licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
906
# [Standard Errors](@id standard_errors) ### Setup some data ```@Example main using Unfold using UnfoldMakie, CairoMakie using UnfoldSim dat, evts = UnfoldSim.predef_eeg(; noiselevel = 10, return_epoched = true) f = @formula 0 ~ 1 + condition + continuous designDict = Dict(Any => (f, range(0, 1, length = size(dat, 1)))) ``` It is possible to specify a solver that calculates the standard errors of the estimates for a single subject as it possible for [custom solvers](@ref custom_solvers). ```@Example main se_solver = (x, y) -> Unfold.solver_default(x, y, stderror = true) m = Unfold.fit(UnfoldModel, designDict, evts, dat, solver = se_solver) results = coeftable(m) plot_erp(results; stderror = true) ``` !!! warning **In case of overlap-correction:** Use single-subject standard errors on your own risk. EEG data is autocorrelated, which means that standard errors are typically too small.
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
3205
# Basis Functions ```@setup main using CairoMakie ``` This document will give you an explanation of basis functions. We start with basis functions for fMRI because they are very popular. #### HRF / BOLD We want to define a basis function. There are currently only few basisfunctions implemented in Unfold.jl, but your imagination knows no borders! We first have a look at the BOLD-HRF basisfunction aka [Blood Oxygenation Level Dependent Hemodynamic Response Function](https://en.wikipedia.org/wiki/Blood-oxygen-level-dependent_imaging): ```@example main using Unfold, DSP TR = 1.5 # the sampling rate bold = hrfbasis(TR) # using default SPM parameters eventonset = 1.3 bold_kernel = e -> Unfold.kernel(bold, e) lines(bold_kernel(eventonset)[:,1]) # returns a matrix, thus [:, 1] ``` This is the shape that is assumed to reflect the activity for an event. Generally, we would like to know how much to scale this response shape per condition, e.g. in `condA` we might scale it by 0.7, in `condB` by 1.2. But let's start at the beginning and first simulate an fMRI signal. Then you will also appreciate why we need to deconvolve it later. ### Convolving a response shape to get a "recorded" fMRI signal We start by convolving this HRF function with an impulse vector at event onsets. ```@example main y = zeros(100) # signal length = 100 y[[10, 30, 45]] .= 0.7 # 3 events at given for condition A y[[37]] .= 1.2 # 1 events at given for condition B y_conv = conv(y, bold_kernel(0)) # convolve! lines(y_conv[:,1]) ``` Next, we would add some noise: ```@example main using Random y_conv += randn(size(y_conv)) lines(y_conv[:,1]) ``` ๐ŸŽ‰ - we did it, we simulated fMRI data. Now you can see that the conditions overlap in time. To get back to the original amplitude values, we need to specify a basis function and use Unfold to deconvolve the signals. !!! note Events can fall between TR (the sampling rate). Some packages subsample the time signal, but in `Unfold` we can call the `bold.kernel` function directly at a given event time, which allows us to use non-TR multiples. ### FIR Basis Function Okay, let's have a look at a different basis function: The FIR basisfunction. FIR stands for [Finite-Impulse-Response](https://en.wikipedia.org/wiki/Finite_impulse_response) and is a term taken from the filtering literature. ```@example main using Unfold #hide basisfunction = firbasis(ฯ„=(-0.4,.8), sfreq=50, name="myFIRbasis") fir_kernel = e -> Unfold.kernel(basisfunction, e) m = fir_kernel(0) f = Figure() f[1,1] = Axis(f) for col = 1:size(m, 2) lines!(m[:,col]) end current_figure() ``` The first thing to notice is that it is not a single basisfunction, but a set of basisfunctions. So every condition is explained by several basis functions! To make it clear better show it in 2D: ```@example main fir_kernel(0)[1:10,1:10] ``` (all `.` are `0`'s) The FIR basis set consists of multiple basis functions. That is, each event is now *time-expanded* to multiple predictors, each with a certain time delay to the event onset. This allows us to model any linear overlap shape, and doesn't force us to make assumptions about the convolution kernel, as we had to do in the BOLD case.
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
600
## Install a dev-version of Unfold In order to see and change the tutorials, you have to install a local dev-version of Unfold via: `]dev --local Unfold` This clones the `git#main` into `./dev/Unfold` ### Instantiating the documentation environment To generate documentation, we recommend to install LiveServer.jl - then you can do: ```julia using LiveServer servedocs(skip_dirs=joinpath("docs","src","generated"),literate_dir=joinpath("docs","literate")) ``` If you prefer a one-off: - activate the `./docs` folder (be sure to `]instantiate` the first time!) - run `include("docs/make.jl")`
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
1167
# Package-extensions In Julia 1.9 Package Extensions were introduced. Unfold.jl is making use of them in four ways. Prior to using some functionality, you have to add + load specific package(s) for the functionality to be available. The reason for this is, that if you don't need e.g. GPU-support, you also will not need to install it. ## MixedModels To use formulas like `@formula(0~1+condition+(1+condition|subject))` you have to load MixedModels. e.g. ```julia using MixedModels using Unfold ``` ## GPU: Krylov,CUDA To use gpu support as described in @Ref(custom_solvers) you have to: ```julia using Krylov,CUDA using Unfold ``` ## RobustSolvers.jl To use robust (outlier-"safe") solvers support as described in @Ref(custom_solvers) you have to: ```julia using RobustSolvers using Unfold ``` ## Non-linear effects: BSplineKit.jl Finally to use non-linear effects/splines like in `@formula 0~1+spl(continuous,5)` you have to use: ```julia using BSplineKit using Unfold ``` !!! note In principle you should be able to load the package after loading Unfold. But sometimes this doesnt work, a `Base.retry_load_extensions()` call might help in these situations.
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
57
```@autodocs Modules = [Unfold] Order = [:function] ```
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
53
```@autodocs Modules = [Unfold] Order = [:type] ```
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
4618
# [Mass Univariate Linear Models (no overlap correction)](@id lm_massunivariate) In this notebook we will fit regression models to simulated EEG data. We will see that we need some type of overlap correction, as the events are close in time to each other, so that the respective brain responses overlap. If you want more detailed introduction to this topic check out [our paper](https://peerj.com/articles/7838/). ## Setting up & loading the data ```@example Main using DataFrames using Unfold using UnfoldMakie, CairoMakie # for plotting using UnfoldSim using DisplayAs # hide nothing # hide ``` ## Load Data We'll start with some predefined simulated continuos EEG data. We have 2000 events, 1 channel and one condition with two levels ```@example Main data, evts = UnfoldSim.predef_eeg() nothing # hide ``` ## Inspection The data has only little noise. The underlying signal pattern is a positive-negative-positive spike. ```@example Main times_cont = range(0,length=200,step=1/100) # we simulated with 100hz for 0.5 seconds f,ax,h = plot(times_cont,data[1:200]) vlines!(evts[evts.latency .<= 200, :latency] ./ 100;color=:black) # show events, latency in samples! ax.xlabel = "time [s]" ax.ylabel = "voltage [ยตV]" f ``` To inspect the event dataframe we use ```@example Main show(first(evts, 6), allcols = true) ``` Every row is an experimental event. Note that `:latency` refers to time in samples, (in BIDS-specification, `:onset` would typically refer to seconds). ## Traditional Mass Univariate Analysis To perform a mass univariate analysis, you must complete the following steps: 1. Split data into epochs 2. Specify a formula 3. Fit a linear model to each time point & channel 4. Visualize the results. #### 1. Split data into epochs Initially, you have data with a duration that represents the whole experimental trial. You need to cut the data into small regular epochs related to the some event, e.g. start of fixation. ```@example Main # Unfold supports multi-channel, so we could provide matrix ch x time, which we can create like this from a vector: data_r = reshape(data, (1,:)) # cut the data into epochs data_epochs, times = Unfold.epoch(data = data, tbl = evts, ฯ„ = (-0.4, 0.8), sfreq = 100); # channel x timesteps x trials size(data_epochs) ``` - `ฯ„` specifies the epoch size. - `sfreq` - sampling rate, converts `ฯ„` to samples. ```@example Main typeof(data_epochs) ``` !!! note In julia, `missing` is supported throughout the ecosystem. Thus, we can have partial trials and they will be incorporated / ignored at the respective functions. Helpful functions are the julia-base `disallowmissing` and the internal `Unfold.drop_missing_epochs` functions #### 2. Specify a formula Define a formula to be applied to each time point (and each channel) relative to the event. `condition` and `continuous` are the names of the event-describing columns in `evts` that we want to use for modelling. ```@example Main f = @formula 0 ~ 1 + condition + continuous # note the formulas left side is `0 ~ ` for technical reasons` nothing # hide ``` #### 3. Fit a linear model to each time point & channel Fit the "`UnfoldModel`" (the `fit` syntax is used throughout the Julia ecosystem, with the first element indicating what kind of model to fit) ```@example Main m = fit(UnfoldModel, f, evts, data_epochs, times); nothing #hide ``` Alternative way to call this model is below. This syntax allows you to fit multiple events at once. For example, replacing `Any` with `:fixation =>...` will fit this model specifically to the fixation event type. ```@example Main m = fit(UnfoldModel, [Any=>(f, times)], evts, data_epochs); nothing #hide ``` Inspect the fitted model: ```@example Main m m|> DisplayAs.withcontext(:is_pluto=>true) # hide ``` Note these functions to discover the model: `design`, `designmatrix`, `modelfit` and most importantly, `coeftable`. !!! info There are of course further methods, e.g. `coef`, `ranef`, `Unfold.formula`, `modelmatrix` which might be helpful at some point, but not important now. Using `coeftable`, we can get a *tidy* DataFrames, very useful for your further analysis. ```@example Main first(coeftable(m), 6) ``` #### 4. Visualize the results Tidy DataFrames are easy to visualize using e.g. AlgebraOfGraphics.jl. Function `plot_erp` from `UnfoldMakie`makes it even easier. ```@example Main results = coeftable(m) plot_erp(results) ``` As you can see, there is a lot going on, even in the baseline period! This is because the signal was simulated with overlapping events. In the next tutorial you will learn how to fix this.
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
2687
# [Linear Model with Overlap Correction](@id lm_overlap) !!! note We recommend you briefly go over the mass-univariate linear modelling tutorial In this notebook we will fit regression models to (simulated) EEG data. We will see that we need some type of overlap correction, as the events are close in time to each other, so that the respective brain responses overlap. If you want more detailed introduction to this topic check out [our paper](https://peerj.com/articles/7838/). ## Setting up & loading the data ```@example Main using Unfold using UnfoldSim using UnfoldMakie,CairoMakie using DataFrames using DisplayAs # hide data, evts = UnfoldSim.predef_eeg() nothing # hide ``` ## Overlap Correction For an overlap correction analysis we will do one additional step: define a temporal basisfunction. The steps are as following: 1. specify a temporal basisfunction 2. specify a formula 3. fit a linear model for each channel (one for all timepoints!) 4. visualize the results. ## Timeexpanded / Deconvolved ModelFit #### 1. specify a temporal basisfunction By default, we would want to use a FIR basisfunction. See [Basis Functions](@ref) for more details. ```@example Main basisfunction = firbasis(ฯ„=(-0.4,.8),sfreq=100) nothing #hide ``` #### 2. specify a formula We specify the same formula as before ```@example Main f = @formula 0~1+condition+continuous nothing #hide ``` #### 3. fit the linear model The formula and basisfunction is not enough on their own. We also need to specify which event and which formula matches - this is important in cases where there are multiple events with different formulas ```@example Main bf_vec = [Any=>(f,basisfunction)] bf_vec|> DisplayAs.withcontext(:is_pluto=>true) # hide ``` !!! note The `Any` means to use all rows in `evts`. In case you have multiple events, you'd want to specify multiple basisfunctions e.g. ``` bfDict = ["stimulus"=>(f1,basisfunction1), "response"=>(f2,basisfunction2)] ``` You likely have to specify a further argument to `fit`: `eventcolumn="type"` with `type` being the column in `evts` that codes for the event (stimulus / response in this case) Now we are ready to fit a `UnfoldLinearModel`. Not that instead of `times` as in the mass-univariate case, we have to provide the `BasisFunction` type now. ```@example Main m = fit(UnfoldModel,bf_vec,evts,data); nothing #hide ``` #### 4. Visualize the model Similarly to the previous tutorial, we can visualize the model ```@example Main results = coeftable(m) plot_erp(results) ``` Cool! All overlapping activity has been removed and we recovered the simulated underlying signal.
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
2335
# [Mass Univariate Linear Mixed Models](@id lmm_massunivariate) ```@example Main using Unfold using UnfoldSim using MixedModels # important to load to activate the UnfoldMixedModelsExtension using UnfoldMakie, CairoMakie # plotting using DataFrames using CategoricalArrays nothing;#hide ``` !!! important You have to run `using MixedModels` before or after loading Unfold to activate the MixedModels abilities! This notebook is similar to the [Mass Univariate Linear Models (no overlap correction) tutorial](@ref lm_massunivariate), but fits mass-univariate *mixed* models - that is, one model over all subjects, instead of one model per subject. This allows to include item effects, for example. ## Mass Univariate **Mixed** Models Again we have 4 steps: 1. Split data into epochs 2. Specify a formula 3. Fit a linear model to each time point & channel 4. Visualize the results. #### 1. Epoching ```@example Main data, evts = UnfoldSim.predef_eeg(10; return_epoched = true) # simulate 10 subjects data = reshape(data, 1, size(data, 1), :) # concatenate the data into a long EEG dataset times = range(0, length = size(data, 2), step = 1 / 100) transform!(evts, :subject => categorical => :subject); # :subject must be categorical, otherwise MixedModels.jl complains nothing #hide ``` The `events` dataFrame has an additional column (besides being much taller): `subject` ```@example Main first(evts, 6) ``` #### 2. Formula specification We define the formula. Importantly, we need to specify a random effect. We use `zerocorr` to speed up the calculation. ```@example Main f = @formula 0 ~ 1 + condition * continuous + zerocorr(1 + condition * continuous | subject); nothing #hide ``` #### 3. Model fitting We can now run the LinearMixedModel at each time point. ```@example Main m = fit(UnfoldModel, f, evts, data, times) nothing #hide ``` #### 4. Visualization of results Let's start with the **fixed** effects. We see the condition effects and some residual overlap activity in the fixed effects. ```@example Main results = coeftable(m) res_fixef = results[isnothing.(results.group), :] plot_erp(res_fixef) ``` And now comes the **random** effect: ```@example Main res_ranef = results[results.group .== :subject, :] plot_erp(res_ranef) ``` ### Statistics Check out the [LMM p-value tutorial](@ref lmm_pvalues)
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
2161
# [Overlap Correction with Linear Mixed Models](@id lmm_overlap) ```@example Main using Unfold using UnfoldSim using CategoricalArrays using MixedModels using UnfoldMakie, CairoMakie using DataFrames nothing;#hide ``` This notebook is similar to the Linear Model with Overlap Correction tutorial, but fits **mixed** models with overlap correction !!! warning **Limitation**: This functionality is not ready for general use. There are still a lot of things to find out and tinker with. Don't use this if you haven't looked under the hood of the toolbox! Be aware of crashes / timeouts for non-trivial problems ## Get some data ```@example Main dat, evts = UnfoldSim.predef_2x2(; signalsize=20, n_items=16, n_subjects=16) # We also need to fix the latencies, they are now relative to 1:size(data, 1), but we want a continuous long EEG. subj_idx = [parse(Int, split(string(s), 'S')[2]) for s in evts.subject] evts.latency .+= size(dat, 1) .* (subj_idx .- 1) dat = dat[:] # we need all data concatenated over subjects evts.subject = categorical(Array(evts.subject)) nothing #hide ``` ## Linear **Mixed** Model Continuous Time Again we have 4 steps: 1. Specify a temporal basisfunction 2. Specify a formula 3. Fit a linear model for each channel (one model for all timepoints!) 4. Visualize the results. #### 1. Specify a temporal basisfunction By default, we would want to use a FIR basis function. See [Basis Functions](@ref) for more details. ```@example Main basisfunction = firbasis(ฯ„=(-0.4, .8), sfreq=20, name="stimulus") nothing #hide ``` #### 2. Specify the formula Define the formula and specify a random effect. !!! note We use `zerocorr` to prevent the model from computing all correlations between all timepoints and factors. ```@example Main f = @formula 0 ~ 1 + A *B + zerocorr(1 + A*B|subject); ``` #### 3. Fit the model ```@example Main bfDict = Dict(Any=>(f, basisfunction)) # Skipping this tutorial for now due to a significant error. m = fit(UnfoldModel, bfDict, evts, dat) results = coeftable(m) first(results, 6) ``` #### 4. Visualize results ```@example Main plot_erp(results; mapping=(; col = :group)) ```
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.7.6
14faed094d3728f4e549b6fbc4b38b9b8c6a4a99
docs
46
- Case 1a: eventA: y~1 (without overlap) -
Unfold
https://github.com/unfoldtoolbox/Unfold.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
code
642
execute = isempty(ARGS) || ARGS[1] == "run" using Literate lit = joinpath(@__DIR__, "lit") src = joinpath(@__DIR__, "src") gen = joinpath(@__DIR__, "src/generated") for (root, _, files) in walkdir(lit), file in files splitext(file)[2] == ".jl" || continue # process .jl files only ipath = joinpath(root, file) opath = splitdir(replace(ipath, lit => gen))[1] Literate.markdown(ipath, opath, documenter = execute) Literate.notebook(ipath, opath; execute = false) end # functions ismd(f) = splitext(f)[2] == ".md" pages(folder) = [joinpath("generated/", folder, f) for f in readdir(joinpath(gen, folder)) if ismd(f)]
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
code
947
using EPGsim using Documenter, Literate # Generates examples with literate (removed) #include("generate_lit.jl") DocMeta.setdocmeta!(EPGsim, :DocTestSetup, :(using EPGsim); recursive=true) makedocs(; modules=[EPGsim], authors="aTrotier <a.trotier@gmail.com> and contributors", repo="https://github.com/aTrotier/EPGsim.jl/blob/{commit}{path}#{line}", sitename="EPGsim.jl", doctest = true, format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://aTrotier.github.io/EPGsim.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", "Regular EPG " => "regular.md", #"Test literate" => "generated/01-autoDiff.md", # generated from literate "Automatic Differentiation" => "AD.md", "API" => "API.md", ], ) deploydocs(; repo="github.com/aTrotier/EPGsim.jl", devbranch="main", )
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
code
2438
#--------------------------------------------------------- # # [Automatic Differentiation](@id 01-autoDiff) #--------------------------------------------------------- #= ## Description This example described how to use Automatic Differentiation with the package **ForwardDiff.jl** on a Multi-Echo Spin-Echo (MESE) sequence. =# # ## Setup using CairoMakie using EPGsim using ForwardDiff # ## MESE function # First we need a function that returns the echo amplitudes at n*TE. # We need to make sure that the EPGStates object will have a type Complex{T} where T can # be a Float or a Dual number used by `ForwardDiff` function MESE_EPG(T2,T1,TE,ETL,delta) T = complex(eltype(T2)) E = EPGStates([T(0.0)],[T(0.0)],[T(1.0)]) echo_vec = Vector{Complex{eltype(T2)}}() E = epgRotation(E,pi/2*delta, pi/2) ##loop over refocusing-pulses for i = 1:ETL E = epgDephasing(E,1) E = epgRelaxation(E,TE,T1,T2) E = epgRotation(E,pi*delta,0.0) E = epgDephasing(E,1) push!(echo_vec,E.Fp[1]) end return abs.(echo_vec) end # Let's see if we can see a Tโ‚‚ decaying exponential curve with Bโ‚=1.0 T2 = 60.0 T1 = 1000.0 TE = 7 ETL = 50 deltaB1 = 1 TE_vec = range(7,50*7,50) amp = MESE_EPG(T2,T1,TE,ETL,deltaB1) j = ForwardDiff.jacobian(x -> MESE_EPG(x,T1,TE,ETL,deltaB1),[60.0]) lines(TE_vec,amp) #= The derivative of the function f: $$f(x) = \exp(-\frac{TE}{T_2})$$ according to the variable Tโ‚‚ gives : =# df = TE_vec .* exp.(-TE_vec./T2)./(T2^2) lines(TE_vec,df,axis =(;title = "dS/dT2", xlabel="TE [ms]")) # ## perform AD j = ForwardDiff.jacobian(x -> MESE_EPG(x,T1,TE,ETL,deltaB1),[T2]) # ## Reproducibility # ## Derivation along multiple parameters function MESE_EPG2(T2T1,TE,ETL,delta) T2,T1 = T2T1 T = complex(eltype(T2)) E = EPGStates([T(0.0)],[T(0.0)],[T(1.0)]) echo_vec = Vector{Complex{eltype(T2)}}() E = epgRotation(E,pi/2*delta, pi/2) ##loop over refocusing-pulses for i = 1:ETL E = epgDephasing(E,1) E = epgRelaxation(E,TE,T1,T2) E = epgRotation(E,pi*delta,0.0) E = epgDephasing(E,1) push!(echo_vec,E.Fp[1]) end return abs.(echo_vec) end j2 = ForwardDiff.jacobian(x -> MESE_EPG2(x,TE,ETL,deltaB1),[T2,T1]) # This page was generated with the following version of Julia: using InteractiveUtils io = IOBuffer(); versioninfo(io); split(String(take!(io)), '\n') # And with the following package versions import Pkg; Pkg.status()
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
code
44
module EPGsim include("RegularEPG.jl") end
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
code
4642
export epgDephasing!,epgRelaxation!,epgRotation!, epgThreshold! export rfRotation export EPGStates, getStates """ EPGStates{T <: Real} Stores the EPG states in 3 vectors Fp,Fn and Z. # Constructors : EPGStates(Fp::Vector{Complex{S}},Fn::Vector{Complex{S}},Z::Vector{Complex{S}}) where {S <: Real} EPGStates(Fp::T=0,Fn::T=0,Z::T=1) where T <: Number # Fields - `Fp::Vector{Complex{T}}` - `Fn::Vector{Complex{T}}` - `Z::Vector{Complex{T}}` # Related functions - `getStates(E::EPGStates)` : extract EPG states as matrix 3xN """ mutable struct EPGStates{T <: Real} Fp::Vector{Complex{T}} Fn::Vector{Complex{T}} Z::Vector{Complex{T}} function EPGStates(Fp::Vector{Complex{S}},Fn::Vector{Complex{S}},Z::Vector{Complex{S}}) where {S <: Real} if Fp[1] != conj(Fn[1]) error("Fp[1] should be complex conjugate to Fn[1]") end if imag(Z[1]) != 0 error("imaginary part of Z[1] should be equal to 0") end return new{S}(Fp,Fn,Z) end end """ getStates(E::EPGStates) Extract EPG states as matrix 3xN """ function EPGStates(Fp::T=0,Fn::T=0,Z::T=1) where T <: Number T2 = ComplexF64 return EPGStates(T2.([Fp]),T2.([Fn]),T2.([Z])) end function getStates(E::EPGStates) return stack([E.Fp,E.Fn,E.Z],dims=1) end function Base.show(io::IO, E::EPGStates{T} ) where {T} println(io, "EPGStates struct with fields : Fp, Fn, Z") display(getStates(E)) end """ epgDephasing!(E::EPGStates, n=1) where T shifts the transverse dephasing states `F` corresponding to n dephasing-cycles. n can be any integer """ function epgDephasing!(E::EPGStates, n::Int=1,threshold::Real=10e-6) if(abs(n)>1) for i in 1:abs(n) E = epgDephasing!(E, (n > 0 ? +1 : -1)) end elseif(n == 1 || n == -1) push!(E.Fp,0) push!(E.Fn,0) push!(E.Z,0) if n == 1 E.Fp[:] = circshift(E.Fp,+1)# Shift positive F states right E.Fn[:] = circshift(E.Fn,-1) # Shift negative F* states left # Update extremal states: F_{+0} using F*_{-0}, F*_{-max+1}=0 E.Fp[1] = conj(E.Fn[1]); E.Fn[end] = 0; else # E.Fp[:] = circshift(E.Fp,-1)# Shift positive F states right E.Fn[:] = circshift(E.Fn,+1) # Shift negative F* states left # Update extremal states: F_{+0} using F*_{-0}, F*_{-max+1}=0 E.Fn[1] = conj(E.Fp[1]); E.Fp[end] = 0; end end E = epgThreshold!(E,threshold) return E end #= function epgDephasing(E::EPGStates, n::Int,threshold::Real) E = epgDephasing(E, n) E = epgThreshold(E,threshold) end =# function epgThreshold!(E::EPGStates,threshold::Real) thresholdยฒ=threshold^2 for i in length(E.Fp):-1:2 if abs.(E.Fp[i]^2 + E.Fn[i]^2 + E.Z[i]^2) < thresholdยฒ pop!(E.Fp) pop!(E.Fn) pop!(E.Z) else return E end end return E end """ epgRelaxation!(E::EPGStates,t,T1, T2) applies relaxation matrices to a set of EPG states. # Arguments * `E::EPGStates` * `t::AbstractFloat` - length of time interval * `T1::AbstractFloat` - T1 * `T2::AbstractFloat` - T2 """ function epgRelaxation!(E::EPGStates,t,T1, T2) @. E.Fp = exp(-t/T2) * E.Fp @. E.Fn = exp(-t/T2) * E.Fn @. E.Z[2:end] = exp(-t/T1) * E.Z[2:end] E.Z[1] = exp.(-t./T1) * (E.Z[1]-1.0) + 1.0 return E end """ rfRotation(alpha, phi=0.) returns the rotation matrix for a pulse with flip angle `alpha` and phase `phi`. # Arguments * `alpha` - flip angle (radian) * `phi=0.` - phase of the flip angle (radian) """ function rfRotation(alpha, phi=0.) R = [ cos(alpha/2.)^2 exp(2*im*phi)*sin(alpha/2.)^2 -im*exp(im*phi)*sin(alpha); exp(-2*im*phi)*sin(alpha/2.)^2 cos(alpha/2.)^2 im*exp(-im*phi)*sin(alpha); -im/2 .*exp(-im*phi)*sin(alpha) im/2 .*exp(im*phi)*sin(alpha) cos(alpha) ] end """ epgRotation!(E::EPGStates, alpha::Float64, phi::Float64=0.0) applies Bloch-rotation (<=> RF pulse) to a set of EPG states. # Arguments * `E::EPGStates`` * `alpha::Float64` - flip angle of the RF pulse (rad) * `phi::Float64=0.0` - phase of the RF pulse (rad) """ function epgRotation!(E::EPGStates, alpha::Real, phi::Real=0.0) R = rfRotation(alpha, phi) epgRotation!(E, R) return E end """ epgRotation!(E::EPGStates, R::Matrix) applies rotation matrix from `rfRotation` function to the EPGStates # Arguments * `E::EPGStates`` * `R::Matrix` - rotation Matrix (rad) """ function epgRotation!(E::EPGStates, R::Matrix) # apply rotation to all states per default n = length(E.Z) # numStates for i = 1:n E.Fp[i],E.Fn[i],E.Z[i] = R*[E.Fp[i]; E.Fn[i]; E.Z[i]] end return E end
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
code
156
using EPGsim using Test using ForwardDiff using BenchmarkTools @testset "EPGsim.jl" begin include("epg/test_regular.jl") include("test_AD.jl") end
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
code
787
using ForwardDiff function MESE_EPG(T2,T1,TE,ETL,delta) T = eltype(complex(T2)) E = EPGStates([T(0.0)],[T(0.0)],[T(1.0)]) echo_vec = Vector{Complex{eltype(T2)}}() epgRotation!(E,pi/2*delta, pi/2) # loop over refocusing-pulses for i = 1:ETL epgDephasing!(E,1) epgRelaxation!(E,TE,T1,T2) epgRotation!(E,pi*delta,0.0) epgDephasing!(E,1) push!(echo_vec,E.Fp[1]) end return abs.(echo_vec) end @testset "EPG-AD" begin #amp = MESE_EPG(60.0,1000.0,7,50,1) # Not used T2 = 60.0 T1 = 1000.0 TE = 7.0 ETL = 50 deltaB1 = 1.0 # analytic gradient TE_vec = TE:TE:TE*50 df = TE_vec .* exp.(-TE_vec./60.0)./(60^2) # Automatic differentiation j = ForwardDiff.jacobian(x -> MESE_EPG(x,T1,TE,ETL,deltaB1),[60.0]) @test vec(abs.(j)) โ‰ˆ df end
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
code
2753
function MESE_EPG_thresh(T2,T1,TE,ETL,delta,thresh) T = eltype(complex(T2)) E = EPGStates([T(0.0)],[T(0.0)],[T(1.0)]) echo_vec = Vector{Complex{eltype(T2)}}() epgRotation!(E,pi/2*delta, pi/2) # loop over refocusing-pulses R = rfRotation(pi*delta,0.0) for i = 1:ETL epgDephasing!(E,1,thresh) epgRelaxation!(E,TE,T1,T2) epgRotation!(E,R) epgDephasing!(E,1,thresh) push!(echo_vec,E.Fp[1]) end return abs.(echo_vec) end @testset "EPG" begin # test empty E=EPGStates() @test E.Fp == [0] && E.Fn == [0] && E.Z == [1] # test initialization @test_throws "Fp[1] should be complex conjugate to Fn[1]" E=EPGStates(1+2im,1+0im,1+0im) @test_throws "imaginary part of Z[1] should be equal to 0" E=EPGStates(1+2im,1-2im,1+2im) # test pulse E=EPGStates() epgRotation!(E,deg2rad(47),deg2rad(23)) @test getStates(E) โ‰ˆ [ 0.2857626571584661 - im*0.6732146319308543, 0.2857626571584661 + im*0.6732146319308543, 0.6819983600624985] #test positive gradient epgDephasing!(E,1) @test getStates(E) โ‰ˆ [[0, 0, 0.6819983600624985];; [0.2857626571584661 - im * 0.6732146319308543, 0, 0]] # test negative gradient E = EPGStates() epgRotation!(E,deg2rad(47),deg2rad(23)) epgDephasing!(E,-1) @test getStates(E) โ‰ˆ [[0, 0, 0.6819983600624985];; [0, 0.2857626571584661 + im * 0.6732146319308543, 0]] # test multiple gradient E = EPGStates() epgRotation!(E,deg2rad(47),deg2rad(23)) epgDephasing!(E,-2) epgRotation!(E,deg2rad(47),deg2rad(23)) epgDephasing!(E,1) @test getStates(E) โ‰ˆ [[0, 0, 0.4651217631279373];; [0.19488966354917586-im*0.45913127494692113, 0.240326160353821+im*0.5661729534388877,0];; [0, 0, -0.26743911843603135];; [-0.045436496804645087+im*0.10704167849196657, 0, 0]] # test relaxation E = EPGStates() epgRotation!(E,deg2rad(47),deg2rad(23)) epgDephasing!(E,1) epgRelaxation!(E,10,1000,100) @test getStates(E) โ‰ˆ [[0, 0, 0.6851625292479138];; [0.2585687448743616 - im*0.6091497893403431, 0, 0]] # test threshold E = EPGStates([0+0*im,0+0.5im,0+0.01im],[0+0*im,0+0.5im,0+0.01im],[1+0*im,0+0im,0+0.0im]) epgDephasing!(E,1,10e-2) @test getStates(E) โ‰ˆ [[0-0.5im, 0+0.5im, 1];; [0, 0+0.01im, 0];; [0.5im, 0,0]] # benchmark b = @benchmark MESE_EPG_thresh(60.0,1000.0,7.0,50,0.9,0.0) @info "without threshold (0.0) :\n time = $(median(b).time/1000) us\n memory = $(median(b).memory)\n allocs = $(median(b).allocs)\n gctimes = $(median(b).gctime) ns\n" b = @benchmark MESE_EPG_thresh(60.0,1000.0,7.0,50,0.9,10e-6) @info "With threshold 10e-6 :\n time = $(median(b).time/1000) us\n memory = $(median(b).memory)\n allocs = $(median(b).allocs)\n gctimes = $(median(b).gctime) ns\n" end
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
docs
1062
# EPGsim [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://aTrotier.github.io/EPGsim.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://aTrotier.github.io/EPGsim.jl/dev/) [![Build Status](https://github.com/aTrotier/EPGsim.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/aTrotier/EPGsim.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/aTrotier/EPGsim.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/aTrotier/EPGsim.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) This package is inspired by [SYCOMORE](https://sycomore.readthedocs.io/) with the intention to use Automatic differentiation (with ForwardDiff.jl) Take a look at the [documentation](https://atrotier.github.io/EPGsim.jl/dev/). ## TO DO list : - Delete states with amplitude < defined threshold or number of states (implemented in epgDephasing ??) - discrete / discrete 3D - Diffusion - Magnetization Transfer
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
docs
4276
