licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
687
@testset "Split + Join" begin model = Chain( Dense(10 => 5), Split(Dense(5 => 1, tanh), Dense(5 => 3, tanh), Dense(5 => 2)) ) |> gpu @test model(gpu(rand(10))) isa Tuple{AbstractVector, AbstractVector, AbstractVector} model2 = Chain( Join(vcat, Chain(Dense(1 => 5, relu), Dense(5 => 1)), # branch 1 Dense(1 => 2), # branch 2 Dense(1 => 1) # branch 3 ), Dense(4 => 1) ) |> gpu xs = map(gpu, (rand(1), rand(1), rand(1))) @test model2(xs) isa AbstractVector end
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
code
878
import Flux, Fluxperimental, Optimisers @testset "shinkansen!" begin X = repeat(hcat(digits.(0:3, base=2, pad=2)...), 1, 32) Y = Flux.onehotbatch(xor.(eachrow(X)...), 0:1) model = Flux.Chain(Flux.Dense(2 => 3, Flux.sigmoid), Flux.BatchNorm(3), Flux.Dense(3 => 2)) state = Optimisers.setup(Optimisers.Adam(0.1, (0.7, 0.95)), model) Fluxperimental.shinkansen!(model, X, Y; state, epochs=100) do m, x, y Flux.logitcrossentropy(m(x), y) end @test all((Flux.softmax(model(X)) .> 0.5) .== Y) model = Flux.Chain(Flux.Dense(2 => 3, Flux.sigmoid), Flux.BatchNorm(3), Flux.Dense(3 => 2)) state = Optimisers.setup(Optimisers.Adam(0.1, (0.7, 0.95)), model) Fluxperimental.shinkansen!(model, X, Y; state, epochs=100, batchsize=16, shuffle=true) do m, x, y Flux.logitcrossentropy(m(x), y) end @test all((Flux.softmax(model(X)) .> 0.5) .== Y) end
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.3
cf74064e00ff51978e436f2ccab83779503e7adf
docs
1847
<img align="right" width="200px" src="https://github.com/FluxML/Optimisers.jl/raw/master/docs/src/assets/logo.png"> # Fluxperimental.jl [![][action-img]][action-url] [![][coverage-img]][coverage-url] [action-img]: https://github.com/FluxML/Fluxperimental.jl/workflows/CI/badge.svg [action-url]: https://github.com/FluxML/Fluxperimental.jl/actions [coverage-img]: https://codecov.io/gh/FluxML/Fluxperimental.jl/branch/master/graph/badge.svg [coverage-url]: https://codecov.io/gh/FluxML/Fluxperimental.jl The repository contains experimental features for [Flux.jl](https://github.com/FluxML/Flux.jl). It needs to be loaded in addition to the main package: ```julia using Flux, Fluxperimental ``` As an experiment, it only has discussion pages, not issues. Actual bugs reports are welcome, as are comments that you think something is a great idea, or better ways achive the same goal, or nice examples showing how it works. Pull requests adding new features are also welcome. Ideally they should have at least some tests. They should not alter existing functions (i.e. should not commit piracy) to ensure that loading Fluxperimental won't affect other uses. Prototypes for new versions of existing features should use a different name. Features which break or are abandoned will be removed, in a minor (breaking) release. As will any features which migrate to Flux itself. ## Current Features * Layers [`Split` and `Join`](https://github.com/FluxML/Fluxperimental.jl/blob/master/src/split_join.jl) * More advanced [`train!` function](https://github.com/FluxML/Fluxperimental.jl/blob/master/src/train.jl) * Macro for [making custom layers](https://github.com/FluxML/Fluxperimental.jl/blob/master/src/compact.jl) quickly * Experimental [`apply(c::Chain, x)`](https://github.com/FluxML/Fluxperimental.jl/blob/master/src/chain.jl) interface
Fluxperimental
https://github.com/FluxML/Fluxperimental.jl.git
[ "MIT" ]
0.1.15
f6bda01c117c93936dba48ddfe888f153f81d619
code
612
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ module GeoStatsViz using Meshes using GeoStatsBase using Variography using Distances using Reexport import Makie @reexport using MeshViz # GeoStatsBase.jl recipes include("base/weights.jl") include("base/problems.jl") include("base/histograms.jl") # Variography.jl recipes include("variography/empirical.jl") include("variography/theoretical.jl") # miscellaneous recipes include("hscatter.jl") end
GeoStatsViz
https://github.com/juliohm/GeoStatsViz.jl.git
[ "MIT" ]
0.1.15
f6bda01c117c93936dba48ddfe888f153f81d619
code
3667
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ """ hscatter(data, var₁, var₂) H-scatter plot of geospatial `data` for pair of variables `var₁` and `var₂` with additional options: * `lag` - lag distance between points (default to `0.0`) * `tol` - tolerance for lag distance (default to `1e-1`) * `distance` - distance from Distances.jl (default to `Euclidean()`) Aesthetics options: * `size` - size of points in point set * `color` - color of geometries or points * `alpha` - transparency channel in [0,1] * `colorscheme` - color scheme from ColorSchemes.jl * `rcolor` - color of regression line * `icolor` - color of identity line * `ccolor` - color of center lines ## Examples ``` # h-scatter of Z vs. Z at lag 1.0 hscatter(data, :Z, :Z, lag=1.0) # h-scatter of Z vs. W at lag 2.0 hscatter(data, :Z, :W, lag=2.0) ``` """ @Makie.recipe(HScatter, data, var₁, var₂) do scene Makie.Attributes(; # h-scatter options lag = 0.0, tol = 1e-1, distance = Euclidean(), # aesthetics options size = Makie.theme(scene, :markersize), color = :slategray3, alpha = 1.0, colorscheme = :viridis, rcolor = :brown, icolor = :black, ccolor = :green, ) end function Makie.plot!(plot::HScatter) # retrieve data and variables data = plot[:data][] var₁ = plot[:var₁][] var₂ = plot[:var₂][] # retrieve h-scatter options lag = plot[:lag][] tol = plot[:tol][] distance = plot[:distance][] # retrieve aesthetics options size = plot[:size][] color = plot[:color][] alpha = plot[:alpha][] colorscheme = plot[:colorscheme][] rcolor = plot[:rcolor][] icolor = plot[:icolor][] ccolor = plot[:ccolor][] # process color spec into colorant colorant = MeshViz.process(color, colorscheme, alpha) # lookup valid data I₁ = findall(!ismissing, getproperty(data, var₁)) I₂ = findall(!ismissing, getproperty(data, var₂)) 𝒮₁ = view(data, I₁) 𝒮₂ = view(data, I₂) 𝒟₁ = domain(𝒮₁) 𝒟₂ = domain(𝒮₂) X₁ = [coordinates(centroid(𝒟₁, i)) for i in 1:nelements(𝒟₁)] X₂ = [coordinates(centroid(𝒟₂, i)) for i in 1:nelements(𝒟₂)] z₁ = getproperty(𝒮₁, var₁) z₂ = getproperty(𝒮₂, var₂) # compute pairwise distance m, n = length(z₁), length(z₂) pairs = [(i,j) for j in 1:n for i in j:m] ds = [evaluate(distance, X₁[i], X₂[j]) for (i,j) in pairs] # find indices with given lag match = findall(abs.(ds .- lag) .< tol) if isempty(match) throw(ErrorException("no points were found with lag = $lag, aborting...")) end # visualize h-scatter mpairs = view(pairs, match) x = z₁[first.(mpairs)] y = z₂[last.(mpairs)] Makie.scatter!(plot, x, y, color = colorant, markersize = size, ) # visualize regression line X = [x ones(length(x))] ŷ = X * (X \ y) Makie.lines!(plot, x, ŷ, color = rcolor, ) # visualize identity line xmin, xmax = extrema(x) ymin, ymax = extrema(y) vmin = min(xmin, ymin) vmax = max(xmax, ymax) Makie.lines!(plot, [vmin, vmax], [vmin, vmax], color = icolor, ) # visualize center lines x̄, ȳ = mean(x), mean(y) Makie.lines!(plot, [x̄, x̄], [vmin, vmax], color = ccolor, ) Makie.lines!(plot, [vmin, vmax], [ȳ, ȳ], color = ccolor, ) Makie.scatter!(plot, [x̄], [ȳ], color = ccolor, marker = :rect, markersize = 16, ) end
