempty(throw_ctx.tasks) @test throw_ctx.tasks[1] === current_task() @test throw_ctx.conds[1].exception isa ErrorException end @testset "parallel" begin # 1500 rows should be enough to get each of the 3 task at least one consume! throw_ctx = TestThrowingContext(1500) @test_throws TaskFailedException parse_file( IOBuffer(("[1,2]\n[3,4]\n" ^ 800)), # 1600 rows total throw_ctx, nworkers=min(3, Threads.nthreads()), _force=:parallel, buffersize=12, ) sleep(0.2) @test length(throw_ctx.tasks) == min(3, Threads.nthreads()) @test all(istaskdone, throw_ctx.tasks) @test throw_ctx.conds[1].exception isa CapturedException @test throw_ctx.conds[1].exception.ex.msg == "These contexts are for throwing, and that's all what they do" end end @testset "io" begin @testset "serial" begin throw_ctx = TestThrowingContext(typemax(Int)) # Only capture tasks, let IO do the throwing @test_throws ErrorException("That should be enough data for everyone") parse_file( ThrowingIO(("[1,2]\n[3,4]\n" ^ 10)), # 20 rows total throw_ctx, _force=:serial, buffersize=6, ) @assert !isempty(throw_ctx.tasks) @test throw_ctx.tasks[1] === current_task() @test throw_ctx.conds[1].exception isa ErrorException end @testset "parallel" begin throw_ctx = TestThrowingContext(typemax(Int)) # Only capture tasks, let IO do the throwing @test_throws TaskFailedException parse_file( ThrowingIO(("[1,2]\n[3,4]\n" ^ 800)), # 1600 rows total throw_ctx, nworkers=min(3, Threads.nthreads()), _force=:parallel, buffersize=12, ) sleep(0.2) @test length(throw_ctx.tasks) == min(3, Threads.nthreads()) @test all(istaskdone, throw_ctx.tasks) @test throw_ctx.conds[1].exception isa CapturedException @test throw_ctx.conds[1].exception.ex.task.result.msg == "That should be enough data for everyone" @test throw_ctx.conds[2].exception isa CapturedException @test throw_ctx.conds[2].exception.ex.task.result.msg == "That should be enough data for everyone" end end end # @testset "Exception handling"
ChunkedJSONL
https://github.com/RelationalAI/ChunkedJSONL.jl.git
[ "MIT" ]
0.1.0
5810e8b9d35071a43c67cf357730e4467252696c
code
705
using Test using ChunkedJSONL using Aqua Threads.nthreads() == 1 && @warn "Running tests with a single thread -- won't be able to spot concurrency issues" @testset "ChunkedJSONL.jl" begin Aqua.test_all(ChunkedJSONL, ambiguities=false) include("basic_tests.jl") include("exception_handling.jl") end #= using Coverage using ChunkedJSONL pkg_path = pkgdir(ChunkedJSONL); coverage = process_folder(joinpath(pkg_path, "src")); open(joinpath(pkg_path, "lcov.info"), "w") do io LCOV.write(io, coverage) end; covered_lines, total_lines = get_summary(coverage); println("Coverage: $(round(100 * covered_lines / total_lines, digits=2))%"); run(`find $pkg_path -name "*.cov" -type f -delete`); =#
ChunkedJSONL
https://github.com/RelationalAI/ChunkedJSONL.jl.git
[ "MIT" ]
0.2.3
de077e80f48cffe05bf6b450f495616753f0e8b1
code
473
module SurrealdbWS export Surreal, connect, signin, signup, use, select, create, insert, update, merge, query, patch, delete, close, ping, authenticate, invalidate, set, unset, set_format, info import Base.Threads: @spawn import Base64: base64encode import HTTP.Sockets: send import HTTP.WebSockets: WebSocket, close, receive, isclosed, CloseFrameBody import HTTP.openraw include("surreal.jl") include("connection.jl") include("send_receive.jl") include("query.jl") end
SurrealdbWS
https://github.com/YuriMiyamori/SurrealdbWS.jl.git
[ "MIT" ]
0.2.3
de077e80f48cffe05bf6b450f495616753f0e8b1
code
1666
struct TimeoutError <: Exception msg::String end Base.showerror(io::IO, e::TimeoutError) = print(io, e.msg) function generate_header() [ "Upgrade" => "websocket", "Connection" => "Upgrade", "Sec-WebSocket-Key" => base64encode(rand(UInt8, 16)), "Sec-WebSocket-Version" => "13"] end """ connect(db::Surreal, url::Union{Nothing, String}=nothing) connect to a local or remote database endpoint # Examples ```jldoctest julia> db = Surreal() julia> connect(db, "ws://127.0.0.1:8000/rpc") julia> signin(db, user="root", pass="root") # Connect to a remote endpoint julia> db = Surreal() julia> connect(db,"http://cloud.surrealdb.com/rpc") julia> signin(db, user="root", pass="root") ``` """ function connect(db::Surreal; timeout::Real=10.0) db.url = correct_url(db.url) db.ws_ch = Channel{WebSocket}(db.npool) for _ in 1:db.npool task = @spawn openraw("GET", db.url, generate_header()) res = timedwait(()->istaskdone(task),timeout, pollint=0.01) #:ok or :timeout if res == :timed_out throw(TimeoutError("Connection timed out. Check your url($(db.url)). Or set timeout($(timeout) sec) to larger value and try again.")) else #res == :ok socket, _ = fetch(task) put!(db.ws_ch, WebSocket(socket)) end end db.client_state = CONNECTED nothing end """ close(db::Surreal) Closes the persistent connection to the database. """ function close(db::Surreal)::Nothing if db.client_state == CONNECTED for _ in 1:db.npool ws = take!(db.ws_ch) @spawn close(ws, CloseFrameBody(1000, "")) put!(db.ws_ch, ws) end db.ws_ch = nothing end db.client_state = DISCONNECTED nothing end
SurrealdbWS
https://github.com/YuriMiyamori/SurrealdbWS.jl.git
[ "MIT" ]
0.2.3
de077e80f48cffe05bf6b450f495616753f0e8b1
code
9913
""" signin(db::Surreal; user::String, pass::String)::Union{String, Nothing} Signs this connection in to a specific authentication scope. # Arguments - `user`: username in signin query - `pass`: password in signin query # Examples: ```jldoctest julia> signin(db, user="root", pass="root") ``` """ function signin(db::Surreal; user::String, pass::String)::Nothing params = Dict("user"=>user, "pass"=>pass) tasks = [@spawn send_receive(db, method="signin", params=(params,)) for _ in 1:db.npool] db.token = fetch.(tasks) |> first nothing end """ signup(db::Surreal; user::String, pass::String)::Union{String, Nothing} Signs this connection up to a specific authentication scope. #Arguments - `user`: username in signup query - `pass`: password in signup query # Examples ```jldoctest julia> signup(db, user="bob", pass="123456") ``` """ function signup(db::Surreal; vars::Dict)::Nothing if db.npool > 1 throw(ArgumentError("signup is not supported in multipool mode")) end task = @spawn send_receive(db, method="signup", params=(vars,)) db.token = fetch(task) nothing end """ authenticate(db::Surreal; token::Union{String, Nothing}=nothing)::Nothing Authenticates the current connection with a JWT token. # Arguments - `token`: The token to use for the connection. # Examples ```jldoctest julia> authenticate(db, token="JWT token here") ``` """ function authenticate(db::Surreal; token::Union{String, Nothing}=nothing)::Nothing if !isnothing(token) db.token = token end @sync begin for _ in 1:db.npool @spawn send_receive(db, method="authenticate", params=(db.token,)) end end nothing end """ invalidate(db::Surreal)::Nothing invalidate the user's session for the current connection # Examples ```jldoctest julia> invalidate(db) ``` """ function invalidate(db::Surreal)::Nothing @sync begin for _ in 1:db.npool @spawn send_receive(db, method="invalidate") end end nothing end """ set(db::Surreal; params)::Nothing This method specifies the namespace and database for the current connection amples ```jldoctest julia> let(db,params=("website", "https://surrealdb.com/")) ``` """ function set(db::Surreal; params::Tuple)::Nothing @sync begin for _ in 1:db.npool @spawn send_receive(db, method="let", params=params,) end end nothing end """ unset(db::Surreal; name::String)::Nothing This method specifies the namespace and database for the current connection amples ```jldoctest julia> let(db,params=("website", "https://surrealdb.com/")) ``` """ function unset(db::Surreal; name::String)::Nothing @sync begin for _ in 1:db.npool @spawn send_receive(db, method="unset", params=(name,)) end end nothing end """ use(db::Surreal; namespace::String, database::String) Switch to a specific namespace and database. # Arguments - `namespace`: Switches to a specific namespace. - `database`: Switches to a specific database. # Examples ```jldoctest julia> use(db, namespace='test', database='test') ``` """ function use(db::Surreal; namespace::String, database::String)::Nothing @sync begin for _ in 1:db.npool @spawn send_receive(db, method="use", params=(namespace, database)) end end nothing end """ create(db::Surreal; thing::String, data::Union{Dict, Nothing}=nothing) Create a record in the database. This function will run the following query in the database: create `thing` content `data` # Arguments - `thing`: The table or record ID. - `data`: The document / record data to insert. # Examples ```jldoctest # Create a record with a random ID julia> person = create(db, "person") # Create a record with a specific ID julia> record = create(db,"person:tobie", Dict( "name"=> "Tobie", "settings"=> Dict( "active"=> true, "marketing"=> true, ), ) """ function create(db::Surreal; thing::String, data::Union{AbstractDict, Nothing}=nothing) task = @spawn send_receive(db, method="create", params=(thing, data)) return fetch(task) end """ insert(db::Surreal; thing::String, data::Union{Dict, Nothing}=nothing) insert a record in the database. This function will run the following query in the database: insert `thing` content `data` # Arguments - `thing`: The table or record ID. - `data`: The document / record data to insert. # Examples ```jldoctest # insert a record with a random ID julia> person = insert(db, "person") # insert a record with a specific ID julia> record = insert(db,"person:tobie", Dict( "name"=> "Tobie", "settings"=> Dict( "active"=> true, "marketing"=> true, ), ) """ function insert(db::Surreal; thing::String, data::Union{AbstractDict, Nothing}=nothing) task = @spawn send_receive(db, method="insert", params=(thing, data)) return fetch(task) end """ merge(db::Surreal; thing::String, data::Union{AbstractDict, Nothing}=nothing) merge(db::Surreal; thing::String, data::Union{Dict, Nothing}=nothing) merge a record in the database. This function will run the following query in the database: merge `thing` content `data` # Arguments - `thing`: The table or record ID. - `data`: The document / record data to merge. # Examples ```jldoctest # merge a record with a random ID julia> person = merge(db, "person") # merge a record with a specific ID julia> record = merge(db,"person:tobie", Dict( "name"=> "Tobie", "settings"=> Dict( "active"=> true, "marketing"=> true, ), ) """ function Base.merge(db::Surreal; thing::String, data::Union{AbstractDict, Nothing}=nothing) task = @spawn send_receive(db, method="merge", params=(thing, data)) return fetch(task) end """ select(db::Surreal; thing::String) Selects all records in a table (or other entity), or a specific record, in the database. This function will run the following query in the database: select * from `thing` # Arguments `thing`: The table or record ID to select. # Returns: The records. # Examples ```jldoctest # Select all records from a table (or other entity) julia> people = select(db, "person") # Select a specific record from a table (or other entity) julia> person = select(db, "person:h5wxrf2ewk8xjxosxtyc") ``` """ function select(db::Surreal; thing::String) task = @spawn send_receive(db, method="select", params=(thing, )) return fetch(task) end """ update(db::Surreal; thing::String, data::Union{Dict, Nothing}=nothing) Updates all records in a table, or a specific record, in the database. This function replaces the current document / record data with the specified data. This function will run the following query in the database: update `thing` content `data` # Arguments - `thing`: The table or record ID. - `data`: The document / record data to insert. # Examples: ```jldoctest julia> # Update all records in a table julia> person = update(db, "person") julia> # Update a record with a specific ID julia> record = update(db, "person:tobie", Dict( "name"=> "Tobie", "settings"=> Dict( "active"=> true, "marketing"=> true, ), )) ``` """ function update(db::Surreal; thing::String, data::Union{AbstractDict, Nothing}=nothing) task = @spawn send_receive(db, method="update", params=(thing, data)) return fetch(task) end """ query(db::Surreal; sql::String, vars::Union{Dict, Nothing}=nothing) Runs a set of SurrealQL statements against the database. # Arguments `sql`: Specifies the SurrealQL statements. `vars`: Assigns variables which can be used in the query. # Returns The records. # Examples ```jldoctest julia> # Assign the variable on the connection julia> result = query(db, sql=r"create person; select * from type::table(\$tb)",vars=Dict("tb"=> "person")) julia> # Get the first result from the first query julia> result[0]["result"][0] julia> # Get all of the results from the second query julia> result[1]["result"] ``` """ function query(db::Surreal; sql::String, vars::Union{AbstractDict, Nothing}=nothing) task = @spawn send_receive(db, method="query", params=(sql, vars)) return fetch(task) end """ patch(db::Surreal; thing::String, data::Union{Dict, Nothing}=nothing) Applies JSON Patch changes to all records, or a specific record, in the database. This function patches the current document / record data with the specified JSON Patch data. This function will run the following query in the database: update `thing` patch `data` # Arguments `thing`: The table or record ID. `data`: The data to modify the record with. # Examples ```jldoctest julia> # Update all records in a table julia> people = patch(db, "person", Dict( "op"=> "replace", "path"=> "/created_at", "value"=> str(datetime.datetime.utcnow()) }]) julia> # Update a record with a specific ID julia> person = patch(db, "person:tobie", [ Dict("op"=> "replace", "path"=> "/settings/active", "value"=> false ), Dict("op"=> "add", "path"=> "/tags", "value"=> ["developer", "engineer"]), Dict("op"=> "remove", "path"=> "/temp"), ]) ``` """ # function patch(db::Surreal; thing::String, data::Union{AbstractDict, Nothing}=nothing) # task = @spawn send_receive(db, method="patch", params=(thing, data)) # return fetch(task) # end """ delete(db::Surreal; thing::String) Deletes all records in a table, or a specific record, from the database. This function will run the following query in the database: delete * from `thing` # Arguments `thing`: The table name or a record ID to delete. # Examples julia> # Delete all records from a table julia> delete(db, "person") julia> # Delete a specific record from a table julia> delete(db, "person:h5wxrf2ewk8xjxosxtyc") """ function delete(db::Surreal; thing::String) task = @spawn send_receive(db, method="delete", params=(thing, )) return fetch(task) end """ info(db::Surreal) Retreive info about the current Surreal instance. # Returns The information of the Surreal server. """ function info(db::Surreal) task = @spawn send_receive(db, method="info") return fetch(task) end """ ping(db::Surreal) Ping the Surreal server. """ function ping(db::Surreal) task = @spawn send_receive(db, method="ping") return fetch(task) end
