licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 2.1.1 | a9327ceb1e062f3b080ac368e7ce86c15a3499d0 | docs | 553 | # Changelog
All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## Unreleased
## v2.0.0
- `callback` now receives the gradient as an argument `β`.
- No other (breaking) changes, but tagging major release to be safe.
## v1.0.0
- Contrastive divergence algorithm for training Restricted Boltzmann Machines.
- Compatiblity with with RestrictedBoltzmannMachines v3. | ContrastiveDivergenceRBM | https://github.com/cossio/ContrastiveDivergenceRBM.jl.git |
|
[
"MIT"
] | 2.1.1 | a9327ceb1e062f3b080ac368e7ce86c15a3499d0 | docs | 290 | # ContrastiveDivergenceRBM Julia package
Contrastive divergence (CD) training of RBMs, in Julia.
## Installation
This package is registered. Install with:
```julia
import Pkg
Pkg.add("ContrastiveDivergenceRBM")
```
## Related
* https://github.com/cossio/RestrictedBoltzmannMachines.jl | ContrastiveDivergenceRBM | https://github.com/cossio/ContrastiveDivergenceRBM.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 6667 | using BenchmarkTools
using Pkg
using StableRNGs
using ResumableFunctions
const SUITE = BenchmarkGroup()
const rng = StableRNG(42)
const n = 93
Manifest = Pkg.Operations.Context().env.manifest
V = Manifest[findfirst(v -> v.name == "ResumableFunctions", Manifest)].version
## Benchmarks hardcoded for various types
const hardcoded_types = [Int, BigInt]
S_hc = SUITE["hardcoded types"] = BenchmarkGroup(["hardcoded types"])
for N in hardcoded_types # define a separate submodule for each hardcoded type
@eval module $(Symbol("Test", N))
using BenchmarkTools
using ResumableFunctions
using ..Main: S_hc, rng, V
const n = $n
const N = $N
str = string(N)
S = S_hc[str] = BenchmarkGroup([str])
# the functions to be benchmarked
function direct(a::N, b::N)
b, a+b
end
function test_direct(n::Int)
a, b = zero(N), one(N)
for _ in 1:n-1
a, b = direct(a, b)
end
a
end
@resumable function fibonacci_resumable(n::Int)
a, b = zero(N), one(N)
for _ in 1:n
@yield a
a, b = b, a + b
end
end
@noinline function test_resumable(n::Int)
a = 0
for v in fibonacci_resumable(n)
a = v
end
a
end
function fibonacci_channel(n::Int, ch::Channel)
a, b = zero(N), one(N)
for _ in 1:n
put!(ch, a)
a, b = b, a + b
end
end
@noinline function test_channel(n::Int, csize::Int)
fib_channel = Channel(c -> fibonacci_channel(n, c); ctype=N, csize=csize)
a = 0
for v in fib_channel
a = v
end
a
end
struct Generator
callee :: Task
function Generator(f::Function, args...; kwargs...)
ct = current_task()
new(@task begin task_local_storage(:caller, ct); f(args...; kwargs...); yield(ct) end)
end
end
function Base.iterate(gen::Generator, state=nothing)
ret = yieldto(gen.callee)
if ret === nothing return nothing end
ret, nothing
end
function consume(gen::Generator, val=nothing)
yieldto(gen.callee, val)
end
function produce(val=nothing)
t = task_local_storage(:caller)
yieldto(t, val)
end
function fibonacci_task(n::Int)
a,b = zero(N), one(N)
for _ in 1:n
produce(a)
a, b = b, a+b
end
end
@noinline function test_task(n::Int)
a = 0
for v in Generator(fibonacci_task, n)
a = v
end
a
end
function fibonacci_closure()
a, b = zero(N), one(N)
function()
tmp = a
a, b = b, a + b
tmp
end
end
@noinline function test_closure(n::Int)
fib_closure = fibonacci_closure()
a = 0
for _ in 1:n
a = fib_closure()
end
a
end
function fibonacci_closure_opt()
a = Ref(zero(N))
b = Ref(one(N))
function()
tmp = a[]
a[], b[] = b[], a[] + b[]
tmp
end
end
@noinline function test_closure_opt(n::Int)
fib_closure = fibonacci_closure_opt()
a = 0
for _ in 1:n
a = fib_closure()
end
a
end
function fibonacci_closure_stm(n::Int)
_state = Ref(0x00)
a = Ref{N}()
b = Ref{N}()
_iterstate_1 = Ref{Int}()
_iterator_1 = Ref{UnitRange{Int}}()
function(_arg::Any=nothing)
_state[] === 0x00 && @goto _STATE_0
_state[] === 0x01 && @goto _STATE_1
error("@resumable function has stopped!")
@label _STATE_0
_state[] = 0xff
_arg isa Exception && throw(_arg)
a[], b[] = zero(Int), one(Int)
_iterator_1[] = 1:n
_iteratornext_1 = iterate(_iterator_1[])
while _iteratornext_1 !== nothing
(_, _iterstate_1[]) = _iteratornext_1
_state[] = 0x01
return a[]
@label _STATE_1
_state[] = 0xff
_arg isa Exception && throw(_arg)
(a[], b[]) = (b[], a[] + b[])
_iteratornext_1 = iterate(_iterator_1[], _iterstate_1[])
end
end
end
const FibClosure = typeof(fibonacci_closure_stm(n))
function Base.iterate(f::FibClosure, state=nothing)
a = f()
f._state[] === 0xff && return nothing
a, nothing
end
@noinline function test_closure_stm(n::Int)
fib_closure = fibonacci_closure_stm(n)
a = 0
for v in fibonacci_closure_stm(n)
a = v
end
a
end
struct FibN
n::Int
end
function Base.iterate(f::FibN, state::Tuple{N, N, Int}=(zero(N), one(N), 1))
a, b, iters = state
iters > f.n && return nothing
a, (b, a + b, iters + 1)
end
@noinline function test_iteration_protocol(n::Int)
a = 0
for v in FibN(n)
a = v
end
a
end
# define the benchmarks
S["Direct"] = @benchmarkable test_direct(_n) setup=(_n=n)
S["ResumableFunctions"] = @benchmarkable test_resumable(_n) setup=(_n=n)
S["Channels csize=0"] = @benchmarkable test_channel(_n, 0) setup=(_n=n)
S["Channels csize=1"] = @benchmarkable test_channel(_n, 1) setup=(_n=n)
S["Channels csize=20"] = @benchmarkable test_channel(_n, 20) setup=(_n=n)
S["Channels csize=100"] = @benchmarkable test_channel(_n, 100) setup=(_n=n)
S["Task scheduling"] = @benchmarkable test_task(_n) setup=(_n=n)
S["Closure"] = @benchmarkable test_closure(_n) setup=(_n=n)
S["Closure optimized"] = @benchmarkable test_closure_opt(_n) setup=(_n=n)
S["Closure statemachine"] = @benchmarkable test_closure_stm(_n) setup=(_n=n)
S["Iteration protocol"] = @benchmarkable test_iteration_protocol(_n) setup=(_n=n)
end # module
end # for N in [Int, BigInt]
##
# run as `julia --project=. benchmark/benchmarks.jl`
const T = Int # pick a type to test for (from hardcoded_types)
isinteractive() || get(ENV,"CI","false") =="true" || begin
println("\n\nTesting with $T\n")
eval( :(import .$(Symbol("Test",T)): test_direct, test_resumable, test_channel, test_task, test_closure, test_closure_opt, test_closure_stm, test_iteration_protocol) )
println("Direct: ")
@btime test_direct($n)
@assert test_direct(n) == 7540113804746346429
println("ResumableFunctions: ")
@btime test_resumable($n)
@assert test_resumable(n) == 7540113804746346429
println("Channels csize=0: ")
@btime test_channel($n, $0)
@assert test_channel(n, 0) == 7540113804746346429
println("Channels csize=1: ")
@btime test_channel($n, $1)
@assert test_channel(n, 1) == 7540113804746346429
println("Channels csize=20: ")
@btime test_channel($n, $20)
@assert test_channel(n, 20) == 7540113804746346429
println("Channels csize=100: ")
@btime test_channel($n, $100)
@assert test_channel(n, 100) == 7540113804746346429
println("Task scheduling")
@btime test_task($n)
@assert test_task(n) == 7540113804746346429
println("Closure: ")
@btime test_closure($n)
@assert test_closure(n) == 7540113804746346429
println("Closure optimised: ")
@btime test_closure_opt($n)
@assert test_closure_opt(n) == 7540113804746346429
println("Closure statemachine: ")
@btime test_closure_stm($n)
@assert test_closure_stm(n) == 7540113804746346429
println("Iteration protocol: ")
@btime test_iteration_protocol($n)
@assert test_iteration_protocol(n) == 7540113804746346429
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 378 | using Documenter
using ResumableFunctions
makedocs(
sitename = "ResumableFunctions",
authors = "Ben Lauwens and volunteers from JuliaDynamics and QuantumSavory",
pages = [
"Home" => "index.md",
"Manual" => "manual.md",
"Internals" => "internals.md",
"Library" => "library.md"
]
)
deploydocs(
repo = "github.com/JuliaDynamics/ResumableFunctions.jl"
)
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 1892 | #= The Computer Language Benchmarks Game
https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
contributed by Ben Lauwens
derived from the Chapel version by Tom Hildebrandt, Brad Chamberlain, and Lydia Duncan
and inspired by the Julia version of Luiz M. Faria
=#
using ResumableFunctions
using Base.GMP.MPZ: add_ui!, mul_ui!, add!, tdiv_q!
const mpz_t = Ref{BigInt}
addmul_ui!(x::BigInt,a::BigInt,b::UInt64) = ccall((:__gmpz_addmul_ui,"libgmp"), Cvoid, (mpz_t,mpz_t,Culong), x, a, b)
submul_ui!(x::BigInt,a::BigInt,b::UInt64) = ccall((:__gmpz_submul_ui,"libgmp"), Cvoid, (mpz_t,mpz_t,Culong), x, a, b)
get_ui(x::BigInt) = ccall((:__gmpz_get_ui,"libgmp"), Culong, (mpz_t,), x)
@resumable function pidigits()
k = one(UInt64)
d = zero(UInt64)
numer = BigInt(1)
denom = BigInt(1)
accum = BigInt(0)
tmp1 = BigInt(0)
tmp2 = BigInt(0)
tmp3 = BigInt(0)
while true
k2 = 2k + one(UInt64)
addmul_ui!(accum, numer, UInt64(2))
mul_ui!(accum, k2)
mul_ui!(denom, k2)
mul_ui!(numer, k)
k += one(UInt64)
if numer <= accum
mul_ui!(tmp1, numer, UInt64(3))
add!(tmp1, accum)
tdiv_q!(tmp2, tmp1, denom)
mul_ui!(tmp1, numer, UInt64(4))
add!(tmp1, accum)
tdiv_q!(tmp3, tmp1, denom)
if tmp2 == tmp3
d = get_ui(tmp2)
@yield d
submul_ui!(accum, denom, d)
mul_ui!(accum, UInt64(10))
mul_ui!(numer, UInt64(10))
end
end
end
end
function main(n = parse(Int64, ARGS[1]))
i = 0
pid = pidigits()
for i in 1:n
d = pid()
print(d)
if i % 10 === 0
println("\t:", i)
end
end
if i % 10 !== 0
println(" "^(10 - (i % 10)), "\t:", n)
end
end
main(100) | ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 468 | """
Main module for ResumableFunctions.jl β C# style generators a.k.a. semi-coroutines for Julia
"""
module ResumableFunctions
using MacroTools
using MacroTools: combinedef, combinearg, flatten, postwalk
export @resumable, @yield, @nosave, @yieldfrom
function __init__()
STDERR_HAS_COLOR[] = get(stderr, :color, false)
end
include("safe_logging.jl")
include("types.jl")
include("transforms.jl")
include("utils.jl")
include("macro.jl")
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 8147 | """
Macro if used in a `@resumable function` that returns the `expr` otherwise throws an error.
"""
macro yield(expr=nothing)
error("@yield macro outside a @resumable function!")
end
"""
Macro if used in a `@resumable function` that delegates to `expr` otherwise throws an error.
"""
macro yieldfrom(expr=nothing)
error("@yieldfrom macro outside a @resumable function!")
end
"""
Macro if used in a `@resumable function` that creates a not saved variable otherwise throws an error.
"""
macro nosave(expr=nothing)
error("@nosave macro outside a @resumable function!")
end
"""
Macro that transforms a function definition in a finite-state machine:
- Defines a new `mutable struct` that implements the iterator interface and is used to store the internal state.
- Makes this new type callable having following characteristics:
- implementents the statements from the initial function definition but;
- returns at a `@yield` statement and;
- continues after the `@yield` statement when called again.
- Defines a constructor function that respects the calling conventions of the initial function definition and returns an object of the new type.
If the element type and length is known, the resulting iterator can be made
more efficient as follows:
- Use `length=ex` to specify the length (if known) of the iterator, like:
@resumable length=ex function f(x); body; end
Here `ex` can be any expression containing the arguments of `f`.
- Use `function f(x)::T` to specify the element type of the iterator.
# Extended
```julia
julia> @resumable length=n^2 function f(n)::Int
for i in 1:n^2
@yield i
end
end
f (generic function with 2 methods)
julia> collect(f(3))
9-element Vector{Int64}:
1
2
3
4
5
6
7
8
9
```
"""
macro resumable(ex::Expr...)
length(ex) >= 3 && error("Too many arguments")
for i in 1:length(ex)-1
a = ex[i]
if !(a isa Expr && a.head === :(=) && a.args[1] in [:length])
error("only keyword argument 'length' allowed")
end
end
expr = ex[end]
expr.head !== :function && error("Expression is not a function definition!")
# The function that executes a step of the finite state machine
func_def = splitdef(expr)
rtype = :rtype in keys(func_def) ? func_def[:rtype] : Any
args, kwargs, arg_dict = get_args(func_def)
params = ((get_param_name(param) for param in func_def[:whereparams])...,)
# Initial preparation of the function stepping through the finite state machine and extraction of local variables and their types
ui8 = BoxedUInt8(zero(UInt8))
func_def[:body] = postwalk(transform_arg_yieldfrom, func_def[:body])
func_def[:body] = postwalk(transform_yieldfrom, func_def[:body])
func_def[:body] = postwalk(x->transform_for(x, ui8), func_def[:body])
inferfn, slots = get_slots(copy(func_def), arg_dict, __module__)
# check if the resumable function is a callable struct instance (a functional) that is referencing itself
isfunctional = @capture(func_def[:name], functional_::T_) && inexpr(func_def[:body], functional)
if isfunctional
slots[functional] = T
push!(args, functional)
end
# The finite state machine structure definition
type_name = gensym(Symbol(func_def[:name], :_FSMI))
constr_def = copy(func_def)
slot_T = [gensym(s) for s in keys(slots)]
slot_T_sub = [:($k <: $v) for (k, v) in zip(slot_T, values(slots))]
struct_name = :($type_name{$(func_def[:whereparams]...), $(slot_T_sub...)} <: ResumableFunctions.FiniteStateMachineIterator{$rtype})
constr_def[:whereparams] = (func_def[:whereparams]..., slot_T_sub...)
# if there are no where or slot type parameters, we need to use the bare type
if isempty(params) && isempty(slot_T)
constr_def[:name] = :($type_name)
else
constr_def[:name] = :($type_name{$(params...), $(slot_T...)})
end
constr_def[:args] = tuple()
constr_def[:kwargs] = tuple()
constr_def[:rtype] = nothing
constr_def[:body] = quote
fsmi = new()
fsmi._state = 0x00
fsmi
end
# the bare/fallback version of the constructor supplies default slot type parameters
# we only need to define this if there there are actually slot defaults to be filled
if !isempty(slot_T)
bareconstr_def = copy(constr_def)
if isempty(params)
bareconstr_def[:name] = :($type_name)
else
bareconstr_def[:name] = :($type_name{$(params...)})
end
bareconstr_def[:whereparams] = func_def[:whereparams]
bareconstr_def[:body] = :($(bareconstr_def[:name]){$(values(slots)...)}())
bareconst_expr = combinedef(bareconstr_def) |> flatten
else
bareconst_expr = nothing
end
constr_expr = combinedef(constr_def) |> flatten
type_expr = :(
mutable struct $struct_name
_state :: UInt8
$((:($slotname :: $slottype) for (slotname, slottype) in zip(keys(slots), slot_T))...)
$(constr_expr)
$(bareconst_expr)
end
)
@debug type_expr|>MacroTools.striplines
# The "original" function that now is simply a wrapper around the construction of the finite state machine
call_def = copy(func_def)
call_def[:rtype] = nothing
if isempty(params)
fsmi_name = type_name
else
fsmi_name = :($type_name{$(params...)})
end
fwd_args, fwd_kwargs = forward_args(call_def)
isfunctional && push!(fwd_args, functional)
call_def[:body] = quote
fsmi = ResumableFunctions.typed_fsmi($fsmi_name, $inferfn, $(fwd_args...), $(fwd_kwargs...))
$((arg !== Symbol("_") ? :(fsmi.$arg = $arg) : nothing for arg in args)...)
$((:(fsmi.$arg = $arg) for arg in kwargs)...)
fsmi
end
call_expr = combinedef(call_def) |> flatten
@debug call_expr|>MacroTools.striplines
# Finalizing the function stepping through the finite state machine
if isempty(params)
func_def[:name] = :((_fsmi::$type_name))
else
func_def[:name] = :((_fsmi::$type_name{$(params...)}))
end
func_def[:rtype] = nothing
func_def[:body] = postwalk(x->transform_slots(x, keys(slots)), func_def[:body])
# Capture the length=...
interface_defs = []
for i in 1:length(ex)-1
a = ex[i]
if !(a isa Expr && a.head === :(=) && a.args[1] in [:length])
error("only keyword argument 'length' allowed")
end
if a.args[1] === :length
push!(interface_defs, quote Base.IteratorSize(::Type{<: $type_name}) = Base.HasLength() end)
func_def2 = copy(func_def)
func_def2[:body] = a.args[2]
new_body = postwalk(x->transform_slots(x, keys(slots)), a.args[2])
push!(interface_defs, quote Base.length(_fsmi::$type_name) = begin $new_body end end)
end
end
func_def[:body] = postwalk(transform_arg, func_def[:body])
func_def[:body] = postwalk(transform_exc, func_def[:body]) |> flatten
ui8 = BoxedUInt8(zero(UInt8))
func_def[:body] = postwalk(x->transform_try(x, ui8), func_def[:body])
ui8 = BoxedUInt8(zero(UInt8))
func_def[:body] = postwalk(x->transform_yield(x, ui8), func_def[:body])
func_def[:body] = postwalk(x->transform_nosave(x, Set{Symbol}()), func_def[:body])
func_def[:body] = quote
_fsmi._state === 0x00 && @goto $(Symbol("_STATE_0"))
$((:(_fsmi._state === $i && @goto $(Symbol("_STATE_",:($i)))) for i in 0x01:ui8.n)...)
error("@resumable function has stopped!")
@label $(Symbol("_STATE_0"))
_fsmi._state = 0xff
_arg isa Exception && throw(_arg)
$(func_def[:body])
end
func_def[:args] = [Expr(:kw, :(_arg::Any), nothing)]
func_def[:kwargs] = []
func_expr = combinedef(func_def) |> flatten
if inexpr(func_def[:body], call_def[:name]) || isfunctional
@debug "recursion or self-reference is present in a resumable function definition: falling back to no inference"
call_expr = postwalk(x->x==:(ResumableFunctions.typed_fsmi) ? :(ResumableFunctions.typed_fsmi_fallback) : x, call_expr)
end
@debug func_expr|>MacroTools.striplines
# The final expression:
# - the finite state machine struct
# - the function stepping through the states
# - the "original" function which now is a simple wrapper around the construction of the finite state machine
esc(quote
$type_expr
$func_expr
$(interface_defs...)
Base.@__doc__($call_expr)
end)
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 1183 | # safe logging, copied from GPUCompiler
using Logging
const STDERR_HAS_COLOR = Ref{Bool}(false)
# Prevent invalidation when packages define custom loggers
# Using invoke in combination with @nospecialize eliminates backedges to these methods
function _invoked_min_enabled_level(@nospecialize(logger))
return invoke(Logging.min_enabled_level, Tuple{typeof(logger)}, logger)::LogLevel
end
# define safe loggers for use in generated functions (where task switches are not allowed)
for level in [:debug, :info, :warn, :error]
@eval begin
macro $(Symbol("safe_$level"))(ex...)
macrocall = :(@placeholder $(ex...))
# NOTE: `@placeholder` in order to avoid hard-coding @__LINE__ etc
macrocall.args[1] = Symbol($"@$level")
quote
old_logger = global_logger()
io = IOContext(Core.stderr, :color=>STDERR_HAS_COLOR[])
min_level = _invoked_min_enabled_level(old_logger)
global_logger(Logging.ConsoleLogger(io, min_level))
ret = $(esc(macrocall))
global_logger(old_logger)
ret
end
end
end
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 7367 | """
Function that replaces a variable
"""
function transform_nosave(expr, nosaves::Set{Symbol})
@capture(expr, @nosave var_ = body_) || return expr
push!(nosaves, var)
:($var = $body)
end
"""
Function that replaces a `@yieldfrom iter` statement with
```julia
_other_ = iter...
_ret_ = generate(_other_, nothing)
while !(_ret_ isa IteratorReturn)
_value_, _state_ = _ret_
_newvalue_ = @yield _value_
_ret_ = generate(_other_, _newvalue_, _state_)
end
_
```
"""
function transform_yieldfrom(expr)
_is_yieldfrom(expr) || return expr
iter = expr.args[3:end]
quote
_other_ = $(iter...)
_ret_ = $generate(_other_, nothing)
while !(_ret_ isa $IteratorReturn)
_value_, _state_ = _ret_
_newvalue_ = @yield _value_
_ret_ = $generate(_other_, _newvalue_, _state_)
end
end
end
"""
Function that replaces an `arg = @yieldfrom iter` statement by
```julia
@yieldfrom iter
arg = _ret_.value
```
"""
function transform_arg_yieldfrom(expr)
@capture(expr, arg_ = ex_) || return expr
_is_yieldfrom(ex) || return expr
iter = ex.args[3:end]
quote
@yieldfrom $(iter...)
$arg = _ret_.value
end
end
"""
Function returning whether an expression is a `@yieldfrom` macro
"""
_is_yieldfrom(ex) = false
function _is_yieldfrom(ex::Expr)
is_ = ex.head === :macrocall && ex.args[1] === Symbol("@yieldfrom")
if is_ && length(ex.args) < 3
error("@yieldfrom without arguments!")
end
return is_
end
"""
Function that replaces a `for` loop by a corresponding `while` loop saving explicitly the *iterator* and its *state*.
"""
function transform_for(expr, ui8::BoxedUInt8)
@capture(expr, for element_ in iterator_ body_ end) || return expr
ui8.n += one(UInt8)
next = Symbol("_iteratornext_", ui8.n)
state = Symbol("_iterstate_", ui8.n)
iterator_value = Symbol("_iterator_", ui8.n)
label = Symbol("_iteratorlabel_", ui8.n)
body = postwalk(x->transform_continue(x, label), :(begin $(body) end))
quote
$iterator_value = $iterator
@nosave $next = iterate($iterator_value)
while $next !== nothing
($element, $state) = $next
$body
@label $label
$next = iterate($iterator_value, $state)
end
end
end
"""
Function that replaces a `continue` statement by a corresponding `@goto` with as label the correct location for the next iteration.
"""
function transform_continue(expr, label::Symbol)
@capture(expr, continue) || return expr
:(@goto $label)
end
"""
Function that replaces a variable `x` in an expression by `_fsmi.x` where `x` is a known slot.
"""
function transform_slots(expr, symbols)
expr isa Expr || return expr
expr.head === :let && return transform_slots_let(expr, symbols)
for i in 1:length(expr.args)
expr.head === :kw && i === 1 && continue
expr.head === Symbol("quote") && continue
expr.args[i] = expr.args[i] isa Symbol && expr.args[i] in symbols ? :(_fsmi.$(expr.args[i])) : expr.args[i]
end
expr
end
"""
Function that handles `let` block
"""
function transform_slots_let(expr::Expr, symbols)
@capture(expr, let vars_; body_ end)
locals = Set{Symbol}()
(isa(vars, Expr) && vars.head==:(=)) || error("@resumable currently supports only single variable declarations in let blocks, i.e. only let blocks exactly of the form `let i=j; ...; end`. If you need multiple variables, please submit an issue on the issue tracker and consider contributing a patch.")
sym = vars.args[1].args[2].value
push!(locals, sym)
vars.args[1] = sym
body = postwalk(x->transform_let(x, locals), :(begin $(body) end))
:(let $vars; $body end)
end
"""
Function that replaces a variable `_fsmi.x` in an expression by `x` where `x` is a variable declared in a `let` block.
"""
function transform_let(expr, symbols::Set{Symbol})
expr isa Expr || return expr
expr.head === :. || return expr
expr = expr.args[2].value in symbols ? :($(expr.args[2].value)) : expr
end
"""
Function that replaces a `arg = @yield ret` statement by
```julia
@yield ret;
arg = arg_
```
where `arg_` is the argument of the function containing the expression.
"""
function transform_arg(expr)
@capture(expr, arg_ = ex_) || return expr
_is_yield(ex) || return expr
ret = length(ex.args) > 2 ? ex.args[3:end] : [nothing]
quote
@yield $(ret...)
$arg = _arg
end
end
"""
Function that replaces a `@yield ret` or `@yield` statement by
```julia
@yield ret
_arg isa Exception && throw(_arg)
```
to allow that an `Exception` can be thrown into a `@resumable function`.
"""
function transform_exc(expr)
_is_yield(expr) || return expr
ret = length(expr.args) > 2 ? expr.args[3:end] : [nothing]
quote
@yield $(ret...)
_arg isa Exception && throw(_arg)
end
end
"""
Function that replaces a `try`-`catch`-`finally`-`end` expression having a top level `@yield` statement in the `try` part
```julia
try
before_statements...
@yield ret
after_statements...
catch exc
catch_statements...
finally
finally_statements...
end
```
with a sequence of `try`-`catch`-`end` expressions:
```julia
try
before_statements...
catch
catch_statements...
@goto _TRY_n
end
@yield ret
try
after_statements...
catch
catch_statements...
end
@label _TRY_n
finally_statements...
```
"""
function transform_try(expr, ui8::BoxedUInt8)
@capture(expr, (try body_ catch exc_; handling_ end) | (try body_ catch exc_; handling_ finally always_ end)) || return expr
ui8.n += one(UInt8)
new_body = []
segment = []
for ex in body.args
if _is_yield(ex)
ret = length(ex.args) > 2 ? ex.args[3:end] : [nothing]
exc === nothing ? push!(new_body, :(try $(segment...) catch; $(handling); @goto $(Symbol("_TRY_", :($(ui8.n)))) end)) : push!(new_body, :(try $(segment...) catch $exc; $(handling) ; @goto $(Symbol("_TRY_", :($(ui8.n)))) end))
push!(new_body, quote @yield $(ret...) end)
segment = []
else
push!(segment, ex)
end
end
if segment != []
exc === nothing ? push!(new_body, :(try $(segment...) catch; $(handling) end)) : push!(new_body, :(try $(segment...) catch $exc; $(handling) end))
end
push!(new_body, :(@label $(Symbol("_TRY_", :($(ui8.n))))))
always === nothing || push!(new_body, quote $(always) end)
quote $(new_body...) end
end
"""
Function that replaces a `@yield ret` or `@yield` statement with
```julia
_fsmi._state = n
return ret
@label _STATE_n
_fsmi._state = 0xff
```
"""
function transform_yield(expr, ui8::BoxedUInt8)
_is_yield(expr) || return expr
ret = length(expr.args) > 2 ? expr.args[3:end] : [nothing]
ui8.n += one(UInt8)
quote
_fsmi._state = $(ui8.n)
return $(ret...)
@label $(Symbol("_STATE_", :($(ui8.n))))
_fsmi._state = 0xff
end
end
"""
Function that replaces a `@yield ret` or `@yield` statement with
```julia
Base.inferencebarrier(ret)
```
This version is used for inference only.
It makes sure that `val = @yield ret` is inferred as `Any` rather than `typeof(ret)`.
"""
function transform_yield(expr)
_is_yield(expr) || return expr
ret = length(expr.args) > 2 ? expr.args[3:end] : [nothing]
quote
Base.inferencebarrier($(ret...))
end
end
"""
Function returning whether an expression is a `@yield` macro
"""
_is_yield(ex) = false
function _is_yield(ex::Expr)
ex.head === :macrocall && ex.args[1] === Symbol("@yield")
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 799 | """
Abstract type used as base type for the type created by the `@resumable` macro.
"""
abstract type FiniteStateMachineIterator{R} end
"""
Mutable struct that contains a single `UInt8`.
"""
mutable struct BoxedUInt8
n :: UInt8
end
"""
Implements the `iteratorsize` method of the *iterator* interface for a subtype of `FiniteStateMachineIterator`.
"""
Base.IteratorSize(::Type{T}) where T<:FiniteStateMachineIterator = Base.SizeUnknown()
"""
Implements the `eltype` method of the *iterator* interface for a subtype of `FiniteStateMachineIterator`.
"""
Base.eltype(::Type{T}) where T<:FiniteStateMachineIterator{R} where R = R
function Base.iterate(fsm_iter::FiniteStateMachineIterator, state=nothing)
result = fsm_iter()
fsm_iter._state === 0xff && return nothing
result, nothing
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 7749 | """
Function returning the name of a where parameter
"""
function get_param_name(expr) :: Symbol
@capture(expr, arg_<:arg_type_) && return arg
@capture(expr, arg_) && return arg
end
"""
Function returning the arguments of a function definition
"""
function get_args(func_def::Dict)
arg_dict = Dict{Symbol, Any}()
arg_list = Vector{Symbol}()
kwarg_list = Vector{Symbol}()
for arg in (func_def[:args]...,)
arg_def = splitarg(arg)
if arg_def[1] != nothing
push!(arg_list, arg_def[1])
arg_dict[arg_def[1]] = arg_def[3] ? Any : arg_dict[arg_def[1]] = arg_def[2]
end
end
for arg in (func_def[:kwargs]...,)
arg_def = splitarg(arg)
push!(kwarg_list, arg_def[1])
arg_dict[arg_def[1]] = arg_def[3] ? Any : arg_dict[arg_def[1]] = arg_def[2]
end
arg_list, kwarg_list, arg_dict
end
"""
Takes a function definition and returns the expressions needed to forward the arguments to an inner function.
For example `function foo(a, ::Int, c...; x, y=1, z...)` will
1. modify the function to `gensym()` nameless arguments
2. return `(:a, gensym(), :(c...)), (:x, :y, :(z...)))`
"""
function forward_args(func_def)
args = []
map!(func_def[:args], func_def[:args]) do arg
name, type, splat, default = splitarg(arg)
name = something(name, gensym())
if splat
push!(args, :($name...))
else
push!(args, name)
end
combinearg(name, type, splat, default)
end
kwargs = []
for arg in func_def[:kwargs]
name, type, splat, default = splitarg(arg)
if splat
push!(kwargs, :($name...))
else
push!(kwargs, name)
end
end
args, kwargs
end
const unused = (Symbol("#temp#"), Symbol("_"), Symbol(""), Symbol("#unused#"), Symbol("#self#"))
"""
Function returning the slots of a function definition
"""
function get_slots(func_def::Dict, args::Dict{Symbol, Any}, mod::Module)
slots = Dict{Symbol, Any}()
func_def[:name] = gensym()
func_def[:args] = (func_def[:args]..., func_def[:kwargs]...)
func_def[:kwargs] = []
# replace yield with inference barrier
func_def[:body] = postwalk(transform_yield, func_def[:body])
# collect items to skip
nosaves = Set{Symbol}()
func_def[:body] = postwalk(x->transform_nosave(x, nosaves), func_def[:body])
# eval function
func_expr = combinedef(func_def) |> flatten
@eval(mod, @noinline $func_expr)
# get typed code
codeinfos = @eval(mod, code_typed($(func_def[:name]), Tuple; optimize=false))
# extract slot names and types
for codeinfo in codeinfos
for (name, type) in collect(zip(codeinfo.first.slotnames, codeinfo.first.slottypes))
name β nosaves && name β unused && (slots[name] = Union{type, get(slots, name, Union{})})
end
end
# remove `catch exc` statements
postwalk(x->remove_catch_exc(x, slots), func_def[:body])
# set error branches to Any
for (key, val) in slots
if val === Union{}
slots[key] = Any
end
end
return func_def[:name], slots
end
"""
Function removing the `exc` symbol of a `catch exc` statement of a list of slots.
"""
function remove_catch_exc(expr, slots::Dict{Symbol, Any})
@capture(expr, (try body__ catch exc_; handling__ end) | (try body__ catch exc_; handling__ finally always__ end)) && delete!(slots, exc)
expr
end
struct IteratorReturn{T}
value :: T
IteratorReturn(value) = new{typeof(value)}(value)
end
@inline function generate(fsm_iter::FiniteStateMachineIterator, send, state=nothing)
#fsm_iter._state = state
result = fsm_iter(send)
fsm_iter._state === 0xff && return IteratorReturn(result)
result, nothing
end
@inline function generate(iter, _)
ret = iterate(iter)
isnothing(ret) && return IteratorReturn(nothing)
ret
end
@inline function generate(iter, _, state)
ret = iterate(iter, state)
isnothing(ret) && return IteratorReturn(nothing)
ret
end
# this is similar to code_typed but it considers the world age
function code_typed_by_type(@nospecialize(tt::Type);
optimize::Bool=true,
world::UInt=Base.get_world_counter(),
interp::Core.Compiler.AbstractInterpreter=Core.Compiler.NativeInterpreter(world))
tt = Base.to_tuple_type(tt)
# look up the method
match, valid_worlds = Core.Compiler.findsup(tt, Core.Compiler.InternalMethodTable(world))
# run inference, normally not allowed in generated functions
frame = Core.Compiler.typeinf_frame(interp, match.method, match.spec_types, match.sparams, optimize)
frame === nothing && error("inference failed")
valid_worlds = Core.Compiler.intersect(valid_worlds, frame.valid_worlds)
return frame.linfo, frame.src, valid_worlds
end
function fsmi_generator(world::UInt, source::LineNumberNode, passtype, fsmitype::Type{Type{T}}, fargtypes) where T
@nospecialize
# get typed code of the inference function evaluated in get_slots
# but this time with concrete argument types
tt = Base.to_tuple_type(fargtypes)
mi, ci, valid_worlds = try
code_typed_by_type(tt; world, optimize=false)
catch err # inference failed, return generic type
@safe_warn "Inference of a @resumable function failed -- a slower fallback will be used and everything will still work, however please consider reporting this to the developers of ResumableFunctions.jl so that we can debug and increase performance"
@safe_warn "The error was $err"
slots = fieldtypes(T)[2:end]
stub = Core.GeneratedFunctionStub(identity, Core.svec(:pass, :fsmi, :fargs), Core.svec())
if isempty(slots)
return stub(world, source, :(return $T()))
else
return stub(world, source, :(return $T{$(slots...)}()))
end
end
min_world = valid_worlds.min_world
max_world = valid_worlds.max_world
# extract slot types
cislots = Dict{Symbol, Any}()
for (name, type) in collect(zip(ci.slotnames, ci.slottypes))
# take care to widen types that are unstable or Const
type = Core.Compiler.widenconst(type)
cislots[name] = Union{type, get(cislots, name, Union{})}
end
slots = map(slot->get(cislots, slot, Any), fieldnames(T)[2:end])
# generate code to instantiate the concrete type
stub = Core.GeneratedFunctionStub(identity, Core.svec(:pass, :fsmi, :fargs), Core.svec())
if isempty(slots)
exprs = stub(world, source, :(return $T()))
else
exprs = stub(world, source, :(return $T{$(slots...)}()))
end
# lower codeinfo to pass world age and invalidation edges
ci = ccall(:jl_expand_and_resolve, Any, (Any, Any, Any), exprs, passtype.name.module, Core.svec())
ci.min_world = min_world
ci.max_world = max_world
ci.edges = Core.MethodInstance[mi]
if isdefined(Base, :__has_internal_change) && Base.__has_internal_change(v"1.12-alpha", :codeinfonargs) # due to julia#54341
ci.nargs = 3
ci.isva = true
end
return ci
end
# JuliaLang/julia#48611: world age is exposed to generated functions, and should be used
if VERSION >= v"1.10.0-DEV.873"
# This is like @generated, but it receives the world age of the caller
# which we need to do inference safely and correctly
@eval function typed_fsmi(fsmi, fargs...)
$(Expr(:meta, :generated_only))
$(Expr(:meta, :generated, fsmi_generator))
end
else
# runtime fallback function that uses the fallback constructor with generic slot types
function typed_fsmi(fsmi::Type{T}, fargs...)::T where T
return typed_fsmi_fallback(fsmi, fargs...)
end
end
# a fallback function that uses the fallback constructor with generic slot types -- useful for older versions of Julia or for situations where our current custom inference struggles
function typed_fsmi_fallback(fsmi::Type{T}, fargs...)::T where T
return T()
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 881 | using ResumableFunctions
using Test
using SafeTestsets
function doset(descr)
if length(ARGS) == 0
return true
end
for a in ARGS
if occursin(lowercase(a), lowercase(descr))
return true
end
end
return false
end
macro doset(descr)
quote
if doset($descr)
@safetestset $descr begin
include("test_"*$descr*".jl")
end
end
end
end
println("Starting tests with $(Threads.nthreads()) threads out of `Sys.CPU_THREADS = $(Sys.CPU_THREADS)`...")
@doset "main"
@doset "yieldfrom"
@doset "typeparams"
@doset "repeated_variable"
@doset "inference_recursive_calls"
@doset "selfreferencing_functional"
@doset "coverage_preservation"
@doset "performance"
VERSION >= v"1.8" && @doset "doctests"
VERSION >= v"1.8" && @doset "aqua"
get(ENV,"JET_TEST","")=="true" && @doset "jet"
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 71 | using Aqua
using ResumableFunctions
Aqua.test_all(ResumableFunctions)
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 872 | using ResumableFunctions
using Test
using MacroTools: postwalk
before = :(function f(arg, arg2::Int)
@yield arg
for i in 1:10
let i=i
@yield arg2
arg2 = arg2 + i
end
end
while true
try
@yield arg2
arg2 = arg2 + 1
catch e
@yield e
arg2 = arg2 + 1
end
break
end
arg2+arg
@yield arg2
end
)
after = eval(quote @macroexpand @resumable $before end)
function get_all_linenodes(expr)
nodes = Set()
postwalk(expr) do x
if x isa LineNumberNode
push!(nodes, x)
end
x
end
return nodes
end
@testset "all line numbers are preserved" begin
@test get_all_linenodes(before) β get_all_linenodes(after)
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 209 | using Documenter
using ResumableFunctions
@testset "Doctests" begin
DocMeta.setdocmeta!(ResumableFunctions, :DocTestSetup, :(using ResumableFunctions); recursive=true)
doctest(ResumableFunctions)
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 1252 | using Test
using ResumableFunctions
##
@resumable function rec1(a::Int)::Int
@yield a
if a > 0
for i in rec1(a-1)
@yield i
end
end
end
@test collect(rec1(4)) isa Vector{Int}
@test collect(rec1(4)) == 4:-1:0
##
@resumable function rec2(a::Int)::Any
@yield a
if a > 0
for i in rec2(a-1)
@yield i
end
end
end
@test collect(rec2(4)) isa Vector{Any}
@test collect(rec2(4)) == 4:-1:0
##
@resumable function rec3(a)
@yield a
if a > 0
for i in rec3(a-1)
@yield i
end
end
end
@test collect(rec3(4)) isa Vector{Any}
@test collect(rec3(4)) == 4:-1:0
##
# From issue #80
@resumable function rf!(a::Vector{Int}, i::Integer, n::Integer)::Vector{Int}
if i > n
@yield a
return
end
a[i] = 0
for _ in rf!(a, i+1, n)
@yield a
end
for k = i+1:n
a[i] = k
a[k] = i
for _ in rf!(a, i+1, k-1)
for _ in rf!(a, k+1, n)
@yield a
end
end
end
end
const n = 3
const a = zeros(Int, n)
collect(rf!(a, 1, n)) == [[3, 0, 1],
[3, 0, 1],
[3, 0, 1],
[3, 0, 1]]
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 1001 | using ResumableFunctions
using JET
using Test
using JET: ReportPass, BasicPass, InferenceErrorReport, UncaughtExceptionReport
# Custom report pass that ignores `UncaughtExceptionReport`
# Too coarse currently, but it serves to ignore the various
# "may throw" messages for runtime errors we raise on purpose
# (mostly on malformed user input)
struct MayThrowIsOk <: ReportPass end
# ignores `UncaughtExceptionReport` analyzed by `JETAnalyzer`
(::MayThrowIsOk)(::Type{UncaughtExceptionReport}, @nospecialize(_...)) = return
# forward to `BasicPass` for everything else
function (::MayThrowIsOk)(report_type::Type{<:InferenceErrorReport}, @nospecialize(args...))
BasicPass()(report_type, args...)
end
@testset "JET checks" begin
rep = report_package("ResumableFunctions";
report_pass=MayThrowIsOk(),
ignored_modules=(
Core.Compiler,
)
)
@show rep
@test length(JET.get_reports(rep)) <= 6
@test_broken length(JET.get_reports(rep)) == 0
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 5269 | using ResumableFunctions
using Test
@resumable function test_for(a::Int=0; b::Int=a+1) :: Int
for i in 1:10
@yield a
a, b = b, a+b
end
end
@testset "test_for" begin
@test collect(test_for(4)) == [4, 5, 9, 14, 23, 37, 60, 97, 157, 254]
end
@resumable function test_try(io)
try
a = 1
@yield a
a = 2
c = @yield a
println(io,c)
catch except
println(io,except)
finally
println(io,"Always")
end
end
struct SpecialException <: Exception end
@testset "test_try" begin
io = IOBuffer()
try_me = test_try(io)
try_me()
try_me(SpecialException())
@test endswith(String(take!(copy(io))), "SpecialException()\nAlways\n")
io = IOBuffer()
try_me = test_try(io)
try_me()
try_me()
try_me("Hello")
@test String(take!(copy(io))) == "Hello\nAlways\n"
io = IOBuffer()
try_me = test_try(io)
try_me()
try_me()
try_me(SpecialException())
@test_throws ErrorException try_me()
@test endswith(String(take!(copy(io))), "SpecialException()\nAlways\n")
end
@resumable function (test_where1(a::N) :: N) where {N<:Number}
b = a + one(N)
for i in 1:10
@yield a
a, b = b, a+b
end
end
@resumable function (test_where2(a::N=4; b::N=a + one(N)) :: N) where N
for i in 1:10
@yield a
a, b = b, a+b
end
end
@testset "test_where" begin
@test collect(test_where1(4.0)) == [4.0, 5.0, 9.0, 14.0, 23.0, 37.0, 60.0, 97.0, 157.0, 254.0]
@test collect(test_where2(4)) == [4, 5, 9, 14, 23, 37, 60, 97, 157, 254]
end
@resumable function test_varargs(a...)
for (i, e) in enumerate(a)
@yield e
end
end
@testset "test_varargs" begin
@test collect(test_varargs(1, 2, 3)) == [1, 2, 3]
end
@resumable function test_let()
for u in [[(1,2),(3,4)], [(5,6),(7,8)]]
for i in 1:2
let i=i
val = [a[i] for a in u]
end
@yield val
end
end
end
@testset "test_let" begin
@test collect(test_let()) == [[1,3],[2,4],[5,7],[6,8]]
end
if VERSION >= v"1.8"
q_test_let2 = quote
@resumable function test_let2()
for u in [[(1,2),(3,4)], [(5,6),(7,8)]]
for i in 1:2
let i=i, j=i
val = [(a[i],a[j]) for a in u]
end
@yield val
end
end
end
end
@testset "test_let2" begin
#@test collect(test_let2()) == ...
@test_throws "@resumable currently supports only single" eval(q_test_let2)
@test_broken false # the test above throws an error when it should not -- it happens because we do not support variables without assignments in let blocks -- see issues #69 and #70
end
q_test_let_noassignment = quote
@resumable function test_let_noassignment()
for u in [[(1,2),(3,4)], [(5,6),(7,8)]]
for i in 1:2
let i
val = [a[1] for a in u]
end
@yield val
end
end
end
end
@testset "test_let_noassignment" begin
#@test collect(test_let_noassignment()) == ...
@test_throws "@resumable currently supports only single" eval(q_test_let_noassignment)
@test_broken false # the test above throws an error when it should not -- it happens because we do not support variables without assignments in let blocks -- see issues #69 and #70
end
q_test_let_multipleargs = quote
@resumable function test_let_multipleargs()
for u in [[(1,2),(3,4)], [(5,6),(7,8)]]
for i in 1:2
let i=i, j
val = [a[i] for a in u]
end
@yield val
end
end
end
end
@testset "test_let_multipleargs" begin
#@test collect(test_let_multipleargs()) == ...
@test_throws "@resumable currently supports only single" eval(q_test_let_noassignment)
@test_broken false # the test above throws an error when it should not -- it happens because we do not support variables without assignments in let blocks -- see issues #69 and #70
end
end # VERSION >= v"1.8"
@resumable function test_nosave()
for i in 65:74
@nosave tmp = Char(i)
@yield tmp
end
end
@testset "test_nosave" begin
@test collect(test_nosave()) == ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
end
@resumable function test_return_value()
return 1
end
@testset "test_return_value" begin
@test collect(test_return_value()) == []
end
@resumable function test_continue()
for i in 1:10
if i === 2
continue
end
@yield i
end
end
@resumable function test_continue_double()
for i in 1:3
if i === 2
continue
end
for j in 1:3
if j === 2
continue
end
@yield j
end
end
end
@testset "test_continue" begin
@test collect(test_continue()) == [1, 3, 4, 5, 6, 7, 8, 9, 10]
@test collect(test_continue_double()) == [1, 3, 1, 3]
end
"""docstring"""
@resumable function fwithdoc()
@yield 1
end
"""docstring"""
function gwithdoc()
return 1
end
@testset "test_docstring" begin
@test (@doc fwithdoc) == (@doc gwithdoc)
end
@resumable function test_unstable(a::Int)
for i in 1:a
a = "number $i"
@yield a
end
end
@testset "test_unstable" begin
@test collect(test_unstable(3)) == ["number 1", "number 2", "number 3"]
end
# test length
@testset "test_length" begin
@resumable length=n^2*m^2 function test_length(n, m)
for i in 1:n^2
for j in 1:m^2
@yield i + j
end
end
end
@test length(test_length(10, 20)) === 10^2 * 20^2
@test length(collect(test_length(10, 20))) === 10^2 * 20^2
@test Base.IteratorSize(typeof(test_length(1, 1))) == Base.HasLength()
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 630 | using ResumableFunctions
using Test
@resumable function fibonacci_resumable(n::Int)
a, b = zero(Int), one(Int)
for _ in 1:n
@yield a
a, b = b, a + b
end
end
@noinline function test_resumable(n::Int)
a = 0
for v in fibonacci_resumable(n)
a = v
end
a
end
@test (@allocated test_resumable(80))==0
@resumable function cumsum(iter)
acc = zero(eltype(iter))
for i in iter
acc += i
@yield acc
end
end
# versions that support generating inferred code
if VERSION >= v"1.10.0-DEV.873"
cs = cumsum(1:1000)
@allocated cs() # shake out the compilation overhead
@test (@allocated cs())==0
end | ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 981 | using Test
using ResumableFunctions
# From issue #86
##
@resumable function singleton()::String
@yield "anything"
end
# 1. must be defined before combined!
@resumable function _empty(x)::String
end
@resumable function combined()::String
for s in singleton()
@yield s # fails "here" because s is determined to be of type Nothing because of the second loop
end
# 2. must reuse of variable
for s in _empty(1) # dummy argument needed to illustrate point 1.
@yield s
end
end
@test collect(combined()) == ["anything"]
@test collect(combined()) isa Vector{String}
##
@resumable function singletonF()::String
@yield "anything"
end
@resumable function _emptyF()::String
end
@resumable function combinedF()::String
# @yieldfrom also uses the same variable names for each generated loop
@yieldfrom singletonF()
@yieldfrom _emptyF()
end
@test collect(combinedF()) == ["anything"]
@test collect(combinedF()) isa Vector{String}
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 197 | using Test
using ResumableFunctions
struct A
a::Int
end;
@resumable function (fa::A)(b::Int)
@yield b+fa.a
end
@test collect(A(1)(2)) == [3]
@test_broken collect(A(1)(2)) isa Vector{Int}
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 1311 | using ResumableFunctions
using Test
@resumable function test_type_parameters(::Type{Int}, start::Int)
for i in start:start+3
@yield i
end
end
@resumable function test_type_parameters(::Type{Float64}, start::Int)
for i in start:start+3
@yield float(i)
end
end
@testset "test_type_parameters" begin
@test collect(test_type_parameters(Int, 1)) == [1, 2, 3, 4]
@test collect(test_type_parameters(Float64, 1)) == [1.0, 2.0, 3.0, 4.0]
end
@resumable function test_type_parameters_order(start::Int, ::Type{T})::T where {T}
for i in start:start+3
@yield T(i)
end
end
@testset "test_type_parameters_order" begin
@test collect(test_type_parameters_order(1, Int)) == [1, 2, 3, 4]
@test collect(test_type_parameters_order(1, Float64)) == [1.0, 2.0, 3.0, 4.0]
@test typeof(first(test_type_parameters_order(1, ComplexF32))) == ComplexF32
end
@resumable function test_type_parameters_optional(start::Int; t::Type{T}=Type{Int})::T where {T}
for i in start:start+3
@yield T(i)
end
end
@testset "test_type_parameters_optional" begin
@test collect(test_type_parameters_optional(1, t=Int)) == [1, 2, 3, 4]
@test collect(test_type_parameters_optional(1, t=Float64)) == [1.0, 2.0, 3.0, 4.0]
@test typeof(first(test_type_parameters_optional(1, t=ComplexF32))) == ComplexF32
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | code | 1045 | using Test
using ResumableFunctions
@resumable function test_yieldfrom_inner(n)
for i in 1:n
@yield i^2
end
42, n
end
@resumable function test_yieldfrom(n)
@yieldfrom [42, 314]
m, n = @yieldfrom test_yieldfrom_inner(n)
@test m == 42
@yield n
@yieldfrom test_yieldfrom_inner(n+1)
end
@testset "test_yieldfrom" begin
@test collect(test_yieldfrom(4)) == [42, 314, 1, 4, 9, 16, 4, 1, 4, 9, 16, 25]
end
@resumable function test_echo()
x = 0
while true
x = @yield x
end
return "Done"
end
@resumable function test_forward()
ret = @yieldfrom test_echo()
@test ret == "Done"
@yieldfrom test_echo()
end
@testset "test_yieldfrom_twoway" begin
forward = test_forward()
@test forward() == 0
for i in 1:5
@test forward(i) == i
end
end
@testset "test_yieldfrom_nonresumable" begin
@test_throws LoadError eval(:(@yieldfrom [1,2,3]))
end
@testset "test_yieldfrom_noargs" begin
test_f = :(@resumable function test_yieldfrom_noargs()
@yieldfrom
end)
@test_throws LoadError eval(test_f)
end
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | docs | 3280 | # News
## v0.6.10 - 2024-09-08
- Add `length` support by allowing `@resumable length=ex function [...]`
- Adjust to an internal changes in Julia 1.12 (see julia#54341).
## v0.6.9 - 2024-02-13
- Self-referencing functionals (callable structs) are now supported as resumable functions, e.g. `@resumable (f::A)() @yield f.property end`.
## v0.6.8 - 2024-02-11
- Redeploy the improved performance from v0.6.6 without the issues that caused them to be reverted in v0.6.7. The issue stemmed from lack of support for recursive resumable functions in the v0.6.6 improvements.
- Significant additions to the CI and testing of the package to avoid such issues in the future.
## v0.6.7 - 2024-01-02
- Fix stack overflow errors by reverting the changes introduced in v0.6.6.
## v0.6.6 - 2023-10-08
- Significantly improved performance on Julia 1.10 and newer by more precise inference of slot types.
## v0.6.5 - 2023-09-06
- Fix to a performance regression originally introduced by `@yieldfrom`.
## v0.6.4 - 2023-08-08
- Docstrings now work with `@resumable` functions.
- Generated types in `@resumable` functions have clearer names for better debugging.
- Line-number nodes are preserved in `@resumable` functions for better debugging and code coverage.
## Changelog before moving to JuliaDynamics
* 2023: v0.6.3
* Julia 1.6 or newer is required
* introduction of `@yieldfrom` to delegate to another resumable function or iterator (similar to [Python's `yield from`](https://peps.python.org/pep-0380/))
* resumable functions are now allowed to return values, so that `r = @yieldfrom f` also stores the return value of `f` in `r`
* 2023: v0.6.2
* Julia v1.10 compatibility fix
* resumable functions can now dispatch on types
* 2021: v0.6.1
* `continue` in loop works
* 2021: v0.6.0
* introduction of `@nosave` to keep a variable out of the saved structure.
* optimized `for` loop.
* 2020: v0.5.2 is Julia v1.6 compatible.
* 2019: v0.5.1
* inference problem solved: force iterator next value to be of type `Union` of `Tuple` and `Nothing`.
* 2019: v0.5.0 is Julia v1.2 compatible.
* 2018: v0.4.2 prepare for Julia v1.1
* better inference caused a problem;).
* iterator with a specified `rtype` is fixed.
* 2018: v0.4.0 is Julia v1.0 compatible.
* 2018: v0.3.1 uses the new iteration protocol.
* the new iteration protocol is used for a `@resumable function` based iterator.
* the `for` loop transformation implements also the new iteration protocol.
* 2018: v0.3 is Julia v0.7 compatible.
* introduction of `let` block to allow variables not te be persisted between `@resumable function` calls (EXPERIMENTAL).
* the `eltype` of a `@resumable function` based iterator is its return type if specified, otherwise `Any`.
* 2018: v0.2 the iterator now behaves as a Python generator: only values that are explicitly yielded are generated; the return value is ignored and a warning is generated.
* 2017: v0.1 initial release that is Julia v0.6 compatible:
* Introduction of the `@resumable` and the `@yield` macros.
* A `@resumable function` generates a type that implements the [iterator](https://docs.julialang.org/en/stable/manual/interfaces/#man-interface-iteration-1) interface.
* Parametric `@resumable functions` are supported.
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | docs | 5503 | # ResumableFunctions
<table>
<tr>
<td>Documentation</td>
<td>
<a href="https://juliadynamics.github.io/ResumableFunctions.jl/stable"><img src="https://img.shields.io/badge/docs-stable-blue.svg" alt="Documentation of latest stable version"></a>
<a href="https://juliadynamics.github.io/ResumableFunctions.jl/dev"><img src="https://img.shields.io/badge/docs-dev-blue.svg" alt="Documentation of dev version"></a>
</td>
</tr><tr></tr>
<tr>
<td>Continuous integration</td>
<td>
<a href="https://github.com/JuliaDynamics/ResumableFunctions.jl/actions?query=workflow%3ACI+branch%3Amaster"><img src="https://img.shields.io/github/actions/workflow/status/JuliaDynamics/ResumableFunctions.jl/ci.yml?branch=master" alt="GitHub Workflow Status"></a>
</td>
</tr><tr></tr>
<tr>
<td>Code coverage</td>
<td>
<a href="https://codecov.io/gh/JuliaDynamics/ResumableFunctions.jl"><img src="https://img.shields.io/codecov/c/gh/JuliaDynamics/ResumableFunctions.jl?label=codecov" alt="Test coverage from codecov"></a>
</td>
</tr><tr></tr>
<tr>
<td>Static analysis with</td>
<td>
<a href="https://github.com/aviatesk/JET.jl"><img src="https://img.shields.io/badge/%F0%9F%9B%A9%EF%B8%8F_tested_with-JET.jl-233f9a" alt="JET static analysis"></a>
<a href="https://github.com/JuliaTesting/Aqua.jl"><img src="https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg" alt="Aqua QA"></a>
</td>
</tr>
</table>
[](http://joss.theoj.org/papers/889b2faed426b978ee705689c8f8440b)
[](https://zenodo.org/badge/latestdoi/100050892)
[C#](https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/) has a convenient way to create iterators using the `yield return` statement. The package `ResumableFunctions` provides the same functionality for the [Julia language](https://julialang.org) by introducing the `@resumable` and the `@yield` macros. These macros can be used to replace the `Task` switching functions `produce` and `consume` which were deprecated in Julia v0.6. `Channels` are the preferred way for inter-task communication in julia v0.6+, but their performance is subpar for iterator applications. See [the benchmarks section below](#Benchmarks).