# Automatic differentiation This page shows how to use Automatic Differentiation in combination with an EPG simulation. The AD package tested is [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl), maybe it works with others with some minor modification to the following code. ## Load package ```@example AD using EPGsim, ForwardDiff, CairoMakie ``` ## Building signal function ```@example AD function MESE_EPG(T2,T1,TE,ETL,delta) T = eltype(complex(T2)) E = EPGStates([T(0.0)],[T(0.0)],[T(1.0)]) echo_vec = Vector{Complex{eltype(T2)}}() E = epgRotation(E,pi/2*delta, pi/2) # loop over refocusing-pulses for i = 1:ETL E = epgDephasing(E,1) E = epgRelaxation(E,TE,T1,T2) E = epgRotation(E,pi*delta,0.0) E = epgDephasing(E,1) push!(echo_vec,E.Fp[1]) end return abs.(echo_vec) end; ``` !!! warning "Specific types with AD" ForwardDiff use a specific type : `Dual <: Real`. The target function must be written generically enough to accept numbers of type T<:Real as input (or arrays of these numbers). We also need to create an EPGStates that is of that type. We need to force it to be complex : ```julia T = eltype(complex(T2)) E = EPGStates([T(0.0)],[T(0.0)],[T(1.0)]) ``` ## Define parameters for simulation and run it ```@example AD T2 = 60.0 T1 = 1000.0 TE = 7 ETL = 50 deltaB1 = 1 TE_vec = range(TE,TE*ETL,ETL) amp = MESE_EPG(T2,T1,TE,ETL,deltaB1) lines(TE_vec,abs.(amp),axis =(;title = "MESE Signal", xlabel="TE [ms]")) ``` As expected, we get a standard T2 decaying exponential curve : $$S(TE) = exp(-TE/T_2)$$ We can analytically derive the equation according to $T_2$ : $$\frac{\partial S}{\partial T_2} = \frac{TE}{T_2^2} exp(-TE/T_2)$$ which give the following curves: ```@example AD df = TE_vec .* exp.(-TE_vec./T2)./(T2^2) lines(TE_vec,abs.(df),axis =(;title = "dS/dT2", xlabel="TE [ms]")) ``` ## Find the derivative with Automatic Differentiation Because we want to obtain the derivate at multiple time points (TE), we will use `ForwardDiff.jacobian` : ```@example AD j = ForwardDiff.jacobian(x -> MESE_EPG(x,T1,TE,ETL,deltaB1),[T2]) ``` Let's compare it to the analytical equation : ```@example AD f=Figure() ax = Axis(f[1,1],title ="Analytic vs Automatic Differentiation") lines!(ax,TE_vec,abs.(df),label = "Analytic Differentiation",linewidth=3) lines!(ax,TE_vec,abs.(vec(j)),label = "Automatic Differentiation",linestyle=:dash,linewidth=3) axislegend(ax) f ``` Of course, in that case we don't really need the AD possibility. But if we reduce the B1+ value the equation becomes complicated enough and might lead to error during derivation if we don't use AD. ```@example AD deltaB1 = 0.8 amp = MESE_EPG(T2,T1,TE,ETL,deltaB1) j = ForwardDiff.jacobian(x -> MESE_EPG(x,T1,TE,ETL,deltaB1),[T2]) f = Figure() ax = Axis(f[1,1], title = "MESE signal with B1 = $(deltaB1)",xlabel="TE [ms]") lines!(ax,TE_vec,abs.(amp)) ax = Axis(f[1,2], title = "AD of MESE signal with B1 = $(deltaB1)",xlabel="TE [ms]") lines!(ax,TE_vec,df) f ``` ## Differentiation along multiple variables If we want to obtain the derivation along T1 and T2 we need to change the EPG_MESE function. The function should take as input a vector containing T2 and T1 (here noted T2/T1) : ```@example AD function MESE_EPG2(T2T1,TE,ETL,delta) T2,T1 = T2T1 T = complex(eltype(T2)) E = EPGStates([T(0.0)],[T(0.0)],[T(1.0)]) echo_vec = Vector{Complex{eltype(T2)}}() E = epgRotation(E,pi/2*delta, pi/2) ##loop over refocusing-pulses for i = 1:ETL E = epgDephasing(E,1) E = epgRelaxation(E,TE,T1,T2) E = epgRotation(E,pi*delta,0.0) E = epgDephasing(E,1) push!(echo_vec,E.Fp[1]) end return abs.(echo_vec) end j2 = ForwardDiff.jacobian(x -> MESE_EPG2(x,TE,ETL,deltaB1),[T2,T1]) ``` Here we can see that the second column corresponding to T1 is equal to 0 which is expected for a MESE sequence and the derivative along T2 gives the same results : ```@example AD j2[:,1] โ‰ˆ vec(j) ``` ## Reproducibility This page was generated with the following version of Julia: ```@example AD using InteractiveUtils io = IOBuffer(); versioninfo(io); split(String(take!(io)), '\n') ``` And with the following package versions ```@example AD import Pkg; Pkg.status() ```
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
docs
51
```@index ``` ```@autodocs Modules = [EPGsim] ```
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
docs
1749
```@meta CurrentModule = EPGsim ``` # EPGsim *Extended Phase Graph simulation* ## Introduction EPGsim is a Julia packet for magnetic resonance imaging signal simulation based on the Extended Phase Graph (EPG) concept. The principal aspect of this package was to make it compatible with Automatic Differentiation using `ForwardDiff.jl` in order to compute [Cramรฉr-Rao Lower Bound](https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound) metrics which is used to optimized sequence protocol. !!! note EPGsim.jl is work in progress and in some parts not entirely optimized. The interface is susceptible to change between version ## EPG concept Introduction to the physics concepts behing EPG as well as their usage can be found on the rad229 youtube channels by Brian Hargreaves and Daniel Ennis : - [Lecture-04A: Definition of the Extended Phase Graph Basis](https://www.youtube.com/watch?v=bskhnaoJVNY) - [Lecture-04B: Sequence Operations in the Extended Phase Graph Domain](https://www.youtube.com/watch?v=kToL-9ZTzCs) - [Lecture-04C: Examples using Extended Phase Graphs](https://www.youtube.com/watch?v=O9JH2f6c3cs) ## Installation This package is currently not registered. Start julia and open the package mode by entering `]`. Then enter ```julia add https://github.com/aTrotier/EPGsim.jl ``` This will install `EPGsim` and all its dependencies. If you want to develop `EPGsim` itself you can checkout `EPGsim` by calling ```julia dev https://github.com/aTrotier/EPGsim.jl ``` More information on how to develop a package can be found in the Julia documentation. ## Tutorial You can find an example about simulation of a Multi-Echo Spin-Echo sequence and its derivation [here](https://atrotier.github.io/EPGsim.jl/dev/AD/)
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
0.1.1
e69f401fe78acaeed205e459c4b513335283fb1c
docs
1962
EPG implementation that mimics the regular implementation from Julien Lamy in [Sycomore](https://github.com/lamyj/sycomore/blob/master/src/sycomore/epg/Regular.cpp#L342) # Short description Regular implementation use a constant positive or negative gradient dephasing. We use a vector Fp, Fn and Z to store the states. # Initialization EPG states are stored as a structure : ``` mutable struct EPGStates{T <: Real} Fp::Vector{Complex{T}} Fn::Vector{Complex{T}} Z::Vector{Complex{T}} end ``` which can be initialized with default parameters Fp = 0, Fn = 0 and Z = 1 states using : ```@example Regular using EPGsim E = EPGStates() ``` or by : ```@example Regular E = EPGStates(0,0,1) ``` which convert any numbers of the same types in `Vector{ComplexF64}` or directly by passing `Vector{Complex{T}} where {T <: Real}` which means it can accept a complex{dual} type : ```@example Regular T = ComplexF32 E = EPGStates(T.([0.5+0.5im,1]),T.([0.5-0.5im,0]),T.([1,0])) ``` !!! Note Julia is a one based indexing language. Fp[1]/Fn[1]/Z[1] store the echo and correspond to the states commonly named $F_0^+$ / $F_0^-$ $Z_0$ !!! warning the F+[1] and F-[1] states should be complex conjugate and imag(Z[1])=0 # EPG simulation 3 functions are used to simulate a sequence : - epgDephasing - epgRelaxation - epgRotation They take an `EPGStates` struct as first parameter. ```@example Regular E = EPGStates() E = epgRotation(E,deg2rad(60),0) E = epgDephasing(E,1) E = epgRotation(E,deg2rad(60),deg2rad(117)) ``` !!! note Currently, all the EPGstates are stored and used for calculation. The states equal or really close to zero are not deleted # Accessing states States can seen directly as a vector : ```@example Regular E.Fp ``` or by elements : ```@example Regular E.Fp[2] ``` `getStates` is also available to create a 3xN matrix where 3 corresponds to Fp,Fn,Z and N is the number of states. ```@example Regular getStates(E) ```
EPGsim
https://github.com/aTrotier/EPGsim.jl.git
[ "MIT" ]
1.0.0
d7c29668b00abd0ee5f28180a10b7fe8b8cd8155
code
2069
module SuffixArrays export suffixsort, lcp const CodeUnits = Union{UInt8,UInt16} const IndexTypes = Union{Int8,Int16,Int32,Int64} const IndexVector = AbstractVector{<:IndexTypes} include("sais.jl") function suffixsort(V::AbstractVector{U}, base::Integer=1) where {U<:CodeUnits} 0 โ‰คย base || throw(ArgumentError("unsupported negative indexing base: $base")) n = length(V) # unsigned index type to return T = n+base-1 โ‰ค typemax(UInt8) ? UInt8 : n+base-1 โ‰ค typemax(UInt16) ? UInt16 : n+base-1 โ‰ค typemax(UInt32) ? UInt32 : UInt64 n โ‰คย 1 && return fill(T(base), n) # signed index type for algorithm S = n โ‰ค typemax(Int8) ? Int8 : n โ‰ค typemax(Int16) ? Int16 : n โ‰ค typemax(Int32) ? Int32 : Int64 if sizeof(T) == sizeof(S) I = zeros(T, n) sais(V, reinterpret(S, I), 0, n, Int(typemax(U))+1, false) base โ‰  0 && (I .+= base) return I else I = zeros(S, n) sais(V, I, 0, n, Int(typemax(U))+1, false) Iโ€ฒ = Vector{T}(undef, n) @inbounds for (i, x) in enumerate(I) Iโ€ฒ[i] = (x + base) % T end return Iโ€ฒ end end function suffixsort(s::AbstractString, base::Integer=1) return suffixsort(codeunits(s), base) end """ lcp(sa, s[, base]) Compute the longest common prefix (LCP) array from the suffix array `sa` associated with sequence `s`. reference: Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its Applications Kasai et. al. http://web.cs.iastate.edu/~cs548/references/linear_lcp.pdf """ function lcp(sa, V::AbstractVector{U}, base::Integer=1) where {U<:CodeUnits} pos = sa .+ (1-base) n = length(pos) lcparr = similar(pos) rank = invperm(pos) h = 0 for i in 1:n if rank[i] == 1 continue end j = pos[rank[i]-1] maxh = n - max(i, j) while h <= maxh && V[i+h] == V[j+h] h += 1 end lcparr[rank[i]] = h h = max(h-1, 0) end lcparr[1] = 0 lcparr end end # module
SuffixArrays
https://github.com/JuliaCollections/SuffixArrays.jl.git
[ "MIT" ]
1.0.0
d7c29668b00abd0ee5f28180a10b7fe8b8cd8155
code
10310
#= * sais * Copyright (c) 2008-2010 Yuta Mori All Rights Reserved. * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. =# struct IntVector <: AbstractVector{Int} vec::Array{Int,1} off::Int end Base.size(v::IntVector) = (length(v.vec)-v.off,) Base.getindex(v::IntVector, key) = v.vec[v.off+Int(key)] Base.setindex!(v::IntVector, value, key) = v.vec[v.off+Int(key)] = value # TODO: # - refactor code to simplify # - build user interface for string operations function getcounts(T::AbstractVector{<:Integer}, C::IntVector, n::Int, k::Int) for i = 1:k C[i] = 0 end for i = 1:n C[T[i]+1] += 1 end end function getbuckets(C::IntVector, B::IntVector, k::Int, isend::Bool) s = 0 if isend != false for i = 1:k s += C[i] B[i] = s end else for i = 1:k s += C[i] B[i] = s - C[i] end end end function sais( T::AbstractVector{<:Integer}, SA::IndexVector, fs::Int, n::Int, k::Int, isbwt::Bool, ) pidx = 0 flags = 0 if k <= 256 C = IntVector(zeros(Int, k), 0) if k <= fs B = IntVector(SA, n + fs - k) flags = 1 else B = IntVector(zeros(Int, k), 0) flags = 3 end elseif k <= fs C = IntVector(SA, n + fs - k) if k <= fs - k B = IntVector(SA, n + fs - 2k) flags = 0 elseif k <= 1024 B = IntVector(zeros(Int, k), 0) flags = 2 else B = C flags = 8 end else C = B = IntVector(zeros(Int, k), 0) flags = 4 | 8 end # stage 1 getcounts(T, C, n, k) getbuckets(C, B, k, true) for i = 1:n SA[i] = 0 end b = -1 i = j = n m = 0 c0 = c1 = T[n] i -= 1 while 1 <= i && ((c0 = T[i]) >= c1) c1 = c0 i -= 1 end while 1 <= i c1 = c0 i -= 1 while 1 <= i && ((c0 = T[i]) <= c1) c1 = c0 i -= 1 end if 1 <= i 0 <= b && (SA[b+1] = j) b = (B[c1+1] -= 1) j = i - 1 m += 1 c1 = c0 i -= 1 while 1 <= i && ((c0 = T[i]) >= c1) c1 = c0 i -= 1 end end end if 1 < m LMSsort(T, SA, C, B, n, k) name = LMSpostproc(T, SA, n, m) elseif m == 1 SA[b+1] = j + 1 name = 1 else name = 0 end # stage 2 if name < m newfs = n + fs - 2m if flags & (1 | 4 | 8) == 0 if (k + name) <= newfs newfs -= k else flags |= 8 end end j = 2m + newfs for i = (m+(n>>1)):-1:(m+1) if SA[i] != 0 SA[j] = SA[i] - 1 j -= 1 end end RA = IntVector(SA, m + newfs) sais(RA, SA, newfs, m, name, false) i = n j = 2m c0 = c1 = T[n] while 1 <= (i -= 1) && ((c0 = T[i]) >= c1) c1 = c0 end while 1 <= i c1 = c0 while 1 <= (i -= 1) && ((c0 = T[i]) <= c1) c1 = c0 end if 1 <= i SA[j] = i j -= 1 c1 = c0 while 1 <= (i -= 1) && ((c0 = T[i]) >= c1) c1 = c0 end end end for i = 1:m SA[i] = SA[m + SA[i] + 1] end if flags & 4 != 0 C = B = IntVector(zeros(Int, k), 0) end if flags & 2 != 0 B = IntVector(zeros(Int, k), 0) end end # stage 3 flags & 8 != 0 && getcounts(T, C, n, k) if 1 < m getbuckets(C, B, k, true) i = m - 1 j = n p = SA[m] c1 = T[p+1] while true c0 = c1 q = B[c0+1] while q < j j -= 1 SA[j+1] = 0 end while true j -= 1 SA[j+1] = p i -= 1 i < 0 && break p = SA[i+1] c1 = T[p+1] c1 != c0 && break end i < 0 && break end while 0 < j j -= 1 SA[j+1] = 0 end end if isbwt == false induceSA(T, SA, C, B, n, k) else computeBWT(T, SA, C, B, n, k) end return SA end function LMSsort( T::AbstractVector{<:Integer}, SA::IndexVector, C::IntVector, B::IntVector, n::Int, k::Int, ) C == B && getcounts(T, C, n, k) getbuckets(C, B, k, false) j = n - 1 c1 = T[j+1] b = B[c1+1] j -= 1 SA[b+1] = T[j+1] < c1 ? ~j : j b += 1 for i = 1:n if 0 < (j = SA[i]) if (c0 = T[j+1]) != c1 B[c1+1] = b c1 = c0 b = B[c1+1] end j -= 1 SA[b+1] = T[j+1] < c1 ? ~j : j b += 1 SA[i] = 0 elseif j < 0 SA[i] = ~j end end C == B && getcounts(T, C, n, k) getbuckets(C, B, k, true) c1 = 0 b = B[c1+1] for i = n:-1:1 if 0 < (j = SA[i]) c0 = T[j+1] if c0 != c1 B[c1+1] = b c1 = c0 b = B[c1+1] end j -= 1 b -= 1 SA[b+1] = T[j+1] > c1 ? ~(j + 1) : j SA[i] = 0 end end end function LMSpostproc(T::AbstractVector{<:Integer}, SA::IndexVector, n::Int, m::Int) i = 1 while (p = SA[i]) < 0 SA[i] = ~p i += 1 end if i - 1 < m j = i i += 1 while true if (p = SA[i]) < 0 SA[j] = ~p j += 1 SA[i] = 0 j - 1 == m && break end i += 1 end end i = j = n c0 = c1 = T[n] while 1 <= (i -= 1) && ((c0 = T[i]) >= c1) c1 = c0 end while 1 <= i c1 = c0 while 1 <= (i -= 1) && ((c0 = T[i]) <= c1) c1 = c0 end if 1 <= i SA[m + (i >> 1) + 1] = j - i j = i + 1 c1 = c0 while 1 <= (i -= 1) && ((c0 = T[i]) >= c1) c1 = c0 end end end name = 0 q = n qlen = 0 for i = 1:m p = SA[i] plen = SA[m + (p >> 1) + 1] diff = true if plen == qlen && (q + plen < n) j = 0 while j < plen && T[p+j+1] == T[q+j+1] j += 1 end j == plen && (diff = false) end if diff != false name += 1 q = p qlen = plen end SA[m + (p >> 1) + 1] = name end return name end function induceSA( T::AbstractVector{<:Integer}, SA::IndexVector, C::IntVector, B::IntVector, n::Int, k::Int, ) C == B && getcounts(T, C, n, k) getbuckets(C, B, k, false) j = n - 1 c1 = T[j+1] b = B[c1+1] SA[b+1] = 0 < j && T[j] < c1 ? ~j : j b += 1 for i = 1:n j = SA[i] SA[i] = ~j if 0 < j j -= 1 if (c0 = T[j+1]) != c1 B[c1+1] = b c1 = c0 b = B[c1+1] end SA[b+1] = 0 < j && T[j] < c1 ? ~j : j b += 1 end end C == B && getcounts(T, C, n, k) getbuckets(C, B, k, true) c1 = 0 b = B[c1+1] for i = n:-1:1 if 0 < (j = SA[i]) j -= 1 c0 = T[j+1] if c0 != c1 B[c1+1] = b c1 = c0 b = B[c1+1] end b -= 1 SA[b+1] = j == 0 || T[j] > c1 ? ~j : j else SA[i] = ~j end end end function computeBWT( T::AbstractVector{<:Integer}, SA::IndexVector, C::IntVector, B::IntVector, n::Int, k::Int, ) pidx = -1 C == B && getcounts(T, C, n, k) getbuckets(C, B, k, false) j = n - 1 c1 = T[j+1] b = B[c1+1] SA[b+1] = 0 < j && T[j] < c1 ? ~j : j b += 1 for i = 1:n if 0 < (j = SA[i]) j -= 1 c0 = T[j+1] SA[i] = ~c0 if c0 != c1 B[c1+1] = b c1 = c0 b = B[c1+1] end SA[b+1] = 0 < j && T[j] < c1 ? ~j : j b += 1 elseif j != 0 SA[i] = ~j end end C == B && getcounts(T, C, n, k) getbuckets(C, B, k, true) c1 = 0 b = B[c1+1] for i = n:-1:1 if 0 < (j = SA[i]) j -= 1 c0 = T[j+1] SA[i] = c0 if c0 != c1 B[c1+1] = b c1 = c0 b = B[c1+1] end b -= 1 SA[b+1] = 0 < j && T[j] > c1 ? ~(T[j]) : j elseif j != 0 SA[i] = ~j else pidx = i - 1 end end return pidx end
SuffixArrays
https://github.com/JuliaCollections/SuffixArrays.jl.git
[ "MIT" ]
1.0.0
d7c29668b00abd0ee5f28180a10b7fe8b8cd8155
code
4605
using Test using SuffixArrays function test_suffix(args) for file in args data = codeunits(read(file, String)) t = @elapsed suffixes = suffixsort(data, 0) println("Sorting '$file' took: $t") @test sufcheck(data, suffixes) == 0 end end function sufcheck(T, SA) n = length(T) n == 0 && (println("Done."); return 0) n < 0 && (println("Invalid length $n"); return -1) C = zeros(Int, 256) for i = 1:n if SA[i] < 0 || n <= SA[i] println("Out of range $n") println("SA[$i] = $(SA[i])") return -2 end end for i = 2:n if T[SA[i-1]+1] > T[SA[i]+1] println("Suffixes in wrong order") println("T[SA[$(i-1)]+1] = $(T[SA[(i-1)]+1])") println("T[SA[$i]+1] = $(T[SA[i]+1])") return -3 end end for i = 1:n C[Int(T[i])+1] += 1 end p = 0 for i = 1:256 t = C[i] C[i] = p p += t end q = C[Int(T[n])+1] C[Int(T[n])+1] += 1 for i = 1:n p = SA[i] if 0 < p p -= 1 c = T[p+1] t = C[Int(c)+1] else p = n - 1 c = T[p+1] t = q end if t < 0 || p != SA[t+1] println("Suffixes in wrong position") return -4 end if t != q C[Int(c)+1] += 1 if n <= C[Int(c)+1] || T[SA[C[Int(c)+1]+1]+1] != c C[Int(c)+1] = -1 end end end println("Done.") return 0 end function initwalk(dir, files) files = walkdir("$dir/src", files) files = walkdir("$dir/test", files) files end function walkdir(dir, files) t = readdir(dir) for f in t f == ".git" && continue j = joinpath(dir, f) if isdir(j) append!(files, walkdir(j, files)) else push!(files, j) end end return unique(files) end @testset "source files" begin files = initwalk(dirname(dirname(@__FILE__)), []) test_suffix(files) end @testset "UTF-8 strings" begin s = "ยกHello, ๐Ÿ˜„ world!" sa = suffixsort(s) suffixes = [String(codeunits(s)[i:end]) for i in sa] @test issorted(suffixes) end ## define a simple UTF-16 string type ## struct UTF16 <: AbstractString codeunits::Vector{UInt16} end UTF16(s::String) = UTF16(Base.transcode(UInt16, s)) Base.codeunits(s::UTF16) = s.codeunits Base.ncodeunits(s::UTF16) = length(s.codeunits) Base.isvalid(s::UTF16, i::Int) = isvalid(iterate(s, i)[1]) Base.isless(s::UTF16, t::UTF16) = s.codeunits < t.codeunits function Base.iterate(s::UTF16, i::Int=1) i โ‰คย length(s.codeunits) || return u = s.codeunits[i] 0xD800 โ‰คย u โ‰ค 0xDBFF || return Char(u), i+1 # otherwise is a high surrogate v = s.codeunits[i+1] # not followed by low surrogate 0xDC00 โ‰คย v โ‰คย 0xDFFF || return Char(u), i+1 # u, v are high/low surrogate pair Char(0x10000 + (UInt32(u & 0x03ff) << 10) | (v & 0x03ff)), i+2 end @testset "UTF-16 strings" begin s = UTF16("ยกHello, ๐Ÿ˜„ world!") sa = suffixsort(s) suffixes = [UTF16(codeunits(s)[i:end]) for i in sa] @test issorted(suffixes) end function commonprefixlen(s1, s2) h = 0 maxh = min(length(s1), length(s2)) for i in 1:maxh if s1[i] != s2[i] break end h += 1 end h end @testset "Longest common prefix" begin s = rand(0x00:0xff, 100) sa = suffixsort(s) suff = [s[i:end] for i in sa] lcparr = lcp(sa, s) # LCP the hard way lcpref = [commonprefixlen(suff[i], suff[i+1]) for i in 1:length(sa)-1] @test lcparr[1] == 0 @test lcparr[2:end] == lcpref # retest with base != 1 base = 0 sa = suffixsort(s, base) suff = [s[1-base+i:end] for i in sa] lcparr = lcp(sa, s, base) @test lcparr[1] == 0 @test lcparr[2:end] == lcpref # sequence where common prefix reaches the end s = [0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03] sa = suffixsort(s) suff = [s[i:end] for i in sa] lcparr = lcp(sa, s) # LCP the hard way lcpref = [commonprefixlen(suff[i], suff[i+1]) for i in 1:length(sa)-1] @test lcparr[1] == 0 @test lcparr[2:end] == lcpref end @testset "Issue #15 fix" begin s = join(rand('a':'z', 10000)) * '\$' sa = suffixsort(s) suffixes = [String(codeunits(s)[i:end]) for i in sa] @test issorted(suffixes) utext = rand(0x0001:0x0020, 4000) sa = suffixsort(utext) suffixes = [utext[i:end] for i in sa] @test issorted(suffixes) end
SuffixArrays
https://github.com/JuliaCollections/SuffixArrays.jl.git
[ "MIT" ]
1.0.0
d7c29668b00abd0ee5f28180a10b7fe8b8cd8155
docs
1582
# SuffixArrays [![Build Status](https://travis-ci.org/JuliaCollections/SuffixArrays.jl.svg?branch=master)](https://travis-ci.org/JuliaCollections/SuffixArrays.jl) A Julia package for computing [Suffix Arrays](http://en.wikipedia.org/wiki/Suffix_array). The underlying suffix array sorting implementation is a pure Julia port of [sais](https://sites.google.com/site/yuta256/sais), by Yuta Mori. You can use the package by running: ```julia julia> using SuffixArrays julia> s = "banana" "banana" julia> sa = suffixsort(s) 6-element Array{UInt8,1}: 0x06 0x04 0x02 0x01 0x05 0x03 julia> [s[i:end] for i in sa] 6-element Array{String,1}: "a" "ana" "anana" "banana" "na" "nana" julia> issorted(ans) true ``` The `suffixsort` function can compute a suffix array for vectors of `UInt8` or `UInt16` values, or for strings with code units that are one of these two types. When generating a suffix array for a string, the suffix indices are in terms of code units, not characters, which means that some indices will be into the middle of characters that span multiple code units. For UTF-8 and UTF-16 this doesn't affect using the suffix array as search index since a valid substring cannot start in the middle of a character anyway. In other words, invalid substrings occuring in the suffix array will simply not match. By default, `suffixsort(v)` produces an array of 1-based indices, but it can be called as `suffixsort(v, 0)` in order to produce an array of 0-based indices, which may be desirable to interface with 0-based libraries (or to save a tiny bit of space).
SuffixArrays
https://github.com/JuliaCollections/SuffixArrays.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
318
using Documenter, CALCEPH makedocs( format = :html, sitename = "CALCEPH.jl", authors = "Bernard Godard and the CALCEPH.jl contributors", pages = [ "Home" => "index.md", "Tutorial" => "tutorial.md", "API" => "api.md" ], ) deploydocs( repo = "github.com/JuliaAstro/CALCEPH.jl.git", target = "build", )
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
875
""" CALCEPH This module is a wrapper of CALCEPH, IMCCE planetary ephemeris access library. It supports INPOPxx, JPL DExxx and SPICE ephemeris. https://www.imcce.fr/inpop/calceph """ module CALCEPH using CALCEPH_jll: libcalceph struct CALCEPHException <: Exception msg::String end include("ephem.jl") export Ephem, prefetch, CALCEPHException include("compute.jl") export compute include("timespan.jl") export timespan include("bodyId.jl") export naifId include("units.jl") export unitAU, unitKM, unitDay, unitSec, unitRad, useNaifId, outputEulerAngles, outputNutationAngles include("orient.jl") export orient include("rotAngMom.jl") export rotAngMom include("constants.jl") export constants include("introspection.jl") export timeScale, positionRecords, orientationRecords include("fivePointStencil.jl") include("errorHandling.jl") end # module
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
2714
""" BodyId Body identifiers. """ mutable struct BodyId "names from ID" names :: Dict{Int,Set{Symbol}} "ID from names" id :: Dict{Symbol,Int} function BodyId() new(Dict{Int,Set{Symbol}}(),Dict{Symbol,Int}()) end end """ add!(bid,name,id) Add a new mapping name->id into BodyId instance bid. Example: ```jldoctest using CALCEPH bid=CALCEPH.BodyId() CALCEPH.add!(bid,:tatooine,1000001) CALCEPH.add!(bid,:dagobah,1000002) CALCEPH.add!(bid,:endor,1000003) CALCEPH.add!(bid,:deathstar,1000004) CALCEPH.add!(bid,:endor_deathstar_system_barycenter,1000005) CALCEPH.add!(bid,:edsb,1000005) # output ``` """ function add!(bid::BodyId,name::Symbol,id::Int) if (name โˆˆ keys(bid.id)) if bid.id[name] != id throw(CALCEPHException("Cannot map already defined identifier [$name] to a different ID [$id]")) else return end end if id โˆ‰ keys(bid.names) bid.names[id] = Set{Symbol}() end push!(bid.names[id],name) bid.id[name]=id nothing end """ loadData!(bid,filename) Load mapping (body name,body ID) from file into BodyId instance bid. Names from the file are converted to lower case and have spaces replaced by underscores before being converted to symbols/interned strings. Example file [https://github.com/bgodard/CALCEPH.jl/blob/master/data/NaifIds.txt](https://github.com/bgodard/CALCEPH.jl/blob/master/data/NaifIds.txt) """ function loadData!(bid::BodyId,filename::AbstractString) pattern1 = r"^\s*([-+]{0,1}\d+)\s+\'(.*)\'.*$" pattern2 = r"[\s-]" f = open(filename); cnt=0 for ln0 in eachline(f) cnt += 1 ln1=strip(ln0) if length(ln1)>0 if ln1[1] != '#' m = match(pattern1,ln1) if m === nothing throw(CALCEPHException("parsing line $cnt in data input file: $filename:\n$ln0")) end id = parse(Int,m.captures[1]) name = Symbol(lowercase(replace(strip(m.captures[2]), pattern2 => "_"))) add!(bid,name,id) end end end close(f) nothing end """ naifId NAIF identification numbers Examples: ```jldoctest julia> using CALCEPH julia> naifId.id[:sun] 10 julia> naifId.id[:mars] 499 julia> naifId.names[0] Set(Symbol[:ssb, :solar_system_barycenter]) ``` """ const naifId = BodyId() import CALCEPH loadData!(naifId,joinpath(dirname(pathof(CALCEPH)), "..", "data", "NaifIds.txt")) # NAIF IDs for Hyperbolic Asteroid 'Oumuamua (1I/2017 U1) add!(naifId,:oumuamua,3788040) # NAIF IDs for CALCEPH time ephemeris add!(naifId,:timecenter,1000000000) add!(naifId,:ttmtdb ,1000000001) add!(naifId,:tcgmtcb ,1000000002)
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
11798
""" compute(eph,jd0,time,target,center) Compute position and velocity of target with respect to center at epoch jd0+time. This method does not support the NAIF numbering scheme. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't care about precision. This method does not support the NAIF body identification scheme. Output units are: * AU and AU/day for position and velocity * rad and rad/day for librations * second and unitless for time ephemeris and time ephemeris rate # Arguments - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body or reference point whose coordinates are required. - `center::Integer`: The origin of the coordinate system. The possible values for target and center are : * 1 : Mercury Barycenter * 2 : Venus Barycenter * 3 : Earth * 4 : Mars Barycenter * 5 : Jupiter Barycenter * 6 : Saturn Barycenter * 7 : Uranus Barycenter * 8 : Neptune Barycenter * 9 : Pluto Barycenter * 10 : Moon * 11 : Sun * 12 : Solar Sytem barycenter * 13 : Earth-moon barycenter * 14 : Nutation angles * 15 : Librations * 16 : TT-TDB * 17 : TCG-TCB * asteroid number + 2000000 : asteroid """ function compute(eph::Ephem,jd0::Float64,time::Float64, target::Integer,center::Integer) @_checkPointer eph.data "Ephemeris is not properly initialized!" result = Array{Float64,1}(undef,6) stat = unsafe_compute!(result,eph,jd0,time,target,center) @_checkStatus stat "Unable to compute ephemeris" return result end """ unsafe_compute!(eph,jd0,time,target,center) In place version of the compute function. Does not perform any checks! Compute position and velocity of target with respect to center at epoch jd0+time. This method does not support the NAIF numbering scheme. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't care about precision. This method does not support the NAIF body identification scheme. Output units are: * AU and AU/day for position and velocity * rad and rad/day for librations * second and unitless for time ephemeris and time ephemeris rate # Arguments - `result`: container for result. It is not checked if it is sufficiently large enough! - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body or reference point whose coordinates are required. - `center::Integer`: The origin of the coordinate system. # Return: - status integer from CALCEPH: 0 if an error occured The possible values for target and center are : * 1 : Mercury Barycenter * 2 : Venus Barycenter * 3 : Earth * 4 : Mars Barycenter * 5 : Jupiter Barycenter * 6 : Saturn Barycenter * 7 : Uranus Barycenter * 8 : Neptune Barycenter * 9 : Pluto Barycenter * 10 : Moon * 11 : Sun * 12 : Solar Sytem barycenter * 13 : Earth-moon barycenter * 14 : Nutation angles * 15 : Librations * 16 : TT-TDB * 17 : TCG-TCB * asteroid number + 2000000 : asteroid """ function unsafe_compute!(result,eph::Ephem,jd0::Float64,time::Float64, target::Integer,center::Integer) stat = ccall((:calceph_compute, libcalceph), Cint, (Ptr{Cvoid},Cdouble,Cdouble,Cint,Cint,Ref{Cdouble}), eph.data,jd0,time,target,center,result) return stat end """ compute(eph,jd0,time,target,center,unit) Compute position and velocity of target with respect to center at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't care about precision. # Arguments - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body or reference point whose coordinates are required. The numbering system depends on the parameter unit. - `center::Integer`: The origin of the coordinate system. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center. """ function compute(eph::Ephem,jd0::Float64,time::Float64, target::Integer,center::Integer,unit::Integer) @_checkPointer eph.data "Ephemeris is not properly initialized!" result = Array{Float64,1}(undef,6) stat = unsafe_compute!(result,eph,jd0,time,target,center,unit) @_checkStatus stat "Unable to compute ephemeris" return result end """ unsafe_compute!(result,eph,jd0,time,target,center,unit) In place version of the compute function. Does not perform any checks! Compute position and velocity of target with respect to center at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't care about precision. # Arguments - `result`: container for result. It is not checked if it is sufficiently large enough! - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body or reference point whose coordinates are required. The numbering system depends on the parameter unit. - `center::Integer`: The origin of the coordinate system. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center. # Return: - status integer from CALCEPH: 0 if an error occured """ function unsafe_compute!(result,eph::Ephem,jd0::Float64,time::Float64, target::Integer,center::Integer,unit::Integer) stat = ccall((:calceph_compute_unit, libcalceph), Cint, (Ptr{Cvoid},Cdouble,Cdouble,Cint,Cint,Cint,Ref{Cdouble}), eph.data,jd0,time,target,center,unit,result) return stat end """ compute(eph,jd0,time,target,center,unit,order) Compute position and derivatives up to order of target with respect to center at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't care about precision. # Arguments - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body or reference point whose coordinates are required. The numbering system depends on the parameter unit. - `center::Integer`: The origin of the coordinate system. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center. - `order::Integer` : The order of derivatives * 0: only the position is computed. * 1: only the position and velocity are computed. * 2: only the position, velocity and acceleration are computed. * 3: the position, velocity and acceleration and jerk are computed. """ function compute(eph::Ephem,jd0::Float64,time::Float64, target::Integer,center::Integer,unit::Integer,order::Integer) @_checkPointer eph.data "Ephemeris is not properly initialized!" @_checkOrder order result = Array{Float64,1}(undef,3+3order) stat = unsafe_compute!(result,eph,jd0,time,target,center,unit,order) @_checkStatus stat "Unable to compute ephemeris" return result end """ unsafe_compute!(result,eph,jd0,time,target,center,unit,order) In place version of the compute function. Does not perform any checks! Compute position and derivatives up to order of target with respect to center at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't care about precision. # Arguments - `result`: container for result. It is not checked if it is sufficiently large enough! - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body or reference point whose coordinates are required. The numbering system depends on the parameter unit. - `center::Integer`: The origin of the coordinate system. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center. - `order::Integer` : The order of derivatives * 0: only the position is computed. * 1: only the position and velocity are computed. * 2: only the position, velocity and acceleration are computed. * 3: the position, velocity and acceleration and jerk are computed. # Return: - status integer from CALCEPH: 0 if an error occured """ function unsafe_compute!(result,eph::Ephem,jd0::Float64,time::Float64, target::Integer,center::Integer,unit::Integer,order::Integer) stat = ccall((:calceph_compute_order, libcalceph), Cint, (Ptr{Cvoid},Cdouble,Cdouble,Cint,Cint,Cint,Cint,Ref{Cdouble}), eph.data,jd0,time,target,center,unit,order,result) return stat end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
2092
const _maxConstName = 33 const _maxConstValue = 1024 """ constants(eph) Retrieve the constants stored in the ephemeris associated to handle eph as a dictionary """ function constants(eph::Ephem) res = Dict{Symbol,Any}() @_checkPointer eph.data "Ephemeris is not properly initialized!" NC::Int = ccall((:calceph_getconstantcount , libcalceph), Cint, (Ptr{Cvoid},),eph.data) value = Ref{Cdouble}(0.0) name = Vector{UInt8}(undef,_maxConstName) for i=1:NC numberOfValues = ccall((:calceph_getconstantindex , libcalceph), Cint, (Ptr{Cvoid},Cint,Ptr{UInt8},Ref{Cdouble}), eph.data, i ,name ,value) if (numberOfValues==1) res[Symbol(strip(unsafe_string(pointer(name))))] = value[] elseif (numberOfValues>1) values = Array{Float64,1}(undef,numberOfValues) stat = ccall((:calceph_getconstantvd , libcalceph), Cint, (Ptr{Cvoid},Ptr{UInt8},Ptr{Cdouble}, Cint), eph.data, name ,values, numberOfValues) if (stat>0) res[Symbol(strip(unsafe_string(pointer(name))))] = values end else numberOfValues = ccall((:calceph_getconstantvs , libcalceph), Cint, (Ptr{Cvoid},Ptr{UInt8},Ptr{Ptr{Char}}, Cint), eph.data, name ,C_NULL, 0) if (numberOfValues>0) storage = Array{UInt8}(undef,_maxConstValue,numberOfValues) stat = ccall((:calceph_getconstantvs , libcalceph), Cint, (Ptr{Cvoid},Ptr{UInt8},Ptr{UInt8}, Cint), eph.data, name ,storage, numberOfValues) if (stat>0) values = [ strip(unsafe_string(pointer(storage,i))) for i in 1:_maxConstValue:length(storage) ] if (numberOfValues==1) res[Symbol(strip(unsafe_string(pointer(name))))] = values[1] else res[Symbol(strip(unsafe_string(pointer(name))))] = values end end end end end return res end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
2033