SurrealdbWS
https://github.com/YuriMiyamori/SurrealdbWS.jl.git
[ "MIT" ]
0.2.3
de077e80f48cffe05bf6b450f495616753f0e8b1
code
2518
import JSON: json, parse import UUIDs: uuid4 import Dates: DateTime """ generate_uuid()::String Generate a UUID. # Returns A UUID as a string. """ generate_uuid()::String = string(uuid4()) """ send_receive(db::Surreal, params::Dict) Send a request to the Surreal server and receive a response. # Arguments `params`: The request to send. # Returns The response from the Surreal server. # Raises Exception: If the client is not connected to the Surreal server. Exception: If the response contains an error. """ function send_receive(db::Surreal; method::String, params::Union{Nothing, Tuple, AbstractVector}=nothing) # Check Connection State if db.client_state != CONNECTED throw(ErrorException("Not connected to Surreal server.")) end # TODO # typed_params = type_annotate(params) # set sending data to server as json data_send = isnothing(params) ? Dict("id"=>generate_uuid(), "method"=>method) : Dict("id"=>generate_uuid(), "method"=>method, "params"=>params) # take available websocket from channel, if not available, wait for it ws = take!(db.ws_ch) send(ws, json(data_send)) data_receive = receive(ws) # put websocket back to channel put!(db.ws_ch, ws) # Parse response response = parse(data_receive) # Check response has Error haskey(response, "error") && throw(ErrorException("SurrealDB Error:" * response["error"]["message"])) data_send["id"] != response["id"] && throw(ErrorException( "Response ID does not match request ID. sent id is $(data_send["id"]) but response id is $(response["id"]))")) return response["result"] |> parse_chain end """ parse_chain(v::Vector{AbstractDict}) TBW """ function parse_chain(v::Vector{AbstractDict}) if length(v) == 1 return parse_chain(v[1]) else return parse_chain.(v) end end """ parse_chain(d::AbstractDict) TBW """ function parse_chain(d::AbstractDict) for (k, v) in d d[k] = parse_chain(v) end return d end """ parse_chain(s) TBW """ function parse_chain(s) tryparse_raw(Float64, s) |> s -> tryparse_raw(DateTime, s) |> s -> identity(s) end """ parse_chain(s::AbstractVector) TBW """ function parse_chain(s::AbstractVector) parse_chain.(s) end """ tryparse_raw(dist_type::DataType, s::String)::Union{dist_type, String} TBW """ function tryparse_raw(dist_type::DataType, s::String)::Union{dist_type, String} res = tryparse(dist_type, s) return res === nothing ? s : res end # match s except for string """ tryparse_raw(dist_type::DataType, s) TBW """ tryparse_raw(dist_type::DataType, s) = s
SurrealdbWS
https://github.com/YuriMiyamori/SurrealdbWS.jl.git
[ "MIT" ]
0.2.3
de077e80f48cffe05bf6b450f495616753f0e8b1
code
2085
@enum ConnectionState CONNECTING=0 CONNECTED=1 DISCONNECTED=2 """ Surreal(url::Union{Nothing, String}, token::Union{Nothing, String}, client_state::ConnectionState, ws::Union{Nothing, websocket} A struct represents a Surreal server. # Constructors ```julia Surreal() Surreal(url::String) ``` # Keyword arguments - url: The URL of the Surreal server. # Examples ```jldoctest db = Surreal("ws://127.0.0.1:8000/rpc") db = Surreal("http://cloud.surrealdb.com/rpc") ``` """ mutable struct Surreal url::String token::Union{Nothing, String} client_state::ConnectionState ws_ch ::Union{Nothing, Channel{WebSocket}} npool::Int end """ Surreal(url::String; npool=1)::Surreal A struct represents a Surreal server. # Constructors ```julia Surreal(url::String) ``` # Keyword arguments - url: The URL of the Surreal server. - npool: The number of connection pool. Default is 1. # Examples ```jldoctest db = Surreal("ws://localhost:8000/rpc", npool=20) db = Surreal("http://cloud.surrealdb.com/rpc") ``` """ function Surreal(url::String; npool=1)::Surreal return Surreal( url, nothing, CONNECTING, nothing, npool ) end """ Surreal(f::Function, url::String; npool=1) Apply the function `f` to the result of `Surreal(url, npool)` and close the db descriptor upon completion. # Examples ```jldoctest julia> Surreal("ws://localhost:8000/rpc") do db connect(db) signin(db,user="root", pass="root") use(db, namespace="test", database="test") create(db, thing="person", data = Dict("user"=> "me","pass"=> "safe","marketing"=> true, "tags"=> ["python", "documentation"])) end ``` """ function Surreal(f::Function, url::String; npool=1) db = Surreal(url, npool=npool) try f(db) finally close(db) end end """ correct_url(url::String)::String Correct the URL to the correct format. """ function correct_url(url::String)::String if occursin("https", url) url = replace(url, "https://" => "wss://") elseif occursin("http", url) url = replace(url, "http://" => "ws://") end if !occursin("/rpc", url) url *= "/rpc" end url end
SurrealdbWS
https://github.com/YuriMiyamori/SurrealdbWS.jl.git
[ "MIT" ]
0.2.3
de077e80f48cffe05bf6b450f495616753f0e8b1
code
446
@testset "notebook" begin # Surreal db = Surreal(URL) @test db.client_state == SurrealdbWS.ConnectionState(0) #connect connect(db) @test db.client_state == SurrealdbWS.ConnectionState(1) # signin res = signin(db, user="root", pass="root") @test res===nothing @show("sign in ", res) #info # @test info(db)===nothing #ping # @test ping(db)===nothing #close close(db) @test db.client_state == SurrealdbWS.ConnectionState(2) end
SurrealdbWS
https://github.com/YuriMiyamori/SurrealdbWS.jl.git
[ "MIT" ]
0.2.3
de077e80f48cffe05bf6b450f495616753f0e8b1
code
173
include("../src/SurrealdbWS.jl") using .SurrealdbWS using Test const URL = "ws://localhost:8001" # include("notebook.jl") include("script.jl") # import Pkg; Pkg.add("HTTP")
SurrealdbWS
https://github.com/YuriMiyamori/SurrealdbWS.jl.git
[ "MIT" ]
0.2.3
de077e80f48cffe05bf6b450f495616753f0e8b1
code
4547
import Base.Threads: @spawn import RDatasets: dataset import Random: rand,seed! @testset "open close manually" begin db = Surreal(URL) @test db.client_state == SurrealdbWS.ConnectionState(0) #conncet connect(db) @test db.client_state == SurrealdbWS.ConnectionState(1) # close close(db) @test db.client_state == SurrealdbWS.ConnectionState(2) end Surreal(URL, npool=5) do db @testset "connect" begin connect(db, timeout=30) end @testset "sign in" begin res = signin(db, user="root", pass="root") @test res === nothing end @testset "use" begin res = use(db, namespace="test", database="test") @test res === nothing end end #DEFINE TABLE user for authenticate Surreal(URL) do db connect(db, timeout=0.1) res = signin(db, user="root", pass="root") res = use(db, namespace="test", database="test") # config for signup... user_set = query(db, sql= """ --sql DEFINE TABLE user SCHEMAFULL PERMISSIONS FOR select, update WHERE id = \$auth.id, FOR create, delete NONE; DEFINE FIELD user ON user TYPE string; DEFINE FIELD pass ON user TYPE string; DEFINE INDEX idx_user ON user COLUMNS user UNIQUE; DEFINE SCOPE allusers SESSION 10m SIGNUP ( CREATE user SET user = \$user, pass = crypto::argon2::generate(\$pass)) SIGNIN ( SELECT * FROM user WHERE user = \$user AND crypto::argon2::compare(pass, \$pass) ) ; """ ) end @testset "sign up" begin global token = Surreal(URL) do db connect(db, timeout=30) res = signup(db, vars=Dict("ns" =>"test", "db"=>"test", "sc" => "allusers", "user"=>"test_user" * string(rand(UInt16)), "pass"=>"test_user_pass")) @test res === nothing db.token end end @testset "authenticate" begin Surreal(URL) do db connect(db, timeout=30) res = authenticate(db, token=token) @test res === nothing end end seed!(42) #sync create df_boston = dataset("MASS", "Boston") Surreal(URL, npool=1) do db connect(db, timeout=30) signin(db, user="root", pass="root") use(db, namespace="test", database="test") @testset "delete" begin res = delete(db, thing="price") @test res !== nothing end @testset "set" begin res = set(db, params=("lang","Julia")) @test res === nothing end @testset "unset" begin res = unset(db, name="lang") @test res === nothing end @testset "sync create" begin for (i, d) in enumerate(eachrow(df_boston[1:2,:])) data = Dict((names(d) .=> values(d))) thing = "price:$(i)" res = create(db, thing=thing, data=data) @test res !== nothing end end @testset "insert" begin res = insert(db, thing="price", data=Dict("price2"=>100.0)) println(res) @test res !== nothing end @testset "update" begin res = update(db, thing="price", data=Dict("price"=>1000.0)) @test res !== nothing end # @testset "patch" begin # res = patch(db, thing="price", # data=Dict( # "city"=> "Boston", # "tags"=> ["Harrison, D. and Rubinfeld, D.L. (1978)", "house"] # ) # ) # @test res !== nothing # end @testset "merge" begin res = merge(db, thing="price", data=Dict("in sale"=>true)) @test res !== nothing end @testset "select" begin res = select(db, thing="price:1") println(res) @test res !== nothing end @testset "info" begin res = info(db) @test res === nothing end @testset "ping" begin res = ping(db) @test res === nothing end @testset "invalidate" begin res = invalidate(db) @test res === nothing end end # async create seed!(43) Surreal(URL, npool=5) do db connect(db, timeout=30) signin(db, user="root", pass="root") use(db, namespace="test", database="test") @testset "async create" begin res = [] @sync begin for (i, d) in enumerate(eachrow(df_boston)) data = Dict((names(d) .=> values(d))) thing = "price:$(i)_$(string(rand(UInt16)))" push!(res, @spawn create(db, thing=thing, data=data)) end end res = fetch.(res) for val in res @test res !== nothing end end end @testset "errors" begin db = Surreal("ws://localhost:8099") @test_throws SurrealdbWS.TimeoutError connect(db, timeout=1) db = Surreal("https://localhost:8099") @test_throws SurrealdbWS.TimeoutError connect(db, timeout=1) db = Surreal("http://localhost:8099") @test_throws SurrealdbWS.TimeoutError connect(db, timeout=1) @test_throws TaskFailedException info(db) end
SurrealdbWS
https://github.com/YuriMiyamori/SurrealdbWS.jl.git
[ "MIT" ]
0.2.3
de077e80f48cffe05bf6b450f495616753f0e8b1
docs
1833
# SurrealdbWS [![Build Status](https://travis-ci.com/YuriMiyamori/SurrealdbWS.jl.svg?branch=main)](https://travis-ci.com/YuriMiyamori/SurrealdbWS.jl) [![Coverage](https://codecov.io/gh/YuriMiyamori/SurrealdbWS.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/YuriMiyamori/SurrealdbWS.jl) The [SurrealDB](https://surrealdb.com) driver for Julia via WebSocket(unofficial) # Getting Started First [install SurrealDB](https://surrealdb.com/install) if you haven't already. ## Installation ```julia using Pkg Pkg.add("SurrealdbWS") ``` ## Usage ### Do-Block Syntax ```julia using SurrealdbWS Surreal("ws://localhost:8000/rpc") do db connect(db) signin(db, user="root", pass="root") use(db, namespace="test", database="test") create(db, thing="person", data = Dict("user"=> "Myra Eggleston", "email"=> "eggleston@domain.com", "marketing"=> true, "tags"=> ["Julialang", "documentation", "CFD"] ) ) create(db, thing="person", data = Dict("user"=> "Domenico Risi", "email"=> "domenico.risi@domain.com", "marketing"=> false, "tags"=> ["julialang", "bioinformatics"], ) ) change(db, thing="person",data = Dict("computer science"=> true,)) selcet(db, thing="person") end ``` ### Close manulally for e.g. notebooks ```julia using SurrealdbWS db = Surreal("ws://localhost:8000/rpc") connect(db) signin(db,user="root", pass="root") use(db, namespace="test", database="test") create(db, thing="person", data = Dict("user"=> "me","pass"=> "safe","marketing"=> true, "tags"=> ["python", "documentation"])) delete(db, thing="person") close(db) ```
SurrealdbWS
https://github.com/YuriMiyamori/SurrealdbWS.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
code
279
using Documenter, RoundingEmulator makedocs( sitename = "RoundingEmulator.jl", pages = [ "Home" => "index.md", "Functions" => "functions.md", "References" => "references.md" ] ) deploydocs(repo = "github.com/matsueushi/RoundingEmulator.jl")
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
code
161
module RoundingEmulator export add_up, add_down, sub_up, sub_down, mul_up, mul_down, div_up, div_down, sqrt_up, sqrt_down include("rounding.jl") end # module
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
code
9232