## Installation
`ResumableFunctions` is a [registered package](http://pkg.julialang.org) and can be installed by running:
```julia
using Pkg
Pkg.add("ResumableFunctions")
```
## Example
```julia
using ResumableFunctions
@resumable function fibonacci(n::Int) :: Int
a = 0
b = 1
for i in 1:n
@yield a
a, b = b, a+b
end
end
for fib in fibonacci(10)
println(fib)
end
# Example with specifies the length
using ResumableFunctions
@resumable length=n^2 function fibonacci(n::Int) :: Int
a = 0
b = 1
for i in 1:n^2
@yield a
a, b = b, a+b
end
end
for fib in fibonacci(5)
println(fib)
end
```
## Benchmarks
The following block is the result of running `julia --project=. benchmark/benchmarks.jl` on a Macbook Pro with following processor: `Intel Core i9 2.4 GHz 8-Core`. Julia version 1.5.3 was used.
Fibonacci with `Int` values:
```
Direct:
27.184 ns (0 allocations: 0 bytes)
ResumableFunctions:
27.503 ns (0 allocations: 0 bytes)
Channels csize=0:
2.438 ms (101 allocations: 3.08 KiB)
Channels csize=1:
2.546 ms (23 allocations: 1.88 KiB)
Channels csize=20:
138.681 ΞΌs (26 allocations: 2.36 KiB)
Channels csize=100:
35.071 ΞΌs (28 allocations: 3.95 KiB)
Task scheduling
17.726 ΞΌs (86 allocations: 3.31 KiB)
Closure:
1.948 ΞΌs (82 allocations: 1.28 KiB)
Closure optimised:
25.910 ns (0 allocations: 0 bytes)
Closure statemachine:
28.048 ns (0 allocations: 0 bytes)
Iteration protocol:
41.143 ns (0 allocations: 0 bytes)
```
Fibonacci with `BigInt` values:
```
Direct:
5.747 ΞΌs (188 allocations: 4.39 KiB)
ResumableFunctions:
5.984 ΞΌs (191 allocations: 4.50 KiB)
Channels csize=0:
2.508 ms (306 allocations: 7.75 KiB)
Channels csize=1:
2.629 ms (306 allocations: 7.77 KiB)
Channels csize=20:
150.274 ΞΌs (309 allocations: 8.25 KiB)
Channels csize=100:
44.592 ΞΌs (311 allocations: 9.84 KiB)
Task scheduling
24.802 ΞΌs (198 allocations: 6.61 KiB)
Closure:
7.064 ΞΌs (192 allocations: 4.47 KiB)
Closure optimised:
5.809 ΞΌs (190 allocations: 4.44 KiB)
Closure statemachine:
5.826 ΞΌs (190 allocations: 4.44 KiB)
Iteration protocol:
5.822 ΞΌs (190 allocations: 4.44 KiB)
```
## Authors
* Ben Lauwens, [Royal Military Academy](http://www.rma.ac.be), Brussels, Belgium.
* JuliaDynamics and QuantumSavory volunteers.
## Contributing
* To discuss problems or feature requests, file an issue. For bugs, please include as much information as possible, including operating system, julia version, and version of [MacroTools](https://github.com/MikeInnes/MacroTools.jl.git).
* To contribute, make a pull request. Contributions should include tests for any new features/bug fixes.
## Release Notes
A [detailed change log is kept](https://github.com/JuliaDynamics/ResumableFunctions.jl/blob/master/CHANGELOG.md).
## Caveats
* In a `try` block only top level `@yield` statements are allowed.
* In a `finally` block a `@yield` statement is not allowed.
* An anonymous function can not contain a `@yield` statement.
* Many more restrictions.
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | docs | 1101 | # ResumableFunctions
C# style generators a.k.a. semi-coroutines for Julia.
C# has a convenient way to create iterators using the `yield return` statement. The package `ResumableFunctions` provides the same functionality for the Julia language by introducing the `@resumable` and the `@yield` macros. These macros can be used to replace the `Task` switching functions `produce` and `consume` which were deprecated in Julia v0.6. `Channels` are the preferred way for inter-task communication in julia v0.6+, but their performance is subpar for iterator applications.
## Example
```jldoctest
using ResumableFunctions
@resumable function fibonacci(n::Int)
a = 0
b = 1
for i in 1:n
@yield a
a, b = b, a+b
end
end
for val in fibonacci(10)
println(val)
end
# output
0
1
1
2
3
5
8
13
21
34
```
## Installation
`ResumableFunctions` is a registered package and can be installed by running:
```julia
Pkg.add("ResumableFunctions")
```
## Authors
* Ben Lauwens, Royal Military Academy, Brussels, Belgium.
## License
`ResumableFunctions` is licensed under the MIT "Expat" License.
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | docs | 6092 | # Internals
The macro `@resumable` transform a function definition into a finite state-machine, i.e. a callable type holding the state and references to the internal variables of the function and a constructor for this new type respecting the method signature of the original function definition. When calling the new type a modified version of the body of the original function definition is executed:
- a dispatch mechanism is inserted at the start to allow a non local jump to a label inside the body;
- the `@yield` statement is replaced by a `return` statement and a label placeholder as endpoint of a non local jump;
- `for` loops are transformed in `while` loops and
- `try`-`catch`-`finally`-`end` expressions are converted in a sequence of `try`-`catch`-`end` expressions with at the end of the `catch` part a non local jump to a label that marks the beginning of the expressions in the `finally` part.
The two last transformations are needed to overcome the limitations of the non local jump macros `@goto` and `@label`.
The complete procedure is explained using the following example:
```julia
@resumable function fibonacci(n::Int)
a = 0
b = 1
for i in 1:n-1
@yield a
a, b = b, a + b
end
a
end
```
## Split the definition
The function definition is split by `MacroTools.splitdef` in different parts, eg. `:name`, `:body`, `:args`, ...
## For loops
`for` loops in the body of the function definition are transformed in equivalent while loops:
```julia
begin
a = 0
b = 1
_iter = 1:n-1
_iterstate = start(_iter)
while !done(_iter, _iterstate)
i, _iterstate = next(_iter, _iterstate)
@yield a
a, b = b, a + b
end
a
end
```
## Slots
The slots and their types in the function definition are recovered by running the `code_typed` function for the locally evaluated function definition:
```julia
n :: Int64
a :: Int64
b :: Int64
_iter :: UnitRange{Int64}
_iterstate :: Int64
i :: Int64
```
## Type definition
A `mutable struct` is defined containing the state and the slots:
```julia
mutable struct ##123 <: ResumableFunctions.FiniteStateMachineIterator
_state :: UInt8
n :: Int64
a :: Int64
b :: Int64
_iter :: UnitRange{Int64}
_iterstate :: Int64
i :: Int64
function ##123()
fsmi = new()
fsmi._state = 0x00
fsmi
end
end
```
## Call definition
A call function is constructed that creates the previously defined composite type. This function satisfy the calling convention of the original function definition and is returned from the macro:
```julia
function fibonacci(n::Int)
fsmi = ##123(n)
fsmi.n = n
fsmi
end
```
## Transformation of the body
In 6 steps the body of the function definition is transformed into a finite state-machine.
### Renaming of slots
The slots are replaced by references to the fields of the composite type:
```julia
begin
_fsmi.a = 0
_fsmi.b = 1
_fsmi._iter = 1:n-1
_fsmi._iterstate = start(_fsmi._iter)
while !done(_fsmi._iter, _fsmi._iterstate)
_fsmi.i, _fsmi._iterstate = next(_fsmi._iter, _fsmi._iterstate)
@yield _fsmi.a
_fsmi.a, _fsmi.b = _fsmi.b, _fsmi.a + _fsmi.b
end
_fsmi.a
end
```
### Two-way communication
All expressions of the form `_fsmi.arg = @yield` are transformed into:
```julia
@yield
_fsmi.arg = _arg
```
### Exception handling
Exception handling is added to `@yield`:
```julia
begin
_fsmi.a = 0
_fsmi.b = 1
_fsmi._iter = 1:n-1
_fsmi._iterstate = start(_fsmi._iter)
while !done(_fsmi._iter, _fsmi._iterstate)
_fsmi.i, _fsmi._iterstate = next(_fsmi._iter, _fsmi._iterstate)
@yield _fsmi.a
_arg isa Exception && throw(_arg)
_fsmi.a, _fsmi.b = _fsmi.b, _fsmi.a + _fsmi.b
end
_fsmi.a
end
```
### Try catch finally end block handling
`try`-`catch`-`finally`-`end` expressions are converted in a sequence of `try`-`catch`-`end` expressions with at the end of the `catch` part a non local jump to a label that marks the beginning of the expressions in the `finally` part.
### Yield transformation
The `@yield` statement is replaced by a `return` statement and a label placeholder as endpoint of a non local jump:
```julia
begin
_fsmi.a = 0
_fsmi.b = 1
_fsmi._iter = 1:n-1
_fsmi._iterstate = start(_fsmi._iter)
while !done(_fsmi._iter, _fsmi._iterstate)
_fsmi.i, _fsmi._iterstate = next(_fsmi._iter, _fsmi._iterstate)
_fsmi._state = 0x01
return _fsmi.a
@label _STATE_1
_fsmi._state = 0xff
_arg isa Exception && throw(_arg)
_fsmi.a, _fsmi.b = _fsmi.b, _fsmi.a + _fsmi.b
end
_fsmi.a
end
```
### Dispatch mechanism
A dispatch mechanism is inserted at the start of the body to allow a non local jump to a label inside the body:
```julia
begin
_fsmi_state == 0x00 && @goto _STATE_0
_fsmi_state == 0x01 && @goto _STATE_1
error("@resumable function has stopped!")
@label _STATE_0
_fsmi._state = 0xff
_arg isa Exception && throw(_arg)
_fsmi.a = 0
_fsmi.b = 1
_fsmi._iter = 1:n-1
_fsmi._iterstate = start(_fsmi._iter)
while !done(_fsmi._iter, _fsmi._iterstate)
_fsmi.i, _fsmi._iterstate = next(_fsmi._iter, _fsmi._iterstate)
_fsmi._state = 0x01
return _fsmi.a
@label _STATE_1
_fsmi._state = 0xff
_arg isa Exception && throw(_arg)
_fsmi.a, _fsmi.b = _fsmi.b, _fsmi.a + _fsmi.b
end
_fsmi.a
end
```
## Making the type callable
A function is defined with one argument `_arg`:
```julia
function (_fsmi::##123)(_arg::Any=nothing)
_fsmi_state == 0x00 && @goto _STATE_0
_fsmi_state == 0x01 && @goto _STATE_1
error("@resumable function has stopped!")
@label _STATE_0
_fsmi._state = 0xff
_arg isa Exception && throw(_arg)
_fsmi.a = 0
_fsmi.b = 1
_fsmi._iter = 1:n-1
_fsmi._iterstate = start(_fsmi._iter)
while !done(_fsmi._iter, _fsmi._iterstate)
_fsmi.i, _fsmi._iterstate = next(_fsmi._iter, _fsmi._iterstate)
_fsmi._state = 0x01
return _fsmi.a
@label _STATE_1
_fsmi._state = 0xff
_arg isa Exception && throw(_arg)
_fsmi.a, _fsmi.b = _fsmi.b, _fsmi.a + _fsmi.b
end
_fsmi.a
end
``` | ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | docs | 173 | # Library
## Public interface
```@autodocs
Modules = [ResumableFunctions]
Private = false
```
## Internals
```@autodocs
Modules = [ResumableFunctions]
Public = false
``` | ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | docs | 6055 | # Manual
## Basic usage
When a `@resumable function` is called, it continues where it left during the previous invocation:
```@meta
DocTestSetup = quote
using ResumableFunctions
@resumable function basic_example()
@yield "Initial call"
@yield "Second call"
"Final call"
end
end
```
```julia
@resumable function basic_example()
@yield "Initial call"
@yield "Second call"
"Final call"
end
```
```jldoctest
julia> basic_iterator = basic_example();
julia> basic_iterator()
"Initial call"
julia> basic_iterator()
"Second call"
julia> basic_iterator()
"Final call"
```
```@meta
DocTestSetup = nothing
```
The `@yield` can also be used without a return argument:
```@meta
DocTestSetup = quote
using ResumableFunctions
@resumable function basic_example()
@yield "Initial call"
@yield
"Final call"
end
end
```
```julia
@resumable function basic_example()
@yield "Initial call"
@yield
"Final call"
end
```
```jldoctest
julia> basic_iterator = basic_example();
julia> basic_iterator()
"Initial call"
julia> basic_iterator()
julia> basic_iterator()
"Final call"
```
```@meta
DocTestSetup = nothing
```
The famous fibonacci sequence can easily be generated:
```@meta
DocTestSetup = quote
using ResumableFunctions
@resumable function fibonacci()
a = 0
b = 1
while true
@yield a
a, b = b, a + b
end
end
end
```
```julia
@resumable function fibonacci()
a = 0
b = 1
while true
@yield a
a, b = b, a + b
end
end
```
```jldoctest
julia> fib_iterator = fibonacci();
julia> fib_iterator()
0
julia> fib_iterator()
1
julia> fib_iterator()
1
julia> fib_iterator()
2
julia> fib_iterator()
3
julia> fib_iterator()
5
julia> fib_iterator()
8
```
```@meta
DocTestSetup = nothing
```
The `@resumable function` can take arguments and the type of the return value can be specified:
```@meta
DocTestSetup = quote
using ResumableFunctions
@resumable function fibonacci(n) :: Int
a = 0
b = 1
for i in 1:n
@yield a
a, b = b, a + b
end
end
end
```
```julia
@resumable function fibonacci(n) :: Int
a = 0
b = 1
for i in 1:n
@yield a
a, b = b, a + b
end
end
```
```jldoctest
julia> fib_iterator = fibonacci(4);
julia> fib_iterator()
0
julia> fib_iterator()
1
julia> fib_iterator()
1
julia> fib_iterator()
2
julia> fib_iterator()
julia> fib_iterator()
ERROR: @resumable function has stopped!
```
```@meta
DocTestSetup = nothing
```
When the `@resumable function` returns normally an error will be thrown if called again.
## Two-way communication
The caller can transmit a variable to the `@resumable function` by assigning a `@yield` statement to a variable:
```@meta
DocTestSetup = quote
using ResumableFunctions
@resumable function two_way()
name = @yield "Who are you?"
"Hello, " * name * "!"
end
end
```
```julia
@resumable function two_way()
name = @yield "Who are you?"
"Hello, " * name * "!"
end
```
```jldoctest
julia> hello = two_way();
julia> hello()
"Who are you?"
julia> hello("Ben")
"Hello, Ben!"
```
```@meta
DocTestSetup = nothing
```
When an `Exception` is passed to the `@resumable function`, it is thrown at the resume point:
```@meta
DocTestSetup = quote
using ResumableFunctions
@resumable function mouse()
try
@yield "Here I am!"
catch exc
return "You got me!"
end
end
struct Cat <: Exception end
end
```
```julia
@resumable function mouse()
try
@yield "Here I am!"
catch exc
return "You got me!"
end
end
struct Cat <: Exception end
```
```jldoctest
julia> catch_me = mouse();
julia> catch_me()
"Here I am!"
julia> catch_me(Cat())
"You got me!"
```
```@meta
DocTestSetup = nothing
```
## Iterator interface
The iterator interface is implemented for a `@resumable function`:
```@meta
DocTestSetup = quote
using ResumableFunctions
@resumable function fibonacci(n) :: Int
a = 0
b = 1
for i in 1:n
@yield a
a, b = b, a + b
end
end
end
```
```julia
@resumable function fibonacci(n) :: Int
a = 0
b = 1
for i in 1:n
@yield a
a, b = b, a + b
end
end
```
```jldoctest
julia> for val in fibonacci(10) println(val) end
0
1
1
2
3
5
8
13
21
34
```
```@meta
DocTestSetup = nothing
```
## Parametric `@resumable` functions
Type parameters can be specified with a `where` clause:
```@meta
DocTestSetup = quote
using ResumableFunctions
@resumable function fibonacci(a::N, b::N=a+one(N)) :: N where {N<:Number}
for i in 1:10
@yield a
a, b = b, a + b
end
end
end
```
```julia
@resumable function fibonacci(a::N, b::N=a+one(N)) :: N where {N<:Number}
for i in 1:10
@yield a
a, b = b, a + b
end
end
```
```jldoctest
julia> for val in fibonacci(0.0) println(val) end
0.0
1.0
1.0
2.0
3.0
5.0
8.0
13.0
21.0
34.0
```
```@meta
DocTestSetup = nothing
```
## Let block
A `let` block allows a variable not to be saved in between calls to a `@resumable function`:
```@meta
DocTestSetup = quote
using ResumableFunctions
@resumable function arrays_of_tuples()
for u in [[(1,2),(3,4)], [(5,6),(7,8)]]
for i in 1:2
let i=i
val = [a[i] for a in u]
end
@yield val
end
end
end
end
```
```julia
@resumable function arrays_of_tuples()
for u in [[(1,2),(3,4)], [(5,6),(7,8)]]
for i in 1:2
let i=i
val = [a[i] for a in u]
end
@yield val
end
end
end
```
```jldoctest
julia> for array in arrays_of_tuples() println(array) end
[1, 3]
[2, 4]
[5, 7]
[6, 8]
```
```@meta
DocTestSetup = nothing
```
## Caveats
- In a `try` block only top level `@yield` statements are allowed.
- In a `catch` or a `finally` block a `@yield` statement is not allowed.
- An anonymous function can not contain a `@yield` statement.
- If a `FiniteStateMachineIterator` object is used in more than one `for` loop, only the `state` variable is reinitialised. A `@resumable function` that alters its arguments will use the modified values as initial parameters. | ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.6.10 | 910fb2b8f0dd33649f606266c392f639bb939b10 | docs | 2702 | ---
title: 'ResumableFunctions: C# sharp style generators for Julia.'
tags:
- semi-coroutine
- finite-state-machine
- julia
- iterator
- stackless
authors:
- name: Ben Lauwens
orcid: 0000-0003-0761-6265
affiliation: 1
affiliations:
- name: Royal Military Academy, Brussels, Belgium
index: 1
date: September 2017
bibliography: paper.bib
---
# Summary
C# has a convenient way to create iterators [@CsharpIterators] using the `yield return` statement. The package [@ResumableFunctions] provides the same functionality for the Julia language [@Julia] by introducing the `@resumable` and the `@yield` macros. These macros can be used to replace the `Task` switching functions `produce` and `consume` which were deprecated in Julia v0.6. `Channels` are the preferred way for inter-task communication in julia v0.6+, but their performance is subpar for iterator applications.
The macro `@resumable` transform a function definition into a finite state-machine, i.e. a callable type holding the state and references to the internal variables of the function and a constructor for this new type respecting the method signature of the original function definition. When calling the new type a modified version of the body of the original function definition is executed:
- a dispatch mechanism is inserted at the start to allow a non local jump to a label inside the body;
- the `@yield` statement is replaced by a `return` statement and a label placeholder as endpoint of a non local jump;
- `for` loops are transformed in `while` loops and
- `try`-`catch`-`finally`-`end` expressions are converted in a sequence of `try`-`catch`-`end` expressions with at the end of the `catch` part a non local jump to a label that marks the beginning of the expressions in the `finally` part.
The two last transformations are needed to overcome the limitations of the non local jump macros `@goto` and `@label`.
Straightforward two-way communication between the caller and the callable type is possible by calling the callable type with an extra argument. The value of this argument is passed to the left side of an `arg = @yield ret` expression.
The `iterator` interface is implemented so that a `@resumable function` can be used transparently.
Benchmarks show that this macro based implementation of semi-coroutines is an order of magnitude faster than both the original `Task` switching with `produce` and `consume` and the newer `Channel` based approach for inter-task communication. A context switch is more expensive than a function call.
The next generation of process-driven simulations in the discrete-event simulation framework [@SimJulia] is based on this package.
# References
| ResumableFunctions | https://github.com/JuliaDynamics/ResumableFunctions.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 3188 | using BenchmarkTools
using Random
using StableRNGs
using UnfoldSim
using Unfold
using DataFrames
using CategoricalArrays
using MixedModels
using BSplineKit
#const SUITE = BenchmarkGroup()
Random.seed!(3)
#---
sfreq = 100
data, evts = UnfoldSim.predef_2x2(StableRNG(1); n_subjects = 20, signalsize = sfreq)
data_epochs, evts_epochs = UnfoldSim.predef_2x2(
StableRNG(1);
n_subjects = 20,
signalsize = sfreq,
return_epoched = true,
)
data = data[:]
data_epochs = reshape(data_epochs, size(data_epochs, 1), :)
transform!(evts, :subject => categorical => :subject)
transform!(evts, :item => categorical => :item)
evts.type = rand(StableRNG(1), [0, 1], nrow(evts))
for (ix, k) in
enumerate([:continuousA, :continuousB, :continuousC, :continuousD, :continuousE])
evts[!, k] = rand(StableRNG(ix), size(evts, 1))
evts_epochs[!, k] = rand(StableRNG(ix), size(evts_epochs, 1))
end
ba1 = firbasis(Ο = (0, 1), sfreq = sfreq)
ba2 = firbasis(Ο = (0, 1), sfreq = sfreq)
f1_lmm = @formula 0 ~ 1 + A + (1 + A | subject)
f2_lmm = @formula 0 ~ 1 + A + (1 + A | item)
f1 = @formula 0 ~ 1 + A
f1_spl = @formula 0 ~
1 +
A +
spl(continuousA, 5) +
spl(continuousB, 5) +
spl(continuousC, 5) +
spl(continuousD, 5) +
spl(continuousE, 5)
f2 = @formula 0 ~ 1 + B
dict_lin = Dict(0 => (f1, ba1), 1 => (f2, ba2))
dict_spl = Dict(0 => (f1_spl, ba1), 1 => (f1_spl, ba2))
dict_lmm = Dict(0 => (f1_lmm, ba1), 1 => (f2_lmm, ba2))
times = 1:size(data_epochs, 1)
#---
m_epoch_lin_f1 = fit(UnfoldModel, f1, evts_epochs, data_epochs, times)
m_epoch_lin_f1_spl = fit(UnfoldModel, f1_spl, evts_epochs, data_epochs, times)
m_lin_f1 = fit(UnfoldModel, dict_lin, evts, data, eventcolumn = "type")
m_lin_f1_spl = fit(UnfoldModel, dict_spl, evts, data, eventcolumn = "type")
if 1 == 0
m_lin_f1_spl_ch =
fit(UnfoldModel, dict_spl, evts, repeat(data, 1, 100)', eventcolumn = "type")
end
#---
ext = Base.get_extension(Unfold, :UnfoldMixedModelsExt)
SUITE = BenchmarkGroup()
SUITE["designmat"] = BenchmarkGroup(["designmat"])
SUITE["fit"] = BenchmarkGroup(["fit"])
SUITE["effects"] = BenchmarkGroup(["effects"])
# designmatrix generation
SUITE["designmat"]["lin"] =
@benchmarkable designmatrix(UnfoldLinearModelContinuousTime, $f1, $evts, $ba1)
SUITE["designmat"]["lmm"] = @benchmarkable designmatrix(
ext.UnfoldLinearMixedModelContinuousTime,
$f1_lmm,
$evts,
$ba1,
)
# Model Fit
SUITE["fit"]["lin"] =
@benchmarkable fit(UnfoldModel, $f1, $evts_epochs, $data_epochs, $times)
SUITE["fit"]["lmm"] =
@benchmarkable fit(UnfoldModel, $f1_lmm, $evts_epochs, $data_epochs, $times)
SUITE["fit"]["lin_deconv"] =
@benchmarkable fit(UnfoldModel, $dict_lin, $evts, $data, eventcolumn = "type");
#SUITE["fit"]["lmm_deconv"] =
# @benchmarkable fit(UnfoldModel, $dict_lmm, $evts, $data, eventcolumn = "type");
SUITE["effects"]["lin"] =
@benchmarkable effects($(Dict(:A => ["a_small", "a_big"])), $m_lin_f1)
SUITE["effects"]["lin_spl"] = @benchmarkable effects(
$(Dict(:continuousA => collect(range(0.1, 0.9, length = 15)))),
$m_lin_f1_spl,
)
#SUITE["fit"]["debugging"] = @benchmarkable read(run(`git diff Project.toml`)) | Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 720 | using UnfoldSim
using Unfold
using BSplineKit
using Krylov, CUDA
data, evts = UnfoldSim.predef_eeg()
data = repeat(data, 1, 30)'
data = data .+ rand(size(data)...)
bf = firbasis([-1, 1], 100)
evts.continuousB .= rand(size(evts, 1))
f = @formula(0 ~ 1 + condition + spl(continuous, 5) + spl(continuousB, 20))
# 1.3s vs 0.3s in matlab Oo
@time uf = designmatrix!(UnfoldLinearModelContinuousTime(Dict(Any => (f, bf))), evts);
@time fit(UnfoldModel, Dict(Any => (f, bf)), evts, data; solver = (x, y) -> return nothing);
@time fit(UnfoldModel, Dict(Any => (f, bf)), evts, data);
@time fit(
UnfoldModel,
Dict(Any => (f, bf)),
evts,
data;
solver = (x, y) -> Unfold.solver_krylov(x, y; GPU = true),
);
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 2067 | using UnfoldSim
using Krylov, CUDA
using Unfold
using Random
using DataFrames
using StableRNGs
using BSplineKit
#--- Generate Data
sfreq = 100
data, evts = UnfoldSim.predef_eeg(StableRNG(1); n_repeats = 200, sfreq = sfreq)
evts = evts[1:end-2, :]
data = reshape(data, 1, :)
evts.type = rand(StableRNG(1), [0, 1], nrow(evts))
ba1 = firbasis(Ο = (0, 1), sfreq = sfreq, name = "evts1")
ba2 = firbasis(Ο = (0, 1), sfreq = sfreq, name = "evts2")
f1 = @formula 0 ~ 1 + spl(continuous, 5) + condition
f2 = @formula 0 ~ 1 + spl(continuous, 5) + condition
dict_lin = Dict(0 => (f1, ba1), 1 => (f2, ba2))
uf =
fit(UnfoldModel, dict_lin, evts, data, eventcolumn = "type", solver = (x, y) -> nothing);
#----
X = modelmatrix(uf)
data_one = data[1:1, 1:size(X, 1)] # cute the data to have same length
data20 = repeat(data_one, 50)
data20 .= data20 .+ rand(StableRNG(1), size(data20)...)
#---
y = data_one
y = data20
@time Unfold.solver_default(X, y; multithreading = false);
@time Unfold.solver_default(X, y; multithreading = true);
@time Unfold.solver_krylov(X, y; multithreading = false);
@time Unfold.solver_krylov(X, y);
@time Unfold.solver_krylov(X, y; GPU = true);
#----
#using SuiteSparseGraphBLAS
#@time b7 = solver_gb(X,y);
# function solver_gb(
# X,
# data::AbstractArray{T,2};
# stderror = false,
# ) where {T<:Union{Missing,<:Number}}
# minfo = []
# sizehint!(minfo, size(data,1))
# beta = zeros(size(data,1),size(X,2)) # had issues with undef
# X_l = GBMatrix(disallowmissing(X))
# for ch = 1:size(data, 1)
# # use the previous channel as a starting point
# #ch == 1 || copyto!(view(beta, ch, :), view(beta, ch-1, :))
# beta[ch,:],h = lsmr!(@view(beta[ch, :]), X_l, @view(data[ch, ix]),log=true)
# push!(minfo, h)
# end
# if stderror
# stderror = calculate_stderror(X, data, beta)
# modelfit = Unfold.LinearModelFit(beta, ["lsmr",minfo], stderror)
# else
# modelfit = Unfold.LinearModelFit(beta, ["lsmr",minfo])
# end
# return modelfit
# end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 3773 | # Calling Matlab from Julia and comparing to Unfold.jl
ENV["MATLAB_ROOT"] = "/opt/common/apps/matlab/r2021a/"
using MATLAB
using BSplineKit, Unfold, UnfoldSim
using Random
mat"addpath('/store/users/skukies/unfold_duration_backup/lib/eeglab')" # Add EEGLAB?
mat"addpath('/store/users/skukies/unfold_duration_backup/lib/unfold')" #" Add Unfold?
mat"init_unfold"
# Matlab function for comparison
function calc_matlab(datajl, eventsjl)
mat"
EEG = eeg_emptyset();
EEG.data = $datajl;
EEG.srate = 100;
"
mat_events = mxarray(
Dict(
"continuous" => eventsjl.continuous,
"condition" => eventsjl.condition,
"latency" => eventsjl.latency,
),
)
mat"
for e = 1:length($mat_events.latency)
EEG.event(end+1).latency = $mat_events.latency(e);
EEG.event(end).condition = $mat_events.condition{e};
EEG.event(end).continuous= $mat_events.continuous(e);
EEG.event(end).continuousB= rand(1);
EEG.event(end).type = 'fixation';
end
"
mat"EEG = eeg_checkset(EEG)"
mat"
cfgDesign = [];
cfgDesign.eventtypes = {'fixation'};
cfgDesign.formula = 'y ~ 1+ cat(condition)+spl(continuous,5)';
tic
EEG = uf_designmat(EEG,cfgDesign);
EEG = uf_timeexpandDesignmat(EEG,'timelimits',[-1,1]);
t_design = toc
EEG = uf_glmfit(EEG);
t_fit = toc
"
end
#" Setting up data
# data, events = UnfoldSim.predef_eeg()
design =
SingleSubjectDesign(;
conditions = Dict(
:condition => ["car", "face"],
:continuous => range(-5, 5, length = 10),
),
) |> x -> RepeatDesign(x, 50);
p1 = LinearModelComponent(; basis = p100(), formula = @formula(0 ~ 1), Ξ² = [5]);
n1 = LinearModelComponent(;
basis = n170(),
formula = @formula(0 ~ 1 + condition),
Ξ² = [5, -3],
);
p3 = LinearModelComponent(;
basis = p300(),
formula = @formula(0 ~ 1 + continuous),
Ξ² = [5, 1],
);
components = [p1, n1, p3]
data, events = UnfoldSim.simulate(
MersenneTwister(1),
design,
components,
UniformOnset(; width = 50, offset = 20),
PinkNoise(),
);
# Run fit two times; once for compilation and once for actual timing
for k = 1:2
@time m = fit(
UnfoldModel,
[
Any => (
@formula(0 ~ 1 + condition + spl(continuous, 5)),
firbasis(Ο = [-1, 1], sfreq = 100, name = "basis"),
),
],
events,
data,
)
end
## Matlab part
calc_matlab(data, events)
@mget(t_fit)
# Above tested 2023/11/22; Julia: 0.12 sec ; Matlab: 0.15sec
# Above tested 2024/04/18: Julia: 0.4 ; Matlab: 0.24s
## Multichannel w/ headmodel
c = LinearModelComponent(;
basis = p100(),
formula = @formula(0 ~ 1 + condition),
Ξ² = [5, 1],
);
c2 = LinearModelComponent(;
basis = p300(),
formula = @formula(0 ~ 1 + continuous),
Ξ² = [5, -3],
);
hart = headmodel(type = "hartmut")
mc = UnfoldSim.MultichannelComponent(c, hart => "Left Postcentral Gyrus")
mc2 = UnfoldSim.MultichannelComponent(c2, hart => "Right Occipital Pole")
onset = UniformOnset(; width = 50, offset = 20);
data_mc, events_mc =
UnfoldSim.simulate(MersenneTwister(1), design, [mc, mc2], onset, PinkNoise())
# Fit Unfold.jl
@time m = fit(
UnfoldModel,
[
Any => (
@formula(0 ~ 1 + condition + spl(continuous, 5)),
firbasis(Ο = [-1, 1], sfreq = 100),
),
],
events_mc,
data_mc,
);
# Fit Matlab
calc_matlab(data_mc, events_mc)
# Above tested 2023/11/22; Julia: ca.8.9 sec ; Matlab: ca. 10.5sec
# Above tested 2024/04/18: Julia: ca. 4s ; Matlab: ca. 66s
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 2519 | using Documenter
using Unfold
using AlgebraOfGraphics # can be removed with UnfoldMakie 0.3.0
using DocStringExtensions
using Literate
using Glob
GENERATED = joinpath(@__DIR__, "src", "generated")
SOURCE = joinpath(@__DIR__, "literate")
for subfolder β ["explanations", "HowTo", "tutorials"]
local SOURCE_FILES = Glob.glob(subfolder * "/*.jl", SOURCE)
foreach(fn -> Literate.markdown(fn, GENERATED * "/" * subfolder), SOURCE_FILES)
end
makedocs(
sitename = "Unfold.jl Timeseries Analysis & Deconvolution",
#root = joinpath(dirname(pathof(Unfold)), "..", "docs"),
#prettyurls = get(ENV, "CI", nothing) == "true",
repo = Documenter.Remotes.GitHub("unfoldtoolbox", "Unfold.jl"),
pages = [
"index.md",
"Installing Julia + Unfold.jl" => "installation.md",
"Tutorials" => [
"Mass univariate LM" => "tutorials/lm_mu.md",
"LM overlap correction" => "tutorials/lm_overlap.md",
"Mass univariate Mixed Model" => "tutorials/lmm_mu.md",
"LMM + overlap correction" => "tutorials/lmm_overlap.md",
],
"HowTo" => [
"Overlap: Multiple events" => "HowTo/multiple_events.md",
"Import EEG with π PyMNE.jl" => "HowTo/pymne.md",
"Standard errors" => "HowTo/standarderrors.md",
"Alternative Solvers (Robust, GPU, B2B)" => "HowTo/custom_solvers.md",
"π Calling Unfold.jl directly from Python" => "generated/HowTo/juliacall_unfold.md",
"P-values for mixedModels" => "HowTo/lmm_pvalues.md",
"Marginal effects (focus on non-linear predictors)" => "generated/HowTo/effects.md",
#"Time domain basis functions"=>"generated/HowTo/timesplines.md",
"Save and load Unfold models" => "generated/HowTo/unfold_io.md",
],
"Explanations" => [
"About basisfunctions" => "./explanations/basisfunctions.md",
"Non-Linear effects" => "./generated/explanations/nonlinear_effects.md",
"Window Length Effect" => "./generated/explanations/window_length.md",
],
"Reference" => [
"Overview of package extensions" => "references/extensions.md",
"Development environment" => "explanations/development.md",
"API: Types" => "references/types.md",
"API: Functions" => "references/functions.md",
],
],
)
deploydocs(;
repo = "github.com/unfoldtoolbox/Unfold.jl",
push_preview = true,
devbranch = "main",
)
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 5719 | ### A Pluto.jl notebook ###
# v0.19.2
using Markdown
using InteractiveUtils
# βββ‘ 25d21156-d006-11eb-3655-61be76e7db93
begin
import Pkg
Pkg.activate("../../../")
end
# βββ‘ 34aefa9a-e034-4293-b53d-cc1dc349ecc7
let
using Revise
using Unfold
using DataFramesMeta
end
# βββ‘ c73bf3ed-4af3-4e5a-997e-6399c9b85bbe
using StatsModels, PlutoUI, DataFrames, StatsPlots
# βββ‘ d1e1de70-7e37-46a4-8ce2-3ca591bb84cf
include(pathof(Unfold) * "../../../test/test_utilities.jl")
# βββ‘ 2e9ec6e0-03c6-41f6-bd3b-a44eaed5b553
data, evts = loadtestdata("test_case_4a");
# βββ‘ 0b27e0bb-7aee-4672-8501-6096539c7ad7
evts.continuousA = rand(size(evts, 1))
# βββ‘ 97443eb8-ac67-4f8e-9e8a-eb09176c8516
# βββ‘ 2a5d5493-b88d-473f-8d81-9e9240b3ffe0
#f = @formula 0~1+conditionA+continuousA # 1
f = @formula 0 ~ 1 + continuousA # 1
# βββ‘ 5d23b74c-988d-48bc-9c30-c2af0dbabdb4
# βββ‘ 3f2b7a92-a064-4be6-8a39-cabaa2453777
basisfunction = Unfold.splinebasis(Ο = (-1, 1), sfreq = 20, nsplines = 10, name = "basisA")
# βββ‘ 8f32dbf3-8958-4e67-8e25-5f24d48058e1
Unfold.splinebasis
# βββ‘ 7ef24e5a-63df-4e99-a021-7119d7e8d3bf
fir = firbasis(Ο = (-1, 1), sfreq = 20, name = "basisB")
# βββ‘ 12c617c1-1994-4efe-b8bc-23fd2325c2ca
fir.kernel(2)
# βββ‘ 6f7bc2f6-28de-40a5-83ee-c15cd6f74f6c
basisfunction.kernel(1)
# βββ‘ e3d7ac15-e7a2-490b-abbc-aea3d7b4f4c7
size(Unfold.times(basisfunction))
# βββ‘ 73022b4d-4edd-44e2-8cfa-26ded44a8921
size(Unfold.colnames(basisfunction))
# βββ‘ d38f9cc9-409f-4c52-b0d2-d09312cc695a
size(basisfunction.colnames)
# βββ‘ 786d0114-e10e-4e29-b6d7-bbe635c55f08
evts
# βββ‘ c4227637-81b4-4ea7-a7b7-741860fef8c3
m = fit(
UnfoldModel,
Dict("eventA" => (f, fir), "eventB" => (f, basisfunction)),
evts,
data,
eventcolumn = "type",
);
# βββ‘ cd19784c-686e-41c5-bd32-cdf793cecf03
res = coeftable(m)
# βββ‘ 29e875d3-45b9-4a6a-aaa6-c6eaf35244c5
@df res plot(:time, :estimate, group = (:basisname, :coefname))
# βββ‘ b669f55b-9121-4d66-9c82-f89bbfe0b2df
Unfold.coef(m)
# βββ‘ 64cf7e78-2677-4551-9491-82c9f560ed61
res
# βββ‘ 02b8ff44-c514-492e-bf94-0cbf44431097
x = [1]
# βββ‘ d964a5ca-7e63-41d5-bf97-526772d259e9
#[kernel(formTerm.basisfunction)(0) for formTerm in getfield.(designmatrix(m).formulas,:rhs)]
# βββ‘ 1ee404e1-3039-410d-99de-ce713e751280
let
basisnames = Unfold.get_basis_name(m)
betaOut = []
for (k, b) in enumerate(unique(basisnames))
ix = basisnames .== b
betaOut = vcat(
betaOut,
designmatrix(m).formulas[k].rhs.basisfunction.kernel(0) *
m.modelfit.estimate[:, ix]',
)
end
plot(Float64.(betaOut))
end
# βββ‘ 5466ec0b-d28a-4be7-b686-cb5ad7fea92b
let
basisnames = Unfold.get_basis_name(m)
k = 2
b = unique(basisnames)[k]
bf = designmatrix(m).formulas[k].rhs.basisfunction
ix = basisnames .== b
hcat(bf.kernel.([0, 0])...) * m.modelfit.estimate[:, ix]'
end
# βββ‘ 033cf2e0-a3ca-40e3-8f27-e88e017ca8de
size(Unfold.times(basisfunction))
# βββ‘ a8238bd7-0198-45d2-89bd-d1434c537b2a
designmatrix(m).formulas[2].rhs.basisfunction.kernel(0)
# βββ‘ fe5a826f-aede-4e91-b6cd-ee7fca33ce31
zeros()
# βββ‘ 8b9d8e32-d2ca-49db-986f-851ffabc3a3e
function undoBasis(d, m)
bname = unique(d.basisname) # the current coefficient basename
@assert(length(bname) == 1)
@assert(length(unique(d.channel)) == 1)
bnames = unique(Unfold.get_basis_name(m)) # all model basenames
# find out which formula / basisfunction we have
k = findfirst(bname .== bnames)
bf = designmatrix(m).formulas[k].rhs.basisfunction
estimate = bf.kernel.(0) * d.estimate
@show size(bf.kernel.(0))
@show size(Unfold.times(bf))
return DataFrame(:time => Unfold.times(bf), :estimate => estimate)
end
# βββ‘ 350a7f4b-f019-4bf6-8878-2cbb0cf82005
begin
gd = groupby(res, [:basisname, :channel, :group, :coefname])
a = combine(gd) do d
return undoBasis(d, m)
end
a
end
# βββ‘ a876f554-a034-461e-9522-490ca4bab5f8
@df a plot(:time, :estimate, group = (:basisname, :coefname))
# βββ‘ 1d5b8b05-cdc6-4058-9bc1-bd52e6e3b444
Unfold.get_basis_name(m)
# βββ‘ 111189ec-be04-4687-91ff-53b540a7b4db
Unfold.get_basis_name(m)
# βββ‘ 4b572283-14cd-4a75-9ff2-f5a18f40228d
res
# βββ‘ Cell order:
# β β25d21156-d006-11eb-3655-61be76e7db93
# β β34aefa9a-e034-4293-b53d-cc1dc349ecc7
# β βc73bf3ed-4af3-4e5a-997e-6399c9b85bbe
# β βd1e1de70-7e37-46a4-8ce2-3ca591bb84cf
# β β2e9ec6e0-03c6-41f6-bd3b-a44eaed5b553
# β β0b27e0bb-7aee-4672-8501-6096539c7ad7
# β β97443eb8-ac67-4f8e-9e8a-eb09176c8516
# β β2a5d5493-b88d-473f-8d81-9e9240b3ffe0
# β β5d23b74c-988d-48bc-9c30-c2af0dbabdb4
# β β3f2b7a92-a064-4be6-8a39-cabaa2453777
# β β8f32dbf3-8958-4e67-8e25-5f24d48058e1
# β β7ef24e5a-63df-4e99-a021-7119d7e8d3bf
# β β12c617c1-1994-4efe-b8bc-23fd2325c2ca
# β β6f7bc2f6-28de-40a5-83ee-c15cd6f74f6c
# β βe3d7ac15-e7a2-490b-abbc-aea3d7b4f4c7
# β β73022b4d-4edd-44e2-8cfa-26ded44a8921
# β βd38f9cc9-409f-4c52-b0d2-d09312cc695a
# β β786d0114-e10e-4e29-b6d7-bbe635c55f08
# β βc4227637-81b4-4ea7-a7b7-741860fef8c3
# β βcd19784c-686e-41c5-bd32-cdf793cecf03
# β β29e875d3-45b9-4a6a-aaa6-c6eaf35244c5
# β βb669f55b-9121-4d66-9c82-f89bbfe0b2df
# β β64cf7e78-2677-4551-9491-82c9f560ed61
# β β02b8ff44-c514-492e-bf94-0cbf44431097
# β βd964a5ca-7e63-41d5-bf97-526772d259e9
# β β1ee404e1-3039-410d-99de-ce713e751280
# β β5466ec0b-d28a-4be7-b686-cb5ad7fea92b
# β β033cf2e0-a3ca-40e3-8f27-e88e017ca8de
# β βa8238bd7-0198-45d2-89bd-d1434c537b2a
# β β350a7f4b-f019-4bf6-8878-2cbb0cf82005
# β βa876f554-a034-461e-9522-490ca4bab5f8
# β βfe5a826f-aede-4e91-b6cd-ee7fca33ce31
# β β8b9d8e32-d2ca-49db-986f-851ffabc3a3e
# β β1d5b8b05-cdc6-4058-9bc1-bd52e6e3b444
# β β111189ec-be04-4687-91ff-53b540a7b4db
# β β4b572283-14cd-4a75-9ff2-f5a18f40228d
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 3552 | ### A Pluto.jl notebook ###
# v0.19.2
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try
Base.loaded_modules[Base.PkgId(
Base.UUID("6e696c72-6542-2067-7265-42206c756150"),
"AbstractPlutoDingetjes",
)].Bonds.initial_value
catch
b -> missing
end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# βββ‘ 360367c3-a17d-4c04-b8eb-e2f0366baa86
import Pkg;
# βββ‘ a69bf247-acbc-4b4d-889d-3f52ff046ef4
Pkg.activate("/store/users/ehinger/unfoldjl_dev/")
# βββ‘ cf3dcd54-cfa0-11eb-2e99-756f9df71a4d
using Revise, Unfold, Plots, BSplines
# βββ‘ a9e6971f-8a50-4564-ace5-1fabe65b1522
import PlutoUI
# βββ‘ 8a62a281-d91d-4e70-b301-4ebafdd58b38
# βββ‘ 539da607-f382-4eaa-93ad-31c906aa67ee
# βββ‘ 17943406-ac61-49bd-bc8d-7d3f62441b8e
# βββ‘ 89eace50-c0f5-4951-821f-cf010cdb9726
@bind nsplines PlutoUI.Slider(2:10; default = 8, show_value = true)
# βββ‘ cb62fb85-364d-4142-b28b-c8b0871b4ccc
@bind srate PlutoUI.Slider(1:50; default = 10, show_value = true)
# βββ‘ 8496a69b-20bc-45c2-92cb-179d0ad7127c
@bind Ο1 PlutoUI.Slider(-5:0.1:2; default = -0.5, show_value = true)
# βββ‘ c8285ed7-bffb-4047-89ff-22a664c19a78
@bind Ο2 PlutoUI.Slider(-2:0.1:5; default = 2, show_value = true)
# βββ‘ 9df0d50d-2a1a-4431-9725-12178c824d62
Ο = [Ο1, Ο2]
# βββ‘ 94a258ea-febd-4793-89c4-d3755e82c48c
begin
function splinebasis(Ο, sfreq, nsplines, name::String)
Ο = Unfold.round_times(Ο, sfreq)
times = range(Ο[1], stop = Ο[2], step = 1 ./ sfreq)
kernel = e -> splinekernel(e, times, nsplines)
type = "splinebasis"
shiftOnset = Int64(floor(Ο[1] * sfreq))
return Unfold.BasisFunction(kernel, times, times, type, name, shiftOnset)
end
function spl_breakpoints(times, nsplines)
# calculate the breakpoints, evenly spaced
return collect(range(minimum(times), stop = maximum(times), length = nsplines))
end
function splinekernel(e, times, nsplines)
breakpoints = spl_breakpoints(times, nsplines)
basis = BSplineBasis(4, breakpoints) # 4= cubic
return Unfold.splFunction(times, basis)
end
spl = splinebasis(Ο, srate, nsplines, "test")
end
# βββ‘ 3f612e26-aba8-46ed-af19-67cd1be672fa
plot(spl.times, spl.kernel(0))
# βββ‘ d375b64c-0e64-4b39-8c3f-5a14d365877d
# βββ‘ 7086e800-d51a-4fe3-b33f-309acd676ae7
# βββ‘ 4d6fc512-205e-4e25-b3b5-b7981d9dec75
# βββ‘ ba9bafc2-9733-43d0-80cd-75b2637ba4a7
# βββ‘ Cell order:
# β β360367c3-a17d-4c04-b8eb-e2f0366baa86
# β βa9e6971f-8a50-4564-ace5-1fabe65b1522
# β βa69bf247-acbc-4b4d-889d-3f52ff046ef4
# β β8a62a281-d91d-4e70-b301-4ebafdd58b38
# β β539da607-f382-4eaa-93ad-31c906aa67ee
# β β17943406-ac61-49bd-bc8d-7d3f62441b8e
# β β94a258ea-febd-4793-89c4-d3755e82c48c
# β β3f612e26-aba8-46ed-af19-67cd1be672fa
# β β89eace50-c0f5-4951-821f-cf010cdb9726
# β βcb62fb85-364d-4142-b28b-c8b0871b4ccc
# β β8496a69b-20bc-45c2-92cb-179d0ad7127c
# β βc8285ed7-bffb-4047-89ff-22a664c19a78
# β β9df0d50d-2a1a-4431-9725-12178c824d62
# β βd375b64c-0e64-4b39-8c3f-5a14d365877d
# β βcf3dcd54-cfa0-11eb-2e99-756f9df71a4d
# β β7086e800-d51a-4fe3-b33f-309acd676ae7
# β β4d6fc512-205e-4e25-b3b5-b7981d9dec75
# β βba9bafc2-9733-43d0-80cd-75b2637ba4a7
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 4166 | ### A Pluto.jl notebook ###
# v0.14.8
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing
el
end
end
# βββ‘ 65edde2e-d03e-11eb-300b-897bdc66d875
begin
using Unfold
using PlutoUI
using StatsPlots
using DataFrames
using StatsModels
end
# βββ‘ 0a821c04-1aff-4fca-aab8-07a4d450838c
begin
using Random
end
# βββ‘ bec07615-8ca3-4251-9e44-bf5044828274
include("../test/test_utilities.jl");
# βββ‘ 72bffaed-d3d9-44d8-9a74-0e0a0d3b0882
md"""# Simple Unfold.jl Example with overlap correction"""
# βββ‘ ee305b1e-0c62-4a9f-ab80-d937b1401347
md""" ### Setup
Setup might take a while because the libraries are very large. It might be better to install some of the packages to your julia-environment prior to starting Pluto
"""
# βββ‘ 2ec25bc8-1154-4850-ba02-62ed634cb558
md"""### Loading Data & Setting up Unfold"""
# βββ‘ 76afd758-ac50-4f3c-a484-7f268ab059ef
data, evts = loadtestdata("test_case_3b");
# βββ‘ c7fb216e-d177-4623-a135-db4cd856d4ad
f = @formula 0 ~ 1 + conditionA + continuousA
# βββ‘ a55058c9-3b56-447b-8f1a-f7319a29f478
md"""### Fitting the models"""
# βββ‘ 8bfb1b5c-1c6a-472c-9087-dd03b0884922
md"""### Plotting the results"""
# βββ‘ 9a4c715a-7a51-411d-a354-f79ec2369cb7
let
md"""change window size Ο = (-0.3, $(@bind Ο2 Slider(0:0.1:5,default=2, show_value=true)))
"""
end
# βββ‘ ba2f0c48-f5f8-40eb-a45b-441b8134ffb1
Ο = (-0.3, Ο2)
# βββ‘ f99efde3-bd34-46e2-ad1c-1a97ad866b79
fir = firbasis(Ο = Ο, sfreq = 20, name = "basisA");
# βββ‘ dcbdef13-675e-47f7-b484-d340f0e55934
f_dict = Dict("eventA" => (f, fir)) # combine eventname, formula & basis
# βββ‘ ed61f099-343c-47d4-9af4-c4486c93fd4a
let
md"""change noise: Ο = $(@bind Ο Slider(0:0.1:5,default=0, show_value=true))
"""
end
# βββ‘ 09705728-c6e5-41a5-9859-2c7e28828d5b
# add some noise
data_noise = data .+ Ο .* randn(size(data));
# βββ‘ b31a80a5-cca2-4c69-82f5-2b477f5b62be
begin
plot(data_noise[1:600], title = "Simulated Data with overlap")
vline!(evts.latency[1:20], legend = false)
end
# βββ‘ 3f4dd059-e275-483d-af42-a09a2795fca4
data_e, times = Unfold.epoch(data = data_noise, tbl = evts, Ο = Ο, sfreq = 10);
# βββ‘ 9aa42667-2629-48e1-b7fe-979dabc28f96
# non-overlapping (mass univariate)
m_e, res_e = fit(UnfoldLinearModel, f, evts, data_e, times);
# βββ‘ bce42119-33d7-4e10-ac5e-b37028381b09
# overlap-corrected
m, res = fit(UnfoldLinearModel, f_dict, evts, data_noise, eventcolumn = "type");
# βββ‘ de267143-c029-4103-9fd7-ada153588ab6
begin
p1 = @df res_e plot(
:colname_basis,
:estimate,
group = :coefname,
title = "Without ...",
ylims = (-3, 5),
legend = false,
xlims = (-0.3, 3),
)
p2 = @df res plot(
:colname_basis,
:estimate,
group = :coefname,
title = "... with overlap correction",
ylims = (-3, 5),
xlims = (-0.3, 3),
legend = :bottomright,
)
plot(p1, p2, layout = (1, 2))
end
# βββ‘ Cell order:
# ββ72bffaed-d3d9-44d8-9a74-0e0a0d3b0882
# ββee305b1e-0c62-4a9f-ab80-d937b1401347
# β β65edde2e-d03e-11eb-300b-897bdc66d875
# β β0a821c04-1aff-4fca-aab8-07a4d450838c
# β βbec07615-8ca3-4251-9e44-bf5044828274
# ββ2ec25bc8-1154-4850-ba02-62ed634cb558
# β β76afd758-ac50-4f3c-a484-7f268ab059ef
# β β09705728-c6e5-41a5-9859-2c7e28828d5b
# β βb31a80a5-cca2-4c69-82f5-2b477f5b62be
# β β3f4dd059-e275-483d-af42-a09a2795fca4
# β βc7fb216e-d177-4623-a135-db4cd856d4ad
# β βf99efde3-bd34-46e2-ad1c-1a97ad866b79
# β βdcbdef13-675e-47f7-b484-d340f0e55934
# ββa55058c9-3b56-447b-8f1a-f7319a29f478
# β βbce42119-33d7-4e10-ac5e-b37028381b09
# β β9aa42667-2629-48e1-b7fe-979dabc28f96
# ββ8bfb1b5c-1c6a-472c-9087-dd03b0884922
# β βba2f0c48-f5f8-40eb-a45b-441b8134ffb1
# ββ9a4c715a-7a51-411d-a354-f79ec2369cb7
# ββed61f099-343c-47d4-9af4-c4486c93fd4a
# β βde267143-c029-4103-9fd7-ada153588ab6
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 4954 | ### A Pluto.jl notebook ###
# v0.14.8
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing
el
end
end
# βββ‘ 65edde2e-d03e-11eb-300b-897bdc66d875
begin
import Pkg
Pkg.activate(mktempdir())
Pkg.add(url = "https://github.com/unfoldtoolbox/Unfold.jl")
Pkg.add("PlutoUI")
Pkg.add("StatsPlots")
Pkg.add("DataFrames")
Pkg.add("StatsModels")
Pkg.add("DSP")
end
# βββ‘ 0a821c04-1aff-4fca-aab8-07a4d450838c
let
using Revise
using Unfold
using StatsModels, PlutoUI, StatsPlots, DataFrames, Random
using DSP
end
# βββ‘ bec07615-8ca3-4251-9e44-bf5044828274
include("../test/test_utilities.jl");
# βββ‘ 72bffaed-d3d9-44d8-9a74-0e0a0d3b0882
md"""# Simple Unfold.jl Example with overlap correction"""
# βββ‘ ee305b1e-0c62-4a9f-ab80-d937b1401347
md""" ### Setup
Setup might take a while because the libraries are very large. It might be better to install some of the packages to your julia-environment prior to starting Pluto
"""
# βββ‘ 2ec25bc8-1154-4850-ba02-62ed634cb558
md"""### Loading Data & Setting up Unfold"""
# βββ‘ 76afd758-ac50-4f3c-a484-7f268ab059ef
data, evts = loadtestdata("test_case_3b");
# βββ‘ c7fb216e-d177-4623-a135-db4cd856d4ad
f = @formula 0 ~ 1 + conditionA + continuousA
# βββ‘ a55058c9-3b56-447b-8f1a-f7319a29f478
md"""### Fitting the models"""
# βββ‘ 8bfb1b5c-1c6a-472c-9087-dd03b0884922
md"""### Plotting the results"""
# βββ‘ 9a4c715a-7a51-411d-a354-f79ec2369cb7
let
md"""change window size Ο = (-0.3, $(@bind Ο2 Slider(0:0.1:5,default=2, show_value=true)))
"""
end
# βββ‘ ba2f0c48-f5f8-40eb-a45b-441b8134ffb1
Ο = (-0.3, Ο2)
# βββ‘ f99efde3-bd34-46e2-ad1c-1a97ad866b79
fir_basis = firbasis(Ο = Ο, sfreq = 20, name = "basisA");
# βββ‘ dcbdef13-675e-47f7-b484-d340f0e55934
f_dict = Dict("eventA" => (f, fir_basis)) # combine eventname, formula & basis
# βββ‘ ed61f099-343c-47d4-9af4-c4486c93fd4a
let
md"""change noise: Ο = $(@bind Ο Slider(0:0.1:5,default=0, show_value=true))
"""
end
# βββ‘ 09705728-c6e5-41a5-9859-2c7e28828d5b
# add some noise
#data_noise = data .+ Ο .* randn(size(data));
data_noise = data .+ Ο .* rand(PinkGaussian(size(data, 1)));
# βββ‘ 1f3419f0-02e3-4346-8ac4-026cb76fa0fe
md"""filter: $(@bind low_cutoff Slider(0.01:0.01:2,default=0.01, show_value=true))
"""
# βββ‘ 3e6f413d-f0b3-434f-a2bd-e002592247f8
hpf = fir(501, low_cutoff; fs = 20);
# βββ‘ b2893e0a-5712-4af2-923d-e80078f7277c
data_filter = filtfilt(hpf, data_noise);
# βββ‘ b31a80a5-cca2-4c69-82f5-2b477f5b62be
begin
plot(data_filter[1:400], title = "Simulated Data with overlap")
plot!(data_noise[1:400], title = "Simulated Data with overlap")
vline!(evts.latency[1:10], legend = false)
end
# βββ‘ 3f4dd059-e275-483d-af42-a09a2795fca4
data_e, times = Unfold.epoch(data = data_filter, tbl = evts, Ο = Ο, sfreq = 20);
# βββ‘ 9aa42667-2629-48e1-b7fe-979dabc28f96
# non-overlapping (mass univariate)
m_e, res_e = fit(UnfoldLinearModel, f, evts, data_e, times);
# βββ‘ bce42119-33d7-4e10-ac5e-b37028381b09
# overlap-corrected
m, res = fit(UnfoldLinearModel, f_dict, evts, data_filter, eventcolumn = "type");
# βββ‘ de267143-c029-4103-9fd7-ada153588ab6
begin
p1 = @df res_e plot(
:colname_basis,
:estimate,
group = :coefname,
title = "Without ...",
ylims = (-3, 5),
legend = false,
xlims = (-0.3, 5),
)
p2 = @df res plot(
:colname_basis,
:estimate,
group = :coefname,
title = "... with overlap correction",
ylims = (-3, 5),
xlims = (-0.3, 5),
legend = :bottomright,
)
plot(p1, p2, layout = (1, 2))
end
# βββ‘ Cell order:
# ββ72bffaed-d3d9-44d8-9a74-0e0a0d3b0882
# ββee305b1e-0c62-4a9f-ab80-d937b1401347
# β β65edde2e-d03e-11eb-300b-897bdc66d875
# β β0a821c04-1aff-4fca-aab8-07a4d450838c
# β βbec07615-8ca3-4251-9e44-bf5044828274
# ββ2ec25bc8-1154-4850-ba02-62ed634cb558
# β β76afd758-ac50-4f3c-a484-7f268ab059ef
# β β09705728-c6e5-41a5-9859-2c7e28828d5b
# β β3e6f413d-f0b3-434f-a2bd-e002592247f8
# β βb2893e0a-5712-4af2-923d-e80078f7277c
# β βb31a80a5-cca2-4c69-82f5-2b477f5b62be
# β β3f4dd059-e275-483d-af42-a09a2795fca4
# β βc7fb216e-d177-4623-a135-db4cd856d4ad
# β βf99efde3-bd34-46e2-ad1c-1a97ad866b79
# β βdcbdef13-675e-47f7-b484-d340f0e55934
# ββa55058c9-3b56-447b-8f1a-f7319a29f478
# β βbce42119-33d7-4e10-ac5e-b37028381b09
# β β9aa42667-2629-48e1-b7fe-979dabc28f96
# ββ8bfb1b5c-1c6a-472c-9087-dd03b0884922
# β βba2f0c48-f5f8-40eb-a45b-441b8134ffb1
# ββ9a4c715a-7a51-411d-a354-f79ec2369cb7
# ββed61f099-343c-47d4-9af4-c4486c93fd4a
# ββ1f3419f0-02e3-4346-8ac4-026cb76fa0fe
# β βde267143-c029-4103-9fd7-ada153588ab6
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 228 | using LiveServer
dr = filter(isdir, readdir(joinpath("src", "generated"), join = true))
push!(dr, "./build")
servedocs(
skip_dirs = dr,
literate_dir = joinpath("literate"),
foldername = ".",
host = "0.0.0.0",
)
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 3762 | # # [Marginal effects](@id effects)
# [Marginal effect plots](https://library.virginia.edu/data/articles/a-beginners-guide-to-marginal-effects) are useful for understanding model fits.