macro _checkStatus(stat,msg) return quote if ($(esc(stat)) == 0) throw(CALCEPHException($(esc(msg)))) end end end macro _checkPointer(ptr,msg) return quote if ($(esc(ptr)) == C_NULL) throw(CALCEPHException($(esc(msg)))) end end end macro _checkOrder(order) return quote local or = $(esc(order)) if (or<0) || (or>3) throw(CALCEPHException("Order must be between 0 and 3.")) end end end """ Ephem Ephemeris descriptor. Create with: eph = Ephem(filename) eph = Ephem([filename1,filename2...]) The ephemeris descriptor will be used to access the ephemeris and related data stored in the specified files. Because, Julia GC is lazy, you may want to free the memory managed by eph before you get rid of the reference to eph with: finalize(eph) or after by forcing the GC to run: gc() """ mutable struct Ephem data :: Ptr{Cvoid} function Ephem(files::Vector{<:AbstractString}) ptr = ccall((:calceph_open_array, libcalceph), Ptr{Cvoid}, (Int, Ptr{Ptr{UInt8}}), length(files), files) @_checkPointer ptr "Unable to open ephemeris file(s)!" obj = new(ptr) finalizer(_ephemDestructor,obj) # register object destructor return obj end end # to be called by gc when cleaning up # not in the exposed interface but can be called with finalize(e) function _ephemDestructor(eph::Ephem) if (eph.data == C_NULL) return end ccall((:calceph_close, libcalceph), Cvoid, (Ptr{Cvoid},), eph.data) eph.data = C_NULL return end Ephem(file::AbstractString) = Ephem([file]) """ prefetch(eph) This function prefetches to the main memory all files associated to the ephemeris descriptor eph. """ function prefetch(eph::Ephem) @_checkPointer eph.data "Ephemeris is not properly initialized!" stat = ccall((:calceph_prefetch, libcalceph), Int, (Ptr{Cvoid},), eph.data) @_checkStatus stat "Unable to prefetch ephemeris!" return end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
1363
""" disableCustomHandler() Disables the user custom error handler. """ function disableCustomHandler() ccall((:calceph_seterrorhandler, libcalceph), Cvoid, (Cint, Ptr{Cvoid}), 1, C_NULL) end mutable struct UserHandlerContainer f::Function end const userHandlerContainerInstance = UserHandlerContainer(s::String->Nothing) function userHandlerWrapper(msg::Cstring)::Cvoid global userHandlerContainerInstance s = unsafe_string(msg) userHandlerContainerInstance.f(s) return end # see https://discourse.julialang.org/t/cfunction-error-handler/20678 #userHandlerCWrapper = @cfunction(userHandlerWrapper, Cvoid, (Cstring,)) userHandlerCWrapper = Nothing """ setCustomHandler(f::Function) Sets the user custom error handler. # Arguments - `f`: function taking a single argument of type String which will contain the CALCEPH error message. f should return Nothing. Use setCustomHandler(s->Nothing) to disable CALCEPH error messages printout to the console. """ function setCustomHandler(f::Function) global userHandlerContainerInstance global userHandlerCWrapper userHandlerCWrapper = @cfunction(userHandlerWrapper, Cvoid, (Cstring,)) userHandlerContainerInstance.f = f ccall((:calceph_seterrorhandler, libcalceph), Cvoid, (Cint, Ptr{Cvoid}), 3, userHandlerCWrapper) end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
1100
""" fivePointStencil(f,x,n::Integer,h) Evaluates function f and its derivatives up to order n โˆˆ [0,4] at x: ``f(x),f'(x),...,f^{(n)}(x)`` The result is an array of length n+1. Derivatives are numerically computed using the 5-point stencil method with hโ‰ 0 being the grid spacing: [https://en.wikipedia.org/wiki/Five-point_stencil](https://en.wikipedia.org/wiki/Five-point_stencil) """ function fivePointStencil(f,x,n::Integer,h) if ((n<0) || (n>4)) error("In fivePointStencil: Invalid order $n") end if (h==0.0) error("In fivePointStencil: Invalid grid spacing $h") end fm2 = f(x-2h) fm1 = f(x-h) fn0 = f(x) fp1 = f(x+h) fp2 = f(x+2h) res = Vector{typeof(fn0)}(undef,n+1) res[1] = fn0 (n==0) && return res res[2] = (-fp2+8fp1-8fm1+fm2)/(12*h) (n==1) && return res h2 = h * h res[3] = (-fp2+16fp1-30fn0+16fm1-fm2)/(12*h2) (n==2) && return res h3 = h2 * h res[4] = (fp2-2fp1+2fm1-fm2)/(2*h3) (n==3) && return res h4 = h3 * h res[5] = (fp2-4fp1+6fn0-4fm1+fm2)/h4 return res end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
2859
""" timeScale(eph) Retrieve the timescale associated with ephemeris handler eph Returns 1 for TDB and 2 for TCB. """ function timeScale(eph::Ephem) @_checkPointer eph.data "Ephemeris is not properly initialized!" return ccall((:calceph_gettimescale , libcalceph), Cint, (Ptr{Cvoid},),eph.data) end """ PositionRecord stores position record metadata. """ struct PositionRecord " Naif Id of target " target::Int " Naif Id of center " center::Int " start of epoch span " startEpoch::Float64 "end of epoch span" stopEpoch::Float64 "frame : 1 for ICRF" frame::Int end """ positionRecords(eph) Retrieve position records metadata in ephemeris associated to handler eph . """ function positionRecords(eph::Ephem) res = Array{PositionRecord,1}() @_checkPointer eph.data "Ephemeris is not properly initialized!" NR::Int = ccall((:calceph_getpositionrecordcount , libcalceph), Cint, (Ptr{Cvoid},),eph.data) (NR == 0) && throw(CALCEPHException("Could not find any position records!")) target = Ref{Cint}(0) center = Ref{Cint}(0) startEpoch = Ref{Cdouble}(0.0) stopEpoch = Ref{Cdouble}(0.0) frame = Ref{Cint}(0) for i=1:NR stat = ccall((:calceph_getpositionrecordindex , libcalceph), Cint, (Ptr{Cvoid},Cint,Ref{Cint},Ref{Cint},Ref{Cdouble},Ref{Cdouble},Ref{Cint}), eph.data, i ,target,center,startEpoch,stopEpoch,frame) if (stat!=0) push!(res,PositionRecord(target[],center[],startEpoch[],stopEpoch[],frame[])) end end return res end """ OrientationRecord stores orientation record metadata. """ struct OrientationRecord " Naif Id of target " target::Int " start of epoch span " startEpoch::Float64 "end of epoch span" stopEpoch::Float64 "frame : 1 for ICRF" frame::Int end """ orientationRecords(eph) Retrieve orientation records metadata in ephemeris associated to handler eph . """ function orientationRecords(eph::Ephem) res = Array{OrientationRecord,1}() @_checkPointer eph.data "Ephemeris is not properly initialized!" NR::Int = ccall((:calceph_getorientrecordcount , libcalceph), Cint, (Ptr{Cvoid},),eph.data) (NR == 0) && throw(CALCEPHException("Could not find any orientation records!")) target = Ref{Cint}(0) startEpoch = Ref{Cdouble}(0.0) stopEpoch = Ref{Cdouble}(0.0) frame = Ref{Cint}(0) for i=1:NR stat = ccall((:calceph_getorientrecordindex , libcalceph), Cint, (Ptr{Cvoid},Cint,Ref{Cint},Ref{Cdouble},Ref{Cdouble},Ref{Cint}), eph.data, i ,target,startEpoch,stopEpoch,frame) if (stat!=0) push!(res,OrientationRecord(target[],startEpoch[],stopEpoch[],frame[])) end end return res end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
7893
""" orient(eph,jd0,time,target,unit) Compute Euler angles and first derivative for the orientation of target at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't take care about precision. # Arguments - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body whose orientation is required. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center (see the list in the documentation of function compute). The angles are expressed in radians if unit contains unitRad. If the unit contains outputNutationAngles, the nutation angles are computed rather than the Euler angles. """ function orient(eph::Ephem,jd0::Float64,time::Float64, target::Integer,unit::Integer) @_checkPointer eph.data "Ephemeris is not properly initialized!" result = Array{Float64,1}(undef,6) stat = unsafe_orient!(result,eph,jd0,time,target,unit) @_checkStatus stat "Unable to compute ephemeris" return result end """ unsafe_orient!(result,eph,jd0,time,target,unit) In place version of the orient function. Does not perform any checks! Compute Euler angles and first derivative for the orientation of target at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't take care about precision. # Arguments - `result`: container for result. It is not checked if it is sufficiently large enough! - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body whose orientation is required. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center (see the list in the documentation of function compute). If the unit contains outputNutationAngles, the nutation angles are computed rather than the Euler angles. # Return: - status integer from CALCEPH: 0 if an error occured """ function unsafe_orient!(result,eph::Ephem,jd0::Float64,time::Float64, target::Integer,unit::Integer) stat = ccall((:calceph_orient_unit, libcalceph), Cint, (Ptr{Cvoid},Cdouble,Cdouble,Cint,Cint,Ref{Cdouble}), eph.data,jd0,time,target,unit,result) return stat end """ orient(eph,jd0,time,target,unit,order) Compute Euler angles and derivatives up to order for the orientation of target at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't take care about precision. # Arguments - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body whose orientation is required. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center (see the list in the documentation of function compute). If the unit contains outputNutationAngles, the nutation angles are computed rather than the Euler angles. - `order::Integer` : The order of derivatives * 0: only the angles are computed. * 1: only the angles and 1st derivatives are computed. * 2: only the angles, the 1st derivatives and 2nd derivatives are computed. * 3: the angles, the 1st derivatives, 2nd derivatives and 3rd derivatives are computed. """ function orient(eph::Ephem,jd0::Float64,time::Float64, target::Integer,unit::Integer,order::Integer) @_checkPointer eph.data "Ephemeris is not properly initialized!" @_checkOrder order result = Array{Float64,1}(undef,3+3order) stat = unsafe_orient!(result,eph,jd0,time,target,unit,order) @_checkStatus stat "Unable to compute ephemeris" return result end """ unsafe_orient!(result,eph,jd0,time,target,unit,order) In place version of the orient function. Does not perform any checks! Compute Euler angles and derivatives up to order for the orientation of target at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't take care about precision. # Arguments - `result`: container for result. It is not checked if it is sufficiently large enough! - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body whose orientation is required. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center (see the list in the documentation of function compute). If the unit contains outputNutationAngles, the nutation angles are computed rather than the Euler angles. - `order::Integer` : The order of derivatives * 0: only the angles are computed. * 1: only the angles and 1st derivatives are computed. * 2: only the angles, the 1st derivatives and 2nd derivatives are computed. * 3: the angles, the 1st derivatives, 2nd derivatives and 3rd derivatives are computed. # Return: - status integer from CALCEPH: 0 if an error occured """ function unsafe_orient!(result,eph::Ephem,jd0::Float64,time::Float64, target::Integer,unit::Integer,order::Integer) stat = ccall((:calceph_orient_order, libcalceph), Cint, (Ptr{Cvoid},Cdouble,Cdouble,Cint,Cint,Cint,Ref{Cdouble}), eph.data,jd0,time,target,unit,order,result) return stat end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
7593
""" rotAngMom(eph,jd0,time,target,unit) Compute angular momentum due to rotation and first derivative of target at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't take care about precision. # Arguments - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body whose angular momentum is required. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center (see the list in the documentation of function compute). The angles are expressed in radians if unit contains unitRad. """ function rotAngMom(eph::Ephem,jd0::Float64,time::Float64, target::Integer,unit::Integer) @_checkPointer eph.data "Ephemeris is not properly initialized!" result = Array{Float64,1}(undef,6) stat = unsafe_rotAngMom!(result,eph,jd0,time,target,unit) @_checkStatus stat "Unable to compute ephemeris" return result end """ unsafe_rotAngMom!(result,eph,jd0,time,target,unit) In place version of the rotAngMom function. Does not perform any checks! Compute angular momentum due to rotation and first derivative of target at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't take care about precision. # Arguments - `result`: container for result. It is not checked if it is sufficiently large enough! - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body whose angular momentum is required. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center (see the list in the documentation of function compute). The angles are expressed in radians if unit contains unitRad. # Return: - status integer from CALCEPH: 0 if an error occured """ function unsafe_rotAngMom!(result,eph::Ephem,jd0::Float64,time::Float64, target::Integer,unit::Integer) stat = ccall((:calceph_rotangmom_unit, libcalceph), Cint, (Ptr{Cvoid},Cdouble,Cdouble,Cint,Cint,Ref{Cdouble}), eph.data,jd0,time,target,unit,result) return stat end """ rotAngMom(eph,jd0,time,target,unit,order) Compute angular momentum due to rotation and derivatives up to order of target at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't take care about precision. # Arguments - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body whose angular momentum is required. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center (see the list in the documentation of function compute). - `order::Integer` : The order of derivatives * 0: only the angles are computed. * 1: only the angles and 1st derivatives are computed. * 2: only the angles, the 1st derivatives and 2nd derivatives are computed. * 3: the angles, the 1st derivatives, 2nd derivatives and 3rd derivatives are computed. """ function rotAngMom(eph::Ephem,jd0::Float64,time::Float64, target::Integer,unit::Integer,order::Integer) @_checkPointer eph.data "Ephemeris is not properly initialized!" @_checkOrder order result = Array{Float64,1}(undef,3+3order) stat = unsafe_rotAngMom!(result,eph,jd0,time,target,unit,order) @_checkStatus stat "Unable to compute ephemeris" return result end """ unsafe_rotAngMom!(result,eph,jd0,time,target,unit,order) In place version of the rotAngMom function. Does not perform any checks! Compute angular momentum due to rotation and derivatives up to order of target at epoch jd0+time. To get the best precision for the interpolation, the time is split in two floating-point numbers. The argument jd0 should be an integer and time should be a fraction of the day. But you may call this function with time=0 and jd0, the desired time, if you don't take care about precision. # Arguments - `result`: container for result. It is not checked if it is sufficiently large enough! - `eph`: ephemeris - `jd0::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `time::Float64`: jd0+time must be equal to the Julian Day for the time coordinate corresponding to the ephemeris (usually TDB or TCB) - `target::Integer`: The body whose angular momentum is required. The numbering system depends on the parameter unit. - `unit::Integer` : The units of the result. This integer is a sum of some unit constants (unit*) and/or the constant useNaifId. If the unit contains useNaifId, the NAIF identification numbering system is used for the target and the center. If the unit does not contain useNaifId, the old number system is used for the target and the center (see the list in the documentation of function compute). - `order::Integer` : The order of derivatives * 0: only the angles are computed. * 1: only the angles and 1st derivatives are computed. * 2: only the angles, the 1st derivatives and 2nd derivatives are computed. * 3: the angles, the 1st derivatives, 2nd derivatives and 3rd derivatives are computed. # Return: - status integer from CALCEPH: 0 if an error occured """ function unsafe_rotAngMom!(result,eph::Ephem,jd0::Float64,time::Float64, target::Integer,unit::Integer,order::Integer) stat = ccall((:calceph_rotangmom_order, libcalceph), Cint, (Ptr{Cvoid},Cdouble,Cdouble,Cint,Cint,Cint,Ref{Cdouble}), eph.data,jd0,time,target,unit,order,result) return stat end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
1496
""" timespan(eph::Ephem) This function returns the first and last time available in the ephemeris file associated to eph. # Arguments: - `eph` : ephemeris # Return: a tuple containing: * firsttime: Julian date of the first time * lasttime: Julian date of the last time * continuous: information about the availability of the quantities over the time span It returns the following value in the parameter continuous : 1 if the quantities of all bodies are available for any time between the first and last time. 2 if the quantities of some bodies are available on discontinuous time intervals between the first and last time. 3 if the quantities of each body are available on a continuous time interval between the first and last time, but not available for any time between the first and last time. See: https://www.imcce.fr/content/medias/recherche/equipes/asd/calceph/html/c/calceph.multiple.html#menu-calceph-gettimespan """ function timespan(eph::Ephem) @_checkPointer eph.data "Ephemeris is not properly initialized!" firsttime = Ref{Cdouble}(0) lasttime = Ref{Cdouble}(0) continous = Ref{Cint}(0) stat = ccall((:calceph_gettimespan, libcalceph), Cint, (Ptr{Cvoid},Ref{Cdouble},Ref{Cdouble},Ref{Cint}), eph.data,firsttime,lasttime,continous) @_checkStatus stat "Unable to compute ephemeris" return firsttime[],lasttime[],continous[] end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
733
""" unitAU Astronomical unit: distance unit """ const unitAU = 1 """ unitKM kilometer: distance unit """ const unitKM = 2 """ unitDay day: time unit """ const unitDay = 4 """ unitSec second: time unit """ const unitSec = 8 """ unitRad radian: angle unit """ const unitRad = 16 """ useNaifId has to be added to the unit argument when using NAIF integer codes for identification of center and target """ const useNaifId = 32 """ outputEulerAngles has to be added to the unit argument for orient to output Euler angles """ const outputEulerAngles = 64 """ outputNutationAngles has to be added to the unit argument for orient to output nutation angles """ const outputNutationAngles = 128
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
5693
using CALCEPH using Test CALCEPH.disableCustomHandler() CALCEPH.setCustomHandler(s::String->Nothing ) testpath = joinpath(dirname(pathof(CALCEPH)), "..", "test") @testset "CALCEPH" begin @testset "Naif Id" begin # NAIF ID tests for (name,id) โˆˆ naifId.id @test name โˆˆ naifId.names[id] end for (id,names) โˆˆ naifId.names for name โˆˆ names @test naifId.id[name] == id end end @test naifId.id[:ssb] == naifId.id[:solar_system_barycenter] == 0 @test naifId.id[:sun] == 10 @test naifId.id[:mercury_barycenter] == 1 @test naifId.id[:mercury] == 199 @test naifId.id[:venus_barycenter] == 2 @test naifId.id[:venus] == 299 @test naifId.id[:emb] == naifId.id[:earth_barycenter] == 3 @test naifId.id[:moon] == 301 @test naifId.id[:earth] == 399 @test naifId.id[:mars_barycenter] == 4 @test naifId.id[:phobos] == 401 @test naifId.id[:deimos] == 402 @test naifId.id[:mars] == 499 @test naifId.id[:jupiter_barycenter] == 5 @test naifId.id[:io] == 501 @test naifId.id[:europa] == 502 @test naifId.id[:ganymede] == 503 @test naifId.id[:callisto] == 504 @test naifId.id[:jupiter] == 599 @test naifId.id[:saturn_barycenter] == 6 @test naifId.id[:titan] == 606 @test naifId.id[:saturn] == 699 @test naifId.id[:uranus_barycenter] == 7 @test naifId.id[:uranus] == 799 @test naifId.id[:neptune_barycenter] == 8 @test naifId.id[:triton] == 801 @test naifId.id[:neptune] == 899 @test naifId.id[:pluto_barycenter] == 9 @test naifId.id[:charon] == 901 @test naifId.id[:pluto] == 999 end @testset "Core" begin # test error case: changing name->id mapping @test_throws CALCEPHException CALCEPH.add!(naifId,:jupiter,1) # test error case: parsing wrongly formatted body id input file bid = CALCEPH.BodyId() @test_throws CALCEPHException CALCEPH.loadData!(bid,joinpath(testpath,"badIds.txt")) # check memory management eph1 = Ephem(joinpath(testpath,"example1.dat")) eph2 = Ephem([joinpath(testpath,"example1.bsp"), joinpath(testpath,"example1.tpc")]) @test eph1.data != C_NULL finalize(eph1) @test eph1.data == C_NULL @test eph2.data != C_NULL finalize(eph2) @test eph2.data == C_NULL finalize(eph2) CALCEPH._ephemDestructor(eph2) # Opening invalid ephemeris @test_throws CALCEPHException Ephem(String[]) # test error case wrong order eph1 = Ephem(joinpath(testpath,"example1.bsp")) @test_throws CALCEPHException compute(eph1,0.0,0.0,1,0,0,4) @test_throws CALCEPHException compute(eph1,0.0,0.0,1,0,0,-1) # test error case: @test_throws CALCEPHException compute(eph1,0.0,0.0,-144,0,0) # Five-Point Stencil f(x)=x^8 @test_throws ErrorException CALCEPH.fivePointStencil(f,1.5,5,0.001) @test_throws ErrorException CALCEPH.fivePointStencil(f,1.5,-1,0.001) @test_throws ErrorException CALCEPH.fivePointStencil(f,1.5,4,0.0) val = CALCEPH.fivePointStencil(f,1.5,4,0.001) ref = [25.62890625,136.6875,637.875,2551.5,8505.0] @test ref[1] โ‰ˆ val[1] atol=1e-10 @test ref[2] โ‰ˆ val[2] atol=1e-8 @test ref[3] โ‰ˆ val[3] atol=1e-5 @test ref[4] โ‰ˆ val[4] atol=1e-2 @test ref[5] โ‰ˆ val[5] atol=1e-2 end @testset "Constants" begin # check constants eph1 = Ephem(joinpath(testpath,"example1.dat")) eph2 = Ephem([joinpath(testpath,"example1.bsp"), joinpath(testpath,"example1.tpc")]) eph3 = Ephem([joinpath(testpath,"checktpc_11627.tpc")]) eph4 = Ephem([joinpath(testpath,"checktpc_str.tpc")]) con1 = constants(eph1) con2 = constants(eph2) con3 = constants(eph3) con4 = constants(eph4) @test isa(con1,Dict{Symbol,Any}) @test length(con1) == 402 @test con1[:EMRAT] โ‰ˆ 81.30056 @test isa(con2,Dict{Symbol,Any}) @test length(con2) == 313 @test con2[:AU] โ‰ˆ 1.49597870696268e8 @test isa(con3,Dict{Symbol,Any}) @test length(con3) == 3 @test con3[:BODY000_GMLIST4] == [ 199.0 ; 299.0 ; 301.0 ; 399.0 ] @test con3[:BODY000_GMLIST2] == [ 499 ; 599 ] @test con3[:BODY000_GMLIST1] == 699 @test isa(con4,Dict{Symbol,Any}) @test length(con4) == 4 @test con4[:MESSAGE] == "You can't always get what you want." @test con4[:DISTANCE_UNITS] == "KILOMETERS" @test con4[:MISSION_UNITS] == [ "KILOMETERS" ; "SECONDS" ; "KILOMETERS/SECOND" ] @test con4[:CONTINUED_STRINGS] == ["This //", "is //", "just //", "one long //", "string.", "Here's a second //", "continued //", "string."] # Retrieving constants from closed ephemeris finalize(eph2) @test_throws CALCEPHException constants(eph2) end # test compute* # test data and thresholds from CALCEPH C library tests inpop_files = [joinpath(testpath,"example1.dat")] spk_files = [joinpath(testpath,"example1.bsp"), joinpath(testpath,"example1.tpc"), joinpath(testpath,"example1.tf"), joinpath(testpath,"example1.bpc"), joinpath(testpath,"example1spk_time.bsp")] testfile = joinpath(testpath,"example1_tests.dat") testfile2 = joinpath(testpath,"example1_tests_naifid.dat") test_data = [ (inpop_files,false), (spk_files,false), (inpop_files,true), (spk_files,true) ] include("testfunction1.jl") include("testfunction2.jl") @testset "Compute" begin for (ephFiles,prefetch) in test_data testFunction1(testfile,ephFiles,prefetch) end for (ephFiles,prefetch) in test_data testFunction2(testfile,testfile2,ephFiles,prefetch) end end @testset "Introspection" begin # introspection eph = Ephem(inpop_files) @test timeScale(eph) == 1 records = positionRecords(eph) @test length(records) == 12 records = orientationRecords(eph) @test length(records) == 1 @test timespan(eph) == (2.442457e6, 2.451545e6, 1) end @testset "Angular Momentum" begin # rotangmom eph = Ephem(joinpath(testpath,"example2_rotangmom.dat")) a = rotAngMom(eph,2.4515e6,0.0,399,useNaifId+unitSec) b = rotAngMom(eph,2.4515e6,0.0,399,useNaifId+unitSec,1) @test a == b @test length(a) == 6 end end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
3824
# This test is derived from test cmcompute.c in Calceph version 2.3.2 # the test data files are copied from calceph-2.3.2.tar.gz function testFunction1(testFile,ephFiles,pflag) eph = Ephem(ephFiles) if pflag prefetch(eph) end con = constants(eph) AU = con[:AU] f = open(testFile); for ln in eachline(f) elts=split(ln) jd0=parse(Float64,elts[1]) target=parse(Int,elts[2]) center=parse(Int,elts[3]) dt = jd0 - trunc(Int,jd0); jd0 = trunc(Int,jd0) + 2.4515450000000000000E+06 ref = [parse(Float64, x) for x in elts[4:end]] val = compute(eph,jd0,dt,target,center) ฯต = 1.0e-8 val0 = val[:] if (target==15) ฯต = 1.0e-7 while val[3]>2ฯ€ val[3]-=2ฯ€ end while val[3]<=0 val[3]+=2ฯ€ end end for i in 1:6 @test abs(ref[i]-val[i]) < ฯต end ref = val0 ฯต = 3.0e-15 if target โˆ‰ [15,16,17] val = compute(eph,jd0,dt,target,center,unitAU+unitDay) for i in 1:6 @test abs(ref[i]-val[i]) < ฯต end val = compute(eph,jd0,dt,target,center,unitAU+unitSec) for i in 1:6 if i>3 val[i]*=86400 end @test abs(ref[i]-val[i]) < ฯต end ฯต = 3.0e-14; val = compute(eph,jd0,dt,target,center,unitKM+unitDay) for i in 1:6 @test abs(ref[i]-val[i]/AU) < ฯต end val = compute(eph,jd0,dt,target,center,unitKM+unitSec) for i in 1:6 if i>3 val[i]*=86400 end @test abs(ref[i]-val[i]/AU) < ฯต end ฯต = 3.0e-15 val = compute(eph,jd0,dt,target,center,unitDay+unitAU,3) @test length(val)==12 for i in 1:6 @test abs(ref[i]-val[i]) < ฯต end ref = val val = compute(eph,jd0,dt,target,center,unitDay+unitAU,2) @test length(val)==9 for i in 1:9 @test abs(ref[i]-val[i]) < ฯต end val = compute(eph,jd0,dt,target,center,unitDay+unitAU,1) @test length(val)==6 for i in 1:6 @test abs(ref[i]-val[i]) < ฯต end val = compute(eph,jd0,dt,target,center,unitDay+unitAU,0) @test length(val)==3 for i in 1:3 @test abs(ref[i]-val[i]) < ฯต end ฯต = 3.0e-14 val = compute(eph,jd0,dt,target,center,unitSec+unitKM,3) @test length(val)==12 for i in 1:12 if i>3 val[i]*=86400 end if i>6 val[i]*=86400 end if i>9 val[i]*=86400 end @test abs(ref[i]-val[i]/AU) < ฯต end elseif target == 15 val = compute(eph,jd0,dt,target,center,unitRad+unitDay) for i in 1:6 @test abs(ref[i]-val[i]) < ฯต end val = compute(eph,jd0,dt,target,center,unitRad+unitSec) for i in 1:6 if i>3 val[i]*=86400 end @test abs(ref[i]-val[i]) < ฯต end elseif target โˆˆ [16,17] ฯต = 1e-18 val = compute(eph,jd0,dt,target,center,unitSec) @test abs(ref[1]-val[1]) < ฯต val = compute(eph,jd0,dt,target,center,unitDay) @test abs(ref[1]-val[1]*86400) < ฯต*86400 end end close(f) end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
code
2435
# This test is derived from test cmcompute_naifid.c in Calceph version 2.3.2 # the test data files are copied from calceph-2.3.2.tar.gz function testFunction2(testFile,testFile2,ephFiles,pflag) eph = Ephem(ephFiles) if pflag prefetch(eph) end con = constants(eph) AU = con[:AU] f = open(testFile); f2 = open(testFile2); for (ln,ln2) in zip(eachline(f),eachline(f2)) elts=split(ln) elts2=split(ln2) jd0=parse(Float64,elts[1]) @test parse(Float64,elts2[1]) == jd0 target=parse(Int,elts2[2]) center=parse(Int,elts2[3]) targetold=parse(Int,elts[2]) centerold=parse(Int,elts[3]) dt = jd0 - trunc(Int,jd0) jd0 = trunc(Int,jd0) + 2.4515450000000000000E+06 ref = [parse(Float64, x) for x in elts[4:end]] @test [parse(Float64, x) for x in elts2[4:end]] == ref if (target != naifId.id[:ttmtdb] && target != 15) for (unitold,ฯต) in [ (unitAU+unitDay,0.0), (unitKM+unitDay,0.0), (unitAU+unitSec,0.0), (unitKM+unitSec,0.0)] unit = unitold + useNaifId val = compute(eph, jd0, dt, target, center, unit) ref = compute(eph, jd0, dt, targetold, centerold, unitold) [(@test ref[i] โ‰ˆ val[i] atol=ฯต) for i in 1:6] end elseif (target == 15) targetN = 301 for (unitold,ฯต) in [ (unitRad+unitDay,0.0), (unitRad+unitSec,0.0)] unit = unitold + useNaifId val = orient(eph, jd0, dt, targetN, unit) ref = compute(eph, jd0, dt, targetold, centerold, unitold) [(@test ref[i] โ‰ˆ val[i] atol=ฯต) for i in 1:6] val2 = orient(eph, jd0, dt, targetN, unit,3) @test length(val2) == 12 [(@test val2[i] โ‰ˆ val[i] atol=ฯต) for i in 1:6] end elseif (target == naifId.id[:ttmtdb]) for (unitold,ฯต) in [ (unitDay,0.0), (unitSec,0.0)] unit = unitold + useNaifId val = compute(eph, jd0, dt, target, center, unit) ref = compute(eph, jd0, dt, targetold, centerold, unitold) @test ref[1] โ‰ˆ val[1] atol=ฯต end end end close(f) close(f2) end
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
docs
2941
[![Build Status](https://github.com/JuliaAstro/CALCEPH.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/JuliaAstro/CALCEPH.jl/actions/workflows/CI.yml) [![Stable Documentation](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaAstro.github.io/CALCEPH.jl/stable/) [![Dev Documentation](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaAstro.github.io/CALCEPH.jl/dev/) This is a julia wrapper for [CALCEPH](https://www.imcce.fr/inpop/calceph/) a C library for reading planetary ephemeris files, such as [INPOPxx](https://www.imcce.fr/inpop), JPL DExxx and SPICE ephemeris files. [CALCEPH](https://www.imcce.fr/inpop/calceph/) C library is developped by [IMCCE](https://www.imcce.fr/). # Quick start In the Julia interpreter, run: ```julia using Pkg Pkg.add("CALCEPH") using CALCEPH # ephemeris kernels can be downloaded from many different sources download("ftp://ftp.imcce.fr/pub/ephem/planets/inpop13c/inpop13c_TDB_m100_p100_tt.dat","planets.dat") # create an ephemeris context eph = Ephem("planets.dat") # prefetch ephemeris files data to main memory for faster access prefetch(eph) # retrieve constants from ephemeris as a dictionary con = constants(eph) # list the constants keys(con) # get the sun J2 J2sun = con[:J2SUN] # retrieve the position, velocity and acceleration of Earth (geocenter) relative # to the Earth-Moon system barycenter in kilometers, kilometers per second and # kilometers per second square at JD= 2451624.5 TDB timescale # for best accuracy the first time argument should be the integer part and the # delta the fractional part # when using NAIF identification numbers, useNaifId has to be added to # the units argument. pva=compute(eph,2451624.0,0.5,naifId.id[:earth],naifId.id[:emb], useNaifId+unitKM+unitSec,2) position=pva[1:3] velocity=pva[4:6] acceleration=pva[7:end] # what is the NAIF identification number for Deimos id_deimos = naifId.id[:deimos] # what does NAIF ID 0 correspond to? names_0 = naifId.names[0] ``` # Why use CALCEPH? CALCEPH functionality is also provided by [NAIF SPICE Toolkit](https://naif.jpl.nasa.gov/naif/toolkit.html). However CALCEPH has several advantages over the SPICE toolkit, mainly: - It can handle multiple ephemeris contexts. - It is thread safe (if using one context per thread). - It can compute higher order derivatives (acceleration and jerk) approximation using differentiation of the interpolation polynomials. - Its ephemeris computation interface expects the time separated in two double precision floating point numbers. This can be used to achieve higher precision in timetag (this can have a significant impact when modeling Doppler observations from a deep space probe). But CALCEPH does not support all functions of the SPICE toolkit. If you need more functionalities [SPICE.jl](https://github.com/JuliaAstrodynamics/SPICE.jl) is a Julia wrapper for the SPICE toolkit.
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
docs
117
# API ```@meta DocTestSetup = quote using CALCEPH end ``` ```@autodocs Modules = [CALCEPH] Private = false ```
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
docs
2534
# CALCEPH This is a julia wrapper for [CALCEPH](https://www.imcce.fr/inpop/calceph/) a C library for reading planetary ephemeris files, such as [INPOPxx](https://www.imcce.fr/inpop), JPL DExxx and SPICE ephemeris files. [CALCEPH](https://www.imcce.fr/inpop/calceph/) C library is developped by [IMCCE](https://www.imcce.fr/). ## Quick start In the Julia interpreter, run: ```julia using Pkg Pkg.add("CALCEPH") using CALCEPH # ephemeris kernels can be downloaded from many different sources download("ftp://ftp.imcce.fr/pub/ephem/planets/inpop13c/inpop13c_TDB_m100_p100_tt.dat","planets.dat") # create an ephemeris context eph = Ephem("planets.dat") # prefetch ephemeris files data to main memory for faster access prefetch(eph) # retrieve constants from ephemeris as a dictionary con = constants(eph) # list the constants keys(con) # get the sun J2 J2sun = con[:J2SUN] # retrieve the position, velocity and acceleration of Earth (geocenter) relative # to the Earth-Moon system barycenter in kilometers, kilometers per second and # kilometers per second square at JD= 2451624.5 TDB timescale # for best accuracy the first time argument should be the integer part and the # delta the fractional part # when using NAIF identification numbers, useNaifId has to be added to # the units argument. pva=compute(eph,2451624.0,0.5,naifId.id[:earth],naifId.id[:emb], useNaifId+unitKM+unitSec,2) position=pva[1:3] velocity=pva[4:6] acceleration=pva[7:end] # what is the NAIF identification number for Deimos id_deimos = naifId.id[:deimos] # what does NAIF ID 0 correspond to? names_0 = naifId.names[0] ``` ## Why use CALCEPH? CALCEPH functionality is also provided by [NAIF SPICE Toolkit](https://naif.jpl.nasa.gov/naif/toolkit.html). However CALCEPH has several advantages over the SPICE toolkit, mainly: - It can handle multiple ephemeris contexts. - It is thread safe (if using one context per thread). - It can compute higher order derivatives (acceleration and jerk) approximation using differentiation of the interpolation polynomials. - Its ephemeris computation interface expects the time separated in two double precision floating point numbers. This can be used to achieve higher precision in timetag (this can have a significant impact when modeling Doppler observations from a deep space probe). But CALCEPH does not support all functions of the SPICE toolkit. If you need more functionalities [SPICE.jl](https://github.com/JuliaAstrodynamics/SPICE.jl) is a Julia wrapper for the SPICE toolkit.