GeoStatsViz
https://github.com/juliohm/GeoStatsViz.jl.git
[ "MIT" ]
0.1.15
f6bda01c117c93936dba48ddfe888f153f81d619
code
672
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ Makie.plottype(::EmpiricalHistogram) = Viz{<:Tuple{EmpiricalHistogram}} function Makie.plot!(plot::Viz{<:Tuple{EmpiricalHistogram}}) # retrieve histogram object hist = plot[:object] # abscissa and ordinates coords = Makie.@lift values($hist) xs = Makie.@lift $coords[1] ys = Makie.@lift $coords[2] Makie.barplot!(plot, xs, ys, color = plot[:color], strokecolor = plot[:facetcolor], strokewidth = 0.1, gap = 0.0, ) end
GeoStatsViz
https://github.com/juliohm/GeoStatsViz.jl.git
[ "MIT" ]
0.1.15
f6bda01c117c93936dba48ddfe888f153f81d619
code
2842
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ Makie.plottype(::EstimationProblem) = Viz{<:Tuple{EstimationProblem}} function Makie.plot!(plot::Viz{<:Tuple{EstimationProblem}}) # retrieve problem object problem = plot[:object] # data and domain dom1 = Makie.@lift domain($problem) dom2 = Makie.@lift domain(data($problem)) # visualize estimation domain viz!(plot, dom1, color = plot[:color], alpha = plot[:alpha], colorscheme = plot[:colorscheme], facetcolor = plot[:facetcolor], showfacets = plot[:showfacets], pointsize = plot[:pointsize], segmentsize = plot[:segmentsize] ) # visualize domain of data viz!(plot, dom2, color = :black, alpha = plot[:alpha], facetcolor = plot[:facetcolor], showfacets = plot[:showfacets], pointsize = plot[:pointsize], segmentsize = plot[:segmentsize] ) end Makie.plottype(::SimulationProblem) = Viz{<:Tuple{SimulationProblem}} function Makie.plot!(plot::Viz{<:Tuple{SimulationProblem}}) # retrieve problem object problem = plot[:object] # data and domain dom1 = Makie.@lift domain($problem) # visualize estimation domain viz!(plot, dom1, color = plot[:color], alpha = plot[:alpha], colorscheme = plot[:colorscheme], facetcolor = plot[:facetcolor], showfacets = plot[:showfacets], pointsize = plot[:pointsize], segmentsize = plot[:segmentsize] ) # visualize domain of data if hasdata(problem[]) dom2 = Makie.@lift domain(data($problem)) viz!(plot, dom2, color = :black, alpha = plot[:alpha], facetcolor = plot[:facetcolor], showfacets = plot[:showfacets], pointsize = plot[:pointsize], segmentsize = plot[:segmentsize] ) end end Makie.plottype(::LearningProblem) = Viz{<:Tuple{LearningProblem}} function Makie.plot!(plot::Viz{<:Tuple{LearningProblem}}) # retrieve problem object problem = plot[:object] # source and target domain dom1 = Makie.@lift domain(sourcedata($problem)) dom2 = Makie.@lift domain(targetdata($problem)) # visualize estimation domain viz!(plot, dom1, color = plot[:color], alpha = plot[:alpha], colorscheme = plot[:colorscheme], facetcolor = plot[:facetcolor], showfacets = plot[:showfacets], pointsize = plot[:pointsize], segmentsize = plot[:segmentsize] ) # visualize domain of data viz!(plot, dom2, color = :gray90, alpha = plot[:alpha], facetcolor = plot[:facetcolor], showfacets = plot[:showfacets], pointsize = plot[:pointsize], segmentsize = plot[:segmentsize] ) end
GeoStatsViz
https://github.com/juliohm/GeoStatsViz.jl.git
[ "MIT" ]
0.1.15
f6bda01c117c93936dba48ddfe888f153f81d619
code
762
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ Makie.plottype(::GeoWeights) = Viz{<:Tuple{GeoWeights}} function Makie.plot!(plot::Viz{<:Tuple{GeoWeights}}) # retrieve weights object weights = plot[:object] # underlying domain and values wdomain = Makie.@lift domain($weights) wvalues = Makie.@lift collect($weights) viz!(plot, wdomain, color = wvalues, alpha = plot[:alpha], colorscheme = plot[:colorscheme], facetcolor = plot[:facetcolor], showfacets = plot[:showfacets], pointsize = plot[:pointsize], segmentsize = plot[:segmentsize] ) end
GeoStatsViz
https://github.com/juliohm/GeoStatsViz.jl.git
[ "MIT" ]
0.1.15
f6bda01c117c93936dba48ddfe888f153f81d619
code
2112
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ Makie.plottype(::EmpiricalVariogram) = Viz{<:Tuple{EmpiricalVariogram}} function Makie.plot!(plot::Viz{<:Tuple{EmpiricalVariogram}}) # retrieve variogram object γ = plot[:object] # get the data xyn = Makie.@lift values($γ) x = Makie.@lift $xyn[1] y = Makie.@lift $xyn[2] n = Makie.@lift $xyn[3] # discard empty bins x = Makie.@lift $x[$n .> 0] y = Makie.@lift $y[$n .> 0] n = Makie.@lift $n[$n .> 0] # visualize variogram Makie.scatterlines!(plot, x, y, color = plot[:color], markersize = plot[:pointsize], ) # visualize bin counts bincounts = Makie.@lift string.($n) positions = Makie.@lift collect(zip($x, $y)) Makie.text!(plot, bincounts, position = positions, textsize = plot[:pointsize], ) # visualize frequencies as bars f = Makie.@lift $n*(maximum($y) / maximum($n)) / 10 Makie.barplot!(plot, x, f, color = plot[:color], strokecolor = plot[:facetcolor], strokewidth = 0.1, gap = 0.0, ) end Makie.plottype(::EmpiricalVarioplane) = Viz{<:Tuple{EmpiricalVarioplane}} function Makie.plot!(plot::Viz{<:Tuple{EmpiricalVarioplane}}) # retrieve varioplane object v = plot[:object] # underyling variograms γs = Makie.@lift $v.γs # polar angle θs = Makie.@lift $v.θs # polar radius rs = Makie.@lift values($γs[1])[1] # variogram values for all variograms Z = Makie.@lift begin zs = map($γs) do γ _, zs, __ = values(γ) # handle NaN values (i.e. empty bins) isnan(zs[1]) && (zs[1] = 0) for i in 2:length(zs) isnan(zs[i]) && (zs[i] = zs[i-1]) end zs end reduce(hcat, zs) end # exploit symmetry θs = Makie.@lift range(0, 2π, length=2*length($θs)) Z = Makie.@lift [$Z $Z] # hide hole at center rs = Makie.@lift [0; $rs] Z = Makie.@lift [$Z[1:1,:]; $Z] Makie.surface!(plot, rs, θs, Z, shading = false ) end
GeoStatsViz
https://github.com/juliohm/GeoStatsViz.jl.git
[ "MIT" ]
0.1.15
f6bda01c117c93936dba48ddfe888f153f81d619
code
718