# If you are an EEG researcher, you can think of the coefficients as the 'difference waves' and the (marginal) effects as the 'modelled ERP evaluated at a certain predictor value combination'.
# In some way, we are fitting a model with coefficients, receiving intercepts and slopes, and then try to recover the 'classical' ERPs in their "data-domain", typically with some effect adjustment, overlap removal, or similar.
# # Setup things
# Setup some packages
using Unfold
using DataFrames
using Random
using CSV
using UnfoldMakie
using UnfoldSim
using UnfoldMakie
using DisplayAs # hide
# Generate data and fit a model with a 2-level categorical predictor and a continuous predictor without interaction.
data, evts = UnfoldSim.predef_eeg(; noiselevel = 8)
basisfunction = firbasis(Ο = (-0.1, 0.5), sfreq = 100; interpolate = false)
f = @formula 0 ~ 1 + condition + continuous # 1
m = fit(UnfoldModel, [Any => (f, basisfunction)], evts, data, eventcolumn = "type")
m |> DisplayAs.withcontext(:is_pluto => true) # hide
# Plot the results
plot_erp(coeftable(m))
#=
The coefficients are represented by three lines on a figure:
- the intercept showing the reference category for a typical p1/n1/p3 ERP components;
- the slope of continuous variables with 1Β΅V range;
- the effect of categorical variabe with 3Β΅V range.
=#
# ### Effects function
# In order to better understand the actual predicted ERP curves, often researchers had to do manual contrasts. Remember that a linear model is `y = X * b`, which allows (after `b` was estimated) to input a so-called `contrast` vector for X. You might know this in the form of `[1, 0, -1, 1]` or similar form. However, for larger models, this method can be prone to errors.
# The `effects` function is a convenient way to specify contrast vectors by providing the actual levels of the experimental design. It can be used to calculate all possible combinations of multiple variables.
# If a predictor-variable is not specified here, the function will automatically set it to its typical value. This value is usually the `mean`, but for categorical variables, it could be something else. The R package `emmeans` has a lot of discussion on this topic.
eff = effects(Dict(:condition => ["car", "face"]), m)
plot_erp(eff; mapping = (; color = :condition,))
# We can also generate continuous predictions:
eff = effects(Dict(:continuous => -5:0.5:5), m)
plot_erp(
eff;
mapping = (; color = :continuous, group = :continuous => nonnumeric),
categorical_color = false,
categorical_group = false,
)
# Or we can split our marginal effects by condition and calculate all combinations "automagically".
eff = effects(Dict(:condition => ["car", "face"], :continuous => -5:2:5), m)
plot_erp(eff; mapping = (; color = :condition, col = :continuous))
# ## What is typical anyway?
# The `effects` function includes an argument called `typical`, which specifies the function applied to the marginalized covariates/factors. The default value is `mean`, which is usually sufficient for analysis.
#
# However, for skewed distributions, it may be more appropriate to use the `mode`, while for outliers, the `median` or `winsor` mean may be more appropriate.
#
# To illustrate, we will use the `maximum` function on the `continuous` predictor.
eff_max = effects(Dict(:condition => ["car", "face"]), m; typical = maximum)
eff_max.typical .= :maximum
eff = effects(Dict(:condition => ["car", "face"]), m)
eff.typical .= :mean # mean is the default
plot_erp(vcat(eff, eff_max); mapping = (; color = :condition, col = :typical))
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 3824 | # # Using Unfold.jl from Python
# it is straight forward to call Unfold from Python using `JuliaCall`.
# ## Quick start
# Create a Python environment and install JuliaCall.
# ```bash
# pip install juliacall
# ```
# Create a Julia environment and install Unfold
# ```python
# # Import the Julia package manager
# from juliacall import Pkg as jlPkg
# # Activate the environment in the current folder
# jlPkg.activate(".")
# # Install Unfold (in the activated environment)
# jlPkg.add("Unfold")
# ```
# Import Julia's main module and Unfold
# ```python
# # Import Julia's Main module
# from juliacall import Main as jl
# # Import Unfold
# # The function seval() can be used to evaluate a piece of Julia code given as a string
# jl.seval("using Unfold")
# Unfold = jl.Unfold # simplify name
# ```
# Now you can use all Unfold functions as for example
# ```python
# dummy_model = Unfold.UnfoldLinearModel(jl.Dict())
# ```
# ## Example: Unfold model fitting from Python
# In this [notebook](https://github.com/unfoldtoolbox/Unfold.jl/blob/main/docs/src/HowTo/juliacall_unfold.ipynb), you can find a more detailed example of how to use Unfold from Python to load data, fit an Unfold model and visualise the results in Python.
# ## Important limitations
# Python doesnt not offer the full expressions that are available in Julia. So there are some things you need to give special attention:
#
# **`@formula`**: we havent found a way to call macros yet, even though we think it should be possible. For now please use `f = jl.seval("@formula(0~1+my+cool+design)")`. Later versions might support something like `f = @formula("0~1+my+cool+design)"` directly
#
# **Specifying the design**: Since Unfold 0.7 we officially switched to the
# ```julia
# ["eventtypeA"=>(formula,basisfunction),
# "eventtypeB"=>(otherformula,otherbasisfunction)]
# ```
# Array-based syntax, from a Dict-based syntax. Unfortunately, `=>` (a pair) is not supported in Python and one needs to do some rewriting:
# ```python
# jl.convert(jl.Pair,(formula,basisfunction))
# ```
# which makes the code less readable. We are thinking of ways to remedy this - but right now there is now way around. For now, it is also possible to use the old syntax e.g. in python
# ```python
# {"eventtypeA"=>(formula,basisfunction),"eventtypeB"=>(otherformula,otherbasisfunction)}
# ```
# which is clearly easier to read :)
#
# **`UnfoldSim.design`**: we need a `Dict` with a `Symbol` , one has to do something like `condition_dict_jl = {convert(jl.Symbol,"condA"):["car", "face"]}` to do so. We will [try to allow strings}(https://github.com/unfoldtoolbox/UnfoldSim.jl/issues/96) here as well, removing this constraint.
#
# When preprocessing your raw data through MNE Python, take the following into consideration:
# The [Raw object](https://mne.tools/stable/generated/mne.io.Raw.html) contains the [first_samp](https://mne.tools/stable/documentation/glossary.html#term-first_samp) attribute which is an integer representing the number of time samples that passed between the onset of the hardware acquisition system and the time when data recording started.
# The Raw data doesn't include these time samples, meaning that the first sample is the beginning of the data aquisition.
# From the Raw object you can obtain an events array from the annotations through [mne.events_from_annotations()](https://mne.tools/stable/generated/mne.events_from_annotations.html).
# The events array, however, does include first_samp, meaning that the annotated events in events array don't match the Raw object anymore.
# Alternatively, it might be easier to convert the annotations to a pandas dataframe directly (`to_data_frame()`), or even better, load the "*_events.tsv" from a BIDS dataset. In the latter case, all columns will be preserved, which MNE's read_annotation drops.
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 1411 | # # [Save and load Unfold models](@id unfold_io)
# Unfold.jl allows storing Unfold models in a memory-efficient way using (compressed) .jld2 files.
# ## Simulate EEG data and fit an Unfold model
# ```@raw html
# <details>
# <summary>Click to expand</summary>
# ```
# ### Simulate some example data using UnfoldSim.jl
using UnfoldSim
data, events = UnfoldSim.predef_eeg(; n_repeats = 10)
first(events, 5)
# ### Fit an Unfold model
using Unfold
basisfunction = firbasis(Ο = (-0.5, 1.0), sfreq = 100, name = "stimulus")
f = @formula 0 ~ 1 + condition + continuous
bfDict = Dict(Any => (f, basisfunction))
m = fit(UnfoldModel, bfDict, events, data);
# ```@raw html
# </details >
# ```
# ## Save and load the fitted Unfold model
# The following code saves the model in a compressed .jld2 file. The default option of the `save` function is `compress=false`.
# For memory efficiency the designmatrix is set to missing. If needed, it can be reconstructed when loading the model.
save_path = mktempdir(; cleanup = false) # create a temporary directory for the example
save(joinpath(save_path, "m_compressed.jld2"), m; compress = true);
# The `load` function allows to retrieve the model again.
# By default, the designmatrix is reconstructed. If it is not needed set `generate_Xs=false`` which improves time-efficiency.
m_loaded = load(joinpath(save_path, "m_compressed.jld2"), UnfoldModel, generate_Xs = true);
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 4289 | # # [Non-linear effects]](@id nonlinear)
using BSplineKit, Unfold
using CairoMakie
using DataFrames
using Random
using Colors
using Missings
# ## Generating a non-linear signal
# We start with generating data variables
rng = MersenneTwister(2) # make repeatable
n = 20 # number of datapoints
evts = DataFrame(:x => rand(rng, n))
signal = -(3 * (evts.x .- 0.5)) .^ 2 .+ 0.5 .* rand(rng, n)
plot(evts.x, signal)
#
# Looks perfectly non-linear. Great!
#
# # Compare linear & non-linear fit
# First, we have to reshape `signal` data to a 3d array, so it will fit to Unfold format: 1 channel x 1 timepoint x 20 datapoints.
signal = reshape(signal, length(signal), 1, 1)
signal = permutedims(signal, [3, 2, 1])
size(signal)
# Next we define three different models: **linear**, **4 splines** and **10 splines**.
# Note difference in formulas: one `x`, the other `spl(x, 4)`.
design_linear = [Any => (@formula(0 ~ 1 + x), [0])];
design_spl3 = [Any => (@formula(0 ~ 1 + spl(x, 4)), [0])];
design_spl10 = [Any => (@formula(0 ~ 1 + spl(x, 10)), [0])];
# Next, fit the parameters.
uf_linear = fit(UnfoldModel, design_linear, evts, signal);
uf_spl3 = fit(UnfoldModel, design_spl3, evts, signal);
uf_spl10 = fit(UnfoldModel, design_spl10, evts, signal); #hide
# Extract the fitted values using Unfold.effects.
p_linear = Unfold.effects(Dict(:x => range(0, stop = 1, length = 100)), uf_linear);
p_spl3 = Unfold.effects(Dict(:x => range(0, stop = 1, length = 100)), uf_spl3);
p_spl10 = Unfold.effects(Dict(:x => range(0, stop = 1, length = 100)), uf_spl10);
first(p_linear, 5)
# Plot them.
pl = plot(evts.x, signal[1, 1, :])
lines!(p_linear.x, p_linear.yhat)
lines!(p_spl3.x, coalesce.(p_spl3.yhat, NaN))
lines!(p_spl10.x, coalesce.(p_spl10.yhat, NaN))
pl
# We see here, that the linear effect (blue line) underfits the data, the yellow `spl(x, 10)` overfits it, but the green `spl(x, 4)` fits it perfectly.
# ## Looking under the hood
# Let's have a brief look how the splines manage what they are managing.
#
# The most important bit to understand is, that we are replacing `x` by a set of coefficients `spl(x)`.
# These new coefficients each tile the range of `x` (in our case, from [0-1]) in overlapping areas, while each will be fit by one coefficient.
# Because the ranges are overlapping, we get a smooth function.
#
# Maybe this becomes clear after looking at a `basisfunction`:
term_spl = Unfold.formulas(uf_spl10)[1].rhs.terms[2]
# This is the spline term. Note, this is a special type available in the BSplineKit.jl extension in Unfold.jl. It's abstract type is `AbstractSplineTerm` defined in Unfold.jl
typeof(term_spl)
#
const splFunction = Base.get_extension(Unfold, :UnfoldBSplineKitExt).splFunction
splFunction([0.2], term_spl)
# Each column of this 1-row matrix is a coefficient for our regression model.
lines(disallowmissing(splFunction([0.2], term_spl))[1, :])
# Note: We have to use `disallowmissing`, because our splines return a `missing` whenever we ask it to return a value outside its defined range, e.g.:
splFunction([-0.2], term_spl)
# Because it never has seen any data outside and can't extrapolate!
# Back to our main issue. Let's plot the whole basis set
basisSet = splFunction(0.0:0.01:1, term_spl)
basisSet = disallowmissing(basisSet[.!any(ismissing.(basisSet), dims = 2)[:, 1], :]) # remove missings
ax = Axis(Figure()[1, 1])
[lines!(ax, basisSet[:, k]) for k = 1:size(basisSet, 2)]
current_figure()
# Notice how we flipped the plot around, i.e. now on the x-axis we do not plot the coefficients, but the `x`-values.
# Now each line is one basis-function of the spline.
#
# Unfold returns us one coefficient per basis-function
Ξ² = coef(uf_spl10)[1, 1, :]
Ξ² = Float64.(disallowmissing(Ξ²))
# But because we used an intercept, we have to do some remodelling in the `basisSet`.
X = hcat(ones(size(basisSet, 1)), basisSet[:, 1:5], basisSet[:, 7:end])
# Now we can weight the spline by the `basisfunction`.
weighted = (Ξ² .* X')
# Plotting them creates a nice looking plot!
ax = Axis(Figure()[1, 1])
[lines!(weighted[k, :]) for k = 1:10]
current_figure()
# Now sum them up.
lines(sum(weighted, dims = 1)[1, :])
plot!(X * Ξ², color = "gray") #(same as matrixproduct X*Ξ² directly!)
current_figure()
# And this is how you can think about splines.
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 5379 | # # Window length effects
using Unfold, UnfoldSim
using CairoMakie, AlgebraOfGraphics, MakieThemes
using Random
using DataFrames, DataFramesMeta
using ColorSchemes, Colors
# !!! important
# For analyzing real-world EEG data we recommend that researchers should β a priori β make an educated guess about the length of the underlying EEG activity and select this as their EW. This also suggests to use event windows with different sizes between events (as is possible with Unfold).
# Further, as can be seen below, when choosing longer time-windows the overfit is only of moderate size, thus we additionally recommend to generally err on the longer side, to not miss any important activity. \
# For a more in depth explanation on this, you can read our 2023 CCN paper: [Skukies & Ehinger, 2023](https://www.biorxiv.org/content/10.1101/2023.06.05.543689v1)
set_theme!(theme_ggthemr(:fresh))
# As opposed to classical averaged ERPs overlap corrected regression ERPs can be influenced by the chosen window length:
# Long estimation windows might capture all relevant event-related activity, but might introduce artifacts due to overfit,
# short estimation windows might not overfit, but also might not capture all (overlapping) activity, and thereby introduce bias.
#
# Thus a common question we get is, how to specify the length of the estimation windows.
# # Init functions
# First we need a function that simulates some continous data; conviently we can use UnfoldSim for this
function gen_data(rng, noiselevel, sfreq)
noise = PinkNoise(; noiselevel = noiselevel)
dat, evts = UnfoldSim.predef_eeg(
rng;
sfreq = sfreq,
p1 = (p100(; sfreq = sfreq), @formula(0 ~ 1 + condition), [5, 0], Dict()),
n1 = (n170(; sfreq = sfreq), @formula(0 ~ 1 + condition), [5, 0], Dict()),
p3 = (p300(; sfreq = sfreq), @formula(0 ~ 1 + continuous), [5, 0], Dict()),
n_repeats = 20,
noise = noise,
)
return dat, evts
end;
# Next a convience function to calculate the estimates
function calc_time_models(evts, dat, tWinList, sfreq)
mList = []
for twindow in tWinList
m = fit(
UnfoldModel,
[Any => (@formula(0 ~ 1), firbasis(twindow, sfreq))],
evts,
dat,
)
res = coeftable(m)
res.tWin .= string.(Ref(twindow[2]))
push!(mList, res)
end
return vcat(mList...)
end;
# # Init variables
tWinList = [(-0.1, x) for x in [3, 2.5, 2, 1.5, 1, 0.5]]
noiselevel = 8.5
sfreq = 250;
# # Generate data and calculate estimates
dat, evts = gen_data(MersenneTwister(2), noiselevel, sfreq);
res = calc_time_models(evts, dat, tWinList, sfreq);
# We also append some additional information to the results dataframe
# For comparison lets also generate the ground truth of our data; this is a bit cumbersome and you don't have to care (too much) about it
dat_gt, evts_gt = UnfoldSim.predef_eeg(;
p1 = (p100(; sfreq = sfreq), @formula(0 ~ 1), [5], Dict()),
sfreq = sfreq,
n1 = (n170(; sfreq = sfreq), @formula(0 ~ 1), [5], Dict()),
p3 = (p300(; sfreq = sfreq), @formula(0 ~ 1), [5], Dict()),
n_repeats = 1,
noiselevel = 0,
return_epoched = true,
);
time_gt = range(0, length = length(dat_gt[:, 1]), step = 1 / sfreq)
unique_event = unique(res.tWin)
df_gt = DataFrame(
tWin = reduce(vcat, fill.(unique_event, length(dat_gt[:, 1]))),
eventname = Any,
channel = repeat([1], length(dat_gt[:, 1]) * length(unique_event)),
coefname = reduce(
vcat,
fill("GroundTruth", length(dat_gt[:, 1]) * length(unique_event)),
),
estimate = repeat(dat_gt[:, 1], length(unique_event)),
group = reduce(vcat, fill(nothing, length(dat_gt[:, 1]) * length(unique_event))),
stderror = reduce(vcat, fill(nothing, length(dat_gt[:, 1]) * length(unique_event))),
time = repeat(time_gt, length(unique_event)),
);
# And append ground truth to our results df
res_gt = vcat(res, df_gt);
# # Plot results
# Choose which data to plot
h_t =
AlgebraOfGraphics.data(res) * mapping(
:time,
:estimate,
color = :tWin,
group = (:tWin, :coefname) => (x, y) -> string(x[2]) * y,
);
# We use the following to plot some length indicator lines
untWin = unique(res_gt.tWin)
segDF = DataFrame(
:x => hcat(repeat([-0.1], length(untWin)), parse.(Float64, untWin))[:],
:y => repeat(reverse(1:length(untWin)), outer = 2),
)
segDF.tWin .= "0.0"
segDF.tWin .= segDF.x[reverse(segDF.y .+ 6)]
segDF.y = segDF.y .* 0.2 .+ 6;
# Layer for indicator lines
h_l =
AlgebraOfGraphics.data(@subset(segDF, :tWin .!= "3.0")) *
mapping(:x, :y, color = :tWin, group = :tWin => x -> string.(x));
# Ground truth Layer
h_gt =
AlgebraOfGraphics.data(df_gt) *
mapping(:time, :estimate, group = (:tWin, :coefname) => (x, y) -> string(x) * y) *
visual(Lines, linewidth = 5, color = Colors.Gray(0.6));
# Add all visuals together and draw
h1 =
h_gt + visual(Lines, colormap = get(ColorSchemes.Blues, 0.3:0.01:1.2)) * (h_l + h_t) |>
x -> draw(x, axis = (; xlabel = "time [s]", ylabel = "estimate [a.u.]"));
# Add zero grid lines
h1 = hlines!(current_axis(), [0], color = Colors.Gray(0.8));
h2 = vlines!(current_axis(), [0], color = Colors.Gray(0.8));
translate!(h1, 0, 0, -1);
translate!(h2, 0, 0, -1);
# Plot figure
current_figure()
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 52689 | ### A Pluto.jl notebook ###
# v0.19.11
using Markdown
using InteractiveUtils
# βββ‘ 1eec25bc-8040-11ec-024c-c54939c335ac
begin
using CairoMakie
using DataFrames
using Random
using Unfold
using Colors
end
# βββ‘ f926f2a9-d188-4c65-80c7-0e500d9c3b9a
begin
rng = MersenneTwister(2)
n = 20
evts = DataFrame(:x => rand(rng, n))
signal = -(3 * (evts.x .- 0.5)) .^ 2 .+ 0.5 .* rand(rng, n)
signal = reshape(signal, length(signal), 1, 1)
signal = permutedims(signal, [3, 2, 1])
end;
# βββ‘ 248e07ea-bf5b-4c88-97c6-e29d0576bdaa
begin
design_spl3 = Dict(Any => (@formula(0 ~ 1 + spl(x, 3)), [0]))
uf_spl3 = fit(UnfoldModel, design_spl3, evts, signal)
end;
# βββ‘ fea2e408-baa5-426c-a125-6ef68953abce
begin
design_lin = Dict(Any => (@formula(0 ~ 1 + x), [0]))
uf_lin = fit(UnfoldModel, design_lin, evts, signal)
end;
# βββ‘ f30a9476-b884-44e4-b2e9-b6ca722e52da
begin
design_spl10 = Dict(Any => (@formula(0 ~ 1 + spl(x, 10)), [0]))
uf_spl10 = fit(UnfoldModel, design_spl10, evts, signal)
end;
# βββ‘ 144b86fc-b860-4f12-9250-0d7926e68cc5
begin
p_3 = Unfold.effects(Dict(:x => range(0, stop = 1, length = 100)), uf_spl3)
p_10 = Unfold.effects(Dict(:x => range(0, stop = 1, length = 100)), uf_spl10)
p_l = Unfold.effects(Dict(:x => range(0, stop = 1, length = 100)), uf_lin)
end;
# βββ‘ 8633dc2f-cde4-45ca-8378-d4703804d02f
begin
pl = plot(evts.x, signal[1, 1, :])
lines!(p_l.x, p_l.yhat)
lines!(p_3.x, p_3.yhat)
lines!(p_10.x, p_10.yhat)
pl
end
# βββ‘ 71e73918-f6c5-4f48-adf2-74875c32833c
# βββ‘ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Unfold = "181c99d8-e21b-4ff3-b70b-c233eddec679"
[compat]
CairoMakie = "~0.7.1"
Colors = "~0.12.8"
DataFrames = "~1.3.2"
Unfold = "~0.3.6"
"""
# βββ‘ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.8.0"
manifest_format = "2.0"
project_hash = "6b897082068de46dde2708b3814731ba252fe9b7"
[[deps.AbstractFFTs]]
deps = ["ChainRulesCore", "LinearAlgebra"]
git-tree-sha1 = "6f1d9bc1c08f9f4a8fa92e3ea3cb50153a1b40d4"
uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c"
version = "1.1.0"
[[deps.AbstractTrees]]
git-tree-sha1 = "03e0550477d86222521d254b741d470ba17ea0b5"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.3.4"
[[deps.Adapt]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "af92965fb30777147966f58acb05da51c5616b5f"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "3.3.3"
[[deps.Animations]]
deps = ["Colors"]
git-tree-sha1 = "e81c509d2c8e49592413bfb0bb3b08150056c79d"
uuid = "27a7e980-b3e6-11e9-2bcd-0b925532e340"
version = "0.4.1"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.ArrayInterface]]
deps = ["Compat", "IfElse", "LinearAlgebra", "Requires", "SparseArrays", "Static"]
git-tree-sha1 = "ffc6588e17bcfcaa79dfa5b4f417025e755f83fc"
uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
version = "4.0.1"
[[deps.Arrow]]
deps = ["ArrowTypes", "BitIntegers", "CodecLz4", "CodecZstd", "DataAPI", "Dates", "Mmap", "PooledArrays", "SentinelArrays", "Tables", "TimeZones", "UUIDs"]
git-tree-sha1 = "d4a35c773dd7b07ddeeba36f3520aefe517a70f2"
uuid = "69666777-d1a9-59fb-9406-91d4454c9d45"
version = "2.2.0"
[[deps.ArrowTypes]]
deps = ["UUIDs"]
git-tree-sha1 = "a0633b6d6efabf3f76dacd6eb1b3ec6c42ab0552"
uuid = "31f734f8-188a-4ce0-8406-c8a06bd891cd"
version = "1.2.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Automa]]
deps = ["Printf", "ScanByte", "TranscodingStreams"]
git-tree-sha1 = "d50976f217489ce799e366d9561d56a98a30d7fe"
uuid = "67c07d97-cdcb-5c2c-af73-a7f9c32a568b"
version = "0.8.2"
[[deps.AxisAlgorithms]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "WoodburyMatrices"]
git-tree-sha1 = "66771c8d21c8ff5e3a93379480a2307ac36863f7"
uuid = "13072b0f-2c55-5437-9ae7-d433b7a33950"
version = "1.0.1"
[[deps.BSplines]]
deps = ["LinearAlgebra", "OffsetArrays", "RecipesBase"]
git-tree-sha1 = "54308218333f6b8967311c76f2cf89ab495542d6"
uuid = "488c2830-172b-11e9-1591-253b8a7df96d"
version = "0.3.2"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BenchmarkTools]]
deps = ["JSON", "Logging", "Printf", "Profile", "Statistics", "UUIDs"]
git-tree-sha1 = "940001114a0147b6e4d10624276d56d531dd9b49"
uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
version = "1.2.2"
[[deps.BitIntegers]]
deps = ["Random"]
git-tree-sha1 = "5a814467bda636f3dde5c4ef83c30dd0a19928e0"
uuid = "c3b6d118-76ef-56ca-8cc7-ebb389d030a1"
version = "0.2.6"
[[deps.BlockDiagonals]]
deps = ["ChainRulesCore", "FillArrays", "FiniteDifferences", "LinearAlgebra"]
git-tree-sha1 = "c42e91f6ef89386413f5803423b106a32850987c"
uuid = "0a1fb500-61f7-11e9-3c65-f5ef3456f9f0"
version = "0.1.25"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "19a35467a82e236ff51bc17a3a44b69ef35185a2"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+0"
[[deps.CEnum]]
git-tree-sha1 = "215a9aa4a1f23fbd05b92769fdd62559488d70e9"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.4.1"
[[deps.Cairo]]
deps = ["Cairo_jll", "Colors", "Glib_jll", "Graphics", "Libdl", "Pango_jll"]
git-tree-sha1 = "d0b3f8b4ad16cb0a2988c6788646a5e6a17b6b1b"
uuid = "159f3aea-2a34-519c-b102-8c37f9878175"
version = "1.0.5"
[[deps.CairoMakie]]
deps = ["Base64", "Cairo", "Colors", "FFTW", "FileIO", "FreeType", "GeometryBasics", "LinearAlgebra", "Makie", "SHA", "StaticArrays"]
git-tree-sha1 = "c5c1397a0df375fda6fc20a54c5610c96ad71cf5"
uuid = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
version = "0.7.1"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "4b859a208b2397a7a623a03449e4636bdb17bcf2"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.16.1+1"
[[deps.CategoricalArrays]]
deps = ["DataAPI", "Future", "Missings", "Printf", "Requires", "Statistics", "Unicode"]
git-tree-sha1 = "c308f209870fdbd84cb20332b6dfaf14bf3387f8"
uuid = "324d7699-5711-5eae-9e2f-1d82baa6b597"
version = "0.10.2"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "54fc4400de6e5c3e27be6047da2ef6ba355511f8"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.11.6"
[[deps.ChangesOfVariables]]
deps = ["ChainRulesCore", "LinearAlgebra", "Test"]
git-tree-sha1 = "bf98fa45a0a4cee295de98d4c1462be26345b9a1"
uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
version = "0.1.2"
[[deps.CodecBzip2]]
deps = ["Bzip2_jll", "Libdl", "TranscodingStreams"]
git-tree-sha1 = "2e62a725210ce3c3c2e1a3080190e7ca491f18d7"
uuid = "523fee87-0ab8-5b00-afb7-3ecf72e48cfd"
version = "0.7.2"
[[deps.CodecLz4]]
deps = ["Lz4_jll", "TranscodingStreams"]
git-tree-sha1 = "59fe0cb37784288d6b9f1baebddbf75457395d40"
uuid = "5ba52731-8f18-5e0d-9241-30f10d1ec561"
version = "0.4.0"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.0"
[[deps.CodecZstd]]
deps = ["CEnum", "TranscodingStreams", "Zstd_jll"]
git-tree-sha1 = "849470b337d0fa8449c21061de922386f32949d9"
uuid = "6b39b394-51ab-5f42-8807-6242bab2b4c2"
version = "0.7.2"
[[deps.ColorBrewer]]
deps = ["Colors", "JSON", "Test"]
git-tree-sha1 = "61c5334f33d91e570e1d0c3eb5465835242582c4"
uuid = "a2cac450-b92f-5266-8821-25eda20663c8"
version = "0.4.0"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "Colors", "FixedPointNumbers", "Random"]
git-tree-sha1 = "6b6f04f93710c71550ec7e16b650c1b9a612d0b6"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.16.0"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "024fe24d83e4a5bf5fc80501a314ce0d1aa35597"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.0"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "SpecialFunctions", "Statistics", "TensorCore"]
git-tree-sha1 = "3f1f500312161f1ae067abe07d13b40f78f32e07"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.9.8"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.8"
[[deps.Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "44c37b4636bc54afac5c574d2d02b625349d6582"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.41.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "0.5.2+0"
[[deps.Conda]]
deps = ["Downloads", "JSON", "VersionParsing"]
git-tree-sha1 = "6cdc8832ba11c7695f494c9d9a1c31e90959ce0f"
uuid = "8f4d0f93-b110-5947-807f-2305c1781a2d"
version = "1.6.0"
[[deps.Contour]]
deps = ["StaticArrays"]
git-tree-sha1 = "9f02045d934dc030edad45944ea80dbd1f0ebea7"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.5.7"
[[deps.Crayons]]
git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15"
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
version = "4.1.1"
[[deps.DSP]]
deps = ["Compat", "FFTW", "IterTools", "LinearAlgebra", "Polynomials", "Random", "Reexport", "SpecialFunctions", "Statistics"]
git-tree-sha1 = "fe2287966e085df821c0694df32d32b6311c6f4c"
uuid = "717857b8-e6f2-59f4-9121-6e50c889abd2"
version = "0.7.4"
[[deps.DataAPI]]
git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.9.0"
[[deps.DataFrames]]
deps = ["Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrettyTables", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"]
git-tree-sha1 = "ae02104e835f219b8930c7664b8012c93475c340"
uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
version = "1.3.2"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "3daef5523dd2e769dad2365274f760ff5f282c7d"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.11"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.DensityInterface]]
deps = ["InverseFunctions", "Test"]
git-tree-sha1 = "80c3e8639e3353e5d2912fb3a1916b8455e2494b"
uuid = "b429d917-457f-4dbc-8f4c-0cc954292b1d"
version = "0.4.0"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.Distributions]]
deps = ["ChainRulesCore", "DensityInterface", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "Test"]
git-tree-sha1 = "5863b0b10512ed4add2b5ec07e335dc6121065a5"
uuid = "31c24e10-a181-5473-b8eb-7969acd0382f"
version = "0.25.41"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.8.6"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.EarCut_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "3f3a2501fa7236e9b911e0f7a588c657e822bb6d"
uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5"
version = "2.2.3+0"
[[deps.Effects]]
deps = ["DataFrames", "LinearAlgebra", "Statistics", "StatsBase", "StatsModels", "Tables"]
git-tree-sha1 = "f99ed3dd68cf67f9b3c78ea30a7ab15a527eafc7"
uuid = "8f03c58b-bd97-4933-a826-f71b64d2cca2"
version = "0.1.5"
[[deps.EllipsisNotation]]
deps = ["ArrayInterface"]
git-tree-sha1 = "d7ab55febfd0907b285fbf8dc0c73c0825d9d6aa"
uuid = "da5c29d0-fa7d-589e-88eb-ea29b0a81949"
version = "1.3.0"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b3bfd02e98aedfa5cf885665493c5598c350cd2f"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.2.10+0"
[[deps.ExprTools]]
git-tree-sha1 = "56559bbef6ca5ea0c0818fa5c90320398a6fbf8d"
uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04"
version = "0.1.8"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.1"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "Pkg", "Zlib_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "d8a578692e3077ac998b50c0217dfd67f21d1e5f"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.0+0"
[[deps.FFTW]]
deps = ["AbstractFFTs", "FFTW_jll", "LinearAlgebra", "MKL_jll", "Preferences", "Reexport"]
git-tree-sha1 = "463cb335fa22c4ebacfd1faba5fde14edb80d96c"
uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
version = "1.4.5"
[[deps.FFTW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "c6033cc3892d0ef5bb9cd29b7f2f0331ea5184ea"
uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a"
version = "3.3.10+0"
[[deps.FileIO]]
deps = ["Pkg", "Requires", "UUIDs"]
git-tree-sha1 = "67551df041955cc6ee2ed098718c8fcd7fc7aebe"
uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
version = "1.12.0"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.FillArrays]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"]
git-tree-sha1 = "8756f9935b7ccc9064c6eef0bff0ad643df733a3"
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
version = "0.12.7"
[[deps.FiniteDifferences]]
deps = ["ChainRulesCore", "LinearAlgebra", "Printf", "Random", "Richardson", "StaticArrays"]
git-tree-sha1 = "ebebaefe1f42864f26e50ea1fa54a8e4cadb5992"
uuid = "26cc04aa-876d-5657-8c51-4c34ba976000"
version = "0.12.20"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.4"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "21efd19106a55620a188615da6d3d06cd7f6ee03"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.13.93+0"
[[deps.Formatting]]
deps = ["Printf"]
git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8"
uuid = "59287772-0a20-5a39-b81b-1366585eb4c0"
version = "0.4.2"
[[deps.FreeType]]
deps = ["CEnum", "FreeType2_jll"]
git-tree-sha1 = "cabd77ab6a6fdff49bfd24af2ebe76e6e018a2b4"
uuid = "b38be410-82b0-50bf-ab77-7b57e271db43"
version = "4.0.0"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "87eb71354d8ec1a96d4a7636bd57a7347dde3ef9"
uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7"
version = "2.10.4+0"
[[deps.FreeTypeAbstraction]]
deps = ["ColorVectorSpace", "Colors", "FreeType", "GeometryBasics", "StaticArrays"]
git-tree-sha1 = "770050893e7bc8a34915b4b9298604a3236de834"
uuid = "663a7486-cb36-511b-a19d-713bb74d65c9"
version = "0.9.5"
[[deps.FriBidi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "aa31987c2ba8704e23c6c8ba8a4f769d5d7e4f91"
uuid = "559328eb-81f9-559d-9380-de523a88c83c"
version = "1.0.10+0"
[[deps.Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[deps.GLM]]
deps = ["Distributions", "LinearAlgebra", "Printf", "Reexport", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "StatsModels"]
git-tree-sha1 = "fb764dacfa30f948d52a6a4269ae293a479bbc62"
uuid = "38e38edf-8417-5370-95a0-9cbb8c7f171a"
version = "1.6.1"
[[deps.GeometryBasics]]
deps = ["EarCut_jll", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"]
git-tree-sha1 = "58bcdf5ebc057b085e58d95c138725628dd7453c"
uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326"
version = "0.4.1"
[[deps.Gettext_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"]
git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046"
uuid = "78b55507-aeef-58d4-861c-77aaff3498b1"
version = "0.21.0+0"
[[deps.Glib_jll]]
deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "a32d672ac2c967f3deb8a81d828afc739c838a06"
uuid = "7746bdde-850d-59dc-9ae8-88ece973131d"
version = "2.68.3+2"
[[deps.Graphics]]
deps = ["Colors", "LinearAlgebra", "NaNMath"]
git-tree-sha1 = "1c5a84319923bea76fa145d49e93aa4394c73fc2"
uuid = "a2bd30eb-e257-5431-a919-1863eab51364"
version = "1.1.1"
[[deps.Graphite2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011"
uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472"
version = "1.3.14+0"
[[deps.GridLayoutBase]]
deps = ["GeometryBasics", "InteractiveUtils", "Observables"]
git-tree-sha1 = "70938436e2720e6cb8a7f2ca9f1bbdbf40d7f5d0"
uuid = "3955a311-db13-416c-9275-1d80ed98e5e9"
version = "0.6.4"
[[deps.Grisu]]
git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2"
uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe"
version = "1.0.2"
[[deps.HarfBuzz_jll]]
deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"]
git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3"
uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566"
version = "2.8.1+1"
[[deps.IfElse]]
git-tree-sha1 = "debdd00ffef04665ccbb3e150747a77560e8fad1"
uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173"
version = "0.1.1"
[[deps.ImageCore]]
deps = ["AbstractFFTs", "ColorVectorSpace", "Colors", "FixedPointNumbers", "Graphics", "MappedArrays", "MosaicViews", "OffsetArrays", "PaddedViews", "Reexport"]
git-tree-sha1 = "9a5c62f231e5bba35695a20988fc7cd6de7eeb5a"
uuid = "a09fc81d-aa75-5fe9-8630-4744c3626534"
version = "0.9.3"
[[deps.ImageIO]]
deps = ["FileIO", "Netpbm", "OpenEXR", "PNGFiles", "QOI", "Sixel", "TiffImages", "UUIDs"]
git-tree-sha1 = "816fc866edd8307a6e79a575e6585bfab8cef27f"
uuid = "82e4d734-157c-48bb-816b-45c225c6df19"
version = "0.6.0"
[[deps.Imath_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "87f7662e03a649cffa2e05bf19c303e168732d3e"
uuid = "905a6f67-0a94-5f89-b386-d35d92009cd1"
version = "3.1.2+0"
[[deps.IncompleteLU]]
deps = ["LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "a22b92ffedeb499383720dfedcd473deb9608b62"
uuid = "40713840-3770-5561-ab4c-a76e7d0d7895"
version = "0.2.0"
[[deps.IndirectArrays]]
git-tree-sha1 = "012e604e1c7458645cb8b436f8fba789a51b257f"
uuid = "9b13fd28-a010-5f03-acff-a1bbcff69959"
version = "1.0.0"
[[deps.Inflate]]
git-tree-sha1 = "f5fc07d4e706b84f72d54eedcc1c13d92fb0871c"
uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9"
version = "0.1.2"
[[deps.InlineStrings]]
deps = ["Parsers"]
git-tree-sha1 = "8d70835a3759cdd75881426fced1508bb7b7e1b6"
uuid = "842dd82b-1e85-43dc-bf29-5d0ee9dffc48"
version = "1.1.1"
[[deps.IntelOpenMP_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "d979e54b71da82f3a65b62553da4fc3d18c9004c"
uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0"
version = "2018.0.3+2"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.Interpolations]]
deps = ["AxisAlgorithms", "ChainRulesCore", "LinearAlgebra", "OffsetArrays", "Random", "Ratios", "Requires", "SharedArrays", "SparseArrays", "StaticArrays", "WoodburyMatrices"]
git-tree-sha1 = "b15fc0a95c564ca2e0a7ae12c1f095ca848ceb31"
uuid = "a98d9a8b-a2ab-59e6-89dd-64a1c18fca59"
version = "0.13.5"
[[deps.IntervalSets]]
deps = ["Dates", "EllipsisNotation", "Statistics"]
git-tree-sha1 = "3cc368af3f110a767ac786560045dceddfc16758"
uuid = "8197267c-284f-5f27-9208-e0e47529a953"
version = "0.5.3"
[[deps.Intervals]]
deps = ["Dates", "Printf", "RecipesBase", "Serialization", "TimeZones"]
git-tree-sha1 = "323a38ed1952d30586d0fe03412cde9399d3618b"
uuid = "d8418881-c3e1-53bb-8760-2df7ec849ed5"
version = "1.5.0"
[[deps.InverseFunctions]]
deps = ["Test"]
git-tree-sha1 = "a7254c0acd8e62f1ac75ad24d5db43f5f19f3c65"
uuid = "3587e190-3f89-42d0-90ee-14403ec27112"
version = "0.1.2"
[[deps.InvertedIndices]]
git-tree-sha1 = "bee5f1ef5bf65df56bdd2e40447590b272a5471f"
uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f"
version = "1.1.0"
[[deps.IrrationalConstants]]
git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.1.1"
[[deps.Isoband]]
deps = ["isoband_jll"]
git-tree-sha1 = "f9b6d97355599074dc867318950adaa6f9946137"
uuid = "f1662d9f-8043-43de-a69a-05efc1cc6ff4"
version = "0.1.1"
[[deps.IterTools]]
git-tree-sha1 = "fa6287a4469f5e048d763df38279ee729fbd44e5"
uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
version = "1.4.0"
[[deps.IterativeSolvers]]
deps = ["LinearAlgebra", "Printf", "Random", "RecipesBase", "SparseArrays"]
git-tree-sha1 = "1169632f425f79429f245113b775a0e3d121457c"
uuid = "42fd0dbc-a981-5370-80f2-aaf504508153"
version = "0.9.2"
[[deps.IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[deps.JLLWrappers]]
deps = ["Preferences"]
git-tree-sha1 = "22df5b96feef82434b07327e2d3c770a9b21e023"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.4.0"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.2"
[[deps.JSON3]]
deps = ["Dates", "Mmap", "Parsers", "StructTypes", "UUIDs"]
git-tree-sha1 = "7d58534ffb62cd947950b3aa9b993e63307a6125"
uuid = "0f8b85d8-7281-11e9-16c2-39a750bddbf1"
version = "1.9.2"
[[deps.KernelDensity]]
deps = ["Distributions", "DocStringExtensions", "FFTW", "Interpolations", "StatsBase"]
git-tree-sha1 = "591e8dc09ad18386189610acafb970032c519707"
uuid = "5ab0869b-81aa-558d-bb23-cbf5423bbe9b"
version = "0.6.3"
[[deps.LAME_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "f6250b16881adf048549549fba48b1161acdac8c"
uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d"
version = "3.100.1+0"
[[deps.LZO_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "e5b909bcf985c5e2605737d2ce278ed791b89be6"
uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac"
version = "2.10.1+0"
[[deps.LaTeXStrings]]
git-tree-sha1 = "f2355693d6778a178ade15952b7ac47a4ff97996"
uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
version = "1.3.0"
[[deps.LazyArtifacts]]
deps = ["Artifacts", "Pkg"]
uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3"
[[deps.LeftChildRightSiblingTrees]]
deps = ["AbstractTrees"]
git-tree-sha1 = "b864cb409e8e445688bc478ef87c0afe4f6d1f8d"
uuid = "1d6d02ad-be62-4b6b-8a6d-2f90e265016e"
version = "0.1.3"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.6.3"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
version = "7.84.0+0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
version = "1.10.2+0"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.Libffi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290"
uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490"
version = "3.2.2+1"
[[deps.Libgcrypt_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll", "Pkg"]
git-tree-sha1 = "64613c82a59c120435c067c2b809fc61cf5166ae"
uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4"
version = "1.8.7+0"
[[deps.Libgpg_error_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "c333716e46366857753e273ce6a69ee0945a6db9"
uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8"
version = "1.42.0+0"
[[deps.Libiconv_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "42b62845d70a619f063a7da093d995ec8e15e778"
uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531"
version = "1.16.1+1"
[[deps.Libmount_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9c30530bf0effd46e15e0fdcf2b8636e78cbbd73"
uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9"
version = "2.35.0+0"
[[deps.Libuuid_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "7f3efec06033682db852f8b3bc3c1d2b0a0ab066"
uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700"
version = "2.36.0+0"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.LogExpFunctions]]
deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"]
git-tree-sha1 = "e5718a00af0ab9756305a0392832c8952c7426c1"
uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
version = "0.3.6"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.Lz4_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "5d494bc6e85c4c9b626ee0cab05daa4085486ab1"
uuid = "5ced341a-0733-55b8-9ab6-a4889d929147"
version = "1.9.3+0"
[[deps.MKL_jll]]
deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "Pkg"]
git-tree-sha1 = "5455aef09b40e5020e1520f551fa3135040d4ed0"
uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7"
version = "2021.1.1+2"
[[deps.MLBase]]
deps = ["IterTools", "Random", "Reexport", "StatsBase"]
git-tree-sha1 = "3bd9fd4baf19dfc1edf344bc578da7f565da2e18"
uuid = "f0e99cf1-93fa-52ec-9ecc-5026115318e0"
version = "0.9.0"
[[deps.MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "3d3e902b31198a27340d0bf00d6ac452866021cf"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.9"
[[deps.Makie]]
deps = ["Animations", "Base64", "ColorBrewer", "ColorSchemes", "ColorTypes", "Colors", "Contour", "Distributions", "DocStringExtensions", "FFMPEG", "FileIO", "FixedPointNumbers", "Formatting", "FreeType", "FreeTypeAbstraction", "GeometryBasics", "GridLayoutBase", "ImageIO", "IntervalSets", "Isoband", "KernelDensity", "LaTeXStrings", "LinearAlgebra", "MakieCore", "Markdown", "Match", "MathTeXEngine", "Observables", "OffsetArrays", "Packing", "PlotUtils", "PolygonOps", "Printf", "Random", "RelocatableFolders", "Serialization", "Showoff", "SignedDistanceFields", "SparseArrays", "StaticArrays", "Statistics", "StatsBase", "StatsFuns", "StructArrays", "UnicodeFun"]
git-tree-sha1 = "8222fe4310820801c6590256b0df7f83bfa78c1a"
uuid = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a"
version = "0.16.2"
[[deps.MakieCore]]
deps = ["Observables"]
git-tree-sha1 = "c5fb1bfac781db766f9e4aef96adc19a729bc9b2"
uuid = "20f20a25-4f0e-4fdf-b5d1-57303727442b"
version = "0.2.1"
[[deps.MappedArrays]]
git-tree-sha1 = "e8b359ef06ec72e8c030463fe02efe5527ee5142"
uuid = "dbb5928d-eab1-5f90-85c2-b9b0edb7c900"
version = "0.4.1"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.Match]]
git-tree-sha1 = "1d9bc5c1a6e7ee24effb93f175c9342f9154d97f"
uuid = "7eb4fadd-790c-5f42-8a69-bfa0b872bfbf"
version = "1.2.0"
[[deps.MathOptInterface]]
deps = ["BenchmarkTools", "CodecBzip2", "CodecZlib", "JSON", "LinearAlgebra", "MutableArithmetics", "OrderedCollections", "Printf", "SparseArrays", "Test", "Unicode"]
git-tree-sha1 = "38062215a56109442d4ec25a0a2970cbfef55bbc"
uuid = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
version = "0.10.7"
[[deps.MathProgBase]]
deps = ["LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "9abbe463a1e9fc507f12a69e7f29346c2cdc472c"
uuid = "fdba3010-5040-5b88-9595-932c9decdf73"
version = "0.7.8"
[[deps.MathTeXEngine]]
deps = ["AbstractTrees", "Automa", "DataStructures", "FreeTypeAbstraction", "GeometryBasics", "LaTeXStrings", "REPL", "RelocatableFolders", "Test"]
git-tree-sha1 = "70e733037bbf02d691e78f95171a1fa08cdc6332"
uuid = "0a4f8689-d25c-4efe-a92b-7142dfc1aa53"
version = "0.2.1"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
version = "2.28.0+0"
[[deps.Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.0.2"
[[deps.MixedModels]]
deps = ["Arrow", "DataAPI", "Distributions", "GLM", "JSON3", "LazyArtifacts", "LinearAlgebra", "Markdown", "NLopt", "PooledArrays", "ProgressMeter", "Random", "SparseArrays", "StaticArrays", "Statistics", "StatsBase", "StatsFuns", "StatsModels", "StructTypes", "Tables"]
git-tree-sha1 = "173c9a62d9a5a29ba7db37fd12d60bf0aab6757a"
uuid = "ff71e718-51f3-5ec2-a782-8ffcbfa3c316"
version = "4.6.0"
[[deps.MixedModelsPermutations]]
deps = ["BlockDiagonals", "LinearAlgebra", "MixedModels", "Random", "SparseArrays", "StaticArrays", "Statistics", "StatsBase", "StatsModels", "Tables"]
git-tree-sha1 = "841e53d597f79846e99e3d9923452c6d14219ed7"
uuid = "647c4018-d7ef-4d03-a0cc-8889a722319e"
version = "0.1.3"
[[deps.MixedModelsSim]]
deps = ["LinearAlgebra", "MixedModels", "PooledArrays", "PrettyTables", "Random", "Statistics", "Tables"]
git-tree-sha1 = "96ce9a3dd9499fd679a4ffd494d339d50248da0e"
uuid = "d5ae56c5-23ca-4a1f-b505-9fc4796fc1fe"
version = "0.2.6"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.Mocking]]
deps = ["Compat", "ExprTools"]
git-tree-sha1 = "29714d0a7a8083bba8427a4fbfb00a540c681ce7"
uuid = "78c3b35d-d492-501b-9361-3d52fe80e533"
version = "0.7.3"
[[deps.MosaicViews]]
deps = ["MappedArrays", "OffsetArrays", "PaddedViews", "StackViews"]
git-tree-sha1 = "b34e3bc3ca7c94914418637cb10cc4d1d80d877d"
uuid = "e94cdb99-869f-56ef-bcf0-1ae2bcbe0389"
version = "0.3.3"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
version = "2022.2.1"
[[deps.MutableArithmetics]]
deps = ["LinearAlgebra", "SparseArrays", "Test"]
git-tree-sha1 = "73deac2cbae0820f43971fad6c08f6c4f2784ff2"
uuid = "d8a4904e-b15c-11e9-3269-09a3773c0cb0"
version = "0.3.2"
[[deps.NLopt]]
deps = ["MathOptInterface", "MathProgBase", "NLopt_jll"]
git-tree-sha1 = "f115030b9325ca09ef1619ba0617b2a64101ce84"
uuid = "76087f3c-5699-56af-9a33-bf431cd00edd"
version = "0.6.4"
[[deps.NLopt_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9b1f15a08f9d00cdb2761dcfa6f453f5d0d6f973"
uuid = "079eb43e-fd8e-5478-9966-2cf3e3edb778"
version = "2.7.1+0"
[[deps.NaNMath]]
git-tree-sha1 = "f755f36b19a5116bb580de457cda0c140153f283"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "0.3.6"
[[deps.Netpbm]]
deps = ["FileIO", "ImageCore"]
git-tree-sha1 = "18efc06f6ec36a8b801b23f076e3c6ac7c3bf153"
uuid = "f09324ee-3d7c-5217-9330-fc30815ba969"
version = "1.0.2"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
version = "1.2.0"
[[deps.Observables]]
git-tree-sha1 = "fe29afdef3d0c4a8286128d4e45cc50621b1e43d"
uuid = "510215fc-4207-5dde-b226-833fc4488ee2"
version = "0.4.0"
[[deps.OffsetArrays]]
deps = ["Adapt"]
git-tree-sha1 = "043017e0bdeff61cfbb7afeb558ab29536bbb5ed"
uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
version = "1.10.8"
[[deps.Ogg_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "887579a3eb005446d514ab7aeac5d1d027658b8f"
uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051"
version = "1.3.5+1"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
version = "0.3.20+0"
[[deps.OpenEXR]]
deps = ["Colors", "FileIO", "OpenEXR_jll"]
git-tree-sha1 = "327f53360fdb54df7ecd01e96ef1983536d1e633"
uuid = "52e1d378-f018-4a11-a4be-720524705ac7"
version = "0.3.2"
[[deps.OpenEXR_jll]]
deps = ["Artifacts", "Imath_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "923319661e9a22712f24596ce81c54fc0366f304"
uuid = "18a262bb-aa17-5467-a713-aee519bc75cb"
version = "3.1.1+0"
[[deps.OpenLibm_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "05823500-19ac-5b8b-9628-191a04bc5112"
version = "0.8.1+0"
[[deps.OpenSSL_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "648107615c15d4e09f7eca16307bc821c1f718d8"
uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95"
version = "1.1.13+0"
[[deps.OpenSpecFun_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.5+0"
[[deps.Opus_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "51a08fb14ec28da2ec7a927c4337e4332c2a4720"
uuid = "91d4177d-7536-5919-b921-800302f37372"
version = "1.3.2+0"
[[deps.OrderedCollections]]
git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.4.1"
[[deps.PCRE_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b2a7af664e098055a7529ad1a900ded962bca488"
uuid = "2f80f16e-611a-54ab-bc61-aa92de5b98fc"
version = "8.44.0+0"
[[deps.PDMats]]
deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"]
git-tree-sha1 = "ee26b350276c51697c9c2d88a072b339f9f03d73"