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
1.2.0
6d04b1804e66962763b920130f14ba1105313bf2
docs
15340
# Tutorial This tutorial will walk you through the features and functionality of [CALCEPH.jl](https://github.com/JuliaAstro/CALCEPH.jl) ## Ephemerides sources The supported sources of ephemerides are: - JPL DExxx binary ephemerides files: [https://ssd.jpl.nasa.gov/?planet_eph_export](https://ssd.jpl.nasa.gov/?planet_eph_export) - IMCCE INPOP ephemerides files: [https://www.imcce.fr/inpop/](https://www.imcce.fr/inpop/) - some NAIF SPICE kernels: [https://naif.jpl.nasa.gov/naif/data.html](https://naif.jpl.nasa.gov/naif/data.html) Example: ```julia download("https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de435.bsp","planets.dat") # WARNING this next file is huge (Jupiter Moons ephemerides) download("https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/jup310.bsp","jupiter_system.bsp") ``` ## Ephemerides context The user first need to load the ephemerides files into an ephemerides context object that will be used later to retrieve position and velocities of celestial objects. A context can be made from one or several files: ```julia using CALCEPH # load a single file in context eph1 eph1 = Ephem("planets.dat") # load multiple files in context eph2 eph2 = Ephem(["planets.dat","jupiter_system.bsp"]) ``` You must specify the relative or absolute path(s) of the file(s) to load. You can prefetch the ephemerides data into main memory for faster access: ```julia prefetch(eph2) ``` ## Epoch arguments CALCEPH function takes the epoch as the sum of two double precision floating arguments jd1 and jd2. The sum jd1 + jd2 is interpreted as the julian date in the timescale of the ephemerides context (usually TDB or sometimes TCB). For maximum accuracy, it is recommended to set jd2 to the fractional part of the julian date and jd1 to the difference: jd2 magnitude should be less than one while jd1 should have an integer value. If a high accuracy in timetag is not needed, jd1 can be set to the full julian date and jd2 to zero. ## Options Many CALCEPH function takes an integer argument to store options. The value of this argument is the sum of the option to enable (each option actually corresponds to a single bit of that integer). Each option to enable can appear only once in the sum! The following options are available: - unitAU = 1: set distance units it to Astronomical Unit. - unitKM = 2: set distance units to kilometers. - unitDay = 4: set time units to days. - unitSec = 8: set time units to seconds. - unitRad = 16: set angle units to radians. - useNaifId = 32: set the body identification scheme to NAIF body identification scheme. - outputEulerAngles = 64: when using body orientation ephemerides, this allows to choose Euler angle output. - outputNutationAngles = 128: when using body orientation ephemerides, this allows to choose nutation angle output (if available). The useNaifId option controls the identification scheme for the input arguments: target and center. The units options controls the units of the outputs. It is compulsory to set the output units if the routine has the input argument options. For example to compute the position and velocity in kilometers and kilometers per second of body target (given as its NAIF identification number) with respect to center (given as its NAIF identification number), the options argument should be set as such: ```julia options = unitKM + unitSec + useNaifId ``` ## Body identification scheme CALCEPH has the following identification scheme for bodies: - 1 : Mercury Barycenter - 2 : Venus Barycenter - 3 : Earth - 4 : Mars Barycenter - 5 : Jupiter Barycenter - 6 : Saturn Barycenter - 7 : Uranus Barycenter - 8 : Neptune Barycenter - 9 : Pluto Barycenter - 10 : Moon - 11 : Sun - 12 : Solar Sytem barycenter - 13 : Earth-moon barycenter - 14 : Nutation angles - 15 : Librations - 16 : difference TT-TDB - 17 : difference TCG-TCB - asteroid number + 2000000 : asteroid If target is 14, 15, 16 or 17 (nutation, libration, TT-TDB or TCG-TCB), center must be 0. The more complete NAIF identification scheme can be used if the value useNaifId is added to the options argument. ## NAIF body identification scheme See [https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html](https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html) CALCEPH uses this identification scheme only when the value useNaifId is added to the options argument. The CALCEPH julia wrapper comes with the naifId object which contains the mapping between NAIF identification numbers and names: ```julia julia> naifId.id[:sun] 10 julia> naifId.id[:mars] 499 julia> naifId.names[0] Set(Symbol[:ssb, :solar_system_barycenter]) ``` naifId also stores the following identifiers: - :timecenter (1000000000): the center argument when requesting a value from a time ephemeris. - :ttmtdb (1000000001): the target argument when requesting a value from the difference TT-TDB time ephemeris. - :tcgmtcb (1000000002): the target argument when requesting a value from the difference TCG-TCB time ephemeris. naifId is actually an instance of mutable struct BodyId. The user can also create its own identification scheme for its SPICE kernels: ```julia const MyUniverseIds = CALCEPH.BodyId() CALCEPH.add!(MyUniverseIds,:tatooine,1000001) CALCEPH.add!(MyUniverseIds,:dagobah,1000002) CALCEPH.add!(MyUniverseIds,:endor,1000003) CALCEPH.add!(MyUniverseIds,:deathstar,1000004) CALCEPH.add!(MyUniverseIds,:endor_deathstar_system_barycenter,1000005) CALCEPH.add!(MyUniverseIds,:edsb,1000005) ``` You can also load identification data from an external file: ```julia CALCEPH.loadData!(MyUniverseIds, "MyUniverseIds.txt") ``` See example: [https://github.com/JuliaAstro/CALCEPH.jl/blob/master/data/NaifIds.txt](https://github.com/JuliaAstro/CALCEPH.jl/blob/master/data/NaifIds.txt) Names from the file are converted to lower case and have spaces replaced by underscores before being converted to symbols/interned strings. ## Computing positions and velocities: The following methods are available to compute position and velocity with CALCEPH: ```julia compute(eph,jd1,jd2,target,center) compute(eph,jd1,jd2,target,center,options) compute(eph,jd1,jd2,target,center,options,order) ``` Those methods compute the position and its time derivatives of target with respect to center. - The first argument eph is the ephemerides context. - The second and third arguments jd1 and jd2 are the epoch. - The third argument target is the body for which position is to be computed with respect to origin. - The fourth argument center is the origin. - The options argument shall specify the units. It can also be used to switch target and center numbering scheme to the NAIF identification scheme. - The order argument can be set to: - 0: compute position only - 1: compute position and velocity - 2: compute position, velocity and acceleration - 3: compute position, velocity, acceleration and jerk. When order is not specified, position and velocity are computed. #### Example: Computing position only of Jupiter system barycenter with respect to the Earth Moon center in kilometers at JD=2456293.5 (Ephemeris Time). ```julia options = useNaifId + unitKM + unitSec jd1 = 2456293.0 jd2 = 0.5 center = naifId.id[:moon] target = naifId.id[:jupiter_barycenter] pos = compute(eph2, jd1, jd2, target, center, options,0) ``` ## Computing orientation: The following methods are available to compute orientation angles with CALCEPH: ```julia orient(eph,jd1,jd2,target,options) orient(eph,jd1,jd2,target,options,order) ``` Those methods compute the Euler angles of target and their time derivatives. - The first argument eph is the ephemerides context. - The second and third arguments jd1 and jd2 are the epoch. - The fourth argument target is the body for which the Euler angles are to be computed. - The options argument shall specify the units. It can also be used to switch target and center numbering scheme to the NAIF identification scheme and to switch between Euler angles and nutation angles. - The order argument can be set to: - 0: only the angles are computed. - 1: only the angles and first derivatives are computed. - 2: only the angles, the first and second derivatives are computed. - 3: the angles, the first, second and third derivatives are computed. #### Example: JPL DE405 binary ephemerides contain Chebychev polynomials for the IAU 1980 nutation theory. Interpolating those is much faster than computing the IAU 1980 nutation series. Computing Earth nutation angles in radians at JD=2456293.5 (Ephemeris Time). ```julia download("ftp://ssd.jpl.nasa.gov/pub/eph/planets/Linux/de405/lnxp1600p2200.405","DE405") eph1 = Ephem("DE405") options = useNaifId + unitRad + unitSec + outputNutationAngles jd1 = 2456293.0 jd2 = 0.5 target = naifId.id[:earth] angles = orient(eph1, jd1, jd2, target, options,0) ``` Note that the returned value is a vector of 3 even though there are only 2 nutation angles. The last value is zero and meaningless. ## Computing angular momentum: The following methods are available to compute body angular momentum with CALCEPH: ```julia rotAngMom(eph,jd1,jd2,target,options) rotAngMom(eph,jd1,jd2,target,options,order) ``` Those methods compute the angular momentum of target and their time derivatives. - The first argument eph is the ephemerides context. - The second and third arguments jd1 and jd2 are the epoch. - The fourth argument target is the body for which the angular momentum are to be computed. - The options argument shall specify the units. It can also be used to switch target numbering scheme to the NAIF identification scheme. - The order argument can be set to: - 0: only the angular momentum vector are computed. - 1: only the angular momentum vector and first derivative are computed. - 2: only the angular momentum vector, the first and second derivatives are computed. - 3: the angular momentum, the first, second and third derivatives are computed. ## Time ephemeris The time ephemeris TT-TDB or TCG-TCB at the geocenter can be evaluated with a suitable source. INPOP and some JPL DE ephemerides includes a numerically integrated time ephemeris for the geocenter which is usually more accurate than the analytical series: Moreover it is much faster to interpolate those ephemerides than to evaluate the analytical series. This is only for the geocenter but a simple correction can also be added for the location of the observer (and its velocity in case the observer is on a highly elliptical orbit). Files that can be used to obtain the difference between TT and TDB are, e.g.: - [ftp://ftp.imcce.fr/pub/ephem/planets/inpop17a/inpop17a_TDB_m100_p100_tt.dat](ftp://ftp.imcce.fr/pub/ephem/planets/inpop17a/inpop17a_TDB_m100_p100_tt.dat) - [ftp://ssd.jpl.nasa.gov/pub/eph/planets/bsp/de432t.bsp](ftp://ssd.jpl.nasa.gov/pub/eph/planets/bsp/de432t.bsp) #### Example: Computing TT-TDB at geocenter in seconds at JD=2456293.5 (Ephemeris Time). ```julia download("ftp://ftp.imcce.fr/pub/ephem/planets/inpop17a/inpop17a_TDB_m100_p100_tt.dat","INPOP17a") eph1 = Ephem("INPOP17a") options = useNaifId + unitSec jd1 = 2456293.0 jd2 = 0.5 target = naifId.id[:ttmtdb] center = naifId.id[:timecenter] ttmtdb = compute(eph1, jd1, jd2, target, center, options,0) ``` Note that the returned value is a vector of 3 even though there is only one meaningful value. The last 2 values are zero and meaningless. ## In place methods In place versions of the methods described above are also available. Those are: ```julia unsafe_compute!(result,eph,jd1,jd2,target,center) unsafe_compute!(result,eph,jd1,jd2,target,center,options) unsafe_compute!(result,eph,jd1,jd2,target,center,options,order) unsafe_orient!(result,eph,jd1,jd2,target,options) unsafe_orient!(result,eph,jd1,jd2,target,options,order) unsafe_rotAngMom!(result,eph,jd1,jd2,target,options) unsafe_rotAngMom!(result,eph,jd1,jd2,target,options,order) ``` Those methods do not perform any checks on their inputs. In particular, result must be a contiguous vector of double precision floating point number of dimension at least 6 when order is not specified or at least 3*(order+1) otherwise. ## Constants Ephemerides files may contain related constants. Those can be obtained by the **constants** method which returns a dictionary: ```julia download("ftp://ftp.imcce.fr/pub/ephem/planets/inpop17a/inpop17a_TDB_m100_p100_tt.dat","INPOP17a") eph1 = Ephem("INPOP17a") # retrieve constants from ephemeris as a dictionary con = constants(eph1) # list the constants keys(con) # get the sun J2 J2sun = con[:J2SUN] ``` ## Introspection #### Time scale ```julia timeScale(eph) ``` returns the Ephemeris Time identifier: - 1 for TDB - 2 for TCB #### Time span ```julia timespan(eph) ``` returns the triplet: - julian date of first entry in ephemerides context. - julian date of last entry in ephemerides context. - information about the availability of the quantities over the time span: - 1 if the quantities of all bodies are available for any time between the first and last time. - 2 if the quantities of some bodies are available on discontinuous time intervals between the first and last time. - 3 if the quantities of each body are available on a continuous time interval between the first and last time, but not available for any time between the first and last time. #### Position records ```julia positionRecords(eph) ``` retrieve position records metadata in ephemeris associated to handler eph. This is a vector of metadata about the ephemerides records ordered by priority. The compute methods use the highest priority ephemerides records when there are multiple records that could satisfy the target and epoch. Each record metadata contains the following information: - target: NAIF identifier of target. - center: NAIF identifier of center. - startEpoch: julian date of record start. - stopEpoch: julian date of record end. - frame : 1 for ICRF. #### Orientation records ```julia orientationRecords(eph) ``` retrieve orientation records metadata in ephemeris associated to handler eph. This is a vector of metadata about the ephemerides records ordered by priority. The orient methods use the highest priority ephemerides records when there are multiple records that could satisfy the target and epoch. Each record metadata contains the following information: - target: NAIF identifier of target. - startEpoch: julian date of record start. - stopEpoch: julian date of record end. - frame : 1 for ICRF. ## Cleaning up Because, Julia's garbage collector is lazy, you may want to free the memory managed by the context before you get rid of the reference to the context with eg: ```julia finalize(eph1) eph1 = Nothing ``` or after with ```julia eph1 = Nothing GC.gc() ``` ## Error handling By default, the CALCEPH C library prints error messages directly to the standard output but this can be modified. The Julia wrapper provides the following interface for this purpose: ```julia CALCEPH.setCustomHandler(f) ``` where f should be a user function taking a single argument of type String which will contain the CALCEPH error message. f should return Nothing. To disable CALCEPH error messages printout to the console: ```julia CALCEPH.setCustomHandler(s->Nothing) ``` To get back the default behavior: ```julia CALCEPH.disableCustomHandler() ```
CALCEPH
https://github.com/JuliaAstro/CALCEPH.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
53268
module RustyObjectStore export init_object_store, get_object!, put_object, delete_object export StaticConfig, ClientOptions, Config, AzureConfig, AWSConfig export status_code, is_connection, is_timeout, is_early_eof, is_unknown, is_parse_url export get_object_stream, ReadStream, finish! export put_object_stream, WriteStream, cancel!, shutdown! export current_metrics export max_entries_per_chunk, ListEntry, list_objects, list_objects_stream, next_chunk! using Base.Libc.Libdl: dlext using Base: @kwdef, @lock using DocStringExtensions using object_store_ffi_jll using JSON3 const Option{T} = Union{T, Nothing} const rust_lib = if haskey(ENV, "OBJECT_STORE_LIB") # For development, e.g. run `cargo build --release` and point to `target/release/` dir. # Note this is set a precompilation time, as `ccall` needs this to be a `const`, # so you need to restart Julia / recompile the package if you change it. lib_path = realpath(joinpath(ENV["OBJECT_STORE_LIB"], "libobject_store_ffi.$(dlext)")) @warn """ Using unreleased object_store_ffi library: $(repr(contractuser(lib_path))) This is only intended for local development and should not be used in production. """ lib_path else object_store_ffi_jll.libobject_store_ffi end """ $TYPEDEF Global configuration for the object store requests. # Keywords $TYPEDFIELDS """ @kwdef struct StaticConfig """ The number of worker threads for the native pool, a value of zero makes it equal to the number of logical cores on the machine. """ n_threads::Culonglong "The maximum capacity for the client cache" cache_capacity::Culonglong "The time-to-live in seconds for entries in the client cache" cache_ttl_secs::Culonglong "The time-to-idle in seconds for entries in the client cache" cache_tti_secs::Culonglong "Put requests with a size in bytes greater than this will use multipart operations" multipart_put_threshold::Culonglong "Get requests with a size in bytes greater than this will use multipart operations" multipart_get_threshold::Culonglong "The size in bytes for each part of multipart get operations" multipart_get_part_size::Culonglong "The max number of allowed Rust request tasks" concurrency_limit::Cuint end function Base.show(io::IO, config::StaticConfig) print(io, "StaticConfig("), print(io, "n_threads=", Int(config.n_threads), ",") print(io, "cache_capacity=", Int(config.cache_capacity), ",") print(io, "cache_ttl_secs=", Int(config.cache_ttl_secs), ",") print(io, "cache_tti_secs=", Int(config.cache_tti_secs), ",") print(io, "multipart_put_threshold=", Int(config.multipart_put_threshold), ",") print(io, "multipart_get_threshold=", Int(config.multipart_get_threshold), ",") print(io, "multipart_get_part_size=", Int(config.multipart_get_part_size), ")") end const DEFAULT_CONFIG = StaticConfig( n_threads=0, cache_capacity=100, cache_ttl_secs=30 * 60, cache_tti_secs=5 * 60, multipart_put_threshold=10 * 1024 * 1024, multipart_get_threshold=8 * 1024 * 1024, multipart_get_part_size=8 * 1024 * 1024, concurrency_limit=512 ) function default_panic_hook() println("Rust thread panicked, exiting the process") exit(1) end const _OBJECT_STORE_STARTED = Ref(false) const _INIT_LOCK::ReentrantLock = ReentrantLock() _PANIC_HOOK::Function = default_panic_hook struct InitException <: Exception msg::String return_code::Cint end Base.@ccallable function panic_hook_wrapper()::Cint global _PANIC_HOOK _PANIC_HOOK() return 0 end # This is the callback that Rust calls to notify a Julia task of a completed operation. # The argument is transparent to Rust and is simply what gets passed from Julia in the handle # argument of the @ccall. Currently we pass a pointer to a Base.Event that must be notified to # wakeup the appropriate task. Base.@ccallable function notify_result(event_ptr::Ptr{Nothing})::Cint event = unsafe_pointer_to_objref(event_ptr)::Base.Event notify(event) return 0 end # A dict of all tasks that are waiting some result from Rust # and should thus not be garbage collected. # This copies the behavior of Base.preserve_handle. const tasks_in_flight = IdDict{Task, Int64}() const preserve_task_lock = Threads.SpinLock() function preserve_task(x::Task) @lock preserve_task_lock begin v = get(tasks_in_flight, x, 0)::Int tasks_in_flight[x] = v + 1 end nothing end function unpreserve_task(x::Task) @lock preserve_task_lock begin v = get(tasks_in_flight, x, 0)::Int if v == 0 error("unbalanced call to unpreserve_task for $(typeof(x))") elseif v == 1 pop!(tasks_in_flight, x) else tasks_in_flight[x] = v - 1 end end nothing end """ init_object_store() init_object_store(config::StaticConfig) init_object_store(config::StaticConfig; on_rust_panic::Function) Initialise object store. This starts a `tokio` runtime for handling `object_store` requests. It must be called before sending a request e.g. with `get_object!` or `put_object`. The runtime is only started once and cannot be re-initialised with a different config, subsequent `init_object_store` calls have no effect. An optional panic hook may be provided to react to panics on Rust's native threads. The default behavior is to log and exit the process. # Throws - `InitException`: if the runtime fails to start. """ function init_object_store( config::StaticConfig=DEFAULT_CONFIG; on_rust_panic::Function=default_panic_hook ) global _PANIC_HOOK @lock _INIT_LOCK begin if _OBJECT_STORE_STARTED[] return nothing end _PANIC_HOOK = on_rust_panic panic_fn_ptr = @cfunction(panic_hook_wrapper, Cint, ()) fn_ptr = @cfunction(notify_result, Cint, (Ptr{Nothing},)) res = @ccall rust_lib.start(config::StaticConfig, panic_fn_ptr::Ptr{Nothing}, fn_ptr::Ptr{Nothing})::Cint if res != 0 throw(InitException("Failed to initialise object store runtime.", res)) end _OBJECT_STORE_STARTED[] = true end return nothing end macro option_print(obj, name, hide = false) return esc(:( !isnothing($obj.$name) && print(io, ", ", $(string(name)), "=", $hide ? "*****" : repr($obj.$name)) )) end function response_error_to_string(response, operation) err = string("failed to process ", operation, " with error: ", unsafe_string(response.error_message)) @ccall rust_lib.destroy_cstring(response.error_message::Ptr{Cchar})::Cint return err end macro throw_on_error(response, operation, exception) throw_on_error(response, operation, exception) end function throw_on_error(response, operation, exception) return :( $(esc(:($response.result == 1))) ? throw($exception($response_error_to_string($(esc(response)), $operation))) : $(nothing) ) end function ensure_wait(event::Base.Event) for i in 1:20 try return wait(event) catch e @error "cannot skip this wait point to prevent UB, ignoring exception: $(e)" end end @error "ignored too many wait exceptions, giving up" exit(1) end function wait_or_cancel(event::Base.Event, response) try return wait(event) catch e @ccall rust_lib.cancel_context(response.context::Ptr{Cvoid})::Cint ensure_wait(event) @ccall rust_lib.destroy_cstring(response.error_message::Ptr{Cchar})::Cint rethrow() finally @ccall rust_lib.destroy_context(response.context::Ptr{Cvoid})::Cint end end """ $TYPEDEF # Keyword Arguments - `request_timeout_secs::Option{Int}`: (Optional) Client request timeout in seconds. - `connect_timeout_secs::Option{Int}`: (Optional) Client connection timeout in seconds. - `max_retries::Option{Int}`: (Optional) Maximum number of retry attempts. - `retry_timeout_secs::Option{Int}`: (Optional) Maximum amount of time from the initial request after which no further retries will be attempted (in seconds). - `initial_backoff_ms::Option{Int}`: (Optional) Initial delay for exponential backoff (in milliseconds). - `max_backoff_ms::Option{Int}`: (Optional) Maximum delay for exponential backoff (in milliseconds). - `backoff_exp_base::Option{Float64}`: (Optional) The base of the exponential for backoff delay calculations. """ struct ClientOptions request_timeout_secs::Option{Int} connect_timeout_secs::Option{Int} max_retries::Option{Int} retry_timeout_secs::Option{Int} initial_backoff_ms::Option{Int} max_backoff_ms::Option{Int} backoff_exp_base::Option{Float64} params::Dict{String, String} function ClientOptions(; request_timeout_secs::Option{Int} = nothing, connect_timeout_secs::Option{Int} = nothing, max_retries::Option{Int} = nothing, retry_timeout_secs::Option{Int} = nothing, initial_backoff_ms::Option{Int} = nothing, max_backoff_ms::Option{Int} = nothing, backoff_exp_base::Option{Float64} = nothing, ) params = Dict() if !isnothing(request_timeout_secs) # Include `s` so parsing on Rust understands this as seconds params["timeout"] = string(request_timeout_secs, "s") end if !isnothing(connect_timeout_secs) # Include `s` so parsing on Rust understands this as seconds params["connect_timeout"] = string(connect_timeout_secs, "s") end if !isnothing(max_retries) params["max_retries"] = string(max_retries) end if !isnothing(retry_timeout_secs) # `s` suffix is not required as this field is already expected to be the number of seconds params["retry_timeout_secs"] = string(retry_timeout_secs) end if !isnothing(initial_backoff_ms) # `ms` suffix is not required as this field is already expected to be the number of milliseconds params["initial_backoff_ms"] = string(initial_backoff_ms) end if !isnothing(max_backoff_ms) # `ms` suffix is not required as this field is already expected to be the number of milliseconds params["max_backoff_ms"] = string(max_backoff_ms) end if !isnothing(backoff_exp_base) params["backoff_exp_base"] = string(backoff_exp_base) end return new( request_timeout_secs, connect_timeout_secs, max_retries, retry_timeout_secs, initial_backoff_ms, max_backoff_ms, backoff_exp_base, params ) end end function Base.show(io::IO, opts::ClientOptions) print(io, "ClientOptions("), @option_print(opts, request_timeout_secs) @option_print(opts, connect_timeout_secs) @option_print(opts, max_retries) @option_print(opts, retry_timeout_secs) @option_print(opts, initial_backoff_ms) @option_print(opts, max_backoff_ms) @option_print(opts, backoff_exp_base) print(io, ")") end abstract type AbstractConfig end """ $TYPEDEF Opaque configuration type for dynamic configuration use cases. This allows passing the url and configuration key-value pairs directly to the underlying library for validation and dispatching. It is recommended to reuse an instance for many operations. # Arguments - `url::String`: Url of the object store container root path. It must include the cloud specific url scheme (s3://, azure://, az://). - `params::Dict{String, String}`: A set of key-value pairs to configure access to the object store. Refer to the object_store crate documentation for the list of all supported parameters. """ struct Config <: AbstractConfig # The serialized string is stored here instead of the constructor arguments # in order to avoid any serialization overhead when performing get/put operations. # For this to be effective the recommended usage pattern is to reuse this object often # instead of constructing for each use. config_string::String function Config(url::String, params::Dict{String, String}) return new(url_params_to_config_string(url, params)) end end function url_params_to_config_string(url::String, params::Dict{String, String}) dict = merge(Dict("url" => url), params) return JSON3.write(dict) end into_config(conf::Config) = conf function Base.show(io::IO, config::Config) dict = JSON3.read(config.config_string, Dict{String, String}) print(io, "Config(") print(io, repr(dict["url"]), ", ") for key in keys(dict) if occursin(r"secret|token|key", string(key)) dict[key] = "*****" end end print(io, repr(dict)) print(io, ")") end const _ConfigFFI = Cstring function Base.cconvert(::Type{Ref{Config}}, config::Config) config_ffi = Base.unsafe_convert(Cstring, Base.cconvert(Cstring, config.config_string))::_ConfigFFI # cconvert ensures its outputs are preserved during a ccall, so we can crate a pointer # safely in the unsafe_convert call. return config_ffi, Ref(config_ffi) end function Base.unsafe_convert(::Type{Ref{Config}}, x::Tuple{T,Ref{T}}) where {T<:_ConfigFFI} return Base.unsafe_convert(Ptr{_ConfigFFI}, x[2]) end """ $TYPEDEF Configuration for the Azure Blob object store backend. Only one of `storage_account_key` or `storage_sas_token` is allowed for a given instance. It is recommended to reuse an instance for many operations. # Keyword Arguments - `storage_account_name::String`: Azure storage account name. - `container_name::String`: Azure container name. - `storage_account_key::Option{String}`: (Optional) Azure storage account key (conflicts with storage_sas_token). - `storage_sas_token::Option{String}`: (Optional) Azure storage SAS token (conflicts with storage_account_key). - `host::Option{String}`: (Optional) Alternative Azure host. For example, if using Azurite. - `opts::ClientOptions`: (Optional) Client configuration options. """ struct AzureConfig <: AbstractConfig storage_account_name::String container_name::String storage_account_key::Option{String} storage_sas_token::Option{String} host::Option{String} opts::ClientOptions cached_config::Config function AzureConfig(; storage_account_name::String, container_name::String, storage_account_key::Option{String} = nothing, storage_sas_token::Option{String} = nothing, host::Option{String} = nothing, opts::ClientOptions = ClientOptions() ) if !isnothing(storage_account_key) && !isnothing(storage_sas_token) error("Should provide either a storage_account_key or a storage_sas_token") end params = copy(opts.params) params["azure_storage_account_name"] = storage_account_name params["azure_container_name"] = container_name if !isnothing(storage_account_key) params["azure_storage_account_key"] = storage_account_key elseif !isnothing(storage_sas_token) params["azure_storage_sas_token"] = storage_sas_token end if !isnothing(host) params["azurite_host"] = host end if isnothing(storage_account_key) && isnothing(storage_sas_token) params["azure_skip_signature"] = "true" end map!(v -> strip(v), values(params)) cached_config = Config("az://$(strip(container_name))/", params) return new( storage_account_name, container_name, storage_account_key, storage_sas_token, host, opts, cached_config ) end end into_config(conf::AzureConfig) = conf.cached_config function Base.show(io::IO, conf::AzureConfig) print(io, "AzureConfig("), print(io, "storage_account_name=", repr(conf.storage_account_name), ", ") print(io, "container_name=", repr(conf.container_name)) @option_print(conf, storage_account_key, true) @option_print(conf, storage_sas_token, true) @option_print(conf, host) print(io, ", ", "opts=", repr(conf.opts), ")") end """ $TYPEDEF Configuration for the AWS S3 object store backend. It is recommended to reuse an instance for many operations. # Keyword Arguments - `region::String`: AWS S3 region. - `bucket_name::String`: AWS S3 bucket name. - `access_key_id::Option{String}`: (Optional) AWS S3 access key id. - `secret_access_key::Option{String}`: (Optional) AWS S3 secret access key. - `session_token::Option{String}`: (Optional) AWS S3 session_token. - `host::Option{String}`: (Optional) Alternative S3 host. For example, if using Minio. - `opts::ClientOptions`: (Optional) Client configuration options. """ struct AWSConfig <: AbstractConfig region::String bucket_name::String access_key_id::Option{String} secret_access_key::Option{String} session_token::Option{String} use_instance_metadata::Bool host::Option{String} opts::ClientOptions cached_config::Config function AWSConfig(; region::String, bucket_name::String, access_key_id::Option{String} = nothing, secret_access_key::Option{String} = nothing, session_token::Option{String} = nothing, use_instance_metadata::Bool = false, host::Option{String} = nothing, opts::ClientOptions = ClientOptions() ) params = copy(opts.params) params["region"] = region params["bucket_name"] = bucket_name if !isnothing(access_key_id) params["aws_access_key_id"] = access_key_id end if !isnothing(secret_access_key) params["aws_secret_access_key"] = secret_access_key end if !isnothing(session_token) params["aws_session_token"] = session_token end if !isnothing(host) params["minio_host"] = host else params["aws_virtual_hosted_style_request"] = "true" end if !use_instance_metadata && isnothing(access_key_id) params["aws_skip_signature"] = "true" end if use_instance_metadata && (!isnothing(access_key_id) || !isnothing(secret_access_key)) error("Credentials should not be provided when using instance metadata") end map!(v -> strip(v), values(params)) cached_config = Config("s3://$(strip(bucket_name))/", params) return new( region, bucket_name, access_key_id, secret_access_key, session_token, use_instance_metadata, host, opts, cached_config ) end end into_config(conf::AWSConfig) = conf.cached_config function Base.show(io::IO, conf::AWSConfig) print(io, "AWSConfig("), print(io, "region=", repr(conf.region), ", ") print(io, "bucket_name=", repr(conf.bucket_name)) @option_print(conf, access_key_id, true) @option_print(conf, secret_access_key, true) @option_print(conf, session_token, true) conf.use_instance_metadata && print(io, "use_instance_metadata=", repr(conf.use_instance_metadata)) @option_print(conf, host) print(io, ", ", "opts=", repr(conf.opts), ")") end mutable struct Response result::Cint length::Culonglong error_message::Ptr{Cchar} context::Ptr{Cvoid} Response() = new(-1, 0, C_NULL, C_NULL) end abstract type ErrorReason end struct ConnectionError <: ErrorReason end struct StatusError <: ErrorReason code::Int end struct EarlyEOF <: ErrorReason end struct TimeoutError <: ErrorReason end struct ParseURLError <: ErrorReason end struct UnknownError <: ErrorReason end reason_description(::ConnectionError) = "Connection" reason_description(r::StatusError) = "StatusCode($(r.code))" reason_description(::EarlyEOF) = "EarlyEOF" reason_description(::TimeoutError) = "Timeout" reason_description(::ParseURLError) = "ParseURL" reason_description(::UnknownError) = "Unknown" abstract type RequestException <: Exception end struct GetException <: RequestException msg::String reason::ErrorReason GetException(msg) = new(msg, rust_message_to_reason(msg)) end struct PutException <: RequestException msg::String reason::ErrorReason PutException(msg) = new(msg, rust_message_to_reason(msg)) end struct DeleteException <: RequestException msg::String reason::ErrorReason DeleteException(msg) = new(msg, rust_message_to_reason(msg)) end struct ListException <: RequestException msg::String reason::ErrorReason ListException(msg) = new(msg, rust_message_to_reason(msg)) end message(e::GetException) = e.msg::String message(e::PutException) = e.msg::String message(e::ListException) = e.msg::String message(e::DeleteException) = e.msg::String function message(e::Exception) iobuf = IOBuffer() Base.showerror(iobuf, e) return String(take!(iobuf)) end reason(e::GetException) = e.reason::ErrorReason reason(e::PutException) = e.reason::ErrorReason reason(e::ListException) = e.reason::ErrorReason reason(e::DeleteException) = e.reason::ErrorReason reason(e::Exception) = UnknownError() function status_code(e::Exception) return reason(e) isa StatusError ? reason(e).code : nothing end function is_connection(e::Exception) return reason(e) isa ConnectionError end function is_timeout(e::Exception) return reason(e) isa TimeoutError end function is_early_eof(e::Exception) return reason(e) isa EarlyEOF end function is_parse_url(e::Exception) return reason(e) isa ParseURLError end function is_unknown(e::Exception) return reason(e) isa UnknownError end function safe_message(e::Exception) if e isa RequestException msg = message(e) r = reason(e) if contains(msg, "<Error>") || contains(msg, "http") # Contains unreadacted payload from backend or urls, try extracting safe information code, backend_msg, report = extract_safe_parts(message(e)) reason_str = reason_description(r) code = isnothing(code) ? "Unknown" : code backend_msg = isnothing(backend_msg) ? "Error without safe message" : backend_msg retry_report = isnothing(report) ? "" : "\n\n$(report)" return "$(backend_msg) (code: $(code), reason: $(reason_str))$(retry_report)" else # Assuming it safe as it does not come from backend or has url, return message directly return msg end else return nothing end end function rust_message_to_reason(msg::AbstractString) if ( contains(msg, "connection error") || contains(msg, "tcp connect error") || contains(msg, "error trying to connect") || contains(msg, "client error (Connect)") ) && ( contains(msg, "deadline has elapsed") || contains(msg, "Connection refused") || contains(msg, "Connection reset by peer") || contains(msg, "dns error") ) return ConnectionError() elseif contains(msg, "Client error with status") m = match(r"Client error with status (\d+) ", msg) if !isnothing(m) code = tryparse(Int, m.captures[1]) if !isnothing(code) return StatusError(code) else return UnknownError() end else return UnknownError() end elseif contains(msg, "HTTP status server error") m = match(r"HTTP status server error \((\d+) ", msg) if !isnothing(m) code = tryparse(Int, m.captures[1]) if !isnothing(code) return StatusError(code) else return UnknownError() end else return UnknownError() end elseif contains(msg, "connection closed before message completed") || contains(msg, "end of file before message length reached") || contains(msg, "Connection reset by peer") return EarlyEOF() elseif contains(msg, "timed out") return TimeoutError() elseif contains(msg, "Unable to convert URL") || contains(msg, "Unable to recognise URL") return ParseURLError() else return UnknownError() end end function extract_safe_parts(msg::AbstractString) code = nothing backend_message = nothing retry_report = nothing codemsg = match(r"<Error>[\s\S]*?<Code>([\s\S]*?)</Code>[\s\S]*?<Message>([\s\S]*?)(?:</Message>|\n)", msg) if !isnothing(codemsg) code = codemsg.captures[1] backend_message = codemsg.captures[2] end retry_match = match(r"Recent attempts \([\s\S]*", msg) if !isnothing(retry_match) retry_report = retry_match.match end return (code, backend_message, retry_report) end """ get_object!(buffer, path, conf) -> Int Send a get request to the object store. Fetches the data bytes at `path` and writes them to the given `buffer`. # Arguments - `buffer::AbstractVector{UInt8}`: The buffer to write the object data to. The contents of the buffer will be mutated. The buffer must be at least as large as the data. The buffer will not be resized. - `path::String`: The location of the data to fetch. - `conf::AbstractConfig`: The configuration to use for the request. It includes credentials and other client options. # Returns - `nbytes::Int`: The number of bytes read from the object store and written to the buffer. That is, `buffer[1:nbytes]` will contain the object data. # Throws - `GetException`: If the request fails for any reason, including if the `buffer` is too small. """ function get_object!(buffer::AbstractVector{UInt8}, path::String, conf::AbstractConfig) response = Response() size = length(buffer) ct = current_task() event = Base.Event() handle = pointer_from_objref(event) config = into_config(conf) while true preserve_task(ct) result = GC.@preserve buffer config response event try result = @ccall rust_lib.get( path::Cstring, buffer::Ref{Cuchar}, size::Culonglong, config::Ref{Config}, response::Ref{Response}, handle::Ptr{Cvoid} )::Cint wait_or_cancel(event, response) result finally unpreserve_task(ct) end if result == 2 # backoff sleep(0.01) continue end @throw_on_error(response, "get", GetException) return Int(response.length) end end """ put_object(buffer, path, conf) -> Int Send a put request to the object store. Atomically writes the data bytes in `buffer` to `path`. # Arguments - `buffer::AbstractVector{UInt8}`: The data to write to the object store. This buffer will not be mutated. - `path::String`: The location to write data to. - `conf::AbstractConfig`: The configuration to use for the request. It includes credentials and other client options. # Returns - `nbytes::Int`: The number of bytes written to the object store. Is always equal to `length(buffer)`. # Throws - `PutException`: If the request fails for any reason. """ function put_object(buffer::AbstractVector{UInt8}, path::String, conf::AbstractConfig) response = Response() size = length(buffer) ct = current_task() event = Base.Event() handle = pointer_from_objref(event) config = into_config(conf) while true preserve_task(ct) result = GC.@preserve buffer config response event try result = @ccall rust_lib.put( path::Cstring, buffer::Ref{Cuchar}, size::Culonglong, config::Ref{Config}, response::Ref{Response}, handle::Ptr{Cvoid} )::Cint wait_or_cancel(event, response) result finally unpreserve_task(ct) end if result == 2 # backoff sleep(0.01) continue end @throw_on_error(response, "put", PutException) return Int(response.length) end end """ delete_object(path, conf) Send a delete request to the object store. # Arguments - `path::String`: The location of the object to delete. - `conf::AbstractConfig`: The configuration to use for the request. It includes credentials and other client options. # Throws - `DeleteException`: If the request fails for any reason. Note that S3 will treat a delete request to a non-existing object as a success, while Azure Blob will treat it as a 404 error. """ function delete_object(path::String, conf::AbstractConfig) response = Response() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) config = into_config(conf) while true preserve_task(ct) result = GC.@preserve config response event try result = @ccall rust_lib.delete( path::Cstring, config::Ref{Config}, response::Ref{Response}, handle::Ptr{Cvoid} )::Cint wait_or_cancel(event, response) result finally unpreserve_task(ct) end if result == 2 # backoff sleep(0.01) continue end @throw_on_error(response, "delete_object", DeleteException) return nothing end end mutable struct ReadResponseFFI result::Cint length::Culonglong eof::Cuchar error_message::Ptr{Cchar} context::Ptr{Cvoid} ReadResponseFFI() = new(-1, 0, 0, C_NULL, C_NULL) end mutable struct ReadStreamResponseFFI result::Cint stream::Ptr{Nothing} object_size::Culonglong error_message::Ptr{Cchar} context::Ptr{Cvoid} ReadStreamResponseFFI() = new(-1, C_NULL, 0, C_NULL, C_NULL) end """ ReadStream Opaque IO stream of object data. It is necessary to `Base.close` the stream if it is not run to completion. """ mutable struct ReadStream <: IO ptr::Ptr{Nothing} object_size::Int bytes_read::Int ended::Bool error::Option{String} end function Base.eof(io::ReadStream) if io.ended return true elseif !isnothing(io.error) throw("stream stopped by prevoius error: $(io.error)") elseif bytesavailable(io) > 0 return false else response = ReadResponseFFI() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) preserve_task(ct) GC.@preserve io response event try result = @ccall rust_lib.is_end_of_stream( io.ptr::Ptr{Cvoid}, response::Ref{ReadResponseFFI}, handle::Ptr{Cvoid} )::Cint @assert result == 0 wait_or_cancel(event, response) finally unpreserve_task(ct) end try @throw_on_error(response, "is_end_of_stream", GetException) catch e stream_error!(io, e.msg) rethrow() end eof = response.eof > 0 if eof stream_end!(io) end return eof end end function Base.bytesavailable(io::ReadStream) if !Base.isopen(io) return 0 else result = @ccall rust_lib.bytes_available(io.ptr::Ptr{Cvoid})::Clonglong @assert result >= 0 return Int(result) end end function Base.close(io::ReadStream) finish!(io) return nothing end Base.isopen(io::ReadStream) = !io.ended && isnothing(io.error) Base.iswritable(io::ReadStream) = false Base.filesize(io::ReadStream) = io.object_size function stream_end!(io::ReadStream) @assert Base.isopen(io) io.ended = true @ccall rust_lib.destroy_read_stream(io.ptr::Ptr{Nothing})::Cint end function stream_error!(io::ReadStream, err::String) @assert Base.isopen(io) io.error = err @ccall rust_lib.destroy_read_stream(io.ptr::Ptr{Nothing})::Cint end function Base.readbytes!(io::ReadStream, dest::AbstractVector{UInt8}, n) eof(io) && return 0 if n == typemax(Int) bytes_read = 0 while !eof(io) bytes_to_read = 128 * 1024 bytes_read + bytes_to_read > length(dest) && resize!(dest, bytes_read + bytes_to_read) bytes_read += GC.@preserve dest _unsafe_read(io, pointer(dest, bytes_read+1), bytes_to_read) end resize!(dest, bytes_read) return bytes_read else bytes_to_read = n == typemax(Int) ? 64 * 1024 : Int(n) bytes_to_read > length(dest) && resize!(dest, bytes_to_read) bytes_read = GC.@preserve dest _unsafe_read(io, pointer(dest), bytes_to_read) return bytes_read end end function Base.unsafe_read(io::ReadStream, p::Ptr{UInt8}, nb::UInt) if eof(io) nb > 0 && throw(EOFError()) return nothing end bytes_read = _unsafe_read(io, p, Int(nb)) eof(io) && nb > bytes_read && throw(EOFError()) return nothing end # TranscodingStreams.jl are calling this method when Base.bytesavailable is zero # to trigger buffer refill function Base.read(io::ReadStream, ::Type{UInt8}) eof(io) && throw(EOFError()) buf = zeros(UInt8, 1) n = _unsafe_read(io, pointer(buf), 1) n < 1 && throw(EOFError()) @inbounds b = buf[1] return b end function _forward(to::IO, from::IO) buf = Vector{UInt8}(undef, 64 * 1024) n = 0 while !eof(from) bytes_read = readbytes!(from, buf, 64 * 1024) bytes_written = 0 while bytes_written < bytes_read bytes_written += write(to, buf[bytes_written+1:bytes_read]) end n += bytes_written end return n end function Base.write(to::IO, from::ReadStream) return _forward(to, from) end """ get_object_stream(path, conf; size_hint, decompress) -> ReadStream Send a get request to the object store returning a stream of object data. # Arguments - `path::String`: The location of the data to fetch. - `conf::AbstractConfig`: The configuration to use for the request. It includes credentials and other client options. # Keyword - `size_hint::Int`: (Optional) Expected size of the object (optimization for small objects). - `decompress::Option{String}`: (Optional) Compression algorithm to decode the response stream (supports gzip, deflate, zlib or zstd) # Returns - `stream::ReadStream`: The stream of object data chunks. # Throws - `GetException`: If the request fails for any reason. """ function get_object_stream(path::String, conf::AbstractConfig; size_hint::Int=0, decompress::String="") response = ReadStreamResponseFFI() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) config = into_config(conf) hint = convert(UInt64, size_hint) while true preserve_task(ct) result = GC.