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENCE in the project root. # ------------------------------------------------------------------ Makie.plottype(::Variogram) = Viz{<:Tuple{Variogram}} function Makie.plot!(plot::Viz{<:Tuple{Variogram}}) # retrieve variogram object γ = plot[:object] # start at 1e-6 instead of 0 to avoid # nugget artifact in visualization x = Makie.@lift range(1e-6, stop=_maxlag($γ), length=100) y = Makie.@lift $γ.($x) # visualize variogram Makie.lines!(plot, x, y, color = plot[:color], ) end _maxlag(γ::Variogram) = 3range(γ) _maxlag(γ::PowerVariogram) = 3.0 _maxlag(γ::NuggetEffect) = 3.0
GeoStatsViz
https://github.com/juliohm/GeoStatsViz.jl.git
[ "MIT" ]
0.1.15
f6bda01c117c93936dba48ddfe888f153f81d619
code
95
using GeoStatsViz using Test @testset "GeoStatsViz.jl" begin # Write your tests here. end
GeoStatsViz
https://github.com/juliohm/GeoStatsViz.jl.git
[ "MIT" ]
0.1.15
f6bda01c117c93936dba48ddfe888f153f81d619
docs
801
# GeoStatsViz.jl [![Build Status](https://github.com/JuliaEarth/GeoStatsViz.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/JuliaEarth/GeoStatsViz.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/JuliaEarth/GeoStatsViz.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaEarth/GeoStatsViz.jl) Makie.jl recipes for visualization of [GeoStats.jl](https://github.com/JuliaEarth/GeoStats.jl) objects. ## Usage Any object defined in the GeoStats.jl framework can be visualized with the `viz` function. Additionally, we provide other recipes such as `hscatter` with custom signatures described in their docstrings. ```julia using GeoStats, GeoStatsViz # choose a Makie backend import GLMakie as Mke g = GaussianVariogram() viz(g) ```
GeoStatsViz
https://github.com/juliohm/GeoStatsViz.jl.git
[ "MIT" ]
0.3.7
db318813a5f07e3f93a1e530c8fd0e6bdc9cabac
code
27531
module MLJGLMInterface # ------------------------------------------------------------------- # TODO # - return feature importance curve to report using `features` # - handle binomial case properly, needs MLJ API change for weighted # samples (y/N ~ Be(p) with weights N) # - handle levels properly (see GLM.jl/issues/240); if feed something # with levels, the fit will fail. # - revisit and test Poisson and Negbin regression once there's a clear # example we can test on (requires handling levels which deps upon GLM) # - test Logit, Probit etc on Binomial once binomial case is handled # ------------------------------------------------------------------- export LinearRegressor, LinearBinaryClassifier, LinearCountRegressor import MLJModelInterface import MLJModelInterface: metadata_pkg, metadata_model, Table, Continuous, Count, Finite, OrderedFactor, Multiclass, @mlj_model using Distributions: Bernoulli, Distribution, Poisson using StatsModels: ConstantTerm, Term, FormulaTerm, term, modelcols using Tables import GLM const MMI = MLJModelInterface const PKG = "MLJGLMInterface" ## ## DESCRIPTIONS ## const LR_DESCR = "Linear regressor (OLS) with a Normal model." const LBC_DESCR = "Linear binary classifier with "* "specified link (e.g. logistic)." const LCR_DESCR = "Linear count regressor with specified "* "link and distribution (e.g. log link and poisson)." #### #### REGRESSION TYPES #### # LinearRegressor --> Probabilistic w Continuous Target # LinearCountRegressor --> Probabilistic w Count Target # LinearBinaryClassifier --> Probabilistic w Binary target // logit,cauchit,.. # MulticlassClassifier --> Probabilistic w Multiclass target const VALID_KEYS = [ :deviance, :dof_residual, :stderror, :vcov, :coef_table, :glm_model, ] const VALID_KEYS_LIST = join(map(k-> "`:$k`", VALID_KEYS), ", ", " and ") const DEFAULT_KEYS = setdiff(VALID_KEYS, [:glm_model,]) const KEYS_TYPE = Union{Nothing, AbstractVector{Symbol}} @mlj_model mutable struct LinearRegressor <: MMI.Probabilistic fit_intercept::Bool = true dropcollinear::Bool = false offsetcol::Union{Symbol, Nothing} = nothing report_keys::KEYS_TYPE = DEFAULT_KEYS::(isnothing(_) || issubset(_, VALID_KEYS)) end @mlj_model mutable struct LinearBinaryClassifier <: MMI.Probabilistic fit_intercept::Bool = true link::GLM.Link01 = GLM.LogitLink() offsetcol::Union{Symbol, Nothing} = nothing maxiter::Integer = 30 atol::Real = 1e-6 rtol::Real = 1e-6 minstepfac::Real = 0.001 report_keys::KEYS_TYPE = DEFAULT_KEYS::(isnothing(_) || issubset(_, VALID_KEYS)) end @mlj_model mutable struct LinearCountRegressor <: MMI.Probabilistic fit_intercept::Bool = true distribution::Distribution = Poisson() link::GLM.Link = GLM.LogLink() offsetcol::Union{Symbol, Nothing} = nothing maxiter::Integer = 30 atol::Real = 1e-6 rtol::Real = 1e-6 minstepfac::Real = 0.001 report_keys::KEYS_TYPE = DEFAULT_KEYS::(isnothing(_) || issubset(_, VALID_KEYS)) end # Short names for convenience here const GLM_MODELS = Union{ <:LinearRegressor, <:LinearBinaryClassifier, <:LinearCountRegressor } ### ## Helper functions ### _to_vector(v::Vector) = v _to_vector(v) = collect(v) _to_array(v::AbstractArray) = v _to_array(v) = collect(v) """ split_X_offset(X, offsetcol::Nothing) When no offset is specified, return `X` and an empty vector. """ split_X_offset(X, offsetcol::Nothing) = (X, Float64[]) """ split_X_offset(X, offsetcol::Symbol) Splits the input table X in: - A new table not containing the original offset column - The offset vector extracted from the table """ function split_X_offset(X, offsetcol::Symbol) ct = Tables.columntable(X) offset = Tables.getcolumn(ct, offsetcol) newX = Base.structdiff(ct, NamedTuple{(offsetcol,)}) return newX, _to_vector(offset) end # If `estimates_dispersion_param` returns `false` then the dispersion # parameter isn't estimated from data but known apriori to be `1`. estimates_dispersion_param(::LinearRegressor) = true estimates_dispersion_param(::LinearBinaryClassifier) = false function estimates_dispersion_param(model::LinearCountRegressor) return GLM.dispersion_parameter(model.distribution) end function _throw_sample_size_error(model, est_dispersion_param) requires_info = _requires_info(model, est_dispersion_param) if isnothing(model.offsetcol) offset_info = " `offsetcol == nothing`" else offset_info = " `offsetcol !