using Base: add12, mul12, significand_bits using Base.Math: ldexp const SysFloat = Union{Float32, Float64} # N_min^s : The smallest positive subnormal number (=nextfloat(zero(T))) # N_max^s : The largest positive subnormal number (=prevfloat(floatmin(T))) # N_min^n : The smallest positive normal number (=floatmin(T)) # N_max^n : The largest positive normal number (=floatmax(T)) # constants for T in (Float32, Float64) # log_2(N_min^s) # N_min^s = 2 * 2^{-precision(T)} * N_min^n @eval exponent_smallest_subnormal(::Type{$T}) = $(Int(log2(nextfloat(zero(T))))) @eval exponent_product_errorfree_threshold(::Type{$T}) = $(exponent_smallest_subnormal(T) + 2 * significand_bits(T)) @eval product_errorfree_threshold(::Type{$T}) = $(ldexp(one(T), exponent_product_errorfree_threshold(T))) @eval exponent_product_underflow_mult(::Type{$T}) = $(ceil(Int, -exponent_smallest_subnormal(T)//2)) @eval product_underflow_mult(::Type{$T}) = $(ldexp(one(T), exponent_product_underflow_mult(T))) @eval exponent_quotient_errorfree_threshold(::Type{$T}) = $(-exponent_smallest_subnormal(T) - 3 * significand_bits(T)) @eval quotient_errorfree_threshold(::Type{$T}) = $(ldexp(one(T), exponent_quotient_errorfree_threshold(T))) @eval exponent_quotient_underflow_mult(::Type{$T}) = $(2 * significand_bits(T) + 1) @eval quotient_underflow_mult(::Type{$T}) = $(ldexp(one(T), exponent_quotient_underflow_mult(T))) @eval inverse_smallest_normal(::Type{$T}) = $(ldexp(one(T), precision(T))) end """ add_up(a, b) Computes `a + b` with the rounding mode [`Base.Rounding.RoundUp`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundUp). ```jldoctest julia> add_up(0.1, 0.2) 0.30000000000000004 julia> add_up(10.0^308, 10.0^308) Inf julia> add_up(-10.0^308, -10.0^308) -1.7976931348623157e308 julia> add_up(-0.1, 0.1) 0.0 julia> add_up(0.0, 0.0) 0.0 julia> add_up(0.0, -0.0) 0.0 julia> add_up(-0.0, -0.0) -0.0 ``` """ function add_up(a::T, b::T) where {T<:SysFloat} x, y = add12(a, b) # twosum if isinf(x) ifelse(x == typemin(x) && isfinite(a) && isfinite(b), -floatmax(x), x) else y > zero(y) ? nextfloat(x) : x end end """ add_down(a, b) Computes `a + b` with the rounding mode [`Base.Rounding.RoundDown`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundDown). ```jldoctest julia> add_down(0.1, 0.2) 0.3 julia> add_down(10.0^308, 10.0^308) 1.7976931348623157e308 julia> add_down(-10.0^308, -10.0^308) -Inf julia> add_down(-0.1, 0.1) -0.0 julia> add_down(0.0, 0.0) 0.0 julia> add_down(0.0, -0.0) -0.0 julia> add_down(-0.0, -0.0) -0.0 ``` """ function add_down(a::T, b::T) where {T<:SysFloat} x, y = add12(a, b) # twosum if isinf(x) ifelse(x == typemax(x) && isfinite(a) && isfinite(b), floatmax(x), x) elseif y < zero(y) prevfloat(x) else ifelse(iszero(x) && (signbit(a) || signbit(b)), -zero(x), x) end end """ sub_up(a, b) Computes `a - b` with the rounding mode [`Base.Rounding.RoundUp`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundUp). ```jldoctest julia> sub_up(-0.1, 0.2) -0.3 julia> sub_up(-10.0^308, 10.0^308) -1.7976931348623157e308 julia> sub_up(10.0^308, -10.0^308) Inf julia> sub_up(0.1, 0.1) 0.0 julia> sub_up(0.0, 0.0) 0.0 julia> sub_up(0.0, -0.0) 0.0 julia> sub_up(-0.0, 0.0) -0.0 julia> sub_up(-0.0, -0.0) 0.0 ``` """ sub_up(a::T, b::T) where {T<:SysFloat} = add_up(a, -b) """ sub_down(a, b) Computes `a - b` with the rounding mode [`Base.Rounding.RoundDown`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundDown). ```jldoctest julia> sub_down(-0.1, 0.2) -0.30000000000000004 julia> sub_down(-10.0^308, 10.0^308) -Inf julia> sub_down(10.0^308, -10.0^308) 1.7976931348623157e308 julia> sub_down(0.1, 0.1) -0.0 julia> sub_down(0.0, 0.0) -0.0 julia> sub_down(0.0, -0.0) 0.0 julia> sub_down(-0.0, 0.0) -0.0 julia> sub_down(-0.0, -0.0) -0.0 ``` """ sub_down(a::T, b::T) where {T<:SysFloat} = add_down(a, -b) """ mul_up(a, b) Computes `a * b` with the rounding mode [`Base.Rounding.RoundUp`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundUp). ```jldoctest julia> mul_up(0.1, 0.2) 0.020000000000000004 julia> mul_up(10.0^308, 10.0^308) Inf julia> mul_up(10.0^308, -10.0^308) -1.7976931348623157e308 julia> mul_up(5.0e-324, 5.0e-324) 5.0e-324 julia> mul_up(-0.1, 0.1) -0.01 julia> mul_up(0.0, 0.0) 0.0 julia> mul_up(0.0, -0.0) -0.0 julia> mul_up(-0.0, -0.0) 0.0 ``` """ function mul_up(a::T, b::T) where {T<:SysFloat} x, y = mul12(a, b) if isinf(x) ifelse(x == typemin(x) && isfinite(a) && isfinite(b), -floatmax(x), x) elseif abs(x) > product_errorfree_threshold(T) # not zero(x): (a, b) = (-2.1634867667116802e-200, 1.6930929484402486e-119) fails y > zero(y) ? nextfloat(x) : x else mult = product_underflow_mult(T) s, s2 = mul12(a * mult, b * mult) t = (x * mult) * mult t < s || (t == s && s2 > zero(s2)) ? nextfloat(x) : x end end """ mul_down(a, b) Computes `a * b` with the rounding mode [`Base.Rounding.RoundDown`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundDown). ```jldoctest julia> mul_down(0.1, 0.2) 0.02 julia> mul_down(10.0^308, 10.0^308) 1.7976931348623157e308 julia> mul_down(10.0^308, -10.0^308) -Inf julia> mul_down(5.0e-324, 5.0e-324) 0.0 julia> mul_down(-0.1, 0.1) -0.010000000000000002 julia> mul_down(0.0, 0.0) 0.0 julia> mul_down(0.0, -0.0) -0.0 julia> mul_down(-0.0, -0.0) 0.0 ``` """ function mul_down(a::T, b::T) where {T<:SysFloat} x, y = mul12(a, b) if isinf(x) ifelse(x == typemax(x) && isfinite(a) && isfinite(b), floatmax(x), x) elseif abs(x) > product_errorfree_threshold(T) # not zero(x): (a, b) = (6.640350825165134e-116, -1.1053488936824272e-202) fails y < zero(y) ? prevfloat(x) : x else mult = product_underflow_mult(T) s, s2 = mul12(a * mult, b * mult) t = (x * mult) * mult t > s || (t == s && s2 < zero(s2)) ? prevfloat(x) : x end end """ div_up(a, b) Computes `a / b` with the rounding mode [`Base.Rounding.RoundUp`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundUp). ```jldoctest julia> div_up(0.1, 0.3) 0.33333333333333337 julia> div_up(2.0^-100, 2.0^1000) 5.0e-324 julia> div_up(-0.0, 1.0) -0.0 ``` """ function div_up(a::T, b::T) where {T<:SysFloat} if iszero(a) || iszero(b) || isinf(a) || isinf(b) || isnan(a) || isnan(b) a / b else # if b < 0, flip sign of a and b a = flipsign(a, b) b = abs(b) if abs(a) < product_errorfree_threshold(T) && abs(b) < quotient_errorfree_threshold(T) mult = quotient_underflow_mult(T) a *= mult b *= mult end d = a / b x, y = mul12(d, b) x < a || (x == a && y < zero(y)) ? nextfloat(d) : d end end """ div_down(a, b) Computes `a / b` with the rounding mode [`Base.Rounding.RoundDown`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundDown). ```jldoctest julia> div_down(0.1, 0.3) 0.3333333333333333 julia> div_down(2.0^-100, 2.0^1000) 0.0 julia> div_down(-0.0, 1.0) -0.0 ``` """ function div_down(a::T, b::T) where {T<:SysFloat} if iszero(a) || iszero(b) || isinf(a) || isinf(b) || isnan(a) || isnan(b) a / b else # if b < 0, flip sign of a and b a = flipsign(a, b) b = abs(b) if abs(a) < product_errorfree_threshold(T) && abs(b) < quotient_errorfree_threshold(T) mult = quotient_underflow_mult(T) a *= mult b *= mult end d = a / b x, y = mul12(d, b) x > a || (x == a && y > zero(y)) ? prevfloat(d) : d end end """ sqrt_up(a) Computes `sqrt(a)` with the rounding mode [`Base.Rounding.RoundUp`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundUp). ```jldoctest julia> sqrt_up(2.0) 1.4142135623730951 julia> sqrt_up(0.0) 0.0 julia> sqrt_up(-0.0) -0.0 ``` """ function sqrt_up(a::SysFloat) d = sqrt(a) if isinf(d) typemax(d) elseif a < product_errorfree_threshold(typeof(a)) invn = inverse_smallest_normal(typeof(a)) a2 = a * invn^2 d2 = d * invn x, y = mul12(d2, d2) x < a2 || (x == a2 && y < zero(y)) ? nextfloat(d) : d else x, y = mul12(d, d) x < a || (x == a && y < zero(y)) ? nextfloat(d) : d end end """ sqrt_down(a) Computes `sqrt(a)` with the rounding mode [`Base.Rounding.RoundDown`](https://docs.julialang.org/en/v1/base/math/#Base.Rounding.RoundDown). ```jldoctest julia> sqrt_down(2.0) 1.414213562373095 julia> sqrt_down(0.0) 0.0 julia> sqrt_down(-0.0) -0.0 ``` """ function sqrt_down(a::SysFloat) d = sqrt(a) if isinf(d) typemax(d) elseif a < product_errorfree_threshold(typeof(a)) invn = inverse_smallest_normal(typeof(a)) a2 = a * invn^2 d2 = d * invn x, y = mul12(d2, d2) x > a2 || (x == a2 && y > zero(y)) ? prevfloat(d) : d else x, y = mul12(d, d) x > a || (x == a && y > zero(y)) ? prevfloat(d) : d end end
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
code
94
using RoundingEmulator using Test include("special_values.jl") include("setrounding_raw.jl")
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
code
3215
using Base.Rounding: setrounding_raw, to_fenv using Printf function compare_calc_raw(op, updown, calc, raw, args...) if isequal(calc, raw) true else @info("Erorr", op, updown) for (i, v) in enumerate(args...) @info(@sprintf("a%d = %0.18e, bit rep : %s", i, v, bitstring(v))) end @info(@sprintf("calc = %0.18e, bit rep : %s", calc, bitstring(calc))) @info(@sprintf("raw = %0.18e, bit rep : %s", raw, bitstring(raw))) false end end function rounding_check(op, base_op, arrays...) elt = eltype(first(arrays)) setrounding_raw(elt, to_fenv(RoundNearest)) @eval begin up_calc = broadcast($(Symbol(op, "_up")), $(arrays...)) down_calc = broadcast($(Symbol(op, "_down")), $(arrays...)) setrounding_raw($elt, to_fenv(RoundUp)) up_raw = broadcast($base_op, $(arrays...)) setrounding_raw($elt, to_fenv(RoundDown)) down_raw = broadcast($base_op, $(arrays...)) end # Compare for (calc, raw, args) in zip(up_calc, up_raw, zip(arrays...)) @test compare_calc_raw(op, "up", calc, raw, args) end for (calc, raw, args) in zip(down_calc, down_raw, zip(arrays...)) @test compare_calc_raw(op, "down", calc, raw, args) end setrounding_raw(elt, to_fenv(RoundNearest)) end rounding_check_unary(a::AbstractVector) = rounding_check(:sqrt, :sqrt, a) rounding_check_unary(a) = rounding_check_unary([a]) function rounding_check_binary(a::T, b::T) where {T<:AbstractVector} for (op, base_op) in zip((:add, :sub, :mul, :div), (:+, :-, :*, :/)) rounding_check(op, base_op, a, b) end end rounding_check_binary(a, b) = rounding_check_binary([a], [b]) special_value_list(T::Type) = [ zero(T), -zero(T), # 0.0, -0.0 one(T), -one(T), # 1.0, -1.0 nextfloat(zero(T)), prevfloat(zero(T)), # N_min^s, -N_min^s prevfloat(floatmin(T)), nextfloat(-floatmin(T)), # N_max^s, -N_max^s floatmin(T), -floatmin(T), # N_min^n, -N_min^n floatmax(T), -floatmax(T), # N_max^n, -N_max^n eps(T), -eps(T), # machine epsilon typemax(T), typemin(T), # Inf, -Inf T(NaN) # NaN ] for T in (Float64, Float32) @testset "$(T), Special Cases" begin special_values = special_value_list(T) len = Base.length(special_values) a = repeat(special_values, len) b = sort(a) rounding_check_unary(filter(x->x ≥ zero(x), special_values)) # sqrt rounding_check_binary(a, b) end end for n in 3:6 N = 10^n for T in (Float64, Float32) @testset "$(T), Random Sampling, 10^$(n)" begin rand_a = reinterpret.(T, rand(Base.uinttype(T), N)) rand_b = reinterpret.(T, rand(Base.uinttype(T), N)) rounding_check_unary(abs.(rand_a)) rounding_check_unary(abs.(rand_b)) rounding_check_binary(rand_a, rand_b) rounding_check_binary(rand_b, rand_a) end end end
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
code
3127
for T in (Float32, Float64) @testset "$(T): Signed zero" begin @test isequal(add_up(zero(T), zero(T)), zero(T)) @test isequal(add_up(zero(T), -zero(T)), zero(T)) @test isequal(add_up(-zero(T), zero(T)), zero(T)) @test isequal(add_up(-zero(T), -zero(T)), -zero(T)) @test isequal(add_down(zero(T), zero(T)), zero(T)) @test isequal(add_down(zero(T), -zero(T)), -zero(T)) @test isequal(add_down(-zero(T), zero(T)), -zero(T)) @test isequal(add_down(-zero(T), -zero(T)), -zero(T)) @test isequal(sub_up(zero(T), zero(T)), zero(T)) @test isequal(sub_up(zero(T), -zero(T)), zero(T)) @test isequal(sub_up(-zero(T), zero(T)), -zero(T)) @test isequal(sub_up(-zero(T), -zero(T)), zero(T)) @test isequal(sub_down(zero(T), zero(T)), -zero(T)) @test isequal(sub_down(zero(T), -zero(T)), zero(T)) @test isequal(sub_down(-zero(T), zero(T)), -zero(T)) @test isequal(sub_down(-zero(T), -zero(T)), -zero(T)) @test isequal(mul_up(zero(T), zero(T)), zero(T)) @test isequal(mul_up(zero(T), -zero(T)), -zero(T)) @test isequal(mul_up(-zero(T), zero(T)), -zero(T)) @test isequal(mul_up(-zero(T), -zero(T)), zero(T)) @test isequal(mul_down(zero(T), zero(T)), zero(T)) @test isequal(mul_down(zero(T), -zero(T)), -zero(T)) @test isequal(mul_down(-zero(T), zero(T)), -zero(T)) @test isequal(mul_down(-zero(T), -zero(T)), zero(T)) @test isequal(div_up(zero(T), zero(T)), T(NaN)) @test isequal(div_up(zero(T), -zero(T)), T(NaN)) @test isequal(div_up(-zero(T), zero(T)), T(NaN)) @test isequal(div_up(-zero(T), -zero(T)), T(NaN)) @test isequal(div_down(zero(T), zero(T)), T(NaN)) @test isequal(div_down(zero(T), -zero(T)), T(NaN)) @test isequal(div_down(-zero(T), zero(T)), T(NaN)) @test isequal(div_down(-zero(T), -zero(T)), T(NaN)) @test isequal(sqrt_up(zero(T)), zero(T)) @test isequal(sqrt_down(-zero(T)), -zero(T)) end end @testset "Corner cases" begin # TODO # Add tests for Float32 @testset "twosum intermediate overflow" begin # http://verifiedby.me/adiary/09 a = 3.5630624444874539e+307 b = -floatmax(Float64) x = a + b @test isfinite(x) tmp = x - a @test isinf(tmp) @test isequal(add_up(a, b), -1.4413868904135702e308) @test isequal(add_down(a, b), -1.4413868904135704e308) end @testset "twoprod intermediate overflow" begin # http://verifiedby.me/adiary/09 function split(a) tmp = a * (2.0^27 + 1.0) x = tmp - (tmp - a) y = a - x x, y end a = 6.929001713869936e+236 b = 2.5944475251952003e+71 x = a * b @test isfinite(x) a1, _ = split(a) b1, _ = split(a) tmp = a1 * b1 @test isinf(tmp) @test isequal(mul_up(a, b), floatmax(Float64)) @test isequal(mul_down(a, b), prevfloat(floatmax(Float64))) end end
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
docs
744
# RoundingEmulator.jl Emulate directed rounding using only the default rounding mode. [![Build Status](https://travis-ci.com/matsueushi/RoundingEmulator.jl.svg?branch=master)](https://travis-ci.com/matsueushi/RoundingEmulator.jl) [![Dev Docs](https://img.shields.io/badge/docs-dev-blue.svg)](https://matsueushi.github.io/RoundingEmulator.jl/dev/) This package is meant to produce the exact same results of `Rounding.setrounding` ([deprecated](https://github.com/JuliaLang/julia/pull/27166)) without switching rounding modes. ## Requirements - Julia 1.3 or higher - `Base.Rounding.get_zero_subnormals() == true`. (See [Base.Rounding.get_zero_subnormals](https://docs.julialang.org/en/v1/base/numbers/#Base.Rounding.get_zero_subnormals))
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
docs
109
# Functions ```@docs add_up add_down sub_up sub_down mul_up mul_down div_up div_down sqrt_up sqrt_down ```
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
docs
3062