@preserve config response event try result = @ccall rust_lib.get_stream( path::Cstring, hint::Culonglong, decompress::Cstring, config::Ref{Config}, response::Ref{ReadStreamResponseFFI}, handle::Ptr{Cvoid} )::Cint wait_or_cancel(event, response) result finally unpreserve_task(ct) end if result == 2 # backoff sleep(0.01) continue end # No need to destroy_read_stream in case of errors here @throw_on_error(response, "get_stream", GetException) return ReadStream( response.stream, convert(Int, response.object_size), 0, false, nothing ) end end function _unsafe_read(stream::ReadStream, dest::Ptr{UInt8}, bytes_to_read::Int) if stream.ended return nothing end if !isnothing(stream.error) throw("stream stopped by prevoius error: $(stream.error)") end response = ReadResponseFFI() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) preserve_task(ct) GC.@preserve stream dest response event try result = @ccall rust_lib.read_from_stream( stream.ptr::Ptr{Cvoid}, dest::Ptr{UInt8}, bytes_to_read::Culonglong, bytes_to_read::Culonglong, response::Ref{ReadResponseFFI}, handle::Ptr{Cvoid} )::Cint wait_or_cancel(event, response) finally unpreserve_task(ct) end try @throw_on_error(response, "read_from_stream", GetException) catch e stream_error!(stream, e.msg) rethrow() end if response.length > 0 stream.bytes_read += response.length if response.eof == 0 return convert(Int, response.length) else stream_end!(stream) return convert(Int, response.length) end else stream_end!(stream) return nothing end end """ finish!(stream::ReadStream) -> Bool Finishes the stream reclaiming resources. This function is not thread-safe. # Arguments - `stream::ReadStream`: The stream of object data. # Returns - `was_running::Bool`: Indicates if the stream was running when `finish!` was called. """ function finish!(stream::ReadStream) if !Base.isopen(stream) return false end stream_end!(stream) return true end mutable struct WriteResponseFFI result::Cint length::Culonglong error_message::Ptr{Cchar} context::Ptr{Cvoid} WriteResponseFFI() = new(-1, 0, C_NULL, C_NULL) end mutable struct WriteStreamResponseFFI result::Cint stream::Ptr{Nothing} error_message::Ptr{Cchar} context::Ptr{Cvoid} WriteStreamResponseFFI() = new(-1, C_NULL, C_NULL, C_NULL) end """ WriteStream Opaque IO sink of object data. It is necessary to call `shutdown!` to ensure data is persisted, or `cancel!` if the stream is to be discarded. """ mutable struct WriteStream <: IO ptr::Ptr{Nothing} bytes_written::Int destroyed::Bool error::Option{String} end """ put_object_stream(path, conf; compress) -> WriteStream Send a put request to the object store returning a stream to write data into. # Arguments - `path::String`: The location where to write the object. - `conf::AbstractConfig`: The configuration to use for the request. It includes credentials and other client options. # Keyword - `compress::Option{String}`: (Optional) Compression algorithm to encode the stream (supports gzip, deflate, zlib or zstd) # Returns - `stream::WriteStream`: The stream where to write object data. # Throws - `PutException`: If the request fails for any reason. """ function put_object_stream(path::String, conf::AbstractConfig; compress::String="") response = WriteStreamResponseFFI() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) config = into_config(conf) while true preserve_task(ct) result = GC.@preserve config response event try result = @ccall rust_lib.put_stream( path::Cstring, compress::Cstring, config::Ref{Config}, response::Ref{WriteStreamResponseFFI}, handle::Ptr{Cvoid} )::Cint wait_or_cancel(event, response) result finally unpreserve_task(ct) end if result == 2 # backoff sleep(0.01) continue end # No need to destroy_write_stream in case of errors here @throw_on_error(response, "put_stream", PutException) return WriteStream( response.stream, 0, false, nothing ) end end """ cancel!(stream::WriteStream) -> Bool Cancels the stream reclaiming resources. No partial writes will be observed. This function is not thread-safe. # Arguments - `stream::WriteStream`: The writeable stream to be canceled. # Returns - `was_writeable::Bool`: Indicates if the stream was writeable when `cancel!` was called. """ function cancel!(stream::WriteStream) if !Base.isopen(stream) return false end stream_destroy(stream) return true end """ shutdown!(stream::WriteStream) -> Bool Shuts down the stream ensuring the data is persisted. On failure partial writes will NOT be observed. This function is not thread-safe. # Arguments - `stream::WriteStream`: The writeable stream to be shutdown. """ function shutdown!(stream::WriteStream) if !isnothing(stream.error) throw(PutException("Tried to shutdown a stream in error state, previous error: $(stream.error)")) end if stream.destroyed throw(PutException("Tried to shutdown a destroyed stream (from a previous `cancel!` or `shutdown!`)")) end response = WriteResponseFFI() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) GC.@preserve stream response event try preserve_task(ct) result = @ccall rust_lib.shutdown_write_stream( stream.ptr::Ptr{Cvoid}, response::Ref{WriteResponseFFI}, handle::Ptr{Cvoid} )::Cint @assert result == 0 wait_or_cancel(event, response) finally unpreserve_task(ct) end try @throw_on_error(response, "shutdown_write_stream", PutException) catch e stream_error!(stream, e.msg) rethrow() end if response.result == 0 stream_destroy(stream) return nothing else @assert false "unreachable" end end Base.isopen(io::WriteStream) = !io.destroyed && isnothing(io.error) Base.iswritable(io::WriteStream) = true function Base.close(io::WriteStream) shutdown!(io) return nothing end function Base.flush(stream::WriteStream) _unsafe_write(stream, convert(Ptr{UInt8}, C_NULL), 0; flush=true) return nothing end function Base.unsafe_write(stream::WriteStream, input::Ptr{UInt8}, nbytes::Int) _unsafe_write(stream, input, nbytes) return nothing end function Base.write(io::WriteStream, bytes::Vector{UInt8}) return _unsafe_write(io, pointer(bytes), length(bytes)) end function Base.write(to::WriteStream, from::IO) return _forward(to, from) end function Base.write(to::WriteStream, from::ReadStream) return _forward(to, from) end function stream_destroy(io::WriteStream) @assert Base.isopen(io) io.destroyed = true @ccall rust_lib.destroy_write_stream(io.ptr::Ptr{Nothing})::Cint end function stream_error!(io::WriteStream, err::String) @assert Base.isopen(io) io.error = err @ccall rust_lib.destroy_write_stream(io.ptr::Ptr{Nothing})::Cint end function _unsafe_write(stream::WriteStream, input::Ptr{UInt8}, nbytes::Int; flush=false) if !isnothing(stream.error) throw(PutException("Tried to write to a stream in error state, previous error: $(stream.error)")) end if stream.destroyed throw(PutException("Tried to write to a destroyed stream (from a previous `cancel!` or `shutdown!`)")) end response = WriteResponseFFI() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) GC.@preserve stream response event try preserve_task(ct) result = @ccall rust_lib.write_to_stream( stream.ptr::Ptr{Cvoid}, input::Ptr{UInt8}, nbytes::Culonglong, flush::Cuchar, response::Ref{WriteResponseFFI}, handle::Ptr{Cvoid} )::Cint @assert result == 0 wait_or_cancel(event, response) finally unpreserve_task(ct) end try @throw_on_error(response, "write_to_stream", PutException) catch e stream_error!(stream, e.msg) rethrow() end @assert response.result == 0 stream.bytes_written += response.length return Int(response.length) end # List operations """ function max_entries_per_chunk()::Int Return the maximum number of entries a listing stream chunk can hold. This is kept in sync manually with the Rust care for now, it should later be re-expoted. """ max_entries_per_chunk() = 1000 struct ListEntryFFI location::Cstring last_modified::Culonglong size::Culonglong e_tag::Cstring version::Cstring end struct ListEntry location::String last_modified::Int size::Int e_tag::Option{String} version::Option{String} end function convert_list_entry(entry::ListEntryFFI) return ListEntry( unsafe_string(entry.location), convert(Int, entry.last_modified), convert(Int, entry.size), entry.e_tag != C_NULL ? unsafe_string(entry.e_tag) : nothing, entry.version != C_NULL ? unsafe_string(entry.version) : nothing ) end mutable struct ListResponseFFI result::Cint entries::Ptr{ListEntryFFI} entry_count::Culonglong error_message::Ptr{Cchar} context::Ptr{Cvoid} ListResponseFFI() = new(-1, C_NULL, 0, C_NULL, C_NULL) end """ list_objects(prefix, conf; offset) -> Vector{ListEntry} Send a list request to the object store. This buffers all entries in memory. For large (or unknown) object counts use `list_objects_stream`. # Arguments - `prefix::String`: Only objects with this prefix will be returned. - `conf::AbstractConfig`: The configuration to use for the request. It includes credentials and other client options. # Keyword Arguments - `offset::Option{String}`: (Optional) Start listing after this offset # Returns - `entries::Vector{ListEntry}`: The array with metadata for each object in the prefix. Returns an empty array if no objects match. # Throws - `ListException`: If the request fails for any reason. """ function list_objects(prefix::String, conf::AbstractConfig; offset::Option{String} = nothing) response = ListResponseFFI() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) config = into_config(conf) c_offset = if isnothing(offset) C_NULL else offset end while true preserve_task(ct) result = GC.@preserve config response event try result = @ccall rust_lib.list( prefix::Cstring, c_offset::Cstring, config::Ref{Config}, response::Ref{ListResponseFFI}, handle::Ptr{Cvoid} )::Cint wait_or_cancel(event, response) result finally unpreserve_task(ct) end if result == 2 # backoff sleep(0.01) continue end # No need to destroy_list_response in case of errors here @throw_on_error(response, "list", ListException) entries = if response.entry_count > 0 raw_entries = unsafe_wrap(Array, response.entries, response.entry_count) vector = map(convert_list_entry, raw_entries) @ccall rust_lib.destroy_list_entries( response.entries::Ptr{ListEntryFFI}, response.entry_count::Culonglong )::Cint vector else Vector{ListEntry}[] end return entries end end mutable struct ListStreamResponseFFI result::Cint stream::Ptr{Nothing} error_message::Ptr{Cchar} context::Ptr{Cvoid} ListStreamResponseFFI() = new(-1, C_NULL, C_NULL, C_NULL) end """ ListStream Opaque stream of metadata list chunks (Vector{ListEntry}). Use `next_chunk!` repeatedly to fetch data. An empty chunk indicates end of stream. The stream stops if an error occours, any following calls to `next_chunk!` will repeat the same error. It is necessary to `finish!` the stream if it is not run to completion. """ mutable struct ListStream ptr::Ptr{Nothing} ended::Bool error::Option{String} end function stream_end!(stream::ListStream) @assert (!stream.ended && isnothing(stream.error)) stream.ended = true @ccall rust_lib.destroy_list_stream(stream.ptr::Ptr{Nothing})::Cint end function stream_error!(stream::ListStream, err::String) @assert (!stream.ended && isnothing(stream.error)) stream.error = err @ccall rust_lib.destroy_list_stream(stream.ptr::Ptr{Nothing})::Cint end """ list_objects_stream(prefix, conf) -> ListStream Send a list request to the object store returning a stream of entry chunks. # Arguments - `prefix::String`: Only objects with this prefix will be returned. - `conf::AbstractConfig`: The configuration to use for the request. It includes credentials and other client options. # Keyword Arguments - `offset::Option{String}`: (Optional) Start listing after this offset # Returns - `stream::ListStream`: The stream of object metadata chunks. # Throws - `ListException`: If the request fails for any reason. """ function list_objects_stream(prefix::String, conf::AbstractConfig; offset::Option{String} = nothing) response = ListStreamResponseFFI() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) config = into_config(conf) c_offset = if isnothing(offset) C_NULL else offset end while true preserve_task(ct) result = GC.@preserve config response event try result = @ccall rust_lib.list_stream( prefix::Cstring, c_offset::Cstring, config::Ref{Config}, response::Ref{ListStreamResponseFFI}, handle::Ptr{Cvoid} )::Cint wait_or_cancel(event, response) result finally unpreserve_task(ct) end if result == 2 # backoff sleep(0.01) continue end # No need to destroy_list_stream in case of errors here @throw_on_error(response, "list_stream", ListException) return ListStream(response.stream, false, nothing) end end """ next_chunk!(stream) -> Option{Vector{ListEntry}} Fetch the next chunk from a ListStream. If the returned entries are the last in the stream, `stream.ended` will be set to true. An empty chunk indicates end of stream too. After an error any following calls will replay the error. # Arguments - `stream::ListStream`: The stream of object metadata list chunks. # Returns - `entries::Vector{ListEntry}`: The array with metadata for each object in the prefix. Resturns and empty array if no objects match or the stream is over. # Throws - `ListException`: If the request fails for any reason. """ function next_chunk!(stream::ListStream) if !isnothing(stream.error) throw(PutException("Tried to fetch next chunk from a stream in error state, previous error: $(stream.error)")) end if stream.ended return nothing end response = ListResponseFFI() ct = current_task() event = Base.Event() handle = pointer_from_objref(event) GC.@preserve stream response event try preserve_task(ct) result = @ccall rust_lib.next_list_stream_chunk( stream.ptr::Ptr{Cvoid}, response::Ref{ListResponseFFI}, handle::Ptr{Cvoid} )::Cint @assert result == 0 wait_or_cancel(event, response) finally unpreserve_task(ct) end try @throw_on_error(response, "next_list_stream_chunk", ListException) catch e stream_error!(stream, e.msg) rethrow() end @assert response.result == 0 # To avoid calling `next_chunk!` again on a practically ended stream, we mark # the stream as ended if the response has less entries than the chunk maximum. # This is safe to do because the Rust backend always fill the chunk to the maximum # unless the underlying stream is drained. if response.entry_count < max_entries_per_chunk() stream_end!(stream) end if response.entry_count > 0 raw_entries = unsafe_wrap(Array, response.entries, response.entry_count) vector = map(convert_list_entry, raw_entries) @ccall rust_lib.destroy_list_entries( response.entries::Ptr{ListEntryFFI}, response.entry_count::Culonglong )::Cint return vector else return nothing end end """ finish!(stream) -> Bool Finishes the stream reclaiming resources. This function is not thread-safe. # Arguments - `stream::ListStream`: The stream of object metadata list chunks. # Returns - `was_running::Bool`: Indicates if the stream was running when `finish!` was called. """ function finish!(stream::ListStream) if stream.ended || !isnothing(stream.error) return false end stream_end!(stream) return true end struct Metrics live_bytes::Int64 end function current_metrics() return @ccall rust_lib.current_metrics()::Metrics end end # module
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
981
@testitem "AWSConfig" begin # access key is obscured when printing @test repr(AWSConfig(; region="a", bucket_name="b", access_key_id="c", secret_access_key="d" )) == "AWSConfig(region=\"a\", bucket_name=\"b\", access_key_id=*****, secret_access_key=*****, opts=ClientOptions())" # session token is obscured when printing @test repr(AWSConfig(; region="a", bucket_name="b", access_key_id="c", secret_access_key="d", session_token="d" )) == "AWSConfig(region=\"a\", bucket_name=\"b\", access_key_id=*****, secret_access_key=*****, session_token=*****, opts=ClientOptions())" # host is supported @test repr(AWSConfig(; region="a", bucket_name="b", access_key_id="c", secret_access_key="d", host="d" )) == "AWSConfig(region=\"a\", bucket_name=\"b\", access_key_id=*****, secret_access_key=*****, host=\"d\", opts=ClientOptions())" end
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
26411
@testitem "Basic S3 exceptions" setup=[InitializeObjectStore] begin using CloudBase.CloudTest: Minio import CloudBase using RustyObjectStore: RustyObjectStore, get_object!, put_object, ClientOptions, AWSConfig # For interactive testing, use Minio.run() instead of Minio.with() # conf, p = Minio.run(; debug=true, public=false); atexit(() -> kill(p)) Minio.with(; debug=true, public=false) do conf _credentials, _container = conf base_url = _container.baseurl default_region = "us-east-1" config = AWSConfig(; region=default_region, bucket_name=_container.name, access_key_id=_credentials.access_key_id, secret_access_key=_credentials.secret_access_key, host=base_url ) global _stale_config = config global _stale_base_url = base_url @testset "Insufficient output buffer size" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 5 buffer = Vector{UInt8}(undef, 10) @assert sizeof(input) == 100 @assert sizeof(buffer) < sizeof(input) nbytes_written = put_object(codeunits(input), "test100B.csv", config) @test nbytes_written == 100 try nbytes_read = get_object!(buffer, "test100B.csv", config) @test false # Should have thrown an error catch err @test err isa RustyObjectStore.GetException @test occursin("Supplied buffer was too small", err.msg) end end @testset "Malformed credentials" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 5 buffer = Vector{UInt8}(undef, 100) bad_config = AWSConfig(; region=default_region, bucket_name=_container.name, access_key_id=_credentials.access_key_id, secret_access_key="", host=base_url ) try put_object(codeunits(input), "invalid_credentials.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.PutException @test occursin("403 Forbidden", e.msg) @test occursin("Check your key and signing method", e.msg) end nbytes_written = put_object(codeunits(input), "invalid_credentials.csv", config) @assert nbytes_written == 100 try get_object!(buffer, "invalid_credentials.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("403 Forbidden", e.msg) @test occursin("Check your key and signing method", e.msg) end end @testset "Non-existing file" begin buffer = Vector{UInt8}(undef, 100) try get_object!(buffer, "doesnt_exist.csv", config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("404 Not Found", e.msg) @test occursin("The specified key does not exist", e.msg) end end @testset "Delete non-existing file" begin # S3 semantics is to return success on deleting a non-existing file, so we expect this # to succeed delete_object("doesnt_exist.csv", config) end @testset "Non-existing container" begin non_existent_container_name = string(_container.name, "doesntexist") non_existent_base_url = replace(base_url, _container.name => non_existent_container_name) bad_config = AWSConfig(; region=default_region, bucket_name=non_existent_container_name, access_key_id=_credentials.access_key_id, secret_access_key=_credentials.secret_access_key, host=non_existent_base_url ) buffer = Vector{UInt8}(undef, 100) try put_object(codeunits("a,b,c"), "invalid_credentials2.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.PutException @test occursin("404 Not Found", e.msg) @test occursin("The specified bucket does not exist", e.msg) end nbytes_written = put_object(codeunits("a,b,c"), "invalid_credentials2.csv", config) @assert nbytes_written == 5 try get_object!(buffer, "invalid_credentials2.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("404 Not Found", e.msg) @test occursin("The specified bucket does not exist", e.msg) end end end # Minio.with # Minio is not running at this point @testset "Connection error" begin buffer = Vector{UInt8}(undef, 100) # These test retry the connection error try put_object(codeunits("a,b,c"), "still_doesnt_exist.csv", _stale_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.PutException @test occursin("Connection refused", e.msg) end try get_object!(buffer, "still_doesnt_exist.csv", _stale_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("Connection refused", e.msg) end end @testset "multiple start" begin res = @ccall RustyObjectStore.rust_lib.start()::Cint @test res == 1 # Rust CResult::Error end end # @testitem ### See AWS S3 docs: ### - "Error Responses - Amazon S3": ### https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html ### - "GetObject" ### https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html ### - "PutObject" ### https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html @testitem "AWS S3 retries" setup=[InitializeObjectStore] begin using CloudBase.CloudTest: Minio import CloudBase using RustyObjectStore: get_object!, put_object, AWSConfig, ClientOptions, is_timeout, is_early_eof, status_code import HTTP import Sockets max_retries = 2 retry_timeout_secs = 10 request_timeout_secs = 1 region = "us-east-1" container = "mybucket" dummy_access_key_id = "qUwJPLlmEtlCDXJ1OUzF" dummy_secret_access_key = "Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==" function test_tcp_error(method) @assert method === :GET || method === :PUT nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8082) @async begin while true sock = Sockets.accept(tcp_server) _ = read(sock, 4) close(sock) nrequests[] += 1 end end baseurl = "http://127.0.0.1:$port" conf = AWSConfig(; region=region, bucket_name=container, access_key_id=dummy_access_key_id, secret_access_key=dummy_secret_access_key, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs ) ) try method === :GET && get_object!(zeros(UInt8, 5), "blob", conf) method === :PUT && put_object(codeunits("a,b,c"), "blob", conf) @test false # Should have thrown an error catch e method === :GET && @test e isa RustyObjectStore.GetException method === :PUT && @test e isa RustyObjectStore.PutException @test occursin("connection closed", e.msg) @test is_early_eof(e) finally close(tcp_server) end return nrequests[] end function test_get_stream_error() nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8083) http_server = HTTP.listen!(tcp_server) do http::HTTP.Stream nrequests[] += 1 HTTP.setstatus(http, 200) HTTP.setheader(http, "Content-Length" => "20") HTTP.startwrite(http) write(http, "not enough") close(http.stream) end baseurl = "http://127.0.0.1:$port" conf = AWSConfig(; region=region, bucket_name=container, access_key_id=dummy_access_key_id, secret_access_key=dummy_secret_access_key, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs ) ) try get_object!(zeros(UInt8, 20), "blob", conf) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("end of file before message length reached", e.msg) @test is_early_eof(e) finally close(http_server) end wait(http_server) return nrequests[] end function dummy_cb(handle::Ptr{Cvoid}) return nothing end function test_tcp_reset(method) @assert method === :GET || method === :PUT nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8082) @async begin while true sock = Sockets.accept(tcp_server) _ = read(sock, 4) nrequests[] += 1 ccall( :uv_tcp_close_reset, Cint, (Ptr{Cvoid}, Ptr{Cvoid}), sock.handle, @cfunction(dummy_cb, Cvoid, (Ptr{Cvoid},)) ) end end baseurl = "http://127.0.0.1:$port" conf = AWSConfig(; region=region, bucket_name=container, access_key_id=dummy_access_key_id, secret_access_key=dummy_secret_access_key, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs ) ) try method === :GET && get_object!(zeros(UInt8, 5), "blob", conf) method === :PUT && put_object(codeunits("a,b,c"), "blob", conf) @test false # Should have thrown an error catch e method === :GET && @test e isa RustyObjectStore.GetException method === :PUT && @test e isa RustyObjectStore.PutException @test occursin("reset by peer", e.msg) @test is_connection(e) finally close(tcp_server) end return nrequests[] end function test_get_stream_reset() nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8083) http_server = HTTP.listen!(tcp_server) do http::HTTP.Stream nrequests[] += 1 HTTP.setstatus(http, 200) HTTP.setheader(http, "Content-Length" => "20") HTTP.startwrite(http) write(http, "not enough") socket = HTTP.IOExtras.tcpsocket(HTTP.Connections.getrawstream(http)) ccall( :uv_tcp_close_reset, Cint, (Ptr{Cvoid}, Ptr{Cvoid}), socket.handle, @cfunction(dummy_cb, Cvoid, (Ptr{Cvoid},)) ) close(http.stream) end baseurl = "http://127.0.0.1:$port" conf = AWSConfig(; region=region, bucket_name=container, access_key_id=dummy_access_key_id, secret_access_key=dummy_secret_access_key, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs ) ) try get_object!(zeros(UInt8, 20), "blob", conf) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("Connection reset by peer", e.msg) @test is_early_eof(e) finally Threads.@spawn HTTP.forceclose(http_server) end # wait(http_server) return nrequests[] end function test_get_stream_timeout() nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8083) http_server = HTTP.listen!(tcp_server) do http::HTTP.Stream nrequests[] += 1 HTTP.setstatus(http, 200) HTTP.setheader(http, "Content-Length" => "20") HTTP.setheader(http, "Last-Modified" => "Tue, 15 Oct 2019 12:45:26 GMT") HTTP.setheader(http, "ETag" => "123") HTTP.startwrite(http) write(http, "not enough") sleep(10) close(http.stream) end baseurl = "http://127.0.0.1:$port" conf = AWSConfig(; region=region, bucket_name=container, access_key_id=dummy_access_key_id, secret_access_key=dummy_secret_access_key, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs, request_timeout_secs ) ) try get_object!(zeros(UInt8, 20), "blob", conf) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("operation timed out", e.msg) @test is_timeout(e) finally Threads.@spawn HTTP.forceclose(http_server) end # wait(http_server) return nrequests[] end function test_status(method, response_status, headers=nothing) @assert method === :GET || method === :PUT nrequests = Ref(0) response_body = "response body from the dummy server" (port, tcp_server) = Sockets.listenany(8081) http_server = HTTP.serve!(tcp_server) do request::HTTP.Request if request.method == "GET" && request.target == "/$container/_this_file_does_not_exist" # This is the exploratory ping from connect_and_test in lib.rs return HTTP.Response(404, "Yup, still doesn't exist") end nrequests[] += 1 response = isnothing(headers) ? HTTP.Response(response_status, response_body) : HTTP.Response(response_status, headers, response_body) return response end baseurl = "http://127.0.0.1:$port" conf = AWSConfig(; region=region, bucket_name=container, access_key_id=dummy_access_key_id, secret_access_key=dummy_secret_access_key, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs ) ) try method === :GET && get_object!(zeros(UInt8, 5), "blob", conf) method === :PUT && put_object(codeunits("a,b,c"), "blob", conf) @test false # Should have thrown an error catch e method === :GET && @test e isa RustyObjectStore.GetException method === :PUT && @test e isa RustyObjectStore.PutException @test occursin(string(response_status), e.msg) @test status_code(e) == response_status response_status < 500 && (@test occursin("response body from the dummy server", e.msg)) finally close(http_server) end wait(http_server) return nrequests[] end function test_timeout(method, message, wait_secs::Int = 60) @assert method === :GET || method === :PUT nrequests = Ref(0) response_body = "response body from the dummy server" (port, tcp_server) = Sockets.listenany(8081) http_server = HTTP.serve!(tcp_server) do request::HTTP.Request if request.method == "GET" && request.target == "/$container/_this_file_does_not_exist" # This is the exploratory ping from connect_and_test in lib.rs return HTTP.Response(404, "Yup, still doesn't exist") end nrequests[] += 1 if wait_secs > 0 sleep(wait_secs) end return HTTP.Response(200, response_body) end baseurl = "http://127.0.0.1:$port" conf = AWSConfig(; region=region, bucket_name=container, access_key_id=dummy_access_key_id, secret_access_key=dummy_secret_access_key, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs, request_timeout_secs ) ) try method === :GET && get_object!(zeros(UInt8, 5), "blob", conf) method === :PUT && put_object(codeunits("a,b,c"), "blob", conf) @test false # Should have thrown an error catch e method === :GET && @test e isa RustyObjectStore.GetException method === :PUT && @test e isa RustyObjectStore.PutException @test is_timeout(e) @test occursin(string(message), e.msg) finally close(http_server) end wait(http_server) return nrequests[] end function test_cancellation() nrequests = Ref(0) response_body = "response body from the dummy server" (port, tcp_server) = Sockets.listenany(8081) http_server = HTTP.serve!(tcp_server) do request::HTTP.Request if request.method == "GET" && request.target == "/$container/_this_file_does_not_exist" # This is the exploratory ping from connect_and_test in lib.rs return HTTP.Response(404, "Yup, still doesn't exist") end nrequests[] += 1 sleep(5) return HTTP.Response(200, response_body) end baseurl = "http://127.0.0.1:$port" conf = AWSConfig(; region=region, bucket_name=container, access_key_id=dummy_access_key_id, secret_access_key=dummy_secret_access_key, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=10, request_timeout_secs=10 ) ) try size = 7_000_000 ptr = Base.Libc.malloc(size) buf = unsafe_wrap(Array, convert(Ptr{UInt8}, ptr), size) t = errormonitor(Threads.@spawn begin try RustyObjectStore.put_object(buf, "cancelled.bin", conf) @test false catch e @test e == "cancel" finally Base.Libc.free(ptr) end true end) sleep(1) schedule(t, "cancel"; error=true) @test fetch(t::Task) finally HTTP.forceclose(http_server) end wait(http_server) return nrequests[] end @testset "400: Bad Request" begin # Returned when there's an error in the request URI, headers, or body. The response body # contains an error message explaining what the specific problem is. # See https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html # AWS S3 can also respond with this code for other unrecoverable cases such as when # an upload exceeds the maximum allowed object size # See https://www.rfc-editor.org/rfc/rfc9110#status.400 nrequests = test_status(:GET, 400) @test nrequests == 1 nrequests = test_status(:PUT, 400) @test nrequests == 1 end @testset "403: Forbidden" begin # Returned when you pass an invalid api-key. # See https://www.rfc-editor.org/rfc/rfc9110#status.403 nrequests = test_status(:GET, 403) @test nrequests == 1 nrequests = test_status(:PUT, 403) @test nrequests == 1 end @testset "404: Not Found" begin # Returned when container not found or blob not found # See https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html # See https://www.rfc-editor.org/rfc/rfc9110#status.404 nrequests = test_status(:GET, 404) @test nrequests == 1 end @testset "405: Method Not Supported" begin # See https://www.rfc-editor.org/rfc/rfc9110#status.405 nrequests = test_status(:GET, 405, ["Allow" => "PUT"]) @test nrequests == 1 nrequests = test_status(:PUT, 405, ["Allow" => "GET"]) @test nrequests == 1 end @testset "409: Conflict" begin # Returned when write operations conflict. # See https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html # See https://www.rfc-editor.org/rfc/rfc9110#status.409 nrequests = test_status(:GET, 409) @test nrequests == 1 nrequests = test_status(:PUT, 409) @test nrequests == 1 end @testset "412: Precondition Failed" begin # Returned when an If-Match or If-None-Match header's condition evaluates to false # See https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html # See https://www.rfc-editor.org/rfc/rfc9110#status.412 nrequests = test_status(:GET, 412) @test nrequests == 1 nrequests = test_status(:PUT, 412) @test nrequests == 1 end @testset "413: Content Too Large" begin # See https://www.rfc-editor.org/rfc/rfc9110#status.413 nrequests = test_status(:PUT, 413) @test nrequests == 1 end @testset "429: Too Many Requests" begin # See https://www.rfc-editor.org/rfc/rfc6585#section-4 nrequests = test_status(:GET, 429) @test nrequests == 1 nrequests = test_status(:PUT, 429) @test nrequests == 1 # See https://www.rfc-editor.org/rfc/rfc9110#field.retry-after # TODO: We probably should respect the Retry-After header, but we currently don't # (and we don't know if AWS actually sets it) # This can happen when AWS is throttling us, so it might be a good idea to retry with some # larger initial backoff (very eager retries probably only make the situation worse). nrequests = test_status(:GET, 429, ["Retry-After" => 10]) @test nrequests == 1 + max_retries broken=true nrequests = test_status(:PUT, 429, ["Retry-After" => 10]) @test nrequests == 1 + max_retries broken=true end @testset "502: Bad Gateway" begin # https://www.rfc-editor.org/rfc/rfc9110#status.502 # The 502 (Bad Gateway) status code indicates that the server, while acting as a # gateway or proxy, received an invalid response from an inbound server it accessed # while attempting to fulfill the request. # This error can occur when you enter HTTP instead of HTTPS in the connection. nrequests = test_status(:GET, 502) @test nrequests == 1 + max_retries nrequests = test_status(:PUT, 502) @test nrequests == 1 + max_retries end @testset "503: Service Unavailable" begin # See https://www.rfc-editor.org/rfc/rfc9110#status.503 # The 503 (Service Unavailable) status code indicates that the server is currently # unable to handle the request due to a temporary overload or scheduled maintenance, # which will likely be alleviated after some delay. The server MAY send a Retry-After # header field (Section 10.2.3) to suggest an appropriate amount of time for the # client to wait before retrying the request. # See https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html nrequests = test_status(:GET, 503) @test nrequests == 1 + max_retries nrequests = test_status(:PUT, 503) @test nrequests == 1 + max_retries end @testset "504: Gateway Timeout" begin # See https://www.rfc-editor.org/rfc/rfc9110#status.504 # The 504 (Gateway Timeout) status code indicates that the server, while acting as # a gateway or proxy, did not receive a timely response from an upstream server it # needed to access in order to complete the request nrequests = test_status(:GET, 504) @test nrequests == 1 + max_retries nrequests = test_status(:PUT, 504) @test nrequests == 1 + max_retries end @testset "Timeout" begin nrequests = test_timeout(:GET, "timed out", 2) @test nrequests == 1 + max_retries nrequests = test_timeout(:PUT, "timed out", 2) @test nrequests == 1 + max_retries end @testset "TCP Closed" begin nrequests = test_tcp_error(:GET) @test nrequests == 1 + max_retries nrequests = test_tcp_error(:PUT) @test nrequests == 1 + max_retries end @testset "TCP reset" begin nrequests = test_tcp_reset(:GET) @test nrequests == 1 + max_retries nrequests = test_tcp_reset(:PUT) @test nrequests == 1 + max_retries end @testset "Incomplete GET body" begin nrequests = test_get_stream_error() @test nrequests == 1 + max_retries end @testset "Incomplete GET body reset" begin nrequests = test_get_stream_reset() @test nrequests == 1 + max_retries end @testset "Incomplete GET body timeout" begin nrequests = test_get_stream_timeout() @test nrequests == 1 + max_retries end @testset "Cancellation" begin nrequests = test_cancellation() @test nrequests == 1 end end
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
1267
@testitem "AzureConfig" begin # access key is obscured when printing @test repr(AzureConfig(; storage_account_name="a", container_name="b", storage_account_key="c" )) == "AzureConfig(storage_account_name=\"a\", container_name=\"b\", storage_account_key=*****, opts=ClientOptions())" # sas token is obscured when printing @test repr(AzureConfig(; storage_account_name="a", container_name="b", storage_sas_token="c" )) == "AzureConfig(storage_account_name=\"a\", container_name=\"b\", storage_sas_token=*****, opts=ClientOptions())" @test repr(AzureConfig(; storage_account_name="a", container_name="b", storage_account_key="c", host="d" )) == "AzureConfig(storage_account_name=\"a\", container_name=\"b\", storage_account_key=*****, host=\"d\", opts=ClientOptions())" # can only supply either access key or sas token try AzureConfig(; storage_account_name="a", container_name="b", storage_account_key="c", storage_sas_token="d" ) catch e @test e isa ErrorException @test e.msg == "Should provide either a storage_account_key or a storage_sas_token" end end
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
30272
@testitem "Basic BlobStorage exceptions" setup=[InitializeObjectStore] begin using CloudBase.CloudTest: Azurite import CloudBase using RustyObjectStore: RustyObjectStore, get_object!, put_object, ClientOptions, AzureConfig, AWSConfig # For interactive testing, use Azurite.run() instead of Azurite.with() # conf, p = Azurite.run(; debug=true, public=false); atexit(() -> kill(p)) Azurite.with(; debug=true, public=false) do conf _credentials, _container = conf base_url = _container.baseurl config = AzureConfig(; storage_account_name=_credentials.auth.account, container_name=_container.name, storage_account_key=_credentials.auth.key, host=base_url ) global _stale_config = config global _stale_base_url = base_url @testset "Insufficient output buffer size" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 5 buffer = Vector{UInt8}(undef, 10) @assert sizeof(input) == 100 @assert sizeof(buffer) < sizeof(input) nbytes_written = put_object(codeunits(input), "test100B.csv", config) @test nbytes_written == 100 try nbytes_read = get_object!(buffer, "test100B.csv", config) @test false # Should have thrown an error catch err @test err isa RustyObjectStore.GetException @test occursin("Supplied buffer was too small", err.msg) end end @testset "Insufficient output buffer size multipart" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 1_000_000 buffer = Vector{UInt8}(undef, 20_000_000) @assert sizeof(input) == 20_000_000 @assert sizeof(buffer) == sizeof(input) nbytes_written = put_object(codeunits(input), "test100B.csv", config) @test nbytes_written == 20_000_000 try # Buffer is over multipart threshold but too small for object buffer = Vector{UInt8}(undef, 10_000_000) nbytes_read = get_object!(buffer, "test100B.csv", config) @test false # Should have thrown an error catch err @test err isa RustyObjectStore.GetException @test occursin("Supplied buffer was too small", err.msg) end end @testset "Malformed credentials" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 5 buffer = Vector{UInt8}(undef, 100) bad_config = AzureConfig(; storage_account_name=_credentials.auth.account, container_name=_container.name, storage_account_key="", host=base_url ) try put_object(codeunits(input), "invalid_credentials.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.PutException @test occursin("400 Bad Request", e.msg) # Should this be 403 Forbidden? We've seen that with invalid SAS tokens @test occursin("Authentication information is not given in the correct format", e.msg) end nbytes_written = put_object(codeunits(input), "invalid_credentials.csv", config) @assert nbytes_written == 100 try get_object!(buffer, "invalid_credentials.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("400 Bad Request", e.msg) @test occursin("Authentication information is not given in the correct format", e.msg) end end @testset "Non-existing file" begin buffer = Vector{UInt8}(undef, 100) try get_object!(buffer, "doesnt_exist.csv", config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("404 Not Found", e.msg) @test occursin("The specified blob does not exist", e.msg) end end @testset "Delete non-existing file" begin try delete_object("doesnt_exist.csv", config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.DeleteException @test occursin("404 Not Found", e.msg) @test occursin("The specified blob does not exist", e.msg) end end @testset "Non-existing container" begin non_existent_container_name = string(_container.name, "doesntexist") non_existent_base_url = replace(base_url, _container.name => non_existent_container_name) bad_config = AzureConfig(; storage_account_name=_credentials.auth.account, container_name=non_existent_container_name, storage_account_key=_credentials.auth.key, host=non_existent_base_url ) buffer = Vector{UInt8}(undef, 100) try put_object(codeunits("a,b,c"), "invalid_credentials2.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.PutException @test occursin("404 Not Found", e.msg) @test occursin("The specified container does not exist", e.msg) end nbytes_written = put_object(codeunits("a,b,c"), "invalid_credentials2.csv", config) @assert nbytes_written == 5 try get_object!(buffer, "invalid_credentials2.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("404 Not Found", e.msg) @test occursin("The specified container does not exist", e.msg) end end @testset "Non-existing resource" begin bad_config = AzureConfig(; storage_account_name="non_existing_account", container_name=_container.name, storage_account_key=_credentials.auth.key, host=base_url ) buffer = Vector{UInt8}(undef, 100) try put_object(codeunits("a,b,c"), "invalid_credentials3.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.PutException @test occursin("404 Not Found", e.msg) @test occursin("The specified resource does not exist.", e.msg) end nbytes_written = put_object(codeunits("a,b,c"), "invalid_credentials3.csv", config) @assert nbytes_written == 5 try get_object!(buffer, "invalid_credentials3.csv", bad_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("404 Not Found", e.msg) @test occursin("The specified resource does not exist.", e.msg) end end end # Azurite.with # Azurite is not running at this point @testset "Connection error" begin buffer = Vector{UInt8}(undef, 100) # These test retry the connection error try put_object(codeunits("a,b,c"), "still_doesnt_exist.csv", _stale_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.PutException @test occursin("Connection refused", e.msg) end try get_object!(buffer, "still_doesnt_exist.csv", _stale_config) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("Connection refused", e.msg) end end @testset "multiple start" begin res = @ccall RustyObjectStore.rust_lib.start()::Cint @test res == 1 # Rust CResult::Error end end # @testitem ### See Azure Blob Storage docs: https://learn.microsoft.com/en-us/rest/api/storageservices ### - "Common REST API error codes": ### https://learn.microsoft.com/en-us/rest/api/storageservices/common-rest-api-error-codes ### - "Azure Blob Storage error codes": ### https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes ### - "Get Blob" ### https://learn.microsoft.com/en-us/rest/api/storageservices/get-blob ### - "Put Blob" ### https://learn.microsoft.com/en-us/rest/api/storageservices/put-blob @testitem "BlobStorage retries" setup=[InitializeObjectStore] begin using CloudBase.CloudTest: Azurite import CloudBase using RustyObjectStore: get_object!, put_object, AWSConfig, ClientOptions, is_timeout, is_early_eof, status_code import HTTP import Sockets max_retries = 2 retry_timeout_secs = 10 request_timeout_secs = 1 account = "myaccount" container = "mycontainer" shared_key_from_azurite = "Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==" function test_status(method, response_status, headers=nothing) @assert method === :GET || method === :PUT nrequests = Ref(0) response_body = "response body from the dummy server" (port, tcp_server) = Sockets.listenany(8081) http_server = HTTP.serve!(tcp_server) do request::HTTP.Request if request.method == "GET" && request.target == "/$account/$container/_this_file_does_not_exist" # This is the exploratory ping from connect_and_test in lib.rs return HTTP.Response(404, "Yup, still doesn't exist") end nrequests[] += 1 response = isnothing(headers) ? HTTP.Response(response_status, response_body) : HTTP.Response(response_status, headers, response_body) return response end baseurl = "http://127.0.0.1:$port/$account/$container/" conf = AzureConfig(; storage_account_name=account, container_name=container, storage_account_key=shared_key_from_azurite, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs ) ) try method === :GET && get_object!(zeros(UInt8, 5), "blob", conf) method === :PUT && put_object(codeunits("a,b,c"), "blob", conf) @test false # Should have thrown an error catch e method === :GET && @test e isa RustyObjectStore.GetException method === :PUT && @test e isa RustyObjectStore.PutException @test occursin(string(response_status), e.msg) @test status_code(e) == response_status response_status < 500 && (@test occursin("response body from the dummy server", e.msg)) finally close(http_server) end wait(http_server) return nrequests[] end function test_tcp_error(method) @assert method === :GET || method === :PUT nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8082) @async begin while true sock = Sockets.accept(tcp_server) _ = read(sock, 4) close(sock) nrequests[] += 1 end end baseurl = "http://127.0.0.1:$port/$account/$container/" conf = AzureConfig(; storage_account_name=account, container_name=container, storage_account_key=shared_key_from_azurite, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs ) ) try method === :GET && get_object!(zeros(UInt8, 5), "blob", conf) method === :PUT && put_object(codeunits("a,b,c"), "blob", conf) @test false # Should have thrown an error catch e method === :GET && @test e isa RustyObjectStore.GetException method === :PUT && @test e isa RustyObjectStore.PutException @test occursin("connection closed", e.msg) @test is_early_eof(e) finally close(tcp_server) end return nrequests[] end function test_get_stream_error() nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8083) http_server = HTTP.listen!(tcp_server) do http::HTTP.Stream nrequests[] += 1 HTTP.setstatus(http, 200) HTTP.setheader(http, "Content-Length" => "20") HTTP.setheader(http, "Last-Modified" => "Tue, 15 Oct 2019 12:45:26 GMT") HTTP.setheader(http, "ETag" => "123") HTTP.startwrite(http) write(http, "not enough") close(http.stream) end baseurl = "http://127.0.0.1:$port/$account/$container/" conf = AzureConfig(; storage_account_name=account, container_name=container, storage_account_key=shared_key_from_azurite, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs ) ) try get_object!