== nothing`" end modelname = nameof(typeof(model)) if model isa LinearCountRegressor distribution_info = "and `distribution = $(nameof(typeof(model.distribution)))()`" else distribution_info = "\b" end throw( ArgumentError( " `$(modelname)` with `fit_intercept = $(model.fit_intercept)`,"* "$(offset_info) $(distribution_info) requires $(requires_info)" ) ) return nothing end """ _requires_info(model, est_dispersion_param) Returns one of the following strings - "`n_samples >= n_features`", "`n_samples > n_features`" - "`n_samples >= n_features - 1`", "`n_samples > n_features - 1`" - "`n_samples >= n_features + 1`", "`n_samples > n_features + 1`" """ function _requires_info(model, est_dispersion_param) inequality = est_dispersion_param ? ">" : ">=" int_num = model.fit_intercept - !isnothing(model.offsetcol) if iszero(int_num) int_num_string = "\b" elseif int_num < 0 int_num_string = "- $(abs(int_num))" else int_num_string = "+ $(int_num)" end return "`n_samples $(inequality) n_features $(int_num_string)`." end function check_sample_size(model, n, p) if estimates_dispersion_param(model) n <= p + model.fit_intercept && _throw_sample_size_error(model, true) else n < p + model.fit_intercept && _throw_sample_size_error(model, false) end return nothing end """ prepare_inputs(model, X; handle_intercept=false) Handle `model.offsetcol` and `model.fit_intercept` if `handle_intercept=true`. `handle_intercept` is disabled for fitting since the StatsModels.@formula handles the intercept. """ function prepare_inputs(model, X) Xcols = Tables.columntable(X) table_features = Base.keys(Xcols) p = length(table_features) p >= 1 || throw( ArgumentError("`X` must contain at least one feature column.") ) if !isnothing(model.offsetcol) model.offsetcol in table_features || throw( ArgumentError("offset column `$(model.offsetcol)` not found in table `X") ) if p < 2 && !model.fit_intercept throw( ArgumentError( "At least 2 feature columns are required for learning with"* " `offsetcol !== nothing` and `fit_intercept == false`." ) ) end end Xminoffset, offset = split_X_offset(Xcols, model.offsetcol) features = Tables.columnnames(Xminoffset) check_sample_size(model, length(first(Xminoffset)), p) return Xminoffset, offset, _to_array(features) end """ glm_report(glm_model, features, reportkeys) Report based on a fitted `LinearModel/GeneralizedLinearModel`, `glm_model` and keyed on `reportkeys`. """ glm_report glm_report(glm_model, features, ::Nothing) = NamedTuple() function glm_report(glm_model, features, reportkeys) isempty(reportkeys) && return NamedTuple() report_dict = Dict{Symbol, Any}() if in(:deviance, reportkeys) report_dict[:deviance] = GLM.deviance(glm_model) end if in(:dof_residual, reportkeys) report_dict[:dof_residual] = GLM.dof_residual(glm_model) end if in(:stderror, reportkeys) report_dict[:stderror] = GLM.stderror(glm_model) end if :vcov in reportkeys report_dict[:vcov] = GLM.vcov(glm_model) end if :coef_table in reportkeys coef_table = GLM.coeftable(glm_model) report_dict[:coef_table] = coef_table end if :glm_model in reportkeys report_dict[:glm_model] = glm_model end return NamedTuple{Tuple(keys(report_dict))}(values(report_dict)) end """ glm_formula(model, features::AbstractVector{Symbol}) -> FormulaTerm Return formula which is ready to be passed to `fit(form, data, ...)`. """ function glm_formula(model, features::AbstractVector{Symbol})::FormulaTerm # By default, using a JuliaStats formula will add an intercept. # Adding a zero term explicitly disables the intercept. # See the StatsModels.jl tests for more information. intercept_term = model.fit_intercept ? 1 : 0 form = FormulaTerm(Term(:y), term(intercept_term) + sum(term.(features))) return form end """ check_weights(w, y) Validate observation weights to be used in fitting `Linear/GeneralizedLinearModel` based on target vector `y`. Note: Categorical targets have to be converted into a AbstractVector{<:Real} before passing to this method. """ check_weights check_weights(::Nothing, y::AbstractVector{<:Real}) = similar(y, 0) function check_weights(w, y::AbstractVector{<:Real}) w isa AbstractVector{<:Real} || throw( ArgumentError("Expected `weights === nothing` or `weights::AbstractVector{<:Real}") ) length(y) == length(w) || throw( ArgumentError("weights passed must have the same length as the target vector.") ) return w end #### #### FIT FUNCTIONS #### struct FitResult{F, V<:AbstractVector, T, R} "Formula containing all coefficients and their types" formula::F "Vector containg coeficients of the predictors and intercept" coefs::V "An estimate of the dispersion parameter of the glm model. " dispersion::T "Other fitted parameters specific to a fitted model" params::R end FitResult(fitted_glm, features) = FitResult(GLM.formula(fitted_glm), GLM.coef(fitted_glm), GLM.dispersion(fitted_glm.model), (features = features,)) dispersion(fr::FitResult) = fr.dispersion params(fr::FitResult) = fr.params coefs(fr::FitResult) = fr.coefs function MMI.fit(model::LinearRegressor, verbosity::Int, X, y, w=nothing) # apply the model X_col_table, offset, features = prepare_inputs(model, X) y_ = isempty(offset) ? y : y .- offset wts = check_weights(w, y_) data = merge(X_col_table, (; y = y_)) form = glm_formula(model, features) fitted_lm = GLM.lm(form, data; model.dropcollinear, wts) fitresult = FitResult(fitted_lm, features) # form the report report = glm_report(fitted_lm, features, model.report_keys) cache = nothing # return return fitresult, cache, report end function MMI.fit(model::LinearCountRegressor, verbosity::Int, X, y, w=nothing) # apply the model X_col_table, offset, features = prepare_inputs(model, X) data = merge(X_col_table, (; y)) wts = check_weights(w, y) form = glm_formula(model, features) fitted_glm = GLM.glm( form, data, model.distribution, model.link; offset, model.maxiter, model.atol, model.rtol, model.minstepfac, wts ) fitresult = FitResult(fitted_glm, features) # form the report report = glm_report(fitted_glm, features, model.report_keys) cache = nothing # return return fitresult, cache, report end function MMI.fit(model::LinearBinaryClassifier, verbosity::Int, X, y, w=nothing) # apply the model decode = MMI.classes(y) y_plain = MMI.int(y) .