# RoundingEmulator.jl Emulate directed rounding using only the default rounding mode. This package is meant to produce the exact same results of `Rounding.setrounding` ([deprecated](https://github.com/JuliaLang/julia/pull/27166)) without switching rounding modes. ## Requirements - Julia 1.3 or higher - `Base.Rounding.get_zero_subnormals() == true`. (See [Base.Rounding.get_zero_subnormals](https://docs.julialang.org/en/v1/base/numbers/#Base.Rounding.get_zero_subnormals)) ## Use This package provides * [`add_up`](@ref), [`add_down`](@ref) - Addition * [`sub_up`](@ref), [`sub_down`](@ref) - Subtraction * [`mul_up`](@ref), [`mul_down`](@ref) - Multiplication * [`div_up`](@ref), [`div_down`](@ref) - Division * [`sqrt_up`](@ref), [`sqrt_down`](@ref) - Square root `up`: Round up, `down`: Round down ```julia julia> using RoundingEmulator julia> add_up(0.1, 0.2) 0.30000000000000004 julia> bitstring(add_up(0.1, 0.2)) "0011111111010011001100110011001100110011001100110011001100110100" julia> add_down(0.1, 0.2) 0.3 julia> bitstring(add_down(0.1, 0.2)) "0011111111010011001100110011001100110011001100110011001100110011" julia> sub_up(-0.1, 0.2) -0.3 julia> bitstring(sub_up(-0.1, 0.2)) "1011111111010011001100110011001100110011001100110011001100110011" julia> sub_down(-0.1, 0.2) -0.30000000000000004 julia> bitstring(sub_down(-0.1, 0.2)) "1011111111010011001100110011001100110011001100110011001100110100" julia> mul_up(0.1, 0.2) 0.020000000000000004 julia> bitstring(mul_up(0.1, 0.2)) "0011111110010100011110101110000101000111101011100001010001111100" julia> mul_down(0.1, 0.2) 0.02 julia> bitstring(mul_down(0.1, 0.2)) "0011111110010100011110101110000101000111101011100001010001111011" julia> div_up(1.0, 3.0) 0.33333333333333337 julia> bitstring(div_up(1.0, 3.0)) "0011111111010101010101010101010101010101010101010101010101010110" julia> div_down(1.0, 3.0) 0.3333333333333333 julia> bitstring(div_down(1.0, 3.0)) "0011111111010101010101010101010101010101010101010101010101010101" julia> sqrt_up(2.0) 1.4142135623730951 julia> bitstring(sqrt_up(2.0)) "0011111111110110101000001001111001100110011111110011101111001101" julia> sqrt_down(2.0) 1.414213562373095 julia> bitstring(sqrt_down(2.0)) "0011111111110110101000001001111001100110011111110011101111001100" ``` ## Corner cases ```julia julia> u = nextfloat(zero(Float64)) 5.0e-324 julia> v = floatmax(Float64) 1.7976931348623157e308 julia> v + v Inf julia> add_up(v, v) Inf julia> add_down(v, v) 1.7976931348623157e308 julia> u * u 0.0 julia> mul_up(u, u) 5.0e-324 julia> mul_down(u, u) 0.0 julia> 1.0 / u Inf julia> div_up(1.0, u) Inf julia> div_down(1.0, u) 1.7976931348623157e308 ``` ## Signed zero `RoundingEmulator` follows the special rules for signed zero specified in the chapter 6.3 of IEEE 754-2019. ```julia julia> add_up(-1.0, 1.0) 0.0 julia> add_down(-1.0, 1.0) -0.0 julia> add_up(-0.0, 0.0) 0.0 julia> add_down(-0.0, 0.0) -0.0 julia> add_up(0.0, 0.0) 0.0 julia> add_down(0.0, 0.0) 0.0 julia> sqrt_up(-0.0) -0.0 julia> sqrt_down(-0.0) -0.0 ```
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "MIT" ]
0.2.1
40b9edad2e5287e05bd413a38f61a8ff55b9557b
docs
948
# References * IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019 (Revision of IEEE 754-2008), pp.1-84, [https://doi.org/10.1109/IEEESTD.2019.8766229](https://doi.org/10.1109/IEEESTD.2019.8766229), 22 July 2019 * Masahide Kashiwagi, *Saikinten marume nomi ni yoru houkou tsuki marume no emulate* [Emulation of Rounded Arithmeticin Rounding to Nearest], [http://verifiedby.me/kv/rounding/emu.pdf](http://verifiedby.me/kv/rounding/emu.pdf), [http://verifiedby.me/adiary/pub/kashi/image/201406/nas2014-slide](http://verifiedby.me/adiary/pub/kashi/image/201406/nas2014-slide).pdf, 2014 * Masahide Kashiwagi, Error Free Transformation (EFT) is NOT error-free, [http://verifiedby.me/adiary/09](http://verifiedby.me/adiary/09), 2014 * [kv - a C++ Library for Verified Numerical Computation](https://github.com/mskashi/kv) * [JeffreySarnoff/FastRounding.jl](https://github.com/JeffreySarnoff/FastRounding.jl)
RoundingEmulator
https://github.com/matsueushi/RoundingEmulator.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
3239
""" ## Visualization tool for the clawpack output VisClaw.jl is a Julia package for plotting simulation results of the clawpack.\n https://github.com/hydrocoast/VisClaw.jl ### Examples - pathof(VisClaw)/Examples_using_Plots.ipynb - pathof(VisClaw)/Examples_using_GMT.ipynb ### Author Takuya Miyashita (miyashita@hydrocoast.jp)\n Doctoral student, Kyoto University, 2018\n """ module VisClaw using Statistics: mean using DelimitedFiles: readdlm using Interpolations: Interpolations using Printf using Dates using NetCDF: NetCDF using GeometricalPredicates: GeometricalPredicates using Plots: Plots ## define CLAW path from shell include("clawpath.jl") export CLAW ## define structs and basic functions const KWARG = Dict{Symbol,Any} const emptyF = Array{Float64}(undef, 0, 0) const timedict = Dict(:second => 1.0, :minute => 60.0, :hour => 3600.0, :day => 24*3600.0) const varnameset(D,k,v) = haskey(D,k) ? k : v include("structclaw.jl") include("amrutils.jl") include("replaceunit.jl") include("converttodatetime.jl") include("getvarname_nctopo.jl") ## load include("loaddata.jl") include("loadtrack.jl") include("loadtopo.jl") include("loadfgmaxdata.jl") include("loadfgmax.jl") include("loadfort.jl") include("loadgauge.jl") ## print include("printtopo.jl") ## convert data include("gaugemax.jl") include("gaugeinterp.jl") include("coarsegridmask.jl") ## setup include("plotsargs.jl") include("plotstools.jl") ## plot (using Plots) include("plots2d.jl") include("plotscheck.jl") include("plotstopo.jl") include("plotsgaugewaveform.jl") include("plotsgaugevelocity.jl") include("plotsgaugelocation.jl") include("plotsfgmax.jl") include("plotstrack.jl") ## plot (using GMT) using GMT:GMT include("gmttools.jl") include("gmttopo.jl") include("gmtgauge.jl") include("gmtsurface.jl") include("gmtarrows.jl") include("gmttrack.jl") ## general functions export geodata, amrdata, surgedata, gaugedata, fgmaxdata, regiondata export topodata, dtopodata export loadfgmax export loadtopo, loaddeform, loaddtopo export loadgauge export loadtrack export loadsurface, loadcurrent, loadstorm export printtopoESRI, printtopo, printdtopo export coarsegridmask! export axesratio export replaceunit!, converttodatetime! export gaugemax, gaugeinterp ## functions with Plots.jl export plotsamr export plotscheck export gridnumber!, tilebound! export plotscoastline, plotscoastline! export plotsfgmax, plotsfgmax! export plotstopo, plotstopo! export plotsdtopo, plotsdtopo! export plotstoporange, plotstoporange! export plotsgaugelocation, plotsgaugelocation! export plotsgaugewaveform, plotsgaugewaveform! export plotsgaugevelocity, plotsgaugevelocity! export plotstrack, plotstrack! export plotsgif, plotssavefig ## functions with GMT.jl export getR, getR_tile, getJ, geogrd export landmask_asc, landmask_grd export tilegrd_xyz, tilegrd, tilegrd_mask export arrowgrd, arrowscalegrd export gmttopo export gmtgaugewaveform, gmtgaugewaveform! export gmtgaugevelocity, gmtgaugevelocity! export gmtgaugelocation, gmtgaugelocation! export gmtgaugeannotation! export gmttoporange! export gmtcoastline, gmtcoastline! export gmttrack, gmttrack! ## uniform-grid interpolation using PyCall: PyCall include("scipyinterp.jl") export interpsurface end
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
3830
###################################### """ x1, x2, y1, y2 = getlims(tiles::VisClaw.AMRGrid) get min/max range of a tile """ function getlims(tile::VisClaw.AMRGrid) return tile.xlow, tile.xlow+(tile.mx-1)*tile.dx, tile.ylow, tile.ylow+(tile.my-1)*tile.dy end ###################################### """ x1, x2, y1, y2 = getlims(tiles::Vector{VisClaw.AMRGrid}) get min/max range of tiles """ function getlims(tiles::Vector{VisClaw.AMRGrid}) x1 = minimum(getfield.(tiles, :xlow)) y1 = minimum(getfield.(tiles, :ylow)) x2 = maximum(round.(getfield.(tiles, :xlow) .+ getfield.(tiles, :mx).*getfield.(tiles, :dx), digits=4)) y2 = maximum(round.(getfield.(tiles, :ylow) .+ getfield.(tiles, :my).*getfield.(tiles, :dy), digits=4)) return x1, x2, y1, y2 end ###################################### """ xmesh, ymesh = meshtile(tile::VisClaw.AMRGrid) generate meshgrids of tile """ function meshtile(tile::VisClaw.AMRGrid) ## set the boundary x = [tile.xlow, tile.xlow+tile.dx*tile.mx] y = [tile.ylow, tile.ylow+tile.dy*tile.my] ## grid info xline = collect(Float64, x[1]+0.5tile.dx:tile.dx:x[2]-0.5tile.dx+1e-4) yline = collect(Float64, y[1]+0.5tile.dy:tile.dy:y[2]-0.5tile.dy+1e-4) xmesh = repeat(xline', outer=(tile.my,1)) ymesh = repeat(yline, outer=(1,tile.mx)) ## return values return xmesh, ymesh end ###################################### """ var = keytile(tile::VisClaw.AMRGrid) Get the main property name from VisClaw.AMRGrid """ function keytile(tile::VisClaw.AMRGrid) # check !isa(tile, VisClaw.AMRGrid) && error("Invalid input argument. It must be a type of VisClaw.AMRGrid") # assign varset = [:eta, :vel, :slp] ind = map(T -> isa(tile, T), [VisClaw.SurfaceHeight, VisClaw.Velocity, VisClaw.Storm]) # return value return varset[ind][1] end ########################################################## ########################################################## """ xvec, yvec, val = tilezmargin(tile::VisClaw.AMRGrid, var::Symbol; digits=4) Get Z-values of cells including their margins """ function tilezmargin(tile::VisClaw.AMRGrid, var::Symbol; digits=4) ## set the boundary x = [tile.xlow, round(tile.xlow+tile.dx*tile.mx, digits=digits)] y = [tile.ylow, round(tile.ylow+tile.dy*tile.my, digits=digits)] ## grid info xvec = collect(LinRange(x[1]-0.5tile.dx, x[2]+0.5tile.dx, tile.mx+2)); yvec = collect(LinRange(y[1]-0.5tile.dy, y[2]+0.5tile.dy, tile.my+2)); xvec = round.(xvec, digits=digits) yvec = round.(yvec, digits=digits) ## adjust data val = zeros(tile.my+2,tile.mx+2) val[2:end-1,2:end-1] = getfield(tile, var) val[2:end-1,1] = val[2:end-1,2] val[2:end-1,end] = val[2:end-1,end-1] val[1,:] = val[2,:] val[end,:] = val[end-1,:] # return val return xvec, yvec, val end ########################################################## ########################################################## """ xvec, yvec, val = tilez(tile::VisClaw.AMRGrid, var::Symbol; digits=4) Get Z-values of cells at the grid lines """ function tilez(tile::VisClaw.AMRGrid, var::Symbol; digits=4) xvec, yvec, val = VisClaw.tilezmargin(tile, var, digits=digits) itp = Interpolations.interpolate((yvec, xvec), val, Interpolations.Gridded(Interpolations.Linear())) ## set the boundary x = [tile.xlow, round(tile.xlow+tile.dx*tile.mx, digits=digits)] y = [tile.ylow, round(tile.ylow+tile.dy*tile.my, digits=digits)] xvec = collect(LinRange(x[1], x[2], tile.mx+1)); yvec = collect(LinRange(y[1], y[2], tile.my+1)); xvec = round.(xvec, digits=digits) yvec = round.(yvec, digits=digits) val = itp(yvec,xvec); # return val return xvec, yvec, val end ############################################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
394
### Define your own clawpack path ### if haskey(ENV, "CLAW") const CLAW = ENV["CLAW"] else ## CLAW="/path/to/top/level/clawpack" println("ENV[\"CLAW\"] is not defined.") println("Set the env like the following in your default shell:") println("export CLAW = \"/path/to/top/level/clawpack\" ") CLAW = "" #if !isdir(CLAW); error("CLAW=$CLAW is not correct."); end end
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
2748
############################################### """ poly = tilepolygon(tile::VisClaw.AMRGrid) generate a polygon data of a tile """ function tilepolygon(tile::VisClaw.AMRGrid) x1, x2, y1, y2 = VisClaw.getlims(tile) ll = GeometricalPredicates.Point(x1, y1) lr = GeometricalPredicates.Point(x2, y1) ur = GeometricalPredicates.Point(x2, y2) ul = GeometricalPredicates.Point(x1, y2) poly = GeometricalPredicates.Polygon(ll, lr, ur, ul) return poly end ############################################### """ coarsegridmask!(tiles::Vector{VisClaw.AMRGrid}) coarsegridmask!(amrs::VisClaw.AMR) replace values at coarser grids (lower levels) into NaN """ function coarsegridmask!(tiles::Vector{VisClaw.AMRGrid}) ## return if single tile length(tiles)==1 && (return tiles) ## levels level_tiles = getfield.(tiles, :AMRlevel) maxlevel = maximum(level_tiles) for tl in tiles tl.AMRlevel == maxlevel && (continue) ## generate point data for all points in the target tile x_target, y_target = VisClaw.meshtile(tl) cellp = GeometricalPredicates.Point.(x_target, y_target) ## get the corners of the target tile xl, xr, yb, yt = VisClaw.getlims(tl) ## find tiles: one level finer ind_fine = tl.AMRlevel+1 .== level_tiles tile_fine = tiles[ind_fine] nfine = length(tile_fine) isempty(tile_fine) && (continue) ## fine tiles: inside of the target tiles ind_inside = trues(nfine) for j = 1:nfine x1, x2, y1, y2 = VisClaw.getlims(tile_fine[j]) if x2 < xl || xr < x1 || y2 < yb || yt < y1 ind_inside[j] = false end end tile_fine = tile_fine[ind_inside] nfine = length(tile_fine) isempty(tile_fine) && (continue) ## find grid where finer grids are assigned for j = 1:nfine poly = VisClaw.tilepolygon(tile_fine[j]) inside = [GeometricalPredicates.inpolygon(poly, cellp[irow, jcol]) for irow=1:tl.my, jcol=1:tl.mx] if isa(tl, VisClaw.Velocity) tl.u[inside] .= NaN tl.v[inside] .= NaN tl.vel[inside] .= NaN elseif isa(tl, VisClaw.Storm) tl.u[inside] .= NaN tl.v[inside] .= NaN tl.slp[inside] .= NaN elseif isa(tl, VisClaw.SurfaceHeight) tl.eta[inside] .= NaN end end end return tiles end ############################################### function coarsegridmask!(amrs::VisClaw.AMR) amrs.amr = map(coarsegridmask!, amrs.amr) return amrs end ###############################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
2729
################################# """ converttodatetime!(fgmax::VisClaw.FGmax, t0::Dates.DateTime) converttodatetime!(gauge::VisClaw.Gauge, unit::Dates.DateTime) converttodatetime!(amrs::VisClaw.AMR, unit::Dates.DateTime) converttodatetime!(track::VisClaw.Track, unit::Dates.DateTime) Time unit converter to Dates.DateTime """ function converttodatetime!(fgmax::VisClaw.FGmax, t0::Dates.DateTime) ## return if already converted isa(fgmax.unittime, Dates.DateTime) && (return fgmax) ## factor ratio = timedict[fgmax.unittime] ## (temporal) to avoid NaN convert error fgmax.tD[isnan.(fgmax.tD)] .= 0.0 fgmax.tarrival[isnan.(fgmax.tarrival)] .= 0.0 fgmax.tv[isnan.(fgmax.tv)] .= 0.0 fgmax.tM[isnan.(fgmax.tM)] .= 0.0 fgmax.tMflux[isnan.(fgmax.tMflux)] .= 0.0 fgmax.tDmin[isnan.(fgmax.tDmin)] .= 0.0 ## convert fgmax.unittime = :DateTime fgmax.tD = @. t0 + Dates.Second(round(ratio*fgmax.tD)) fgmax.tarrival = @. t0 + Dates.Second(round(ratio*fgmax.tarrival)) if !isempty(fgmax.tv) fgmax.tv = @. t0 + Dates.Second(round(ratio*fgmax.tv)) end if !isempty(fgmax.tM) fgmax.tM = @. t0 + Dates.Second(round(ratio*fgmax.tM)) fgmax.tMflux = @. t0 + Dates.Second(round(ratio*fgmax.tMflux)) fgmax.tDmin = @. t0 + Dates.Second(round(ratio*fgmax.tDmin)) end return fgmax end ################################# ################################# function converttodatetime!(gauge::VisClaw.Gauge, t0::Dates.DateTime) ## return if already converted isa(gauge.unittime, Dates.DateTime) && (return gauge) ## factor ratio = timedict[gauge.unittime] ## convert gauge.unittime = :DateTime gauge.time = @. t0 + Dates.Second(round(ratio*gauge.time)) # return value return gauge end ################################# ################################# function converttodatetime!(amrs::VisClaw.AMR, t0::Dates.DateTime) ## return if already converted isa(amrs.unittime, Dates.DateTime) && (return amrs) ## factor ratio = timedict[amrs.unittime] ## convert amrs.unittime = :DateTime amrs.timelap = @. t0 + Dates.Second(round(ratio*amrs.timelap)) # return value return amrs end ################################# ################################# function converttodatetime!(track::VisClaw.Track, t0::Dates.DateTime) ## return if already converted isa(track.unittime, Dates.DateTime) && (return track) ## factor ratio = timedict[track.unittime] ## convert track.unittime = :DateTime track.timelap = @. t0 + Dates.Second(round(ratio*track.timelap)) # return value return track end #################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