uuid = "90014a1f-27ba-587c-ab20-58faa44d9150"
version = "0.11.5"
[[deps.PNGFiles]]
deps = ["Base64", "CEnum", "ImageCore", "IndirectArrays", "OffsetArrays", "libpng_jll"]
git-tree-sha1 = "6d105d40e30b635cfed9d52ec29cf456e27d38f8"
uuid = "f57f5aa1-a3ce-4bc8-8ab9-96f992907883"
version = "0.3.12"
[[deps.Packing]]
deps = ["GeometryBasics"]
git-tree-sha1 = "1155f6f937fa2b94104162f01fa400e192e4272f"
uuid = "19eb6ba3-879d-56ad-ad62-d5c202156566"
version = "0.4.2"
[[deps.PaddedViews]]
deps = ["OffsetArrays"]
git-tree-sha1 = "03a7a85b76381a3d04c7a1656039197e70eda03d"
uuid = "5432bcbf-9aad-5242-b902-cca2824c8663"
version = "0.5.11"
[[deps.Pango_jll]]
deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "FriBidi_jll", "Glib_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9bc1871464b12ed19297fbc56c4fb4ba84988b0d"
uuid = "36c8627f-9965-5494-a995-c6b170f724f3"
version = "1.47.0+0"
[[deps.Parsers]]
deps = ["Dates"]
git-tree-sha1 = "92f91ba9e5941fc781fecf5494ac1da87bdac775"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.2.0"
[[deps.Pixman_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b4f5d02549a10e20780a24fce72bea96b6329e29"
uuid = "30392449-352a-5448-841d-b1acce4e97dc"
version = "0.40.1+0"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
version = "1.8.0"
[[deps.PkgBenchmark]]
deps = ["BenchmarkTools", "Dates", "InteractiveUtils", "JSON", "LibGit2", "Logging", "Pkg", "Printf", "TerminalLoggers", "UUIDs"]
git-tree-sha1 = "e4a10b7cdb7ec836850e43a4cee196f4e7b02756"
uuid = "32113eaa-f34f-5b0d-bd6c-c81e245fc73d"
version = "0.2.12"
[[deps.PkgVersion]]
deps = ["Pkg"]
git-tree-sha1 = "a7a7e1a88853564e551e4eba8650f8c38df79b37"
uuid = "eebad327-c553-4316-9ea0-9fa01ccd7688"
version = "0.1.1"
[[deps.PlotUtils]]
deps = ["ColorSchemes", "Colors", "Dates", "Printf", "Random", "Reexport", "Statistics"]
git-tree-sha1 = "6f1b25e8ea06279b5689263cc538f51331d7ca17"
uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043"
version = "1.1.3"
[[deps.PolygonOps]]
git-tree-sha1 = "77b3d3605fc1cd0b42d95eba87dfcd2bf67d5ff6"
uuid = "647866c9-e3ac-4575-94e7-e3d426903924"
version = "0.1.2"
[[deps.Polynomials]]
deps = ["Intervals", "LinearAlgebra", "MutableArithmetics", "RecipesBase"]
git-tree-sha1 = "f184bc53e9add8c737e50fa82885bc3f7d70f628"
uuid = "f27b6e38-b328-58d1-80ce-0feddd5e7a45"
version = "2.0.24"
[[deps.PooledArrays]]
deps = ["DataAPI", "Future"]
git-tree-sha1 = "db3a23166af8aebf4db5ef87ac5b00d36eb771e2"
uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720"
version = "1.4.0"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "2cf929d64681236a2e074ffafb8d568733d2e6af"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.2.3"
[[deps.PrettyTables]]
deps = ["Crayons", "Formatting", "Markdown", "Reexport", "Tables"]
git-tree-sha1 = "dfb54c4e414caa595a1f2ed759b160f5a3ddcba5"
uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
version = "1.3.1"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.Profile]]
deps = ["Printf"]
uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79"
[[deps.ProgressLogging]]
deps = ["Logging", "SHA", "UUIDs"]
git-tree-sha1 = "80d919dee55b9c50e8d9e2da5eeafff3fe58b539"
uuid = "33c8b6b6-d38a-422a-b730-caa89a2f386c"
version = "0.1.4"
[[deps.ProgressMeter]]
deps = ["Distributed", "Printf"]
git-tree-sha1 = "afadeba63d90ff223a6a48d2009434ecee2ec9e8"
uuid = "92933f4c-e287-5a05-a399-4b506db050ca"
version = "1.7.1"
[[deps.PyCall]]
deps = ["Conda", "Dates", "Libdl", "LinearAlgebra", "MacroTools", "Serialization", "VersionParsing"]
git-tree-sha1 = "71fd4022ecd0c6d20180e23ff1b3e05a143959c2"
uuid = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
version = "1.93.0"
[[deps.PyMNE]]
deps = ["PyCall"]
git-tree-sha1 = "b3caa6ea95490974465487d54fc1e62a094bad8e"
uuid = "6c5003b2-cbe8-491c-a0d1-70088e6a0fd6"
version = "0.1.2"
[[deps.QOI]]
deps = ["ColorTypes", "FileIO", "FixedPointNumbers"]
git-tree-sha1 = "18e8f4d1426e965c7b532ddd260599e1510d26ce"
uuid = "4b34888f-f399-49d4-9bb3-47ed5cae4e65"
version = "1.0.0"
[[deps.QuadGK]]
deps = ["DataStructures", "LinearAlgebra"]
git-tree-sha1 = "78aadffb3efd2155af139781b8a8df1ef279ea39"
uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc"
version = "2.4.2"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Ratios]]
deps = ["Requires"]
git-tree-sha1 = "01d341f502250e81f6fec0afe662aa861392a3aa"
uuid = "c84ed2f1-dad5-54f0-aa8e-dbefe2724439"
version = "0.4.2"
[[deps.RecipesBase]]
git-tree-sha1 = "6bf3f380ff52ce0832ddd3a2a7b9538ed1bcca7d"
uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
version = "1.2.1"
[[deps.Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[deps.RelocatableFolders]]
deps = ["SHA", "Scratch"]
git-tree-sha1 = "cdbd3b1338c72ce29d9584fdbe9e9b70eeb5adca"
uuid = "05181044-ff0b-4ac5-8273-598c1e38db00"
version = "0.1.3"
[[deps.Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.3.0"
[[deps.Richardson]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "e03ca566bec93f8a3aeb059c8ef102f268a38949"
uuid = "708f8203-808e-40c0-ba2d-98a6953ed40d"
version = "1.4.0"
[[deps.Rmath]]
deps = ["Random", "Rmath_jll"]
git-tree-sha1 = "bf3188feca147ce108c76ad82c2792c57abe7b1f"
uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa"
version = "0.7.0"
[[deps.Rmath_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "68db32dff12bb6127bac73c209881191bf0efbb7"
uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f"
version = "0.3.0+0"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
version = "0.7.0"
[[deps.SIMD]]
git-tree-sha1 = "39e3df417a0dd0c4e1f89891a281f82f5373ea3b"
uuid = "fdea26ae-647d-5447-a871-4b548cad5224"
version = "3.4.0"
[[deps.ScanByte]]
deps = ["Libdl", "SIMD"]
git-tree-sha1 = "9cc2955f2a254b18be655a4ee70bc4031b2b189e"
uuid = "7b38b023-a4d7-4c5e-8d43-3f3097f304eb"
version = "0.3.0"
[[deps.Scratch]]
deps = ["Dates"]
git-tree-sha1 = "0b4b7f1393cff97c33891da2a0bf69c6ed241fda"
uuid = "6c6a2e73-6563-6170-7368-637461726353"
version = "1.1.0"
[[deps.SentinelArrays]]
deps = ["Dates", "Random"]
git-tree-sha1 = "15dfe6b103c2a993be24404124b8791a09460983"
uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c"
version = "1.3.11"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[deps.ShiftedArrays]]
git-tree-sha1 = "22395afdcf37d6709a5a0766cc4a5ca52cb85ea0"
uuid = "1277b4bf-5013-50f5-be3d-901d8477a67a"
version = "1.0.0"
[[deps.Showoff]]
deps = ["Dates", "Grisu"]
git-tree-sha1 = "91eddf657aca81df9ae6ceb20b959ae5653ad1de"
uuid = "992d4aef-0814-514b-bc4d-f2e9a6c4116f"
version = "1.0.3"
[[deps.SignedDistanceFields]]
deps = ["Random", "Statistics", "Test"]
git-tree-sha1 = "d263a08ec505853a5ff1c1ebde2070419e3f28e9"
uuid = "73760f76-fbc4-59ce-8f25-708e95d2df96"
version = "0.4.0"
[[deps.Sixel]]
deps = ["Dates", "FileIO", "ImageCore", "IndirectArrays", "OffsetArrays", "REPL", "libsixel_jll"]
git-tree-sha1 = "8fb59825be681d451c246a795117f317ecbcaa28"
uuid = "45858cf5-a6b0-47a3-bbea-62219f50df47"
version = "0.1.2"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SortingAlgorithms]]
deps = ["DataStructures"]
git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "1.0.1"
[[deps.SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.SpecialFunctions]]
deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"]
git-tree-sha1 = "e08890d19787ec25029113e88c34ec20cac1c91e"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "2.0.0"
[[deps.StackViews]]
deps = ["OffsetArrays"]
git-tree-sha1 = "46e589465204cd0c08b4bd97385e4fa79a0c770c"
uuid = "cae243ae-269e-4f55-b966-ac2d0dc13c15"
version = "0.1.1"
[[deps.Static]]
deps = ["IfElse"]
git-tree-sha1 = "b4912cd034cdf968e06ca5f943bb54b17b97793a"
uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3"
version = "0.5.1"
[[deps.StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"]
git-tree-sha1 = "2884859916598f974858ff01df7dfc6c708dd895"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "1.3.3"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[deps.StatsAPI]]
git-tree-sha1 = "d88665adc9bcf45903013af0982e2fd05ae3d0a6"
uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0"
version = "1.2.0"
[[deps.StatsBase]]
deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"]
git-tree-sha1 = "51383f2d367eb3b444c961d485c565e4c0cf4ba0"
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
version = "0.33.14"
[[deps.StatsFuns]]
deps = ["ChainRulesCore", "InverseFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"]
git-tree-sha1 = "f35e1879a71cca95f4826a14cdbf0b9e253ed918"
uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c"
version = "0.9.15"
[[deps.StatsModels]]
deps = ["DataAPI", "DataStructures", "LinearAlgebra", "Printf", "REPL", "ShiftedArrays", "SparseArrays", "StatsBase", "StatsFuns", "Tables"]
git-tree-sha1 = "677488c295051568b0b79a77a8c44aa86e78b359"
uuid = "3eaba693-59b7-5ba5-a881-562e759f1c8d"
version = "0.6.28"
[[deps.StructArrays]]
deps = ["Adapt", "DataAPI", "StaticArrays", "Tables"]
git-tree-sha1 = "d21f2c564b21a202f4677c0fba5b5ee431058544"
uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a"
version = "0.6.4"
[[deps.StructTypes]]
deps = ["Dates", "UUIDs"]
git-tree-sha1 = "d24a825a95a6d98c385001212dc9020d609f2d4f"
uuid = "856f2bd8-1eba-4b0a-8007-ebc267875bd4"
version = "1.8.1"
[[deps.SuiteSparse]]
deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"]
uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
version = "1.0.0"
[[deps.TableTraits]]
deps = ["IteratorInterfaceExtensions"]
git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39"
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
version = "1.0.1"
[[deps.Tables]]
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"]
git-tree-sha1 = "bb1064c9a84c52e277f1096cf41434b675cd368b"
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
version = "1.6.1"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
version = "1.10.0"
[[deps.TensorCore]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "1feb45f88d133a655e001435632f019a9a1bcdb6"
uuid = "62fd8b95-f654-4bbd-a8a5-9c27f68ccd50"
version = "0.1.1"
[[deps.TerminalLoggers]]
deps = ["LeftChildRightSiblingTrees", "Logging", "Markdown", "Printf", "ProgressLogging", "UUIDs"]
git-tree-sha1 = "62846a48a6cd70e63aa29944b8c4ef704360d72f"
uuid = "5d786b92-1e48-4d6f-9151-6b4477ca9bed"
version = "0.1.5"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.TiffImages]]
deps = ["ColorTypes", "DataStructures", "DocStringExtensions", "FileIO", "FixedPointNumbers", "IndirectArrays", "Inflate", "OffsetArrays", "PkgVersion", "ProgressMeter", "UUIDs"]
git-tree-sha1 = "991d34bbff0d9125d93ba15887d6594e8e84b305"
uuid = "731e570b-9d59-4bfa-96dc-6df516fadf69"
version = "0.5.3"
[[deps.TimeZones]]
deps = ["Dates", "Downloads", "InlineStrings", "LazyArtifacts", "Mocking", "Printf", "RecipesBase", "Serialization", "Unicode"]
git-tree-sha1 = "0f1017f68dc25f1a0cb99f4988f78fe4f2e7955f"
uuid = "f269a46b-ccf7-5d73-abea-4c690281aa53"
version = "1.7.1"
[[deps.TimerOutputs]]
deps = ["ExprTools", "Printf"]
git-tree-sha1 = "97e999be94a7147d0609d0b9fc9feca4bf24d76b"
uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
version = "0.5.15"
[[deps.TranscodingStreams]]
deps = ["Random", "Test"]
git-tree-sha1 = "216b95ea110b5972db65aa90f88d8d89dcb8851c"
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
version = "0.9.6"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unfold]]
deps = ["BSplines", "CategoricalArrays", "DSP", "DataFrames", "Distributions", "DocStringExtensions", "Effects", "GLM", "IncompleteLU", "IterativeSolvers", "LinearAlgebra", "MLBase", "Missings", "MixedModels", "MixedModelsPermutations", "MixedModelsSim", "PkgBenchmark", "ProgressMeter", "PyMNE", "Random", "SparseArrays", "StaticArrays", "Statistics", "StatsBase", "StatsModels", "Tables", "Test", "TimerOutputs"]
git-tree-sha1 = "6ed61fa9736d2f214231f28608b13bac2b4d6620"
uuid = "181c99d8-e21b-4ff3-b70b-c233eddec679"
version = "0.3.6"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.UnicodeFun]]
deps = ["REPL"]
git-tree-sha1 = "53915e50200959667e78a92a418594b428dffddf"
uuid = "1cfade01-22cf-5700-b092-accc4b62d6e1"
version = "0.4.1"
[[deps.VersionParsing]]
git-tree-sha1 = "58d6e80b4ee071f5efd07fda82cb9fbe17200868"
uuid = "81def892-9a0e-5fdd-b105-ffc91e053289"
version = "1.3.0"
[[deps.WoodburyMatrices]]
deps = ["LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "de67fa59e33ad156a590055375a30b23c40299d3"
uuid = "efce3f68-66dc-5838-9240-27a6d6f5f9b6"
version = "0.5.5"
[[deps.XML2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "1acf5bdf07aa0907e0a37d3718bb88d4b687b74a"
uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a"
version = "2.9.12+0"
[[deps.XSLT_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "Pkg", "XML2_jll", "Zlib_jll"]
git-tree-sha1 = "91844873c4085240b95e795f692c4cec4d805f8a"
uuid = "aed1982a-8fda-507f-9586-7b0439959a61"
version = "1.1.34+0"
[[deps.Xorg_libX11_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll", "Xorg_xtrans_jll"]
git-tree-sha1 = "5be649d550f3f4b95308bf0183b82e2582876527"
uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc"
version = "1.6.9+4"
[[deps.Xorg_libXau_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "4e490d5c960c314f33885790ed410ff3a94ce67e"
uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec"
version = "1.0.9+4"
[[deps.Xorg_libXdmcp_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "4fe47bd2247248125c428978740e18a681372dd4"
uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05"
version = "1.1.3+4"
[[deps.Xorg_libXext_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"]
git-tree-sha1 = "b7c0aa8c376b31e4852b360222848637f481f8c3"
uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3"
version = "1.3.4+4"
[[deps.Xorg_libXrender_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"]
git-tree-sha1 = "19560f30fd49f4d4efbe7002a1037f8c43d43b96"
uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa"
version = "0.9.10+4"
[[deps.Xorg_libpthread_stubs_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "6783737e45d3c59a4a4c4091f5f88cdcf0908cbb"
uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74"
version = "0.1.0+3"
[[deps.Xorg_libxcb_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"]
git-tree-sha1 = "daf17f441228e7a3833846cd048892861cff16d6"
uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b"
version = "1.13.0+3"
[[deps.Xorg_xtrans_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "79c31e7844f6ecf779705fbc12146eb190b7d845"
uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10"
version = "1.4.0+3"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.12+3"
[[deps.Zstd_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "cc4bf3fdde8b7e3e9fa0351bdeedba1cf3b7f6e6"
uuid = "3161d3a3-bdf6-5164-811a-617609db77b4"
version = "1.5.0+0"
[[deps.isoband_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "a1ac99674715995a536bbce674b068ec1b7d893d"
uuid = "9a68df92-36a6-505f-a73e-abb412b6bfb4"
version = "0.2.2+0"
[[deps.libass_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "5982a94fcba20f02f42ace44b9894ee2b140fe47"
uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0"
version = "0.15.1+0"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl", "OpenBLAS_jll"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
version = "5.1.1+0"
[[deps.libfdk_aac_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "daacc84a041563f965be61859a36e17c4e4fcd55"
uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280"
version = "2.0.2+0"
[[deps.libpng_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "94d180a6d2b5e55e447e2d27a29ed04fe79eb30c"
uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f"
version = "1.6.38+0"
[[deps.libsixel_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "78736dab31ae7a53540a6b752efc61f77b304c5b"
uuid = "075b6546-f08a-558a-be8f-8157d0f608a5"
version = "1.8.6+1"
[[deps.libvorbis_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"]
git-tree-sha1 = "b910cb81ef3fe6e78bf6acee440bda86fd6ae00c"
uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a"
version = "1.3.7+1"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
version = "1.48.0+0"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
version = "17.4.0+0"
[[deps.x264_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "4fea590b89e6ec504593146bf8b988b2c00922b2"
uuid = "1270edf5-f2f9-52d2-97e9-ab00b5d0237a"
version = "2021.5.5+0"
[[deps.x265_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "ee567a171cce03570d77ad3a43e90218e38937a9"
uuid = "dfaa095f-4041-5dcd-9319-2fabd8486b76"
version = "3.5.0+0"
"""
# βββ‘ Cell order:
# β β1eec25bc-8040-11ec-024c-c54939c335ac
# β βf926f2a9-d188-4c65-80c7-0e500d9c3b9a
# β β248e07ea-bf5b-4c88-97c6-e29d0576bdaa
# β βfea2e408-baa5-426c-a125-6ef68953abce
# β βf30a9476-b884-44e4-b2e9-b6ca722e52da
# β β144b86fc-b860-4f12-9250-0d7926e68cc5
# β β8633dc2f-cde4-45ca-8378-d4703804d02f
# β β71e73918-f6c5-4f48-adf2-74875c32833c
# ββ00000000-0000-0000-0000-000000000001
# ββ00000000-0000-0000-0000-000000000002
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 2199 | module UnfoldKrylovExt
import Krylov
using CUDA, CUDA.CUSPARSE, SparseArrays
using Unfold
using Missings
using ProgressMeter
"""
Alternative implementation of LSMR using Krylov.jl
The fastest solver (x30 in some cases) with GPU = true
To activate you have to do:
> using Krylov,CUDA
Difference to solver_default: No suport for per-channel missings. If one sample is missing in any channel, whole channel is removed due a lack of support for Missings in Krylov.
"""
function solver_krylov(
X,
data::AbstractArray{T,2};
GPU = false,
history = true,
multithreading = GPU ? false : true,
show_progress = true,
stderror = false,
) where {T<:Union{Missing,<:Number}}
@assert !(multithreading && GPU) "currently no support for both GPU and multi-threading"
minfo = Array{Any,1}(undef, size(data, 1))
ix = any(@. !ismissing(data); dims = 1)[1, :]
X_loop = disallowmissing(X[ix, :])
data = disallowmissing(view(data, :, ix))
if GPU
X_loop = CuSparseMatrixCSC(X_loop)
lsmr_solver = Krylov.LsmrSolver(size(X_loop)..., CuVector{Float64})
data = CuArray(data)
else
lsmr_solver = Krylov.LsmrSolver(size(X_loop)..., Vector{Float64})
end
p = Progress(size(data, 1); enabled = show_progress)
beta = zeros(T, size(data, 1), size(X, 2)) # had issues with undef
Unfold.@maybe_threads multithreading for ch = 1:size(data, 1)
@debug ch
data_loop = view(data, ch, :)
# use the previous channel as a starting point
#ch == 1 || Krylov.warm_start!(lsmr_solver,beta[ch-1,:])#copyto!(view(beta, ch, :), view(beta, ch-1, :))
Krylov.solve!(lsmr_solver, X_loop, data_loop; history = history)
beta[ch, :] = Vector(lsmr_solver.x)
#beta[ch,:],h = Krylov.lsmr(X_loop,data_loop,history=history)
minfo[ch] = deepcopy(lsmr_solver.stats)
next!(p)
end
finish!(p)
if stderror
stderror = Unfold.calculate_stderror(X, data, beta)
modelfit = Unfold.LinearModelFit(beta, ["krylov_lsmr", minfo], stderror)
else
modelfit = Unfold.LinearModelFit(beta, ["krylov_lsmr", minfo])
end
return modelfit
end
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 1609 | module UnfoldRobustModelsExt
using Unfold
using RobustModels
using ProgressMeter
using Missings
function solver_robust(
X,
data::AbstractArray{T,3};
estimator = MEstimator{TukeyLoss}(),
rlmOptions = (initial_scale = :mad,),
) where {T<:Union{Missing,<:Number}}
#beta = zeros(Union{Missing,Number},size(data, 1), size(data, 2), size(X, 2))
beta = zeros(T, size(data, 1), size(data, 2), size(X, 2))
@showprogress 0.1 for ch = 1:size(data, 1)
for t = 1:size(data, 2)
#@debug("$(ndims(data,)),$t,$ch")
dd = view(data, ch, t, :)
ix = @. !ismissing(dd)
# init beta
#if ch == 1 && t==1
#elseif ch > 1 && t == 1
# copyto!(view(beta, ch, 1,:), view(beta, ch-1, 1,:))
#else
# copyto!(view(beta, ch,t, :), view(beta, ch,t-1, :))
#end
X_local = disallowmissing((X[ix, :])) # view crashes robust model here. XXX follow up once
# https://github.com/JuliaStats/GLM.jl/issues/470 received a satisfying result
y_local = disallowmissing(@view(data[ch, t, ix]))
# if not specified otherwise
# this results in strange regularizing effects
#if :initial_coef β keys(rlmOptions)
# rlmOptions = merge(rlmOptions,(initial_coef=@view(beta[ch,t,:]),))
#end
m = rlm(X_local, y_local, estimator; rlmOptions...)
beta[ch, t, :] .= coef(m)
end
end
modelfit = Unfold.LinearModelFit(beta, ["solver_robust"])
return modelfit
end
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 733 | module UnfoldBSplineKitExt
using Unfold
using BSplineKit
using StatsModels
import StatsModels: termvars, width, coefnames, modelcols, apply_schema
import Base: show
using Statistics
using DataFrames
using Effects
using SparseArrays
import Unfold: AbstractSplineTerm
include("basisfunctions.jl")
include("splinepredictors.jl")
## Effects
Effects._trmequal(t1::AbstractSplineTerm, t2::AbstractTerm) = Effects._symequal(t1.term, t2)
Effects._trmequal(t1::AbstractSplineTerm, t2::AbstractSplineTerm) =
Effects._symequal(t1.term, t2.term)
Effects._trmequal(t1::AbstractTerm, t2::AbstractSplineTerm) = Effects._symequal(t1, t2.term)
Effects._symequal(t1::AbstractTerm, t2::AbstractSplineTerm) = Effects._symequal(t1, t2.term)
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 972 |
splinebasis(; Ο, sfreq, nsplines, name) = Unfold.splinebasis(Ο, sfreq, nsplines, name)
splinebasis(Ο, sfreq, nsplines) =
Unfold.splinebasis(Ο, sfreq, nsplines, "basis_" * string(rand(1:10000)))
function splinebasis(Ο, sfreq, nsplines, name::String)
Ο = Unfold.round_times(Ο, sfreq)
times = range(Ο[1], stop = Ο[2], step = 1 ./ sfreq)
kernel = e -> splinekernel(e, times, nsplines - 2)
shift_onset = Int64(floor(Ο[1] * sfreq))
colnames = spl_breakpoints(times, nsplines)
return SplineBasis(kernel, colnames, times, name, shift_onset)
end
function spl_breakpoints(times, nsplines)
# calculate the breakpoints, evenly spaced
return collect(range(minimum(times), stop = maximum(times), length = nsplines))
end
function splinekernel(e, times, nsplines)
breakpoints = spl_breakpoints(times, nsplines)
basis = BSplineKit.BSplineBasis(BSplineOrder(4), breakpoints) # 4= cubic
return sparse(splFunction(times, basis))
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 6896 | const bsPLINE_CONTEXT = Any
mutable struct BSplineTerm{T,D} <: AbstractSplineTerm
term::T
df::D
order::Int
breakpoints::Vector
end
mutable struct PeriodicBSplineTerm{T,D} <: AbstractSplineTerm
term::T
df::D
order::Int
low::Real
high::Real
breakpoints::Vector
end
"""
generate a cubic spline basis function set, with df-1 breakpoints fixed to the quantiles of x
minus one due to the intercept.
Note: that due to the boundary condition (`natural`) spline, we repeat the boundary knots to each side `order` times, enforcing smoothness there - this is done within BSplineKit
"""
function genSpl_breakpoints(p::AbstractSplineTerm, x)
p = range(0.0, length = p.df - 2, stop = 1.0)
breakpoints = quantile(x, p)
return breakpoints
end
"""
In the circular case, we do not use quantiles, (circular quantiles are difficult)
"""
function genSpl_breakpoints(p::PeriodicBSplineTerm, x)
# periodic case -
return range(p.low, p.high, length = p.df + 2)
end
"""
function that fills in an Matrix `large` according to the evaluated values in `x` with the designmatrix values for the spline.
Two separate functions are needed here, as the periodicBSplineBasis implemented in BSplineKits is a bit weird, that it requires to evalute "negative" knots + knots above the top-boundary and fold them down
"""
function spl_fillMat!(bs::PeriodicBSplineBasis, large::Matrix, x::AbstractVector)
# wrap values around the boundaries
bnds = boundaries(bs)
x = deepcopy(x)
x = mod.(x .- bnds[1], period(bs)) .+ bnds[1]
for k = -1:length(bs)+2
ix = basis_to_array_index(bs, axes(large, 2), k)
large[:, ix] .+= bs[k](x)
end
return large
end
function spl_fillMat!(bs::BSplineBasis, large::AbstractMatrix, x::AbstractVector)
for k = 1:length(bs)
large[:, k] .+= bs[k](x)
end
bnds = boundaries(bs)
ix = x .< bnds[1] .|| x .> bnds[2]
if sum(ix) != 0
@warn(
"spline prediction outside of possible range putting those values to missing.\n `findfirst(Out-Of-Bound-value)` is x=$(x[findfirst(ix)]), with bounds: $bnds"
)
large = allowmissing(large)
large[ix, :] .= missing
end
return large
end
"""
splFunction(x::AbstractVector,bs::AbstractBSplineTerm)
_splFunction(x::AbstractVector,bs::AbstractBSplineTerm)
evaluate a spline basisset `basis` at `x`. Automatically promotes `x` to Float64 if not AbstractFloat
returns `Missing` if x is outside of the basis set
"""
function _splFunction(x::AbstractVector{T}, bs) where {T<:AbstractFloat}
@debug "spl" typeof(x)
# init array
large = zeros(T, length(x), length(bs))
# fill it with spline values
large = spl_fillMat!(bs, large, x)
return large
end
_splFunction(x::AbstractVector, bs) = _splFunction(Float64.(x), bs)
splFunction(x, bs) = _splFunction(x, bs)
function splFunction(x::AbstractVector, spl::PeriodicBSplineTerm)
basis = PeriodicBSplineBasis(BSplineOrder(spl.order), deepcopy(spl.breakpoints))
_splFunction(x, basis)
end
function splFunction(x::AbstractVector, spl::BSplineTerm)
basis = BSplineKit.BSplineBasis(BSplineOrder(spl.order), deepcopy(spl.breakpoints))
_splFunction(x, basis)
end
#spl(x,df) = Splines2.bs(x,df=df,intercept=true) # assumes intercept
Unfold.spl(x, df) = 0 # fallback
# make a nice call if the function is called via REPL
Unfold.spl(t::Symbol, d::Int) = BSplineTerm(term(t), d, 4, [])
Unfold.circspl(t::Symbol, d::Int, low, high) =
PeriodicBSplineTerm(term(t), term(d), 4, low, high)
"""
Construct a BSplineTerm, if breakpoints/basis are not defined yet, put to `nothing`
"""
function BSplineTerm(term, df, order = 4)
@assert df > 3 "Minimal degrees of freedom has to be 4"
BSplineTerm(term, df, order, [])
end
function BSplineTerm(term, df::ConstantTerm, order = 4)
BSplineTerm(term, df.n, order, [])
end
function PeriodicBSplineTerm(term, df, low, high)
PeriodicBSplineTerm(term, df, 4, low, high)
end
function PeriodicBSplineTerm(
term::AbstractTerm,
df::ConstantTerm,
order,
low::ConstantTerm,
high::ConstantTerm,
breakvec,
)
PeriodicBSplineTerm(term, df.n, order, low.n, high.n, breakvec)
end
function PeriodicBSplineTerm(term, df, order, low, high)
PeriodicBSplineTerm(term, df, order, low, high, [])
end
Base.show(io::IO, p::BSplineTerm) = print(io, "spl($(p.term), $(p.df))")
Base.show(io::IO, p::PeriodicBSplineTerm) =
print(io, "circspl($(p.term), $(p.df),$(p.low):$(p.high))")
function StatsModels.apply_schema(
t::FunctionTerm{typeof(Unfold.spl)},
sch::StatsModels.Schema,
Mod::Type{<:bsPLINE_CONTEXT},
)
@debug "BSpline spl Schema"
ar = nothing
try
ar = t.args
catch
ar = t.args_parsed # statsmodels < 0.7
end
apply_schema(BSplineTerm(ar...), sch, Mod)
end
function StatsModels.apply_schema(
t::FunctionTerm{typeof(Unfold.circspl)},
sch::StatsModels.Schema,
Mod::Type{<:bsPLINE_CONTEXT},
)
ar = nothing
try
ar = t.args
catch
ar = t.args_parsed # statsmodels < 0.7
end
apply_schema(PeriodicBSplineTerm(ar...), sch, Mod)
end
function StatsModels.apply_schema(
t::AbstractSplineTerm,
sch::StatsModels.Schema,
Mod::Type{<:bsPLINE_CONTEXT},
)
@debug "BSpline Inner schema"
term = apply_schema(t.term, sch, Mod)
isa(term, ContinuousTerm) ||
throw(ArgumentError("BSplineTerm only works with continuous terms (got $term)"))
if isa(t.df, ConstantTerm)
try
# in case of ConstantTerm of Γffects.jl``
t.df.n
catch
throw(ArgumentError("BSplineTerm df must be a number (got $(t.df))"))
end
end
return construct_spline(t, term)
end
construct_spline(t::BSplineTerm, term) = BSplineTerm(term, t.df, t.order)
construct_spline(t::PeriodicBSplineTerm, term) =
PeriodicBSplineTerm(term, t.df, t.order, t.low, t.high)
function StatsModels.modelcols(p::AbstractSplineTerm, d::NamedTuple)
col = modelcols(p.term, d)
if isempty(p.breakpoints)
p.breakpoints = genSpl_breakpoints(p, col)
end
#basis = genSpl_basis(pp.breakpoints,p.order)#Splines2.bs_(col,df=p.df+1,intercept=true)
#X = Splines2.bs(col, df=p.df+1,intercept=true)
X = splFunction(col, p)
# remove middle X to negate intercept = true, generating a pseudo effect code
return X[:, Not(Int(ceil(end / 2)))]
end
#StatsModels.terms(p::BSplineTerm) = terms(p.term)
StatsModels.termvars(p::AbstractSplineTerm) = StatsModels.termvars(p.term)
StatsModels.width(p::AbstractSplineTerm) = p.df - 1
StatsModels.coefnames(p::BSplineTerm) =
"spl(" .* coefnames(p.term) .* "," .* string.(1:p.df-1) .* ")"
StatsModels.coefnames(p::PeriodicBSplineTerm) =
"circspl(" .* coefnames(p.term) .* "," .* string.(1:p.df-1) .* ",$(p.low):$(p.high))"
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 791 | module UnfoldMixedModelsExt
using Unfold
import Unfold: isa_lmm_formula, make_estimate, modelmatrices
using MixedModels
#import MixedModels.FeMat # extended for sparse femats, type piracy => issue on MixedModels.jl github
using StaticArrays # for MixedModels extraction of parametrs (inherited from MixedModels.jl, not strictly needed )
import MixedModels: likelihoodratiotest, ranef
using StatsModels
import StatsModels: fit!, coef, coefnames, modelcols, modelmatrix
using SparseArrays
using DocStringExtensions
using LinearAlgebra # LowerTriangular
using DataFrames
using ProgressMeter
using SimpleTraits
include("typedefinitions.jl")
include("condense.jl")
include("designmatrix.jl")
include("fit.jl")
include("statistics.jl")
include("timeexpandedterm.jl")
include("effects.jl")
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 5157 |
function MixedModels.tidyΟs(
m::Union{UnfoldLinearMixedModel,UnfoldLinearMixedModelContinuousTime},
)
# using MixedModels: AbstractReTerm
t = MixedModels.tidyΟs(modelfit(m))
reorder_tidyΟs(t, Unfold.formulas(m))
end
MixedModels.tidyΞ²(m::Union{UnfoldLinearMixedModel,UnfoldLinearMixedModelContinuousTime}) =
MixedModels.tidyΞ²(modelfit(m))
"""
random_effect_groupings(t::MixedModels.AbstractReTerm)
Returns the random effect grouping term (rhs), similar to coefnames, which returns the left hand sides
"""
random_effect_groupings(t::AbstractTerm) = repeat([nothing], length(t.terms))
random_effect_groupings(t::Unfold.TimeExpandedTerm) =
repeat(random_effect_groupings(t.term), length(Unfold.colnames(t.basisfunction)))
random_effect_groupings(t::MixedModels.AbstractReTerm) =
repeat([t.rhs.sym], length(t.lhs.terms))
random_effect_groupings(f::FormulaTerm) = vcat(random_effect_groupings.(f.rhs)...)
random_effect_groupings(t::Vector) = vcat(random_effect_groupings.(t)...)
"""
reorder_tidyΟs(t, f)
This function reorders a MixedModels.tidyΟs output, according to the formula and not according to the largest RandomGrouping.
"""
function reorder_tidyΟs(t, f)
#@debug typeof(f)
# get the order from the formula, this is the target
f_order = random_effect_groupings(f) # formula order
#@debug f_order
f_order = vcat(f_order...)
#@debug f_order
# find the fixefs
fixef_ix = isnothing.(f_order)
f_order = string.(f_order[.!fixef_ix])
f_name = vcat(coefnames(f)...)[.!fixef_ix]
# get order from tidy object
t_order = [string(i.group) for i in t if i.iter == 1]
t_name = [string(i.column) for i in t if i.iter == 1]
# combine for formula and tidy output the group + the coefname
#@debug f_order
#@debug f_name
f_comb = f_order .* f_name
t_comb = t_order .* t_name
# find for each formula output, the fitting tidy permutation
reorder_ix = Int[]
for f_coef in f_comb
ix = findall(t_comb .== f_coef)
# @debug t_comb, f_coef
@assert length(ix) == 1 "error in reordering of MixedModels - please file a bugreport!"
push!(reorder_ix, ix[1])
end
@assert length(reorder_ix) == length(t_comb)
#@debug reorder_ix
# repeat and build the index for all timepoints
reorder_ix_all = repeat(reorder_ix, length(t) Γ· length(reorder_ix))
for k = 1:length(reorder_ix):length(t)
reorder_ix_all[k:k+length(reorder_ix)-1] .+= (k - 1)
end
return t[reorder_ix_all]
end
"""
Unfold.make_estimate(m::Union{UnfoldLinearMixedModel,UnfoldLinearMixedModelContinuousTime},
)
extracts betas (and sigma's for mixed models) with string grouping indicator
returns as a ch x beta, or ch x time x beta (for mass univariate)
"""
function Unfold.make_estimate(
m::Union{UnfoldLinearMixedModel,UnfoldLinearMixedModelContinuousTime},
)
coefs = coef(m)
estimate = cat(coefs, ranef(m), dims = ndims(coefs))
ranef_group = [x.group for x in MixedModels.tidyΟs(m)]
if ndims(coefs) == 3
group_f =
repeat([nothing], size(coefs, 1), size(coefs, 2), size(coefs, ndims(coefs)))
# reshape to pred x time x chan and then invert to chan x time x pred
ranef_group =
permutedims(reshape(ranef_group, :, size(coefs, 2), size(coefs, 1)), [3 2 1])
stderror_fixef = Unfold.stderror(m)
stderror_ranef = fill(nothing, size(ranef(m)))
stderror = cat(stderror_fixef, stderror_ranef, dims = 3)
else
group_f = repeat([nothing], size(coefs, 1), size(coefs, 2))
# reshape to time x channel
ranef_group = reshape(ranef_group, :, size(coefs, 1))
# permute to channel x time
ranef_group = permutedims(ranef_group, [2, 1])
#@debug size(ranef_group)
#
#ranef_group = repeat(["ranef"], size(coefs, 1), size(ranef(m), 2))
#@debug size(ranef_group)
stderror = fill(nothing, size(estimate))
end
group = cat(group_f, ranef_group, dims = ndims(coefs)) |> Unfold.poolArray
return Float64.(estimate), stderror, group
end
function Unfold.stderror(
m::Union{UnfoldLinearMixedModel,UnfoldLinearMixedModelContinuousTime},
)
return permutedims(
reshape(vcat([[b.se...] for b in modelfit(m).fits]...), reverse(size(coef(m)))),
[3, 2, 1],
)
end
function Unfold.get_coefnames(uf::UnfoldLinearMixedModelContinuousTime)
# special case here, because we have to reorder the random effects to the end, else labels get messed up as we concat (coefs,ranefs)
# coefnames = Unfold.coefnames(formula(uf))
# coefnames(formula(uf)[1].rhs[1])
formulas = Unfold.formulas(uf)
if !isa(formulas, AbstractArray) # in case we have only a single basisfunction
formulas = [formulas]
end
fe_coefnames = vcat([coefnames(f.rhs[1]) for f in formulas]...)
re_coefnames = vcat([coefnames(f.rhs[2:end]) for f in formulas]...)
return vcat(fe_coefnames, re_coefnames)
end
Unfold.modelfit(uf::Union{UnfoldLinearMixedModel,UnfoldLinearMixedModelContinuousTime}) =
uf.modelfit.collection | Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 8465 |
function StatsModels.coefnames(term::RandomEffectsTerm)
coefnames(term.lhs)
end
check_groupsorting(r::MatrixTerm) = check_groupsorting(r.terms)
function check_groupsorting(r::Tuple)
@debug "checking group sorting"
ix = findall(isa.(r, MixedModels.AbstractReTerm))
rhs(x::RandomEffectsTerm) = x.rhs
rhs(x::MixedModels.ZeroCorr) = rhs(x.term)
groupvars = [map(x -> rhs(x).sym, r[ix])...]
@assert groupvars == sort(groupvars) "random effects have to be alphabetically ordered. e.g. (1+a|X) + (1+a|A) is not allowed. Please reorder"
end
function Unfold.unfold_apply_schema(
type::Type{<:Union{<:UnfoldLinearMixedModel,<:UnfoldLinearMixedModelContinuousTime}},
f,
schema,
)
@debug "LMM apply schema"
f_new = apply_schema(f, schema, MixedModels.LinearMixedModel)
check_groupsorting(f_new.rhs)
return f_new
end
function StatsModels.coefnames(term::MixedModels.ZeroCorr)
coefnames(term.term)
end
function lmm_combine_modelmatrices!(Xcomb, X1, X2)
# we have random effects
# combine REMats in single-eventtpe formulas ala y ~ (1|x) + (a|x)
modelmatrix1 = MixedModels._amalgamate([X1.modelmatrix[2:end]...], Float64)
modelmatrix2 = MixedModels._amalgamate([X2.modelmatrix[2:end]...], Float64)
Xcomb = (Xcomb, modelmatrix1..., modelmatrix2...)
# Next we make the ranefs all equal size
equalize_ReMat_lengths!(Xcomb[2:end])
# check if ranefs can be amalgamated. If this fails, then MixedModels tried to amalgamate over different eventtypes and we should throw the warning
# if it success, we have to check if the size before and after is identical. If it is not, it tried to amalgamize over different eventtypes which were of the same length
try
reterms = MixedModels._amalgamate([Xcomb[2:end]...], Float64)
if length(reterms) != length(Xcomb[2:end])
throw("IncompatibleRandomGroupings")
end
catch e
@error "Error, you seem to have two different eventtypes with the same random-effect grouping variable. \n
This is not allowed, you have to rename one. Example:\n
eventA: y~1+(1|item) \n
eventB: y~1+(1|item) \n
This leads to this error. Rename the later one\n
eventB: y~1+(1|itemB) "
throw("IncompatibleRandomGroupings")
end
return Xcomb
end
function change_ReMat_size!(remat::MixedModels.AbstractReMat, m::Integer)
n = m - length(remat.refs) # missing elements
if n < 0
deleteat!(remat.refs, range(m + 1, stop = length(remat.refs)))
remat.adjA = remat.adjA[:, 1:(m+1)]
remat.wtz = remat.wtz[:, 1:(m+1)]
remat.z = remat.z[:, 1:(m+1)]
elseif n > 0
append!(remat.refs, repeat([remat.refs[end]], n))
remat.adjA = [remat.adjA sparse(repeat([0], size(remat.adjA)[1], n))]
remat.wtz = [remat.wtz zeros((size(remat.wtz)[1], n))]
remat.z = [remat.z zeros((size(remat.z)[1], n))]
end
#ReMat{T,S}(remat.trm, refs, levels, cnames, z, wtz, Ξ», inds, adjA, scratch)
end
"""
$(SIGNATURES)
Get the timeranges where the random grouping variable was applied
"""
function get_timeexpanded_random_grouping(tbl_group, tbl_latencies, basisfunction)
ranges = Unfold.get_timeexpanded_time_range.(tbl_latencies, Ref(basisfunction))
end
function equalize_ReMat_lengths!(remats::NTuple{A,MixedModels.AbstractReMat}) where {A}
# find max length
m = maximum([x[1] for x in size.(remats)])
@debug "combining lengths: $m"
# for each reMat
for k in range(1, length = length(remats))
remat = remats[k]
if size(remat)[1] == m
continue
end
# prolong if necessary
change_ReMat_size!(remat, m)
end
end
mutable struct SparseReMat{T,S} <: MixedModels.AbstractReMat{T}
trm::Any
refs::Vector{Int32}
levels::Any
cnames::Vector{String}
z::SparseMatrixCSC{T}
wtz::SparseMatrixCSC{T}
Ξ»::LowerTriangular{T,Matrix{T}}
inds::Vector{Int}
adjA::SparseMatrixCSC{T,Int32}
scratch::Matrix{T}
end
"""
$(SIGNATURES)
This function timeexpands the random effects and generates a ReMat object
"""
function StatsModels.modelcols(
term::Unfold.TimeExpandedTerm{
<:Union{<:RandomEffectsTerm,<:MixedModels.AbstractReTerm},
},
tbl,
)
# exchange this to get ZeroCorr to work
tbl = DataFrame(tbl)
# get the non-timeexpanded reMat
reMat = modelcols(term.term, tbl)
# Timeexpand the designmatrix
z = transpose(Unfold.time_expand(transpose(reMat.z), term, tbl))
z = disallowmissing(z) # can't have missing in here
# First we check if there is overlap in the timeexpanded term. If so, we cannot continue. Later implementations will remedy that
#println(dump(term,))
if hasfield(typeof(term.term), :rhs)
rhs = term.term.rhs
elseif hasfield(typeof(term.term.term), :rhs)
# we probably have something like zerocorr, which does not need to show a .rhs necessarily
rhs = term.term.term.rhs
else
println("term.term: $(dump(term.term))")
error("unknown RE structure, has no field .rhs:$(typeof(term.term))")
end
group = tbl[!, rhs.sym]
time = tbl[!, term.eventfields[1]]
# get the from-to onsets of the grouping varibales
onsets = get_timeexpanded_random_grouping(group, time, term.basisfunction)
#print(size(reMat.z))
refs = zeros(size(z)[2]) .+ 1
for (i, o) in enumerate(onsets[2:end])
# check for overlap
if (minimum(o) <= maximum(onsets[i+1])) & (maximum(o) <= minimum(onsets[i+1]))
error("overlap in random effects structure detected, not currently supported")
end
end
# From now we can assume no overlap
# We want to fnd which subject is active when
refs = zeros(size(z)[2]) .+ 1
uGroup = unique(group)
for (i, g) in enumerate(uGroup[1:end])
ix_start = findfirst(g .== group)
ix_end = findlast(g .== group)
if i == 1
time_start = 1
else
time_start = time[ix_start]
# XXX Replace this functionality by shift_onset?
time_start = time_start - sum(Unfold.times(term.basisfunction) .<= 0)
end
if i == length(uGroup)
time_stop = size(refs, 1)
else
time_stop = time[ix_end]
time_stop = time_stop + sum(Unfold.times(term.basisfunction) .> 0)
end
if time_start < 0
time_start = 1
end
if time_stop > size(refs, 1)
time_stop = size(refs, 1)
end
#println("$g,$time_start,$time_stop")
refs[Int64(time_start):Int64(time_stop)] .= i
end
# Other variables with implementaions taken from the LinerMixedModel function
wtz = z
trm = term
S = size(z, 1)
T = eltype(z)
Ξ» = LowerTriangular(Matrix{T}(I, S, S))
inds = MixedModels.sizehint!(Int[], (S * (S + 1)) >> 1) # double trouble? can this line go?
m = reshape(1:abs2(S), (S, S))
inds = sizehint!(Int[], (S * (S + 1)) >> 1)
for j = 1:S
for i = j:S
# We currently restrict to diagonal entries
# Once mixedmodels#293 is pushed, we can relax this and use zerocorr()
if !(typeof(term.term) <: MixedModels.ZeroCorr) || (i == j) # for diagonal
push!(inds, m[i, j])
end
end
end
levels = reMat.levels
refs = refs
# reMat.levels doesnt change
cnames = coefnames(term)
#print(refs)
adjA = MixedModels.adjA(refs, z)
scratch = Matrix{T}(undef, (S, length(uGroup)))
# Once MixedModels.jl supports it, can be replaced with: SparseReMat
ReMat{T,S}(rhs, refs, levels, cnames, z, wtz, Ξ», inds, adjA, scratch)
end
function change_modelmatrix_size!(m, fe::AbstractSparseMatrix, remats)
change_ReMat_size!.(remats, Ref(m))
@debug "changemodelmatrix" typeof(fe)
fe = SparseMatrixCSC(m, fe.n, fe.colptr, fe.rowval, fe.nzval)
return (fe, remats...)
end
function change_modelmatrix_size!(m, fe::AbstractMatrix, remats)
change_ReMat_size!.(remats, Ref(m))
fe = fe[1:m, :]
return (fe, remats...)
end
"""
modelmatrices(modelmatrix::Tuple)
in the case of a Tuple (MixedModels - FeMat/ReMat Tuple), returns only the FeMat part
"""
Unfold.modelmatrices(modelmatrix::Tuple) = modelmatrix[1]
#modelcols(rhs::MatrixTerm, tbl) = modelcols.(rhs, Ref(tbl)) | Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 211 | function StatsModels.modelmatrix(model::UnfoldLinearMixedModel, bool)
@assert bool == false "time continuous model matrix is not implemented for a `UnfoldLinearMixedModel`"
return modelmatrix(model)
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 8012 | StatsModels.modelmatrix(
uf::Union{UnfoldLinearMixedModelContinuousTime,<:UnfoldLinearMixedModel},
) = modelmatrix(designmatrix(uf))
function StatsModels.modelmatrix(
Xs::Vector{
<:Union{DesignMatrixLinearMixedModel,<:DesignMatrixLinearMixedModelContinuousTime},
},
)
@debug "modelmatrix" typeof(Xs)
#X_vec = getfield.(designmatrix(uf), :modelmatrix)
Xcomb = Xs[1]
for k = 2:length(Xs)
@debug typeof(Xcomb) typeof(Xs[k])
modelmatrix1 = Unfold.modelmatrices(Xcomb)
modelmatrix2 = Unfold.modelmatrices(Xs[k])
@debug typeof(modelmatrix1), typeof(modelmatrix2)
Xcomb_temp = Unfold.extend_to_larger(modelmatrix1, modelmatrix2)
@debug "tmp" typeof(Xcomb_temp)
Xcomb = lmm_combine_modelmatrices!(Xcomb_temp, Xcomb, Xs[k])
@debug "Xcomb" typeof(Xcomb)
end
Xs = length(Xs) > 1 ? Xcomb : [Xs[1].modelmatrix]
return Xs
end
"""
fit!(uf::UnfoldModel,data::Union{<:AbstractArray{T,2},<:AbstractArray{T,3}}) where {T<:Union{Missing, <:Number}}
Fit a DesignMatrix against a 2D/3D Array data along its last dimension
Data is typically interpreted as channel x time (with basisfunctions) or channel x time x epoch (for mass univariate)
- `show_progress` (default:true), deactivate the progressmeter
Returns an UnfoldModel object
# Examples
```julia-repl
```
"""
function StatsModels.fit!(
uf::Union{UnfoldLinearMixedModel,UnfoldLinearMixedModelContinuousTime},
data::AbstractArray{T};
show_progress = true,
kwargs...,
) where {T}
#@assert length(first(values(design(uf)))[2])
if uf isa UnfoldLinearMixedModel
if ~isempty(Unfold.design(uf))
@assert length(Unfold.times(Unfold.design(uf))[1]) ==
size(data, length(size(data)) - 1) "Times Vector does not match second last dimension of input data - forgot to epoch, or misspecified 'time' vector?"
end
end
# function content partially taken from MixedModels.jl bootstrap.jl
df = Array{NamedTuple,1}()
dataDim = length(size(data)) # surely there is a nicer way to get this but I dont know it
@debug typeof(uf)
#Xs = modelmatrix(uf)
# If we have3 dimension, we have a massive univariate linear mixed model for each timepoint
if dataDim == 3
firstData = data[1, 1, :]
ntime = size(data, 2)
else
# with only 2 dimension, we run a single time-expanded linear mixed model per channel/voxel
firstData = data[1, :]
ntime = 1
end
nchan = size(data, 1)
Xs = prepare_modelmatrix(uf)
_, data = Unfold.equalize_size(Xs[1], data)
# get a un-fitted mixed model object
#Xs = (Matrix(Xs[1]),Xs[2:end]...)
@debug "firstdata" size(firstData)
mm = LinearMixedModel_wrapper(Unfold.formulas(uf), firstData, Xs)
# prepare some variables to be used
Ξ²sc, ΞΈsc = similar(MixedModels.coef(mm)), similar(mm.ΞΈ) # pre allocate
p, k = length(Ξ²sc), length(ΞΈsc)
#Ξ²_names = (Symbol.(fixefnames(mm))..., )
Ξ²_names = (Symbol.(vcat(fixefnames(mm)...))...,)
Ξ²_names = (unique(Ξ²_names)...,)
@assert(
length(Ξ²_names) == length(Ξ²sc),
"Beta-Names & coefficient length do not match. Did you provide two identical basis functions?"
)
#@debug println("beta_names $Ξ²_names")
#@debug println("uniquelength: $(length(unique(Ξ²_names))) / $(length(Ξ²_names))")
# for each channel
prog = Progress(nchan * ntime, 0.1)
#@showprogress .1
for ch in range(1, stop = nchan)
# for each time
for t in range(1, stop = ntime)
#@debug "ch:$ch/$nchan, t:$t/$ntime"
#@debug "data-size: $(size(data))"
#@debug println("mixedModel: $(mm.feterms)")
if ndims(data) == 3
@debug typeof(mm)
MixedModels.refit!(mm, data[ch, t, :]; progress = false)
else
#@debug size(mm.y)
MixedModels.refit!(mm, data[ch, :]; progress = false)
end
#@debug println(MixedModels.fixef!(Ξ²sc,mm))
Ξ² = NamedTuple{Ξ²_names}(MixedModels.fixef!(Ξ²sc, mm))
out = (
objective = mm.objective,
Ο = mm.Ο,
Ξ² = NamedTuple{Ξ²_names}(MixedModels.fixef!(Ξ²sc, mm)),
se = SVector{p,Float64}(MixedModels.stderror!(Ξ²sc, mm)), #SVector not necessary afaik, took over from MixedModels.jl
ΞΈ = SVector{k,Float64}(MixedModels.getΞΈ!(ΞΈsc, mm)),
channel = ch,
timeIX = ifelse(dataDim == 2, NaN, t),
)
push!(df, out)
if show_progress
ProgressMeter.next!(prog; showvalues = [(:channel, ch), (:time, t)])
end
end
end
uf.modelfit = UnfoldLinearMixedModelFit{T,ndims(data)}(
LinearMixedModelFitCollection{T}(
df,
deepcopy(mm.Ξ»),
getfield.(mm.reterms, :inds),
copy(mm.optsum.lowerbd),
NamedTuple{Symbol.(fnames(mm))}(map(t -> (t.cnames...,), mm.reterms)),
),
)
return uf
end
function prepare_modelmatrix(uf)
Xs = modelmatrix(uf)
if isa(Xs, Vector)
if length(Xs) > 1
@warn "multi-event LMM currently not supported"
end
Xs = Xs[1]
end
Xs = (Unfold.extend_to_larger(Xs[1]), Xs[2:end]...)#(Unfold.extend_to_larger(Xs[1]), Xs[2:end]...)
Xs = (disallowmissing(Xs[1]), Xs[2:end]...)
return Xs
end
function StatsModels.coef(
uf::Union{UnfoldLinearMixedModel,UnfoldLinearMixedModelContinuousTime},
)
beta = [x.Ξ² for x in MixedModels.tidyΞ²(uf)]
return reshape_lmm(uf, beta)
end
function MixedModels.ranef(
uf::Union{UnfoldLinearMixedModel,UnfoldLinearMixedModelContinuousTime},
)
sigma = [x.Ο for x in MixedModels.tidyΟs(uf)]
return reshape_lmm(uf, sigma)
end
function reshape_lmm(uf::UnfoldLinearMixedModel, est)
ntime = length(Unfold.times(uf)[1])
@debug ntime
nchan = modelfit(uf).fits[end].channel
return permutedims(reshape(est, :, ntime, nchan), [3 2 1])
end
function reshape_lmm(uf::UnfoldLinearMixedModelContinuousTime, est)
nchan = modelfit(uf).fits[end].channel
return reshape(est, :, nchan)'
end
LinearMixedModel_wrapper(
form,
data::AbstractArray{<:Union{TData},1},
Xs;
wts = [],
) where {TData<:Union{Missing,Number}} =
@error("currently no support for missing values in MixedModels.jl")
"""
$(SIGNATURES)
Wrapper to generate a LinearMixedModel. Code taken from MixedModels.jl and slightly adapted.