- 1 # 0, 1 of type Int wts = check_weights(w, y_plain) X_col_table, offset, features = prepare_inputs(model, X) data = merge(X_col_table, (; y = y_plain)) form = glm_formula(model, features) fitted_glm = GLM.glm( form, data, Bernoulli(), model.link; offset, model.maxiter, model.atol, model.rtol, model.minstepfac, wts ) fitresult = FitResult(fitted_glm, features) # form the report report = glm_report(fitted_glm, features, model.report_keys) cache = nothing # return return (fitresult, decode), cache, report end glm_fitresult(::LinearRegressor, fitresult) = fitresult glm_fitresult(::LinearCountRegressor, fitresult) = fitresult glm_fitresult(::LinearBinaryClassifier, fitresult) = fitresult[1] function MMI.fitted_params(model::GLM_MODELS, fitresult) result = glm_fitresult(model, fitresult) coef = coefs(result) features = copy(params(result).features) if model.fit_intercept intercept = coef[1] coef_ = coef[2:end] else intercept = zero(eltype(coef)) coef_ = copy(coef) end return (; features, coef=coef_, intercept) end #### #### PREDICT FUNCTIONS #### glm_link(model) = model.link glm_link(::LinearRegressor) = GLM.IdentityLink() function glm_predict(link, terms, coef, offsetcol::Nothing, Xnew) mm = modelcols(terms, Xnew) η = mm * coef μ = GLM.linkinv.(link, η) return μ end function glm_predict(link, terms, coef, offsetcol::Symbol, Xnew) mm = modelcols(terms, Xnew) offset = Tables.getcolumn(Xnew, offsetcol) η = mm * coef .+ offset μ = GLM.linkinv.(link, η) return μ end # More efficient fallback. predict_mean is not defined for LinearBinaryClassifier function MMI.predict_mean(model::Union{LinearRegressor, LinearCountRegressor}, fitresult, Xnew) p = glm_predict(glm_link(model), fitresult.formula.rhs, fitresult.coefs, model.offsetcol, Xnew) return p end function MMI.predict(model::LinearRegressor, fitresult, Xnew) μ = MMI.predict_mean(model, fitresult, Xnew) σ̂ = dispersion(fitresult) return [GLM.Normal(μᵢ, σ̂) for μᵢ ∈ μ] end function MMI.predict(model::LinearCountRegressor, fitresult, Xnew) λ = MMI.predict_mean(model, fitresult, Xnew) return [GLM.Poisson(λᵢ) for λᵢ ∈ λ] end function MMI.predict(model::LinearBinaryClassifier, (fitresult, decode), Xnew) p = glm_predict(glm_link(model), fitresult.formula.rhs, fitresult.coefs, model.offsetcol, Xnew) return MMI.UnivariateFinite(decode, p, augment=true) end # NOTE: predict_mode uses MLJBase's fallback #### #### METADATA #### # shared metadata const GLM_REGS = Union{ Type{<:LinearRegressor}, Type{<:LinearBinaryClassifier}, Type{<:LinearCountRegressor} } metadata_pkg.( (LinearRegressor, LinearBinaryClassifier, LinearCountRegressor), name = "GLM", uuid = "38e38edf-8417-5370-95a0-9cbb8c7f171a", url = "https://github.com/JuliaStats/GLM.jl", julia = true, license = "MIT", is_wrapper = false ) metadata_model( LinearRegressor, input = Table(Continuous, Finite), target = AbstractVector{Continuous}, supports_weights = true, path = "$PKG.LinearRegressor" ) metadata_model( LinearBinaryClassifier, input = Table(Continuous, Finite), target = AbstractVector{<:Finite{2}}, supports_weights = true, path = "$PKG.LinearBinaryClassifier" ) metadata_model( LinearCountRegressor, input = Table(Continuous, Finite), target = AbstractVector{Count}, supports_weights = true, path = "$PKG.LinearCountRegressor" ) """ $(MMI.doc_header(LinearRegressor)) `LinearRegressor` assumes the target is a continuous variable whose conditional distribution is normal with constant variance, and whose expected value is a linear combination of the features (identity link function). Options exist to specify an intercept or offset feature. # Training data In MLJ or MLJBase, bind an instance `model` to data with one of: mach = machine(model, X, y) mach = machine(model, X, y, w) Here - `X`: is any table of input features (eg, a `DataFrame`) whose columns are of scitype `Continuous`; check the scitype with `schema(X)` - `y`: is the target, which can be any `AbstractVector` whose element scitype is `Continuous`; check the scitype with `scitype(y)` - `w`: is a vector of `Real` per-observation weights # Hyper-parameters - `fit_intercept=true`: Whether to calculate the intercept for this model. If set to false, no intercept will be calculated (e.g. the data is expected to be centered) - `dropcollinear=false`: Whether to drop features in the training data to ensure linear independence. If true , only the first of each set of linearly-dependent features is used. The coefficient for redundant linearly dependent features is `0.0` and all associated statistics are set to `NaN`. - `offsetcol=nothing`: Name of the column to be used as an offset, if any. An offset is a variable which is known to have a coefficient of 1. - `report_keys`: `Vector` of keys for the report. Possible keys are: $VALID_KEYS_LIST. By default only `:glm_model` is excluded. Train the machine using `fit!(mach, rows=...)`. # Operations - `predict(mach, Xnew)`: return predictions of the target given new features `Xnew` having the same Scitype as `X` above. Predictions are probabilistic. - `predict_mean(mach, Xnew)`: instead return the mean of each prediction above - `predict_median(mach, Xnew)`: instead return the median of each prediction above. # Fitted parameters The fields of `fitted_params(mach)` are: - `features`: The names of the features encountered during model fitting. - `coef`: The linear coefficients determined by the model. - `intercept`: The intercept determined by the model. # Report When all keys are enabled in `report_keys`, the following fields are available in `report(mach)`: - `deviance`: Measure of deviance of fitted model with respect to a perfectly fitted model. For a linear model, this is the weighted residual sum of squares - `dof_residual`: The degrees of freedom for residuals, when meaningful. - `stderror`: The standard errors of the coefficients. - `vcov`: The estimated variance-covariance matrix of the coefficient estimates. - `coef_table`: Table which displays coefficients and summarizes their significance and confidence intervals. - `glm_model`: The raw fitted model returned by `GLM.lm`. Note this points to training data. Refer to the GLM.jl documentation for usage. # Examples ``` using MLJ LinearRegressor = @load LinearRegressor pkg=GLM glm = LinearRegressor() X, y = make_regression(100, 2) # synthetic data mach = machine(glm, X, y) |> fit! Xnew, _ = make_regression(3, 2) yhat = predict(mach, Xnew) # new predictions yhat_point = predict_mean(mach, Xnew) # new predictions fitted_params(mach).features fitted_params(mach).coef # x1, x2, intercept fitted_params(mach).intercept report(mach) ``` See also [`LinearCountRegressor`](@ref), [`LinearBinaryClassifier`](@ref) """ LinearRegressor """ $(MMI.doc_header(LinearBinaryClassifier)) `LinearBinaryClassifier` is a [generalized linear model](https://en.wikipedia.org/wiki/Generalized_linear_model#Variance_function), specialised to the case of a binary target variable, with a user-specified link function. Options exist to specify an intercept or offset feature. # Training data In MLJ or MLJBase, bind an instance `model` to data with one of: mach = machine(model, X, y) mach = machine(model, X, y, w) Here - `X`: is any table of input features (eg, a `DataFrame`) whose columns are of scitype `Continuous`; check the scitype with `schema(X)` - `y`: is the target, which can be any `AbstractVector` whose element scitype is `<:OrderedFactor(2)` or `<:Multiclass(2)`; check the scitype with `schema(y)` - `w`: is a vector of `Real` per-observation weights Train the machine using `fit!