416
""" val_interp = gaugeinterp(gauge::VisClaw.Gauge, time_interp; varname=:eta::Symbol) interp gauge values on a non-uniform time """ function gaugeinterp(gauge::VisClaw.Gauge, time_interp; varname=:eta::Symbol) val = getfield(gauge,varname) itp = Interpolations.LinearInterpolation(gauge.time, val, extrapolation_bc=Interpolations.Flat()) val_interp = itp(time_interp) return val_interp end
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
787
""" gmax = gaugemax(gauge::VisClaw.Gauge) Maximal values and their occurrence times in a gauge """ function gaugemax(gauge::VisClaw.Gauge) max_AMRlevel = findmax(gauge.AMRlevel)[1] max_eta = NaN t_eta = NaN if !isempty(gauge.eta) max_eta, tind = findmax(gauge.eta) t_eta = gauge.time[tind] end max_vel = NaN t_vel = NaN if !isempty(gauge.u) vel = sqrt.( (gauge.u).^2 + (gauge.v).^2 ) vel[isnan.(vel)] .= 0.0 max_vel, tind = findmax(vel) t_vel = gauge.time[tind] end gmax = VisClaw.Gaugemax(gauge.label, gauge.id, gauge.loc, max_AMRlevel, max_eta, max_vel, t_eta, t_vel, gauge.unittime) return gmax end
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
2121
######################################################### """ varname_x, varname_y, varname_z = getvarname_nctopo(ncfilename::String) """ function getvarname_nctopo(ncfilename::AbstractString) nc = NetCDF.open(ncfilename) vardict = nc.vars ## var X varname_x = nothing varname_x = varnameset(vardict, "lon", varname_x) varname_x = varnameset(vardict, "Lon", varname_x) varname_x = varnameset(vardict, "LON", varname_x) varname_x = varnameset(vardict, "longitude", varname_x) varname_x = varnameset(vardict, "Longitude", varname_x) varname_x = varnameset(vardict, "LONGITUDE", varname_x) varname_x = varnameset(vardict, "x", varname_x) varname_x = varnameset(vardict, "X", varname_x) ## check varname_x == nothing && error("Variable X/LON was not found in $(ncfilename)") ## var Y varname_y = nothing varname_y = varnameset(vardict, "lat", varname_y) varname_y = varnameset(vardict, "Lat", varname_y) varname_y = varnameset(vardict, "LAT", varname_y) varname_y = varnameset(vardict, "latitude", varname_y) varname_y = varnameset(vardict, "Latitude", varname_y) varname_y = varnameset(vardict, "LATITUDE", varname_y) varname_y = varnameset(vardict, "y", varname_y) varname_y = varnameset(vardict, "Y", varname_y) ## check varname_y == nothing && error("Variable Y/LAT was not found in $(ncfilename)") ## var Z varname_z = nothing varname_z = varnameset(vardict, "elevation", varname_z) varname_z = varnameset(vardict, "Elevation", varname_z) varname_z = varnameset(vardict, "ELEVATION", varname_z) varname_z = varnameset(vardict, "z", varname_z) varname_z = varnameset(vardict, "Z", varname_z) varname_z = varnameset(vardict, "band1", varname_z) varname_z = varnameset(vardict, "Band1", varname_z) varname_z = varnameset(vardict, "BAND1", varname_z) ## check varname_z == nothing && error("Variable Z/ELEVATION was not found in $(ncfilename)") ## return return varname_x, varname_y, varname_z end #########################################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
1919
""" Gu, Gv = arrowscalegrd(xloc, yloc, uscale, vscale) create u and v grd files for an arrow scale """ function arrowscalegrd(xloc, yloc, uscale, vscale) X = collect(-2:2) .+ xloc Y = collect(-2:2) .+ yloc U = zeros(Float64, 5,5) V = zeros(Float64, 5,5) U[3,3] = uscale V[3,3] = vscale Gu = GMT.surface([repeat(X,inner=(5,1)) repeat(Y,outer=(5,1)) vec(U)], I=1, R=[X[1],X[end],Y[1],Y[end]]) Gv = GMT.surface([repeat(X,inner=(5,1)) repeat(Y,outer=(5,1)) vec(V)], I=1, R=[X[1],X[end],Y[1],Y[end]]) return Gu, Gv end """ Gu, Gv = arrowgrd(tiles::Vector{VisClaw.AMRGrid}; cutoff=0.1, kwargs...) create u and v grd files from AMR grid tiles """ function arrowgrd(tiles::Vector{VisClaw.AMRGrid}; cutoff=0.1, kwargs...) ## region region = VisClaw.getlims(tiles) ## number of tile ntile = length(tiles) ## preallocate xg = Vector{AbstractVector{Float64}}(undef,ntile) yg = Vector{AbstractVector{Float64}}(undef,ntile) ug = Vector{AbstractVector{Float64}}(undef,ntile) vg = Vector{AbstractVector{Float64}}(undef,ntile) ## make vectors of X, Y, U, V for all tiles for k = 1:ntile X, Y = VisClaw.meshtile(tiles[k]) xg[k] = vec(X) yg[k] = vec(Y) ug[k] = vec(tiles[k].u) vg[k] = vec(tiles[k].v) end ## cat all tiles xg = vcat(xg...) yg = vcat(yg...) ug = vcat(ug...) vg = vcat(vg...) ## replace NaNs into 0.0 V = @. sqrt(ug^2 + vg^2) ind = @. isnan(V) | (V<cutoff) xg[ind] .= 0.0 yg[ind] .= 0.0 ug[ind] .= 0.0 vg[ind] .= 0.0 ## makegrd Gu = GMT.xyz2grd([xg yg ug], I=tiles[1].dx, R=region, kwargs...) Gv = GMT.xyz2grd([xg yg vg], I=tiles[1].dy, R=region, kwargs...) ## return return Gu, Gv end arrowgrd(amrs::VisClaw.AMR, istep::Integer; cutoff=0.1, kwargs...) = arrowgrd(amrs.amr[istep]; cutoff=cutoff, kwargs...)
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
2391
#################################################### gaugexy2mat(gauges::Vector{VisClaw.Gauge}) = permutedims(hcat(getfield.(gauges, :loc)...), [2,1]) #################################################### """ gmtgaugelocation(gauge::VisClaw.Gauge; kwargs...) gmtgaugelocation!(gauge::VisClaw.Gauge; kwargs...) gmtgaugelocation(gauges::Vector{VisClaw.Gauge}; kwargs...) gmtgaugelocation!(gauges::Vector{VisClaw.Gauge}; kwargs...) """ gmtgaugelocation(gauge::VisClaw.Gauge; kwargs...) = GMT.scatter([gauge.loc[1] gauge.loc[2]]; kwargs...) #################################################### """ $(@doc gmtgaugelocation) """ gmtgaugelocation!(gauge::VisClaw.Gauge; kwargs...) = GMT.scatter!([gauge.loc[1] gauge.loc[2]]; kwargs...) #################################################### gmtgaugelocation(gauges::Vector{VisClaw.Gauge}; kwargs...) = GMT.scatter(gaugexy2mat(gauges); kwargs...) gmtgaugelocation!(gauges::Vector{VisClaw.Gauge}; kwargs...) = GMT.scatter!(gaugexy2mat(gauges); kwargs...) #################################################### """ gmtgaugeannotation!(gauge::VisClaw.Gauge; kwargs...) """ gmtgaugeannotation!(gauge::VisClaw.Gauge, annot::AbstractString=gauge.label; R="", offset=(0.0,0.0), kwargs...) = GMT.text!(GMT.text_record([gauge.loc[1]+offset[1] gauge.loc[2]+offset[2]], annot); R=R, kwargs...) #################################################### #################################################### """ gmtgaugewaveform(gauge::VisClaw.Gauge; kwargs...) gmtgaugewaveform!(gauge::VisClaw.Gauge; kwargs...) """ gmtgaugewaveform(gauge::VisClaw.Gauge; kwargs...) = GMT.plot(gauge.time, gauge.eta; kwargs...) #################################################### """ $(@doc gmtgaugewaveform) """ gmtgaugewaveform!(gauge::VisClaw.Gauge; kwargs...) = GMT.plot!(gauge.time, gauge.eta; kwargs...) #################################################### """ gmtgaugevelocity(gauge::VisClaw.Gauge; kwargs...) gmtgaugevelocity!(gauge::VisClaw.Gauge; kwargs...) """ gmtgaugevelocity(gauge::VisClaw.Gauge; kwargs...) = GMT.plot(gauge.time, sqrt.(gauge.u.^2 + gauge.v.^2); kwargs...) #################################################### """ $(@doc gmtgaugevelocity) """ gmtgaugevelocity!(gauge::VisClaw.Gauge; kwargs...) = GMT.plot!(gauge.time, sqrt.(gauge.u.^2 + gauge.v.^2); kwargs...) ####################################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
6558
default_masktxt = "topo4mask.txt" default_maskgrd = "topomask.grd" tmp4grd = "tmp4grd.txt" ################################################### """ filename = landmask_asc(topo::VisClaw.Topo, filename::AbstractString=default_masktxt) output [x y z] data in txt for masking """ function landmask_asc(topo::VisClaw.Topo, filename::AbstractString=default_masktxt) xv = vec(repeat(topo.x, inner=(topo.nrows,1))) yv = vec(repeat(topo.y, outer=(topo.ncols,1))) topov = vec(topo.elevation); inds = topov .< 0.0 # ocean deleteat!(xv, inds) deleteat!(yv, inds) deleteat!(topov, inds) open(filename, "w") do file Base.print_array(file, [xv yv topov]) end return filename end ################################################### ################################################### """ G = landmask_grd(txtfile::AbstractString=default_masktxt; grdfile::AbstractString="", kwargs...) output masking grid """ function landmask_grd(txtfile::AbstractString=default_masktxt; grdfile::AbstractString="", kwargs...) # check if !isfile(txtfile); error("Not found: $txtfile"); end # keyword args d = KWARG(kwargs) # (part of GMT.jl surface.jl) cmd = GMT.parse_common_opts(d, "", [:R :V_params :a :bi :di :e :f :h :i :r :yx]) cmd = *(cmd...) #println(cmd) # (part of GMT.jl psmask.jl) cmd = GMT.parse_common_opts(d, cmd, [:I :UVXY :JZ :c :e :p :r :t :yx :params], true) cmd = *(cmd...) cmd = GMT.parse_these_opts(cmd, d, [[:C :end_clip_path], [:D :dump], [:F :oriented_polygons], [:L :node_grid], [:N :invert], [:Q :cut_number], [:S :search_radius], [:T :tiles]]) cmd = *(cmd...) #println(cmd) if isempty(grdfile) grdfile = default_maskgrd Gout = true else Gout = false end # grid GMT.gmt("grdmask \"$txtfile\" $cmd -G\"$grdfile\" ") # return if Gout G = GMT.gmt("read -Tg $grdfile") rm(grdfile, force=true) return G else return nothing end end ################################################### ################################################### """ G = tilegrd(tile::VisClaw.AMRGrid; length_unit::AbstractString="", kwargs...) make a grid file of VisClaw.AMRGrid with landmask """ function tilegrd(tile::VisClaw.AMRGrid; length_unit::AbstractString="", kwargs...) # var var = VisClaw.keytile(tile) # prameters & options R = VisClaw.getR_tile(tile) Δ = tile.dx xvec, yvec, zdata = VisClaw.tilez(tile, var) xmat = repeat(xvec, inner=(length(yvec),1)) ymat = repeat(yvec, outer=(length(xvec),1)) if !isempty(length_unit) Δ = "$(Δ)"*length_unit # +ue? R = length_unit*R end # if NaN in all if !any(.!isnan.(zdata[:])) tmp_eta = "eta_tile.grd" faint="tmp.txt" open(faint, "w") do file Base.print_array(file, [xmat[:] ymat[:]]) end GMT.gmt("grdmask $faint -R$R -I$Δ -S$Δ -NNaN/NaN/NaN -G$tmp_eta ") G = GMT.gmt("read -Tg $tmp_eta") rm(faint, force=true) else # eta grid G = GMT.surface([xmat[:] ymat[:] zdata[:]]; R=R, I=Δ, kwargs...) end # return value (GMT.GMTgrid) return G end ################################################### tilegrd(amrs::VisClaw.AMR, istep::Integer; length_unit::AbstractString="", kwargs...) = tilegrd.(amrs.amr[istep]; length_unit=length_unit, kwargs...) ################################################### ################################################### """ G = tilegrd_xyz(tile::VisClaw.AMRGrid; kwargs...) make a grid file of VisClaw.AMRGrid """ function tilegrd_xyz(tile::VisClaw.AMRGrid; kwargs...) # var var = VisClaw.keytile(tile) # prameters & options R = VisClaw.getR_tile(tile) Δ = tile.dx xvec, yvec, zdata = VisClaw.tilez(tile, var) nx = length(xvec) ny = length(yvec) xvec = repeat(xvec, inner=(ny,1)) |> vec yvec = repeat(yvec, outer=(nx,1)) |> vec zvec = vec(zdata) inds = isnan.(zvec) deleteat!(xvec, inds) deleteat!(yvec, inds) deleteat!(zvec, inds) tmp4grd = "tmp4grd.txt" f = open(tmp4grd, "w"); Base.print_array(f, [xvec yvec zvec]); close(f) G = GMT.gmt("xyz2grd $(tmp4grd) -R$(R) -I$(Δ)") rm(tmp4grd, force=true) # return value (GMT.GMTgrid) return G end ################################################### tilegrd_xyz(amrs::VisClaw.AMR, istep::Integer; kwargs...) = tilegrd_xyz.(amrs.amr[istep]; kwargs...) ################################################### ################################################### """ G = tilegrd_mask(tile::VisClaw.AMRGrid, maskfile::AbstractString=""; length_unit::AbstractString="", kwargs...) make a grid file of VisClaw.AMRGrid with landmask """ function tilegrd_mask(tile::VisClaw.AMRGrid, maskfile::AbstractString=""; length_unit::AbstractString="", kwargs...) # var var = VisClaw.keytile(tile) # prameters & options R = VisClaw.getR_tile(tile) Δ = tile.dx r = sqrt(2.0)Δ xvec, yvec, zdata = VisClaw.tilez(tile, var) xmat = repeat(xvec', inner=(length(yvec),1)) ymat = repeat(yvec, outer=(length(xvec),1)) tmp_mask = "mask_tile.grd" tmp_eta = "eta_tile.grd" eta_masked = "eta_masked.grd" if !isempty(length_unit) Δ = "$(Δ)"*length_unit r = "$(r)"*length_unit # +ue? R = length_unit*R end # makegrd # land mask grid VisClaw.landmask_grd(maskfile; grdfile=tmp_mask, R=R, I=Δ, S=r, N="0/0/NaN", kwargs...) # if NaN in all if !any(.!isnan.(zdata[:])) faint="tmp.txt" open(faint, "w") do file Base.print_array(file, [xmat[:] ymat[:]]) #Base.print_array(file, [xmat[:] reverse(ymat, dims=1)[:]]) end GMT.gmt("grdmask $faint -R$R -I$Δ -S$Δ -NNaN/NaN/NaN -G$tmp_eta ") rm(faint, force=true) else # eta grid GMT.surface([xmat[:] ymat[:] zdata[:]]; R=R, I=Δ, G=tmp_eta) end # masking GMT.gmt("grdmath $tmp_eta $tmp_mask OR = $eta_masked ") # read G = GMT.gmt("read -Tg $eta_masked ") rm(tmp_mask) rm(tmp_eta) rm(eta_masked) # return value (GMT.GMTgrid) return G end ################################################### tilegrd_mask(amrs::VisClaw.AMR, istep::Integer, maskfile::AbstractString=""; length_unit::AbstractString="", kwargs...) = tilegrd_mask.(amrs.amr[istep], maskfile; length_unit=length_unit, kwargs...)