(zeros(UInt8, 20), "blob", conf) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("end of file before message length reached", e.msg) @test is_early_eof(e) finally close(http_server) end wait(http_server) return nrequests[] end function dummy_cb(handle::Ptr{Cvoid}) return nothing end function test_tcp_reset(method) @assert method === :GET || method === :PUT nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8082) @async begin while true sock = Sockets.accept(tcp_server) _ = read(sock, 4) nrequests[] += 1 ccall( :uv_tcp_close_reset, Cint, (Ptr{Cvoid}, Ptr{Cvoid}), sock.handle, @cfunction(dummy_cb, Cvoid, (Ptr{Cvoid},)) ) end end baseurl = "http://127.0.0.1:$port/$account/$container/" conf = AzureConfig(; storage_account_name=account, container_name=container, storage_account_key=shared_key_from_azurite, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs, request_timeout_secs ) ) try method === :GET && get_object!(zeros(UInt8, 5), "blob", conf) method === :PUT && put_object(codeunits("a,b,c"), "blob", conf) @test false # Should have thrown an error catch e method === :GET && @test e isa RustyObjectStore.GetException method === :PUT && @test e isa RustyObjectStore.PutException @test occursin("reset by peer", e.msg) @test is_connection(e) finally close(tcp_server) end return nrequests[] end function test_get_stream_reset() nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8083) http_server = HTTP.listen!(tcp_server) do http::HTTP.Stream nrequests[] += 1 HTTP.setstatus(http, 200) HTTP.setheader(http, "Content-Length" => "20") HTTP.setheader(http, "Last-Modified" => "Tue, 15 Oct 2019 12:45:26 GMT") HTTP.setheader(http, "ETag" => "123") HTTP.startwrite(http) write(http, "not enough") socket = HTTP.IOExtras.tcpsocket(HTTP.Connections.getrawstream(http)) ccall( :uv_tcp_close_reset, Cint, (Ptr{Cvoid}, Ptr{Cvoid}), socket.handle, @cfunction(dummy_cb, Cvoid, (Ptr{Cvoid},)) ) close(http.stream) end baseurl = "http://127.0.0.1:$port/$account/$container/" conf = AzureConfig(; storage_account_name=account, container_name=container, storage_account_key=shared_key_from_azurite, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs ) ) try get_object!(zeros(UInt8, 20), "blob", conf) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("Connection reset by peer", e.msg) @test is_early_eof(e) finally Threads.@spawn HTTP.forceclose(http_server) end # wait(http_server) return nrequests[] end function test_get_stream_timeout() nrequests = Ref(0) (port, tcp_server) = Sockets.listenany(8083) http_server = HTTP.listen!(tcp_server) do http::HTTP.Stream nrequests[] += 1 HTTP.setstatus(http, 200) HTTP.setheader(http, "Content-Length" => "20") HTTP.setheader(http, "Last-Modified" => "Tue, 15 Oct 2019 12:45:26 GMT") HTTP.setheader(http, "ETag" => "123") HTTP.startwrite(http) write(http, "not enough") sleep(10) close(http.stream) end baseurl = "http://127.0.0.1:$port/$account/$container/" conf = AzureConfig(; storage_account_name=account, container_name=container, storage_account_key=shared_key_from_azurite, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs, request_timeout_secs ) ) try get_object!(zeros(UInt8, 20), "blob", conf) @test false # Should have thrown an error catch e @test e isa RustyObjectStore.GetException @test occursin("operation timed out", e.msg) @test is_timeout(e) finally Threads.@spawn HTTP.forceclose(http_server) end # wait(http_server) return nrequests[] end function test_timeout(method, message, wait_secs::Int = 60) @assert method === :GET || method === :PUT nrequests = Ref(0) response_body = "response body from the dummy server" (port, tcp_server) = Sockets.listenany(8081) http_server = HTTP.serve!(tcp_server) do request::HTTP.Request if request.method == "GET" && request.target == "/$container/_this_file_does_not_exist" # This is the exploratory ping from connect_and_test in lib.rs return HTTP.Response(404, "Yup, still doesn't exist") end nrequests[] += 1 if wait_secs > 0 sleep(wait_secs) end return HTTP.Response(200, response_body) end baseurl = "http://127.0.0.1:$port/$account/$container/" conf = AzureConfig(; storage_account_name=account, container_name=container, storage_account_key=shared_key_from_azurite, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs, request_timeout_secs ) ) try method === :GET && get_object!(zeros(UInt8, 5), "blob", conf) method === :PUT && put_object(codeunits("a,b,c"), "blob", conf) @test false # Should have thrown an error catch e method === :GET && @test e isa RustyObjectStore.GetException method === :PUT && @test e isa RustyObjectStore.PutException @test is_timeout(e) @test occursin(string(message), e.msg) finally close(http_server) end wait(http_server) return nrequests[] end function test_cancellation() nrequests = Ref(0) response_body = "response body from the dummy server" (port, tcp_server) = Sockets.listenany(8081) http_server = HTTP.serve!(tcp_server) do request::HTTP.Request if request.method == "GET" && request.target == "/$container/_this_file_does_not_exist" # This is the exploratory ping from connect_and_test in lib.rs return HTTP.Response(404, "Yup, still doesn't exist") end nrequests[] += 1 sleep(5) return HTTP.Response(200, response_body) end baseurl = "http://127.0.0.1:$port/$account/$container/" conf = AzureConfig(; storage_account_name=account, container_name=container, storage_account_key=shared_key_from_azurite, host=baseurl, opts=ClientOptions(; max_retries=max_retries, retry_timeout_secs=retry_timeout_secs, request_timeout_secs ) ) try size = 7_000_000 ptr = Base.Libc.malloc(size) buf = unsafe_wrap(Array, convert(Ptr{UInt8}, ptr), size) t = errormonitor(Threads.@spawn begin try RustyObjectStore.put_object(buf, "cancelled.bin", conf) @test false catch e @test e == "cancel" finally Base.Libc.free(ptr) end true end) sleep(1) schedule(t, "cancel"; error=true) @test fetch(t::Task) finally HTTP.forceclose(http_server) end wait(http_server) return nrequests[] end @testset "400: Bad Request" begin # Returned when there's an error in the request URI, headers, or body. The response body # contains an error message explaining what the specific problem is. # See https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes # See https://www.rfc-editor.org/rfc/rfc9110#status.400 nrequests = test_status(:GET, 400) @test nrequests == 1 nrequests = test_status(:PUT, 400) @test nrequests == 1 end @testset "403: Forbidden" begin # Returned when you pass an invalid api-key. # See https://www.rfc-editor.org/rfc/rfc9110#status.403 nrequests = test_status(:GET, 403) @test nrequests == 1 nrequests = test_status(:PUT, 403) @test nrequests == 1 end @testset "404: Not Found" begin # Returned when container not found or blob not found # See https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes # See https://www.rfc-editor.org/rfc/rfc9110#status.404 nrequests = test_status(:GET, 404) @test nrequests == 1 end @testset "405: Method Not Supported" begin # See https://www.rfc-editor.org/rfc/rfc9110#status.405 nrequests = test_status(:GET, 405, ["Allow" => "PUT"]) @test nrequests == 1 nrequests = test_status(:PUT, 405, ["Allow" => "GET"]) @test nrequests == 1 end @testset "409: Conflict" begin # Returned when write operations conflict. # See https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes # See https://www.rfc-editor.org/rfc/rfc9110#status.409 nrequests = test_status(:GET, 409) @test nrequests == 1 nrequests = test_status(:PUT, 409) @test nrequests == 1 end @testset "412: Precondition Failed" begin # Returned when an If-Match or If-None-Match header's condition evaluates to false # See https://learn.microsoft.com/en-us/rest/api/storageservices/put-blob#blob-custom-properties # See https://www.rfc-editor.org/rfc/rfc9110#status.412 nrequests = test_status(:GET, 412) @test nrequests == 1 nrequests = test_status(:PUT, 412) @test nrequests == 1 end @testset "413: Content Too Large" begin # See https://learn.microsoft.com/en-us/rest/api/storageservices/put-blob#remarks # If you attempt to upload either a block blob that's larger than the maximum # permitted size for that service version or a page blob that's larger than 8 TiB, # the service returns status code 413 (Request Entity Too Large). Blob Storage also # returns additional information about the error in the response, including the # maximum permitted blob size, in bytes. # See https://www.rfc-editor.org/rfc/rfc9110#status.413 nrequests = test_status(:PUT, 413) @test nrequests == 1 end @testset "429: Too Many Requests" begin # See https://www.rfc-editor.org/rfc/rfc6585#section-4 nrequests = test_status(:GET, 429) @test nrequests == 1 nrequests = test_status(:PUT, 429) @test nrequests == 1 # See https://www.rfc-editor.org/rfc/rfc9110#field.retry-after # TODO: We probably should respect the Retry-After header, but we currently don't # (and we don't know if Azure actually sets it) # This can happen when Azure is throttling us, so it might be a good idea to retry with some # larger initial backoff (very eager retries probably only make the situation worse). nrequests = test_status(:GET, 429, ["Retry-After" => 10]) @test nrequests == 1 + max_retries broken=true nrequests = test_status(:PUT, 429, ["Retry-After" => 10]) @test nrequests == 1 + max_retries broken=true end @testset "502: Bad Gateway" begin # https://www.rfc-editor.org/rfc/rfc9110#status.502 # The 502 (Bad Gateway) status code indicates that the server, while acting as a # gateway or proxy, received an invalid response from an inbound server it accessed # while attempting to fulfill the request. # This error can occur when you enter HTTP instead of HTTPS in the connection. nrequests = test_status(:GET, 502) @test nrequests == 1 + max_retries nrequests = test_status(:PUT, 502) @test nrequests == 1 + max_retries end @testset "503: Service Unavailable" begin # See https://www.rfc-editor.org/rfc/rfc9110#status.503 # The 503 (Service Unavailable) status code indicates that the server is currently # unable to handle the request due to a temporary overload or scheduled maintenance, # which will likely be alleviated after some delay. The server MAY send a Retry-After # header field (Section 10.2.3) to suggest an appropriate amount of time for the # client to wait before retrying the request. # See https://learn.microsoft.com/en-us/rest/api/storageservices/common-rest-api-error-codes # An operation on any of the Azure Storage services can return the following error codes: # Error code HTTP status code User message # ServerBusy Service Unavailable (503) The server is currently unable to receive requests. Please retry your request. # ServerBusy Service Unavailable (503) Ingress is over the account limit. # ServerBusy Service Unavailable (503) Egress is over the account limit. # ServerBusy Service Unavailable (503) Operations per second is over the account limit. nrequests = test_status(:GET, 503) @test nrequests == 1 + max_retries nrequests = test_status(:PUT, 503) @test nrequests == 1 + max_retries end @testset "504: Gateway Timeout" begin # See https://www.rfc-editor.org/rfc/rfc9110#status.504 # The 504 (Gateway Timeout) status code indicates that the server, while acting as # a gateway or proxy, did not receive a timely response from an upstream server it # needed to access in order to complete the request nrequests = test_status(:GET, 504) @test nrequests == 1 + max_retries nrequests = test_status(:PUT, 504) @test nrequests == 1 + max_retries end @testset "Timeout" begin nrequests = test_timeout(:GET, "timed out", 2) @test nrequests == 1 + max_retries nrequests = test_timeout(:PUT, "timed out", 2) @test nrequests == 1 + max_retries end @testset "TCP Closed" begin nrequests = test_tcp_error(:GET) @test nrequests == 1 + max_retries nrequests = test_tcp_error(:PUT) @test nrequests == 1 + max_retries end @testset "TCP reset" begin nrequests = test_tcp_reset(:GET) @test nrequests == 1 + max_retries nrequests = test_tcp_reset(:PUT) @test nrequests == 1 + max_retries end @testset "Incomplete GET body" begin nrequests = test_get_stream_error() @test nrequests == 1 + max_retries end @testset "Incomplete GET body reset" begin nrequests = test_get_stream_reset() @test nrequests == 1 + max_retries end @testset "Incomplete GET body timeout" begin nrequests = test_get_stream_timeout() @test nrequests == 1 + max_retries end @testset "Cancellation" begin nrequests = test_cancellation() @test nrequests == 1 end end
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
26128
@testsetup module ReadWriteCases using RustyObjectStore: get_object!, put_object, get_object_stream, put_object_stream, AbstractConfig, delete_object, list_objects, list_objects_stream, next_chunk!, finish! using CodecZlib using RustyObjectStore using Test: @testset, @test, @test_throws export run_read_write_test_cases, run_stream_test_cases, run_sanity_test_cases, run_list_test_cases function run_stream_test_cases(config::AbstractConfig) # ReadStream @testset "ReadStream small readbytes!" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^10; # 200 B nbytes_written = put_object(codeunits(multicsv), "test.csv", config) @test nbytes_written == 200 buffer = Vector{UInt8}(undef, 200) nbytes_read = get_object!(buffer, "test.csv", config) @test nbytes_read == 200 N = 19 buf = Vector{UInt8}(undef, N) copyto!(buf, 1, buffer, 1, N) @test buf == view(codeunits(multicsv), 1:N) ioobj = get_object_stream("test.csv", config) i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv) - i : N readbytes!(ioobj, buf, N) @test view(buf, 1:nb) == view(codeunits(multicsv), i:i+nb-1) i += N end close(ioobj) end @testset "ReadStream large readbytes!" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^1000000; # 20 MB nbytes_written = put_object(codeunits(multicsv), "test.csv", config) @test nbytes_written == 20 * 1000 * 1000 buffer = Vector{UInt8}(undef, 20 * 1000 * 1000) nbytes_read = get_object!(buffer, "test.csv", config) @test nbytes_read == 20 * 1000 * 1000 N = 1024*1024 buf = Vector{UInt8}(undef, N) copyto!(buf, 1, buffer, 1, N) @test buf == view(codeunits(multicsv), 1:N) ioobj = get_object_stream("test.csv", config) i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv) - i : N readbytes!(ioobj, buf, N) @test view(buf, 1:nb) == view(codeunits(multicsv), i:i+nb-1) i += N end close(ioobj) end @testset "ReadStream small unsafe_read" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^10; # 200 B nbytes_written = put_object(codeunits(multicsv), "test.csv", config) @test nbytes_written == 200 buffer = Vector{UInt8}(undef, 200) nbytes_read = get_object!(buffer, "test.csv", config) @test nbytes_read == 200 N = 19 buf = Vector{UInt8}(undef, N) copyto!(buf, 1, buffer, 1, N) @test buf == view(codeunits(multicsv), 1:N) ioobj = get_object_stream("test.csv", config) i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv) - i : N unsafe_read(ioobj, pointer(buf), nb) @test view(buf, 1:nb) == view(codeunits(multicsv), i:i+nb-1) i += N end close(ioobj) end @testset "ReadStream large unsafe_read" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^1000000; # 20 MB nbytes_written = put_object(codeunits(multicsv), "test.csv", config) @test nbytes_written == 20 * 1000 * 1000 buffer = Vector{UInt8}(undef, 20 * 1000 * 1000) nbytes_read = get_object!(buffer, "test.csv", config) @test nbytes_read == 20 * 1000 * 1000 N = 1024*1024 buf = Vector{UInt8}(undef, N) copyto!(buf, 1, buffer, 1, N) @test buf == view(codeunits(multicsv), 1:N) ioobj = get_object_stream("test.csv", config) i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv) - i : N unsafe_read(ioobj, pointer(buf), nb) @test view(buf, 1:nb) == view(codeunits(multicsv), i:i+nb-1) i += N end close(ioobj) end @testset "ReadStream small readbytes! decompress" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^100; # 2000 B codec = ZlibCompressor() CodecZlib.initialize(codec) compressed = transcode(codec, codeunits(multicsv)) nbytes_written = put_object(compressed, "test.csv.gz", config) @test nbytes_written == length(compressed) CodecZlib.finalize(codec) buffer = Vector{UInt8}(undef, length(compressed)) nbytes_read = get_object!(buffer, "test.csv.gz", config) @test nbytes_read == length(compressed) N = 19 buf = Vector{UInt8}(undef, N) ioobj = get_object_stream("test.csv.gz", config; decompress="zlib") i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv) - i : N readbytes!(ioobj, buf, N) @test view(buf, 1:nb) == view(codeunits(multicsv), i:i+nb-1) i += N end close(ioobj) end @testset "ReadStream large readbytes! decompress" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^1000000; # 20 MB codec = ZlibCompressor() CodecZlib.initialize(codec) compressed = transcode(codec, codeunits(multicsv)) nbytes_written = put_object(compressed, "test.csv.gz", config) @test nbytes_written == length(compressed) CodecZlib.finalize(codec) buffer = Vector{UInt8}(undef, length(compressed)) nbytes_read = get_object!(buffer, "test.csv.gz", config) @test nbytes_read == length(compressed) N = 1024*1024 buf = Vector{UInt8}(undef, N) ioobj = get_object_stream("test.csv.gz", config; decompress="zlib") i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv) - i : N readbytes!(ioobj, buf, N) @test view(buf, 1:nb) == view(codeunits(multicsv), i:i+nb-1) i += N end close(ioobj) end @testset "ReadStream empty file readbytes! decompress" begin multicsv = "" # 0 MB codec = ZlibCompressor() CodecZlib.initialize(codec) compressed = transcode(codec, codeunits(multicsv)) nbytes_written = put_object(compressed, "test.csv.gz", config) @test nbytes_written == length(compressed) CodecZlib.finalize(codec) buffer = Vector{UInt8}(undef, length(compressed)) nbytes_read = get_object!(buffer, "test.csv.gz", config) @test nbytes_read == length(compressed) N = 1024*1024 buf = ones(UInt8, N) ioobj = get_object_stream("test.csv.gz", config; decompress="zlib") readbytes!(ioobj, buf, N) @test eof(ioobj) @test all(buf .== 1) close(ioobj) end @testset "ReadStream empty file readbytes!" begin multicsv = "" # 0 MB data = codeunits(multicsv) nbytes_written = put_object(data, "test.csv", config) @test nbytes_written == length(data) buffer = Vector{UInt8}(undef, length(data)) nbytes_read = get_object!(buffer, "test.csv", config) @test nbytes_read == length(data) N = 1024*1024 buf = ones(UInt8, N) ioobj = get_object_stream("test.csv", config) readbytes!(ioobj, buf, N) @test eof(ioobj) @test all(buf .== 1) close(ioobj) end @testset "ReadStream empty file unsafe_read" begin multicsv = "" # 0 MB data = codeunits(multicsv) nbytes_written = put_object(data, "test.csv", config) @test nbytes_written == length(data) buffer = Vector{UInt8}(undef, length(data)) nbytes_read = get_object!(buffer, "test.csv", config) @test nbytes_read == length(data) N = 1024*1024 buf = ones(UInt8, N) ioobj = get_object_stream("test.csv", config) @test_throws EOFError unsafe_read(ioobj, pointer(buf), N) @test eof(ioobj) @test all(buf .== 1) close(ioobj) end @testset "ReadStream read last byte" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^1000000; # 20 MB nbytes_written = put_object(codeunits(multicsv), "test.csv", config) @test nbytes_written == 20 * 1000 * 1000 buffer = Vector{UInt8}(undef, 20 * 1000 * 1000) nbytes_read = get_object!(buffer, "test.csv", config) @test nbytes_read == 20 * 1000 * 1000 N = length(multicsv) - 1 buf = Vector{UInt8}(undef, N) copyto!(buf, 1, buffer, 1, N) @test buf == view(codeunits(multicsv), 1:N) ioobj = get_object_stream("test.csv", config) readbytes!(ioobj, buf, N) @test buf == view(codeunits(multicsv), 1:N) @test read(ioobj, UInt8) == UInt8(last(multicsv)) close(ioobj) end @testset "ReadStream read bytes into file" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^1000000; # 20 MB nbytes_written = put_object(codeunits(multicsv), "test.csv", config) @test nbytes_written == 20 * 1000 * 1000 buffer = Vector{UInt8}(undef, 20 * 1000 * 1000) nbytes_read = get_object!(buffer, "test.csv", config) @test nbytes_read == 20 * 1000 * 1000 (path, io) = mktemp() rs = get_object_stream("test.csv", config) write(io, rs) close(io) io = open(path, "r") filedata = read(io) @test length(filedata) == length(codeunits(multicsv)) close(io) @test buffer == codeunits(multicsv) close(rs) end # WriteStream @testset "WriteStream write small bytes" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^100; # 2000 B N = 2000 ws = put_object_stream("test.csv", config) i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv)-i+1 : N buf = Vector{UInt8}(undef, nb) copyto!(buf, 1, codeunits(multicsv), i, nb) write(ws, buf) i += N end close(ws) rs = get_object_stream("test.csv", config) objdata = read(rs) @test objdata == codeunits(multicsv) end @testset "WriteStream write large bytes" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^1000000; # 20MB N = 2000000 ws = put_object_stream("test.csv", config) i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv)-i+1 : N buf = Vector{UInt8}(undef, nb) copyto!(buf, 1, codeunits(multicsv), i, nb) write(ws, buf) i += N end close(ws) rs = get_object_stream("test.csv", config) objdata = read(rs) @test objdata == codeunits(multicsv) end @testset "WriteStream write empty" begin multicsv = ""; # 0 B ws = put_object_stream("test.csv", config) write(ws, codeunits(multicsv)) close(ws) rs = get_object_stream("test.csv", config) objdata = read(rs) @test objdata == codeunits(multicsv) end @testset "WriteStream write small bytes and compress" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^100; # 2000 B N = 2000 ws = put_object_stream("test.csv.gz", config; compress="gzip") i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv)-i+1 : N buf = Vector{UInt8}(undef, nb) copyto!(buf, 1, codeunits(multicsv), i, nb) write(ws, buf) i += N end close(ws) rs = get_object_stream("test.csv.gz", config; decompress="gzip") objdata = read(rs) @test objdata == codeunits(multicsv) end @testset "WriteStream write large bytes and compress" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^1000000; # 20MB N = 2000000 ws = put_object_stream("test.csv", config; compress="gzip") i = 1 while i < sizeof(multicsv) nb = i + N > length(multicsv) ? length(multicsv)-i+1 : N buf = Vector{UInt8}(undef, nb) copyto!(buf, 1, codeunits(multicsv), i, nb) write(ws, buf) i += N end close(ws) rs = get_object_stream("test.csv", config; decompress="gzip") objdata = read(rs) @test objdata == codeunits(multicsv) end @testset "WriteStream write bytes from file" begin multicsv = "1,2,3,4,5,6,7,8,9,1\n"^1000000; # 20MB N = 2000000 (path, io) = mktemp() written = write(io, codeunits(multicsv)) @test written == length(codeunits(multicsv)) close(io) ws = put_object_stream("test.csv", config) io = open(path, "r") write(ws, io) close(ws) rs = get_object_stream("test.csv", config) objdata = read(rs) @test objdata == codeunits(multicsv) end end function run_read_write_test_cases(read_config::AbstractConfig, write_config::AbstractConfig = read_config) @testset "0B file, 0B buffer" begin buffer = Vector{UInt8}(undef, 0) nbytes_written = put_object(codeunits(""), "empty.csv", write_config) @test nbytes_written == 0 nbytes_read = get_object!(buffer, "empty.csv", read_config) @test nbytes_read == 0 end @testset "0B file, 1KB buffer" begin buffer = Vector{UInt8}(undef, 1000) nbytes_written = put_object(codeunits(""), "empty.csv", write_config) @test nbytes_written == 0 nbytes_read = get_object!(buffer, "empty.csv", read_config) @test nbytes_read == 0 end @testset "100B file, 100B buffer" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 5 buffer = Vector{UInt8}(undef, 100) @assert sizeof(input) == 100 @assert sizeof(buffer) == sizeof(input) nbytes_written = put_object(codeunits(input), "test100B.csv", write_config) @test nbytes_written == 100 nbytes_read = get_object!(buffer, "test100B.csv", read_config) @test nbytes_read == 100 @test String(buffer[1:nbytes_read]) == input end @testset "100B file, 1KB buffer" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 5 buffer = Vector{UInt8}(undef, 1000) @assert sizeof(input) == 100 @assert sizeof(buffer) > sizeof(input) nbytes_written = put_object(codeunits(input), "test100B.csv", write_config) @test nbytes_written == 100 nbytes_read = get_object!(buffer, "test100B.csv", read_config) @test nbytes_read == 100 @test String(buffer[1:nbytes_read]) == input end @testset "1MB file, 1MB buffer" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 50_000 buffer = Vector{UInt8}(undef, 1_000_000) @assert sizeof(input) == 1_000_000 == sizeof(buffer) nbytes_written = put_object(codeunits(input), "test100B.csv", write_config) @test nbytes_written == 1_000_000 nbytes_read = get_object!(buffer, "test100B.csv", read_config) @test nbytes_read == 1_000_000 @test String(buffer[1:nbytes_read]) == input end @testset "delete_object" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 5 buffer = Vector{UInt8}(undef, 100) @assert sizeof(input) == 100 @assert sizeof(buffer) == sizeof(input) nbytes_written = put_object(codeunits(input), "test100B.csv", write_config) @test nbytes_written == 100 delete_object("test100B.csv", write_config) try nbytes_read = get_object!(buffer, "test100B.csv", read_config) @test false # should throw catch e @test e isa RustyObjectStore.GetException @test occursin("not found", e.msg) end end # Large files should use multipart upload / download requests @testset "20MB file, 20MB buffer" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 1_000_000 buffer = Vector{UInt8}(undef, 20_000_000) @assert sizeof(input) == 20_000_000 == sizeof(buffer) nbytes_written = put_object(codeunits(input), "test100B.csv", write_config) @test nbytes_written == 20_000_000 nbytes_read = get_object!(buffer, "test100B.csv", read_config) @test nbytes_read == 20_000_000 @test String(buffer[1:nbytes_read]) == input end @testset "20MB file, 21MB buffer" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 1_000_000 buffer = Vector{UInt8}(undef, 21_000_000) @assert sizeof(input) < sizeof(buffer) nbytes_written = put_object(codeunits(input), "test100B.csv", write_config) @test nbytes_written == 20_000_000 nbytes_read = get_object!(buffer, "test100B.csv", read_config) @test nbytes_read == 20_000_000 @test String(buffer[1:nbytes_read]) == input end @testset "1MB file, 20MB buffer" begin input = "1,2,3,4,5,6,7,8,9,1\n" ^ 50_000 nbytes_written = put_object(codeunits(input), "test100B.csv", write_config) @test nbytes_written == 1_000_000 # Edge case for multpart download, file is less than threshold but buffer is greater buffer = Vector{UInt8}(undef, 20_000_000) nbytes_read = get_object!(buffer, "test100B.csv", read_config) @test nbytes_read == 1_000_000 @test String(buffer[1:nbytes_read]) == input end end function run_sanity_test_cases(read_config::AbstractConfig, write_config::AbstractConfig = read_config) @testset "Round trip" begin input = "1,2,3,4,5,6,7,8,9,1\n" buffer = Vector{UInt8}(undef, length(input)) nbytes_written = put_object(codeunits(input), "roundtrip.csv", write_config) @test nbytes_written == length(input) nbytes_read = get_object!(buffer, "roundtrip.csv", read_config) @test nbytes_read == length(input) @test String(buffer[1:nbytes_read]) == input end end function run_list_test_cases(config::AbstractConfig) @testset "basic listing" begin for i in range(10; step=10, length=5) nbytes_written = put_object(codeunits(repeat('=', i)), "list/$(i).csv", config) @test nbytes_written == i end entries = list_objects("list/", config) @test length(entries) == 5 @test map(x -> x.size, entries) == range(10; step=10, length=5) @test map(x -> x.location, entries) == ["list/10.csv", "list/20.csv", "list/30.csv", "list/40.csv", "list/50.csv"] end @testset "basic prefix" begin for i in range(10; step=10, length=5) nbytes_written = put_object(codeunits(repeat('=', i)), "other/$(i).csv", config) @test nbytes_written == i end for i in range(110; step=10, length=5) nbytes_written = put_object(codeunits(repeat('=', i)), "other/prefix/$(i).csv", config) @test nbytes_written == i end entries = list_objects("other/", config) @test length(entries) == 10 entries = list_objects("other/prefix/", config) @test length(entries) == 5 @test map(x -> x.size, entries) == range(110; step=10, length=5) @test map(x -> x.location, entries) == ["other/prefix/110.csv", "other/prefix/120.csv", "other/prefix/130.csv", "other/prefix/140.csv", "other/prefix/150.csv"] entries = list_objects("other/nonexistent/", config) @test length(entries) == 0 entries = list_objects("other/p/", config) @test length(entries) == 0 end @testset "list empty entries" begin for i in range(10; step=10, length=3) nbytes_written = put_object(codeunits(""), "list_empty/$(i).csv", config) @test nbytes_written == 0 end entries = list_objects("list_empty/", config) @test length(entries) == 3 @test map(x -> x.size, entries) == [0, 0, 0] @test map(x -> x.location, entries) == ["list_empty/10.csv", "list_empty/20.csv", "list_empty/30.csv"] end @testset "list stream" begin data = range(10; step=10, length=1001) for i in data nbytes_written = put_object(codeunits(repeat('=', i)), "list/$(i).csv", config) @test nbytes_written == i end stream = list_objects_stream("list/", config) entries = next_chunk!(stream) @test length(entries) == max_entries_per_chunk() one_entry = next_chunk!(stream) @test length(one_entry) == 1 @test isnothing(next_chunk!(stream)) append!(entries, one_entry) @test sort(map(x -> x.size, entries)) == data @test sort(map(x -> x.location, entries)) == sort(map(x -> "list/$(x).csv", data)) end @testset "list stream finish" begin data = range(10; step=10, length=1001) for i in data nbytes_written = put_object(codeunits(repeat('=', i)), "list/$(i).csv", config) @test nbytes_written == i end stream = list_objects_stream("list/", config) entries = next_chunk!(stream) @test length(entries) == max_entries_per_chunk() @test finish!(stream) @test isnothing(next_chunk!(stream)) @test !finish!(stream) end @testset "list stream offset" begin key(x) = "offset/$(lpad(x, 10, "0")).csv" data = range(10; step=10, length=101) for i in data nbytes_written = put_object(codeunits(repeat('=', i)), key(i), config) @test nbytes_written == i end stream = list_objects_stream("offset/", config; offset=key(data[50])) entries = next_chunk!(stream) @test length(entries) == 51 @test isnothing(next_chunk!(stream)) @test sort(map(x -> x.size, entries)) == data[51:end] @test sort(map(x -> x.location, entries)) == sort(map(x -> key(x), data[51:end])) end end end # @testsetup @testitem "Basic BlobStorage usage" setup=[InitializeObjectStore, ReadWriteCases] begin using CloudBase.CloudTest: Azurite using RustyObjectStore: AzureConfig, ClientOptions # For interactive testing, use Azurite.run() instead of Azurite.with() # conf, p = Azurite.run(; debug=true, public=false); atexit(() -> kill(p)) Azurite.with(; debug=true, public=false) do conf _credentials, _container = conf base_url = _container.baseurl config = AzureConfig(; storage_account_name=_credentials.auth.account, container_name=_container.name, storage_account_key=_credentials.auth.key, host=base_url ) run_read_write_test_cases(config) run_stream_test_cases(config) run_list_test_cases(config) config_padded = AzureConfig(; storage_account_name=_credentials.auth.account * " \n", container_name=_container.name * " \n", storage_account_key=_credentials.auth.key * " \n", host=base_url * " \n" ) run_sanity_test_cases(config_padded) end # Azurite.with end # @testitem # NOTE: PUT on azure always requires credentials, while GET on public containers doesn't @testitem "Basic BlobStorage usage (anonymous read enabled)" setup=[InitializeObjectStore, ReadWriteCases] begin using CloudBase.CloudTest: Azurite using RustyObjectStore: AzureConfig, ClientOptions # For interactive testing, use Azurite.run() instead of Azurite.with() # conf, p = Azurite.run(; debug=true, public=true); atexit(() -> kill(p)) Azurite.with(; debug=true, public=true) do conf _credentials, _container = conf base_url = _container.baseurl config = AzureConfig(; storage_account_name=_credentials.auth.account, container_name=_container.name, storage_account_key=_credentials.auth.key, host=base_url ) config_no_creds = AzureConfig(; storage_account_name=_credentials.auth.account, container_name=_container.name, host=base_url ) run_read_write_test_cases(config_no_creds, config) end # Azurite.with end # @testitem @testitem "Basic AWS S3 usage" setup=[InitializeObjectStore, ReadWriteCases] begin using CloudBase.CloudTest: Minio using RustyObjectStore: AWSConfig, ClientOptions # For interactive testing, use Minio.run() instead of Minio.with() # conf, p = Minio.run(; debug=true, public=false); atexit(() -> kill(p)) Minio.with(; debug=true, public=false) do conf _credentials, _container = conf base_url = _container.baseurl default_region = "us-east-1" config = AWSConfig(; region=default_region, bucket_name=_container.name, access_key_id=_credentials.access_key_id, secret_access_key=_credentials.secret_access_key, host=base_url ) run_read_write_test_cases(config) run_stream_test_cases(config) run_list_test_cases(config) config_padded = AWSConfig(; region=default_region * " \n", bucket_name=_container.name * " \n", access_key_id=_credentials.access_key_id * " \n", secret_access_key=_credentials.secret_access_key * " \n", host=base_url * " \n" ) run_sanity_test_cases(config_padded) end # Minio.with end # @testitem @testitem "Basic AWS S3 usage (anonymous read enabled)" setup=[InitializeObjectStore, ReadWriteCases] begin using CloudBase.CloudTest: Minio using RustyObjectStore: AWSConfig, ClientOptions # For interactive testing, use Minio.run() instead of Azurite.with() # conf, p = Minio.run(; debug=true, public=true); atexit(() -> kill(p)) Minio.with(; debug=true, public=true) do conf _credentials, _container = conf base_url = _container.baseurl default_region = "us-east-1" config = AWSConfig(; region=default_region, bucket_name=_container.name, access_key_id=_credentials.access_key_id, secret_access_key=_credentials.secret_access_key, host=base_url ) config_no_creds = AWSConfig(; region=default_region, bucket_name=_container.name, host=base_url ) run_read_write_test_cases(config_no_creds, config) end # Minio.with end # @testitem
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
432
@testsetup module InitializeObjectStore using RustyObjectStore test_config = StaticConfig( n_threads=0, cache_capacity=20, cache_ttl_secs=30 * 60, cache_tti_secs=5 * 60, multipart_put_threshold=8 * 1024 * 1024, multipart_get_threshold=8 * 1024 * 1024, multipart_get_part_size=8 * 1024 * 1024, concurrency_limit=512 ) init_object_store(test_config) end
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
289
@testitem "destroy_* functions do not panic" setup=[InitializeObjectStore] begin result = @ccall RustyObjectStore.rust_lib._destroy_from_julia_thread()::Cint @test result == 0 result = @ccall RustyObjectStore.rust_lib._destroy_in_tokio_thread()::Cint @test result == 0 end
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
344
# We should always be using the JLL package. # We allow seeting the environment variable OBJECT_STORE_LIB to override this # for development reasons, but it should never be set in CI. @testitem "Using object_store_ffi_jll" begin using object_store_ffi_jll @test RustyObjectStore.rust_lib == object_store_ffi_jll.libobject_store_ffi end
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
143
using ReTestItems using RustyObjectStore withenv("RUST_BACKTRACE"=>1) do runtests(RustyObjectStore; testitem_timeout=180, nworkers=1) end
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
code
798
@testitem "Handle object_store_ffi panic" begin # This needs to be run on a spawned process to ensure proper initialization julia_cmd_ffi_panic = Base.julia_cmd() code = """ using Test using RustyObjectStore triggered = false function on_panic() global triggered triggered = true end init_object_store(;on_rust_panic=on_panic) @test !triggered @ccall RustyObjectStore.rust_lib._trigger_panic()::Cint @test timedwait(() -> triggered, 0.5) == :ok triggered = false @ccall RustyObjectStore.rust_lib._trigger_panic()::Cint @test timedwait(() -> triggered, 0.5) == :ok """ cmd = `$(julia_cmd_ffi_panic) --startup-file=no --project=. -e $code` @test success(pipeline(cmd; stdout=stdout, stderr=stderr)) end
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.8.2
84a23be59399f9addb44021a7a4c7af2eb966589
docs
10070
# RustyObjectStore.jl [![CI](https://github.com/RelationalAI/RustyObjectStore.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/RelationalAI/RustyObjectStore.jl/actions/workflows/CI.yml) RustyObjectStore.jl is a Julia package for getting and putting data in cloud object stores, such as Azure Blob Storage and AWS S3. It is built on top of the Rust [object_store crate](https://docs.rs/object_store/). It provides a minimal API and focusses on high throughput. _The package is under active development._ ## Usage The object_store runtime must be started before any requests are sent. ```julia using RustyObjectStore init_object_store() ``` Requests are sent via calling `put_object` or `get_object!`, providing the location of the object to put/get, either the data to send or a buffer that will receive data, and credentials. For `put_object` the data must be a vector of bytes (`UInt8`). For `get_object!` the buffer must be a vector into which bytes (`UInt8`) can be written. ```julia using RustyObjectStore: get_object!, put_object, AzureConfig config = AzureConfig( storage_account_name="my_account", container_name="my_container", storage_account_key="my_key" ) input = "1,2,3,4,5,6,7,8,9,0\n" ^ 5 # 100 B nbytes_written = put_object(codeunits(input), "path/to/example.csv", config) @assert nbytes_written == 100 buffer = Vector{UInt8}(undef, 1000) # 1000 B @assert sizeof(buffer) > sizeof(input) nbytes_read = get_object!(buffer, "path/to/example.csv", config) @assert nbytes_read == 100 @assert String(buffer[1:nbytes_read]) == input ``` One-time global configuration can be set using a StaticConfig object passed to init\_object\_store(): ```julia test_config = StaticConfig( n_threads=0, cache_capacity=20, cache_ttl_secs=30 * 60, cache_tti_secs=5 * 60, multipart_put_threshold=8 * 1024 * 1024, multipart_get_threshold=8 * 1024 * 1024, multipart_get_part_size=8 * 1024 * 1024, concurrency_limit=512 ) init_object_store(test_config) ``` n\_threads is the number of rust executor threads to use. The default 0 means to use threads equal to the number of cores. cache\_capacity is the size of the LRU cache rust uses to cache connection objects. Here a connection means a unique combination of destination URL, credentials, and per-connection configuration such as timeouts; it does not mean an HTTP connection. cache\_ttl\_secs is the time-to-live in seconds for the rust connection cache. Using 0 will disable ttl eviction. cache\_tti\_secs is the time in seconds that a connection can be idle before it is removed from the rust cache. Using 0 will disable tti eviction. multipart\_put\_threshold is the size in bytes for which any put request over this size will use a multipart upload. The put part size is determined by the rust object\_store implementation, which uses 10MB. multipart\_get\_threshold and multipart\_get\_part\_size configure automatic multipart gets. The part size can be greater than the threshold without breaking anything, but it may not make sense to do so. The default 8MB for these values was borrowed from CloudStore.jl. concurrency\_limit is the max number of concurrent Rust tasks that will be allowed for requests. ## Design #### Packaging The Rust [object_store](https://github.com/apache/arrow-rs/tree/master/object_store) crate does not provide a C API, so we have defined a C API in [object_store_ffi](https://github.com/relationalAI/object_store_ffi). RustyObjectStore.jl depends on [object_store_ffi_jll.jl](https://github.com/JuliaBinaryWrappers/object_store_ffi_jll.jl) to provides a pre-built object_store_ffi library, and calls into the native library via `@ccall`. #### Rust/Julia Interaction Julia calls into the native library providing a libuv condition variable and then waits on that variable. In the native code, the request from Julia is passed into a queue that is processed by a Rust spawned task. Once the request to cloud storage is complete, Rust signals the condition variable. In this way, the requests are asynchronous all the way up to Julia and the network processing is handled in the context of native thread pool. For a GET request, Julia provides a buffer for the native library to write into. This requires Julia to know a suitable size before-hand and requires the native library to do an extra memory copy, but the upside is that Julia controls the lifetime of the memory. The library provides a way for Julia code to be notifed about a panic on a Rust thread through the `on_rust_panic` argument of `init_object_store`. The default behavior is to log the stack trace (if enabled through RUST_BACKTRACE) and exit the process. The general recommendation is to treat Rust panics as fatal because Julia tasks may hang due to not being notified. #### Threading Model Rust object_store uses the [tokio](https://docs.rs/tokio) async runtime. By default tokio sets up a worker thread pool with a number of threads equal to the number of cores. This is configurable using the StaticConfig n\_threads option described above. The unit of scheduling for tokio is a task, and tasks are created by spawn calls. Tasks must be non-blocking and use async/await for I/O operations, which also serve as yield points for the cooperative concurrency between tasks. There is work stealing of tasks among the worker thread pools. In object_store_ffi we use buffer_unordered to create a task for each request from Julia (up to a configurable concurrency limit) and allow them to be processed in any order. The concurrency limit is configurable using the StaticConfig concurrency\_limit option described above. Julia will call into object_store_ffi providing a libuv condition variable and then wait on that variable. In the Rust code, the request from Julia is passed into a queue that is processed by a Rust spawned task. Once the request to cloud storage is complete, Rust signals the condition variable. In this way, the requests are asynchronous all the way up to Julia and the network processing is handled in the context of Rust thread pool. ## Developement When working on RustyObjectStore.jl you can either use [object_store_ffi_jll.jl](https://github.com/JuliaBinaryWrappers/object_store_ffi_jll.jl) or use a local build of [object_store_ffi](https://github.com/relationalAI/object_store_ffi). Using object_store_ffi_jll.jl is just like using any other Julia package. For example, you can change object_store_ffi_jll.jl version by updating the Project.toml `compat` entry and running `Pkg.update` to get the latest compatible release, or `Pkg.develop` to use an unreleased version. Alternatively, you can use a local build of object_store_ffi library by setting the `OBJECT_STORE_LIB` environment variable to the location of the build. For example, if you have the object_store_ffi repository at `~/repos/object_store_ffi` and build the library by running `cargo build --release` from the base of that repository, then you could use that local build by setting `OBJECT_STORE_LIB="~/repos/object_store_ffi/target/release"`. The `OBJECT_STORE_LIB` environment variable is intended to be used only for local development. The library path is set at package precompile time, so if the environment variable is changed RustyObjectStore.jl must recompile for the change to take effect. You can check the location of the library in use by inspecting `RustyObjectStore.rust_lib`. Since RustyObjectStore.jl is the primary user of object_store_ffi, the packages should usually be developed alongside one another. For example, updating object_store_ffi and then testing out the changes in RustyObjectStore.jl. A new release of object_store_ffi should usually be followed by a new release of object_store_ffi_jll.jl, and then a new release RustyObjectStore.jl. #### Testing Tests use the [ReTestItems.jl](https://github.com/JuliaTesting/ReTestItems.jl) test framework. Run tests using the package manager Pkg.jl like: ```sh $ julia --project -e 'using Pkg; Pkg.test()' ``` or after starting in a Julia session started with `julia --project`: ```julia julia> # press ] to enter the Pkg REPL mode (RustyObjectStore) pkg> test ``` Alternatively, tests can be run using ReTestItems.jl directly, which supports running individual tests. For example: ```julia julia> using ReTestItems julia> runtests("test/azure_api_tests.jl"; name="AzureCredentials") ``` If `OBJECT_STORE_LIB` is set, then running tests locally will use the specified local build of the object_store_ffi library, rather than the version installed by object_store_ffi_jll.jl. This is useful for testing out changes to object_store_ffi. Adding new tests is done by writing test code in a `@testitem` in a file suffixed `*_tests.jl`. See the existing [tests](./test) or the [ReTestItems documentation](https://github.com/JuliaTesting/ReTestItems.jl/#writing-tests) for examples. #### Release Process New releases of RustyObjectStore.jl can be made by incrementing the version number in the Project.toml file following [Semantic Versioning](semver.org), and then commenting on the commit that should be released with `@JuliaRegistrator register` (see [example](https://github.com/RelationalAI/RustyObjectStore.jl/commit/1b1ba5a198e76afe37f75a1d07e701deb818869c#comments)). The [JuliaRegistrator](https://github.com/JuliaRegistries/Registrator.jl) bot will reply to the comment and automatically open a PR to the [General](https://github.com/JuliaRegistries/General/) package registry, that should then automatically be merged within a few minutes. Once that PR to General is merged the new version of RustyObjectStore.jl is available, and the TagBot Github Action will make add a Git tag and a GitHub release for the new version. RustyObjectStore.jl uses the object_store_ffi library via depending on object_store_ffi_jll.jl which installs pre-built binaries. So when a new release of object_store_ffi is made, we need there to be a new release of object_store_ffi_jll.jl before we can make a release of RustyObjectStore.jl that uses the latest object_store_ffi.