(mach, rows=...)`. # Hyper-parameters - `fit_intercept=true`: Whether to calculate the intercept for this model. If set to false, no intercept will be calculated (e.g. the data is expected to be centered) - `link=GLM.LogitLink`: The function which links the linear prediction function to the probability of a particular outcome or class. This must have type `GLM.Link01`. Options include `GLM.LogitLink()`, `GLM.ProbitLink()`, `CloglogLink(), `CauchitLink()`. - `offsetcol=nothing`: Name of the column to be used as an offset, if any. An offset is a variable which is known to have a coefficient of 1. - `maxiter::Integer=30`: The maximum number of iterations allowed to achieve convergence. - `atol::Real=1e-6`: Absolute threshold for convergence. Convergence is achieved when the relative change in deviance is less than `max(rtol*dev, atol). This term exists to avoid failure when deviance is unchanged except for rounding errors. - `rtol::Real=1e-6`: Relative threshold for convergence. Convergence is achieved when the relative change in deviance is less than `max(rtol*dev, atol). This term exists to avoid failure when deviance is unchanged except for rounding errors. - `minstepfac::Real=0.001`: Minimum step fraction. Must be between 0 and 1. Lower bound for the factor used to update the linear fit. - `report_keys`: `Vector` of keys for the report. Possible keys are: $VALID_KEYS_LIST. By default only `:glm_model` is excluded. # Operations - `predict(mach, Xnew)`: Return predictions of the target given features `Xnew` having the same scitype as `X` above. Predictions are probabilistic. - `predict_mode(mach, Xnew)`: Return the modes of the probabilistic predictions returned above. # Fitted parameters The fields of `fitted_params(mach)` are: - `features`: The names of the features used during model fitting. - `coef`: The linear coefficients determined by the model. - `intercept`: The intercept determined by the model. # Report The fields of `report(mach)` are: - `deviance`: Measure of deviance of fitted model with respect to a perfectly fitted model. For a linear model, this is the weighted residual sum of squares - `dof_residual`: The degrees of freedom for residuals, when meaningful. - `stderror`: The standard errors of the coefficients. - `vcov`: The estimated variance-covariance matrix of the coefficient estimates. - `coef_table`: Table which displays coefficients and summarizes their significance and confidence intervals. - `glm_model`: The raw fitted model returned by `GLM.lm`. Note this points to training data. Refer to the GLM.jl documentation for usage. # Examples ``` using MLJ import GLM # namespace must be available LinearBinaryClassifier = @load LinearBinaryClassifier pkg=GLM clf = LinearBinaryClassifier(fit_intercept=false, link=GLM.ProbitLink()) X, y = @load_crabs mach = machine(clf, X, y) |> fit! Xnew = (;FL = [8.1, 24.8, 7.2], RW = [5.1, 25.7, 6.4], CL = [15.9, 46.7, 14.3], CW = [18.7, 59.7, 12.2], BD = [6.2, 23.6, 8.4],) yhat = predict(mach, Xnew) # probabilistic predictions pdf(yhat, levels(y)) # probability matrix p_B = pdf.(yhat, "B") class_labels = predict_mode(mach, Xnew) fitted_params(mach).features fitted_params(mach).coef fitted_params(mach).intercept report(mach) ``` See also [`LinearRegressor`](@ref), [`LinearCountRegressor`](@ref) """ LinearBinaryClassifier """ $(MMI.doc_header(LinearCountRegressor)) `LinearCountRegressor` is a [generalized linear model](https://en.wikipedia.org/wiki/Generalized_linear_model#Variance_function), specialised to the case of a `Count` target variable (non-negative, unbounded integer) with user-specified link function. Options exist to specify an intercept or offset feature. # Training data In MLJ or MLJBase, bind an instance `model` to data with one of: mach = machine(model, X, y) mach = machine(model, X, y, w) Here - `X`: is any table of input features (eg, a `DataFrame`) whose columns are of scitype `Continuous`; check the scitype with `schema(X)` - `y`: is the target, which can be any `AbstractVector` whose element scitype is `Count`; check the scitype with `schema(y)` - `w`: is a vector of `Real` per-observation weights Train the machine using `fit!(mach, rows=...)`. # Hyper-parameters - `fit_intercept=true`: Whether to calculate the intercept for this model. If set to false, no intercept will be calculated (e.g. the data is expected to be centered) - `distribution=Distributions.Poisson()`: The distribution which the residuals/errors of the model should fit. - `link=GLM.LogLink()`: The function which links the linear prediction function to the probability of a particular outcome or class. This should be one of the following: `GLM.IdentityLink()`, `GLM.InverseLink()`, `GLM.InverseSquareLink()`, `GLM.LogLink()`, `GLM.SqrtLink()`. - `offsetcol=nothing`: Name of the column to be used as an offset, if any. An offset is a variable which is known to have a coefficient of 1. - `maxiter::Integer=30`: The maximum number of iterations allowed to achieve convergence. - `atol::Real=1e-6`: Absolute threshold for convergence. Convergence is achieved when the relative change in deviance is less than `max(rtol*dev, atol). This term exists to avoid failure when deviance is unchanged except for rounding errors. - `rtol::Real=1e-6`: Relative threshold for convergence. Convergence is achieved when the relative change in deviance is less than `max(rtol*dev, atol). This term exists to avoid failure when deviance is unchanged except for rounding errors. - `minstepfac::Real=0.001`: Minimum step fraction. Must be between 0 and 1. Lower bound for the factor used to update the linear fit. - `report_keys`: `Vector` of keys for the report. Possible keys are: $VALID_KEYS_LIST. By default only `:glm_model` is excluded. # Operations - `predict(mach, Xnew)`: return predictions of the target given new features `Xnew` having the same Scitype as `X` above. Predictions are probabilistic. - `predict_mean(mach, Xnew)`: instead return the mean of each