"""
function LinearMixedModel_wrapper(
form,
data::AbstractArray{<:Union{TData},1},
Xs;
wts = [],
) where {TData<:Number}
# function LinearMixedModel_wrapper(form,data::Array{<:Union{Missing,TData},1},Xs;wts = []) where {TData<:Number}
@debug "LMM wrapper, $(typeof(Xs))"
Xs = (Unfold.extend_to_larger(Xs[1]), Xs[2:end]...)
# XXX Push this to utilities equalize_size
# Make sure X & y are the same size
@assert isa(Xs[1], AbstractMatrix) & isa(Xs[2], ReMat) "Xs[1] was a $(typeof(Xs[1])), should be a AbstractMatrix, and Xs[2] was a $(typeof(Xs[2])) should be a ReMat"
m = size(Xs[1])[1]
if m != size(data)[1]
fe, data = Unfold.equalize_size(Xs[1], data)
Xs = change_modelmatrix_size!(size(data)[1], fe, Xs[2:end])
end
#y = (reshape(float(data), (:, 1)))
y = data
MixedModels.LinearMixedModel(y, Xs, form, wts)
end
function MixedModels.LinearMixedModel(y, Xs, form::Array, wts)
form_combined = form[1]
for f in form[2:end]
form_combined =
form_combined.lhs ~
MatrixTerm(form_combined.rhs[1] + f.rhs[1]) +
form_combined.rhs[2:end] +
f.rhs[2:end]
end
#@debug typeof(form_combined)
@debug typeof(y), typeof(Xs), typeof(wts)
MixedModels.LinearMixedModel(y, Xs, form_combined, wts)
end
isa_lmm_formula(f::typeof(MixedModels.zerocorr)) = true
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 2371 | """
$(SIGNATURES)
Returns a partial LMM model (non-functional due to lacking data) to be used in likelihoodratiotests.
`k` to selcet which of the modelfit's to fake
"""
function fake_lmm(m::UnfoldLinearMixedModel, k::Int)
mm = modelmatrix(m)
@assert length(mm) == 1 "LRT is currently not implemented for fitting multiple events at the same time"
feterm = mm[1][1]
#reterm = mm[2:end]
fakeY = zeros(size(feterm, 1))
lmm = LinearMixedModel_wrapper(Unfold.formulas(m), fakeY, mm[1])
fcoll = Unfold.modelfit(m)
#lmm.optsum.feval .= 1
#lmm.optsum.fmin .= 1
lmm.optsum.sigma = fcoll.fits[k].Ο
lmm.optsum.optimizer = :unfold
lmm.optsum.returnvalue = :success
setΞΈ!(lmm, fcoll.fits[k].ΞΈ)
return lmm
end
fake_lmm(m::UnfoldLinearMixedModel) = fake_lmm.(m, 1:length(modelfit(m).fits))
"""
$(SIGNATURES)
Calculate likelihoodratiotest
"""
function MixedModels.likelihoodratiotest(m::UnfoldLinearMixedModel...)
#@info lrtest(fake_lmm.(m,1)...)
n = length(Unfold.modelfit(m[1]).fits)
lrt = Array{MixedModels.LikelihoodRatioTest}(undef, n)
sizehint!(lrt, n)
for k = 1:n
ms = fake_lmm.(m, k)
#@info objective.(ms)
lrt[k] = MixedModels.likelihoodratiotest(ms...)
end
return lrt
end
"""
$(SIGNATURES)
Unfold-Method: return pvalues of likelihoodratiotests, typically calculated:
# Examples
julia> pvalues(likelihoodratiotest(m1,m2))
where m1/m2 are UnfoldLinearMixedModel's
Tipp: if you only compare two models you can easily get a vector of p-values:
julia> vcat(pvalues(likelihoodratiotest(m1,m2))...)
Multiple channels are returned linearized at the moment, as we do not have access to the amount of channels after the LRT, you can do:
julia> reshape(vcat(pvalues(likelihoodratiotest(m1,m2))...),ntimes,nchan)'
"""
function pvalues(lrtvec::Vector{MixedModels.LikelihoodRatioTest})
[lrt.pvalues for lrt in lrtvec]
end
function MixedModels.rePCA(m::UnfoldLinearMixedModel)
oneresult = MixedModels.rePCA(fake_lmm(m, 1))
emptyPCA = (;)
for s in keys(oneresult)
res = hcat(
[
a[s] for
a in MixedModels.rePCA.(fake_lmm.(Ref(m), 1:length(modelfit(m).fits)))
]...,
)
newPCA = NamedTuple{(s,)}([res])
emptyPCA = merge(emptyPCA, newPCA)
end
return emptyPCA
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 298 |
function Unfold.TimeExpandedTerm(
term::NTuple{N,Union{<:AbstractTerm,<:MixedModels.RandomEffectsTerm}},
basisfunction,
eventfields::Array{Symbol,1},
) where {N}
# for mixed models, apply it to each Term
Unfold.TimeExpandedTerm.(term, Ref(basisfunction), Ref(eventfields))
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 3398 |
struct DesignMatrixLinearMixedModel{T} <: AbstractDesignMatrix{T}
formula::FormulaTerm
modelmatrix::Tuple
events::DataFrame
end
struct DesignMatrixLinearMixedModelContinuousTime{T} <: AbstractDesignMatrix{T}
formula::FormulaTerm
modelmatrix::Tuple
events::DataFrame
end
DesignMatrixLinearMixedModel{T}() where {T} =
DesignMatrixLinearMixedModel{T}(FormulaTerm(:empty, :empty), (), DataFrame())
DesignMatrixLinearMixedModelContinuousTime{T}() where {T} =
DesignMatrixLinearMixedModelContinuousTime{T}(
FormulaTerm(:empty, :empty),
(),
DataFrame(),
)
struct LinearMixedModelFitCollection{T} <: MixedModels.MixedModelFitCollection{T}
fits::Vector
Ξ»::Vector
inds::Vector{Vector{Int}}
lowerbd::Vector{T}
fcnames::NamedTuple
end
LinearMixedModelFitCollection{T}() where {T} =
LinearMixedModelFitCollection{T}([], [], Vector{Int}[], T[], (;))
struct UnfoldLinearMixedModelFit{T<:AbstractFloat,N} <: AbstractModelFit{T,N}
collection::LinearMixedModelFitCollection{T}
end
UnfoldLinearMixedModelFit{T,N}() where {T,N} =
UnfoldLinearMixedModelFit{T,N}(LinearMixedModelFitCollection{T}())
"""
Concrete type to implement an Mass-Univariate LinearMixedModel.
`.design` contains the formula + times dict
`.designmatrix` contains a `DesignMatrix`
`modelfit` is a `Any` container for the model results
"""
mutable struct UnfoldLinearMixedModel{T} <: UnfoldModel{T}
design::Vector{<:Pair}
designmatrix::Vector{<:DesignMatrixLinearMixedModel{T}}
modelfit::UnfoldLinearMixedModelFit{T,3} # optional info on the modelfit
end
UnfoldLinearMixedModel(args...; kwargs...) =
UnfoldLinearMixedModel{Float64}(args...; kwargs...)
UnfoldLinearMixedModel{T}() where {T} = UnfoldLinearMixedModel{T}(Pair[])
UnfoldLinearMixedModel{T}(d::Vector) where {T} = UnfoldLinearMixedModel{T}(
d,
[DesignMatrixLinearMixedModel{T}()],
UnfoldLinearMixedModelFit{T,3}(),
)
UnfoldLinearMixedModel{T}(d::Vector, X::Vector{<:AbstractDesignMatrix}) where {T} =
UnfoldLinearMixedModel{T}(deepcopy(d), X, DataFrame())
"""
Concrete type to implement an deconvolution LinearMixedModel.
**Warning** This is to be treated with care, not much testing went into it.
`.design` contains the formula + times dict
`.designmatrix` contains a `DesignMatrix`
`.modelfit` is a `Any` container for the model results
"""
mutable struct UnfoldLinearMixedModelContinuousTime{T} <: UnfoldModel{T}
design::Vector{<:Pair}
designmatrix::Vector{<:DesignMatrixLinearMixedModelContinuousTime{T}}
modelfit::UnfoldLinearMixedModelFit{T,2}
end
UnfoldLinearMixedModelContinuousTime(args...; kwargs...) =
UnfoldLinearMixedModelContinuousTime{Float64}(args...; kwargs...)
UnfoldLinearMixedModelContinuousTime{T}() where {T} =
UnfoldLinearMixedModelContinuousTime{T}(Pair[])
UnfoldLinearMixedModelContinuousTime{T}(d::Vector) where {T} =
UnfoldLinearMixedModelContinuousTime{T}(
d,
[DesignMatrixLinearMixedModelContinuousTime{T}()],
UnfoldLinearMixedModelFit{T,2}(),
)
# empty modelfit
UnfoldLinearMixedModelContinuousTime{T}(
d::Vector{<:Pair},
X::Vector{<:AbstractDesignMatrix{T}},
) where {T} = UnfoldLinearMixedModelContinuousTime{T}(
deepcopy(d),
X,
UnfoldLinearMixedModelFit{T,2}(),
)
@traitimpl Unfold.ContinuousTimeTrait{UnfoldLinearMixedModelContinuousTime}
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 6510 | module Unfold
using SimpleTraits
using SparseArrays
using StatsModels
using StatsBase
using IterativeSolvers
using DataFrames
#using MixedModels
using Missings
using StatsBase
using LinearAlgebra
using Tables # not sure we need it
using GLM # not sure we need it
using TimerOutputs # debugging fitting times etc. not strictly needed
#using DSP
using StatsModels
using ProgressMeter
using DocStringExtensions # for Docu
using MLBase # for crossVal
import Term # prettiert output
using OrderedCollections # for Base.Show
import Term: vstack, Panel, tprint
import Term: Tree # to display Dicts
using PooledArrays
using TypedTables # DataFrames loose the pooled array, so we have to do it differently for now...
#using Tullio
#using BSplineKit # for spline predictors
#using RobustModels # for robust modelling
#using CategoricalArrays
import StatsBase: fit
import StatsBase: coef
import StatsBase: fit!
import StatsBase: coefnames
import StatsBase: modelmatrix
import StatsBase: predict
import StatsModels: width
import StatsModels: terms
import StatsBase.quantile
import Base.show
import Base.(+) # overwrite for DesignMatrices
using Distributions: Gamma, pdf # TODO replace this with direct implementation (used in basisfunction.jl)
include("typedefinitions.jl")
include("basisfunctions.jl")
include("timeexpandedterm.jl")
include("designmatrix.jl")
include("fit.jl")
include("utilities.jl")
include("condense.jl")
include("solver.jl")
include("predict.jl")
include("splinepredictors.jl")
include("effects.jl")
include("statistics.jl")
include("io.jl")
include("show.jl") # pretty printing
#include("plot.jl") # don't include for now
export fit, fit!, designmatrix!
export firbasis, hrfbasis
export AbstractDesignMatrix, AbstractModelFit, UnfoldModel
export UnfoldLinearModel,
UnfoldLinearMixedModel,
UnfoldLinearMixedModelContinuousTime,
UnfoldLinearModelContinuousTime
export FIRBasis, HRFBasis, SplineBasis
export modelmatrix, modelmatrices
export formulas, design, designmatrix, coef
export coeftable, predicttable
export modelfit
export predict, residuals
if !isdefined(Base, :get_extension)
## Extension Compatabality with julia pre 1.9
include("../ext/UnfoldRobustModelsExt.jl")
solver_robust = UnfoldRobustModelsExt.solver_robust
include("../ext/UnfoldMixedModelsExt/UnfoldMixedModelsExt.jl")
pvalues = UnfoldMixedModelsExt.pvalues
using MixedModels
rePCA = MixedModels.rePCA
lmm_combine_modelmatrices! = UnfoldMixedModelsExt.lmm_combine_modelmatrices!
likelihoodratiotest = UnfoldMixedModelsExt.likelihoodratiotest
check_groupsorting = UnfoldMixedModelsExt.check_groupsorting
spl() = error("dummy / undefined")
circspl() = error("dummy / undefined")
include("../ext/UnfoldBSplineKitExt/UnfoldBSplineKitExt.jl")
splinebasis = UnfoldBSplineKitExt.splinebasis
# need this definition unfortunatly
#circspl = UnfoldBSplineKitExt.circspl
#spl = UnfoldBSplineKitExt.spl
include("../ext/UnfoldKrylovExt.jl")
solver_krylov = UnfoldKrylovExt.solver_krylov
else
# Jl 1.9+: we need dummy functions, in case the extension was not activated to warn the user if they try to use a functionality that is not yet defined
checkFun(sym) = Base.get_extension(@__MODULE__(), sym)
function solver_robust(args...; kwargs...)
ext = checkFun(:UnfoldRobustModelsExt)
msg = "RobustModels not loaded. Please use ]add RobustModels, using RobustModels to install it prior to using"
isnothing(ext) ? throw(msg) : ext.solver_robust(args...; kwargs...)
end
function pvalues(args...; kwargs...)
ext = checkFun(:UnfoldMixedModelsExt)
msg = "MixedModels not loaded. Please use ]add MixedModels, using MixedModels to install it prior to using"
isnothing(ext) ? throw(msg) : ext.pvalues(args...; kwargs...)
end
function likelihoodratiotest(args...; kwargs...)
ext = checkFun(:UnfoldMixedModelsExt)
msg = "MixedModels not loaded. Please use ]add MixedModels, using MixedModels to install it prior to using"
isnothing(ext) ? throw(msg) : ext.likelihoodratiotest(args...; kwargs...)
end
function rePCA(args...; kwargs...)
ext = checkFun(:UnfoldMixedModelsExt)
msg = "MixedModels not loaded. Please use ]add MixedModels, using MixedModels to install it prior to using"
isnothing(ext) ? throw(msg) : ext.rePCA(args...; kwargs...)
end
function check_groupsorting(args...; kwargs...)
ext = checkFun(:UnfoldMixedModelsExt)
msg = "MixedModels not loaded. Please use ]add MixedModels, using MixedModels to install it prior to using"
isnothing(ext) ? throw(msg) : ext.check_groupsorting(args...; kwargs...)
end
function lmm_combine_modelmatrices!(args...; kwargs...)
ext = checkFun(:UnfoldMixedModelsExt)
msg = "MixedModels not loaded. Please use ]add MixedModels, using MixedModels to install it prior to using"
isnothing(ext) ? throw(msg) : ext.lmm_combine_modelmatrices!(args...; kwargs...)
end
function splinebasis(args...; kwargs...)
ext = checkFun(:UnfoldBSplineKitExt)
msg = "BSplineKit not loaded. Please use `]add BSplineKit, using BSplineKit` to install/load it, if you want to use splines"
isnothing(ext) ? throw(msg) : ext.splinebasis(args...; kwargs...)
end
function spl(args...; kwargs...)
ext = checkFun(:UnfoldBSplineKitExt)
msg = "BSplineKit not loaded. Please use `]add BSplineKit, using BSplineKit` to install/load it, if you want to use splines"
isnothing(ext) ? throw(msg) : ext.spl(args...; kwargs...)
end
function circspl(args...; kwargs...)
ext = checkFun(:UnfoldBSplineKitExt)
msg = "BSplineKit not loaded. Please use `]add BSplineKit, using BSplineKit` to install/load it, if you want to use splines"
isnothing(ext) ? throw(msg) : ext.circspl(args...; kwargs...)
end
function solver_krylov(args...; kwargs...)
ext = checkFun(:UnfoldKrylovExt)
msg = "Krylov or CUDA not loaded. Please use `]add Krylov,CUDA, using Krylov,CUDA` to install/load it, if you want to use GPU-fitting"
isnothing(ext) ? throw(msg) : ext.solver_krylov(args...; kwargs...)
end
end
export spl, circspl
export likelihoodratiotest # statistics.jl
export pvalues # statistics.jl
export effects # effects.jl
import StatsModels.@formula # for exporting
export @formula
export save
export load
end # module
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 9968 | """
See FIRBasis for an examples
a BasisFunction should implement:
- kernel() # kernel(b::BasisFunction,sample) => returns the designmatrix for that event
- height() # number of samples in continuous time
- width() # number of coefficient columns (e.g. HRF 1 to 3, FIR=height(),except if interpolate=true )
- colnames() # unique names of expanded columns
- times() # vector of times along expanded columns, length = height()
- name() # name of basisfunction
- collabel() [default "colname_basis"] # name for coeftable
- shift_onset() [default 0]
"""
abstract type BasisFunction end
"""
Defines a FIRBasisfunction which can be called for each event, defining the time-expanded basis kernel
$(TYPEDEF)
$(TYPEDSIGNATURES)
$(FIELDS)
(tipp: most users would you want to call firbasis, not generate it manually)
# Examples
```julia-repl
julia> b = FIRBasis(range(0,1,length=10),"basisA",-1)
```
"""
mutable struct FIRBasis <: BasisFunction
"vector of times along rows of kernel-output (in seconds)"
times::Vector
"name of the event, should be the actual eventName in `eventcolumn` of the dataframes later"
name::Any
"by how many samples do we need to shift the event onsets? This number is determined by how many 'negative' timepoints the basisfunction defines"
shift_onset::Int64
"should we linearly interpolate events not on full samples?"
interpolate::Bool
end
# default dont interpolate
FIRBasis(times, name, shift_onset) = FIRBasis(times, name, shift_onset, false)
@deprecate FIRBasis(kernel::Function, times, name, shift_onset) FIRBasis(
times,
name,
shift_onset,
)
collabel(basis::FIRBasis) = :time
colnames(basis::FIRBasis) = basis.interpolate ? basis.times[1:end-1] : basis.times[1:end]
mutable struct SplineBasis <: BasisFunction
kernel::Function
"vector of names along columns of kernel-output"
colnames::AbstractVector
" vector of times along rows of kernel-output (in seconds)"
times::Vector
"name of the event, random 1:1000 if unspecified"
name::String
"by how many samples do we need to shift the event onsets? This number is determined by how many 'negative' timepoints the basisfunction defines"
shift_onset::Int64
end
mutable struct HRFBasis <: BasisFunction
kernel::Function
"vector of names along columns of kernel-output"
colnames::AbstractVector
" vector of times along rows of kernel-output (in seconds)"
times::Vector
"name of the event, random 1:1000 if unspecified"
name::String
end
"""
$(SIGNATURES)
Generate a sparse FIR basis around the *Ο* timevector at sampling rate *sfreq*. This is useful if you cannot make any assumptions on the shape of the event responses. If unrounded events are supplied, they are split between samples. E.g. event-latency = 1.2 will result in a "0.8" and a "0.2" entry.
# keyword arguments
`interpolate` (Bool, default false): if true, interpolates events between samples linearly. This results in `predict` functions to return a trailling 0
# Examples
Generate a FIR basis function from -0.1s to 0.3s at 100Hz
```julia-repl
julia> f = firbasis([-0.1,0.3],100)
```
Evaluate at an event occuring at sample 103.3
```julia-repl
julia> f(103.3)
```
"""
function firbasis(Ο, sfreq, name = ""; interpolate = false)
Ο = round_times(Ο, sfreq)
if interpolate
# stop + 1 step, because we support fractional event-timings
Ο = (Ο[1], Ο[2] + 1 ./ sfreq)
end
times = range(Ο[1], stop = Ο[2], step = 1 ./ sfreq)
shift_onset = Int64(floor(Ο[1] * sfreq))
return FIRBasis(times, name, shift_onset, interpolate)
end
# cant multiple dispatch on optional arguments
#firbasis(;Ο,sfreq) = firbasis(Ο,sfreq)
firbasis(; Ο, sfreq, name = "", kwargs...) = firbasis(Ο, sfreq, name; kwargs...)
"""
$(SIGNATURES)
Calculate a sparse firbasis
# Examples
```julia-repl
julia> f = firkernel(103.3,range(-0.1,step=0.01,stop=0.31))
```
"""
function firkernel(e, times; interpolate = false)
@assert ndims(e) <= 1 #either single onset or a row vector where we will take the first one :)
if size(e, 1) > 1
# XXX we will soon assume that the second entry would be the duration
e = Float64(e[1])
end
ksize = length(times) # kernelsize
if interpolate
eboth = [1 .- (e .% 1) e .% 1]
eboth[isapprox.(eboth, 0, atol = 1e-15)] .= 0
return spdiagm(
ksize + 1,
ksize,
0 => repeat([eboth[1]], ksize),
-1 => repeat([eboth[2]], ksize),
)
else
#eboth = Int(round(e))
return spdiagm(ksize, ksize, 0 => repeat([1], ksize))
end
end
"""
$(SIGNATURES)
Generate a Hemodynamic-Response-Functio (HRF) basis with inverse-samplingrate "TR" (=1/FS)
Optional Parameters p:
defaults
{seconds}
p(1) - delay of response (relative to onset) 6
p(2) - delay of undershoot (relative to onset) 16
p(3) - dispersion of response 1
p(4) - dispersion of undershoot 1
p(5) - ratio of response to undershoot 6
p(6) - onset {seconds} 0
p(7) - length of kernel {seconds} 32
# Examples
Generate a HRF basis function object with Sampling rate 1/TR. And evaluate it at an event occuring at TR 103.3 with duration of 4.1 TRs
```julia-repl
julia> f = hrfbasis(2.3)
julia> f(103.3,4.1)
```
"""
function hrfbasis(TR::Float64; parameters = [6.0 16.0 1.0 1.0 6.0 0.0 32.0], name = "")
# Haemodynamic response function adapted from SPM12b "spm_hrf.m"
# Parameters:
# defaults
# {seconds}
# p(1) - delay of response (relative to onset) 6
# p(2) - delay of undershoot (relative to onset) 16
# p(3) - dispersion of response 1
# p(4) - dispersion of undershoot 1
# p(5) - ratio of response to undershoot 6
# p(6) - onset {seconds} 0
# p(7) - length of kernel {seconds} 32
kernel = e -> hrfkernel(e, TR, parameters)
return HRFBasis(
kernel,
["f(x)"],
range(0, (length(kernel([0, 1])) - 1) * TR, step = TR),
name,
)
end
shift_onset(basis::HRFBasis) = 0
collabel(basis::HRFBasis) = :derivative
collabel(basis::SplineBasis) = :splineTerm
collabel(uf::UnfoldModel) = collabel(formulas(uf))
collabel(form::FormulaTerm) = collabel(form.rhs)
collabel(t::Tuple) = collabel(t[1]) # MixedModels has Fixef+ReEf
collabel(term::Array{<:AbstractTerm}) = collabel(term[1].rhs) # in case of combined formulas
#collabel(form::MatrixTerm) = collabel(form[1].rhs)
# typical defaults
shift_onset(basis::BasisFunction) = basis.shift_onset
colnames(basis::BasisFunction) = basis.colnames
kernel(basis::BasisFunction, e) = basis.kernel(e)
@deprecate kernel(basis::BasisFunction) basis.kernel
basisname(fs::Vector{<:FormulaTerm}) = [name(f.rhs.basisfunction) for f in fs]
basisname(uf::UnfoldModel) = basisname(formulas(uf))
basisname(uf::UnfoldLinearModel) = first.(design(uf)) # for linear models we dont save it in the formula
kernel(basis::FIRBasis, e) =
basis.interpolate ? firkernel(e, basis.times[1:end-1]; interpolate = true) :
firkernel(e, basis.times; interpolate = false)
times(basis::BasisFunction) = basis.times
name(basis::BasisFunction) = basis.name
StatsModels.width(basis::BasisFunction) = height(basis)
StatsModels.width(basis::FIRBasis) = basis.interpolate ? height(basis) - 1 : height(basis)
height(basis::FIRBasis) = length(times(basis))
StatsModels.width(basis::HRFBasis) = 1
times(basis::HRFBasis) = NaN
"""
$(SIGNATURES)
Calculate a HRF kernel. Input e can be [onset duration]
# Examples
```julia-repl
julia> f = hrfkernel(103.3,2.3,[6. 16. 1. 1. 6. 0. 32.])
```
"""
function hrfkernel(e, TR, p)
@assert ndims(e) <= 1 #either single onset or a row vector where we will take the first one :)
# code adapted from SPM12b
mt = 32
dt = TR / mt
firstElem = Int(round((1 - (e[1] % 1)) .* mt))
if size(e, 1) == 2 && e[2] > 0.0
duration = e[2]
else
duration = 1.0 / mt
end
duration_mt = Int(ceil(duration .* mt))
box_mt = [zeros(firstElem)' ones(duration_mt)']'
#box_mt = box_mt ./ (sum(box_mt))
# u = [0:ceil(p(7)/dt)] - p(6)/dt;
u = range(0, stop = ceil((p[7] + duration) / dt)) .- p[6] / dt
#hrf = spm_Gpdf(u,p(1)/p(3),dt/p(3))
# Note the inverted scale parameter compared to SPM12.
g1 = Gamma(p[1] ./ p[3], p[3] ./ dt)
#spm_Gpdf(u,p(2)/p(4),dt/p(4))
g2 = Gamma(p[2] ./ p[4], p[4] ./ dt)
# g1 - g2/p(5);
hrf = pdf.(g1, u) .- pdf.(g2, u) ./ p[5]
# hrf = hrf([0:floor(p(7)/RT)]*fMRI_T + 1);
hrf = hrf ./ sum(hrf)
hrf = conv1D(box_mt, hrf)'
#println(box_mt)
hrf = hrf[((range(0, stop = Int(floor(p[7] ./ TR + duration)))*mt)).+1]
return (SparseMatrixCSC(sparse(hrf)))
end
# taken from https://codereview.stackexchange.com/questions/284537/implementing-a-1d-convolution-simd-friendly-in-julia
# to replace the DSP.conv function
function conv1D!(vO::Array{T,1}, vA::Array{T,1}, vB::Array{T,1})::Array{T,1} where {T<:Real}
lenA = length(vA)
lenB = length(vB)
fill!(vO, zero(T))
for idxB = 1:lenB
for idxA = 1:lenA
@inbounds vO[idxA+idxB-1] += vA[idxA] * vB[idxB]
end
end
return vO
end
function conv1D(vA::Array{T,1}, vB::Array{T,1})::Array{T,1} where {T<:Real}
lenA = length(vA)
lenB = length(vB)
vO = Array{T,1}(undef, lenA + lenB - 1)
return conv1D!(vO, vA, vB)
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 9366 |
function extract_coef_info(coefs, ix)
# 1 = eventname, 2 = coefname, 3 = colname
return [c[ix] for c in split.(coefs, " : ")]
end
function get_coefnames(uf::Union{<:UnfoldModel,<:AbstractDesignMatrix})
coefnames = Unfold.coefnames(formulas(uf))
coefnames = vcat(coefnames...) # gets rid of an empty Any() XXX not sure where it comes from, only in MixedModel Timexpanded case
end
modelfit(uf::UnfoldModel) = uf.modelfit
StatsModels.coef(uf::UnfoldModel) = coef(modelfit(uf))
StatsModels.coef(mf::LinearModelFit) = mf.estimate
#=
function coeftable2(uf)
coefs = coef(uf)
ix = get_basis_indices.(Ref(uf), eventnames(uf))
# XXX stderror, group, coefname
coefs_views = [@view(coefs[:, i]) for i in ix]
XXX = DataFrame() # specify the coefficient dataframe somehow?!
result_to_table(uf, coefs_views, XXX)
end
=#
@traitfn function StatsModels.coeftable(
uf::T,
) where {T <: UnfoldModel; ContinuousTimeTrait{T}}
coefsRaw = get_coefnames(uf) |> poolArray
coefs = extract_coef_info(coefsRaw, 2) |> poolArray
#colnames_basis_raw = get_basis_colnames(formulas(uf))# this is unconverted basisfunction basis,
colnames_basis = extract_coef_info(coefsRaw, 3) |> poolArray # this is converted to strings!
basisnames = extract_coef_info(coefsRaw, 1) |> poolArray
nchan = size(coef(uf), 1)
coefs_rep = permutedims(repeat(coefs, 1, nchan), [2, 1])
if length(colnames_basis) == 1
colnames_basis = [colnames_basis]
end
colnames_basis_rep = permutedims(repeat(colnames_basis, 1, nchan), [2, 1])
try
colnames_basis_rep = parse.(Float64, colnames_basis_rep)
catch
#do nothing
end
chan_rep = repeat((1:nchan) |> poolArray, 1, size(colnames_basis_rep, 2))
designkeys = collect(first.(design(uf)))
if design(uf) != [:empty => ()]
basiskeys = [string(b.name) for b in last.(last.(design(uf)))]
eventnames =
Array{Union{eltype(designkeys),eltype(basiskeys)}}(undef, length(basisnames))
for (b, d) in zip(basiskeys, designkeys)
eventnames[basisnames.==b] .= d
end
else
@warn "No design found, falling back to basisnames instead of eventnames"
eventnames = basisnames
end
eventnames_rep = permutedims(repeat(eventnames |> poolArray, 1, nchan), [2, 1])
@debug typeof(coefs_rep) coefs_rep[1]
return make_long_df(
uf,
coefs_rep,
chan_rep,
colnames_basis_rep,
eventnames_rep,
collabel(uf),
)
end
@traitfn function StatsModels.coeftable(
uf::T,
) where {T <: UnfoldModel; !ContinuousTimeTrait{T}}
# Mass Univariate Case
coefnames = get_coefnames(uf)
colnames_basis = collect(last.(last.(design(uf)[1])))
@debug "coefs: $(size(coefnames)),colnames_basis:$(size(colnames_basis)))"
@debug "coefs: $coefnames,colnames_basis:$colnames_basis"
nchan = size(coef(uf), 1)
ncols = length(colnames_basis)
ncoefs = length(coefnames)
# replicate
coefs_rep = permutedims(repeat(coefnames, outer = [1, nchan, ncols]), [2, 3, 1])
colnames_basis_rep = permutedims(repeat(colnames_basis, 1, nchan, ncoefs), [2 1 3])
chan_rep = repeat(1:nchan, 1, ncols, ncoefs)
designkeys = collect(first.(design(uf)))
if length(designkeys) == 1
# in case of 1 event, repeat it by ncoefs
eventnames = repeat([designkeys[1]], ncoefs)
else
eventnames = String[]
for (ix, evt) in enumerate(designkeys)
push!(eventnames, repeat([evt], size(modelmatrix(uf)[ix], 2))...)
end
end
eventnames_rep = permutedims(repeat(eventnames, 1, nchan, ncols), [2, 3, 1])
#
results =
make_long_df(uf, coefs_rep, chan_rep, colnames_basis_rep, eventnames_rep, :time)
return results
end
#---
# Returns a long df given the already matched
function make_long_df(m, coefs, chans, colnames, eventnames, collabel)
@assert all(size(coefs) .== size(chans)) "coefs, chans and colnames need to have the same size at this point, $(size(coefs)),$(size(chans)),$(size(colnames)), should be $(size(coef(m))))"
@assert all(size(coefs) .== size(colnames)) "coefs, chans and colnames need to have the same size at this point"
estimate, stderror, group = make_estimate(m)
return DataFrame(
Dict(
:coefname => String.(linearize(coefs)) |> poolArray,
:channel => linearize(chans),
:eventname => linearize(eventnames),
collabel => linearize(colnames),
:estimate => linearize(estimate),
:stderror => linearize(stderror),
:group => linearize(group),
),
)
end
#---------
stderror(m::UnfoldModel) = stderror(modelfit(m))
function stderror(m::LinearModelFit)
if isempty(m.standarderror)
stderror = fill(nothing, size(coef(m)))
else
stderror = Float64.(m.standarderror)
end
end
function make_estimate(uf::UnfoldModel)
return Float64.(coef(uf)), stderror(uf), fill(nothing, size(coef(uf))) |> poolArray
end
# Return the column names of the basis functions.
function get_basis_colnames(formula::FormulaTerm)
return get_basis_colnames(formula.rhs)
end
function get_basis_colnames(rhs::Tuple)
return colnames(rhs[1].basisfunction)
end
function get_basis_colnames(rhs::AbstractTerm)
return colnames(rhs.basisfunction)
end
"""
get_basisnames(model::UnfoldModel)
Return the basisnames for all predictor terms as a vector.
The returned vector contains the name of the event type/basis, repeated by their actual coefficient number (after StatsModels.apply_schema / timeexpansion).
If a model has more than one event type (e.g. stimulus and fixation), the vectors are concatenated.
"""
@traitfn function get_basis_names(m::T) where {T <: UnfoldModel; !ContinuousTimeTrait{T}}
# Extract the event names from the design
design_keys = first.((Unfold.design(m)))
# Create a list of the basis names corresponding to each model term
basisnames = String[]
for (ix, event) in enumerate(design_keys)
push!(basisnames, repeat([event], size(modelmatrix(m)[ix], 2))...)
end
return basisnames
end
@traitfn get_basis_names(m::T) where {T <: UnfoldModel; ContinuousTimeTrait{T}} =
get_basis_names.(formulas(m))
function get_basis_names(m::FormulaTerm)
bf = m.rhs.basisfunction
# @debug bf
return repeat([name(bf)] |> poolArray, width(m.rhs))
end
"""
get_basis_colnames(m)
get_basis_colnames(formulas)
returns list of colnames - e.g. times for firbasis.
"""
get_basis_colnames(formulas::AbstractArray{<:FormulaTerm}) = get_basis_colnames.(formula)
"""
result_to_table(model<:UnfoldModel, eff::AbstractArray, events::Vector{<:DataFrame})
result_to_table(
eff::AbstractArray,
events::Vector{<:DataFrame},
times::Vector{<:Vector{<:Number}},
eventnames::Vector)
Converts an array-result (prediction or coefficient) together with the events, to a tidy dataframe
"""
result_to_table(model, eff, events::Vector{<:DataFrame}) =
result_to_table(eff, events, times(model), eventnames(model))
# Array directly without in Vector
function result_to_table(
eff::AbstractArray{<:Union{Number,Missing}},
events::Vector,
times::Vector,
eventnames,
)
1 == length(times) == length(events)
result_to_table([eff], events, times, eventnames)
end
function result_to_table(
eff::Vector{<:AbstractArray},
events::Vector{<:DataFrame},
times::Vector,
eventnames::Vector,
)
@assert length(eventnames) == length(events) == length(times)
times_vecs = repeat.(poolArray.(times), size.(events, 1))
# times_vecs = map((x, n) -> repeat(x, outer = n), poolArray.(times), size.(events, 1))
# init the meta dataframe
@debug typeof(times_vecs) size(times_vecs)
data_list = []
for (single_events, single_eff, single_times, single_eventname) in
zip(events, eff, times_vecs, eventnames)
@debug "sizes" size(single_events) size(single_eff) size(single_times)
@debug "sizes2" size.(events) size.(times)
ntimes = size(single_eff, 2)
evts_tbl = repeat(Table(single_events), inner = (ntimes))
time_event = Table(
time = single_times |> poolArray,
eventname = repeat([single_eventname] |> poolArray, length(single_times)),
)
@debug size(time_event) size(evts_tbl)
@assert size(evts_tbl) == size(time_event)
metadata = Table(evts_tbl, time_event)
@debug "metadata" size(metadata)
single_data = Table(
yhat = single_eff[:],#vec(reshape(single_eff, :, 1)),
channel = repeat(
(1:size(single_eff, 1)) |> poolArray,
outer = size(single_eff, 2) * size(single_eff, 3),
),
)
# single_data = hcat(single_data, repeat(metadata, size(single_eff, 1)))
@debug size(metadata) size(single_eff) size(single_data)
@debug repeat(metadata, inner = size(single_eff, 1))[end]
@debug single_data[end]
single_data_comb =
map(merge, single_data, repeat(metadata, inner = size(single_eff, 1)))
push!(data_list, single_data_comb)
end
return reduce(vcat, data_list) |> t -> DataFrame(columns(t))
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 23394 | """
$(SIGNATURES)
Combine two UnfoldDesignmatrices. This allows combination of multiple events.
This also allows to define events with different lengths.
Not supported for models without timebasis, as it is not needed there (one can simply run multiple models)
# Examples
```julia-repl
julia> basisfunction1 = firbasis(Ο=(0,1),sfreq = 10,name="basis1")
julia> basisfunction2 = firbasis(Ο=(0,0.5),sfreq = 10,name="basis2")
julia> Xdc1 = designmatrix(UnfoldLinearModelContinuousTime([Any=>(@formula 0~1,basisfunction1)],tbl_1)
julia> Xdc2 = designmatrix(UnfoldLinearModelContinuousTime([Any=>(@formula 0~1,basisfunction2)],tbl_2)
julia> Xdc = Xdc1+Xdc2
```
"""
Base.:+(X1::Vector{T}, X2::T) where {T<:AbstractDesignMatrix} = [X1..., X2]
Base.:+(X1::T, X2::T) where {T<:AbstractDesignMatrix} = [X1, X2]
Base.:+(X1::Nothing, X2::AbstractDesignMatrix) = [X2]
# helper to get the fixef of lmm but the normal matrix elsewhere
modelmatrices(modelmatrix::AbstractMatrix) = modelmatrix
"""
modelmatrices(X::AbstractDesignMatrix)
modelmatrices(X::Vector{<:AbstractDesignMatrix})
modelmatrices(modelmatrix::AbstractMatrix)
Returns the modelmatrices (also called designmatrices) separately for the events. This is similar to `StatsModels.modelcols`, but merely access the precomputed designmatrix. If the designmatrix needs to be computed, please use `modelcols`
Compare to `modelmatrix` which further concatenates the designmatrices (in the ContinuousTime case).
"""
modelmatrices(X::AbstractDesignMatrix) = modelmatrices(X.modelmatrix)
modelmatrices(X::Vector{<:AbstractDesignMatrix}) = modelmatrices.(X)
"""
$(SIGNATURES)
designmatrix(type, f, tbl; kwargs...)
Return a *DesignMatrix* used to fit the models.
# Arguments
- type::UnfoldModel
- f::FormulaTerm: Formula to be used in this designmatrix
- tbl: Events (usually a data frame) to be modelled
- basisfunction::BasisFunction: basisfunction to be used in modeling (if specified)
- contrasts::Dict: (optional) contrast to be applied to formula
- eventfields::Array: (optional) Array of symbols which are passed to basisfunction event-wise.
First field of array always defines eventonset in samples. Default is [:latency]
# Examples
```julia-repl
julia> designmatrix(UnfoldLinearModelContinuousTime,Dict(Any=>(f,basisfunction1),tbl)
```
"""
function designmatrix(
unfoldmodeltype::Type{<:UnfoldModel},
f::Union{Tuple,FormulaTerm},
tbl,
basisfunction;
contrasts = Dict{Symbol,Any}(),
eventname = Any,
kwargs...,
)
@debug("generating DesignMatrix")
# check for missings-columns - currently missings not really supported in StatsModels
s_tmp = schema(f, tbl, contrasts) # temporary scheme to get necessary terms
neededCols = [v.sym for v in values(s_tmp.schema)]
tbl_nomissing = DataFrame(tbl) # tbl might be a SubDataFrame due to a view - but we can't modify a subdataframe, can we?
try
disallowmissing!(tbl_nomissing, neededCols) # if this fails, it means we have a missing value in a column we need. We do not support this
catch e
if e isa ArgumentError
error(
e.msg *
"\n we tried to get rid of a event-column declared as type Union{Missing,T}. But there seems to be some actual missing values in there.
You have to replace them yourself (e.g. replace(tbl.colWithMissingValue,missing=>0)) or impute them otherwise.",
)
else
rethrow()
end
end
@debug "applying schema $unfoldmodeltype"
form = unfold_apply_schema(unfoldmodeltype, f, schema(f, tbl_nomissing, contrasts))
form = apply_basisfunction(
form,
basisfunction,
get(Dict(kwargs), :eventfields, nothing),
eventname,
)
# Evaluate the designmatrix
X = modelcols(form.rhs, tbl_nomissing)
designmatrixtype = typeof(designmatrix(unfoldmodeltype())[1])
#return X
return designmatrixtype(form, X, tbl)
end
"""
designmatrix(type, f, tbl; kwargs...)
call without basis function, continue with basisfunction = `nothing`
"""
function designmatrix(type, f, tbl; kwargs...)
return designmatrix(type, f, tbl, nothing; kwargs...)
end
"""
wrapper to make apply_schema mixed models as extension possible
Note: type is not necessary here, but for LMM it is for multiple dispatch reasons!
"""
unfold_apply_schema(type, f, schema) = apply_schema(f, schema, UnfoldModel)
# specify for abstract interface
designmatrix(uf::UnfoldModel) = uf.designmatrix
"""
designmatrix(
uf::UnfoldModel,
tbl;
eventcolumn = :event,
contrasts = Dict{Symbol,Any}(),
kwargs...,
Main function, generates the designmatrix, returns a list of `<:AbstractDesignMatrix`
"""
function designmatrix(
uf::UnfoldModel,
tbl;
eventcolumn = :event,
contrasts = Dict{Symbol,Any}(),
kwargs...,
)
X = nothing
fDict = design(uf)
for (eventname, f) in fDict
@debug "Eventname, X:", eventname, X
if eventname == Any
eventTbl = tbl
else
if !((eventcolumn β names(tbl)) | (eventcolumn β propertynames(tbl)))
error(
"Couldnt find columnName: " *
string(eventcolumn) *
" in event-table. Maybe need to specify eventcolumn=:correctColumnName (default is ':event') \n names(tbl) = " *
join(names(tbl), ","),
)
end
eventTbl = @view tbl[tbl[:, eventcolumn].==eventname, :] # we need a view so we can remap later if needed
end
if isempty(eventTbl)
error(
"eventTable empty after subsetting. Couldnt find event '" *
string(eventname) *
"'{" *
string(typeof(eventname)) *
"}, in field tbl[:,:" *
string(eventcolumn) *
"].? - maybe you need to specify it as a string instead of a symbol?",
)
end
fIx = collect(typeof.(f) .<: FormulaTerm)
bIx = collect(typeof.(f) .<: BasisFunction)
if any(bIx)
# timeContinuos way
# TODO there should be a julian way to do this distinction
X =
X + designmatrix(
typeof(uf),
f[fIx],
eventTbl,
collect(f[bIx])[1];
contrasts = contrasts,
eventname = eventname,
kwargs...,
)
else
# normal way
@debug f
X =
X + designmatrix(
typeof(uf),
f[fIx],
eventTbl;
contrasts = contrasts,
eventname = eventname,
kwargs...,
)
end
end
return X
end
import Base.isempty
Base.isempty(d::AbstractDesignMatrix) = isempty(modelmatrices(d))
"""
$(SIGNATURES)
timeexpand the rhs-term of the formula with the basisfunction
"""
function apply_basisfunction(form, basisfunction::BasisFunction, eventfields, eventname)
@debug "apply_basisfunction" basisfunction.name eventname
if basisfunction.name == ""
basisfunction.name = eventname
elseif basisfunction.name != eventname && eventname != Any
error(
"since unfold 0.7 basisfunction names need to be equivalent to the event.name (or = \"\" for autofilling).",
)
end
return FormulaTerm(form.lhs, TimeExpandedTerm(form.rhs, basisfunction, eventfields))
end
function apply_basisfunction(form, basisfunction::Nothing, eventfields, eventname)
# in case of no basisfunctin, do nothing
return form
end
function designmatrix!(uf::UnfoldModel{T}, evts; kwargs...) where {T}
X = designmatrix(uf, evts; kwargs...)
uf.designmatrix = X
return uf
end
"""
modelmatrix(uf::UnfoldLinearModel)
returns the modelmatrix of the model. Concatenates them, except in the MassUnivariate cases, where a vector of modelmatrices is return
Compare with `modelmatrices` which returns a vector of modelmatrices, one per event
"""
function StatsModels.modelmatrix(uf::UnfoldLinearModel, basisfunction)
if basisfunction
@warn("basisfunction not defined for this kind of model")
else
return modelmatrix(uf)
end
end
# catch all case
extend_to_larger(modelmatrix::AbstractMatrix) = modelmatrix
# UnfoldLinearMixedModelContinuousTime case
extend_to_larger(modelmatrix::Tuple) =
(extend_to_larger(modelmatrix[1]), modelmatrix[2:end]...)
# UnfoldLinearModel - they have to be equal already
extend_to_larger(modelmatrix::Vector{<:AbstractMatrix}) = modelmatrix
#UnfoldLinearModelContinuousTime
extend_to_larger(modelmatrix::Vector{<:SparseMatrixCSC}) = extend_to_larger(modelmatrix...)
extend_to_larger(modelmatrix1::SparseMatrixCSC, modelmatrix2::SparseMatrixCSC, args...) =
extend_to_larger(extend_to_larger(modelmatrix1, modelmatrix2), args...)
function extend_to_larger(modelmatrix1::SparseMatrixCSC, modelmatrix2::SparseMatrixCSC)
sX1 = size(modelmatrix1, 1)
sX2 = size(modelmatrix2, 1)
# append 0 to the shorter designmat
if sX1 < sX2
modelmatrix1 = SparseMatrixCSC(
sX2,
modelmatrix1.n,
modelmatrix1.colptr,
modelmatrix1.rowval,
modelmatrix1.nzval,
)
elseif sX2 < sX1
modelmatrix2 = SparseMatrixCSC(
sX1,
modelmatrix2.n,
modelmatrix2.colptr,
modelmatrix2.rowval,
modelmatrix2.nzval,
)
end
return hcat(modelmatrix1, modelmatrix2)
end
function StatsModels.modelmatrix(uf::UnfoldLinearModelContinuousTime, basisfunction = true)
if basisfunction
return modelmatrix(designmatrix(uf))
#return hcat(modelmatrix(designmatrix(uf))...)
else
# replace basisfunction with non-timeexpanded one
f = formulas(uf)
# probably a more julian way to do this...
#if isa(f, AbstractArray)
return modelcols_nobasis.(f, events(uf))
#else
# return modelcols_nobasis(f, events(uf))
#end
end
end
modelcols_nobasis(f::FormulaTerm, tbl::AbstractDataFrame) = modelcols(f.rhs.term, tbl)
StatsModels.modelmatrix(uf::UnfoldModel) = modelmatrix(designmatrix(uf))#modelmatrix(uf.design,uf.designmatrix.events)
StatsModels.modelmatrix(d::AbstractDesignMatrix) = modelmatrices(d)
StatsModels.modelmatrix(d::Vector{<:AbstractDesignMatrix}) =
extend_to_larger(modelmatrices.(d))
"""
formulas(design::Vector{<:Pair})
returns vector of formulas, no schema has been applied (those formulas never saw the data). Also no timeexpansion has been applied (in the case of timecontinuous models)
"""
formulas(design::Vector{<:Pair}) = formulas.(design)
formulas(design::Pair{<:Any,<:Tuple}) = last(design)[1]
"""
formulas(uf::UnfoldModel)
formulas(d::Vector{<:AbstractDesignMatrix})
returns vector of formulas, **after** timeexpansion / apply_schema has been used.
"""
formulas(uf::UnfoldModel) = formulas(designmatrix(uf))
formulas(d::AbstractDesignMatrix) = d.formula
formulas(d::Vector{<:AbstractDesignMatrix}) = formulas.(d)
events(uf::UnfoldModel) = events(designmatrix(uf))
events(d::AbstractDesignMatrix) = d.events
events(d::Vector{<:AbstractDesignMatrix}) = events.(d)
design(uf::UnfoldModel) = uf.design
function formulas(d::Dict) #TODO Specify Dict better
if length(values(d)) == 1
return [c[1] for c in collect(values(d))][1]
else
return [c[1] for c in collect(values(d))]
end
end
"""
$(SIGNATURES)
calculates in which rows the individual event-basisfunctions should go in Xdc
timeexpand_rows timeexpand_vals
"""
function timeexpand_rows(onsets, bases, shift, ncolsX)
# generate rowindices
rows = copy(rowvals.(bases))
# this shift is necessary as some basisfunction time-points can be negative. But a matrix is always from 1:Ο. Thus we have to shift it backwards in time.
# The onsets are onsets-1 XXX not sure why.
for r in eachindex(rows)
rows[r] .+= floor(onsets[r] - 1) .+ shift
end
rows_red = reduce(vcat, rows)
rows_red = repeat(rows_red, ncolsX)
return rows_red
end
"""
$(SIGNATURES)
calculates the actual designmatrix for a timeexpandedterm. Multiple dispatch on StatsModels.modelcols
"""
function StatsModels.modelcols(term::TimeExpandedTerm, tbl)
X = modelcols(term.term, tbl)
time_expand(X, term, tbl)
end
# helper function to get the ranges from where to where the basisfunction is added
function get_timeexpanded_time_range(onset, basisfunction)
npos = sum(times(basisfunction) .>= 0)
nneg = sum(times(basisfunction) .< 0)
#basis = kernel(basisfunction)(onset)
fromRowIx = floor(onset) - nneg
toRowIx = floor(onset) + npos
range(fromRowIx, stop = toRowIx)
end
function timeexpand_cols_allsamecols(bases, ncolsBasis::Int, ncolsX)
repeatEach = length(nzrange(bases[1], 1))
cols_r = UnitRange{Int64}[
((1:ncolsBasis) .+ ix * ncolsBasis) for ix in (0:ncolsX-1) for b = 1:length(bases)
]
cols = reduce(vcat, cols_r)
cols = repeat(cols, inner = repeatEach)
return cols
end
"""
$(SIGNATURES)
calculates in which rows the individual event-basisfunctions should go in Xdc
see also timeexpand_rows timeexpand_vals
"""
function timeexpand_cols(basisfunction, bases, ncolsBasis, ncolsX)
# we can generate the columns much faster, if all bases output the same number of columns
fastpath = time_expand_allBasesSameCols(basisfunction, bases, ncolsBasis)
if fastpath
return timeexpand_cols_allsamecols(bases, ncolsBasis, ncolsX)
else
return timeexpand_cols_generic(bases, ncolsBasis, ncolsX)
end
end
function timeexpand_cols_generic(bases, ncolsBasis, ncolsX)
# it could happen, e.g. for bases that are duration modulated, that each event has different amount of columns
# in that case, we have to go the slow route
cols = Vector{Int64}[]
for Xcol = 1:ncolsX
for b = 1:length(bases)
coloffset = (Xcol - 1) * ncolsBasis
for c = 1:ncolsBasis
push!(cols, repeat([c + coloffset], length(nzrange(bases[b], c))))
end
end
end
return reduce(vcat, cols)
end
function timeexpand_vals(bases, X, nTotal, ncolsX)
# generate values
#vals = []
vals = Array{Union{Missing,Float64}}(undef, nTotal)
ix = 1
for Xcol = 1:ncolsX
for (i, b) in enumerate(bases)
b_nz = nonzeros(b)
l = length(b_nz)
vals[ix:ix+l-1] .= b_nz .* @view X[i, Xcol]
ix = ix + l
#push!(vals, )
end
end
return vals
end
"""
$(SIGNATURES)
performs the actual time-expansion in a sparse way.
- Get the non-timeexpanded designmatrix X from StatsModels.
- evaluate the basisfunction kernel at each event
- calculate the necessary rows, cols and values for the sparse matrix
Returns SparseMatrixCSC
"""
function time_expand(Xorg::AbstractArray, term::TimeExpandedTerm, tbl)
tbl = DataFrame(tbl)
# this extracts the predefined eventfield, usually "latency"
onsets = tbl[!, term.eventfields]
time_expand(Xorg, term.basisfunction, onsets)
end
function time_expand(Xorg::AbstractArray, basisfunction::FIRBasis, onsets)
if basisfunction.interpolate
# code doubling, but I dont know how to do the multiple dispatch otherwise
# this is the "old" way, pre 0.7.1
#bases = kernel.(Ref(basisfunction), eachrow(onsets))
if size(onsets, 2) != 1
@error "not implemented"
end
bases = kernel.(Ref(basisfunction), onsets[!, 1])
return time_expand(Xorg, basisfunction, onsets[!, 1], bases)
else
# fast way
return time_expand_firdiag(Xorg, basisfunction, onsets)
end
end
function time_expand_firdiag(Xorg::AbstractMatrix{T}, basisfunction, onsets) where {T}
# @debug "Xorg eltype" T
@assert width(basisfunction) == height(basisfunction)
w = width(basisfunction)
adjusted_onsets = Int.(floor.(onsets[!, 1] .+ shift_onset(basisfunction)))
@assert (minimum(onsets[!, 1]) + shift_onset(basisfunction) .- 1 + w) > 0
neg_fix = sum(adjusted_onsets[adjusted_onsets.<1] .- 1)
ncoeffs = w * size(Xorg, 1) * size(Xorg, 2) .+ neg_fix * size(Xorg, 2)
I = Vector{Int}(undef, ncoeffs)
colptr = Vector{Int}(undef, w * size(Xorg, 2) + 1)
#V = Vector{T}(undef, ncoeffs)
V = similar(Xorg, ncoeffs)
for ix_X = 1:size(Xorg, 2)
#I, J, V, m, n = spdiagm_diag(w, (.-onsets[!, 1] .=> Xorg[:, Xcol])...)
#ix = (1+size(Xorg, 1)*(ix_X-1)):size(Xorg, 1)*ix_X
ol = w * size(Xorg, 1) + neg_fix
#ix = 1:ol
ix = 1+(ix_X-1)*ol:ix_X*ol
ix_col = (1+(ix_X-1)*w):ix_X*w+1
#@debug ix, ix_col size(I) size(colptr) size(V) w
@views spdiagm_diag_colwise!(
I[ix],
colptr[ix_col],
V[ix],
w,
adjusted_onsets,
Xorg[:, ix_X];
colptr_offset = (ix_X - 1) * (w * size(Xorg, 1) + neg_fix),
)
end
colptr[end] = length(V) + 1
m = adjusted_onsets[end, 1] + w - 1
n = w * size(Xorg, 2)
SparseArrays._goodbuffers(Int(m), Int(n), colptr, I, V) || throw(
ArgumentError(
"Invalid buffers for SparseMatrixCSC construction n=$n, colptr=$(summary(colptr)), rowval=$(summary(rowval)), nzval=$(summary(nzval))",
),
)
Ti = promote_type(eltype(colptr), eltype(I))
SparseArrays.sparse_check_Ti(m, n, Ti)
SparseArrays.sparse_check(n, colptr, I, V)
# silently shorten rowval and nzval to usable index positions.
maxlen = abs(widemul(m, n))
isbitstype(Ti) && (maxlen = min(maxlen, typemax(Ti) - 1))
return SparseMatrixCSC(m, n, colptr, I, V)
#return reduce(hcat, Xdc_list)
end
"""
Even more speed improved version of spdiagm, takes a single float value instead of a vector, like a version of spdiagm that takes in a UniformScaling.
This directly constructs the CSC required fields, thus it is possible to do SparseMatrixCSC(spdiagm_diag_colwise(...)).
Use at your own discretion!!
e.g.
> sz = 5
> ix = [1,3,10]
> vals = [4,1,2]
> spdiagm_diag(sz,ix,vals)
"""
function spdiagm_diag_colwise!(
I,
colptr,
V,
diagsz,
onsets,
values::AbstractVector{T};
colptr_offset = 0,
) where {T}
#ncoeffs = diagsz * length(onsets)
# @debug size(I) size(colptr) size(V) size(onsets) size(values)
#colptr .= colptr_offset .+ (1:sum(>(0),onsets):ncoeffs+1)
r = 1
_c = 1
for c = 1:diagsz
colptr[c] = _c + colptr_offset
c_add = 0
for (i, o) in enumerate(onsets)
# @debug i, r
row_val = o + c - 1
if row_val < 1
continue
end
I[r] = row_val
V[r] = values[i]
r = r + 1
c_add = c_add + 1
end
_c = _c + c_add
end
return (onsets[end] + diagsz, diagsz, colptr, I, V)
end
function spdiagm_diag_colwise(diagsz, onsets, values::AbstractVector{T}) where {T}
ncoeffs = diagsz * length(onsets)
I = Vector{Int}(undef, ncoeffs)
#J = Vector{Int}(undef, ncoeffs)
colptr = 1:length(onsets):ncoeffs+1 |> collect
V = Vector{T}(undef, ncoeffs)
r = 1
for c = 1:diagsz
for (i, o) in enumerate(onsets)
v = values[i]
I[r] = o + c
#J[r] = c
V[r] = v
r = r + 1
end
end
return (onsets[end] + diagsz, diagsz, colptr, I, V)
end
"""
Speed improved version of spdiagm, takes a single float value instead of a vector, like a version of spdiagm that takes in a UniformScaling
e.g.