RustyObjectStore
https://github.com/RelationalAI/RustyObjectStore.jl.git
[ "MIT" ]
0.1.1
f4dc2c1d994c7e2e602692a7dadd2ac79212c3a9
code
11737
module DifferentiableFlatten using SparseArrays, ChainRulesCore, NamedTupleTools, Requires, OrderedCollections # Adapted from ParameterHandling.jl with the following license. #= Copyright (c) 2020 Invenia Technical Computing Corporation Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =# """ flatten(x) Returns a "flattened" representation of `x` as a vector of real numbers, and a function `unflatten` that takes a vector of reals of the same length and returns an object of the same type as `x`. `unflatten` is the inverse of `flatten`, so ```julia julia> x = (randn(5), 5.0, (a=5.0, b=randn(2, 3))); julia> v, unflatten = flatten(x); julia> x == unflatten(v) true ``` """ function flatten end maybeflatten(x::Real) = x maybeflatten(x) = flatten(x) function flatten(x::Real) v = [x] unflatten_to_Real(v) = only(v) return v, unflatten_to_Real end flatten(x::Vector{<:Real}) = (identity.(x), identity) function flatten(x::AbstractVector) x_vecs_and_backs = map(val -> flatten(val), identity.(x)) x_vecs, backs = first.(x_vecs_and_backs), last.(x_vecs_and_backs) function Vector_from_vec(x_vec) sz = _cumsum(map(_length, x_vecs)) x_Vec = [backs[n](x_vec[sz[n] - _length(x_vecs[n]) + 1:sz[n]]) for n in eachindex(x)] return x_Vec end return reduce(vcat, x_vecs), Vector_from_vec end function flatten(x::AbstractArray) x_vec, from_vec = flatten(vec(identity.(x))) Array_from_vec(x_vec) = reshape(from_vec(x_vec), size(x)) return identity.(x_vec), Array_from_vec end function flatten(x::Tuple) x_vecs_and_backs = map(val -> flatten(val), x) x_vecs, x_backs = first.(x_vecs_and_backs), last.(x_vecs_and_backs) lengths = map(_length, x_vecs) sz = _cumsum(lengths) function unflatten_to_Tuple(v) map(x_backs, lengths, sz) do x_back, l, s return x_back(v[s - l + 1:s]) end end return reduce(vcat, x_vecs), unflatten_to_Tuple end function flatten(x::NamedTuple) x_vec, unflatten = flatten(values(x)) function unflatten_to_NamedTuple(v) v_vec_vec = unflatten(v) return NamedTuple{keys(x)}(v_vec_vec) end return identity.(x_vec), unflatten_to_NamedTuple end function flatten(d::AbstractDict, ks = collect(keys(d))) _d = OrderedDict(k => d[k] for k in ks) d_vec, unflatten = flatten(identity.(collect(values(_d)))) function unflatten_to_Dict(v) v_vec_vec = unflatten(v) return _build_ordered_dict(v_vec_vec, keys(_d)) end return identity.(d_vec), unflatten_to_Dict end function _build_ordered_dict(vals, keys) OrderedDict(key => vals[n] for (n, key) in enumerate(keys)) end function ChainRulesCore.rrule(::typeof(_build_ordered_dict), vals, keys) _build_ordered_dict(vals, keys), ฮ” -> begin NoTangent(), values(ฮ”), NoTangent() end end function flatten(x) if Base.issingletontype(typeof(x)) v, un = Union{}[], _ -> x else v, un = flatten(ntfromstruct(x)) return identity.(v), Unflatten(x, y -> structfromnt(typeof(x), un(y))) end end function zygote_flatten(::Real, x::Real) v = [x] unflatten_to_Real(v) = only(v) return v, unflatten_to_Real end zygote_flatten(::Vector{<:Real}, x::Vector{<:Real}) = (identity.(x), identity) # x_vecs_and_backs = map(val -> flatten(val), identity.(x)) # x_vecs, backs = first.(x_vecs_and_backs), last.(x_vecs_and_backs) # function Vector_from_vec(x_vec) # sz = _cumsum(map(_length, x_vecs)) # x_Vec = [backs[n](x_vec[sz[n] - _length(x_vecs[n]) + 1:sz[n]]) for n in eachindex(x)] # return x_Vec # end # return reduce(vcat, x_vecs), Vector_from_vec function zygote_flatten(x1::AbstractVector, x2::AbstractVector) x_vecs_and_backs = map(tuple.(identity.(x1), identity.(x2))) do val zygote_flatten(val[1], val[2]) end x_vecs, backs = first.(x_vecs_and_backs), last.(x_vecs_and_backs) function Vector_from_vec(x_vec) sz = _cumsum(map(_length, x_vecs)) x_Vec = [backs[n](x_vec[sz[n] - _length(x_vecs[n]) + 1:sz[n]]) for n in eachindex(x2)] return x_Vec end return reduce(vcat, x_vecs), Vector_from_vec end function zygote_flatten(x1::AbstractArray, x2::AbstractArray) x_vec, from_vec = zygote_flatten(vec(identity.(x1)), vec(identity.(x2))) Array_from_vec(x_vec) = reshape(from_vec(x_vec), size(x2)) return identity.(x_vec), Array_from_vec end function zygote_flatten(x1::Tuple, x2::Tuple) x_vecs_and_backs = map(tuple.(x1, x2)) do val zygote_flatten(val[1], val[2]) end x_vecs, x_backs = first.(x_vecs_and_backs), last.(x_vecs_and_backs) lengths = map(_length, x_vecs) sz = _cumsum(lengths) function unflatten_to_Tuple(v) map(x_backs, lengths, sz) do x_back, l, s return x_back(v[s - l + 1:s]) end end return reduce(vcat, x_vecs), unflatten_to_Tuple end function zygote_flatten(x1, x2::Tangent) zygote_flatten(x1, ntfromstruct(x2).backing) end function zygote_flatten(x1, x2::NamedTuple) zygote_flatten(ntfromstruct(x1), x2) end function zygote_flatten(x1::NamedTuple, x2::NamedTuple) x_vec, unflatten = zygote_flatten(values(x1), values(x2)) function unflatten_to_NamedTuple(v) v_vec_vec = unflatten(v) return NamedTuple{keys(x1)}(v_vec_vec) end return identity.(x_vec), unflatten_to_NamedTuple end function zygote_flatten(d1::AbstractDict, d2::AbstractDict, ks = collect(keys(d2))) _d1 = OrderedDict(k => d1[k] for k in ks) _d2 = OrderedDict(k => d2[k] for k in ks) d_vec, unflatten = zygote_flatten(identity.(collect(values(_d1))), identity.(collect(values(_d2)))) function unflatten_to_Dict(v) v_vec_vec = unflatten(v) return OrderedDict(key => v_vec_vec[n] for (n, key) in enumerate(ks)) end return identity.(d_vec), Unflatten(d1, unflatten_to_Dict) end function zygote_flatten(x1, x2) v, un = zygote_flatten(ntfromstruct(x1), ntfromstruct(x2)) return identity.(v), Unflatten(x1, y -> structfromnt(typeof(x2), un(y))) end _length(x) = length(x) _length(::Nothing) = 0 function ChainRulesCore.rrule(::typeof(flatten), x) d_vec, un = flatten(x) return (d_vec, un), ฮ” -> begin (NoTangent(), un(ฮ”[1]), NoTangent()) end end function ChainRulesCore.rrule(::typeof(flatten), d::AbstractDict, ks) _d = OrderedDict(k => d[k] for k in ks) d_vec, un = flatten(_d, ks) return (d_vec, un), ฮ” -> begin (NoTangent(), un(ฮ”[1]), NoTangent()) end end struct Unflatten{X, F} <: Function x::X unflatten::F end (f::Unflatten)(x) = f.unflatten(x) _zero(x::Real) = zero(x) _zero(x::AbstractArray) = _zero.(x) _zero(x::AbstractDict) = Dict(keys(x) .=> map(_zero, values(x))) _zero(x::NamedTuple) = map(_zero, x) _zero(x::Tuple) = map(_zero, x) _zero(x) = structfromnt(typeof(x), _zero(ntfromstruct(x))) function _merge(d1::AbstractDict{K, V}, d2::AbstractDict) where {K, V} _d = OrderedDict{K, V}(k => _zero(v) for (k, v) in d1) return sort!(merge(_d, OrderedDict{K, V}(d2))) end function _merge(d1::Tuple, d2::Tangent) return _merge.(d1, d2.backing) end _merge(::Any, d2) = d2 function ChainRulesCore.rrule(un::Unflatten, v) x = un(v) return x, ฮ” -> begin _ฮ” = _merge(x, ฮ”) return (NoTangent(), zygote_flatten(un.x, _ฮ”)[1]) end end function flatten(::Nothing) return Float64[], _ -> nothing end function flatten(::NoTangent) return Float64[], _ -> NoTangent() end function flatten(::ZeroTangent) return Float64[], _ -> ZeroTangent() end function flatten(::Tuple{}) return Float64[], _ -> () end function zygote_flatten(x, ::Nothing) t = flatten(x) return zero(t[1]), Base.tail(t) end function zygote_flatten(x, ::NoTangent) t = flatten(x) return zero(t[1]), Base.tail(t) end function zygote_flatten(x, ::ZeroTangent) t = flatten(x) return zero(t[1]), Base.tail(t) end function zygote_flatten(::Any, ::Tuple{}) return Float64[], _ -> () end macro constructor(T) return flatten_expr(T, T) end macro constructor(T, C) return flatten_expr(T, C) end flatten_expr(T, C) = quote function DifferentiableFlatten.flatten(x::$(esc(T))) v, un = flatten(ntfromstruct(x)) return identity.(v), Unflatten(x, y -> structfromnt($(esc(C)), un(y))) end function DifferentiableFlatten.zygote_flatten(x1::$(esc(T)), x2::$(esc(T))) v, un = zygote_flatten(ntfromstruct(x1), ntfromstruct(x2)) return identity.(v), Unflatten(x2, y -> structfromnt($(esc(C)), un(y))) end DifferentiableFlatten._zero(x::$(esc(T))) = structfromnt($(esc(C)), _zero(ntfromstruct(x))) end _cumsum(x) = cumsum(x) # Zygote can return a sparse vector co-tangent # even if the input is a vector. This is causing # issues in the rrule definition of Unflatten flatten(x::SparseVector) = flatten(Array(x)) function flatten(x::SparseMatrixCSC) x_vec, from_vec = flatten(x.nzval) Array_from_vec(x_vec) = SparseMatrixCSC(x.m, x.n, x.colptr, x.rowval, from_vec(x_vec)) return identity.(x_vec), Array_from_vec end # Zygote can return a sparse vector co-tangent # even if the input is a vector. This is causing # issues in the rrule definition of Unflatten zygote_flatten(x1::SparseVector, x2::SparseVector) = zygote_flatten(Array(x1), Array(x2)) function zygote_flatten(x1::SparseMatrixCSC, x2::SparseMatrixCSC) x_vec, from_vec = zygote_flatten(x1.nzval, x2.nzval) Array_from_vec(x_vec) = SparseMatrixCSC(x1.m, x1.n, x1.colptr, x1.rowval, from_vec(x_vec)) return identity.(x_vec), Unflatten(x1, Array_from_vec) end @init @require JuMP="4076af6c-e467-56ae-b986-b466b2749572" begin import .JuMP @eval begin function flatten(x::JuMP.Containers.DenseAxisArray) x_vec, from_vec = flatten(vec(identity.(x.data))) Array_from_vec(x_vec) = JuMP.Containers.DenseAxisArray(reshape(from_vec(x_vec), size(x)), axes(x)...) return identity.(x_vec), Array_from_vec end function zygote_flatten(x1::JuMP.Containers.DenseAxisArray, x2::NamedTuple) x_vec, from_vec = zygote_flatten(vec(identity.(x1.data)), vec(identity.(x2.data))) Array_from_vec(x_vec) = JuMP.Containers.DenseAxisArray(reshape(from_vec(x_vec), size(x2)), axes(x2)...) return identity.(x_vec), Array_from_vec end function zygote_flatten(x1::JuMP.Containers.DenseAxisArray, x2::JuMP.Containers.DenseAxisArray) x_vec, from_vec = zygote_flatten(vec(identity.(x1.data)), vec(identity.(x2.data))) Array_from_vec(x_vec) = JuMP.Containers.DenseAxisArray(reshape(from_vec(x_vec), size(x2)), axes(x2)...) return identity.(x_vec), Array_from_vec end end end end
DifferentiableFlatten
https://github.com/JuliaNonconvex/DifferentiableFlatten.jl.git
[ "MIT" ]
0.1.1
f4dc2c1d994c7e2e602692a7dadd2ac79212c3a9
code
4019
using DifferentiableFlatten: flatten, zygote_flatten, maybeflatten using DifferentiableFlatten: DifferentiableFlatten, @constructor using OrderedCollections, JuMP, Zygote, SparseArrays, LinearAlgebra, Test using ChainRulesCore struct SS a b end struct MyStruct{T, T1, T2} a::T1 b::T2 end MyStruct(a, b) = MyStruct{typeof(a), typeof(a), typeof(b)}(a, b) @constructor MyStruct MyStruct @testset "DifferentiableFlatten.jl" begin xs = [ 1.0, [1.0], [1.0, 2.0], [1.0, Float64[1.0, 2.0]], [1.0, (1.0, 2.0)], [1.0, OrderedDict(1 => Float64[1.0, 2.0])], [[1.0], OrderedDict(1 => Float64[1.0, 2.0])], [(1.0,), [1.0,], OrderedDict(1 => Float64[1.0, 2.0])], [1.0 1.0; 1.0 1.0], rand(2, 2, 2), [Float64[1.0, 2.0], Float64[3.0, 4.0]], OrderedDict(1 => 1.0), OrderedDict(1 => Float64[1.0]), OrderedDict(1 => 1.0, 2 => Float64[2.0]), OrderedDict(1 => 1.0, 2 => Float64[2.0], 3 => [Float64[1.0, 2.0], Float64[3.0, 4.0]]), JuMP.Containers.DenseAxisArray(reshape(Float64[1.0, 1.0], (2,)), 1), (1.0,), (1.0, 2.0), (1.0, (1.0, 2.0)), (1.0, Float64[1.0, 2.0]), (1.0, OrderedDict(1 => Float64[1.0, 2.0])), ([1.0], OrderedDict(1 => Float64[1.0, 2.0])), ((1.0,), [1.0,], OrderedDict(1 => Float64[1.0, 2.0])), (a = 1.0,), (a = 1.0, b = 2.0), (a = 1.0, b = (1.0, 2.0)), (a = 1.0, b = Float64[1.0, 2.0]), (a = 1.0, b = OrderedDict(1 => Float64[1.0, 2.0])), (a = [1.0], b = OrderedDict(1 => Float64[1.0, 2.0])), (a = (1.0,), b = [1.0,], c = OrderedDict(1 => Float64[1.0, 2.0])), sparsevec(Float64[1.0, 2.0], [1, 3], 10), sparse([1, 2, 2, 3], [2, 3, 1, 4], Float64[1.0, 2.0, 3.0, 4.0], 10, 10), SS(1.0, 2.0), [SS(1.0, 2.0), 1.0], MyStruct(1.0, 1.0), ] for x in xs @show x xvec, unflatten = flatten(x) @test x == unflatten(xvec) J = Zygote.jacobian(xvec) do x unflatten(x) flatten(x)[1] end[1] @test logabsdet(J) == (0.0, 1.0) xvec, unflatten = zygote_flatten(x, x) @test x == unflatten(xvec) J = Zygote.jacobian(xvec) do x unflatten(x) zygote_flatten(x, x)[1] end[1] @test logabsdet(J) == (0.0, 1.0) if x isa Real @test maybeflatten(x) == x else xvec, unflatten = maybeflatten(x) @test x == unflatten(xvec) end @show DifferentiableFlatten._zero(x) @test all(==(0), flatten(DifferentiableFlatten._zero(x))[1]) end xvec, unflatten = zygote_flatten(SS(1.0, 2.0), Tangent{SS}(a = 1.0, b = 2.0)) @test unflatten(xvec) isa NamedTuple xvec, unflatten = zygote_flatten(SS(1.0, 2.0), (a = 1.0, b = 2.0)) @test unflatten(xvec) isa NamedTuple @test DifferentiableFlatten._length(nothing) == 0 @test DifferentiableFlatten._merge( OrderedDict(:a => 1.0), OrderedDict(:b => 2.0), ) == OrderedDict(:a => 0.0, :b => 2.0) @test DifferentiableFlatten._merge(1, SS(1.0, 2.0)) == SS(1.0, 2.0) x = OrderedDict(:a => 1.0) @test DifferentiableFlatten._merge( (1.0,), Tangent{NamedTuple{(:b,), Tuple{Float64}}}(b = 1.0), ) == (ZeroTangent(),) @test flatten(nothing)[1] == Float64[] @test flatten(NoTangent())[1] == Float64[] @test flatten(ZeroTangent())[1] == Float64[] @test flatten(())[1] == Float64[] @test zygote_flatten(1.0, nothing)[1] == [0.0] @test zygote_flatten(1.0, NoTangent())[1] == [0.0] @test zygote_flatten(1.0, ZeroTangent())[1] == [0.0] @test zygote_flatten(1.0, ())[1] == Float64[] x = JuMP.Containers.DenseAxisArray(reshape(Float64[1.0, 1.0], (2,)), 1) @test zygote_flatten(x, (data = [1.0, 1.0],))[1] == [1.0, 1.0] @test flatten(exp)[1] == Union{}[] @test flatten(exp)[2]([]) === exp end
DifferentiableFlatten
https://github.com/JuliaNonconvex/DifferentiableFlatten.jl.git
[ "MIT" ]
0.1.1
f4dc2c1d994c7e2e602692a7dadd2ac79212c3a9
docs
652
# DifferentiableFlatten [![Actions Status](https://github.com/JuliaNonconvex/DifferentiableFlatten.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/DifferentiableFlatten.jl/actions) [![codecov](https://codecov.io/gh/JuliaNonconvex/DifferentiableFlatten.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/DifferentiableFlatten.jl) This package includes an implementation of a `flatten` function which flattens all data structures to vectors and returns an unflattenning function to back to the original data structure. This was originally part of [NonconvexCore.jl](https://github.com/JuliaNonconvex/NonconvexCore.jl).
DifferentiableFlatten
https://github.com/JuliaNonconvex/DifferentiableFlatten.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
1727
using DataConvenience using DataFrames df = DataFrame(col = rand(1_000_000), col1 = rand(1_000_000), col2 = rand(1_000_000)) fsort(df, :col) # sort by `:col` fsort(df, [:col1, :col2]) # sort by `:col1` and `:col2` fsort!(df, :col) # sort by `:col` # sort in-place by `:col` fsort!(df, [:col1, :col2]) # sort in-place by `:col1` and `:col2` df = DataFrame(col = rand(1_000_000), col1 = rand(1_000_000), col2 = rand(1_000_000)) using BenchmarkTools fsort_1col = @belapsed fsort($df, :col) # sort by `:col` fsort_2col = @belapsed fsort($df, [:col1, :col2]) # sort by `:col1` and `:col2` sort_1col = @belapsed sort($df, :col) # sort by `:col` sort_2col = @belapsed sort($df, [:col1, :col2]) # sort by `:col1` and `:col2` using Plots bar(["DataFrames.sort 1 col","DataFrames.sort 2 col2", "DataCon.sort 1 col","DataCon.sort 2 col2"], [sort_1col, sort_2col, fsort_1col, fsort_2col], title="DataFrames sort performance comparison", label = "seconds") using DataFrames using CSV df = DataFrame(a = rand(1_000_000), b = rand(Int8, 1_000_000), c = rand(Int8, 1_000_000)) filepath = tempname()*".csv" CSV.write(filepath, df) for chunk in CsvChunkIterator(filepath) print(describe(chunk)) end # read all column as String for chunk in CsvChunkIterator(filepath, type=String) print(describe(chunk)) end # read a three colunms csv where the column types are String, Int, Float32 for chunk in CsvChunkIterator(filepath, types=[String, Int, Float32]) print(describe(chunk)) end @replicate 10 8 x = Vector{Union{Missing, Int}}(undef, 10_000_000) cmx = count_missing(x) # this is faster cmx2 = countmissing(x) # this is faster cimx = count(ismissing, x) # the way available at base cmx == cimx # true
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
188
# Weave readme using Pkg Pkg.activate("readme-env") #upcheck() # Pkg.update() using Weave weave("README.jmd", out_path = :pwd, doctype = "github") if false tangle("README.jmd") end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
372
using LinearAlgebra export canonicalcor function canonicalcor(x::AbstractMatrix, y::AbstractMatrix) ma = inv(cov(x))*cov(x, y)*inv(cov(y))*cov(y,x) mb = inv(cov(y))*cov(y, x)*inv(cov(x))*cov(x,y) evx = eigvecs(ma) evy = eigvecs(mb) abs(cor(x*evx[:, end], y*evy[:, end])) #[-cor(x*evx, y*evy) for (evx, evy) in zip(eachcol(evx), eachcol(evy))] end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
934
module DataConvenience import WeakRefStrings:StringVector using DataFrames: AbstractDataFrame, DataFrame, rename, dropmissing using CategoricalArrays using Statistics using Missings: nonmissingtype import Statistics:cor export cor, dfcor, @replicate, StringVector include("cate-arrays.jl") include("CCA.jl") include("janitor.jl") include("dfcor.jl") include("onehot.jl") include("create-missing.jl") include("read-csv-in-chunks.jl") include("fsort-dataframes.jl") include("fast-missing-count.jl") include("sample.jl") include("nest.jl") include("shortstringify.jl") # head(df::AbstractDataFrame) = first(df, 10) # # tail(df::AbstractDataFrame) = last(df, 10) """ @replicate n expr Replicate the expression `n` times ## Example ```julia using DataConvenience, Random @replicate 10 randstring(8) # returns 10 random length 8 strings ``` """ macro replicate(n, expr) :([$(esc(expr)) for i=1:$(esc(n))]) end end # module
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
643
function parseDateTimeN(str) date, mmn = split(str, '.') date1, time1 = split(date,'T') time2 = parse.(Int64, split(time1, ':')) mmn1 = mmn * reduce(*, ["0" for i in 1:(9-length(mmn))]) rd = reverse(digits(parse(Int, mmn1), pad = 9)) t = reduce(vcat, [ time2, parse(Int, reduce(*, string.(rd[1:3]))), parse(Int, reduce(*, string.(rd[4:6]))), parse(Int, reduce(*, string.(rd[7:9])))] ) DateTimeN(Date(date1), Time(t...)) end import Base:show show(io::IO, dd::DateTimeN) = begin print(io, dd.d) print(io, dd.t) end DateTimeN(str::String) = parseDateTimeN(str)
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
1089
################################################################################ # convenient function for CategoricalArrays ################################################################################ import SortingLab:sorttwo! using SortingLab import StatsBase: rle using CategoricalArrays SortingLab.sorttwo!(x::CategoricalVector, y) = begin SortingLab.sorttwo!(x.refs, y) x, y end pooltype(::CategoricalPool{T,S}) where {T, S} = T,S rle(x::CategoricalVector) = begin refrle = rle(x.refs) T,S = pooltype(x.pool) (CategoricalArray{T, 1}(S.(refrle[1]), x.pool), refrle[2]) end """ StringVector(v::CategoricalVector{String}) Convert `v::CategoricalVector` efficiently to WeakRefStrings.StringVector ## Example ```julia using DataFrames a = categorical(["a","c", "a"]) a.refs a.pool.index # efficiently convert sa = StringVector(a) sa.buffer sa.lengths sa.offsets ``` """ StringVector(v::CategoricalVector{S}) where S<:AbstractString = begin sa = StringVector(v.pool.index) StringVector{S}(sa.buffer, sa.offsets[v.refs], sa.lengths[v.refs]) end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
502
export create_missing! using Missings: disallowmissing """ create_missing!(df, col::Symbol) Create a new column for where `col` is missing """ create_missing!(df, col::Symbol; prefix="", suffix = "_missing") = begin df[!, prefix*string(col)*suffix] = ismissing.(df[!, col]) if eltype(df[!, col]) <: Union{String, Missing} df[!, col] .= disallowmissing.(coalesce.(df[!, col], "JULIA.MISSING")) else df[!, col] .= disallowmissing.(coalesce.(df[!, col], zero(eltype(df[!, col])))) end df end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
1707
""" cor(x::AbstractVector{Bool}, y) cor(y, x::AbstractVector{Bool}) Compute correlation between `Bool` and other types """ Statistics.cor(x::AbstractVector{Bool}, y::AbstractVector) = cor(y, Int.(x)) Statistics.cor(x::AbstractVector{Union{Bool, Missing}}, y::AbstractVector) = cor(y, passmissing(Int).(x)) """ dfcor(df::AbstractDataFrame, cols1=names(df), cols2=names(df), verbose=false) Compute correlation in a DataFrames by specifying a set of columns `cols1` vs another set `cols2`. The cartesian product of `cols1` and `cols2`'s correlation will be computed """ function dfcor(df::AbstractDataFrame, cols1::Vector{T} = names(df), cols2::Vector{T} = names(df); verbose=false) where {T} k = 1 l1 = length(cols1) l2 = length(cols2) res = Vector{Float32}(undef, l1*l2) names1 = Vector{T}(undef, l1*l2) names2 = Vector{T}(undef, l1*l2) for i in 1:l1 icol = df[!, cols1[i]] if eltype(icol) >: String # do nothing else Threads.@threads for j in 1:l2 if eltype(df[!, cols2[j]]) >: String # do nothing else if verbose println(k, " ", cols1[i], " ", cols2[j]) end df2 = df[:,[cols1[i], cols2[j]] |> unique] |> dropmissing if size(df2, 1) > 0 res[k] = cor(df2[!,cols1[j]], df2[!, cols2[j]]) names1[k] = cols1[i] names2[k] = cols2[j] k+=1 end end end end end (names1[1:k-1], names2[1:k-1], res[1:k-1]) end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
756
export count_not_missing, count_missing, countmissing, countnotmissing countmissing(args...) = count_missing(args...) countnotmissing(args...) = count_not_missing(args...) count_not_missing(x) = length(x) - count(ismissing, x) count_missing(x) = count(ismissing, x) function count_not_missing(::Type{S}, x::Vector{Union{T, Missing}}) where {S, T} @assert isbitstype(T) res = zero(S) @inbounds for i in 1:length(x) res += !ismissing(x[i]) end res end count_not_missing(x::Vector{Union{T, Missing}}) where T = count_not_missing(Int, x) count_missing(::Type{S}, x::Vector{Union{T, Missing}}) where {S, T} = length(x) - count_not_missing(S, x) count_missing(x::Vector{Union{T, Missing}}) where T = count_missing(Int, x)
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
1369
export fsort, fsort! using SortingLab: fsortperm using Tables if VERSION >= v"1.3.0" import Base.Threads: @spawn else macro spawn(_) println("DataConvenience: multithreading do not work in < Julia 1.3") end end using Base.Threads: @spawn fsort(tbl, col::Symbol) = fsort(tbl, [col]) fsort!(tbl, col::Symbol) = fsort!(tbl, [col]) fsort(tbl, cols; threaded=true) = fsort!(copy(tbl), cols; threaded=threaded) function fsort!(tbl, cols; threaded=true) @assert Tables.columnaccess(tbl) if threaded && (VERSION >= v"1.3") return _fsort_parallel!(tbl, cols) else return _fsort_single!(tbl, cols) end end function _fsort_parallel!(tbl, cols) @assert VERSION >= v"1.3" for col in reverse(cols) ordering = fsortperm(tbl[!, col]) channel_lock = Channel{Bool}(length(names(tbl))) for c in names(tbl) @spawn begin v = tbl[!, c] @inbounds v .= v[ordering] put!(channel_lock, true) end end for _ in names(tbl) take!(channel_lock) end end tbl end function _fsort_single!(tbl, cols) for col in reverse(cols) ordering = fsortperm(tbl[!, col]) for c in names(tbl) v = tbl[!, c] @inbounds v .= v[ordering] end end tbl end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
966
import DataFrames: AbstractDataFrame using DataFrames: rename! export cleannames!, cleanname, renamedups! """ cleannames!(df::DataFrame) Uses R's `janitor::clean_names` to clean the names """ const ALLOWED_CHARS = vcat(vcat(vcat(Char.(-32+97:-32+97+25), Char.(97:97+25)), '_'), Char.(48:57)) renamedups!(n::AbstractVector{Symbol}) = begin # are the uniques? d = Dict{Symbol, Bool}() for (i, n1) in enumerate(n) if haskey(d, n1) n[i] = Symbol(string(n[i])*"_1") d[n[i]] = true else d[n1] = true end end n end cleanname(s) = begin ss = string(s) res = join([c in ALLOWED_CHARS ? c : '_' for c in ss]) if res[1] in vcat(Char.(48:57)) res = "x" * res end Symbol(res) end function cleannames!(df::AbstractDataFrame) n = names(df) cn = cleanname.(n) cn = renamedups!(cn) for p in Pair.(n, cn) rename!(df, p) end df end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
391
export nest, unnest using DataFrames function nest(df::AbstractDataFrame, by, out) function _subdf_as_vec(sdf) [sdf[!, Not(by)]] end res = combine(groupby(df, by), _subdf_as_vec) rename!(res, names(res)[end]=>out) res end function unnest(df, val) tmp = [crossjoin(df[i:i, Not(val)], sdf) for (i, sdf) in enumerate(df[!, val])] reduce(vcat, tmp) end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
808
export onehot, onehot! using DataFrames: AbstractDataFrame """ onehot(df, col, cate = sort(unique(df[!, col])); outnames = Symbol.(:ohe_, cate)) onehot!(df, col, cate = sort(unique(df[!, col])); outnames = Symbol.(:ohe_, cate)) One-hot encode a column and create columns. The output columns will be overwritten WITHOUT warning Arguments: df - The DataFrame col - The column to onehot encode cate - The categories """ function onehot!(df::AbstractDataFrame, col, cate = sort(unique(df[!, col])); outnames = Symbol.(:ohe_, cate)) transform!(df, @. col => ByRow(isequal(cate)) .=> outnames) end function onehot(df::AbstractDataFrame, col, cate = sort(unique(df[!, col])); outnames = Symbol.(:ohe_, cate)) transform(df, @. col => ByRow(isequal(cate)) .=> outnames) end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
348
export filter import DataFrames: filter function filter(df::AbstractDataFrame, arg; kwargs...) filter(arg, df; kwargs...) end if false using Pkg Pkg.activate("c:/git/DataConvenience") using DataFrames, DataConvenience df = DataFrame(a=1:3) filter(df, :a => ==(1)) @> df begin filter(:a => ==(1)) end end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
2764
export CsvChunkIterator using CSV using DataFrames: DataFrame, names import Base: iterate, length, IteratorSize using Base.Iterators """ CsvChunkIterator("path/to/file.csv") Define a Chunking iterator on CSV file """ mutable struct CsvChunkIterator file::IOStream step::Int column_headers::Union{Vector{String}, Vector{Symbol}} csv_rows_params function CsvChunkIterator(path::String, chunk_byte_size = 2^30; csv_rows_params...) new(open(path, "r"), chunk_byte_size, Symbol[], csv_rows_params) end end function Base.iterate(chunk_iterator::CsvChunkIterator) first_read = position(chunk_iterator.file) == 0 bytes_read = read(chunk_iterator.file, chunk_iterator.step) # try to find the newline character # TODO you may not actually find the new line last_newline_pos = findlast(x->x==UInt8('\n'), bytes_read) # no more to be read # if it's nothing then if isnothing(last_newline_pos) & (length(bytes_read) == 0) close(chunk_iterator.file) return nothing # have not found a new line, so continue elseif isnothing(last_newline_pos) if eof(chunk_iterator.file) close(chunk_iterator.file) # do nothing and go to CSV.read last_newline_pos = length(bytes_read) else # increase step size but doubling chunk_iterator.step = 2chunk_iterator.step # go back to the beginning seek(chunk_iterator.file, position(chunk_iterator.file) - length(bytes_read)) return iterate(chunk_iterator) end end if first_read df = CSV.read( # It no longer requires wrapping by an IOBuffer @view bytes_read[1:last_newline_pos] , DataFrame; chunk_iterator.csv_rows_params... ) chunk_iterator.column_headers = names(df) # removes header options from table c = chunk_iterator.csv_rows_params #d = Dict(zip(keys(c), values(c))...) d = Dict(c) delete!(d, :head) chunk_iterator.csv_rows_params = (;d...) else df = CSV.read( @view bytes_read[1:last_newline_pos] , DataFrame; header=chunk_iterator.column_headers, chunk_iterator.csv_rows_params... ) end new_pos = position(chunk_iterator.file) - (length(bytes_read) - last_newline_pos) seek(chunk_iterator.file, new_pos) return df, nothing end Base.iterate(chunk_iterator::CsvChunkIterator, _) = Base.iterate(chunk_iterator) # this is needed for `[a for a in chunk_iterator]` to work properly Base.IteratorSize(_::CsvChunkIterator) = Base.SizeUnknown()
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
941
export sample using DataFrames: AbstractDataFrame, nrow import StatsBase: sample using StatsBase function StatsBase.sample(df::AbstractDataFrame, args...; kwargs...) rows_sampled = sample(axes(df, 1), args...; kwargs...) df[rows_sampled, :] end function StatsBase.sample(rng, df::AbstractDataFrame, args...; kwargs...) rows_sampled = sample(rng, axes(df, 1), args...; kwargs...) df[rows_sampled, :] end function StatsBase.sample(df::AbstractDataFrame, frac::T; kwargs...) where T <: Union{AbstractFloat, Rational} @assert 0 <= frac <= 1 n = round(Int, nrow(df)*frac) rows_sampled = sample(axes(df, 1), n, ; kwargs...) df[rows_sampled, :] end function StatsBase.sample(rng, df::AbstractDataFrame, frac::T; kwargs...) where T <: Union{AbstractFloat, Rational} @assert 0 <= frac <= 1 n = round(Int, nrow(df)*frac) rows_sampled = sample(rng, axes(df, 1), n; kwargs...) df[rows_sampled, :] end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
559
export short_stringify! # Original code courtesy of Nils Gudat using ShortStrings: ShortString using Missings: passmissing using PooledArrays # Functions to turn String columns into ShortStrings function short_stringify(x::AbstractVector) y = ShortString("a"^maximum(length.(skipmissing(x)))) return passmissing(typeof(y)).(x) end function short_stringify!(df::DataFrame) cols = unique([names(df, String); names(df, Union{Missing, String})]) for c โˆˆ cols df[!, c] = PooledArray(short_stringify(df[!, c])) end return df end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
357
using Test # using RCall # @testset "DataConvenience.jl" begin # for i in 1:100 # # Write your own tests here. # x = rand(100, 5) # y = rand(100, 5) # # @rput x # @rput y # R""" # res = cancor(x,y)$cor[1] # """ # @rget res # @test res โ‰ˆ canonicalcor(x,y) # end # end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
217
# support for nanoseconds in dates using Dates struct DateTimeN d::Date t::Time end str = "2019-10-23T12:01:15.123456789" parseDateTimeN(str) parseDateTimeN( "2019-10-23T12:01:15.230") parseDateTimeN(str)
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
88
using DataConvenience using DataFrames df = DataFrame(A = 1:4, B = 2:2:8) dfcor(df)
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
286
using DataFrames using Test @testset "clean names " begin df = DataFrame(ok = 2:3, ok2 = 2:3, ok3=2:3) rename!(df, :ok => Symbol("ok-2")) @test Symbol.(names(cleannames!(df))) == [:ok_2, :ok2, :ok3] @test renamedups!([:ok, :ok_1, :ok_1]) == [:ok, :ok_1, :ok_1_1] end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
173