prediction above - `predict_median(mach, Xnew)`: instead return the median of each prediction above. # Fitted parameters The fields of `fitted_params(mach)` are: - `features`: The names of the features encountered during model fitting. - `coef`: The linear coefficients determined by the model. - `intercept`: The intercept determined by the model. # Report The fields of `report(mach)` are: - `deviance`: Measure of deviance of fitted model with respect to a perfectly fitted model. For a linear model, this is the weighted residual sum of squares - `dof_residual`: The degrees of freedom for residuals, when meaningful. - `stderror`: The standard errors of the coefficients. - `vcov`: The estimated variance-covariance matrix of the coefficient estimates. - `coef_table`: Table which displays coefficients and summarizes their significance and confidence intervals. - `glm_model`: The raw fitted model returned by `GLM.lm`. Note this points to training data. Refer to the GLM.jl documentation for usage. # Examples ``` using MLJ import MLJ.Distributions.Poisson # Generate some data whose target y looks Poisson when conditioned on # X: N = 10_000 w = [1.0, -2.0, 3.0] mu(x) = exp(w'x) # mean for a log link function Xmat = rand(N, 3) X = MLJ.table(Xmat) y = map(1:N) do i x = Xmat[i, :] rand(Poisson(mu(x))) end; CountRegressor = @load LinearCountRegressor pkg=GLM model = CountRegressor(fit_intercept=false) mach = machine(model, X, y) fit!(mach) Xnew = MLJ.table(rand(3, 3)) yhat = predict(mach, Xnew) yhat_point = predict_mean(mach, Xnew) # get coefficients approximating `w`: julia> fitted_params(mach).coef 3-element Vector{Float64}: 0.9969008753103842 -2.0255901752504775 3.014407534033522 report(mach) ``` See also [`LinearRegressor`](@ref), [`LinearBinaryClassifier`](@ref) """ LinearCountRegressor end # module
MLJGLMInterface
https://github.com/JuliaAI/MLJGLMInterface.jl.git
[ "MIT" ]
0.3.7
db318813a5f07e3f93a1e530c8fd0e6bdc9cabac
code
13792
using Test using MLJBase using StatisticalMeasures using LinearAlgebra using Statistics using MLJGLMInterface using GLM: coeftable import GLM import MLJTestInterface using Distributions: Normal, Poisson, Uniform import StableRNGs using Tables expit(X) = 1 ./ (1 .+ exp.(-X)) # TODO: Add more datasets to the following generic interface tests after #45 is merged @testset "generic interface tests" begin @testset "LinearRegressor" begin for data in [ MLJTestInterface.make_regression(), ] failures, summary = MLJTestInterface.test( [LinearRegressor,], data...; mod=@__MODULE__, verbosity=0, # bump to debug throw=false, # set to true to debug ) @test isempty(failures) end end @testset "LinearCountRegressor" begin for data in [ MLJTestInterface.make_count(), ] failures, summary = MLJTestInterface.test( [LinearCountRegressor,], data...; mod=@__MODULE__, verbosity=0, # bump to debug throw=false, # set to true to debug ) @test isempty(failures) end end @testset "LinearBinaryClassifier" begin for data in [ MLJTestInterface.make_binary(), ] failures, summary = MLJTestInterface.test( [LinearBinaryClassifier,], data...; mod=@__MODULE__, verbosity=0, # bump to debug throw=false, # set to true to debug ) end end end ### ### OLSREGRESSOR ### @testset "OLSREGRESSOR" begin X, y = @load_boston w = ones(eltype(y), length(y)) train, test = partition(eachindex(y), 0.7) atom_ols = LinearRegressor() Xtrain = selectrows(X, train) ytrain = selectrows(y, train) wtrain = selectrows(w, train) Xtest = selectrows(X, test) fitresult, _, _ = fit(atom_ols, 1, Xtrain, ytrain) θ = MLJBase.fitted_params(atom_ols, fitresult) p = predict_mean(atom_ols, fitresult, Xtest) fitresultw, _, _ = fit(atom_ols, 1, Xtrain, ytrain, wtrain) θw = MLJBase.fitted_params(atom_ols, fitresult) pw = predict_mean(atom_ols, fitresultw, Xtest) Xa = MLJBase.matrix(X) # convert(Matrix{Float64}, X) Xa1 = hcat(Xa, ones(size(Xa, 1))) coefs = Xa1[train, :] \ y[train] p2 = Xa1[test, :] * coefs @test p ≈ p2 @test pw ≈ p2 # test `predict` object p_distr = predict(atom_ols, fitresult, selectrows(X, test)) dispersion = MLJGLMInterface.dispersion(fitresult) @test p_distr[1] == Normal(p[1], dispersion) # test metadata model = atom_ols @test name(model) == "LinearRegressor" @test package_name(model) == "GLM" @test supports_weights(model) @test is_pure_julia(model) @test is_supervised(model) @test package_license(model) == "MIT" @test prediction_type(model) == :probabilistic @test hyperparameters(model) == (:fit_intercept, :dropcollinear, :offsetcol, :report_keys) hyp_types = hyperparameter_types(model) @test hyp_types[1] == "Bool" @test hyp_types[2] == "Bool" @test hyp_types[3] == "Union{Nothing, Symbol}" @test hyp_types[4] == "Union{Nothing, AbstractVector{Symbol}}" end ### ### Logistic regression ### @testset "Logistic regression" begin rng = StableRNGs.StableRNG(0) N = 100 X = MLJBase.table(rand(rng, N, 4)); ycont = 2*X.x1 - X.x3 + 0.6*rand(rng, N) y = categorical(ycont .> mean(ycont)) w = ones(length(y)) lr = LinearBinaryClassifier() pr = LinearBinaryClassifier(link=GLM.ProbitLink()) fitresult, _, report = fit(lr, 1, X, y) yhat = predict(lr, fitresult, X) @test cross_entropy(yhat, y) < 0.25 fitresult1, _, report1 = fit(pr, 1, X, y) yhat1 = predict(pr, fitresult1, X) @test cross_entropy(yhat1, y) < 0.25 fitresultw, _, reportw = fit(lr, 1, X, y, w) yhatw = predict(lr, fitresultw, X) @test cross_entropy(yhatw, y) < 0.25 @test yhatw ≈ yhat fitresultw1, _, reportw1 = fit(pr, 1, X, y, w) yhatw1 = predict(pr, fitresultw1, X) @test cross_entropy(yhatw1, y) < 0.25 @test yhatw1 ≈ yhat1 # check predict on `Xnew` with wrong dims Xnew = MLJBase.table(Tables.matrix(X)[:, 1:3], names=Tables.columnnames(X)[1:3]) @test_throws ErrorException predict(lr, fitresult, Xnew) fitted_params(pr, fitresult) # Test metadata model = lr @test name(model) == "LinearBinaryClassifier" @test package_name(model) == "GLM" @test supports_weights(model) @test is_pure_julia(model) @test is_supervised(model) @test package_license(model) == "MIT" @test prediction_type(model) == :probabilistic hyper_params = hyperparameters(model) @test hyper_params[1] == :fit_intercept @test hyper_params[2] == :link @test hyper_params[3] == :offsetcol @test hyper_params[4] == :maxiter @test hyper_params[5] == :atol @test hyper_params[6] == :rtol @test hyper_params[7] == :minstepfac @test hyper_params[8] == :report_keys end ### ### Count regression ### @testset "Count regression" begin rng = StableRNGs.StableRNG(123) X = randn(rng, 500, 5) θ = randn(rng, 5) y = map(exp.