> sz = 5
> ix = [1,3,10]
> spdiagm_diag(sz,(.-ix.=>1)...)
"""
function spdiagm_diag(diagsz, kv::Pair{<:Integer,T}...) where {T}
ncoeffs = diagsz * length(kv)
I = Vector{Int}(undef, ncoeffs)
J = Vector{Int}(undef, ncoeffs)
V = Vector{T}(undef, ncoeffs)
i = 0
m = 0
n = 0
for p in kv
k = p.first # e.g. -1
v = p.second # e.g. [1,2,3,4,5]
if k < 0
row = -k
col = 0
elseif k > 0
row = 0
col = k
else
row = 0
col = 0
end
r = 1+i:diagsz+i
I[r], J[r] = (row+1:row+diagsz, col+1:col+diagsz)
#copyto!(view(V, r), v)
view(V, r) .= v
m = max(m, row + diagsz)
n = max(n, col + diagsz)
i += diagsz
end
return I, J, V, m, n
end
function time_expand(Xorg::AbstractArray, basisfunction::BasisFunction, onsets)
bases = kernel.(Ref(basisfunction), eachrow(onsets))
return time_expand(Xorg, basisfunction, onsets, bases)
end
function time_expand(Xorg, basisfunction::BasisFunction, onsets, bases)
ncolsBasis = size(kernel(basisfunction, 0), 2)::Int64
X = reshape(Xorg, size(Xorg, 1), :) # why is this necessary?
ncolsX = size(X)[2]::Int64
rows = timeexpand_rows(onsets, bases, shift_onset(basisfunction), ncolsX)
cols = timeexpand_cols(basisfunction, bases, ncolsBasis, ncolsX)
vals = timeexpand_vals(bases, X, size(cols), ncolsX)
#vals = vcat(vals...)
ix = rows .> 0 #.&& vals .!= 0.
A = @views sparse(rows[ix], cols[ix], vals[ix])
dropzeros!(A)
return A
end
"""
Helper function to decide whether all bases have the same number of columns per event
"""
time_expand_allBasesSameCols(b::FIRBasis, bases, ncolBasis) = true # FIRBasis is always fast!
function time_expand_allBasesSameCols(basisfunction, bases, ncolsBasis)
fastpath = true
for b in eachindex(bases)
if length(unique(length.(nzrange.(Ref(bases[b]), 1:ncolsBasis)))) != 1
return false
end
end
return true
end
"""
$(SIGNATURES)
coefnames of a TimeExpandedTerm concatenates the basis-function name with the kronecker product of the term name and the basis-function colnames. Separator is ' : '
Some examples for a firbasis:
basis_313 : (Intercept) : 0.1
basis_313 : (Intercept) : 0.2
basis_313 : (Intercept) : 0.3
...
"""
function StatsModels.coefnames(term::TimeExpandedTerm)
terms = coefnames(term.term)
colnames = Unfold.colnames(term.basisfunction)
name = Unfold.name(term.basisfunction)
if typeof(terms) == String
terms = [terms]
end
return string(name) .* " : " .* kron(terms .* " : ", string.(colnames))
end
function StatsModels.termnames(term::TimeExpandedTerm)
terms = coefnames(term.term)
colnames = Unfold.colnames(term.basisfunction)
if typeof(terms) == String
terms = [terms]
end
return vcat(repeat.([[t] for t in terms], length(colnames))...)
end
function colname_basis(term::TimeExpandedTerm)
terms = coefnames(term.term)
colnames = Unfold.colnames(term.basisfunction)
if typeof(terms) == String
terms = [terms]
end
return repeat(colnames, length(terms))
end
function StatsModels.coefnames(terms::AbstractArray{<:FormulaTerm})
return coefnames.(Base.getproperty.(terms, :rhs))
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 4426 | import Effects: effects
import Effects: expand_grid
import Effects: typify
import Effects.typify
import Effects: _symequal
import StatsModels.collect_matrix_terms
import Base.getproperty
using Effects
"""
effects(design::AbstractDict, model::UnfoldModel; typical = mean)
Calculates marginal effects for all term combinations in `design`.
Implementation based on Effects.jl package; likely could repackage in UnfoldEffects.jl; somebody wants to do it? This would make it easier to cross-maintain it to changes/bug fixes in the Effects.jl package.
`design` is a dictionary containing those predictors (as keys) with levels (as values), that you want to evaluate. The `typical` refers to the value, which other predictors that are not specified in the dictionary, should take on.
For MixedModels, the returned effects are based on the "typical" subject, i.e. all random effects are put to 0.
# Example
```julia-repl
julia> f = @formula 0 ~ categoricalA + continuousA + continuousB
julia> uf = fit(UnfoldModel, (Any => (f, times)), data, events)
julia> d = Dict(:categorical => ["levelA", "levelB"], :continuous => [-2, 0, 2])
julia> effects(d, uf)
```
will result in 6 predicted values: A/-2, A/0, A/2, B/-2, B/0, B/2.
"""
function effects(design::AbstractDict, model::T; typical = mean) where {T<:UnfoldModel}
if isempty(design)
return effects(Dict(:dummy => [:dummy]), model; typical)
end
reference_grid = expand_grid(design)
form = Unfold.formulas(model) # get formula
# replace non-specified fields with "constants"
m = Unfold.modelmatrix(model, false) # get the modelmatrix without timeexpansion
#@debug "type form[1]", typeof(form[1])
form_typical = _typify(T, reference_grid, form, m, typical)
@debug typeof(form_typical) typeof(form_typical[1])
#form_typical = vec(form_typical)
reference_grids = repeat([reference_grid], length(form_typical))
eff = predict(model, form_typical, reference_grids; overlap = false)
if :latency β unique(vcat(names.(reference_grids)...))
reference_grids = select.(reference_grids, Ref(DataFrames.Not(:latency)))
end
@debug "effects" size(eff[1]) reference_grid size(times(model)[1]) eventnames(model)
return result_to_table(eff, reference_grids, times(model), eventnames(model))
end
Effects.typify(reference_grid, form::AbstractArray, X; kwargs...) =
typify.(Ref(reference_grid), form, Ref(X); kwargs...)
# cast single form to a vector
_typify(
reference_grid,
form::FormulaTerm{<:InterceptTerm,<:Unfold.TimeExpandedTerm},
m,
typical,
) = _typify(reference_grid, [form], [m], typical)
@traitfn function _typify(
::Type{UF},
reference_grid,
form::Vector{T},
m::Vector,
typical,
) where {T<:FormulaTerm,UF<:UnfoldModel;ContinuousTimeTrait{UF}}
@debug "_typify - stripping away timeexpandedterm"
form_typical = Array{FormulaTerm}(undef, length(form))
for f = 1:length(form)
# strip of basisfunction and put it on afterwards again
tmpf = deepcopy(form[f])
# create a Formula without Timeexpansion
tmpf = FormulaTerm(tmpf.lhs, tmpf.rhs.term)
# typify that
tmpf = typify(reference_grid, tmpf, m[f]; typical = typical)
# regenerate TimeExpansion
tmpf = Unfold.TimeExpandedTerm(
tmpf,
form[f].rhs.basisfunction;
eventfields = form[f].rhs.eventfields,
)
form_typical[f] = FormulaTerm(form[f].lhs, tmpf)
end
return form_typical
end
function _typify(reference_grid, form::FormulaTerm, m, typical)
return [typify(reference_grid, form, m; typical = typical)]
end
@traitfn function _typify(
::Type{UF},
reference_grid,
form::AbstractArray{T},
m::Vector,
typical,
) where {T<:FormulaTerm,UF<:UnfoldModel;!ContinuousTimeTrait{UF}}
# Mass Univariate with multiple effects
@debug "_typify going the mass univariate route - $(typeof(form))"
@debug length(form), length(m), typeof(m)
out = FormulaTerm[]
for k = 1:length(form)
tmpf = typify(reference_grid, form[k], m[k]; typical = typical)
push!(out, FormulaTerm(form[k].lhs, tmpf))
end
@debug :_typify typeof(form)
return out
end
# mixedModels case - just use the FixEff, ignore the ranefs
Effects.typify(reference_grid, form, m::Tuple; typical) =
typify(reference_grid, form, m[1]; typical)
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 2092 | # helper scripts for event handlung
"""
copy field-info from source to closest target
`match_fun` can be "closest", "s before t" (eq. "t after s") or "t before s" (eq. "s after t")
## Example
julia> # copy reaction time values from button press to closest stimulus immediately before button press
julia> copy_eventinfo!(evts,"button"=>"stimulus",:reaction_time;match_fun="s after t")
"""
function copy_eventinfo!(evts, fromTo, field; match_fun = "closest")
source = fromTo.first
target = fromTo.second
if isa(field, Pair)
source_field = field.first
target_field = field.second
else
source_field = field
target_field = field
end
source_ix = findall(isequal(source), evts.trial_type)
target_ix = findall(isequal(target), evts.trial_type)
isempty(source_ix) && error("couldnt find source entries ($source) in evts.trial_type")
isempty(target_ix) && error("couldnt find target entries ($target) in evts.trial_type")
# for some matching functions we want to find the minimum, but no negative number
filter_greaterzero = x -> x >= 0 ? x : Inf
if match_fun == "closest"
match_fun = (a, b) -> argmin(abs.(a .- b)) # find closest before or after
elseif match_fun == "s after t" || match_fun == "t before s"
match_fun = (s, t) -> argmin(filter_greaterzero.(s .- t)) # source after target
elseif match_fun == "s before t" || match_fun == "t after s"
match_fun = (s, t) -> argmin(filter_greaterzero.(t .- s)) # source before target
elseif !callable(match_fun)
error("bad match_fun input")
end
ix = [match_fun(evts[s, :latency], evts[target_ix, :latency]) for s in source_ix]
ix = target_ix[ix]
payload = evts[source_ix, source_field]
# if targetfield does not exist, create one with Union(missing,target_field_datatype)
if !any(names(evts) .== target_field)
evts[!, target_field] =
Array{Union{Missing,typeof(payload[1])}}(missing, nrow(evts))
end
# fill it in
evts[ix, target_field] .= payload
return evts
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 8487 |
"""
fit(type::UnfoldModel,d::Vector{Pair},tbl::AbstractDataFrame,data::Array)
fit(type::UnfoldModel,f::FormulaTerm,tbl::AbstractDataFrame,data::Array{T,3},times)
fit(type::UnfoldModel,f::FormulaTerm,tbl::AbstractDataFrame,data::Array{T,2},basisfunction::BasisFunction)
Generates Designmatrix & fits model, either mass-univariate (one model per epoched-timepoint) or time-expanded (modeling linear overlap).
- `eventcolumn` (Symbol/String, default :event) - the column in `tbl::AbstractDataFrame` to differentiate the basisfunctions as defined in `d::Vector{Pair}`
- `show_progress` (Bool, default true) - show Progress via ProgressMeter
If a `Vector[Pairs]` is provided, it has to have one of the following structures:
`[:A=>(f,basisfunction), :B=>(f2,bf2)]` - for deconvolutin analyses (use `Any=>(f,bf)` to match all rows of `tbl` in one basis functins)
`[:A=>(f,timesvector), :B=>(f2,timesvector)]` - for mass univariate analyses. If multiple rERPs are calculated at the same time, the timesvectors must be the same
## Notes
- The `type` can be specified directly as well e.g. `fit(type::UnfoldLinearModel)` instead of inferred
- The data is reshaped if it is missing one dimension to have the first dimesion then `1` "Channel".
## Examples
Mass Univariate Linear
```julia-repl
julia> data,evts = loadtestdata("testCase1")
julia> data_r = reshape(data,(1,:))
julia> data_e,times = Unfold.epoch(data=data_r,tbl=evts,Ο=(-1.,1.9),sfreq=10) # cut the data into epochs. data_e is now ch x times x epoch
julia> f = @formula 0~1+continuousA+continuousB # 1
julia> model = fit(UnfoldModel,f,evts,data_e,times)
```
Timexpanded Univariate Linear
```julia-repl
julia> basisfunction = firbasis(Ο=(-1,1),sfreq=10,name="A")
julia> model = fit(UnfoldModel,[Any=>(f,basisfunction],evts,data_r)
```
"""
function StatsModels.fit(
UnfoldModelType::Type{T},
f::FormulaTerm,
tbl::AbstractDataFrame,
data::AbstractArray,
basisOrTimes::Union{BasisFunction,AbstractArray};
kwargs...,
) where {T<:UnfoldModel}
# old input format, sometimes convenient.Convert to list-based one
fit(UnfoldModelType, [Any => (f, basisOrTimes)], tbl, data; kwargs...)
end
# deprecated Dict call
function StatsModels.fit(uf::Type{UnfoldModel}, design::Dict, args...; kwargs...)
#@debug keys(design) .=> Tuple.(values(design))
@warn "using `Dict(:A=>(@formula,times/basisfunction))` is deprecated, please use `[:A=>(@formula,times/basisfunction)]` from now on"
fit(uf, collect(pairs(design)), args...; kwargs...)
end
function StatsModels.fit(
UnfoldModelType::Type{<:UnfoldModel},
design::Vector,
tbl::AbstractDataFrame,
data::AbstractArray{T};
kwargs...,
) where {T}
for k = 1:length(design)
d_first = design[k]
d_tuple = last(d_first)
@assert typeof(first(d_tuple)) <: FormulaTerm "InputError in design(uf) - :key=>(FORMULA,basis/times), formula not found. Maybe formula wasn't at the first place?"
end
if UnfoldModelType == UnfoldModel
@debug "autodetecting UnfoldModelType"
UnfoldModelType = design_to_modeltype(design)
end
for k = 1:length(design)
d_first = design[k]
d_tuple = last(d_first)
@assert (typeof(last(d_tuple)) <: AbstractVector) β»
(SimpleTraits.istrait(Unfold.ContinuousTimeTrait{UnfoldModelType})) "InputError: Either a basis function was declared, but a UnfoldLinearModel was built, or a times-vector (and no basis function) was given, but a UnfoldLinearModelContinuousTime was asked for."
end
@debug "Check Data + Applying UnfoldModelType: $UnfoldModelType {$T}"
data_r = check_data(UnfoldModelType, data)
fit(UnfoldModelType{T}(design), tbl, data_r; kwargs...)
end
function StatsModels.fit(
uf::UnfoldModel,
tbl::AbstractDataFrame,
data::AbstractArray;
kwargs...,
)
@debug "adding desigmatrix!"
designmatrix!(uf, tbl; kwargs...)
fit!(uf, data; kwargs...)
return uf
end
# special case where designmatrix and data are provided directly without a design
function StatsModels.fit(
UnfoldModelType::Type{UF},
X::Vector{<:AbstractDesignMatrix{T}},
data::AbstractArray;
kwargs...,
) where {UF<:UnfoldModel,T}
if UnfoldModelType == UnfoldModel
error(
"Can't infer model automatically, specify with e.g. fit(UnfoldLinearModel...) instead of fit(UnfoldModel...)",
)
end
uf = UnfoldModelType{T}([:empty => ()], X)
fit!(uf, data; kwargs...)
return uf
end
# main fitting function
function StatsModels.fit!(
uf::UnfoldModel{T},
data::AbstractArray{T};
solver = (x, y) -> solver_default(x, y),
kwargs...,
) where {T}
@debug "fit!: $T, datasize: $(size(data))"
@assert ~isempty(designmatrix(uf))
if isa(uf, UnfoldLinearModel)
@assert length(times(uf)[1]) == size(data, length(size(data)) - 1) "Times Vector does not match second last dimension of input data - forgot to cut into epochs?"
end
X = modelmatrix(uf)
if isa(uf, UnfoldLinearModel)
d = designmatrix(uf)
# mass univariate with multiple events fitted at the same time
coefs = []
for m = 1:length(X)
# the main issue is, that the designmatrices are subsets of the event table - we have
# to do the same for the data, but data and designmatrix dont know much about each other.
# Thus we use parentindices() to get the original indices of the @view events[...] from desigmatrix.jl
@debug typeof(X) typeof(events(d)[m])
push!(coefs, solver(X[m], @view data[:, :, parentindices(events(d)[m])[1]]))
end
@debug [size(c.estimate) for c in coefs]
uf.modelfit = LinearModelFit{T,3}(
cat([c.estimate for c in coefs]..., dims = 3),
[c.info for c in coefs],
cat([c.standarderror for c in coefs]..., dims = 3),
)
return # we are done here
# elseif isa(d.events, SubDataFrame)
# in case the user specified an event to subset (and not any) we have to use the view from now on
# data = @view data[:, :, parentindices(d.events)[1]]
# end
end
X, data = equalize_size(X, data)
# @debug typeof(uf.modelfit), typeof(T), typeof(X), typeof(data)
uf.modelfit = solver(X, data)
return uf
end
@traitfn function check_data(
uf::Type{UF},
data::AbstractArray{T,2},
) where {T,UF<:UnfoldModel;!ContinuousTimeTrait{UF}}
@debug(" !ContinuousTimeTrait: data array is size (X,Y), reshaping to (1,X,Y)")
data_r = reshape(data, 1, size(data)...)
return data_r
end
@traitfn check_data(
uf::Type{UF},
data::AbstractArray{T,2},
) where {T,UF<:UnfoldModel;ContinuousTimeTrait{UF}} = data
function check_data(uf::Type{<:UnfoldModel}, data::AbstractVector)
@debug("data array is size (X,), reshaping to (1,X)")
data = reshape(data, 1, :)
end
check_data(uf::Type{<:UnfoldModel}, data) = data
isa_lmm_formula(f::FormulaTerm) = isa_lmm_formula(f.rhs)
isa_lmm_formula(f::Tuple) = any(isa_lmm_formula.(f))
isa_lmm_formula(f::InteractionTerm) = false
isa_lmm_formula(f::ConstantTerm) = false
isa_lmm_formula(f::StatsModels.Term) = false
#isa_lmm_formula(f::FunctionTerm) = false
function isa_lmm_formula(f::FunctionTerm)
try
isa_lmm_formula(f.f)
catch
isa_lmm_formula(f.forig) # StatsMoels <0.7
end
end
isa_lmm_formula(f::Function) = false # catch all
isa_lmm_formula(f::typeof(|)) = true
function design_to_modeltype(design)
#@debug design
# autoDetect
tmp = last(design[1])
f = tmp[1] # formula
t = tmp[2] # Vector or BasisFunction
isMixedModel = isa_lmm_formula(f)
if isMixedModel
ext = Base.get_extension(@__MODULE__, :UnfoldMixedModelsExt)
if isnothing(ext)
throw(
"MixedModels is not loaded. Please use `]add MixedModels` and `using MixedModels` to install it prior to using",
)
end
end
if typeof(t) <: BasisFunction
if isMixedModel
UnfoldModelType = ext.UnfoldLinearMixedModelContinuousTime
else
UnfoldModelType = UnfoldLinearModelContinuousTime
end
else
if isMixedModel
UnfoldModelType = ext.UnfoldLinearMixedModel
else
UnfoldModelType = UnfoldLinearModel
end
end
return UnfoldModelType
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 3038 | using FileIO
using JLD2
using StatsModels
using Unfold
"""
_modelcols(forms::Vector,events::Vector)
A wrapper around StatsModels.modelcols that is only needed for easy multiple dispatch
"""
function _modelcols(forms::Vector, events::Vector)
@assert length(forms) == length(events)
return _modelcols.(forms, events)
end
"""
_modelcols(form::FormulaTerm, events)
"""
_modelcols(form::FormulaTerm, events) = modelcols(form.rhs, events)
"""
FileIO.save(file, uf::T; compress=false) where {T<:UnfoldModel}
Save UnfoldModel in a (by default uncompressed) .jld2 file.
For memory efficiency the designmatrix is set to missing.
If needed, it can be reconstructed when loading the model.
"""
function FileIO.save(file, uf::T; compress = false) where {T<:UnfoldModel}
jldopen(file, "w"; compress = compress) do f
f["uf"] = T(
design(uf),
[
typeof(uf.designmatrix[k])(
Unfold.formulas(uf)[k],
empty_modelmatrix(designmatrix(uf)[k]),
Unfold.events(uf)[k],
) for k = 1:length(uf.designmatrix)
],
uf.modelfit,
)
end
end
function empty_modelmatrix(d::AbstractDesignMatrix)
return typeof(d)().modelmatrix
end
"""
FileIO.load(file, ::Type{<:UnfoldModel}; generate_Xs=true)
Load UnfoldModel from a .jld2 file.
By default, the designmatrix is reconstructed. If it is not needed set `generate_Xs=false`
which improves time-efficiency.
"""
function FileIO.load(file, ::Type{<:UnfoldModel}; generate_Xs = true)
f = jldopen(file, "r")
uf = f["uf"]
close(f)
form = formulas(designmatrix(uf))
events = Unfold.events(designmatrix(uf))
@debug typeof.(form) typeof.(events) size(form) size(events)
# potentially don't generate Xs, but always generate it for LinearModels as it is small + cheap + we actually need it for many functions
if generate_Xs || uf isa UnfoldLinearModel
X = _modelcols(form, events)
else
#nd = length(size(modelmatrix(designmatrix(uf)[1])))
#@debug typeof.(designmatrix(uf))
#X = [sparse(Array{eltype(uf)}(undef, repeat([0], nd)...)) for k = 1:length(form)]
X = [empty_modelmatrix(designmatrix(uf)[k]) for k = 1:length(form)]
end
modelfit =
if isa(uf.modelfit, JLD2.ReconstructedMutable{Symbol("Unfold.LinearModelFit")})
@warn "old Unfold Model detected, trying to 'upgrade' uf.modelfit"
mf = uf.modelfit
T = typeof(mf.estimate)
if isempty(mf.standarderror)
LinearModelFit(mf.estimate, mf.info)
else
LinearModelFit(mf.estimate, mf.info, T(mf.standarderror))
end
else
uf.modelfit
end
@debug typeof(uf) typeof(form) typeof(X) typeof(events) size(form) size(X) size(events)
# reintegrate the designmatrix
return typeof(uf)(uf.design, typeof(designmatrix(uf)[1]).(form, X, events), modelfit)
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 16664 |
#using DocStringExtensions: format
# opt-in
# Most important function ;-)
#predict(X::AbstractMatrix, coefs::AbstractMatrix) = coefs * X'
predict(X::AbstractMatrix, coefs::AbstractMatrix) = (X * coefs')'
# MassUnivariate Model, we have to extract the coefficients per designmatrix
function predict(X::Vector{<:AbstractMatrix}, coefs::AbstractArray{T,3}) where {T}
len = size.(X, 2)
@assert length(unique(len)) == 1 "all designmatrices need to be the same size in this case"
coefs_views = [@view(coefs[:, :, (i-1)*len[1]+1:i*len[1]]) for i = 1:length(len)]
predict.(X, coefs_views)
end
# 3D-case
function predict(
X::AbstractMatrix{Tx},
coef::AbstractArray{Tc,3},
) where {Tx<:Union{Missing,<:Number},Tc<:Union{Missing,<:Number}}
yhat = Array{Union{Tc,Tx}}(undef, size(coef, 1), size(X, 1), size(coef, 2))
for ch = 1:size(coef, 1)
yhat[ch, :, :] .= X * permutedims(coef[ch, :, :], (2, 1))
end
return permutedims(yhat, (1, 3, 2)) # esults in: ch x time x pred
end
function predict(
X::AbstractMatrix{Tcoef},
coefs::AbstractMatrix{TX},
onsets::Vector,
timewindow::NTuple{2,Int},
) where {Tcoef,TX}
# Create an empty array for the residuals
# Note there is a +1 because start and stop indices are both included in the interval
yhat = Array{Union{TX,Tcoef}}(
undef,
size(coefs, 1),
timewindow[2] - timewindow[1] + 1,
length(onsets),
)
for event in eachindex(onsets)
event_range_temp = onsets[event]+timewindow[1]:onsets[event]+timewindow[2]
# Clip indices that are outside of the design matrix (i.e. before the start or after the end)
#indices_inside_data = 0 .< event_range_temp .< size(data, 2)
indices_inside_data = 0 .< event_range_temp .< size(X, 1)
event_range = event_range_temp[indices_inside_data]
# Calculate residuals
yhat[:, indices_inside_data, event] .= predict(@view(X[event_range, :]), coefs)
end
return yhat
end
function _residuals(
yhat::AbstractArray{Tyhat,3},
y::AbstractMatrix{Ty},
onsets::Vector,
timewindow::NTuple{2,Int},
) where {Ty,Tyhat}
resid = missings(
Union{Ty,Tyhat},
size(y, 1),
timewindow[2] - timewindow[1] + 1,
length(onsets),
)
for event in eachindex(onsets)
event_range_temp = onsets[event]+timewindow[1]:onsets[event]+timewindow[2]
# Clip indices that are outside of the design matrix (i.e. before the start or after the end)
indices_inside_data = 0 .< event_range_temp .< size(y, 2)
event_range = event_range_temp[indices_inside_data]
!isempty(event_range) || @warn "event_range is empty for $event $(onsets[event])"
# Calculate residuals
#@debug "_residuals" size(y) size(yhat) size(event_range)
#@debug event event_range[[1, end]]
@views resid[:, indices_inside_data, event] .=
y[:, event_range] .- yhat[:, indices_inside_data, event]
# if !all(indices_inside_data)
# @views resid[:, .!indices_inside_data, event] .=
# y[:, event_range_temp[.!indices_inside_data]]
#end
end
return resid
end
@traitfn residuals(
uf::T,
data::AbstractArray,
) where {T <: UnfoldModel; ContinuousTimeTrait{T}} =
_residuals(T, predict(uf), check_data(T, data))
@traitfn function residuals(
uf::T,
data::AbstractArray,
) where {T <: UnfoldModel; !ContinuousTimeTrait{T}}
pred = predict(uf)
@assert length(pred) == 1 "residuals currently not supported for multi-event MassUnivariateModels. It is not hard to implement, but I ran out of time. Write an issue if you need this functionality"
_residuals(T, pred[1], check_data(T, data))
end
_split_data(y::AbstractMatrix, n) = return @view(y[:, 1:n]), @view(y[:, n+1:end])
_split_data(y::AbstractArray, n) = return @view(y[:, 1:n, :]), @view(y[:, n+1:end, :])
#@traitfn
function _residuals(::Type{T}, yhat, y) where {T<:UnfoldModel}#; ContinuousTimeTrait{T}}
#_split_data(y::AbstractVector, n) = return @view(y[1:n]), @view(y[n+1:end])
n_yhat = size(yhat, 2)
n_y = size(y, 2)
@debug n_yhat n_y
if n_yhat >= n_y
@debug "n_yhat > n_y" size(y) size.(_split_data(yhat, n_y))
return y .- _split_data(yhat, n_y)[1]
else
@debug "n_y < n_yhat"
yA, yB = _split_data(y, n_yhat)
@debug size(yA) size(yB)
res = yA .- n_y
return cat(res, yB; dims = 2)
end
end
predict(uf::UnfoldModel, f::FormulaTerm, args...; kwargs...) =
predict(uf, [f], args...; kwargs...)
predict(uf::UnfoldModel, f::Vector, evts::DataFrame; kwargs...) =
predict(uf, f, repeat([evts], length(f)); kwargs...)
predict(uf::UnfoldModel; kwargs...) = predict(uf, formulas(uf), events(uf); kwargs...)
predict(uf::UnfoldModel, f::Vector{<:FormulaTerm}; kwargs...) =
predict(uf, f, events(uf); kwargs...)
predict(uf::UnfoldModel, evts::Vector{<:DataFrame}; overlap = false, kwargs...) =
predict(uf, Unfold.formulas(uf), evts; overlap, kwargs...)
predict(uf::UnfoldModel, evts::DataFrame; overlap = false, kwargs...) = predict(
uf,
Unfold.formulas(uf),
repeat([evts], length(Unfold.formulas(uf)));
overlap,
kwargs...,
)
"""
function predict(
uf,
f::Vector{<:FormulaTerm},
evts::Vector{<:DataFrame};
overlap = true,
kwargs...
)
Returns a predicted ("y_hat = X*b") `Array`.
- `uf` is an `<:UnfoldModel`
- `f` is a (vector of) formulas, typically `Unfold.formulas(uf)`, but formulas can be modified e.g. by `effects`.
- `evts` is a (vector of) events, can be `Unfold.events(uf)` to return the (possibly continuous-time) predictions of the model. Can be a custom even
## kwargs:
if `overlap = true` (default), overlap based on the `latency` column of 'evts` will be simulated, or in the case of `!ContinuousTimeTrait` just X*coef is returned.
if `overlap = false`, returns predictions without overlap (models with `ContinuousTimeTrait` (=> with basisfunction / deconvolution) only), via `predict_no_overlap`
if `keep_basis` or `exclude_basis` is defined, then `predict_partial_overlap` is called, which allows to selective introduce overlap based on specified (or excluded respective) events/basisfunctions
`epoch_to` and `epoch_timewindow` currently only defined for partial_overlap, calculated (partial) overlap controlled predictions, but returns them at the specified `epoch_at` event, with the times `epoch_timewindow` in samples.
`eventcolumn` can be specified as well if different from the default `event`
Hint: all vectors can be "single" types, and will be containered in a vector
## Output
- If `overlap=false`, returns a 3D-Array
- If `overlap=true` and `epoch_to=nothing` (default), returns a 2D-array
- If `overlap=true` and `epoch_to!=nothing`, returns a 3D array
"""
function predict(
uf,
f::Vector{<:FormulaTerm},
evts::Vector{<:DataFrame};
overlap = true,
keep_basis = [],
exclude_basis = [],
epoch_to = nothing,
epoch_timewindow = nothing,
kwargs...,
#eventcolumn = :event,
)
@assert !(
(!isempty(keep_basis) || !isempty(exclude_basis)) && (length(formulas(uf)) == 1)
) "No way to calculate partial overlap if basisnames is Any; please revise model "
@assert !(!isempty(keep_basis) & !isempty(exclude_basis)) "choose either to keep events, or to exclude, but not both"
coefs = coef(uf)
if overlap
if isempty(keep_basis) & isempty(exclude_basis)
@debug "full-overlap"
if events(uf) == evts
@debug "original design predict"
# off-the-shelf standard continuous predict, as you'd expect
return predict(modelmatrix(uf), coef(uf))
else
@debug "new dataframe predict"
# predict of new data-table with a latency column. First generate new designmatrix, then off-the-shelf X*b predict
@assert length(f) == length(evts) "please provide the same amount of formulas (currently $(length(f)) as event-dataframes (currently $(length(evts)))"
X_new = modelcols.(f, evts) |> Unfold.extend_to_larger
@debug typeof(X_new) typeof(modelcols.(f, evts))
return predict(X_new, coefs)
end
else
return predict_partial_overlap(
uf,
coefs,
evts;
keep_basis,
exclude_basis,
epoch_to,
epoch_timewindow,
kwargs...,
)
end
else
@debug "no overlap predict2"
# no overlap, the "ideal response". We predict each event row independently. user could concatenate if they really want to :)
return predict_no_overlap(uf, coefs, f, evts)
end
end
@traitfn predict_partial_overlap(
uf::T,
args;
kwargs...,
) where {T <: UnfoldModel; !ContinuousTimeTrait{T}} =
error("can't have partial overlap without Timecontinuous model")
@traitfn function predict_partial_overlap(
uf::T,
coefs,
evts;
keep_basis = [],
exclude_basis = [],
epoch_to = nothing,
epoch_timewindow = nothing,
eventcolumn = :event,
) where {T <: UnfoldModel; ContinuousTimeTrait{T}}
@assert !(!isempty(keep_basis) & !isempty(exclude_basis)) "can't have no overlap & specify keep/exclude at the same time. decide for either case"
# Partial overlap! we reconstruct with some basisfunctions deactivated
if !isempty(keep_basis)
if !isa(keep_basis, Vector) # Check if keep_basis is a vector
basisnames = [keep_basis]
else
basisnames = keep_basis
end
@assert !isempty(intersect(basisname(Unfold.formulas(uf)), basisnames)) "Couldn't find (any of) $keep_basis in the models basisnames; you can check which basisnames are available in your model using Unfold.basisname(Unfold.formulas(uf))"
else
basisnames = basisname(Unfold.formulas(uf))
basisnames = setdiff(basisnames, exclude_basis)
end
# @debug basisname
X_view = matrix_by_basisname(modelmatrix(uf), uf, basisnames)
coefs_view = matrix_by_basisname(coefs, uf, basisnames)
if isnothing(epoch_to)
return predict(X_view, coefs_view)
else
# @debug typeof(evts)
timewindow =
isnothing(epoch_timewindow) ? calc_epoch_timewindow(uf, epoch_to) :
epoch_timewindow
find_lat =
x -> x[
epoch_to == Any ? (1:size(x, 1)) : x[:, eventcolumn] .== epoch_to,
:latency,
]
latencies = vcat(find_lat.(evts)...)
#ix_event = vcat(evts...)[:, eventcolumn] .== epoch_to
#latencies = evts[ix_event].latency
#@debug latencies[end] size(X_view) timewindow
return predict(X_view, coefs_view, latencies, (timewindow[1], timewindow[end]);)
end
end
@traitfn function predict_no_overlap(
uf::T,
coefs,
f::Vector,
evts::Vector,
) where {T <: UnfoldModel; !ContinuousTimeTrait{T}}
@debug "Not ContinuousTime yhat, Array"
X = _modelcols.(f, evts)
@debug typeof(X)
# figure out which coefficients belong to which event
Xsizes = size.(X, Ref(2))
Xsizes_cumsum = vcat(0, cumsum(Xsizes))
indexes = [(Xsizes_cumsum[ix]+1):Xsizes_cumsum[ix+1] for ix = 1:length(f)]
# split up the coefs accordingly
coArray = [@view coefs[:, :, ix] for ix in indexes]
@debug typeof(collect(X[1])), typeof(collect(coArray[1])) size(X) size(coArray)
return predict.(X, coArray)
end
@traitfn function predict_no_overlap(
uf::T,
coefs,
f::Vector,
evts::Vector,
) where {T <: UnfoldModel; ContinuousTimeTrait{T}}
has_missings = false
yhat = Array{eltype(coefs)}[]
@debug eltype(coefs) typeof(yhat)
for (fi, e) in zip(f, deepcopy(evts))
# put latency to 1 in case no basis shift
e.latency .= -fi.rhs.basisfunction.shift_onset + 1 #sum(times(fi) .<= 0)
#e.latency .= 1
X_singles = map(x -> _modelcols(fi, DataFrame(x)), eachrow(e))
coefs_view = matrix_by_basisname(coefs, (uf), (basisname([fi])))
yhat_single = similar(
coefs_view,
size(coefs_view, 1),
size(X_singles[1], 1),
length(X_singles),
)
for ev = 1:length(X_singles)
p = predict(X_singles[ev], coefs_view)
if has_missings || isa(p, AbstractArray{<:Union{<:Missing,<:Number}})
# if outside range predictions happen for spline predictors, we have to allow missings
# @debug "yeah, missings..."
has_missings = true
yhat_single = allowmissing(yhat_single)
end
yhat_single[:, :, ev] .= p
end
yhat = combine_yhat!(yhat, yhat_single)
end
@debug typeof(yhat) typeof.(yhat)
@debug typeof(vcat(yhat))
return yhat
end
"""
combine_yhat(list,single)
combines single into list, if either list or single contains missing, automatically casts the respective counter-part to allow missings as well
"""
function combine_yhat!(yhat::Vector{<:Array{T}}, yhat_single::Array{T}) where {T}
@debug typeof(yhat) typeof.(yhat) typeof(yhat_single)
push!(yhat, yhat_single)
end
combine_yhat!(yhat::Vector{Array{Union{Missing,<:Number}}}, yhat_single) =
push!(yhat, allowmissing(yhat_single))
function combine_yhat!(
yhat::Vector{<:Array{<:Number}},
yhat_single::Array{T},
) where {T<:Union{Missing,<:Number}}
@debug "new yhat"
yhat_new = Array{T}[]
combine_yhat!.(Ref(yhat_new), yhat)
combine_yhat!(yhat_new, yhat_single)
end
"""
Returns a view of the Matrix `y`, according to the indices of the timeexpanded `basisname`
"""
function matrix_by_basisname(y::AbstractMatrix, uf, basisnames::Vector)
ix = get_basis_indices(uf, basisnames)
return @view(y[:, ix])
end
"""
returns an integer range with the samples around `epoch_event` as defined in the corresponding basisfunction
"""
function calc_epoch_timewindow(uf, epoch_event)
basis_ix = findfirst(Unfold.basisname(formulas(uf)) .== epoch_event)
basisfunction = formulas(uf)[basis_ix].rhs.basisfunction
return (1:Unfold.height(basisfunction)) .- 1 .+ Unfold.shift_onset(basisfunction) # start at 0
end
"""
get_basis_indices(uf, basisnames::Vector)
returns a boolean vector with length spanning all coefficients, which coefficient is defined by `basisnames` (vector of names)
"""
get_basis_indices(uf, basisnames::Vector) =
reduce(vcat, Unfold.get_basis_names(uf)) .β Ref(basisnames)
get_basis_indices(uf, basisnames) = get_basis_indices(uf, [basisnames])
"""
predicttable(model<:UnfoldModel,events=Unfold.events(model),args...;kwargs...)
Shortcut to call efficiently call (pseudocode) `result_to_table(predict(...))`.
Returns a tidy DataFrame with the predicted results. Loops all input to `predict`, but really only makes sense to use if you specify either:
`overlap = false` (the default) or `epoch_to = "eventname"`.
"""
function predicttable(
model::UnfoldModel,
events::Vector = Unfold.events(model),
args...;
overlap = false,
kwargs...,
)
p = predict(
model,
Unfold.formulas(model),
events,
args...;
overlap = overlap,
kwargs...,
)
return result_to_table(model, p, events)
end
predicttable(model, events::DataFrame) = predicttable(model, [events])
eventnames(model::UnfoldModel) = first.(design(model))
"""
times(model<:UnfoldModel)
returns arrays of time-vectors, one for each basisfunction / parallel-fitted-model (MassUnivarite case)
"""
@traitfn times(model::T) where {T <: UnfoldModel; !ContinuousTimeTrait{T}} =
times(design(model))
@traitfn times(model::T) where {T <: UnfoldModel; ContinuousTimeTrait{T}} =
times(formulas(model))
times(d::Vector) = times.(d)
times(d::FormulaTerm) = times(d.rhs)
times(d::MatrixTerm) = times(d.term)
times(d::TimeExpandedTerm) = times(d.basisfunction)
function times(
d::Vector{
<:Pair{
<:Union{<:DataType,<:AbstractString,<:Symbol},
<:Tuple{<:AbstractTerm,<:AbstractVector},
},
},
)
all_times = last.(last.(d)) #[k[2] for k in values(d)] # probably going for steprange would be better
# @debug all_times length(all_times) length.(all_times)
@assert all(all_times .== all_times[1:1]) "all times need to be equal in a mass univariate model"
return all_times
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 4748 |
# pluto compatability of plotting
function Base.show(
io::IO,
::MIME"text/html",
obj::T,
) where {
T<:Union{
<:TimeExpandedTerm,
<:Vector{<:FormulaTerm},
<:FormulaTerm,
<:BasisFunction,
<:UnfoldModel,
<:Vector{<:AbstractDesignMatrix},
<:Vector{<:Pair{<:Any,<:Tuple}},
},
}
#show(IOContext(io, :highlight => false, "text/plain", obj))
is_pluto = get(io, :is_pluto, false)
if is_pluto
show(Base.stdout, "text/plain", obj)
else
show(io, "text/plain", obj)
end
end
#----- TimeExpandedTerm
function Base.show(io::IO, p::TimeExpandedTerm)
t = times(p.basisfunction)
tPlot = show_shorten_vector(t)
tprint(
io,
Term.highlight("$(p.basisfunction.name)", :operator) *
Term.highlight(": timeexpand($(p.term)) for times $(tPlot)"),
)
end
function Base.show(io::IO, f::FormulaTerm{<:Union{<:InterceptTerm,TimeExpandedTerm}})
tprint(io, f.rhs)
end
function Base.show(io::IO, f::Vector{<:FormulaTerm}; eventnames = repeat([""], length(f)))
for k = 1:length(f)
Term.tprintln(
io,
"{bold blue_light} $(eventnames[k]){/bold blue_light}",
"=>",
f[k],
)
end
end
function show_shorten_vector(t)
if length(t) > 3
t = (round.(t[[1, 2, end]]; sigdigits = 4))
tPlot = "[" * string(t[1]) * ", " * string(t[2]) * " ... " * string(t[3]) * "]"
else
tPlot = string(t)
end
return tPlot
end
function Base.show(io::IO, obj::BasisFunction)
print(io, renderable(obj))
end
function renderable(obj::BasisFunction; title = "::BasisFunction")
d = OrderedDict(
:name => name(obj),
:kerneltype => typeof(obj),
:width => width(obj),
:height => height(obj),
:colnames => colnames(obj) |> show_shorten_vector,
:times => times(obj) |> show_shorten_vector,
:collabel => collabel(obj),
:shift_onset => shift_onset(obj),
)# |> x -> Tree(x; title = title)
str = "{bold blue}::BasisFunction{/bold blue}\n"
for (key, val) in d
str =
str *
"{bold blue_light}$key: {/bold blue_light}" *
Term.highlight("$val", :number) *
"\n"
end
io = IOBuffer()
show(
IOContext(io, :limit => true, :displaysize => (40, 40)),
"text/plain",
kernel(obj, 0),
)
s = String(take!(io))
return Panel(str) * s
end
#---- UnfoldModel
function Base.show(io::IO, ::MIME"text/plain", obj::T) where {T<:UnfoldModel}
Term.tprintln(io, "Unfold-Type: ::$(typeof(obj)){{$(typeof(obj).parameters[1])}}")
keys = first.(design(obj))
forms = formulas(obj)
empty_uf = T()
is_not_fit = modelfit(obj) == modelfit(empty_uf)
#@debug typeof(formulas(obj))
Base.show(io, formulas(obj); eventnames = keys)
println(io)
Term.tprintln(
io,
is_not_fit ? "{red}β{/red]} model not fit" :
"{bold green}β{/bold green} model is fit. {blue_light} size(coefs) $(size(coef(obj))){/blue_light}",
)
#println(io, "Design: $(design(obj))")
println(io)
tprint(
io,
"{gray}Useful functions:{/gray} `design(uf)`, `designmatrix(uf)`, `coef(uf)`, `coeftable(uf)`",
)
end
```
print design in a beautiful way
```
function Base.show(io::IO, design::Vector{<:Pair{<:Any,<:Tuple}})
basisList = []
for (first, second) in design
push!(
basisList,
Panel(string(first) * "=>" * "($(second[1]),$(second[2]))", fit = false),
)
end
print(io, Term.grid(basisList))
end
function Base.show(io::IO, ::MIME"text/plain", d::Vector{<:AbstractDesignMatrix})
Term.tprintln(io, "Vector of length $(length(d)), $(unique(typeof.(d)))")
Term.tprintln(io, "$(formulas(d))")
Term.tprintln(
io,
"\nuseful functions: `formulas(d)`, `modelmatrix(d)/modelmatrices(d)`, `events(d)`",
)
end
function Base.show(io::IO, d::AbstractDesignMatrix)
Term.tprintln(io, "::$(typeof(d))")
Term.tprintln(io, "@formula: $(formulas(d))")
sz_evts = isa(d.events, Vector) ? size.(d.events) : size(d.events)
sz_modelmatrix =
(isa(d.modelmatrix, Vector) | isa(d.modelmatrix, Tuple)) ? size.(d.modelmatrix) :
size(d.modelmatrix)
Term.tprintln(io, "")
Term.tprintln(io, "- modelmatrix (time/trials x predictors): $sz_modelmatrix")
Term.tprintln(io, "- $(sz_evts[1]) events with $(sz_evts[2]) columns")
Term.tprintln(
io,
"\nuseful functions: `formulas(d)`, `modelmatrix(d)/modelmatrices(d)`, `events(d)`",
)
Term.tprintln(io, "Fields: `.formula`, `.modelmatrix`, `.events`")
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 4448 | using StatsBase: var
function _lsmr!(beta, X::SparseMatrixCSC, data::AbstractArray{<:Number}, ch)
_, h = lsmr!(@view(beta[ch, :]), X, @view(data[ch, :]); log = true)
return h
end
function _lsmr!(
beta,
X::SparseMatrixCSC,
data::AbstractArray{<:Union{<:Number,Missing}},
ch,
)
dd = view(data, ch, :)
ix = @. !ismissing(dd)
_, h = lsmr!(@view(beta[ch, :]), (X[ix, :]), @view(data[ch, ix]); log = true)
return h
end
function solver_default(
X,
data::AbstractArray{T,2};
stderror = false,
multithreading = true,
show_progress = true,
) where {T<:Union{Missing,<:Number}}
minfo = Array{IterativeSolvers.ConvergenceHistory,1}(undef, size(data, 1))
beta = zeros(T, size(data, 1), size(X, 2)) # had issues with undef
p = Progress(size(data, 1); enabled = show_progress)
X = SparseMatrixCSC(X) # X s often a SubArray, lsmr really doesnt like indexing into subarrays, one copy needed.
@maybe_threads multithreading for ch = 1:size(data, 1)
# use the previous channel as a starting point
ch == 1 || copyto!(view(beta, ch, :), view(beta, ch - 1, :))
h = _lsmr!(beta, X, data, ch)
minfo[ch] = h
next!(p)
end
finish!(p)
if stderror
stderror = calculate_stderror(X, data, beta)
modelfit = Unfold.LinearModelFit(beta, ["lsmr", minfo], stderror)
else
modelfit = Unfold.LinearModelFit(beta, ["lsmr", minfo])
end
return modelfit
end
function solver_default(
X,
data::AbstractArray{T,3};
stderror = true,
multithreading = true,
show_progress = true,
) where {T<:Union{Missing,<:Number}}
#beta = Array{Union{Missing,Number}}(undef, size(data, 1), size(data, 2), size(X, 2))
beta = zeros(T, size(data, 1), size(data, 2), size(X, 2))
p = Progress(size(data, 1); enabled = show_progress)
@maybe_threads multithreading for ch = 1:size(data, 1)
for t = 1:size(data, 2)
# @debug("$(ndims(data,)),$t,$ch")
dd = view(data, ch, t, :)
ix = @. !ismissing(dd)
beta[ch, t, :] = @view(X[ix, :]) \ @view(data[ch, t, ix])
# qr(X) was slower on Februar 2022
end
next!(p)
end
finish!(p)
if stderror
stderror = calculate_stderror(X, data, beta)
modelfit = LinearModelFit(beta, ["solver_default"], stderror)
else
modelfit = LinearModelFit(beta, ["solver_default"])
end
return modelfit
end
function calculate_stderror(
Xdc,
data::AbstractMatrix,
beta::AbstractArray{T},
) where {T<:Union{Missing,<:Number}}
# remove missings
ix = any(.!ismissing.(data), dims = 1)[1, :]
if length(ix) != size(data, 2)
@warn(
"Limitation: Missing data are calculated over all channels for standard error"
)
end
data = data[:, ix]
Xdc = Xdc[ix, :]
# Hat matrix only once
hat_prime = inv(disallowmissing(Matrix(Xdc' * Xdc)))
# Calculate residual variance
@warn(
"Autocorrelation was NOT taken into account. Therefore SE are UNRELIABLE. Use at your own discretion"
)
se = Array{T}(undef, size(data, 1), size(Xdc, 2))
for ch = 1:size(data, 1)
residualVar = var(data[ch, :] .- Xdc * beta[ch, :])
@assert(!isnan(residualVar), "residual Variance was NaN")
hat = hat_prime .* residualVar
#se = sqrt(diag(cfg.contrast(:,:)*hat*cfg.contrast(:,:)'));
se[ch, :] = sqrt.(diag(hat))
end
return se
end
function calculate_stderror(
X,
data::AbstractArray{T1,3},
beta::AbstractArray{T2},
) where {T1<:Union{Missing,<:Number},T2<:Union{Missing,<:Number}}
#function calculate_stderror(Xdc,data::AbstractArray{T,2},beta) where {T<:Union{Missing, <:Number}}
X = disallowmissing(X)
# Hat matrix
hat_prime = inv(Matrix(X' * X))
se = Array{T2}(undef, size(data, 1), size(data, 2), size(X, 2))
for ch = 1:size(data, 1)
for t = 1:size(data, 2)
ix = .!ismissing.(data[ch, t, :])
# Calculate residual variance
residualVar = var(data[ch, t, ix] .- X[ix, :] * beta[ch, t, :])
@assert(!isnan(residualVar), "residual Variance was NaN")
hat = hat_prime .* residualVar
#se = sqrt(diag(cfg.contrast(:,:)*hat*cfg.contrast(:,:)'));
se[ch, t, :] = sqrt.(diag(hat))
end
end
return se
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 1484 | """
Object with a *term* and an applicable *BasisFunction* and a eventfield that are later passed to the basisfunction.
$(TYPEDEF)
$(TYPEDSIGNATURES)
$(FIELDS)
# Examples
```julia-repl
julia> b = TimeExpandedTerm(term,kernel,[:latencyTR,:durationTR])
```
"""
struct TimeExpandedTerm{T<:AbstractTerm} <: AbstractTerm
"Term that the basis function is applied to. This is regularly called in other functions to get e.g. term-coefnames and timeexpand those"
term::T
"Kernel that determines what should happen to the designmatrix of the term"
basisfunction::BasisFunction
"Which fields of the event-table should be passed to the basisfunction.Important: The first entry has to be the event-latency in samples!"
eventfields::Array{Symbol}
end
function TimeExpandedTerm(term, basisfunction, eventfields::Nothing)
# if the eventfield is nothing, call default
TimeExpandedTerm(term, basisfunction)
end
function TimeExpandedTerm(term, basisfunction, eventfields::Symbol)
# call with symbol, convert to array of symbol
TimeExpandedTerm(term, basisfunction, [eventfields])
end
function TimeExpandedTerm(term, basisfunction; eventfields = [:latency])
# default call, use latency
TimeExpandedTerm(term, basisfunction, eventfields)
end
collabel(term::TimeExpandedTerm) = collabel(term.basisfunction)
StatsModels.width(term::TimeExpandedTerm) = width(term.basisfunction) * width(term.term)
StatsModels.terms(t::TimeExpandedTerm) = terms(t.term)
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 5650 |
"""
using Base: @deprecate_binding
The main abstract model-type of the toolbox. E.g. `UnfoldLinearModel` is a concrete type of this
"""
abstract type UnfoldModel{T} end
"""
Abstract Type to report modelresults
"""
abstract type AbstractModelFit{T,N} end
abstract type AbstractDesignMatrix{T} end
"""
DesignMatrix
Type that keeps an Array of `formulas`, designmatrices `modelmatrix` (Array or Array of Arrays in case of MixedModel) and `events`-dataframe
"""
struct DesignMatrixLinearModel{T} <: AbstractDesignMatrix{T}
formula::FormulaTerm # "Array of formulas"
modelmatrix::Array{T,2} #"A concatenated designmatric. In case of Mixed Models an array, where the first one is a FeMat, later ones ReMats. "
events::Union{<:SubDataFrame,<:DataFrame} #"Event table with all events"
end
struct DesignMatrixLinearModelContinuousTime{T} <: AbstractDesignMatrix{T}
formula::FormulaTerm # "Array of formulas"
modelmatrix::SparseMatrixCSC{T} #"A concatenated designmatric. In case of Mixed Models an array, where the first one is a FeMat, later ones ReMats. "
events::DataFrame #"Event table with all events"
end
"""
in case a single FormulaTerm is inputted, this is wrapped into a vector
"""
# DesignMatrixLinearModel(f::FormulaTerm, modelmatrix, events) =
# DesignMatrixLinearModel([f], modelmatrix, events)
# DesignMatrixLinearModel(f, modelmatrix, events::DataFrame) = DesignMatrixLinearModel(f, modelmatrix, [events])
DesignMatrixLinearModel(args...) = DesignMatrixLinearModel{Float64}()
DesignMatrixLinearModel{T}() where {T} = DesignMatrixLinearModel{T}(
FormulaTerm(:empty, :empty),
Array{T,2}(undef, 0, 0),
DataFrame(),
)
DesignMatrixLinearModelContinuousTime(args...) =
DesignMatrixLinearModelContinuousTime{Float64}()
DesignMatrixLinearModelContinuousTime{T}() where {T} =
DesignMatrixLinearModelContinuousTime{T}(
FormulaTerm(:empty, :empty),
SparseMatrixCSC(Array{T,2}(undef, 0, 0)),
DataFrame(),
)
# DesignMatrixLinearModelContinuousTime(f, modelmatrix, events::DataFrame) =
# DesignMatrixLinearModelContinuousTime(f, modelmatrix, [events])
# DesignMatrixLinearModelContinuousTime(f, modelmatrix::SparseMatrixCSC, events) =
# DesignMatrixLinearModelContinuousTime(f, [modelmatrix], events)
"""
Contains the results of linearmodels (continuous and not)
"""
struct LinearModelFit{T,N} <: AbstractModelFit{T,N}
estimate::Array{T,N}
info::Any
standarderror::Array{T,N}
end
LinearModelFit() = LinearModelFit(Float64[], [], Float64[])
LinearModelFit(estimate) = LinearModelFit(estimate, [])
LinearModelFit(estimate::Array{T,2}, info) where {T} =
LinearModelFit(estimate, info, similar(Array{T}, 0, 0))
LinearModelFit(estimate::Array{T,3}, info) where {T} =
LinearModelFit(estimate, info, similar(Array{T}, 0, 0, 0))
"""
Concrete type to implement an Mass-Univariate LinearModel.
`.design` contains the formula + times dict
`.designmatrix` contains a `DesignMatrix`
`modelfit` is a `Any` container for the model results
"""
mutable struct UnfoldLinearModel{T} <: UnfoldModel{T}
design::Vector{<:Pair{<:Any,<:Tuple}}
designmatrix::Vector{<:DesignMatrixLinearModel{T}}
modelfit::LinearModelFit{T,3}
end
# empty model
UnfoldLinearModel(args...) = UnfoldLinearModel{Float64}(args...)
UnfoldLinearModel{T}() where {T} = UnfoldLinearModel{T}([:empty => ()])
# backward compatible with dict
UnfoldLinearModel{T}(d::Dict, args...) where {T} =
UnfoldLinearModel(collect(pairs(d)), args...)
# only design specified
UnfoldLinearModel{T}(d::Vector{<:Pair}) where {T} =
UnfoldLinearModel{T}(d, [DesignMatrixLinearModel{T}()])
# matrix not a vector of matrix
UnfoldLinearModel{T}(d::Vector{<:Pair}, X::AbstractDesignMatrix) where {T} =
UnfoldLinearModel{T}(d, [X])
# no modelfit
UnfoldLinearModel{T}(d::Vector{<:Pair}, X::Vector{<:AbstractDesignMatrix{T}}) where {T} =
UnfoldLinearModel{T}(deepcopy(d), X, LinearModelFit(Array{T,3}(undef, 0, 0, 0)))
"""
Concrete type to implement an deconvolution LinearModel.