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
5910
################################################### """ getR_tile = getR_tile(tile::VisClaw.AMRGrid; length_unit="") Get x and y ranges of a tile in AbstractString for -R option in GMT """ function getR_tile(tile::VisClaw.AMRGrid; length_unit="") xs = tile.xlow ys = tile.ylow xe = round(tile.xlow + tile.mx*tile.dx, digits=4) ye = round(tile.ylow + tile.my*tile.dy, digits=4) xyrange="$xs/$xe/$ys/$ye" isempty(length_unit) || (xyrange = xyrange*"+u"*length_unit) # return value return xyrange end ################################################### """ xyrange = getR(tiles::Vector{VisClaw.AMRGrid}; length_unit="") xyrange = getR(topo::VisClaw.AbstractTopo; length_unit="") xyrange = getR(region::VisClaw.Region; length_unit="") xyrange = getR(G::GMT.GMTgrid; length_unit="") Get x and y ranges in AbstractString for -R option in GMT """ function getR(tiles::Vector{VisClaw.AMRGrid}; length_unit="") xs, xe, ys, ye = VisClaw.getlims(tiles) xyrange="$xs/$xe/$ys/$ye" isempty(length_unit) || (xyrange = xyrange*"+u"*length_unit) # return value return xyrange end ################################################### function getR(topo::VisClaw.AbstractTopo; length_unit="") xs=topo.x[1] xe=topo.x[end] ys=topo.y[1] ye=topo.y[end] xyrange="$xs/$xe/$ys/$ye" isempty(length_unit) || (xyrange = xyrange*"+u"*length_unit) return xyrange end ################################################### function getR(G::GMT.GMTgrid; length_unit="") x = extrema(G.x) y = extrema(G.y) xyrange="$(x[1])/$(x[2])/$(y[1])/$(y[2])" isempty(length_unit) || (xyrange = xyrange*"+u"*length_unit) return xyrange end ################################################### function getR(region::VisClaw.Region; length_unit="") xyrange="$(region.xlims[1])/$(region.xlims[2])/$(region.ylims[1])/$(region.ylims[2])" isempty(length_unit) || (xyrange = xyrange*"+u"*length_unit) return xyrange end ################################################### """ hwratio = axesratio(tiles::Vector{VisClaw.AMRGrid}) hwratio = axesratio(topo::VisClaw.AbstractTopo) hwratio = axesratio(region::VisClaw.Region) hwratio = axesratio(G::GMT.GMTgrid) Get height/width ratio """ function axesratio(tiles::Vector{VisClaw.AMRGrid}) xs, xe, ys, ye = VisClaw.getlims(tiles) hwratio = (ye-ys)/(xe-xs) # return value return hwratio end ################################################### function axesratio(topo::VisClaw.AbstractTopo) xs=topo.x[1] xe=topo.x[end] ys=topo.y[1] ye=topo.y[end] hwratio = (ye-ys)/(xe-xs) # return value return hwratio end ################################################### function axesratio(G::GMT.GMTgrid) x = extrema(G.x) y = extrema(G.y) hwratio = (y[2]-y[1])/(x[2]-x[1]) # return value return hwratio end ################################################### axesratio(region::VisClaw.Region) = (region.ylims[2]-region.ylims[1])/(region.xlims[2]-region.xlims[1]) ################################################### ################################################### """ G = geogrd(geo::VisClaw.Topo; kwargs...) G = geogrd(geo::VisClaw.DTopo, itime::Integer=0; kwargs...) Generate grd (GMT) data """ function geogrd(geo::VisClaw.Topo; kwargs...) Δ = geo.dx R = VisClaw.getR(geo) xvec = repeat(geo.x, inner=(geo.nrows,1)) yvec = repeat(geo.y, outer=(geo.ncols,1)) G = GMT.surface([xvec[:] yvec[:] geo.elevation[:]]; R=R, I=Δ, kwargs...) return G end ################################################### function geogrd(geo::VisClaw.DTopo, itime::Integer=0; kwargs...) Δ = geo.dx R = VisClaw.getR(geo) xvec = repeat(geo.x, inner=(geo.my,1)) yvec = repeat(geo.y, outer=(geo.mx,1)) ( (itime < 0) || (geo.mt < itime) ) && error("Invalid time") if geo.mt == 1 G = GMT.surface([xvec[:] yvec[:] geo.deform[:]]; R=R, I=Δ, kwargs...) elseif itime == 0 G = GMT.surface([xvec[:] yvec[:] vec(geo.deform[:,:,end])]; R=R, I=Δ, kwargs...) else G = GMT.surface([xvec[:] yvec[:] vec(geo.deform[:,:,itime])]; R=R, I=Δ, kwargs...) end return G end ################################################### ################################################### """ proj = getJ(proj_base::AbstractString, hwratio::Real) Correct J option """ function getJ(proj_base::AbstractString, hwratio) # find projection specifier J1 = match(r"^([a-zA-Z]+)", proj_base) J2 = match(r"([a-zA-Z]+).+?([a-zA-Z]+)", proj_base) J1 === nothing && error("Invald argument proj_base: $proj_base") # assign figure width # check whether variable proj_base contains any number regex = r"([+-]?(?:\d+\.?\d*|\.\d+)(?:[eE][+-]?\d+)?)" chkwidth = match(regex, proj_base) fwidth = chkwidth === nothing ? fwidth=10 : parse(Float64, chkwidth.captures[1]) # assign figure height # check whether variable proj_base contains the height regex = r"([+-]?(?:\d+\.?\d*|\.\d+)(?:[eE][+-]?\d+)?).+?([+-]?(?:\d+\.?\d*|\.\d+)(?:[eE][+-]?\d+)?)" chkheight = match(regex, proj_base) fheight = chkheight === nothing ? hwratio*fwidth : parse(Float64, chkheight.captures[2]) # generate J option if occursin("/",proj_base) && chkheight !== nothing proj = proj_base else proj = J2 === nothing ? J1.captures[1]*"$fwidth"*"/$fheight" : J1.captures[1]*"$fwidth"*J2.captures[2]*"/$fheight"*J2.captures[2] end # return value return proj end ################################################### getJ(proj_base::AbstractString, topo::VisClaw.Topo) = getJ(proj_base, VisClaw.axesratio(topo)) ################################################### getJ(proj_base::AbstractString, amr::Vector{VisClaw.AMRGrid}) = getJ(proj_base, VisClaw.axesratio(amr)) ###################################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
2590
#################################################### function makecptfromgrd(G::GMT.GMTgrid; factor_lims=0.8, sigdigits_lims=2, T=[], kwargs...) isempty(T) && ( T=round.(factor_lims.*extrema(G.z), sigdigits=sigdigits_lims) ) return GMT.makecpt(; T=T, kwargs...) end #################################################### #################################################### function gmttopo(G::GMT.GMTgrid; factor_lims=0.8, sigdigits_lims=2, C=:geo, T=[], D::Bool=true, J="", R="", kwargs...) ## cpt cptout = false if !isa(C, GMT.GMTcpt) cptout = true C = makecptfromgrd(G; factor_lims=factor_lims, sigdigits_lims=sigdigits_lims, C=C, T=T, D=D) end # options isempty(J) && ( J=getJ("X10", axesratio(G)) ) isempty(R) && ( R=getR(G) ) ## plot GMT.grdimage(G; C=C, J=J, R=R, Q=true, kwargs...) ## return if cptout; return C; else return nothing; end end #################################################### gmttopo(topo::VisClaw.Topo; kwargs...) = gmttopo(geogrd(topo); kwargs...) #################################################### #################################################### """ gmttoporange!(geo::VisClaw.AbstractTopo; kwargs...) plot a range of topo/bath using GMT """ function gmttoporange!(geo::VisClaw.AbstractTopo; kwargs...) # set square xp = [geo.x[1], geo.x[1] , geo.x[end], geo.x[end], geo.x[1]] yp = [geo.y[1], geo.y[end], geo.y[end], geo.y[1] , geo.y[1]] # plot GMT.plot!(xp, yp; marker=:none, kwargs...) end #################################################### #################################################### """ gmtcoastline(topo::VisClaw.Topo; kwargs...) gmtcoastline(G::GMT.GMTgrid; kwargs...) gmtcoastline!(topo::VisClaw.Topo; kwargs...) gmtcoastline!(G::GMT.GMTgrid; kwargs...) plot coastlines from topography and bathymetry data using GMT """ gmtcoastline!(topo::VisClaw.Topo; kwargs...) = GMT.grdcontour!(geogrd(topo); C="-1e10,0,1e10", kwargs...) #################################################### gmtcoastline!(G::GMT.GMTgrid; kwargs...) = GMT.grdcontour!(G; C="-1e10,0,1e10", kwargs...) #################################################### #################################################### """ $(@doc gmtcoastline!) """ gmtcoastline(topo::VisClaw.Topo; kwargs...) = GMT.grdcontour(geogrd(topo); C="-1e10,0,1e10", kwargs...) #################################################### gmtcoastline(G::GMT.GMTgrid; kwargs...) = GMT.grdcontour(G; C="-1e10,0,1e10", kwargs...) ####################################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
541
#################################################### """ gmttrack(track::VisClaw.Track; kwargs...) gmttrack!(track::VisClaw.Track; kwargs...) """ gmttrack(track::VisClaw.Track, index=1:length(track.lon); kwargs...) = GMT.plot(track.lon[index], track.lat[index]; kwargs...) #################################################### """ $(@doc gmttrack) """ gmttrack!(track::VisClaw.Track, index=1:length(track.lon); kwargs...) = GMT.plot!(track.lon[index], track.lat[index]; kwargs...) ####################################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
5864
# Read configration files ################################### """ params = geodata("simlation/path/_output"::AbstractString) params = geodata("simlation/path/_output/geoclaw.data"::AbstractString) Function: geoclaw.data reader """ function geodata(outdir::AbstractString) ## set filename fname = occursin("geoclaw.data", basename(outdir)) ? outdir : joinpath(outdir, "geoclaw.data") ## check whether it exists if !isfile(fname); error("File $fname is not found."); end ## read all lines open(fname,"r") do f global txt = readlines(f) end ## parse parameters # parameters (mandatory?) cs = parse(Float64,split(txt[occursin.("coordinate",txt)][1],r"\s+")[1]) p0 = parse(Float64,split(txt[occursin.("ambient_pressure",txt)][1],r"\s+")[1]) R = parse(Float64,split(txt[occursin.("earth_radius",txt)][1],r"\s+")[1]) eta0 = parse(Float64,split(txt[occursin.("sea_level",txt)][1],r"\s+")[1]) dmin = parse(Float64,split(txt[occursin.("dry_tolerance",txt)][1],r"\s+")[1]) # parameters (optional?) if any(occursin.("manning_coefficient",txt)) n = parse(Float64,split(txt[occursin.("manning_coefficient",txt)][1],r"\s+")[1]) else n = 0.0 end ## instance params = VisClaw.GeoParam(cs,p0,R,eta0,n,dmin) ## return values return params end ################################### ################################### """ surgeparams = surgedata("simlation/path/_output"::AbstractString) surgeparams = surgedata("simlation/path/_output/surge.data"::AbstractString) Function: surge.data reader """ function surgedata(outdir::AbstractString) ## set filename fname = occursin("surge.data", basename(outdir)) ? outdir : joinpath(outdir, "surge.data") ## check whether it exists if !isfile(fname); error("File $fname is not found."); end ## read all lines open(fname,"r") do f global txt = readlines(f) end ## parse parameters windindex = parse(Int64,split(txt[occursin.("wind_index",txt)][1],r"\s+")[1]) slpindex = parse(Int64,split(txt[occursin.("pressure_index",txt)][1],r"\s+")[1]) stormtype = parse(Int64,split(txt[occursin.("storm_specification_type",txt)][1],r"\s+")[1]) ## instance surgeparams = VisClaw.SurgeParam(windindex,slpindex,stormtype) ## return values return surgeparams end ################################### ################################### """ gaugeinfo = gaugedata("simlation/path/_output"::AbstractString) gaugeinfo = gaugedata("simlation/path/_output/gauges.data"::AbstractString) Function: gauges.data reader """ function gaugedata(outdir::AbstractString) ## set filename fname = occursin("gauges.data", basename(outdir)) ? outdir : joinpath(outdir,"gauges.data") ## check whether it exists if !isfile(fname); error("File $fname is not found."); end ## read all lines open(fname,"r") do f global txt = readlines(f) end ## parse parameters ngauges = parse(Int64, split(txt[occursin.("ngauges",txt)][1],r"\s+")[1]) ## preallocate gaugeinfo = Vector{VisClaw.Gauge}(undef,ngauges) ## read gauge info baseline = findfirst(x->occursin("ngauges", x), txt) for i = 1:ngauges txtline = split(strip(txt[baseline+i]), r"\s+", keepempty=false) label = txtline[1] id = parse(Int64,txtline[1]) loc = [parse(Float64,txtline[2]), parse(Float64,txtline[3])] time = [parse(Float64,txtline[4]), parse(Float64,txtline[5])] # instance gaugeinfo[i] = VisClaw.Gauge(label,id,0,loc,[],time,[]) end ## return values return gaugeinfo end ################################### ################################### """ amrparam = amrdata("simlation/path/_output"::AbstractString) amrparam = amrdata("simlation/path/_output/amr.data"::AbstractString) Function: amr.data reader """ function amrdata(outdir::AbstractString) ## set filename fname = occursin("amr.data", basename(outdir)) ? outdir : joinpath(outdir, "amr.data") ## check whether it exists if !isfile(fname); error("File $fname is not found."); end ## read all lines open(fname,"r") do f global txt = readlines(f) end ## parse parameters maxlevel = parse(Int64,split(txt[occursin.("amr_levels_max",txt)][1],r"\s+")[1]) ## instance amrparam = VisClaw.AMRParam(maxlevel) ## return values return amrparam end ################################### ################################### """ regions = regiondata("simlation/path/_output"::AbstractString) regions = regiondata("simlation/path/_output/region.data"::AbstractString) Function: region.data reader """ function regiondata(outdir::AbstractString) ## set filename fname = occursin("regions.data", basename(outdir)) ? outdir : joinpath(outdir, "regions.data") ## check whether it exists if !isfile(fname); error("File $fname is not found."); end ## read all lines open(fname,"r") do f global txt = readlines(f) end ## parse parameters nregion = parse(Int64, split(txt[occursin.("num_regions",txt)][1],r"\s+")[1]) ## preallocate regions = Vector{VisClaw.Region}(undef,nregion) ## read gauge info baseline = findfirst(x->occursin("num_regions", x), txt) for i = 1:nregion txtline = split(strip(txt[baseline+i]), r"\s+", keepempty=false) minlevel = parse(Int64,txtline[1]) maxlevel = parse(Int64,txtline[2]) tl = (parse(Float64,txtline[3]), parse(Float64,txtline[4])) xl = (parse(Float64,txtline[5]), parse(Float64,txtline[6])) yl = (parse(Float64,txtline[7]), parse(Float64,txtline[8])) ## instance regions[i] = VisClaw.Region(minlevel:maxlevel, tl, xl, yl) end return regions end ###################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
2562