using Test using DataConvenience x = Vector{Union{Missing, Int64}}(undef, 1_000_000) @testset "count_missing" begin @test count(ismissing, x) == count_missing(x) end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
202
using DataFrames using DataConvenience dfย =ย DataFrame( ย ย ย ย ย ย ย ย aย =ย rand(1:8,ย 1000), ย ย ย ย ย ย ย ย bย =ย rand(1:8,ย 1000), ย ย ย ย ย ย ย ย cย =ย rand(1:8,ย 1000), ย ย ย ย ) nest(df, :a, :meh) unnest(nest(df, :a, :meh), :meh)
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
1226
using DataConvenience using DataFrames using CSV using Test using Random: randstring @testset "read csv in chunks" begin filepath = joinpath(tempdir(), "tmp-data-convenience-csv-chunking-test.csv") M = 1000 str_base = [randstring(8) for i in 1:1_000] @time df = DataFrame(int = rand(Int32, M), float=rand(M), str = rand(str_base, M)) @time CSV.write(filepath, df) # read the file 100 bytes at a time chunks = CsvChunkIterator(filepath, 100) dfs = [DataFrame(chunk) for chunk in chunks] made = reduce(vcat, dfs) actual = CSV.read(filepath, DataFrame) @test nrow(made) == nrow(actual) @test ncol(made) == ncol(actual) # read the file 500 bytes chunks = CsvChunkIterator(filepath, 500) dfs = [DataFrame(chunk) for chunk in chunks] made = reduce(vcat, dfs) @test nrow(made) == nrow(actual) @test ncol(made) == ncol(actual) # read the file 7 rows at a time # where the file is of size 32 rows chunks = CsvChunkIterator(filepath) dfs = [DataFrame(chunk) for chunk in chunks] made = reduce(vcat, dfs) @test nrow(made) == nrow(actual) @test ncol(made) == ncol(actual) collect(CsvChunkIterator(filepath; header=0)) end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
269
using DataConvenience using Test include("canonicalcor.jl") include("janitor.jl") include("read-csv-in-chunks.jl") include("test-fsort-dataframes.jl") include("missing.jl") include("sample.jl") @testset "DataConvenience.jl" begin # Write your own tests here. end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
137
using DataFrames using DataConvenience sample(DataFrame(a=1:100), 10) sample(DataFrame(a=1:100), 0.1) sample(DataFrame(a=1:100), 1//7)
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
code
509
using DataFrames using Test using Random: randstring @testset "sort it" begin M = 100_000 str_base = [randstring(8) for i in 1:1_000] df = DataFrame(int = rand(Int32, M), float=rand(M), str = rand(str_base, M)) @time df1 = sort(df, :int); @time df2 = fsort(df, :int); @test df1 == df2 @test df != df2 @time df1 = sort(df, :str); @time df2 = fsort(df, :str); @test df1 == df2 @test df != df2 @time df1 = sort(df, [:str, :float]); @time df2 = fsort(df, [:str, :float]); @test df1 == df2 @test df != df2 end
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
docs
4319
# DataConvenience An eclectic collection of convenience functions for your data manipulation needs. ## Data ### Sampling with `sample` You can conveniently sample a dataframe with the `sample` method ``` df = DataFrame(a=1:10) # sample 10 rows sample(df, 10) ``` ``` # sample 10% of rows sample(df, 0.1) ``` ``` # sample 1/10 of rows sample(df, 1//10) ``` ### Faster sorting for DataFrames You can sort `DataFrame`s (in ascending order only) faster than the `sort` function by using the `fsort` function. E.g. ```julia using DataConvenience using DataFrames df = DataFrame(col = rand(1_000_000), col1 = rand(1_000_000), col2 = rand(1_000_000)) fsort(df, :col) # sort by `:col` fsort(df, [:col1, :col2]) # sort by `:col1` and `:col2` fsort!(df, :col) # sort by `:col` # sort in-place by `:col` fsort!(df, [:col1, :col2]) # sort in-place by `:col1` and `:col2` ``` ```julia df = DataFrame(col = rand(1_000_000), col1 = rand(1_000_000), col2 = rand(1_000_000)) using BenchmarkTools fsort_1col = @belapsed fsort($df, :col) # sort by `:col` fsort_2col = @belapsed fsort($df, [:col1, :col2]) # sort by `:col1` and `:col2` sort_1col = @belapsed sort($df, :col) # sort by `:col` sort_2col = @belapsed sort($df, [:col1, :col2]) # sort by `:col1` and `:col2` using Plots bar(["DataFrames.sort 1 col","DataFrames.sort 2 col2", "DataCon.sort 1 col","DataCon.sort 2 col2"], [sort_1col, sort_2col, fsort_1col, fsort_2col], title="DataFrames sort performance comparison", label = "seconds") ``` ### Clean column names with `cleannames!` Somewhat similiar to R's `janitor::clean_names` so that `cleannames!(df)` cleans the names of a `DataFrame`. ### Nesting of `DataFrame`s Sometimes, nesting is more convenient then using `GroupedDataFrame`s ``` using DataFrames dfย =ย DataFrame( ย ย ย ย ย ย ย ย aย =ย rand(1:8,ย 1000), ย ย ย ย ย ย ย ย bย =ย rand(1:8,ย 1000), ย ย ย ย ย ย ย ย cย =ย rand(1:8,ย 1000), ย ย ย ย ) nested_df = nest(df, :a, :nested_df) ``` To unnest use `unnest(nested_df, :nested_df)`. ### One hot encoding ``` a = DataFrame( player1 = ["a", "b", "c"], player2 = ["d", "c", "a"] ) # does not modify a onehot(a, :player1) # modfies a onehot!(a, :player1) ``` ### CSV Chunk Reader You can read a CSV in chunks and apply logic to each chunk. The types of each column is inferred by `CSV.read`. ```julia using DataFrames using CSV df = DataFrame(a = rand(1_000_000), b = rand(Int8, 1_000_000), c = rand(Int8, 1_000_000)) filepath = tempname()*".csv" CSV.write(filepath, df) for (i, chunk) in enumerate(CsvChunkIterator(filepath)) println(i) print(describe(chunk)) end ``` The chunk iterator uses `CSV.read` parameters. The user can pass in `type` and `types` to dictate the types of each column e.g. ```julia # read all column as String for (i, chunk) in enumerate(CsvChunkIterator(filepath, types=String)) println(i) print(describe(chunk)) end ``` ```julia # read a three colunms csv where the column types are String, Int, Float32 for chunk in CsvChunkIterator(filepath, types=[String, Int, Float32]) print(describe(chunk)) end ``` **Note** The chunks MAY have different column types. ## Statistics & Correlations ### Canonical Correlation The first component of Canonical Correlation. ``` x = rand(100, 5) y = rand(100, 5) canonicalcor(x, y) ``` ### Correlation for `Bool` `cor(x::Bool, y)` - allow you to treat `Bool` as 0/1 when computing correlation ### Correlation for `DataFrames` `dfcor(df::AbstractDataFrame, cols1=names(df), cols2=names(df), verbose=false)` Compute correlation in a DataFrames by specifying a set of columns `cols1` vs another set `cols2`. The cartesian product of `cols1` and `cols2`'s correlation will be computed ## Miscellaneous ### `@replicate` `@replicate code times` will run `code` multiple times e.g. ```julia @replicate 10 8 ``` ### StringVector `StringVector(v::CategoricalVector{String})` - Convert `v::CategoricalVector` efficiently to `WeakRefStrings.StringVector` ### Faster count missing There is a `count_missisng` function ```julia x = Vector{Union{Missing, Int}}(undef, 10_000_000) cmx = count_missing(x) # this is faster cmx2 = countmissing(x) # this is faster cimx = count(ismissing, x) # the way available at base cmx == cimx # true ``` There is also the `count_non_missisng` function and `countnonmissing` is its synonym.
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.3.6
160d239f831cdc4dfbebc208fa21d961ba1b505a
docs
7111
# DataConvenience An eclectic collection of convenience functions for your data manipulation needs. ## Data ### Sampling with `sample` You can conveniently sample a dataframe with the `sample` method ``` df = DataFrame(a=1:10) # sample 10 rows sample(df, 10) ``` ``` # sample 10% of rows sample(df, 0.1) ``` ``` # sample 1/10 of rows sample(df, 1//10) ``` ### Faster sorting for DataFrames You can sort `DataFrame`s (in ascending order only) faster than the `sort` function by using the `fsort` function. E.g. ```julia using DataConvenience using DataFrames df = DataFrame(col = rand(1_000_000), col1 = rand(1_000_000), col2 = rand(1_000_000)) fsort(df, :col) # sort by `:col` fsort(df, [:col1, :col2]) # sort by `:col1` and `:col2` fsort!(df, :col) # sort by `:col` # sort in-place by `:col` fsort!(df, [:col1, :col2]) # sort in-place by `:col1` and `:col2` ``` ``` 1000000ร—3 DataFrame Row โ”‚ col col1 col2 โ”‚ Float64 Float64 Float64 โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 โ”‚ 0.46685 2.53832e-7 0.0374635 2 โ”‚ 0.404717 4.47445e-7 0.267923 3 โ”‚ 0.724972 1.04096e-6 0.665079 4 โ”‚ 0.57888 1.70257e-6 0.404758 5 โ”‚ 0.385235 2.39225e-6 0.0781073 6 โ”‚ 0.800285 6.07543e-6 0.00295096 7 โ”‚ 0.940843 6.69252e-6 0.704978 8 โ”‚ 0.817557 8.0119e-6 0.574785 โ‹ฎ โ”‚ โ‹ฎ โ‹ฎ โ‹ฎ 999994 โ”‚ 0.179524 0.999994 0.64448 999995 โ”‚ 0.0100945 0.999994 0.953052 999996 โ”‚ 0.214368 0.999995 0.224151 999997 โ”‚ 0.3488 0.999996 0.91864 999998 โ”‚ 0.930586 0.999997 0.894878 999999 โ”‚ 0.0312132 0.999999 0.830381 1000000 โ”‚ 0.752231 1.0 0.471916 999985 rows omitted ``` ```julia df = DataFrame(col = rand(1_000_000), col1 = rand(1_000_000), col2 = rand(1_000_000)) using BenchmarkTools fsort_1col = @belapsed fsort($df, :col) # sort by `:col` fsort_2col = @belapsed fsort($df, [:col1, :col2]) # sort by `:col1` and `:col2` sort_1col = @belapsed sort($df, :col) # sort by `:col` sort_2col = @belapsed sort($df, [:col1, :col2]) # sort by `:col1` and `:col2` using Plots bar(["DataFrames.sort 1 col","DataFrames.sort 2 col2", "DataCon.sort 1 col","DataCon.sort 2 col2"], [sort_1col, sort_2col, fsort_1col, fsort_2col], title="DataFrames sort performance comparison", label = "seconds") ``` ![](figures/README_2_1.png) ### Clean column names with `cleannames!` Somewhat similiar to R's `janitor::clean_names` so that `cleannames!(df)` cleans the names of a `DataFrame`. ### Nesting of `DataFrame`s Sometimes, nesting is more convenient then using `GroupedDataFrame`s ``` using DataFrames dfย =ย DataFrame( ย ย ย ย ย ย ย ย aย =ย rand(1:8,ย 1000), ย ย ย ย ย ย ย ย bย =ย rand(1:8,ย 1000), ย ย ย ย ย ย ย ย cย =ย rand(1:8,ย 1000), ย ย ย ย ) nested_df = nest(df, :a, :nested_df) ``` To unnest use `unnest(nested_df, :nested_df)`. ### One hot encoding ``` a = DataFrame( player1 = ["a", "b", "c"], player2 = ["d", "c", "a"] ) # does not modify a onehot(a, :player1) # modfies a onehot!(a, :player1) ``` ### CSV Chunk Reader You can read a CSV in chunks and apply logic to each chunk. The types of each column is inferred by `CSV.read`. ```julia using DataFrames using CSV df = DataFrame(a = rand(1_000_000), b = rand(Int8, 1_000_000), c = rand(Int8, 1_000_000)) filepath = tempname()*".csv" CSV.write(filepath, df) for (i, chunk) in enumerate(CsvChunkIterator(filepath)) println(i) print(describe(chunk)) end ``` ``` 1 3ร—7 DataFrame Row โ”‚ variable mean min median max nmissing eltype โ”‚ Symbol Float64 Real Float64 Real Int64 DataType โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 โ”‚ a 0.499738 4.36023e-8 0.499524 0.999999 0 Float64 2 โ”‚ b -0.469557 -128 0.0 127 0 Int64 3 โ”‚ c -0.547335 -128 -1.0 127 0 Int64 ``` The chunk iterator uses `CSV.read` parameters. The user can pass in `type` and `types` to dictate the types of each column e.g. ```julia # read all column as String for (i, chunk) in enumerate(CsvChunkIterator(filepath, types=String)) println(i) print(describe(chunk)) end ``` ``` 1 3ร—7 DataFrame Row โ”‚ variable mean min median max nmissing eltype โ”‚ Symbol Nothing String Nothing String Int64 DataType โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 โ”‚ a 0.0001001901435260244 9.997666658245752 e-5 0 String 2 โ”‚ b -1 99 0 String 3 โ”‚ c -1 99 0 String ``` ```julia # read a three colunms csv where the column types are String, Int, Float32 for chunk in CsvChunkIterator(filepath, types=[String, Int, Float32]) print(describe(chunk)) end ``` ``` 3ร—7 DataFrame Row โ”‚ variable mean min median max nmissing eltype โ”‚ Symbol Unionโ€ฆ Any Unionโ€ฆ Any Int64 DataType โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 โ”‚ a 0.0001001901435260244 9.99766665824575 2e-5 0 String 2 โ”‚ b -0.469557 -128 0.0 127 0 Int64 3 โ”‚ c -0.547335 -128.0 -1.0 127.0 0 Float32 ``` **Note** The chunks MAY have different column types. ## Statistics & Correlations ### Canonical Correlation The first component of Canonical Correlation. ``` x = rand(100, 5) y = rand(100, 5) canonicalcor(x, y) ``` ### Correlation for `Bool` `cor(x::Bool, y)` - allow you to treat `Bool` as 0/1 when computing correlation ### Correlation for `DataFrames` `dfcor(df::AbstractDataFrame, cols1=names(df), cols2=names(df), verbose=false)` Compute correlation in a DataFrames by specifying a set of columns `cols1` vs another set `cols2`. The cartesian product of `cols1` and `cols2`'s correlation will be computed ## Miscellaneous ### `@replicate` `@replicate code times` will run `code` multiple times e.g. ```julia @replicate 10 8 ``` ``` 10-element Vector{Int64}: 8 8 8 8 8 8 8 8 8 8 ``` ### StringVector `StringVector(v::CategoricalVector{String})` - Convert `v::CategoricalVector` efficiently to `WeakRefStrings.StringVector` ### Faster count missing There is a `count_missisng` function ```julia x = Vector{Union{Missing, Int}}(undef, 10_000_000) cmx = count_missing(x) # this is faster cmx2 = countmissing(x) # this is faster cimx = count(ismissing, x) # the way available at base cmx == cimx # true ``` ``` true ``` There is also the `count_non_missisng` function and `countnonmissing` is its synonym.
DataConvenience
https://github.com/xiaodaigh/DataConvenience.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
193
module Fluxperimental using Flux include("split_join.jl") export Split, Join include("train.jl") export shinkansen! include("chain.jl") include("compact.jl") end # module Fluxperimental
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
2207
import Flux: ChainRulesCore # Some experiments with chain to start removing the need for recur to be mutable. # As per the conversation in the recurrent network rework issue. # Main difference between this and the _applychain function is we return a new chain # with the internal state modified as well as the output of applying x to the chain. function apply(chain::Flux.Chain, x) layers, out = _apply(chain.layers, x) Flux.Chain(layers), out end function _apply(layers::NamedTuple{NMS, TPS}, x) where {NMS, TPS} layers, out = _apply(Tuple(layers), x) NamedTuple{NMS}(layers), out end function _scan(layers::AbstractVector, x) new_layers = typeof(layers)(undef, length(layers)) for (idx, f) in enumerate(layers) new_layers[idx], x = _apply(f, x) end new_layers, x end # Reverse rule for _scan # example pulled from https://github.com/mcabbott/Flux.jl/blob/chain_rrule/src/cuda/cuda.jl function ChainRulesCore.rrule(cfg::ChainRulesCore.RuleConfig, ::typeof(_scan), layers, x) duo = accumulate(layers; init=((nothing, x), nothing)) do ((pl, input), _), cur_layer out, back = ChainRulesCore.rrule_via_ad(cfg, _apply, cur_layer, input) end outs = map(first, duo) backs = map(last, duo) function _scan_pullback(dy) multi = accumulate(reverse(backs); init=(nothing, dy)) do (_, delta), back dapply, dlayer, din = back(delta) return dapply, (dlayer, din) end layergrads = reverse(map(first, multi)) xgrad = last(multi[end]) return (ChainRulesCore.NoTangent(), layergrads, xgrad) end return (map(first, outs), last(outs[end])), _scan_pullback end function _apply(layers::AbstractVector, x) # type-unstable path, helps compile times _scan(layers, x) end # Generated function returns a tuple of args and the last output of the network. @generated function _apply(layers::Tuple{Vararg{<:Any,N}}, x) where {N} x_symbols = vcat(:x, [gensym() for _ in 1:N]) l_symbols = [gensym() for _ in 1:N] calls = [:(($(l_symbols[i]), $(x_symbols[i+1])) = _apply(layers[$i], $(x_symbols[i]))) for i in 1:N] push!(calls, :(return tuple($(l_symbols...)), $(x_symbols[end]))) Expr(:block, calls...) end _apply(layer, x) = layer, layer(x)
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
6144
import Flux: _big_show """ @compact(forward::Function; name=nothing, parameters...) Creates a layer by specifying some `parameters`, in the form of keywords, and (usually as a `do` block) a function for the forward pass. You may think of `@compact` as a specialized `let` block creating local variables that are trainable in Flux. Declared variable names may be used within the body of the `forward` function. Here is a linear model: ``` r = @compact(w = rand(3)) do x w .* x end r([1, 1, 1]) # x is set to [1, 1, 1]. ``` Here is a linear model with bias and activation: ``` d = @compact(in=5, out=7, W=randn(out, in), b=zeros(out), act=relu) do x y = W * x act.(y .+ b) end d(ones(5, 10)) # 7ร—10 Matrix as output. ``` Finally, here is a simple MLP: ``` using Flux n_in = 1 n_out = 1 nlayers = 3 model = @compact( w1=Dense(n_in, 128), w2=[Dense(128, 128) for i=1:nlayers], w3=Dense(128, n_out), act=relu ) do x embed = act(w1(x)) for w in w2 embed = act(w(embed)) end out = w3(embed) return out end model(randn(n_in, 32)) # 1ร—32 Matrix as output. ``` We can train this model just like any `Chain`: ``` data = [([x], 2x-x^3) for x in -2:0.1f0:2] optim = Flux.setup(Adam(), model) for epoch in 1:1000 Flux.train!((m,x,y) -> (m(x) - y)^2, model, data, optim) end ``` You may also specify a `name` for the model, which will be used instead of the default printout, which gives a verbatim representation of the code used to construct the model: ``` model = @compact(w=rand(3), name="Linear(3 => 1)") do x sum(w .* x) end println(model) # "Linear(3 => 1)" ``` This can be useful when using `@compact` to hierarchically construct complex models to be used inside a `Chain`. """ macro compact(fex, kwexs...) # check input Meta.isexpr(fex, :(->)) || error("expects a do block") isempty(kwexs) && error("expects keyword arguments") all(ex -> Meta.isexpr(ex, (:kw,:(=))), kwexs) || error("expects only keyword argumens") # check if user has named layer: name = findfirst(ex -> ex.args[1] == :name, kwexs) if name !== nothing && kwexs[name].args[2] !== nothing length(kwexs) == 1 && error("expects keyword arguments") name_str = kwexs[name].args[2] # remove name from kwexs (a tuple) kwexs = (kwexs[1:name-1]..., kwexs[name+1:end]...) name = name_str end # make strings layer = "@compact" setup = NamedTuple(map(ex -> Symbol(string(ex.args[1])) => string(ex.args[2]), kwexs)) input = join(fex.args[1].args, ", ") block = string(Base.remove_linenums!(fex).args[2]) # edit expressions vars = map(ex -> ex.args[1], kwexs) assigns = map(ex -> Expr(:(=), ex.args...), kwexs) @gensym self pushfirst!(fex.args[1].args, self) addprefix!(fex, self, vars) # assemble return esc(quote let $(assigns...) $CompactLayer($fex, $name, ($layer, $input, $block), $setup; $(vars...)) end end) end function addprefix!(ex::Expr, self, vars) for i = 1:length(ex.args) if ex.args[i] in vars ex.args[i] = :($self.$(ex.args[i])) else addprefix!(ex.args[i], self, vars) end end end addprefix!(not_ex, self, vars) = nothing struct CompactLayer{F,NT1<:NamedTuple,NT2<:NamedTuple} fun::F name::Union{String,Nothing} strings::NTuple{3,String} setup_strings::NT1 variables::NT2 end CompactLayer(f::Function, name::Union{String,Nothing}, str::Tuple, setup_str::NamedTuple; kw...) = CompactLayer(f, name, str, setup_str, NamedTuple(kw)) (m::CompactLayer)(x...) = m.fun(m.variables, x...) CompactLayer(args...) = error("CompactLayer is meant to be constructed by the macro") Flux.@functor CompactLayer Flux._show_children(m::CompactLayer) = m.variables function Base.show(io::IO, ::MIME"text/plain", m::CompactLayer) if get(io, :typeinfo, nothing) === nothing # e.g., top level of REPL Flux._big_show(io, m) elseif !get(io, :compact, false) # e.g., printed inside a Vector, but not a matrix Flux._layer_show(io, m) else show(io, m) end end function Flux._big_show(io::IO, obj::CompactLayer, indent::Int=0, name=nothing) setup_strings = obj.setup_strings local_name = obj.name has_explicit_name = local_name !== nothing if has_explicit_name if indent != 0 || length(Flux.params(obj)) <= 2 _just_show_params(io, local_name, obj, indent) else # indent == 0 print(io, local_name) Flux._big_finale(io, obj) end else # no name, so print normally layer, input, block = obj.strings pre, post = ("(", ")") println(io, " "^indent, isnothing(name) ? "" : "$name = ", layer, pre) for k in keys(obj.variables) v = obj.variables[k] if Flux._show_leaflike(v) # If the value is a leaf, just print verbatim what the user wrote: str = String(k) * " = " * setup_strings[k] _just_show_params(io, str, v, indent+2) else Flux._big_show(io, v, indent+2, String(k)) end end if indent == 0 # i.e. this is the outermost container print(io, rpad(post, 1)) else print(io, " "^indent, post) end input != "" && print(io, " do ", input) if block != "" block_to_print = block[6:end] # Increase indentation of block according to `indent`: block_to_print = replace(block_to_print, r"\n" => "\n" * " "^(indent)) print(io, " ", block_to_print) end if indent == 0 Flux._big_finale(io, obj) else println(io, ",") end end end # Modified from src/layers/show.jl function _just_show_params(io::IO, str::String, layer, indent::Int=0) print(io, " "^indent, str, indent==0 ? "" : ",") if !isempty(Flux.params(layer)) print(io, " "^max(2, (indent==0 ? 20 : 39) - indent - length(str))) printstyled(io, "# ", Flux.underscorise(sum(length, Flux.params(layer))), " parameters"; color=:light_black) nonparam = Flux._childarray_sum(length, layer) - sum(length, Flux.params(layer)) if nonparam > 0 printstyled(io, ", plus ", Flux.underscorise(nonparam), indent==0 ? " non-trainable" : ""; color=:light_black) end Flux._nan_show(io, Flux.params(layer)) end indent==0 || println(io) end
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
521
#= These layers are from https://fluxml.ai/Flux.jl/stable/models/advanced/ =# # custom split layer struct Split{T} paths::T end Split(paths...) = Split(paths) Flux.@functor Split (m::Split)(x::AbstractArray) = map(f -> f(x), m.paths) # custom join layer struct Join{T, F} combine::F paths::T end # allow Join(op, m1, m2, ...) as a constructor Join(combine, paths...) = Join(combine, paths) Flux.@functor Join (m::Join)(xs::Tuple) = m.combine(map((f, x) -> f(x), m.paths, xs)...) (m::Join)(xs...) = m(xs)
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
2463
using Flux: withgradient, DataLoader using Optimisers: Optimisers using ProgressMeter: ProgressMeter, Progress, next! #= This grew out of explicit-mode upgrade here: https://github.com/FluxML/Flux.jl/pull/2082 =# """ shinkansen!(loss, model, data...; state, epochs=1, [batchsize, keywords...]) This is a re-design of `train!`: * The loss function must accept the remaining arguments: `loss(model, data...)` * The optimiser state from `setup` must be passed to the keyword `state`. By default it calls `gradient(loss, model, data...)` just like that. Same order as the arguments. If you specify `epochs = 100`, then it will do this 100 times. But if you specify `batchsize = 32`, then it first makes `DataLoader(data...; batchsize)`, and uses that to generate smaller arrays to feed to `gradient`. All other keywords are passed to `DataLoader`, e.g. to shuffle batches. Returns the loss from every call. # Example ``` X = repeat(hcat(digits.(0:3, base=2, pad=2)...), 1, 32) Y = Flux.onehotbatch(xor.(eachrow(X)...), 0:1) model = Chain(Dense(2 => 3, sigmoid), BatchNorm(3), Dense(3 => 2)) state = Flux.setup(Adam(0.1, (0.7, 0.95)), model) # state = Optimisers.setup(Optimisers.Adam(0.1, (0.7, 0.95)), model) # for now shinkansen!(model, X, Y; state, epochs=100, batchsize=16, shuffle=true) do m, x, y Flux.logitcrossentropy(m(x), y) end all((softmax(model(X)) .> 0.5) .== Y) ``` """ function shinkansen!(loss::Function, model, data...; state, epochs=1, batchsize=nothing, kw...) if batchsize != nothing loader = DataLoader(data; batchsize, kw...) losses = Vector{Float32}[] prog = Progress(length(loader) * epochs) for e in 1:epochs eplosses = Float32[] for (i,d) in enumerate(loader) l, (g, _...) = withgradient(loss, model, d...) isfinite(l) || error("loss is $l, on batch $i, epoch $epoch") Optimisers.update!(state, model, g) push!(eplosses, l) next!(prog; showvalues=[(:epoch, e), (:loss, l)]) end push!(losses, eplosses) end return allequal(size.(losses)) ? reduce(hcat, losses) : losses else losses = Float32[] prog = Progress(epochs) for e in 1:epochs l, (g, _...) = withgradient(loss, model, data...) isfinite(l) || error("loss is $l, on epoch $epoch") Optimisers.update!(state, model, g) push!(losses, l) next!(prog; showvalues=[(:epoch, epoch), (:loss, l)]) end return losses end end
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
2528
# Checking if the two grad structures are equal. Simplifies tests below. function _grads_equal(grads1, grads2) if length(keys(grads1)) != length(keys(grads2)) return false end ret = true for weights in keys(grads1) if grads1[weights] isa AbstractArray ret = ret && all(grads1[weights] .== grads2[weights]) elseif isnothing(grads1[weights]) ret = ret && isnothing(grads2[weights]) else throw("Grad returned type $(typeof(grads1[weights]))") end end return ret end @testset "Applying the Chain!" begin @testset "Forward pass" begin x = rand(Float32, 3, 1) l1 = Flux.Dense(3, 4) l2 = Flux.Dense(4, 1) truth = l2(l1(x)) t_c = Flux.Chain(l1, l2) # tuple Chain new_t_c, out = Fluxperimental.apply(t_c, x) @test new_t_c[1] === l1 && new_t_c[2] === l2 @test all(out .== truth) nt_c = Flux.Chain(l1=l1, l2=l2) # namedtuple Chain new_nt_c, out = Fluxperimental.apply(nt_c, x) @test new_nt_c[:l1] === l1 && new_nt_c[:l2] === l2 @test all(out .== truth) v_c = Flux.Chain([l1, l2]) # vector Chain new_v_c, out = Fluxperimental.apply(v_c, x) @test new_v_c.layers[1] === l1 && new_v_c.layers[2] === l2 @test all(out .== truth) end # @testset "Forward Pass" @testset "Backward pass" begin x = rand(Float32, 3, 1) l1 = Flux.Dense(3, 4) l2 = Flux.Dense(4, 1) @test begin # Test Tuple Chain Gradients t_c = Flux.Chain(l1, l2) # tuple Chain grads_truth = Flux.gradient(Flux.params(t_c)) do sum(t_c(x)) end grads_tuple = Flux.gradient(Flux.params(t_c)) do sum(Fluxperimental.apply(t_c, x)[end]) end _grads_equal(grads_tuple, grads_truth) end @test begin # Test Named Tuple's Gradients nt_c = Flux.Chain(l1=l1, l2=l2) # named tuple Chain grads_truth = Flux.gradient(Flux.params(nt_c)) do sum(nt_c(x)) end grads_tuple = Flux.gradient(Flux.params(nt_c)) do sum(Fluxperimental.apply(nt_c, x)[end]) end _grads_equal(grads_tuple, grads_truth) end @test begin # Test Vector Gradient c = Flux.Chain([l1, l2]) # named tuple Chain grads_truth = Flux.gradient(Flux.params(c)) do sum(c(x)) end grads_tuple = Flux.gradient(Flux.params(c)) do sum(Fluxperimental.apply(c, x)[end]) end _grads_equal(grads_tuple, grads_truth) end end # @testset "Backward Pass" end # @testset "Applying the Chain!"
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
4742
import Fluxperimental: @compact # Strip both strings of spaces, and then test: function similar_strings(s1, s2) s1 = replace(s1, r"\s" => "") s2 = replace(s2, r"\s" => "") # We also remove any instances of, e.g., # 17.057 KiB (or any other number) # because this depends on indentation in this file. s1 = replace(s1, r"\d+\.\d+KiB" => "") s2 = replace(s2, r"\d+\.\d+KiB" => "") # Display any differences: if s1 != s2 println(stderr, "s1: ", s1) println(stderr, "s2: ", s2) end return s1 == s2 end function get_model_string(model) io = IOBuffer() show(io, MIME"text/plain"(), model) String(take!(io)) end @testset "@compact" begin r = @compact(w = [1, 5, 10]) do x sum(w .* x) end @test Flux.params(r) == Flux.Params([[1, 5, 10]]) @test r([1, 1, 1]) == 1 + 5 + 10 @test r([1, 2, 3]) == 1 + 2 * 5 + 3 * 10 @test r(ones(3, 3)) == 3 * (1 + 5 + 10) # Test gradients: @test gradient(r, [1, 1, 1])[1] == [1, 5, 10] d = @compact(in = 5, out = 7, W = randn(out, in), b = zeros(out), act = relu) do x y = W * x act.(y .+ b) end @test size.(Flux.params(d)) == [(7, 5), (7,)] @test size(d(ones(5, 10))) == (7, 10) @test all(d(randn(5, 10)) .>= 0) # Test gradients: y, โˆ‡ = Flux.withgradient(Flux.params(d)) do input = randn(5, 32) desired_output = randn(7, 32) prediction = d(input) sum((prediction - desired_output) .^ 2) end @test typeof(y) == Float64 grads = โˆ‡.grads @test typeof(grads) <: IdDict @test length(grads) == 3 @test Set(size.(values(grads))) == Set([(7, 5), (), (7,)]) # MLP: n_in = 1 n_out = 1 nlayers = 3 model = @compact( w1 = Dense(n_in, 128), w2 = [Dense(128, 128) for i = 1:nlayers], w3 = Dense(128, n_out), act = relu ) do x embed = act(w1(x)) for w in w2 embed = act(w(embed)) end out = w3(embed) return out end @test size.(Flux.params(model)) == [ (128, 1), (128,), (128, 128), (128,), (128, 128), (128,), (128, 128), (128,), (1, 128), (1,), ] @test size(model(randn(n_in, 32))) == (1, 32) # Test string representations: model = @compact(w=Dense(32 => 32)) do x, y tmp = sum(w(x)) return tmp + y end expected_string = """@compact( w = Dense(32=>32), #1_056 parameters ) do x, y tmp = sum(w(x)) return tmp + y end""" @test similar_strings(get_model_string(model), expected_string) # Custom naming: model = @compact(w=Dense(32, 32), name="Linear(...)") do x, y tmp = sum(w(x)) return tmp + y end expected_string = "Linear(...) # 1_056 parameters" @test similar_strings(get_model_string(model), expected_string) # Hierarchical models should work too: model1 = @compact(w1=Dense(32=>32, relu), w2=Dense(32=>32, relu)) do x w2(w1(x)) end model2 = @compact(w1=model1, w2=Dense(32=>32, relu)) do x w2(w1(x)) end expected_string = """@compact( w1 = @compact( w1 = Dense(32 => 32, relu), # 1_056 parameters w2 = Dense(32 => 32, relu), # 1_056 parameters ) do x w2(w1(x)) end, w2 = Dense(32 => 32, relu), # 1_056 parameters ) do x w2(w1(x)) end # Total: 6 arrays, 3_168 parameters, 13.271 KiB.""" @test similar_strings(get_model_string(model2), expected_string) # With array params: model = @compact(x=randn(32), w=Dense(32=>32)) do s w(x .* s) end expected_string = """@compact( x = randn(32), # 32 parameters w = Dense(32 => 32), # 1_056 parameters ) do s w(x .* s) end # Total: 3 arrays, 1_088 parameters, 4.734 KiB.""" @test similar_strings(get_model_string(model), expected_string) # Hierarchy with inner model named: model = @compact( w1=@compact(w1=randn(32, 32), name="Model(32)") do x w1 * x end, w2=randn(32, 32), w3=randn(32), ) do x w2 * w1(x) end expected_string = """@compact( Model(32), # 1_024 parameters w2 = randn(32, 32), # 1_024 parameters w3 = randn(32), # 32 parameters ) do x w2 * w1(x) end # Total: 3 arrays, 2_080 parameters, 17.089 KiB.""" @test similar_strings(get_model_string(model), expected_string) # Hierarchy with outer model named: model = @compact( w1=@compact(w1=randn(32, 32)) do x w1 * x end, w2=randn(32, 32), w3=randn(32), name="Model(32)" ) do x w2 * w1(x) end expected_string = """Model(32) # Total: 3 arrays, 2_080 parameters, 17.057KiB.""" @test similar_strings(get_model_string(model), expected_string) end
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
154
using Test using Flux, Fluxperimental @testset "Fluxperimental.jl" begin include("split_join.jl") include("chain.jl") include("compact.jl") end
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git