`.design` contains the formula + times dict
`.designmatrix` contains a `DesignMatrix`
`modelfit` is a `Any` container for the model results
"""
mutable struct UnfoldLinearModelContinuousTime{T} <: UnfoldModel{T}
design::Vector{<:Pair{<:Any,<:Tuple}}
designmatrix::Vector{<:DesignMatrixLinearModelContinuousTime{T}}
modelfit::LinearModelFit{T,2}
end
# empty model
UnfoldLinearModelContinuousTime(args...) = UnfoldLinearModelContinuousTime{Float64}(args...)
UnfoldLinearModelContinuousTime{T}() where {T} =
UnfoldLinearModelContinuousTime{T}([:empty => ()])
# backward compatible with dict
UnfoldLinearModelContinuousTime{T}(d::Dict, args...) where {T} =
UnfoldLinearModelContinuousTime{T}(keys(d) .=> values(d), args...)
# only design specified
UnfoldLinearModelContinuousTime{T}(d::Vector{<:Pair}) where {T} =
UnfoldLinearModelContinuousTime{T}(d, Unfold.DesignMatrixLinearModelContinuousTime{T}())
# matrix not a vector of matrix
UnfoldLinearModelContinuousTime{T}(d::Vector{<:Pair}, X::AbstractDesignMatrix) where {T} =
UnfoldLinearModelContinuousTime{T}(d, [X])
# no modelfit
UnfoldLinearModelContinuousTime{T}(
d::Vector{<:Pair},
X::Vector{<:AbstractDesignMatrix{T}},
) where {T} = UnfoldLinearModelContinuousTime{T}(
deepcopy(d),
X,
LinearModelFit(Array{T,2}(undef, 0, 0)),
)
#----
# Traits definitions
@traitdef ContinuousTimeTrait{X}
@traitimpl ContinuousTimeTrait{UnfoldLinearModelContinuousTime}
#---
"""
Abstract non-linear spline term.
Implemented in `UnfoldBSplineKitExt`
"""
abstract type AbstractSplineTerm <: AbstractTerm end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 5380 | # misc functions
function epoch(; data, evts = nothing, tbl = nothing, Ο, sfreq, kwargs...)
@assert (isnothing(evts) | isnothing(tbl))
evts = isnothing(evts) ? tbl : evts
@show isnothing(evts), isnothing(tbl)
epoch(data, evts, Ο, sfreq; kwargs...)
end
"""
epoch(data::Array{T,1},evts::DataFrame,Ο::Tuple/Vector,sfreq;kwargs...,
Basic function to epoch data; all input also available as kwargs.
Additional kwarg: `eventtime`=:latency, which defines the column in `evts` that is used to cut the data (in samples). For uneven sample-times we use `round()``
"""
function epoch(data::Array{T,1}, evts, Ο, sfreq; kwargs...) where {T<:Union{Missing,Number}}
data_r = reshape(data, (1, :))
epoch(data_r, evts, Ο, sfreq; kwargs...)
end
function epoch(data::Matrix, evts::DataFrame, Ο::Vector, sfreq; kwargs...)
return epoch(data, evts, (Ο[1], Ο[2]), sfreq; kwargs...)
end
function epoch(
data::Matrix,
evts::DataFrame,
Ο::Tuple{Number,Number},
sfreq;
eventtime::String = "latency",
)
return epoch(data, evts, Ο, sfreq; eventtime = Symbol(eventtime))
end
function epoch(
data::Array{T,2},
evts::DataFrame,
Ο::Tuple{Number,Number},
sfreq;
eventtime::Symbol = :latency,
) where {T<:Union{Missing,Number}}
# data: channels x times
# partial taken from EEG.jl
numEpochs = size(evts, 1)
Ο = round_times(Ο, sfreq)
times = range(Ο[1], stop = Ο[2], step = 1 ./ sfreq)
lenEpochs = length(times)
numChans = size(data, 1)
epochs = Array{Union{Missing,Float64}}(
missing,
Int(numChans),
Int(lenEpochs),
Int(numEpochs),
)
# User feedback
@debug "Creating epochs: $numChans x $lenEpochs x $numEpochs"
for si = 1:size(evts, 1)
#eventonset = evts[si,eventtime] # in samples
#d_start = eventonset
d_start = Int(round(evts[si, eventtime]) + times[1] .* sfreq)
d_end = Int(round(evts[si, eventtime]) + times[end] .* sfreq)
e_start = 1
e_end = lenEpochs
#println("d: $(size(data)),e: $(size(epochs)) | $d_start,$d_end,$e_start,$e_end | $(evts[si,eventtime])")
if d_start < 1
e_start = e_start + (-d_start + 1)
d_start = 1
end
if d_end > size(data, 2)
e_end = e_end - (d_end - size(data, 2))
d_end = size(data, 2)
end
#println("d: $(size(data)),e: $(size(epochs)) | $d_start,$d_end,$e_start,$e_end | $(evts[si,eventtime])")
epochs[:, e_start:e_end, si] = data[:, d_start:d_end]
end
return (epochs, times)
end
function round_times(Ο, sfreq)
# function to round Ο to sfreq samples. This specifies the epoch length.
# its a function to be the same for epoch & timeexpanded analyses
return round.(Ο .* sfreq) ./ sfreq
end
"""
[X,y] = drop_missing_epochs(X, y::Array)
Helper function to remove epochs of `y` that contain missings. Drops them from both `X` and `y`. Often used in combination with `Unfold.epoch`
X can be anything that has two dimensions (Matrix, DataFrame etc)
"""
function drop_missing_epochs(X, y::AbstractArray{T,3}) where {T}
@assert length(size(X)) == 2
missingIx = .!any(ismissing.(y), dims = (1, 2))
goodIx = dropdims(missingIx, dims = (1, 2))
return X[goodIx, :], Array{Float64}(y[:, :, goodIx])
end
"""
$(SIGNATURES)
Flatten a 1D array from of a 2D/3D array. Also drops the empty dimension
"""
function linearize(x::AbstractArray{T,N}) where {T,N}
# used in condense_long to generate the long format
return x[:] #dropdims(reshape(x, :, 1), dims = 2)::AbstractArray{T,1}
end
function linearize(x::String)
return x
end
"""
$(SIGNATURES)
Equates the length of data and designmatrix by cutting the shorter one
The reason we need this is because when generating the designmatrix, we do not know how long the data actually are. We only assume that event-latencies are synchronized with the data
"""
function equalize_size(
X::AbstractMatrix,
data::AbstractArray{T,2},
) where {T<:Union{Missing,<:Number}}
@debug("2d equalize_size")
if size(X, 1) > size(data, 2)
X = @view X[1:size(data, 2), :]
else
data = @view data[:, 1:size(X, 1)]
end
return X, data
end
function equalize_size(
X::AbstractMatrix,
data::AbstractVector{T},
) where {T<:Union{Missing,<:Number}}
@debug("1d equalize_size")
if size(X, 1) > length(data)
X = @view X[1:length(data), :]
else
data = @view data[1:size(X, 1)]
end
return X, data
end
function equalize_size(
X::AbstractMatrix,
data::AbstractArray{T,3},
) where {T<:Union{Missing,<:Number}}
@debug("3d equalize_size")
@assert size(X, 1) == size(data, 3) "Your events are not of the same size as your last dimension of data"
return X, data
end
function clean_data(
data::AbstractArray{T,2},
winrej::AbstractArray{<:Number,2},
) where {T<:Union{Float64,Missing}}
data = Array{Union{Float64,Missing}}(data)
for row = 1:size(winrej, 1)
data[:, Int.(winrej[row, 1]:winrej[row, 2])] .= missing
end
return data
end
macro maybe_threads(multithreading, code)
return esc(:(
if multithreading
Threads.@threads($code)
else
$code
end
))
end
poolArray(x) = PooledArray(x; compress = true) | Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 1604 |
@testset "FIR" begin
firbase = firbasis((-1, 1), 10)
# test optional call
@test Unfold.kernel(firbase, 1) == Unfold.kernel(firbasis((-1, 1), 10), 1)
@test typeof(Unfold.name(firbase)) <: String
# test basics of basisfunction
@test length(collect(Unfold.colnames(firbase))) == 21
@test unique(Unfold.kernel(firbase, 1)) == [1.0, 0.0]
# test length consistency
@test length(Unfold.colnames(firbase)) == size(Unfold.kernel(firbase, 3.1))[2]
@test length(Unfold.times(firbase)) == size(Unfold.kernel(firbase, 3.1))[1]
# testing the non-sampling rate samples
# test the interpolate / true false
firbase_off = firbasis((-1, 1), 10; interpolate = false)
firbase_on = firbasis((-1, 1), 10; interpolate = true)
@test Unfold.kernel(firbase_off, 0.5)[1:3, 1:3] == [1 0 0; 0 1 0; 0 0 1]
@test Unfold.kernel(firbase_on, 0.5)[1:3, 1:3] ==
[0.5 0.0 0.0; 0.5 0.5 0.0; 0.0 0.5 0.5]
end
@testset "BOLD" begin
boldbase = hrfbasis(2.0, name = "test")
@test Unfold.name(boldbase) == "test"
@test Unfold.kernel(boldbase, 0) == Unfold.kernel(boldbase, 1)
@test Unfold.kernel(boldbase, 0.1) != Unfold.kernel(boldbase, 1) # testing fractional kernel generation
@test findmax(Unfold.kernel(boldbase, 0.3))[2][1] == 4
end
@testset "timespline" begin
splinebase = Unfold.splinebasis(Ο = (-1, 1), sfreq = 20, nsplines = 10, name = "basisA")
@test length(Unfold.colnames(splinebase)) == size(Unfold.kernel(splinebase, 3.1))[2]
@test length(Unfold.times(splinebase)) == size(Unfold.kernel(splinebase, 3.1))[1]
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 2156 | using Test
using MixedModelsSim
using Random
using DSP
include("test_utilities.jl")
Ο = 1.5
fs = 18
evt, epoch_dat = simulate_lmm(
MersenneTwister(1),
Ο,
fs,
Ξ² = [0.0, -1.0],
Οs = [1, 1, 1],
Ο = 1,
n_sub = 20,
n_item = 30,
noise_type = "AR-exponential",
);
#mres,res = fit(UnfoldLinearMixedModel,f,evt,dat[chIx:chIx,:,:].*1e6 ,times,contrasts=Dict(:category => EffectsCoding(), :condition => EffectsCoding()));
times = range(0, stop = Ο - 1 / fs, step = 1 / fs)
f2 = @formula 0 ~ 1 + stimType + (1 + stimType | subj) + (1 | item)
mres, res = fit(UnfoldLinearMixedModel, f2, evt, epoch_dat, times)
p_df = cluster_permutation_test(mres, epoch_dat, times, 2)
@test p_df[1, :pval] == 0.036
#--- Testing cluster_permutation call
tRange = 1:length(times)
nPerm = 10
permDat = cluster_permutation(mres, epoch_dat, tRange, 2, nPerm)
@test size(permDat, 2) == nPerm
@test size(permDat, 1) == length(tRange)
tRange = 5:length(times)-5
permDat = cluster_permutation(mres, epoch_dat, tRange, 2, nPerm)
@test size(permDat, 1) == length(tRange)
#------ testing pymne_cluster
z_obs = [
m.z for m in coefpvalues(mres.modelinfo) if
String(m.coefname) == coefnames(mres.X.formulas)[2][coeffOfInterest]
]
#-- clusterpermutation
obs_cluster = pymne_cluster(z_obs, 4)
@test all(abs.(obs_cluster[2]) .> 4) # clusters have to be larger 4
@test obs_cluster[1][1][1].start == 13 # start of cluster
@test obs_cluster[1][1][1].stop == 14 # end of cluster
obs_cluster = pymne_cluster(z_obs, 0.1)
@test all(abs.(obs_cluster[2]) .> 0.1) # all clusters have to be larger 0.1
@test length(obs_cluster[2]) == 12 # if nothing changed, 12 clusters should be found
#-- tfce
clusterFormingThreshold = Dict(:start => 0, :step => 0.2)
obs_cluster = pymne_cluster(z_obs, clusterFormingThreshold)
@test all(obs_cluster[2] .>= 0) # TFCE is always positive
@test findmax(obs_cluster[2])[2] == findmax(abs.(z_obs))[2] # tfce should not move maximum
#gen_han(Ο,fs,3)
if 1 == 0
# plot some design bits
map = mapping(:subj, :dv, color = :stimType)#,linestyle=:channel)
AlgebraOfGraphics.data(evt) * visual(Scatter) * map |> draw
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 954 | #using Unfold
using MAT
using DataFrames
using DelimitedFiles
function import_eeglab(filename)
file = MAT.matopen(filename)
# open file
EEG = read(file, "EEG")
function parse_struct(s::Dict)
return DataFrame(map(x -> dropdims(x, dims = 1), values(s)), collect(keys(s)))
end
evts_df = parse_struct(EEG["event"])
chanlocs_df = parse_struct(EEG["chanlocs"])
# epoch_df = parse_struct(EEG["epochs"])
srate = EEG["srate"]
if typeof(EEG["data"]) == String
datapath = joinpath(splitdir(filename)[1], EEG["data"])
data = Array{Float32,3}(
undef,
Int(EEG["nbchan"]),
Int(EEG["pnts"]),
Int(EEG["trials"]),
)
read!(datapath, data)
else
data = EEG["data"]
end
if (ndims(data) == 3) & (size(data, 3) == 1)
data = dropdims(data, dims = 3)
end
return data, srate, evts_df, chanlocs_df, EEG
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 10219 | ##---
tbl = DataFrame([1 4]', [:latency])
X = ones(size(tbl))
shouldBeNeg = zeros(4, 4)
shouldBeNeg[1, :] = [1, 0, 0, 1]
shouldBeNeg[2, :] = [0, 1, 0, 0]
shouldBeNeg[3, :] = [0, 0, 1, 0]
shouldBeNeg[4, :] = [0, 0, 0, 1]
shouldBePos = zeros(4, 4)
shouldBePos[1, :] = [0, 0, 0, 0]
shouldBePos[2, :] = [1, 0, 0, 0]
shouldBePos[3, :] = [0, 1, 0, 0]
shouldBePos[4, :] = [0, 0, 1, 0]
ext = Base.get_extension(Unfold, :UnfoldMixedModelsExt)
#---
@testset "basic designmat" begin
## test negative
basisfunction = firbasis(Ο = (-3, 0), sfreq = 1, name = "testing")
timeexpandterm =
Unfold.TimeExpandedTerm(FormulaTerm(Term, Term), basisfunction, :latency)
Xdc = Unfold.time_expand(X, timeexpandterm, tbl)
@test all(isapprox.(Matrix(Xdc)[1:4, 1:4], shouldBeNeg, atol = 1e-15))
## Test Positive only
basisfunction = firbasis(Ο = (1, 4), sfreq = 1, name = "testing")
timeexpandterm =
Unfold.TimeExpandedTerm(FormulaTerm(Term, Term), basisfunction, :latency)
Xdc = Unfold.time_expand(X, timeexpandterm, tbl)
@test all(isapprox.(Matrix(Xdc)[1:4, 1:4], shouldBePos, atol = 1e-15))
end
@testset "basic designmat interpolated yes/no" begin
## test negative
basisfunction = firbasis(Ο = (-3, 0), sfreq = 1, name = "testing")
timeexpandterm =
Unfold.TimeExpandedTerm(FormulaTerm(Term, Term), basisfunction, :latency)
Xdc = Unfold.time_expand(X, timeexpandterm, tbl)
@test length(Unfold.times(timeexpandterm)) == 4
@test size(Xdc) == (4, 4)
@test Unfold.width(basisfunction) == 4
@test Unfold.height(basisfunction) == 4
basisfunction = firbasis(Ο = (-3, 0), sfreq = 1, name = "testing", interpolate = true)
timeexpandterm =
Unfold.TimeExpandedTerm(FormulaTerm(Term, Term), basisfunction, :latency)
Xdc = Unfold.time_expand(X, timeexpandterm, tbl)
@test length(Unfold.times(timeexpandterm)) == 5
@test Unfold.width(basisfunction) == 4
@test Unfold.height(basisfunction) == 5
@test size(Xdc) == (5, 4)
end
@testset "customized eventfields" begin
tbl2 = tbl = DataFrame([1 4]', [:onset])
timeexpandterm_latency = Unfold.TimeExpandedTerm(FormulaTerm(Term, Term), basisfunction)
timeexpandterm_onset = Unfold.TimeExpandedTerm(
FormulaTerm(Term, Term),
basisfunction,
eventfields = [:onset],
)
Xdc = Unfold.time_expand(X, timeexpandterm_onset, tbl)
@test_throws ArgumentError Unfold.time_expand(X, timeexpandterm_latency, tbl)
end
@testset "combining designmatrices" begin
tbl = DataFrame([1 4]', [:latency])
X = ones(size(tbl))
basisfunction1 = firbasis(Ο = (0, 1), sfreq = 10, name = "basis1")
basisfunction2 = firbasis(Ο = (0, 0.5), sfreq = 10, name = "basis2")
f = @formula 0 ~ 1
Xdc1 = designmatrix(UnfoldLinearModelContinuousTime, f, tbl, basisfunction1)
Xdc2 = designmatrix(UnfoldLinearModelContinuousTime, f, tbl .+ 1, basisfunction2)
Xdc = Xdc1 + Xdc2
@test size(modelmatrix(Xdc), 2) ==
size(modelmatrix(Xdc1), 2) + size(modelmatrix(Xdc2), 2)
@test length(Unfold.events(Xdc)) == 2
Xdc_3 = Xdc1 + Xdc2 + Xdc2
@test size(modelmatrix(Xdc_3), 2) ==
size(modelmatrix(Xdc1), 2) + 2 * size(modelmatrix(Xdc2), 2)
@test length(Unfold.events(Xdc_3)) == 3
end
@testset "combining MixedModel Designmatrices" begin
basisfunction1 = firbasis(Ο = (0, 1), sfreq = 10, name = "basis1")
basisfunction2 = firbasis(Ο = (0, 0.5), sfreq = 10, name = "basis2")
tbl = DataFrame(
[1 4 10 15 20 22 31 37; 1 1 1 2 2 2 3 3; 1 2 3 1 2 3 1 2]',
[:latency, :subject, :item],
)
tbl2 = DataFrame(
[2 3 12 18 19 25 40 43; 1 1 1 2 2 2 3 3; 1 2 3 1 2 3 1 2]',
[:latency, :subject, :itemB],
)
y = Float64.([collect(range(1, stop = 100))...])'
transform!(tbl, :subject => categorical => :subject)
transform!(tbl2, :itemB => categorical => :itemB)
transform!(tbl, :item => categorical => :item)
#tbl.itemB = tbl.item
f3 = @formula 0 ~ 1 + (1 | item) + (1 | subject)
f4 = @formula 0 ~ 1 + (1 | itemB)
f4_wrong = @formula 0 ~ 1 + (1 | item)
ext = Base.get_extension(Unfold, :UnfoldMixedModelsExt)
Xdc3 = designmatrix(ext.UnfoldLinearMixedModel, f3, tbl, basisfunction1)
Xdc4 = designmatrix(ext.UnfoldLinearMixedModel, f4, tbl2, basisfunction2)
Xdc4_wrong = designmatrix(ext.UnfoldLinearMixedModel, f4_wrong, tbl, basisfunction2)
Xdc = Xdc3 + Xdc4
@test typeof(modelmatrix(Xdc)[1]) <: SparseArrays.SparseMatrixCSC
@test length(modelmatrix(Xdc)) == 4 # one FeMat + 3 ReMat
@test_throws String modelmatrix(Xdc3 + Xdc4_wrong)
end
@testset "equalizeReMatLengths" begin
bf1 = firbasis(Ο = (0, 1), sfreq = 10, name = "basis1")
bf2 = firbasis(Ο = (0, 0.5), sfreq = 10, name = "basis2")
tbl1 = DataFrame(
[1 4 10 15 20 22 31 37; 1 1 1 2 2 2 3 3; 1 2 3 1 2 3 1 2]',
[:latency, :subject, :item],
)
tbl2 = DataFrame(
[2 3 12 18 19 25 40 43; 1 1 1 2 2 2 3 3; 1 2 3 1 2 3 1 2]',
[:latency, :subject, :itemB],
)
transform!(tbl1, :subject => categorical => :subject)
transform!(tbl1, :item => categorical => :item)
transform!(tbl2, :itemB => categorical => :itemB)
#tbl.itemB = tbl.item
f1 = @formula 0 ~ 1 + (1 | item) + (1 | subject)
f2 = @formula 0 ~ 1 + (1 | itemB)
form = apply_schema(f1, schema(f1, tbl1), MixedModels.LinearMixedModel)
form = Unfold.apply_basisfunction(form, bf1, nothing, Any)
X1 = modelcols.(form.rhs, Ref(tbl1))
form = apply_schema(f2, schema(f2, tbl2), MixedModels.LinearMixedModel)
form = Unfold.apply_basisfunction(form, bf2, nothing, Any)
X2 = modelcols.(form.rhs, Ref(tbl2))
# no missmatch, shouldnt change anything then
X = deepcopy(X1[2:end])
if !isdefined(Base, :get_extension)
include("../ext/UnfoldMixedModelsExt/UnfoldMixedModelsExt.jl")
ext = UnfoldMixedModelsExt
else
ext = Base.get_extension(Unfold, :UnfoldMixedModelsExt)
end
ext.equalize_ReMat_lengths!(X)
@test all([x[1] for x in size.(X)] .== 47)
X = (deepcopy(X1[2:end])..., deepcopy(X2[2:end])...)
@test !all([x[1] for x in size.(X)] .== 48) # not alllenghts the same
ext.equalize_ReMat_lengths!(X)
@test all([x[1] for x in size.(X)] .== 48) # now all lengths the same :-)
X = deepcopy(X2[2])
@test size(X)[1] == 48
ext.change_ReMat_size!(X, 52)
@test size(X)[1] == 52
X = deepcopy(X2[2])
@test size(X)[1] == 48
ext.change_ReMat_size!(X, 40)
@test size(X)[1] == 40
X = (deepcopy(X1)..., deepcopy(X2[2:end])...)
@test size(X[1])[1] == 47
@test size(X[2])[1] == 47
@test size(X[3])[1] == 47
@test size(X[4])[1] == 48
XA, XB = ext.change_modelmatrix_size!(52, X[1], X[2:end])
@test size(XA)[1] == 52
@test size(XB)[1] == 52
XA, XB = ext.change_modelmatrix_size!(40, X[1], X[2:end])
@test size(XA)[1] == 40
@test size(XB)[1] == 40
XA, XB = ext.change_modelmatrix_size!(30, Matrix(X[1]), X[2:end])
@test size(XA)[1] == 30
@test size(XB)[1] == 30
end
@testset "Some LinearMixedModel tests" begin
data, evts = loadtestdata("testCase3", dataPath = (@__DIR__) * "/data") #
evts.subject = categorical(evts.subject)
f_zc = @formula 0 ~ 1 + condA + condB + zerocorr(1 + condA + condB | subject)
basisfunction = firbasis(Ο = (-0.1, 0.1), sfreq = 10, name = "ABC")
Xdc_zc = designmatrix(ext.UnfoldLinearMixedModel, f_zc, evts, basisfunction)
@test length(Xdc_zc.modelmatrix[2].inds) == 9
f = @formula 0 ~ 1 + condA + condB + (1 + condA + condB | subject)
Xdc = designmatrix(ext.UnfoldLinearMixedModel, f, evts, basisfunction)
@test length(Xdc.modelmatrix[2].inds) == (9 * 9 + 9) / 2
# test bug with not sequential subjects
evts_nonseq = copy(evts)
evts_nonseq = evts_nonseq[.!(evts_nonseq.subject .== 2), :]
Xdc_nonseq = designmatrix(ext.UnfoldLinearMixedModel, f_zc, evts_nonseq, basisfunction)
end
#basisfunction2 = firbasis(Ο = (0, 0.5), sfreq = 10, name = "basis2")
@testset "Missings in Events" begin
tbl = DataFrame(
:a => [1.0, 2, 3, 4, 5, 6, 7, 8],
:b => [1.0, 1, 1, 2, 2, 2, 3, missing],
:c => [1.0, 2, 3, 4, 5, 6, 7, missing],
:d => ["1", "2", "3", "4", "5", "6", "7", "8"],
:e => ["1", "2", "3", "4", "5", "6", "7", missing],
:event => [1, 1, 1, 1, 2, 2, 2, 2],
:latency => [10, 20, 30, 40, 50, 60, 70, 80],
)
tbl.event = string.(tbl.event)
designmatrix(UnfoldLinearModel, @formula(0 ~ a), tbl)
@test_throws ErrorException designmatrix(UnfoldLinearModel, @formula(0 ~ a + b), tbl)
@test_throws ErrorException designmatrix(UnfoldLinearModel, @formula(0 ~ e), tbl)
# including an actual missing doesnt work
design = [
"1" => (@formula(0 ~ a + b + c + d + e), firbasis((0, 1), 1)),
"2" => (@formula(0 ~ a + b + c + d + e), firbasis((0, 1), 1)),
]
uf = UnfoldLinearModelContinuousTime(design)
@test_throws ErrorException designmatrix(uf, tbl)
# but if the missing is in another event, no problem
design = [
"1" => (@formula(0 ~ a + b + c + d + e), firbasis((0, 1), 1)),
"2" => (@formula(0 ~ a + d), firbasis((0, 1), 1)),
]
uf = UnfoldLinearModelContinuousTime(design)
designmatrix(uf, tbl)
# prior to the Missing disallow sanity check, this gave an error
design = [
"1" => (@formula(0 ~ spl(a, 4) + spl(b, 4) + d + e), firbasis((0, 1), 1)),
"2" => (@formula(0 ~ a + d), firbasis((0, 1), 1)),
]
uf = UnfoldLinearModelContinuousTime(design)
designmatrix(uf, tbl)
end
@testset "Integer Covariate Splines" begin
tbl = DataFrame(
:a => [1.0, 2, 3, 4, 5, 6, 7, 8],
:event => [1, 1, 1, 1, 2, 2, 2, 2],
:latency => [10, 20, 30, 40, 50, 60, 70, 80],
)
tbl.event = string.(tbl.event)
designmatrix(UnfoldLinearModel, @formula(0 ~ a), tbl)
# prior to the Missing disallow sanity check, this gave an error
design = ["1" => (@formula(0 ~ spl(a, 4)), firbasis((0, 1), 1))]
uf = UnfoldLinearModelContinuousTime(design)
designmatrix(uf, tbl)
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 1303 | using Unfold
using UnfoldSim
using CairoMakie
using DataFrames
using UnfoldMakie
data, evts = UnfoldSim.predef_eeg(; n_repeats = 5, noiselevel = 0.8)
uf = fit(
UnfoldModel,
[
"car" => (@formula(0 ~ 1 + spl(continuous, 4)), firbasis((-0.1, 1), 100)),
"face" => (@formula(0 ~ 1 + continuous^2), firbasis((-0.2, 0.4), 100)),
],
evts,
data;
eventcolumn = "condition",
show_progress = false,
)
#----
ix = 500
lines(predict(uf)[1, 1:ix])
# predict(m,overlap=false)
#---
f = Figure()
heatmap(
f[1, 1],
predict(uf; keep_basis = ["car"], epoch_to = "car", eventcolumn = :condition)[1, :, :],
)
heatmap(
f[1, 2],
predict(uf; keep_basis = ["car"], epoch_to = "face", eventcolumn = :condition)[1, :, :],
)
heatmap(
f[2, 2],
predict(uf; keep_basis = ["face"], epoch_to = "face", eventcolumn = :condition)[
1,
:,
:,
],
)
heatmap(
f[2, 1],
predict(uf; keep_basis = ["face"], epoch_to = "car", eventcolumn = :condition)[1, :, :],
)
f
#---
predict(
uf,
DataFrame(:continuous => [1, 5], :condition => ["car", "face"], :latency => [1, 40]),
)[1][
1,
:,
:,
]' |> series
#---
eff = effects(Dict(:continuous => [0, 1, 2]), uf)
plot_erp(eff; mapping = (; color = :continuous, col = :eventname))
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 1983 | ##
using Test, StatsModels
using DataFrames
import Logging
using Unfold
include("test_utilities.jl")
Logging.global_logger(Logging.SimpleLogger(stdout, Logging.Debug))
data, evts = loadtestdata("testCase3") #
append!(data, zeros(1000))
data = reshape(data, 1, :)
data = vcat(data, data)
data = data .+ 1 * randn(size(data)) # we have to add minimal noise, else mixed models crashes.
data_missing = Array{Union{Missing,Number}}(undef, size(data))
data_missing .= data
data_missing[4500:4600] .= missing
categorical!(evts, :subject)
f = @formula 0 ~ 1 + condA + condB + (1 + condA + condB | subject)
#f = @formula 0~1 + (1|subject)
# cut the data into epochs
# TODO This ignores subject bounds
data_e, times = Unfold.epoch(data = data, tbl = evts, Ο = (-1.0, 1.9), sfreq = 10)
evts_e, data_e = Unfold.drop_missing_epochs(evts, data_e)
##
basisfunction = firbasis(Ο = (-0.1, 0.3), sfreq = 10)
f = @formula 0 ~ 1 + condA + condB # 1
Xs = designmatrix(UnfoldLinearModel, f, evts_e)
ufModel_A = unfoldfit(UnfoldLinearModel, Xs, data_e)
basisfunction = firbasis(Ο = (-0.1, 0.3), sfreq = 10)
Xs = designmatrix(UnfoldLinearModel, f, evts, basisfunction)
basisfunction = firbasis(Ο = (-0.1, 0.5), sfreq = 10)
Xs2 = designmatrix(UnfoldLinearModel, f, evts, basisfunction)
Xs = Xs + Xs2
ufModel_B = unfoldfit(UnfoldLinearModel, Xs, data)
f = @formula 0 ~ 1 + condA + condB + (1 + condA | subject)
Xs = designmatrix(UnfoldLinearMixedModel, f, evts_e)
ufModel_C = unfoldfit(UnfoldLinearMixedModel, Xs, data_e)
basisfunction = firbasis(Ο = (-0.1, 0.3), sfreq = 10)
Xs = designmatrix(UnfoldLinearMixedModel, f, evts, basisfunction)
ufModel_D = unfoldfit(UnfoldLinearMixedModel, Xs, data)
ufA = condense_long(ufModel_A, times)
ufB = condense_long(ufModel_B)
ufC = condense_long(ufModel_C, times)
ufD = condense_long(ufModel_D)
plot(ufA.colname_basis, ufA.estimate)
plot(ufC.colname_basis, ufC.estimate)
plot(ufB.colname_basis, ufB.estimate)
plot(ufD.colname_basis, ufD.estimate)
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 10399 | data, evts = loadtestdata("test_case_3a") #
data_r = reshape(data, (1, :))
data_e, times = Unfold.epoch(data = data_r, tbl = evts, Ο = (0, 0.05), sfreq = 10) # cut the data into epochs
f = @formula 0 ~ 1 + conditionA + continuousA # 1
m_mul = fit(Unfold.UnfoldModel, [Any => (f, times)], evts, data_e)
##---
@testset "Mass Univariate, all specified" begin
# test simple case
eff = Unfold.effects(Dict(:conditionA => [0, 1], :continuousA => [0]), m_mul)
@test size(eff, 1) == 2 # we specified 2 levels @ 1 time point
@test eff.conditionA β [0.0, 1.0] # we want to different levels
@test eff.yhat β [2.0, 5.0] # these are the perfect predicted values
# combination 2 levels / 6 values
eff = Unfold.effects(Dict(:conditionA => [0, 1], :continuousA => [-2, 0, 2]), m_mul)
@test size(eff, 1) == 6 # we want 6 values
@test eff.conditionA β [0.0, 0.0, 0.0, 1.0, 1.0, 1.0]
@test eff.continuousA β [-2, 0, 2, -2, 0, 2.0]
end
@testset "Mass Univariate, typified" begin
# testing typical value
eff_man = Unfold.effects(
Dict(:conditionA => [0, 1], :continuousA => [mean(evts.continuousA)]),
m_mul,
)
eff_typ = Unfold.effects(Dict(:conditionA => [0, 1]), m_mul)
@test eff_man.yhat β eff_typ.yhat
end
## Testing Splines
f_spl = @formula 0 ~ 1 + conditionA + spl(continuousA, 4) # 1
m_mul_spl = fit(UnfoldModel, f_spl, evts, data_e, times)
@testset "Mass Univariate, splines" begin
eff = Unfold.effects(Dict(:conditionA => [0, 1], :continuousA => [0]), m_mul_spl)
@test size(eff, 1) == 2 # we specified 2 levels @ 1 time point
@test eff.conditionA β [0.0, 1.0] # we want to different levels
@test eff.yhat β [2.0, 5.0] # these are the perfect predicted values
# combination 2 levels / 6 values
eff = Unfold.effects(
Dict(:conditionA => [0, 1], :continuousA => [-0.5, 0, 0.5]),
m_mul_spl,
)
@test size(eff, 1) == 6 # we want 6 values
@test eff.conditionA β [0.0, 0.0, 0.0, 1.0, 1.0, 1.0]
@test eff.continuousA β [-0.5, 0, 0.5, -0.5, 0, 0.5]
@test eff.yhat β [0, 2, 4, 3, 5, 7]
# testing for safe predictions
eff = Unfold.effects(Dict(:conditionA => [0, 1], :continuousA => [2]), m_mul_spl)
@test all(ismissing.(eff.yhat))
end
## Timeexpansion
data, evts = loadtestdata("test_case_3a") #
f = @formula 0 ~ 1 + conditionA + continuousA # 1
@testset "Time Expansion, one event" begin
uf = fit(Unfold.UnfoldModel, Dict(Any => (f, firbasis([0, 0.1], 10))), evts, data)
eff = Unfold.effects(Dict(:conditionA => [0, 1], :continuousA => [0]), uf)
@test nrow(eff) == 4
@test eff.yhat β [2.0, 2.0, 5.0, 5.0]
@test eff.conditionA β [0.0, 0.0, 1.0, 1.0]
@test eff.continuousA β [0.0, 0.0, 0.0, 0.0]
end
data, evts = loadtestdata("test_case_4a") #
b1 = firbasis(Ο = (0.0, 0.95), sfreq = 20, name = "eventA")
b2 = firbasis(Ο = (0.0, 0.95), sfreq = 20, name = "eventB")
b3 = firbasis(Ο = (0.0, 0.95), sfreq = 20, name = "eventC")
f = @formula 0 ~ 1 # 1
m_tul = fit(
UnfoldModel,
Dict("eventA" => (f, b1), "eventB" => (f, b2)),
evts,
data,
eventcolumn = "type",
)
@testset "Time Expansion, two events" begin
eff = Unfold.effects(Dict(:conditionA => [0, 1], :continuousA => [0]), m_tul)
@test unique(eff.eventname) == ["eventA", "eventB"]
@test unique(eff.yhat) β [2, 3]
@test size(eff, 1) == 2 * 2 * 20 # 2 basisfunctions, 2x conditionA, 1s a 20Hz
eff = Unfold.effects(Dict(:conditionA => [0, 1], :continuousA => [-1, 0, 1]), m_tul)
@test size(eff, 1) == 2 * 6 * 20
end
@testset "Time Expansion, three events" begin
evts_3 = deepcopy(evts)
evts_3.type[1:50] .= "eventC"
evts_3.type[50:100] .= "eventD"
m_tul_3 = fit(
UnfoldModel,
Dict("eventA" => (f, b1), "eventB" => (f, b2), "eventC" => (f, b3)),
evts_3,
data,
eventcolumn = "type",
)
eff = Unfold.effects(Dict(:conditionA => [0, 1], :continuousA => [0]), m_tul_3)
@test size(eff, 1) == 3 * 2 * 20 # 2 basisfunctions, 2x conditionA, 1s a 20Hz
end
@testset "Time Expansion, two events different size + different formulas" begin
## Different sized events + different Formulas
data, evts = loadtestdata("test_case_4a") #
evts[!, :continuousA] = rand(MersenneTwister(42), nrow(evts))
b1 = firbasis(Ο = (0.0, 0.95), sfreq = 20, name = "eventA")
b2 = firbasis(Ο = (0.0, 0.5), sfreq = 20, name = "eventB")
f1 = @formula 0 ~ 1 # 1
f2 = @formula 0 ~ 1 + continuousA # 1
m_tul = fit(
UnfoldModel,
Dict("eventA" => (f1, b1), "eventB" => (f2, b2)),
evts,
data,
eventcolumn = "type",
)
eff = Unfold.effects(Dict(:conditionA => [0, 1], :continuousA => [-1, 0, 1]), m_tul)
@test nrow(eff) == (length(Unfold.times(b1)) + length(Unfold.times(b2))) * 6
@test sum(eff.eventname .== "eventA") == 120
@test sum(eff.eventname .== "eventB") == 66
end
## Test two channels
data, evts = loadtestdata("test_case_3a") #
data_r = repeat(reshape(data, (1, :)), 3, 1)
data_r[2, :] = data_r[2, :] .* 2
data_e, times = Unfold.epoch(data = data_r, tbl = evts, Ο = (0, 0.05), sfreq = 10) # cut the data into epochs
#
f = @formula 0 ~ 1 + conditionA + continuousA # 1
m_mul = fit(Unfold.UnfoldModel, Dict(Any => (f, times)), evts, data_e)
m_tul = fit(Unfold.UnfoldModel, Dict(Any => (f, firbasis([0, 0.05], 10))), evts, data_r)
@testset "Two channels" begin
# test simple case
eff_m = Unfold.effects(Dict(:conditionA => [0, 1, 0, 1], :continuousA => [0]), m_mul)
eff_t = Unfold.effects(Dict(:conditionA => [0, 1, 0, 1], :continuousA => [0]), m_tul)
@test eff_m.yhat β eff_t.yhat
@test length(unique(eff_m.channel)) == 3
@test eff_m[eff_m.channel.==1, :yhat] β eff_m[eff_m.channel.==2, :yhat] ./ 2
@test eff_m[eff_m.channel.==1, :yhat] β [2, 5, 2, 5.0] # these are the perfect predicted values - note that we requested them twice
end
@testset "Timeexpansion, two events, typified" begin
data, evts = loadtestdata("test_case_4a") #
evts[!, :continuousA] = rand(MersenneTwister(42), nrow(evts))
evts[!, :continuousB] = rand(MersenneTwister(43), nrow(evts))
ixA = evts.type .== "eventA"
evts.continuousB[ixA] = evts.continuousB[ixA] .- mean(evts.continuousB[ixA]) .- 5
evts.continuousB[.!ixA] =
evts.continuousB[.!ixA] .- mean(evts.continuousB[.!ixA]) .+ 0.5
b1 = firbasis(Ο = (0.0, 0.02), sfreq = 20, name = "eventA")
b2 = firbasis(Ο = (1.0, 1.02), sfreq = 20, name = "eventB")
f1 = @formula 0 ~ 1 + continuousA # 1
f2 = @formula 0 ~ 1 + continuousB # 1
m_tul = fit(
UnfoldModel,
Dict("eventA" => (f1, b1), "eventB" => (f2, b2)),
evts,
data,
eventcolumn = "type",
)
m_tul.modelfit.estimate .= [0 -1 0 6]
eff = Unfold.effects(Dict(:continuousA => [0, 1]), m_tul)
eff = Unfold.effects(Dict(:continuousA => [0, 1], :continuousB => [0.5]), m_tul)
@test eff.yhat[3] == eff.yhat[4]
@test eff.yhat[1] == 0.0
@test eff.yhat[2] == -1.0
@test eff.yhat[3] == 3
end
@testset "timeexpansion, Interactions, two events" begin
data, evts = loadtestdata("test_case_4a") #
evts[!, :continuousA] = rand(MersenneTwister(42), nrow(evts))
evts[!, :continuousB] =
["m", "x"][Int.(1 .+ round.(rand(MersenneTwister(43), nrow(evts))))]
b1 = firbasis(Ο = (0.0, 0.02), sfreq = 20, name = "eventA")
b2 = firbasis(Ο = (1.0, 1.02), sfreq = 20, name = "eventB")
f1 = @formula 0 ~ 1 + continuousA * continuousB # 1
f2 = @formula 0 ~ 1 + continuousB # 1
m_tul = fit(
UnfoldModel,
["eventA" => (f1, b1), "eventB" => (f2, b2)],
evts,
data,
eventcolumn = "type",
)
m_tul.modelfit.estimate .= [0, -1, 0, 2.0, 0.0, 0.0]'
eff = Unfold.effects(Dict(:continuousA => [0, 1]), m_tul)
@test size(eff, 1) == 4
@test all(eff.eventname[1:2] .== "eventA")
@test all(eff.eventname[4:end] .== "eventB")
@test eff.yhat β [
0.0,
mean(evts.continuousB[evts.type.=="eventA"] .== "x") * coef(m_tul)[4] +
1 * coef(m_tul)[2],
0.0,
0.0,
]
eff = Unfold.effects(Dict(:continuousB => ["m", "x"]), m_tul)
@test eff.yhat[1] == -eff.yhat[2]
@test all(eff.yhat[3:4] .β 0.0)
eff = Unfold.effects(Dict(:continuousA => [0, 1], :continuousB => ["m", "x"]), m_tul)
@test eff.yhat[3:4] == [-1, 1]
@test all(eff.yhat[1:2, 5:end] .== 0)
end
@testset "splinesMissings" begin
@testset "Missings in Events" begin
tbl = DataFrame(
:a => [1, 2, 3, 4, 5, 6, 7, 8],
:b => [1, 1, 1, 2, 2, 2, 3, missing],
:c => [1, 2, 3, 4, 5, 6, 7, missing],
:d => ["1", "2", "3", "4", "5", "6", "7", "8"],
:e => ["1", "2", "3", "4", "5", "6", "7", missing],
:event => [1, 1, 1, 1, 2, 2, 2, 2],
:latency => [10, 20, 30, 40, 50, 60, 70, 80],
)
data = rand(120)
tbl.event = string.(tbl.event)
# prior to the Missing disallow sanity check, this gave an error
design = Dict(
"1" => (@formula(0 ~ spl(a, 4) + spl(b, 4) + d + e), firbasis((0, 2), 1)),
"2" => (@formula(0 ~ a + d), firbasis((0, 1), 1)),
)
m = fit(UnfoldModel, design, tbl, data)
effects(Dict(:a => [1, 2, 3], :b => [1, 1.5]), m)
end
end
@testset "MixedModel" begin
data, evts = UnfoldSim.predef_eeg(10; return_epoched = true)
data = reshape(data, size(data, 1), :)
m = fit(
UnfoldModel,
@formula(0 ~ 1 + condition + (1 + condition | subject)),
evts,
data,
1:size(data, 1),
)
eff = effects(Dict(:condition => ["car", "face"]), m)
end
@testset "MixedModelContinuousTime" begin
data, evts = UnfoldSim.predef_eeg(10; sfreq = 10, return_epoched = false)
data = data[:]
subj_idx = [parse(Int, split(string(s), 'S')[2]) for s in evts.subject]
evts.latency .+= size(data, 1) .* (subj_idx .- 1)
m = fit(
UnfoldModel,
[
Any => (
@formula(0 ~ 1 + condition + zerocorr(1 + condition | subject)),
firbasis([0.0, 1], 10; interpolate = false),
),
],
evts,
data,
)
@test_broken eff = effects(Dict(:condition => ["car", "face"]), m)
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 10020 | data, evts = loadtestdata("test_case_3a") #
f = @formula 0 ~ 1 + conditionA + continuousA # 1
# prepare data
data_r = reshape(data, (1, :))
data_r = vcat(data_r, data_r)#add second channel
#--------------------------#
# Mass Univariate Linear ##
#--------------------------#
data_e, times = Unfold.epoch(data = data_r, tbl = evts, Ο = (-1.0, 1.9), sfreq = 20) # cut the data into epochs
@testset "Float32" begin
evts_nomiss, dat_nomiss = Unfold.drop_missing_epochs(evts, data_e)
uf = fit(UnfoldModel, f, evts_nomiss, Float32.((dat_nomiss)), times)
@test typeof(uf) == UnfoldLinearModel{Float32}
@test eltype(coef(uf)) == Float32
uf = fit(UnfoldModel, f, evts_nomiss, Float16.((dat_nomiss)), times)
@test eltype(coef(uf)) == Float16
# continuos case
basisfunction = firbasis(Ο = (-1, 1), sfreq = 20)
uf = fit(UnfoldModel, [Any => (f, basisfunction)], evts_nomiss, Float32.(data_r))
@test typeof(uf) == UnfoldLinearModelContinuousTime{Float32}
@test eltype(coef(uf)) == Float32
end
#---
@testset "test manual pathway" begin
uf = UnfoldLinearModel{Union{Float64,Missing}}([Any => (f, times)])
designmatrix!(uf, evts; eventcolumn = "type")
fit!(uf, data_e)
@test typeof(uf.modelfit) == Unfold.LinearModelFit{Union{Missing,Float64},3}
@test !isempty(coef(uf.modelfit))
end
@testset "epoched auto multi-event" begin
evts_local = deepcopy(evts)
evts_local.type .= repeat(["A", "B"], nrow(evts) Γ· 2)
uf = fit(UnfoldModel, ["A" => (f, times)], evts_local, data_e; eventcolumn = "type")
@test size(coef(uf)) == (2, 59, 3)
uf_2events = fit(
UnfoldModel,
["A" => (f, times), "B" => (@formula(0 ~ 1), times)],
evts_local,
data_e;
eventcolumn = "type",
)
@test size(coef(uf_2events)) == (2, 59, 4)
c = coeftable(uf)
c2 = coeftable(uf_2events)
@test c2[c2.eventname.=="A", :] == c
e_uf = effects(Dict(:condtionA => [0, 1]), uf)
e_uf2 = effects(Dict(:condtionA => [0, 1]), uf_2events)
end
@testset "test Autodetection" begin
@test Unfold.design_to_modeltype([Any => (@formula(0 ~ 1), 0:10)]) == UnfoldLinearModel
@test Unfold.design_to_modeltype([Any => (@formula(0 ~ 1 + A), 0:10)]) ==
UnfoldLinearModel
@test Unfold.design_to_modeltype([
Any => (@formula(0 ~ 1 + A), firbasis(Ο = (-1, 1), sfreq = 20)),
],) == UnfoldLinearModelContinuousTime
ext = Base.get_extension(Unfold, :UnfoldMixedModelsExt)
@test Unfold.design_to_modeltype([Any => (@formula(0 ~ 1 + (1 | test)), 0:10)]) ==
ext.UnfoldLinearMixedModel
@test Unfold.design_to_modeltype([
Any => (@formula(0 ~ 1 + (1 | test)), firbasis(Ο = (-1, 1), sfreq = 20)),
],) == ext.UnfoldLinearMixedModelContinuousTime
end
@testset "Bad Input" begin
# check that if UnfoldLinearModel or UnfoldLinearModelContinuousTime is defined, that the design is appropriate
basisfunction = firbasis(Ο = (-1, 1), sfreq = 20)
@test_throws "AssertionError" fit(
UnfoldLinearModel,
[Any => (@formula(0 ~ 1), basisfunction)],
evts,
data_r,
)
@test_throws "AssertionError" fit(
UnfoldLinearModel,
[Any => (@formula(0 ~ 1), basisfunction)],
evts,
data_e,
)
@test_throws "AssertionError" fit(
UnfoldLinearModelContinuousTime,
[Any => (@formula(0 ~ 1), 0:0.1:1)],
evts,
data_r,
)
end
@testset "automatic, non-vector call" begin
times = -1.0:0.05:1.9
m_mul = coeftable(fit(UnfoldLinearModel, f, evts, data_e, times))
@test m_mul[(m_mul.channel.==1).&(m_mul.time.==0.1), :estimate] β [2, 3, 4]
data_e_noreshape, times =
Unfold.epoch(data = data, tbl = evts, Ο = (-1.0, 1.9), sfreq = 20) # cut the data into epochs
m_mul_noreshape = coeftable(fit(UnfoldLinearModel, f, evts, data_e_noreshape, times))
@test m_mul_noreshape[
(m_mul_noreshape.channel.==1).&(m_mul_noreshape.time.==0.1),
:estimate,
] β [2, 3, 4]
@test size(m_mul_noreshape)[1] == size(m_mul)[1] / 2
# test 2D call for UnfoldLinearModel
m_mul_autoreshape =
coeftable(fit(UnfoldLinearModel, f, evts, data_e_noreshape[1, :, :], times))
m_mul_autoreshape == m_mul_noreshape
# Add Missing in Data
data_e_missing = deepcopy(data_e)
data_e_missing[1, 25, end-5:end] .= missing
m_mul_missing = coeftable(Unfold.fit(UnfoldLinearModel, f, evts, data_e_missing, times))
@test m_mul_missing.estimate β m_mul.estimate
# Special solver solver_lsmr_se with Standard Error
se_solver = solver = (x, y) -> Unfold.solver_default(x, y, stderror = true)
m_mul_se =
coeftable(Unfold.fit(UnfoldModel, f, evts, data_e, times; solver = se_solver))
@test all(m_mul_se.estimate .β m_mul.estimate)
@test !all(isnothing.(m_mul_se.stderror))
# robust solver
#ext = Base.get_extension(Unfold, :UnfoldRobustModelsExt)
rob_solver = (x, y) -> Unfold.solver_robust(x, y)#,rlmOptions=(initial_coef=zeros(3 *length(times)),))
data_outlier = copy(data_e)
data_outlier[:, 31, 1] .= 1000
m_mul_rob = coeftable(
Unfold.fit(UnfoldModel, f, evts, data_outlier, times, solver = rob_solver),
)
ix = findall(m_mul_rob.time .β 0.5)
@test all(m_mul_rob.estimate[ix] .β m_mul.estimate[ix])
m_mul_outlier = coeftable(Unfold.fit(UnfoldModel, f, evts, data_outlier, times))
end
@testset "standard-errors solver" begin
data, evts = UnfoldSim.predef_eeg(; noiselevel = 10, return_epoched = true)
data = reshape(data, 1, size(data)...)
f = @formula 0 ~ 1 + condition + continuous
# generate ModelStruct
se_solver = (x, y) -> Unfold.solver_default(x, y, stderror = true)
fit(
UnfoldModel,
(Dict(Any => (f, range(0, length = size(data, 2), step = 1 / 100)))),
evts,
data;
solver = se_solver,
)
end
#---------------------------------#
## Timexpanded Univariate Linear ##
#---------------------------------#
basisfunction = firbasis(Ο = (-1, 1), sfreq = 20)
@testset "timeexpanded univariate linear+missings" begin
m_tul = coeftable(fit(UnfoldModel, f, evts, data_r, basisfunction))
@test isapprox(
m_tul[(m_tul.channel.==1).&(m_tul.time.==0.1), :estimate],
[2, 3, 4],
atol = 0.01,
)
# test without reshape, i.e. 1 channel vector e.g. size(data) = (1200,)
m_tul_noreshape = coeftable(fit(UnfoldModel, f, evts, data, basisfunction))
@test size(m_tul_noreshape)[1] == size(m_tul)[1] / 2
# Test under missing data
data_missing = Array{Union{Missing,Number}}(undef, size(data_r))
data_missing .= deepcopy(data_r)
data_missing[4500:4600] .= missing
m_tul_missing = coeftable(fit(UnfoldModel, f, evts, data_missing, basisfunction))
@test isapprox(m_tul_missing.estimate, m_tul.estimate, atol = 1e-4) # higher tol because we remove stuff
## Test multiple basisfunctions
b1 = firbasis(Ο = (-1, 1), sfreq = 20)
b2 = firbasis(Ο = (-1, 1), sfreq = 20)
f1 = @formula 0 ~ 1 + continuousA # 1
f2 = @formula 0 ~ 1 + continuousA # 1
# Fast-lane new implementation
res = coeftable(
fit(
UnfoldModel,
[0 => (f1, b1), 1 => (f2, b2)],
evts,
data_r,
eventcolumn = "conditionA",
),
)
# slow manual
X1 = designmatrix(
UnfoldLinearModelContinuousTime,
f1,
filter(x -> (x.conditionA == 0), evts),
b1,
)
X2 = designmatrix(
UnfoldLinearModelContinuousTime,
f2,
filter(x -> (x.conditionA == 1), evts),
b2,
)
uf = UnfoldLinearModelContinuousTime(Dict(0 => (f1, b1), 1 => (f2, b2)), X1 + X2)
@time fit!(uf, data_r)
tmp = coeftable(uf)
# test fast way & slow way to be identical
@test all(tmp.estimate .== res.estimate)
end
@testset "runtime tests" begin
# runntime tests - does something explode?
for k = 1:4
local f
if k == 1
f = @formula 0 ~ 1
elseif k == 2
f = @formula 0 ~ 1 + conditionA
elseif k == 3
f = @formula 0 ~ 0 + conditionA
elseif k == 4
f = @formula 0 ~ 1 + continuousA
end
fit(UnfoldModel, f, evts, data_e, times)
fit(UnfoldModel, f, evts, data, basisfunction)
end
end
@testset "automatic, non-dictionary call" begin
m_mul = coeftable(fit(UnfoldLinearModel, f, evts, data_e, times))
@test m_mul[(m_mul.channel.==1).&(m_mul.time.==0.1), :estimate] β [2, 3, 4]
end
@testset "Special solver solver_lsmr_se with Standard Error" begin
se_solver = solver = (x, y) -> Unfold.solver_default(x, y, stderror = true)
m_tul_se =
coeftable(fit(UnfoldModel, f, evts, data_r, basisfunction, solver = se_solver)) #with
m_tul = coeftable(fit(UnfoldModel, f, evts, data_r, basisfunction)) #without
@test all(m_tul_se.estimate .== m_tul.estimate)
@test !all(isnothing.(m_tul_se.stderror))
#m_mul_se,m_mul_se = fit(UnfoldLinearModel,f,evts,data_e.+randn(size(data_e)).*5,times,solver=se_solver)
#plot(m_mul_se[m_mul_se.channel.==1,:],se=true)
#m_tul_se,m_tul_se = fit(UnfoldLinearModel,f,evts,data_r.+randn(size(data_r)).*5,basisfunction,solver=se_solver)
#plot(m_tul_se[m_tul_se.channel.==1,:],se=true)
end
@testset "non-integer fir no interpolation #200" begin
data, evts = UnfoldSim.predef_eeg()
evts.latency .= evts.latency + rand(length(evts.latency))
f = @formula 0 ~ 1 + condition + continuous
# generate ModelStruct
m = fit(UnfoldModel, [Any => (f, firbasis([-0.111, 0.2312], 100))], evts, data;)
end
@testset "missing data modelfit" begin
data, evts = UnfoldSim.predef_eeg()
data = allowmissing(data)
data[500:600] .= missing
f = @formula 0 ~ 1 + condition + continuous
# generate ModelStruct
m = fit(UnfoldModel, [Any => (f, firbasis([-0.111, 0.2312], 100))], evts, data;)
end | Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 7203 |
@testset "lmm tests" begin
###############################
## Mixed Model tests
###############################
data, evts = loadtestdata("testCase3", dataPath = (@__DIR__) * "/data") #
append!(data, zeros(1000))
data = reshape(data, 1, :)
data = vcat(data, data)
data = data .+ 1 * randn(size(data)) # we have to add minimal noise, else mixed models crashes.