################################# """ fgmax = loadfgmax(outputdir::AbstractString, fg::VisClaw.FixedGrid; nval_save::Integer=fg.nval) Function: fgmaxXXXX.txt reader """ function loadfgmax(outputdir::AbstractString, fg::VisClaw.FixedGrid; nval_save::Integer=fg.nval) ## check nval_save nval_save > fg.nval && (nval_save=fg.nval) ## fgmaxXXXX.txt filename = "fgmax"*@sprintf("%04d",fg.id)*".txt" ## load dat = readdlm(joinpath(outputdir, filename), Float64) dat[dat.<-1e10] .= NaN ncol = 4 + 2(fg.nval) + 1 ## assign if fg.style == 0 || fg.style == 1 topo = dat[:,4] D = dat[:,5] tD = dat[:,5+fg.nval] tarrival = dat[:,end] if fg.nval >= 2 v = dat[:,6] tv = dat[:,6+fg.nval] end if fg.nval >= 5 M = dat[:,7] tM = dat[:,7+fg.nval] Mflux = dat[:,8] tMflux = dat[:,8+fg.nval] hmin = dat[:,9] thmin = dat[:,9+fg.nval] end elseif fg.style == 2 || fg.style == 3 valall = permutedims(reshape(dat, (fg.nx, fg.ny, ncol)), [2 1 3]) topo = valall[:,:,4] D = valall[:,:,5] tD = valall[:,:,5+fg.nval] tarrival = valall[:,:,end] if fg.nval >= 2 v = valall[:,:,6] tv = valall[:,:,6+fg.nval] end if fg.nval >= 5 M = valall[:,:,7] tM = valall[:,:,7+fg.nval] Mflux = valall[:,:,8] tMflux = valall[:,:,8+fg.nval] hmin = valall[:,:,9] thmin = valall[:,:,9+fg.nval] end elseif fg.style == 4 indc = [[fg.flag[i][1] fg.flag[i][2]] for i=1:fg.npts] indc = vcat(indc...) ind = sortperm(indc[:,1]) topo = dat[ind,4] D = dat[ind,5] tD = dat[ind,5+fg.nval] tarrival = dat[ind,end] if fg.nval >= 2 v = dat[ind,6] tv = dat[ind,6+fg.nval] end if fg.nval >= 5 M = dat[ind,7] tM = dat[ind,7+fg.nval] Mflux = dat[ind,8] tMflux = dat[ind,8+fg.nval] hmin = dat[ind,9] thmin = dat[ind,9+fg.nval] end end if nval_save == 1; fgmax = VisClaw.FGmax(topo,D,tD,tarrival) elseif nval_save == 2; fgmax = VisClaw.FGmax(topo,D,v,tD,tv,tarrival) elseif nval_save == 5; fgmax = VisClaw.FGmax(topo,D,v,M,Mflux,hmin,tD,tv,tM,tMflux,thmin,tarrival) end # return return fgmax end #################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
4317
################################### """ fgmaxgrids = fgmaxdata("simlation/path/_output"::AbstractString) fgmaxgrids = fgmaxdata("simlation/path/_output/fgmax_grids.data"::AbstractString) Function: fgmax_grids.data reader """ function fgmaxdata(outdir::AbstractString) ## definition of filename fname = occursin("fgmax_grids.data", basename(outdir)) ? outdir : joinpath(outdir, "fgmax_grids.data") ## check isfile(fname) || error("File $fname is not found.") ## read all lines open(fname,"r") do f global txt = readlines(f) end ## parse parameters num_fgmax_val = parse(Int64, split(txt[occursin.("num_fgmax_val",txt)][1],r"\s+")[1]) num_fgmax_grids = parse(Int64, split(txt[occursin.("num_fgmax_grids",txt)][1],r"\s+")[1]) ## preallocate fg = Vector{VisClaw.FixedGrid}(undef, num_fgmax_grids) ## load global baseline = 10 for i = 1:num_fgmax_grids ## basic parameters FGid = parse(Int64, split(strip(txt[baseline+1]), r"\s+")[1]) point_style = parse(Int64, split(strip(txt[baseline+8]), r"\s+")[1]) ## check point style (point_style > 4 || point_style < 0) && error("point_style $point_style is not supported yet.") ## 0 if point_style == 0 ## npts npts = parse(Int64, split(strip(txt[baseline+9]), r"\s+")[1]) ## x, y if npts == 0 fgmax_deffile = String(strip(txt[baseline+10])[2:end-1]) open(fgmax_deffile,"r") do ff; global fgtxt = readlines(ff); end npts = parse(Int64, split(strip(fgtxt[1]), r"\s+")[1]) x = zeros(Float64,npts) y = zeros(Float64,npts) for ip = 1:npts x[ip], y[ip] = parse.(Float64, split(strip(fgtxt[1+ip]), r"\s+")[1:2]) end baseline += 11 else x = zeros(Float64,npts) y = zeros(Float64,npts) for ip = 1:npts x[ip], y[ip] = parse.(Float64, split(strip(txt[baseline+9+ip]), r"\s+")[1:2]) end baseline += 10 + npts end ## instance fg[i] = VisClaw.FixedGrid(FGid, point_style, num_fgmax_val, npts, x, y) ## 1 elseif point_style == 1 npts = parse(Int64, split(strip(txt[baseline+9]), r"\s+")[1]) x1, y1 = parse.(Float64, split(strip(txt[baseline+10]), r"\s+")[1:2]) x2, y2 = parse.(Float64, split(strip(txt[baseline+11]), r"\s+")[1:2]) x = LinRange(x1, x2, npts) y = LinRange(y1, y2, npts) # instance fg[i] = VisClaw.FixedGrid(FGid, point_style, num_fgmax_val, npts, x, y) baseline += 12 ## 2 elseif point_style == 2 nx, ny = parse.(Int64, split(strip(txt[baseline+9]), r"\s+")[1:2]) x1, y1 = parse.(Float64, split(strip(txt[baseline+10]), r"\s+")[1:2]) x2, y2 = parse.(Float64, split(strip(txt[baseline+11]), r"\s+")[1:2]) # instance fg[i] = VisClaw.FixedGrid(FGid, point_style, num_fgmax_val, nx, ny, (x1,x2), (y1,y2)) baseline += 12 ## 3 elseif point_style == 3 error("point_style $point_style is not supported yet.") ## 4 elseif point_style == 4 fgmax_deffile = String(strip(txt[baseline+9])[2:end-1]) topoflag = loadtopo(fgmax_deffile, 3) flag = findall(convert(BitArray, topoflag.elevation)) X = repeat(topoflag.x', outer=(topoflag.nrows,1)) Y = repeat(topoflag.y, outer=(1,topoflag.ncols)) x = vec(X[flag]) y = vec(Y[flag]) npts = length(x) ind = sortperm([flag[i][1] for i=1:npts], rev=true) flag = flag[ind] x = x[ind] y = y[ind] ## instance fg[i] = VisClaw.FixedGrid(FGid, point_style, num_fgmax_val, topoflag.ncols, topoflag.nrows, extrema(topoflag.x), extrema(topoflag.y), npts, x, y, flag) baseline += 10 end end ## return return fg end
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
9694
""" amr = loadfortq(filename::AbstractString, ncol::Integer; vartype::Symbol=:surface, params::VisClaw.GeoParam=VisClaw.GeoParam(), runup::Bool=true, xlims=(-Inf,Inf), ylims=(-Inf,Inf), region="", AMRlevel=[]) Function: fort.qxxxx reader. """ function loadfortq(filename::AbstractString, ncol::Integer; vartype::Symbol=:surface, params::VisClaw.GeoParam=VisClaw.GeoParam(), runup::Bool=true, xlims=(-Inf,Inf), ylims=(-Inf,Inf), region="", AMRlevel=[]) ## check !any(map(sym -> vartype == sym, [:surface, :current, :storm])) && error("kwarg 'vartype' is invalid") ## set range if isa(region, VisClaw.AbstractTopo); xlims=extrema(region.x); ylims=extrema(region.y); end if isa(region, VisClaw.Region); xlims=region.xlims; ylims=region.ylims; end ## file open f = open(filename,"r") txtorg = readlines(f) close(f) #close ## count the number of lines and grids nlineall = length(txtorg) idx = occursin.("grid_number",txtorg) ngrid = length(txtorg[idx]) if vartype==:surface amr = Array{VisClaw.SurfaceHeight}(undef,ngrid) ## preallocate elseif vartype==:current amr = Array{VisClaw.Velocity}(undef,ngrid) elseif vartype==:storm amr = Array{VisClaw.Storm}(undef,ngrid) end l = 1 i = 1 while l < nlineall ## read header #header = txtorg[1:8] header = txtorg[l:l+7] header = map(strip,header) gridnumber = parse(Int64, split(header[1],r"\s+")[1]) AMRlevel_load = parse(Int64, split(header[2],r"\s+")[1]) mx = parse(Int64, split(header[3],r"\s+")[1]) my = parse(Int64, split(header[4],r"\s+")[1]) xlow = parse(Float64, split(header[5],r"\s+")[1]) ylow = parse(Float64, split(header[6],r"\s+")[1]) dx = parse(Float64, split(header[7],r"\s+")[1]) dy = parse(Float64, split(header[8],r"\s+")[1]) ## read variables body = txtorg[l+9:l+9+(mx+1)*my-1] # the next tile l = l+9+(mx+1)*my ## check AMRlevel if !isempty(AMRlevel); if isempty(findall(AMRlevel .== AMRlevel_load)); i += 1; continue; end; end ## check whether the tile is on the domain if (xlow+dx*mx < xlims[1]) | (xlims[2] < xlow); i += 1; continue; end if (ylow+dy*my < ylims[1]) | (ylims[2] < ylow); i += 1; continue; end if vartype==:surface elev = [parse(Float64, body[(i-1)*(mx+1)+j][26*(ncol-1)+1:26*ncol]) for i=1:my, j=1:mx] depth = [parse(Float64, body[(i-1)*(mx+1)+j][1:26]) for i=1:my, j=1:mx] # wet condition land = (elev-depth) .>= params.dmin # sea surface anomaly (params.eta0 != 0.0) && (elev[.!land] = elev[.!land].-params.eta0) # inundation depth if wet runup && (elev[land] = depth[land]) # NaN if dry elev[depth.<=0.0] .= NaN ## array amr[i] = VisClaw.SurfaceHeight(gridnumber,AMRlevel_load,mx,my,xlow,ylow,dx,dy,elev) elseif vartype==:current ucol = ncol vcol = ncol+1 # read depth = [parse(Float64, body[(i-1)*(mx+1)+j][1:26]) for i=1:my, j=1:mx] u = [parse(Float64, body[(i-1)*(mx+1)+j][26*(ucol-1)+1:26*ucol]) for i=1:my, j=1:mx] v = [parse(Float64, body[(i-1)*(mx+1)+j][26*(vcol-1)+1:26*vcol]) for i=1:my, j=1:mx] # replace to NaN mask = depth.<=0.0 depth[mask] .= NaN u[mask] .= NaN v[mask] .= NaN # calc u = u./depth v = v./depth vel = sqrt.(u.^2 .+ v.^2) ## array amr[i] = VisClaw.Velocity(gridnumber,AMRlevel_load,mx,my,xlow,ylow,dx,dy,u,v,vel) elseif vartype==:storm ucol = ncol vcol = ncol+1 pcol = ncol+2 u = [parse(Float64, body[(i-1)*(mx+1)+j][26*(ucol-1)+1:26*ucol]) for i=1:my, j=1:mx] v = [parse(Float64, body[(i-1)*(mx+1)+j][26*(vcol-1)+1:26*vcol]) for i=1:my, j=1:mx] p = [parse(Float64, body[(i-1)*(mx+1)+j][26*(pcol-1)+1:26*pcol]) for i=1:my, j=1:mx] p = p./1e+2 # u[(abs.(u).<=1e-2) .& (abs.(v).<=1e-2)] .= NaN # v[(abs.(u).<=1e-2) .& (abs.(v).<=1e-2)] .= NaN ## array amr[i] = VisClaw.Storm(gridnumber,AMRlevel_load,mx,my,xlow,ylow,dx,dy,u,v,p) end ## print #@printf("%d, ",gridnumber) ## counter; go to the next grid i += 1 end amr = amr[filter(i -> isassigned(amr, i), 1:length(amr))] ## return return amr end ################################# """ amr = loadforta(filename::AbstractString, ncol::Integer; kwargs...) Function: fort.axxxx reader. See also [`loadfortq`](@ref). """ loadforta(filename::AbstractString, ncol::Integer; kwargs...) = loadfortq(filename, ncol; vartype=:storm, kwargs...) ################################# ################################# """ timelaps = loadfortt(filename::AbstractString) Function: fort.txxxx reader. """ function loadfortt(filename::AbstractString) ## file open f = open(filename,"r") txtorg = readlines(f) close(f) #close ## parse timelaps from the 1st line timelaps = parse(Float64, txtorg[1][1:18]) ## return return timelaps end ################################# ####################################### """ amrs = loadsurface(outputdir::AbstractString, filesequence::AbstractVector; kwargs...) amrs = loadsurface(outputdir::AbstractString, fileid::Integer; kwargs...) Function: load time-series of water surface. The keyword arguments follow [`loadfortq`](@ref). See also: [`loadfortt`](@ref). """ function loadsurface(outputdir::AbstractString, filesequence::AbstractVector=0:0; vartype::Symbol=:surface, kwargs...) # check !any(map(sym -> vartype == sym, [:surface, :current, :storm])) && error("kwarg 'vartype' is invalid") ## define the filepath & filename if vartype==:surface fnamekw = r"^fort\.q\d+$" col=4 elseif vartype==:current fnamekw = r"^fort\.q\d+$" col=2 elseif vartype==:storm fnamekw = r"^fort\.a\d+$" col=5 end ## make a list isdir(outputdir) || error("Directory $outputdir doesn't exist") flist = readdir(outputdir) filter!(x->occursin(fnamekw, x), flist) isempty(flist) && error("File named $fnamekw was not found") # load geoclaw.data params = VisClaw.geodata(outputdir) ## the number of files nfile = length(flist) # file sequence to be loaded if filesequence==0:0; filesequence = 1:nfile; end (any(filesequence .< 1) || any(filesequence .