data_missing = Array{Union{Missing,Number}}(undef, size(data))
data_missing .= deepcopy(data)
data_missing[4500:4600] .= missing
transform!(evts, :subject => categorical => :subject)
f = @formula 0 ~ 1 + condA + condB + (1 + condA + condB | subject)
#f = @formula 0~1 + (1|subject)
# cut the data into epochs
# TODO This ignores subject bounds
data_e, times = Unfold.epoch(data = data, tbl = evts, Ο = (-1.0, 1.9), sfreq = 10)
data_missing_e, times =
Unfold.epoch(data = data_missing, tbl = evts, Ο = (-1.0, 1.9), sfreq = 10)
evts_e, data_e = Unfold.drop_missing_epochs(copy(evts), data_e)
evts_missing_e, data_missing_e = Unfold.drop_missing_epochs(copy(evts), data_missing_e)
######################
## Mass Univariate Mixed
@time m_mum = fit(
UnfoldModel,
f,
evts_e,
data_e,
times,
contrasts = Dict(:condA => EffectsCoding(), :condB => EffectsCoding()),
show_progress = false,
)
df = Unfold.coeftable(m_mum)
@test isapprox(
df[(df.channel.==1).&(df.coefname.=="condA: 1").&(df.time.==0.0), :estimate],
[5.618, 9.175],
rtol = 0.1,
)
# with missing
@time m_mum = fit(
UnfoldModel,
f,
evts_missing_e,
data_missing_e,
times,
contrasts = Dict(:condA => EffectsCoding(), :condB => EffectsCoding()),
show_progress = false,
)
df = coeftable(m_mum)
@test isapprox(
df[(df.channel.==1).&(df.coefname.=="condA: 1").&(df.time.==0.0), :estimate],
[5.618, 9.175],
rtol = 0.1,
)
# Timexpanded Univariate Mixed
f = @formula 0 ~ 1 + condA + condB + (1 + condA | subject)
basisfunction = firbasis(Ο = (-0.2, 0.3), sfreq = 10)
@time m_tum = fit(
UnfoldModel,
f,
evts,
data,
basisfunction,
contrasts = Dict(:condA => EffectsCoding(), :condB => EffectsCoding()),
show_progress = false,
)
df = coeftable(m_tum)
@test isapprox(
df[(df.channel.==1).&(df.coefname.=="condA: 1").&(df.time.==0.0), :estimate],
[5.618, 9.175],
rtol = 0.1,
)
# missing data in LMMs
# not yet implemented
Test.@test_broken m_tum = fit(
UnfoldModel,
f,
evts,
data_missing,
basisfunction,
contrasts = Dict(:condA => EffectsCoding(), :condB => EffectsCoding()),
)
evts.subjectB = evts.subject
evts1 = evts[evts.condA.==0, :]
evts2 = evts[evts.condA.==1, :]
f0_lmm = @formula 0 ~ 1 + condB + (1 | subject) + (1 | subjectB)
@time m_tum = coeftable(
fit(UnfoldModel, f0_lmm, evts, data, basisfunction; show_progress = false),
)
f1_lmm = @formula 0 ~ 1 + condB + (1 | subject)
f2_lmm = @formula 0 ~ 1 + condB + (1 | subjectB)
b1 = firbasis(Ο = (-0.2, 0.3), sfreq = 10, name = 0)
b2 = firbasis(Ο = (-0.1, 0.3), sfreq = 10, name = 1)
ext = Base.get_extension(Unfold, :UnfoldMixedModelsExt)
X1_lmm = designmatrix(ext.UnfoldLinearMixedModelContinuousTime, f1_lmm, evts1, b1)
X2_lmm = designmatrix(ext.UnfoldLinearMixedModelContinuousTime, f2_lmm, evts2, b2)
r = fit(
ext.UnfoldLinearMixedModelContinuousTime,
X1_lmm + X2_lmm,
data;
show_progress = false,
)
df = coeftable(r)
@test isapprox(
df[(df.channel.==1).&(df.coefname.=="condB").&(df.time.==0.0), :estimate],
[18.21, 17.69],
rtol = 0.1,
)
# Fast-lane new implementation
m = coeftable(
fit(
UnfoldModel,
[0 => (f1_lmm, b1), 1 => (f2_lmm, b2)],
evts,
data,
eventcolumn = "condA",
),
)
end
## Condense check for multi channel, multi
@testset "LMM multi channel, multi basisfunction" begin
data, evts = loadtestdata("testCase3", dataPath = (@__DIR__) * "/data")
transform!(evts, :subject => categorical => :subject)
data = vcat(data', data')
bA0 = firbasis(Ο = (-0.0, 0.1), sfreq = 10, name = 0)
bA1 = firbasis(Ο = (0.1, 0.2), sfreq = 10, name = 1)
evts.subject2 = evts.subject
fA0 = @formula 0 ~ 1 + condB + zerocorr(1 | subject)
fA1 = @formula 0 ~ 1 + condB + zerocorr(1 | subject2)
m = fit(
UnfoldModel,
Dict(0 => (fA0, bA0), 1 => (fA1, bA1)),
evts,
data;
eventcolumn = "condA",
show_progress = false,
)
res = coeftable(m)
@test all(last(.!isnothing.(res.group), 8))
@test all(last(res.coefname, 8) .== "(Intercept)")
end
@testset "LMM bug reorder #115" begin
data, evts = UnfoldSim.predef_2x2(;
return_epoched = true,
n_subjects = 10,
noiselevel = 1,
onset = NoOnset(),
)
data = reshape(data, size(data, 1), :)
designList = [
[
Any => (
@formula(
0 ~
1 + A + B + zerocorr(1 + B + A | subject) + zerocorr(1 + B | item)
),
range(0, 1, length = size(data, 1)),
),
],
[
Any => (
@formula(
0 ~
1 + A + B + zerocorr(1 + A + B | subject) + zerocorr(1 + B | item)
),
range(0, 1, length = size(data, 1)),
),
],
[
Any => (
@formula(0 ~ 1 + zerocorr(1 + A + B | subject) + zerocorr(1 | item)),
range(0, 1, length = size(data, 1)),
),
],
]
#des = designList[1]
#des = designList[2]
for des in designList
@test_throws AssertionError fit(UnfoldModel, des, evts, data)
#
end
#counter check
des = [
Any => (
@formula(0 ~ 1 + zerocorr(1 | item) + zerocorr(1 + A + B | subject)),
range(0, 1, length = size(data, 1)),
),
]
#= fails but not in the repl...?
uf = fit(UnfoldModel, des, evts, data; show_progress = false)
@test 3 ==
unique(
@subset(
coeftable(uf),
@byrow(:group == Symbol("subject")),
@byrow :time == 0.0
).coefname,
) |> length
=#
end
@testset "LMM bug reshape #110" begin
data, evts =
UnfoldSim.predef_2x2(; return_epoched = true, n_subjects = 10, noiselevel = 1)
data = reshape(data, size(data, 1), :)
des = [
Any => (
@formula(
0 ~ 1 + A + B + zerocorr(1 + B + A | item) + zerocorr(1 + B | subject)
),
range(0, 1, length = size(data, 1)),
),
]
uf = fit(UnfoldModel, des, evts, data; show_progress = false)
@test size(coef(uf)) == (1, 100, 3)
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 4993 | using UnfoldSim
using DataFrames
save_path = mktempdir(; cleanup = false)#tempdir()
## 1. Test data set:
# - Generate a P1/N1/P3 complex for one subject (using UnfoldSim)
# - Use a Continuous Time Unfold model with two event types
# - Use splines to model the continuous predictor variable
data1, evts1 = UnfoldSim.predef_eeg(; n_repeats = 100, noiselevel = 0.8);
# Assume that the data is from two different events
evts1[!, :type] = repeat(["event_A", "event_B"], nrow(evts1) Γ· 2);
bf1_A = firbasis(Ο = [-0.1, 1], sfreq = 100, name = "event_A");
bf1_B = firbasis(Ο = [-0.1, 1], sfreq = 100, name = "event_B");
f1_A = @formula 0 ~ 1;
f1_B = @formula 0 ~ 1 + condition + spl(continuous, 4);
bfDict1 = ["event_A" => (f1_A, bf1_A), "event_B" => (f1_B, bf1_B)];
data1_e, times = Unfold.epoch(data1, evts1, [-0.1, 1], 100)
bfDict1_e = ["event_A" => (f1_A, times), "event_B" => (f1_B, times)];
for deconv in [false, true]
if deconv
m1 = Unfold.fit(UnfoldModel, bfDict1, evts1, data1, eventcolumn = "type")
else
m1 = Unfold.fit(UnfoldLinearModel, bfDict1_e, evts1, data1_e; eventcolumn = "type")
end
@testset "SingleSubjectDesign with two event types and splines" begin
# save the model to a compressed .jld2 file and load it again
save(joinpath(save_path, "m1_compressed2.jld2"), m1; compress = true)
m1_loaded = load(
joinpath(save_path, "m1_compressed2.jld2"),
UnfoldModel,
generate_Xs = true,
)
@test isempty(Unfold.modelmatrices(designmatrix(m1_loaded))[1]) == false
@test typeof(m1) == typeof(m1_loaded)
@test coeftable(m1) == coeftable(m1_loaded)
@test m1.modelfit.estimate == m1_loaded.modelfit.estimate
@test m1.designmatrix[end].events == m1_loaded.designmatrix[end].events
# In the loaded version one gets two matrices instead of one.
# The dimensions do also not match.
# Probably the designmatrix reconstruction in the load function needs to be changed.
@test m1.designmatrix[end].modelmatrix == m1_loaded.designmatrix[end].modelmatrix
# Test whether the effects function works with the loaded model
# and the results match the ones of the original model
eff1 = effects(Dict(:condition => ["car", "face"], :continuous => -5:1), m1)
eff1_loaded =
effects(Dict(:condition => ["car", "face"], :continuous => -5:1), m1_loaded)
@test eff1 == eff1_loaded
# load the model without reconstructing the designmatrix
m1_loaded_without_dm = load(
joinpath(save_path, "m1_compressed2.jld2"),
UnfoldModel,
generate_Xs = false,
)
# ismissing should only be true fr the deconv case
@test isempty(modelmatrix(designmatrix(m1_loaded_without_dm)[2])) ==
(deconv == true)
end
end
#----
## 2. Test data set:
# - Generate a 2x2 design with Hanning window for multiple subjects (using UnfoldSim)
# - Use a Mixed-effects Unfold model
data2, evts2 = UnfoldSim.predef_2x2(; n_subjects = 5, return_epoched = true);
data2 = reshape(data2, size(data2, 1), :)
# Define a model formula with interaction term and random effects for subjects
f2 = @formula(0 ~ 1 + A * B + (1 | subject));
Ο2 = [-0.1, 1];
sfreq2 = 100;
times2 = range(Ο2[1], length = size(data2, 1), step = 1 ./ sfreq2);
m2 = Unfold.fit(
UnfoldModel,
Dict(Any => (f2, times2)),
evts2,
reshape(data2, 1, size(data2)...),
);
save(joinpath(save_path, "m2_compressed2.jld2"), m2; compress = true)
m2_loaded =
load(joinpath(save_path, "m2_compressed2.jld2"), UnfoldModel, generate_Xs = true)
@testset "2x2 MultiSubjectDesign Mixed-effects model" begin
# save the model to a compressed .jld2 file and load it again
save(joinpath(save_path, "m2_compressed2.jld2"), m2; compress = true)
m2_loaded =
load(joinpath(save_path, "m2_compressed2.jld2"), UnfoldModel, generate_Xs = true)
@test isempty(Unfold.modelmatrices(designmatrix(m2_loaded))[1]) == false
@test typeof(m2) == typeof(m2_loaded)
@test coeftable(m2) == coeftable(m2_loaded)
@test modelfit(m2).fits == modelfit(m2_loaded).fits
@test Unfold.events(m2) == Unfold.events(m2_loaded)
@test modelmatrix(m2) == modelmatrix(m2_loaded)
# Test whether the effects function works with the loaded models
# and the results match the ones of the original model
conditions = Dict(:A => levels(evts2.A), :B => levels(evts2.B))
# The effects function is currently not defined for UnfoldLinearMixedModel
#eff2 = effects(conditions, m2)
#eff2_loaded = effects(conditions, m2_loaded)
@test_broken eff2 == eff2_loaded
# load the model without reconstructing the designmatrix
m2_loaded_without_dm =
load(joinpath(save_path, "m2_compressed2.jld2"), UnfoldModel, generate_Xs = false)
@test isempty(modelmatrix(designmatrix(m2_loaded_without_dm))[1]) == true
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 515 | # This is not included in the testset because we cant use GPU on github action :(
@testset "krylov with missings" begin
using Krylov, CUDA
data, evts = UnfoldSim.predef_eeg()
data = allowmissing(data)
data[500:600] .= missing
f = @formula 0 ~ 1 + condition + continuous
# generate ModelStruct
m = fit(
UnfoldModel,
[Any => (f, firbasis([-0.111, 0.2312], 100))],
evts,
data;
solver = (x, y) -> Unfold.solver_krylov(x, y; GPU = false),
)
end | Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 4303 |
data, evts = loadtestdata("test_case_3a") #
data_r = reshape(data, (1, :))
data_e, times = Unfold.epoch(data = data_r, evts = evts, Ο = (0.0, 0.95), sfreq = 20) # cut the data into epochs
basisfunction = firbasis(Ο = (0.0, 0.95), sfreq = 20)
f = @formula 0 ~ 1 # 1
m_mul = fit(UnfoldModel, f, evts, data_e, times)
m_tul = fit(UnfoldModel, f, evts, data_r, basisfunction)
m_mul_results = coeftable(m_mul)
m_tul_results = coeftable(m_tul)
conditionA = [0, 1.0]
continuousA = [-1.0, 0, 1.0]
tmp = reshape(
[[x, y] for x in conditionA, y in continuousA],
length(conditionA) * length(continuousA),
)
evts_grid = DataFrame(collect(hcat(tmp...)'), ["conditionA", "continuousA"])
yhat_mul = predict(m_mul, evts_grid)
yhat_tul = predict(m_tul, evts_grid)
@test yhat_mul β yhat_tul
Unfold.result_to_table(m_mul, yhat_mul, [evts_grid])
@test all(yhat_mul[1][:] .β mean(data[data.!=0]))
@test all(yhat_tul[1][:] .β mean(data[data.!=0]))
## Case with multiple formulas
f = @formula 0 ~ 1 + conditionA + continuousA# 1
m_tul = fit(UnfoldModel, f, evts, data_r, basisfunction)
m_mul = fit(UnfoldModel, f, evts, data_e, times)
m_mul_results = coeftable(m_mul)
m_tul_results = coeftable(m_tul)
yhat_tul = predict(m_tul, evts_grid)
yhat_mul = predict(m_mul, evts_grid)
#@test predict(m_mul,evts).yhat β yhat.yhat
@test isapprox(sum(coef(m_tul)[[5, 25, 45]]), yhat_tul[1][end-3], atol = 0.001)
@test isapprox(yhat_tul[1], yhat_mul[1], atol = 0.001)
@test isapprox(yhat_tul[1][1, 5, :], [-2, 1, 2, 5, 6, 9.0], atol = 0.0001)
## two events
data, evts = loadtestdata("test_case_4a") #
data_e, times = Unfold.epoch(data = data, evts = evts, Ο = (0.0, 0.95), sfreq = 20) # cut the data into epochs
b1 = firbasis(Ο = (0.0, 0.95), sfreq = 20)
b2 = firbasis(Ο = (0.0, 0.95), sfreq = 20)
f = @formula 0 ~ 1 # 1
m_tul = fit(
UnfoldModel,
["eventA" => (f, b1), "eventB" => (f, b2)],
evts,
data,
eventcolumn = "type",
)
p = predict(m_tul, DataFrame(:Cond => [1]))
@test length(p) == 2
@test size(p[1], 2) == size(p[2], 2) == 20
## two events mass-univariate
m_mul = fit(
UnfoldModel,
["eventA" => (f, times), "eventB" => (f, times)],
evts,
data_e,
eventcolumn = "type",
)
p = predict(m_mul, DataFrame(:Cond => [1, 2, 3]))
@test length(p) == 2
@test size(p[2]) == (1, 20, 3)
## result_to_table
data, evts = UnfoldSim.predef_eeg(; n_repeats = 5, noiselevel = 0.8)
m = fit(
UnfoldModel,
[
"car" => (@formula(0 ~ 1 + spl(continuous, 4)), firbasis((-0.1, 1), 100)),
"face" => (@formula(0 ~ 1 + continuous^2), firbasis((-0.2, 0.4), 100)),
],
evts,
repeat(data, 1, 3)';
eventcolumn = "condition",
show_progress = false,
)
p = predict(m; overlap = false)
pt = Unfold.result_to_table(m, p, repeat([evts], 2))
@show pt[[1, 2, 3], :yhat]
@test all(isapprox.(pt[[1, 2, 3], :yhat], 0.293292035997; atol = 0.01))
@test all(pt[[1, 2, 3], :channel] .== [1, 2, 3])
@test all(pt[[1, 2, 3], :channel] .== [1, 2, 3])
@test all(
pt[[1, 6 * 112 + 1, 3 * 112 + 1], :continuous] .β [5, 1.6666666667, -2.7777777778],
)
@testset "residuals" begin
data, evts = UnfoldSim.predef_eeg(; n_repeats = 5, noiselevel = 0.8)
# time expanded
m = fit(UnfoldModel, [Any => (@formula(0 ~ 1), firbasis((-0.1, 1), 100))], evts, data;)
@test size(Unfold.residuals(m, data)) == (1, 6170)
# time expanded + multichannel
m = fit(
UnfoldModel,
[Any => (@formula(0 ~ 1), firbasis((-0.1, 1), 100))],
evts,
repeat(data, 1, 3)';
)
@test size(Unfold.residuals(m, data)) == (3, 6170)
# time expanded, data longer
m = fit(
UnfoldModel,
[Any => (@formula(0 ~ 1), firbasis((-0.1, 0.1), 100))],
evts,
repeat(data, 1, 3)';
)
resids = Unfold.residuals(m, repeat(data, 1, 3)')
@test size(resids) == (3, 6170)
@test all(resids[1, end-2:end] .β data[end-2:end])
#
data_e, evts =
UnfoldSim.predef_eeg(; n_repeats = 5, noiselevel = 0.8, return_epoched = true)
times = 1:size(data_e, 1)
m_mul = fit(UnfoldModel, f, evts, data_e, times)
resids_e = Unfold.residuals(m_mul, data_e)
@test size(resids_e)[2:3] == size(data_e)
@test maximum(abs.(data_e .- (resids_e.+predict(m_mul)[1])[1, :, :])) < 0.0000001
end | Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 767 | using Unfold
include("setup.jl")
# sanity checks, auto-quality control
#using Aqua
#Aqua.test_all(Unfold)
@testset "BasisFunctions" begin
include("basisfunctions.jl")
end
@testset "Fitting" begin
include("fit.jl")
end
@testset "fit LMMs" begin
include("fit_LMM.jl")
end
@testset "Designmatrix" begin
include("designmatrix.jl")
end
@testset "Splines" begin
include("splines.jl")
end
@testset "Predict" begin
include("predict.jl")
end
@testset "Effects" begin
include("effects.jl")
end
@testset "Statistics" begin
include("statistics.jl")
end
@testset "Utilities" begin
include("utilities.jl")
end
@testset "IO" begin
include("io.jl")
end
#@testset "ClusterPermutation" begin
#include("clusterpermutation.jl")
#end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 283 |
using Test
using StatsModels
using DataFrames
using DataFramesMeta
using Statistics
using Random
using CategoricalArrays
using StatsBase
using Missings
using MixedModels, RobustModels, BSplineKit # extensionTriggers
using SparseArrays
using UnfoldSim
include("test_utilities.jl")
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 3199 | using Unfold: predicttable
data, evts = loadtestdata("test_case_3a") #
##
f_spl = @formula 0 ~ 1 + conditionA + spl(continuousA, 4) # 1
f = @formula 0 ~ 1 + conditionA + continuousA # 1
data_r = reshape(data, (1, :))
data_e, times = Unfold.epoch(data = data_r, tbl = evts, Ο = (-1.0, 1.0), sfreq = 10) # cut the data into epochs
m_mul = coeftable(fit(UnfoldModel, f, evts, data_e, times))
m_mul_spl = coeftable(fit(UnfoldModel, f_spl, evts, data_e, times))
# asking for 4 splines should generate 4 splines
@test length(unique(m_mul_spl.coefname)) == 5
s = Unfold.formulas(fit(UnfoldModel, f_spl, evts, data_e, times))[1].rhs.terms[3]
@test Unfold.width(s) == 3
@test length(coefnames(s)) == 3
@test s.df == 4
@testset "outside bounds" begin
# test safe prediction
m = fit(UnfoldModel, f_spl, evts, data_e, times)
r = Unfold.predicttable(m, DataFrame(conditionA = [0, 0], continuousA = [0.9, 1.9]))
@test all(ismissing.(r.yhat[r.continuousA.==1.9]))
@test !any(ismissing.(r.yhat[r.continuousA.==0.9]))
end
basisfunction = firbasis(Ο = (-1, 1), sfreq = 10, name = "A")
@testset "timeexpanded" begin
# test time expanded
m_tul = coeftable(fit(UnfoldModel, f, evts, data_r, basisfunction))
m_tul_spl = coeftable(fit(UnfoldModel, f_spl, evts, data_r, basisfunction))
end
@testset "safe prediction outside bounds" begin
# test safe predict
m = fit(UnfoldModel, f_spl, evts, data_r, basisfunction)
p = predicttable(m, DataFrame(conditionA = [0, 0, 0], continuousA = [0.9, 0.9, 1.9]))
@test all(ismissing.(p[p.continuousA.==1.9, :yhat]))
end
#@test_broken all(ismissing.)
#evts_grid = gridexpand()
# results from timeexpanded and non should be equal
#yhat_tul = predict(m_tul_spl,evts_grid)
#yhat_mul = predict(m_mul_spl,evts_grid)
if 1 == 0
using AlgebraOfGraphics
yhat_mul.conditionA = categorical(yhat_mul.conditionA)
yhat_mul.continuousA = categorical(yhat_mul.continuousA)
m = mapping(:times, :yhat, color = :continuousA, linestyle = :conditionA)
df = yhat_mul
AlgebraOfGraphics.data(df) * visual(Lines) * m |> draw
end
@testset "many splines" begin
# test much higher number of splines
f_spl_many = @formula 0 ~ 1 + spl(continuousA, 131) # 1
m_mul_spl_many = coeftable(fit(UnfoldModel, f_spl_many, evts, data_e, times))
@test length(unique(m_mul_spl_many.coefname)) == 131
end
@testset "PeriodicSplines" begin
f_circspl = @formula 0 ~ 1 + circspl(continuousA, 10, -1, 1) # 1
m = fit(UnfoldModel, f_circspl, evts, data_e, times)
f_evaluated = Unfold.formulas(m)
effValues = [-1, -0.99, 0, 0.99, 1]
effValues = range(-1.1, 1.1, step = 0.1)
effSingle = effects(Dict(:continuousA => effValues), m)
tmp = subset(effSingle, :time => x -> x .== -1.0)
@test tmp.yhat[tmp.continuousA.==-1.1] β tmp.yhat[tmp.continuousA.==0.9]
@test tmp.yhat[tmp.continuousA.==-1.0] β tmp.yhat[tmp.continuousA.==1]
@test tmp.yhat[tmp.continuousA.==-0.9] β tmp.yhat[tmp.continuousA.==1.1]
end
@testset "minimal number of splines" begin
f_spl = @formula 0 ~ 1 + conditionA + spl(continuousA, 3) # 1
@test_throws AssertionError fit(UnfoldModel, f_spl, evts, data_e, times)
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 921 | @testset "LMM LRT" begin
data, evts = UnfoldSim.predef_eeg(10; n_items = 20, sfreq = 10, return_epoched = true)
data = reshape(data, 1, size(data, 1), size(data, 2) * size(data, 3)) # add second channel
data = vcat(data, data)
times = range(0, 1, size(data, 2))
f0 = @formula 0 ~ 1 + condition + (1 | subject)
f1 = @formula 0 ~ 1 + condition + continuous + (1 | subject)
m0 = fit(UnfoldModel, Dict(Any => (f0, times)), evts, data)
m1 = fit(UnfoldModel, Dict(Any => (f1, times)), evts, data)
tix = 4
evts[!, :y] = data[1, tix, :]
f0 = @formula y ~ 1 + condition + (1 | subject)
f1 = @formula y ~ 1 + condition + continuous + (1 | subject)
lmm0 = fit(MixedModel, f0, evts)
lmm1 = fit(MixedModel, f1, evts)
uf_lrt = likelihoodratiotest(m0, m1)
mm_lrt = MixedModels.likelihoodratiotest(lmm0, lmm1)
@test mm_lrt.pvalues β uf_lrt[tix].pvalues
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 3839 | using CSV
using DelimitedFiles
using DSP
using Random
using LinearAlgebra
using DataFrames
function loadtestdata(
testCase::String;
dataPath::String = (@__DIR__) * "/data_new_testcases",
)
#println(pwd()) # to debug github action
data = readdlm(joinpath(dataPath, "$(testCase)_data.csv"), ',', Float64, '\n')
data = dropdims(data, dims = 1) # convert to vector
evts = CSV.read(joinpath(dataPath, "$(testCase)_events.csv"), DataFrame)
return data, evts
end
function gridexpand(conditionA = [0, 1.0], continuousA = [-1.0, 0, 1.0])
tmp = reshape(
[[x, y] for x in conditionA, y in continuousA],
length(conditionA) * length(continuousA),
)
evts_grid = DataFrame(hcat(tmp...)')
rename!(evts_grid, ["conditionA", "continuousA"])
return evts_grid
end
simulate_lmm(args...; kwargs...) = simulate_lmm(Random.GLOBAL_RNG, args...; kwargs...)
function simulate_lmm(
rng::AbstractRNG,
Ο = 1.5,
fs = 12;
Ξ² = [0.0, -1.0],
Οs = [1, 1, 1],
Ο = 1,
n_sub = 20,
n_item = 30,
noise_type = "AR-exponential",
)
rng_copy = deepcopy(rng)
subj_btwn = item_btwn = both_win = nothing
#subj_btwn = Dict("age" => ["O", "Y"])
# there are no between-item factors in this design so you can omit it or set it to nothing
item_btwn = Dict("stimType" => ["I", "II"])
# put within-subject/item factors in a Dict
#both_win = Dict("condition" => ["A", "B"])
# simulate data
evt = DataFrame(
simdat_crossed(
n_sub,
n_item,
subj_btwn = subj_btwn,
item_btwn = item_btwn,
both_win = both_win,
),
)
# f1 = @formula dv ~ 1 + age * condition + (1+condition|item) + (1+condition|subj);
f1 = @formula dv ~ 1 + stimType + (1 + stimType | subj) + (1 | item)
m = MixedModels.fit(MixedModel, f1, evt)
# set the random effects
#gen_han(Ο,fs,1)
basis = gen_han(Ο, fs, 2)
epoch_dat = zeros(Int(Ο * fs), size(evt, 1))
#MixedModels doesnt really support Ο==0 because all Ranef are scaled residual variance
Ο_lmm = 0.0001
Οs = Οs ./ Ο_lmm
for t = 1:size(epoch_dat, 1)
b = basis[t]
MixedModelsSim.update!(m, create_re(b .* Οs[1], b .* Οs[2]), create_re(b .* Οs[3]))
simulate!(deepcopy(rng_copy), m, Ξ² = [b .* Ξ²[1], b .* Ξ²[2]], Ο = Ο_lmm)
epoch_dat[t, :] = m.y
end
epoch_dat = reshape(epoch_dat, (1, size(epoch_dat)...))
# add some noise
if noise_type == "normal"
epoch_dat = epoch_dat .+ randn(rng, size(epoch_dat)) .* Ο
elseif noise_type == "AR-exponential"
epoch_dat = epoch_dat .+ gen_noise_exp(rng, size(epoch_dat)) .* Ο
end
return evt, epoch_dat
end
function gen_han(Ο, fs, peak)
hanLen = Int(Ο * fs / 3)
han = hanning(hanLen, zerophase = false)
sig = zeros(Int(Ο * fs))
sig[1+hanLen*(peak-1):hanLen*peak] .= han
return sig
end
function circulant(x)
# Author: Jaromil Frossard
# returns a symmetric matrix where X was circ-shifted.
lx = length(x)
ids = [1:1:(lx-1);]
a = Array{Float64,2}(undef, lx, lx)
for i = 1:length(x)
if i == 1
a[i, :] = x
else
a[i, :] = vcat(x[i], a[i-1, ids])
end
end
return Symmetric(a)
end
function exponentialCorrelation(x; nu = 1, length_ratio = 1)
# Author: Jaromil Frossard
# generate exponential function
R = length(x) * length_ratio
return exp.(-3 * (x / R) .^ nu)
end
function noise_exp(rng, n_t)
Ξ£ = circulant(exponentialCorrelation([0:1:(n_t-1);], nu = 1.5))
Ut = LinearAlgebra.cholesky(Ξ£).U'
return (randn(rng, n_t)'*Ut')[1, :]
end
function gen_noise_exp(rng, si)
n = hcat(map(x -> noise_exp(rng, si[2]), 1:si[3])...)
return reshape(n, si)
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 1054 | tbl = DataFrame([collect(1:4:1000)], [:latency])
X = ones(size(tbl))
basisfunction = firbasis(Ο = (-3, 0), sfreq = 1, name = "testing")
term = Unfold.TimeExpandedTerm(FormulaTerm(Term, Term), basisfunction, :latency);
Xdc = Unfold.time_expand(X, term, tbl)
kernel = Unfold.kernel
ncolsBasis = size(kernel(term.basisfunction)(0.0), 2)
X = reshape(X, size(X, 1), :)
ncolsX = size(X)[2]
nrowsX = size(X)[1]
ncolsXdc = ncolsBasis * ncolsX
onsets = tbl[!, term.eventfields[1]]
if typeof(term.eventfields) <: Array && length(term.eventfields) == 1
bases = kernel(term.basisfunction).(tbl[!, term.eventfields[1]])
else
bases = kernel(term.basisfunction).(eachrow(tbl[!, term.eventfields]))
end
rows = Unfold.timeexpand_rows(onsets, bases, Unfold.shift_onset(term.basisfunction), ncolsX)
cols = Unfold.timeexpand_cols(term, bases, ncolsBasis, ncolsX)
vals = Unfold.timeexpand_vals(bases, X, size(cols), ncolsX)
@test Unfold.timeexpand_cols_allsamecols(bases, ncolsBasis, ncolsX) ==
Unfold.timeexpand_cols_generic(bases, ncolsBasis, ncolsX)
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | code | 959 | @testset "epoch" begin
d = collect(1:100)
evt = DataFrame(:latency => (50))
ep = Ο -> Unfold.epoch(d, evt, Ο, 1)[1][1, :, 1]
# check time delays
@test ep((0, 10.0)) β collect(50:60.0)
@test ep((-10, 10.0)) β collect(40:60.0)
@test ep((-10, 0.0)) β collect(40:50.0)
@test ep((5, 15)) β collect(55:65.0)
@test ep((-15, -5)) β collect(35:45.0)
# check corner cases (sample doesnt end on sampling rate)
@test ep((0.6, 2)) β collect(51:52.0)
@test ep((0.2, 2)) β collect(50:52.0)
# test sampling frequencies
ep = Ο -> Unfold.epoch(d, evt, Ο, 2)[1][1, :, 1]
@test ep((-1.0, 2)) β collect(48:54.0)
ep = Ο -> Unfold.epoch(d, evt, Ο, 0.5)[1][1, :, 1]
@test ep((-4.0, 8)) β collect(48:54.0)
# rounding bug when latency was .5 -> bug #78
d = zeros((1, 1270528))
evt = DataFrame(:latency => (181603.5))
ep = Ο -> Unfold.epoch(d, evt, Ο, 256.0)[1][1, :, 1]
ep((-0.1, 0.8))
end
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | docs | 11968 | # [](https://github.com/unfoldtoolbox/Unfold.jl)
[![Docs][Doc-img]][Doc-url] ![semver][semver-img] [![Build Status][build-img]][build-url]
[Doc-img]: https://img.shields.io/badge/docs-main-blue.svg
[Doc-url]: https://unfoldtoolbox.github.io/Unfold.jl/dev
[semver-img]: https://img.shields.io/badge/semantic-versioning-green
[build-img]: https://github.com/unfoldtoolbox/UnfoldSim.jl/workflows/CI/badge.svg
[build-url]: https://github.com/unfoldtoolbox/UnfoldSim.jl/workflows/CI.yml
|Estimation|Visualisation|Simulation|BIDS pipeline|Decoding|Statistics|
|---|---|---|---|---|---|
| <a href="https://github.com/unfoldtoolbox/Unfold.jl/tree/main"><img src="https://github-production-user-asset-6210df.s3.amazonaws.com/10183650/277623787-757575d0-aeb9-4d94-a5f8-832f13dcd2dd.png"></a> | <a href="https://github.com/unfoldtoolbox/UnfoldMakie.jl"><img src="https://github-production-user-asset-6210df.s3.amazonaws.com/10183650/277623793-37af35a0-c99c-4374-827b-40fc37de7c2b.png"></a>|<a href="https://github.com/unfoldtoolbox/UnfoldSim.jl"><img src="https://github-production-user-asset-6210df.s3.amazonaws.com/10183650/277623795-328a4ccd-8860-4b13-9fb6-64d3df9e2091.png"></a>|<a href="https://github.com/unfoldtoolbox/UnfoldBIDS.jl"><img src="https://github-production-user-asset-6210df.s3.amazonaws.com/10183650/277622460-2956ca20-9c48-4066-9e50-c5d25c50f0d1.png"></a>|<a href="https://github.com/unfoldtoolbox/UnfoldDecode.jl"><img src="https://github-production-user-asset-6210df.s3.amazonaws.com/10183650/277622487-802002c0-a1f2-4236-9123-562684d39dcf.png"></a>|<a href="https://github.com/unfoldtoolbox/UnfoldStats.jl"><img src="https://github-production-user-asset-6210df.s3.amazonaws.com/10183650/277623799-4c8f2b5a-ea84-4ee3-82f9-01ef05b4f4c6.png"></a>|
Toolbox to perform linear / GAM / hierarchical / deconvolution regression on biological signals.
This kind of modelling is also known as encoding modeling, linear deconvolution, Temporal Response Functions (TRFs), linear system identification, and probably under other names. fMRI models with HRF-basis functions and pupil-dilation bases are also supported.
## Getting started
### πPython User?
We clearly recommend Julia π - but [Python users can use juliacall/Unfold directly from python!](https://unfoldtoolbox.github.io/Unfold.jl/dev/generated/HowTo/juliacall_unfold/)
### Julia installation
<details>
<summary>Click to expand</summary>
The recommended way to install julia is [juliaup](https://github.com/JuliaLang/juliaup).
It allows you to, e.g., easily update Julia at a later point, but also test out alpha/beta versions etc.
TL:DR; If you dont want to read the explicit instructions, just copy the following command
#### Windows
AppStore -> JuliaUp, or `winget install julia -s msstore` in CMD
#### Mac & Linux
`curl -fsSL https://install.julialang.org | sh` in any shell
</details>
### Unfold.jl installation
```julia
using Pkg
Pkg.add("Unfold")
```
## Usage
Please check out [the documentation](https://unfoldtoolbox.github.io/Unfold.jl/dev) for extensive tutorials, explanations and more!
Here is a quick overview on what to expect.
### What you need
```julia
using Unfold
events::DataFrame
# formula with or without random effects
f = @formula 0~1+condA
fLMM = @formula 0~1+condA+(1|subject) + (1|item)
# in case of [overlap-correction] we need continuous data plus per-eventtype one basisfunction (typically firbasis)
data::Array{Float64,2}
basis = firbasis(Ο=(-0.3,0.5),srate=250) # for "timeexpansion" / deconvolution
# in case of [mass univariate] we need to epoch the data into trials, and a accompanying time vector
epochs::Array{Float64,3} # channel x time x epochs (n-epochs == nrows(events))
times = range(0,length=size(epochs,3),step=1/sampling_rate)
```
To fit any of the models, Unfold.jl offers a unified syntax:
| Overlap-Correction | Mixed Modelling | julia syntax |
|:---:|:---:|---|
| | | `fit(UnfoldModel,[Any=>(f,times)),evts,data_epoch]` |
| x | | `fit(UnfoldModel,[Any=>(f,basis)),evts,data]` |
| | x | `fit(UnfoldModel,[Any=>(fLMM,times)),evts,data_epoch]` |
| x | x | `fit(UnfoldModel,[Any=>(fLMM,basis)),evts,data]` |
## Comparison to Unfold (matlab)
<details>
<summary>Click to expand</summary>
The matlab version is still maintained, but active development happens in Julia.
| Feature | Unfold | unmixed (defunct) | Unfold.jl |
|-------------------------|--------|---------|-----------|
| overlap correction | x | x | x |
| non-linear splines | x | x | x |
| speed | | π | β‘ 2-100x |
| GPU support | | | π|
| plotting tools | x | | [UnfoldMakie.jl](https://unfoldtoolbox.github.io/UnfoldMakie.jl/dev/) |
| Interactive plotting | | | stay tuned - coming soon! |
| simulation tools | x | | [UnfoldSim.jl](https://unfoldtoolbox.github.io/UnfoldSim.jl) |
| BIDS support | x | | alpha: [UnfoldBIDS.jl](https://github.com/ReneSkukies/UnfoldBIDS.jl/)) |
| sanity checks | x | | x |
| tutorials | x | | x |
| unittests | x | | x |
| Alternative bases e.g. HRF (fMRI) | | | x |
| mix different basisfunctions | | | x |
| different timewindows per event | | | x |
| mixed models | | x | x |
| item & subject effects | | (x) | x |
| decoding | | | UnfoldDecode.jl |
| outlier-robust fits | | | [many options (but slower)](https://unfoldtoolbox.github.io/Unfold.jl/dev/HowTo/custom_solvers/#Robust-Solvers) |
| πPython support | | | [via juliacall](https://unfoldtoolbox.github.io/Unfold.jl/dev/generated/HowTo/pyjulia_unfold/)|
</details>
## Contributions
Contributions are very welcome. These could be typos, bugreports, feature-requests, speed-optimization, new solvers, better code, better documentation.
### How-to Contribute
You are very welcome to raise issues and start pull requests!
### Adding Documentation
1. We recommend to write a Literate.jl document and place it in `docs/literate/FOLDER/FILENAME.jl` with `FOLDER` being `HowTo`, `Explanation`, `Tutorial` or `Reference` ([recommended reading on the 4 categories](https://documentation.divio.com/)).
2. Literate.jl converts the `.jl` file to a `.md` automatically and places it in `docs/src/generated/FOLDER/FILENAME.md`.
3. Edit [make.jl](https://github.com/unfoldtoolbox/Unfold.jl/blob/main/docs/make.jl) with a reference to `docs/src/generated/FOLDER/FILENAME.md`.
## Contributors
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
<tbody>
<tr>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/jschepers"><img src="https://avatars.githubusercontent.com/u/22366977?v=4?s=100" width="100px;" alt="Judith Schepers"/><br /><sub><b>Judith Schepers</b></sub></a><br /><a href="#bug-jschepers" title="Bug reports">π</a> <a href="#code-jschepers" title="Code">π»</a> <a href="#doc-jschepers" title="Documentation">π</a> <a href="#tutorial-jschepers" title="Tutorials">β
</a> <a href="#ideas-jschepers" title="Ideas, Planning, & Feedback">π€</a> <a href="#test-jschepers" title="Tests">β οΈ</a></td>
<td align="center" valign="top" width="14.28%"><a href="http://www.benediktehinger.de"><img src="https://avatars.githubusercontent.com/u/10183650?v=4?s=100" width="100px;" alt="Benedikt Ehinger"/><br /><sub><b>Benedikt Ehinger</b></sub></a><br /><a href="#bug-behinger" title="Bug reports">π</a> <a href="#code-behinger" title="Code">π»</a> <a href="#doc-behinger" title="Documentation">π</a> <a href="#tutorial-behinger" title="Tutorials">β
</a> <a href="#ideas-behinger" title="Ideas, Planning, & Feedback">π€</a> <a href="#test-behinger" title="Tests">β οΈ</a> <a href="#infra-behinger" title="Infrastructure (Hosting, Build-Tools, etc)">π</a> <a href="#test-behinger" title="Tests">β οΈ</a> <a href="#maintenance-behinger" title="Maintenance">π§</a> <a href="#review-behinger" title="Reviewed Pull Requests">π</a> <a href="#question-behinger" title="Answering Questions">π¬</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://reneskukies.de/"><img src="https://avatars.githubusercontent.com/u/57703446?v=4?s=100" width="100px;" alt="RenΓ© Skukies"/><br /><sub><b>RenΓ© Skukies</b></sub></a><br /><a href="#bug-ReneSkukies" title="Bug reports">π</a> <a href="#doc-ReneSkukies" title="Documentation">π</a> <a href="#tutorial-ReneSkukies" title="Tutorials">β
</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://reboreexplore.github.io/"><img src="https://avatars.githubusercontent.com/u/43548330?v=4?s=100" width="100px;" alt="Manpa Barman"/><br /><sub><b>Manpa Barman</b></sub></a><br /><a href="#infra-ReboreExplore" title="Infrastructure (Hosting, Build-Tools, etc)">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://www.phillipalday.com"><img src="https://avatars.githubusercontent.com/u/1677783?v=4?s=100" width="100px;" alt="Phillip Alday"/><br /><sub><b>Phillip Alday</b></sub></a><br /><a href="#code-palday" title="Code">π»</a> <a href="#infra-palday" title="Infrastructure (Hosting, Build-Tools, etc)">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="http://davekleinschmidt.com"><img src="https://avatars.githubusercontent.com/u/135920?v=4?s=100" width="100px;" alt="Dave Kleinschmidt"/><br /><sub><b>Dave Kleinschmidt</b></sub></a><br /><a href="#doc-kleinschmidt" title="Documentation">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/ssaket"><img src="https://avatars.githubusercontent.com/u/27828189?v=4?s=100" width="100px;" alt="Saket Saurabh"/><br /><sub><b>Saket Saurabh</b></sub></a><br /><a href="#bug-ssaket" title="Bug reports">π</a></td>
</tr>
<tr>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/suddha-bpn"><img src="https://avatars.githubusercontent.com/u/7974144?v=4?s=100" width="100px;" alt="suddha-bpn"/><br /><sub><b>suddha-bpn</b></sub></a><br /><a href="#bug-suddha-bpn" title="Bug reports">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/vladdez"><img src="https://avatars.githubusercontent.com/u/33777074?v=4?s=100" width="100px;" alt="Vladimir Mikheev"/><br /><sub><b>Vladimir Mikheev</b></sub></a><br /><a href="#bug-vladdez" title="Bug reports">π</a> <a href="#doc-vladdez" title="Documentation">π</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/carmenamme"><img src="https://avatars.githubusercontent.com/u/100191854?v=4?s=100" width="100px;" alt="carmenamme"/><br /><sub><b>carmenamme</b></sub></a><br /><a href="#doc-carmenamme" title="Documentation">π</a></td>
</tr>
</tbody>
</table>
<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->
<!-- ALL-CONTRIBUTORS-LIST:END -->
This project follows the [all-contributors](https://allcontributors.org/docs/en/specification) specification.
Contributions of any kind welcome!
## Citation
For now, please cite
[](https://doi.org/10.5281/zenodo.6423476) or [Ehinger & Dimigen](https://peerj.com/articles/7838/)
## Acknowledgements
This work was initially supported by the Center for Interdisciplinary Research, Bielefeld (ZiF) Cooperation Group "Statistical models for psychological and linguistic data".
Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under GermanyΒ΄s Excellence Strategy β EXC 2075 β 390740016
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | docs | 1003 | # Emoji Key and Contribution Types for Unfold.jl toolbox π
Emoji/Type | Represents | Comments
:---: | :---: | :---:
π <br /> `bug` | Bug reports | Links to issues reported by the user on this project
π» <br /> `code` | Code | Links to commits by the user on this project
π <br /> `doc` | Documentation | Links to commits by the user on this project, Wiki, or other source of documentation
π€ <br /> `ideas` | Ideas & Planning | New ideas to make the toolbox better
π <br /> `infra` | Infrastructure | Hosting, Build-Tools, etc. Links to source file (like `travis.yml`) in repo, if applicable
π§ <br /> `maintenance` | Maintenance | People who help in maintaining the repo, links to commits by the user on this project
π¬ <br /> `question` | Answering Questions | Answering Questions in Issues, Stack Overflow, Gitter, Slack, etc.
π <br /> `review` | Reviewed Pull Requests | |
β οΈ <br /> `test` | Tests | Links to commits by the user on this project
β
<br /> `tutorial` | Tutorials | Links to the tutorial
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | docs | 1445 | # Unfold Documentation
If you want to follow the **tutorials**, best to start with the [mass-univariate approach](@ref lm_massunivariate), which should be familiar to you if you did ERPs before. Then the [overlap-correction tutorial](@ref lm_overlap), [mixed mass univariate](@ref lmm_massunivariate), [mixed overlap (tricky!)](@ref lmm_overlap). If you are then not satisfied, check out more advanced topics: [effects-interface (aka what to do after fitting)](@ref effects), or non-linear effects.
In case you want to understand the tools better, check out our **explanations**.
Once you are familiar with the tools, check out further **how-to guides** for specific applications.
In case you want to understand the toolbox better, we plan to offer **technical references**. This includes Benchmarks & Explorations.
## Quick start
There are four main model types
1. Timeexpansion **No**, Mixed **No** : `fit(UnfoldModel, [Any=>(f, -0.1:0.01:0.5)], evts, data_epoch)`
1. Timeexpansion **Yes**, Mixed **No** : `fit(UnfoldModel, [Any=>(f, basisfunction)], evts, data)`
1. Timeexpansion **No**, Mixed **Yes** : `fit(UnfoldModel, [Any=>(fLMM, -0.1:0.01:0.5)], evts, data_epoch)`
1. Timeexpansion **Yes**, Mixed **Yes**: `fit(UnfoldModel, [Any=>(fLMM, basisfunction)], evts, data)`
```julia
f = @formula 0 ~ 1 + condition
fLMM = @formula 0 ~ 1 + condition + (1|subject) + (1|item)
basisfunction = firbasis(Ο = (-0.1,0.5), sfreq = 100))
```
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | docs | 1056 |
# [Installation](@id install_instruct)
## Installing Julia
The easiest way to install julia is using [`juliaup`](https://github.com/JuliaLang/juliaup)
TLDR;
- Windows: `winget install julia -s msstore`
- Mac/Linux: `curl -fsSL https://install.julialang.org | sh`
We further recommend to use VSCode. Make sure to install the Julia-Plugin, and install Revise.jl - [a tutorial with screenshots can be found here](http://www.simtech-summerschool.de/installation/julia.html)
## Installing Unfold.jl
You can enter the package manager (similar to conda) using `]` in the REPL ("julia-commandline").
This should result in `(currentFolder) pkg>` (with `currentFolder` being the project you currently work in)
!!! hint
if you see `(@v1.9) pkg>` instead, you still have to activate your environment. This can be done using:
`cd("/path/to/your/project")`
and `]activate .`
or alternatively `]activate /path/to/your/project/`
Now you can do
`pkg> add Unfold`
and after some installation:
`julia> using Unfold` in the REPL | Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | docs | 1970 | # [Alternative Solvers](@id custom_solvers)
A solver takes an Unfold-specified DesignMatrix and the data, and typically solves the equation system `y = Xb` (in the case of Linear Models). There are many different ways how one can approach this problem, depending if the matrix is sparse, if it is 2D or 3D, if one wants to use GPU etc.
### Setup some data
```@Example main
using Unfold
using UnfoldMakie, CairoMakie
using UnfoldSim
dat, evts = UnfoldSim.predef_eeg(; noiselevel = 10, return_epoched = true)
f = @formula 0 ~ 1 + condition + continuous
designDict = Dict(Any => (f, range(0, 1, length = size(dat, 1))))
```
### GPU Solvers
GPU solvers can significantly speed up your model fitting, with observed improvements of up to a factor of 30!
```julia
using Krylov, CUDA # necessary to load the right package extension
gpu_solver =(x, y) -> Unfold.solver_krylov(x, y; GPU = true)
m = Unfold.fit(UnfoldModel, designDict, evts, dat, solver = gpu_solver)
```
To test it, you will need to run it yourself as we cannot run it on the docs. If you require a different graphicscard vendor than NVIDA/CUDA, please create an issue. Currently, we are unable to test it due to lack of hardware.
### Robust Solvers
Robust solvers automatically adjust for outlier trials, but they come at a significant computational cost.
```@Example main
using RobustModels # necessary to load the Unfold package extension
se_solver = (x, y) -> Unfold.solver_robust(x, y)
m = Unfold.fit(UnfoldModel, designDict, evts, dat, solver = se_solver)
results = coeftable(m)
plot_erp(results; stderror = true)
```
### Back2Back regression
```@Example main
b2b_solver = (x, y) -> Unfold.solver_b2b(x, y; ross_val_reps = 5)
dat_3d = permutedims(repeat(dat, 1, 1, 20), [3 1 2])
m = Unfold.fit(UnfoldModel, designDict, evts, dat_3d; solver = b2b_solver)
results = coeftable(m)
plot_erp(results)
```
These are the decoding results for `conditionA` while considering `conditionB`, and vice versa.
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | docs | 3486 | ## [How To get P-Values for Mass-Univariate LMM](@id lmm_pvalues)
There are currently two ways to obtain p-values for LMMs: Wald's t-test and likelihood ratio tests (mass univariate only).
#### Setup
```@example Main
using MixedModels, Unfold # we require to load MixedModels to load the PackageExtension
using DataFrames
using UnfoldSim
using CairoMakie
using DisplayAs # hide
data_epoch, evts =
UnfoldSim.predef_2x2(; n_items = 52, n_subjects = 40, return_epoched = true)
data_epoch = reshape(data_epoch, size(data_epoch, 1), :) #
times = range(0, 1, length = size(data_epoch, 1))
```
#### Define f0 & f1 and fit!
```@example Main
f0 = @formula 0 ~ 1 + A + (1 + A | subject);
f1 = @formula 0 ~ 1 + A + B + (1 + A | subject); # could also differ in random effects
m0 = fit(UnfoldModel,[Any=>(f0,times)],evts,data_epoch);
m1 = fit(UnfoldModel,[Any=>(f1,times)],evts,data_epoch);
m1|> DisplayAs.withcontext(:is_pluto=>true) # hide
```
## Likelihood ratio
```@example Main
uf_lrt = likelihoodratiotest(m0, m1)
uf_lrt[1]
```
As you can see, we have some likelihood ratio outcomes, exciting!
#### Extract p-values
```@example Main
pvalues(uf_lrt)
```
We have extracted the p-values and now need to make them usable. The solution can be found in the documentation under `?pvalues`.
```@example Main
pvals_lrt = vcat(pvalues(uf_lrt)...)
nchan = 1
ntime = length(times)
reshape(pvals_lrt, ntime, nchan)' # note the last transpose via ' !
```
Perfecto, these are the LRT p-values of a model `condA` vs. `condA+condB` with same random effect structure.
## Walds T-Test
This method is easier to calculate but has limitations in accuracy and scope. It may also be less accurate due to the liberal estimation of degrees of freedom. Testing is limited in this case, as random effects cannot be tested and only single predictors can be used, which may not be appropriate for spline effects. It is important to note that this discussion is beyond the scope of this LMM package.
```@example Main
res = coeftable(m1)
# only fixed effects: what is not in a ranef group is a fixef.
res = res[isnothing.(res.group), :]
# calculate t-value
res[:, :tvalue] = res.estimate ./ res.stderror
```
We obtained Walds t, but how to translate them to a p-value?
Determining the necessary degrees of freedom for the t-distribution is a complex issue with much debate surrounding it.
One approach is to use the number of subjects as an upper bound for the p-value (your df will be between $n_{subject}$ and $\sum{n_{trials}}$).
```@example Main
df = length(unique(evts.subject))
```
Plug it into the t-distribution.
```@example Main
using Distributions
res.pvalue = pdf.(TDist(df),res.tvalue)
```
## Comparison of methods
Cool! Let's compare both methods of p-value calculation!
```@example Main
df = DataFrame(:walds => res[res.coefname.=="B: b_tiny", :pvalue], :lrt => pvals_lrt)
f = Figure()
scatter(f[1,1],times,res[res.coefname .== "B: b_tiny",:estimate],axis=(;xlabel="time",title="coef: B:b_tiny"))
scatter(f[1,2],df.walds,df.lrt,axis=(;title="walds-t pvalue",ylabel="LRT pvalue"))
scatter(f[2,1],times,df.walds,axis=(;title="walds-t pvalue",xlabel="time"))
scatter(f[2,2],times,df.lrt,axis=(;title="lrt pvalue",xlabel="time"))
f
```
Look pretty similar! Note that the Walds-T is typically too liberal (LRT also, but to a lesser exted). Best is to use the forthcoming MixedModelsPermutations.jl or go the route via R and use KenwardRoger (data not yet published)
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | docs | 1589 | # How to model multiple events
When dealing with overlapping data, it is often necessary to model multiple eventtypes (e.g. fixations, stimuli, responses).
### Load Example Data
```@example main
using Unfold
using UnfoldMakie, CairoMakie
using DataFrames
using StatsModels
using MixedModels
using DisplayAs # hide
include(joinpath(dirname(pathof(Unfold)), "../test/test_utilities.jl")) # to load data
dat, evts = loadtestdata("test_case_4b");
evts[1:5,:]
```
The `type` column of table `evts` contains two conditions: `eventA`` and `eventB` (if your eventstypes are specified in a different column, you need to define the keywordargument `eventcolumn` in the `fit` command below)
### Specify formulas and basisfunctions
```@example main
bf1 = firbasis(Ο = (-0.4, 0.8), sfreq = 50)
bf2 = firbasis(Ο = (-0.2, 1.2), sfreq = 50)
bf2|> DisplayAs.withcontext(:is_pluto=>true) # hide
```
For each event, a basis function and formula must be specified. The same basis and formulas may be used.
```@example main
f = @formula 0 ~ 1
```
For each event, we must specify the formula and basis function to be used.
```@example main
bfDict = [ "eventA" => (f, bf1),
"eventB" => (f, bf2) ]
bfDict |> DisplayAs.withcontext(:is_pluto=>true) # hide
```
Finally, fitting & plotting works the same way as always
```@example main
m = Unfold.fit(
UnfoldModel,
bfDict,
evts,
dat,
solver = (x, y) -> Unfold.solver_default(x, y; stderror = true),
eventcolumn = "type",
)
results = coeftable(m)
plot_erp(results; stderror = true, mapping = (; col = :eventname))
```
| Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
|
[
"MIT"
] | 0.7.6 | 14faed094d3728f4e549b6fbc4b38b9b8c6a4a99 | docs | 1805 | # Loading Data into Unfold
Unfold is generally agnostic to how you load your data. You only require a Matrix (channel x time) or 3D-Array(channel x time x epochs) and an event-dataframe.
### Setup
```@Example main
using Unfold
using UnfoldMakie,CairoMakie
using PyMNE
using DataFrames
```
### MNE Demo Dataset
The easiest way to showcase this is to simply use a demo-dataset from MNE.
```@Example main
limo_epochs = PyMNE.datasets.limo.load_data(subject=1,path="~/MNE/DATA",update_path=false)
limo_epochs
```
Now we can fit a simple `Unfold` model to it.
First extract the data & convert it to Julia/Unfold requirements
```@Example main
data = limo_epochs.get_data(picks="B11")
data = permutedims(data,[2,3,1]) # get into ch x times x epochs
function convert_pandas(df_pd)
df= DataFrame()
for col in df_pd.columns
df[!, col] = getproperty(df_pd, col).values
end
return df
end
events = convert_pandas(limo_epochs.metadata)
rename!(events,2=>:coherence) # negative signs in formulas are not good ;)
events.face = string.(events.face) # ugly names, but fast
```
Next fit an Unfold Model
```@Example main
uf = fit(UnfoldModel,[Any=>(@formula(0~face+coherence),Float64.(limo_epochs.times))],events,data)
results = coeftable(uf)
```
```@Example main
plot_results(results)
```
### Read some of your own data
We can make use of all PyMNE importer functions to load the data. Try it for your own data! Get starting with Unfold in no-time!
```@Example main
#eeglabdata = PyMNE.io.read_raw_eeglab("pathToEEGLabSet.set")
```
### Contribute?
Some extra conversions are needed to import the data from PyMNE to Unfold (as shown above). We could try putting these in a wrapper function - do you want to tackle this challenge? Would be a great first contribution to the toolbox :-) | Unfold | https://github.com/unfoldtoolbox/Unfold.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.