> nfile)) && error("Incorrect file sequence was specified. (This must be from 1 to $nfile)") ## the number of files (to be loaded) nfile = length(filesequence) ## preallocate if vartype==:surface amr = Vector{AbstractVector{VisClaw.SurfaceHeight}}(undef,nfile) elseif vartype==:current amr = Vector{AbstractVector{VisClaw.Velocity}}(undef,nfile) elseif vartype==:storm amr = Vector{AbstractVector{VisClaw.Storm}}(undef,nfile) end ## load all files tlap = vec(zeros(nfile,1)) cnt = 0 for it = filesequence cnt += 1 if vartype==:surface amr[cnt] = VisClaw.loadfortq(joinpath(outputdir,flist[it]), col; vartype=vartype, kwargs...) elseif vartype==:current amr[cnt] = VisClaw.loadfortq(joinpath(outputdir,flist[it]), col; vartype=vartype, kwargs...) elseif vartype==:storm amr[cnt] = VisClaw.loadforta(joinpath(outputdir,flist[it]), col; kwargs...) end tlap[cnt] = VisClaw.loadfortt(joinpath(outputdir,replace(flist[it],r"\.." => ".t"))) end ## AMR Array amrs = VisClaw.AMR(nfile,tlap,amr) ## return value return amrs end ####################################### loadsurface(outputdir::AbstractString, fileid::Integer; kwargs...) = loadsurface(outputdir, fileid:fileid; kwargs...) ####################################### ###################################### """ amrs = loadstorm(outputdir::AbstractString, filesequence::AbstractVector=0:0; kwargs...) amrs = loadstorm(outputdir::AbstractString, fileid::Integer; kwargs...) Function: load time-series of storm data. The keyword arguments follow [`loadfortq`](@ref). See also: [`loadfortt`](@ref). """ loadstorm(outputdir::AbstractString, filesequence::AbstractVector=0:0; kwargs...) = loadsurface(outputdir, filesequence; vartype=:storm, kwargs...) ####################################### loadstorm(outputdir::AbstractString, fileid::Integer; kwargs...) = loadsurface(outputdir, fileid:fileid; vartype=:storm, kwargs...) ####################################### ####################################### """ amrs = loadcurrent(outputdir::AbstractString, filesequence::AbstractVector=0:0; kwargs...) amrs = loadcurrent(outputdir::AbstractString, fileid::Integer; kwargs...) Function: load time-series of ocean current data. The keyword arguments follow [`loadfortq`](@ref). See also: [`loadfortt`](@ref). """ loadcurrent(outputdir::AbstractString, filesequence::AbstractVector=0:0; kwargs...) = loadsurface(outputdir, filesequence, vartype=:current, kwargs...) ####################################### loadcurrent(outputdir::AbstractString, fileid::Integer; kwargs...) = loadsurface(outputdir, fileid:fileid; vartype=:current, kwargs...) #######################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
2487
################################# """ gauges = loadgauge(outputdir::AbstractString; eta0::Float64=0.0, labelhead::AbstractString="Gauge ", loadeta::Bool=true, loadvel::Bool=false) gauge*.txt reader """ function loadgauge(outputdir::AbstractString, gaugeid::AbstractVector{Int64}=0:0; eta0=0.0, labelhead::AbstractString="Gauge ", loadeta::Bool=true, loadvel::Bool=false) # check args if !isdir(outputdir); error("$outputdir is not found or directory"); end files = readdir(outputdir) filter!(x->occursin(r"^gauge\d+\.txt$", x), files) if isempty(files); println("No gauge file"); return empty([], VisClaw.Gauge) end; nf = length(files) gaugeid == 0:0 && (gaugeid = 1:nf) nfload = length(gaugeid) # preallocate gauges = Vector{VisClaw.Gauge}(undef,nf) for k in gaugeid filename=joinpath(outputdir,files[k]) # read header f = open(filename,"r") header1 = readline(f) close(f) id = parse(Int64,header1[13:17]) loc = [parse(Float64,header1[30:46]), parse(Float64,header1[48:64])] # label label = labelhead*@sprintf("%d",id) if length(readlines(filename))<5 nt = 0 gauges[k] = VisClaw.Gauge(label,id,nt,loc) @warn @sprintf("No gauge data was found in Gauge %d. This may cause some errors when plotting.", id) continue end # read time-series of vars in the certain colmns dataorg = readdlm(filename, comments=true, comment_char='#') AMRlevel = convert.(Int64,dataorg[:,1]) time = convert.(Float64,dataorg[:,2]) D = convert.(Float64,dataorg[:,3]) nt = length(time) if loadvel u = convert.(Float64,dataorg[:,4])./D v = convert.(Float64,dataorg[:,5])./D else u = v = empty([0.0]) end if loadeta eta = convert.(Float64,dataorg[:,6]) eta[D.<=1e-3] .= 0.0 eta = eta.-eta0 else eta = empty([0.0]) end # instance gauges[k] = VisClaw.Gauge(label,id,nt,loc,AMRlevel,time,eta,u,v) end return gauges end ################################# loadgauge(outputdir::AbstractString, gaugeid::Integer; eta0=0.0, labelhead::AbstractString="Gauge ", loadeta::Bool=true, loadvel::Bool=false) = loadgauge(outputdir, gaugeid:gaugeid; eta0=eta0, labelhead=labelhead, loadeta=loadeta, loadvel=loadvel)
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git
[ "BSD-3-Clause" ]
0.7.8
cef0143fee828ea605960108f18eed15efb232ef
code
8944
""" topofile, topotype, ntopo = topodata("simlation/path/_output"::AbstractString) topofile, topotype, ntopo = topodata("simlation/path/_output/topo.data"::AbstractString) read topo.data """ function topodata(outdir::AbstractString) # filename filename = occursin("topo.data", basename(outdir)) ? outdir : joinpath(outdir,"topo.data") ## check args if !isfile(filename); error("$filename is not found."); end; ## read ascdata f = open(filename,"r") ascdata = readlines(f) close(f) baseline = findfirst(x->occursin("ntopofiles", x), ascdata) ntopo = parse(Int64, split(ascdata[baseline], r"\s+", keepempty=false)[1]) if ntopo == 1 topofile = replace(ascdata[baseline+2], r"[\'\s]" => "") topotype = parse(Int64, split(ascdata[baseline+3], r"\s+", keepempty=false)[1]) else # preallocate topofile = Vector{String}(undef, ntopo) topotype = Vector{Int64}(undef, ntopo) # filename for i = 1:ntopo topofile[i] = replace(ascdata[baseline-1+3i], r"[\'\s]" => "") topotype[i] = parse(Int64, split(ascdata[baseline+3i], r"\s+", keepempty=false)[1]) end end # return return topofile, topotype, ntopo end ################################# ################################# """ dtopofile, dtopotype, ndtopo = dtopodata("simlation/path/_output"::AbstractString) dtopofile, dtopotype, ndtopo = dtopodata("simlation/path/_output/dtopo.data"::AbstractString) read dtopo.data """ function dtopodata(outdir::AbstractString) # filename filename = occursin("dtopo.data", basename(outdir)) ? outdir : joinpath(outdir,"dtopo.data") ## check args if !isfile(filename); error("$filename is not found."); end; # read f = open(filename,"r") ascdata = readlines(f) close(f) baseline = findfirst(x->occursin("mdtopofiles", x), ascdata) ndtopo = parse(Int64, split(ascdata[baseline], r"\s+", keepempty=false)[1]) if ndtopo == 0; println("No mdtopofile"); return nothing, nothing, ndtopo elseif ndtopo == 1 dtopofile = replace(ascdata[baseline+3], r"[\'\s]" => "") dtopotype = parse(Int64, split(ascdata[baseline+4], r"\s+", keepempty=false)[1]) else # preallocate dtopofile = Vector{String}(undef, ndtopo) dtopotype = Vector{Int64}(undef, ndtopo) # filename for i = 1:ndtopo dtopofile[i] = replace(ascdata[baseline+3i], r"[\'\s]" => "") dtopotype[i] = parse(Int64, split(ascdata[baseline+3i+1], r"\s+", keepempty=false)[1]) end end # return return dtopofile, dtopotype, ndtopo end ################################# ################################# """ bathtopo = loadtopo(outdir::AbstractString) bathtopo = loadtopo(filename::AbstractString, topotype=3::Integer) load topography data """ function loadtopo(filename::AbstractString, topotype=3::Integer) ## from _output directory if isdir(filename) topofile, topotype, ntopo = VisClaw.topodata(filename) return VisClaw.loadtopo.(topofile, topotype) end ## check args isfile(filename) || error("file $filename is not found.") any(topotype .== [2,3,4]) || error("unsupported topotype") ## NetCDF ( filename[end-2:end] == ".nc" && topotype != 4 ) && (topotype=4) if topotype == 4 var_x, var_y, var_z = VisClaw.getvarname_nctopo(filename) x = NetCDF.ncread(filename, var_x) y = NetCDF.ncread(filename, var_y) topo = permutedims(NetCDF.ncread(filename, var_z), [2,1]) bathtopo = VisClaw.Topo(length(x), length(y), x, y, mean(diff(x)), mean(diff(x)), topo) return bathtopo end ## separator in regular expression regex = r"([+-]?(?:\d+\.?\d*|\.\d+)(?:[eE][+-]?\d+)?)" ## open topofile f = open(filename,"r") ## read header ncols = parse(Int64, match(regex, readline(f)).captures[1]) nrows = parse(Int64, match(regex, readline(f)).captures[1]) xll = parse(Float64, match(regex, readline(f)).captures[1]) yll = parse(Float64, match(regex, readline(f)).captures[1]) cellsize = parse(Float64, match(regex, readline(f)).captures[1]) nodata = match(regex, readline(f)).captures[1] ## read topography in asc dataorg = readlines(f) ## close topofile close(f) ## meshgrid x = collect(Float64, LinRange(xll, round(xll+(ncols-1)*cellsize, digits=3), ncols)) y = collect(Float64, LinRange(yll, round(yll+(nrows-1)*cellsize, digits=3), nrows)) # check topotype tmp = replace(dataorg[1], r"^\s+|,?\s+$" => "") tmp = replace(tmp, "," => " ") # for csv data tmp = split(tmp, r"\s+",keepempty=false) tmp = parse.(Float64, tmp) # topotype 2? if length(tmp) == 1 if topotype == 3; println("topotype 2?"); end topotype = 2 end # topotype 3? if length(tmp) > 1 if topotype == 2; println("topotype 3?"); end topotype = 3 end ## assign topography if topotype == 2 topo = parse.(Float64, dataorg) topo = reshape(topo, (ncols, nrows)) topo = permutedims(topo,[2 1]) elseif topotype == 3 topo = zeros(nrows, ncols) for k = 1:nrows line = replace(dataorg[k], r"^\s+|,?\s+$" => "") line = replace(line, "," => " ") # for csv data line = split(line, r"\s+",keepempty=false) topo[k,:] = parse.(Float64, line) end end topo[topo.==nodata] .= NaN ## replace nodate to NaN topo = reverse(topo, dims=1) ## flip bathtopo = VisClaw.Topo(ncols, nrows, x, y, cellsize, cellsize, topo) return bathtopo end ################################# ######################################### """ dtopo = loaddtopo(outdir::AbstractString) dtopo = loaddtopo(filename::AbstractString, topotype=3::Integer) dtopo = loaddeform(outdir::AbstractString) dtopo = loaddeform(filename::AbstractString, topotype=3::Integer) load spatial distribution of seafloor deformation (dtopo) """ function loaddeform(filename::AbstractString, topotype=3::Integer) ## from _output directory if isdir(filename) dtopofile, topotype, ntopo = VisClaw.dtopodata(filename) return VisClaw.loaddeform.(dtopofile, topotype) end ## check args if !isfile(filename); error("file $filename is not found."); end if (topotype!=2) & (topotype!=3); error("Invalid topotype"); end ## separator in regular expression regex = r"([+-]?(?:\d+\.?\d*|\.\d+)(?:[eE][+-]?\d+)?)" ## open topofile f = open(filename,"r") ## read header mx = parse(Int64, match(regex, readline(f)).captures[1]) my = parse(Int64, match(regex, readline(f)).captures[1]) mt = parse(Int64, match(regex, readline(f)).captures[1]) xlow = parse(Float64, match(regex, readline(f)).captures[1]) ylow = parse(Float64, match(regex, readline(f)).captures[1]) t0 = parse(Float64, match(regex, readline(f)).captures[1]) dx = parse(Float64, match(regex, readline(f)).captures[1]) dy = parse(Float64, match(regex, readline(f)).captures[1]) dt = parse(Float64, match(regex, readline(f)).captures[1]) ## read topography in asc dataorg = readlines(f) ## close topofile close(f) ## meshgrid x = collect(Float64, LinRange(xlow, round(xlow+(mx-1)*dx, digits=3), mx)) y = collect(Float64, LinRange(ylow, round(ylow+(my-1)*dy, digits=3), my)) # check topotype tmp = replace(dataorg[1], r"^\s+|,?\s+$" => "") # equivalent to strip? tmp = replace(tmp, "," => " ") # for csv data tmp = split(tmp, r"\s+", keepempty=false) tmp = parse.(Float64, tmp) # topotype 2? if length(tmp) == 1 if topotype == 3; println("topotype 2?"); end topotype = 2 end # topotype 3? if length(tmp) > 1 if topotype == 2; println("topotype 3?"); end topotype = 3 end ## assign topography if topotype == 2 deform = parse.(Float64, dataorg) deform = reshape(topo, (mx, my, mt)) deform = permutedims(topo,[2 1 3]) elseif topotype == 3 deform = zeros(my, mx, mt) for k = 1:mt for i = 1:my line = replace(dataorg[i+(k-1)my], r"^\s+|,?\s+$" => "") line = replace(line, "," => " ") # for csv data line = split(line, r"\s+",keepempty=false) deform[i,:,k] = parse.(Float64, line) end end end if mt==1; deform = dropdims(deform; dims=3); end deform = reverse(deform, dims=1) ## flip #deform[abs.(deform).<1e-2] .= NaN dtopo = VisClaw.DTopo(mx,my,x,y,dx,dy,mt,t0,dt,deform) return dtopo end ######################################### const loaddtopo = loaddeform #########################################
VisClaw
https://github.com/hydrocoast/VisClaw.jl.git