(X*θ)) do mu rand(rng, Poisson(mu)) end w = ones(eltype(y), length(y)) XTable = MLJBase.table(X) lcr = LinearCountRegressor(fit_intercept=false) fitresult, _, _ = fit(lcr, 1, XTable, y) θ̂ = fitted_params(lcr, fitresult).coef @test norm(θ̂ .- θ)/norm(θ) ≤ 0.03 fitresultw, _, _ = fit(lcr, 1, XTable, y, w) θ̂w = fitted_params(lcr, fitresultw).coef @test norm(θ̂w .- θ)/norm(θ) ≤ 0.03 @test θ̂w ≈ θ̂ # check predict on `Xnew` with wrong dims Xnew = MLJBase.table( Tables.matrix(XTable)[:, 1:3], names=Tables.columnnames(XTable)[1:3] ) @test_throws ErrorException predict(lcr, fitresult, Xnew) # Test metadata model = lcr @test name(model) == "LinearCountRegressor" @test package_name(model) == "GLM" @test supports_weights(model) @test is_pure_julia(model) @test is_supervised(model) @test package_license(model) == "MIT" @test prediction_type(model) == :probabilistic hyper_params = hyperparameters(model) @test hyper_params[1] == :fit_intercept @test hyper_params[2] == :distribution @test hyper_params[3] == :link @test hyper_params[4] == :offsetcol @test hyper_params[5] == :maxiter @test hyper_params[6] == :atol @test hyper_params[7] == :rtol @test hyper_params[8] == :minstepfac end modeltypes = [LinearRegressor, LinearBinaryClassifier, LinearCountRegressor] @testset "Test prepare_inputs" begin @testset "check sample size" for fit_intercept in [true, false] lin_reg = LinearRegressor(; fit_intercept) X_lin_reg = MLJBase.table(rand(3, 3 + fit_intercept)) log_reg = LinearBinaryClassifier(; fit_intercept) X_log_reg = MLJBase.table(rand(2, 3 + fit_intercept)) lcr = LinearCountRegressor(; distribution=Poisson(), fit_intercept) X_lcr = X_log_reg for (m, X) in [(lin_reg, X_lin_reg), (log_reg, X_log_reg), (lcr, X_lcr)] @test_throws ArgumentError MLJGLMInterface.prepare_inputs(m, X) end end @testset "no intercept/no offsetcol" for mt in modeltypes X = (x1=[1,2,3], x2=[4,5,6]) m = mt(fit_intercept=false) r = MLJGLMInterface.prepare_inputs(m, X) Xcols, offset, features = r @test offset == [] @test Xcols == (x1 = [1, 2, 3], x2 = [4, 5, 6]) @test features == [:x1, :x2] X1 = NamedTuple() @test_throws ArgumentError MLJGLMInterface.prepare_inputs(m, X1) end @testset "offsetcol but no intercept" for mt in modeltypes X = (x1=[1,2,3], x2=[4,5,6]) m = mt(offsetcol=:x1, fit_intercept=false) Xcols, offset, features = MLJGLMInterface.prepare_inputs(m, X) @test offset == [1, 2, 3] @test Xcols == (x2 = [4, 5, 6],) @test features == [:x2] # throw error for tables with just one column. # Since for `offsetcol !== nothing` and `fit_intercept == false` # the table must have at least two columns. X1 = (x1=[1,2,3],) @test_throws ArgumentError MLJGLMInterface.prepare_inputs(m, X1) end end @testset "Test offsetting models" begin @testset "Test split_X_offset" begin X = (x1=[1,2,3], x2=[4,5,6]) @test MLJGLMInterface.split_X_offset(X, nothing) == (X, Float64[]) @test MLJGLMInterface.split_X_offset(X, :x1) == ((x2=[4,5,6],), [1,2,3]) lr = LinearRegressor(fit_intercept = false, offsetcol = :x1) fitresult, _, report = fit(lr, 1, X, [5, 7, 9]) yhat = predict_mean(lr, fitresult, (x1 = [2, 3, 4], x2 = [5, 6, 7])) @test yhat == [7.0, 9.0, 11.0] rng = StableRNGs.StableRNG(123) N = 100 X = MLJBase.table(rand(rng, N, 3)) Xnew, offset = MLJGLMInterface.split_X_offset(X, :x2) @test offset isa Vector @test length(Xnew) == 2 end # In the following: # The second column is taken as an offset by the model # This is equivalent to assuming the coef is 1 and known @testset "Test Logistic regression with offset" begin N = 1000 rng = StableRNGs.StableRNG(0) X = MLJBase.table(rand(rng, N, 3)) y = rand(rng, Uniform(0,1), N) .< expit(2*X.x1 + X.x2 - X.x3) y = categorical(y) lr = LinearBinaryClassifier(fit_intercept=false, offsetcol=:x2) fitresult, _, report = fit(lr, 1, X, y) fp = fitted_params(lr, fitresult) @test fp.coef ≈ [2, -1] atol=0.03 @test iszero(fp.intercept) end @testset "Test Linear regression with offset" begin N = 1000 rng = StableRNGs.StableRNG(0) X = MLJBase.table(rand(rng, N, 3)) y = 2*X.x1 + X.x2 - X.x3 + rand(rng, Normal(0,1), N) lr = LinearRegressor(fit_intercept=false, offsetcol=:x2) fitresult, _, report = fit(lr, 1, X, y) fp = fitted_params(lr, fitresult) @test fp.coef ≈ [2, -1] atol=0.07 end @testset "Test Count regression with offset" begin N = 1000 rng = StableRNGs.StableRNG(0) X = MLJBase.table(rand(rng, N, 3)) y = map(exp.(2*X.x1 + X.x2 - X.x3)) do mu rand(rng, Poisson(mu)) end lcr = LinearCountRegressor(fit_intercept=false, offsetcol=:x2) fitresult, _, _ = fit(lcr, 1, X, y) fp = fitted_params(lcr, fitresult) @test fp.coef ≈ [2, -1] atol=0.04 end end @testset "Param names in fitresult" begin X = (a=[1, 9, 4, 2], b=[1, 2, 1, 4], c=[9, 1, 5, 3]) y = categorical([true, true, false, false]) lr = LinearBinaryClassifier(fit_intercept=true) fitresult, _, report = fit(lr, 1, X, y) ctable = last(report) parameters = ctable.rownms # Row names. @test parameters == ["(Intercept)", "a", "b", "c"] intercept = ctable.cols[1][1] yhat = predict(lr, fitresult, X) @test cross_entropy(yhat, y) < 0.6 fp = fitted_params(lr, fitresult) @test fp.features == [:a, :b, :c] @test :intercept in keys(fp) @test intercept == fp.intercept end @testset "Param names in report" begin X = (a=[1, 4, 3, 1], b=[2, 0, 1, 4], c=[7, 1, 7, 3]) y = categorical([true, false, true, false]) # check that by default all possible keys are added in the report, # except glm_model: lr = LinearBinaryClassifier() _, _, report = fit(lr, 1, X, y) @test :deviance in keys(report) @test :dof_residual in keys(report) @test :stderror in keys(report) @test :vcov in keys(report) @test :coef_table in keys(report) @test :glm_model ∉ keys(report) # check that report is valid if only some keys are specified lr = LinearBinaryClassifier(report_keys = [:stderror, :glm_model]) _, _, report = fit(lr, 1, X, y) @test :deviance ∉ keys(report) @test :stderror in keys(report) @test :dof_residual ∉ keys(report) @test :glm_model in keys(report) @test report.glm_model.model isa GLM.GeneralizedLinearModel # check that an empty `NamedTuple` is outputed for # `report_params === nothing` lr = LinearBinaryClassifier(report_keys=nothing) _, _, report = fit(lr, 1, X, y) @test report === NamedTuple() end @testset "Categorical predictors" begin X = (x1=[1.,2.,3.,4.], x2 = categorical([0,1,0,0]), x3 = categorical([1, 0, 1,0], ordered=true)) y = categorical([false, false, true, true]) mach = machine(LinearBinaryClassifier(), X, y) fit!(mach) fp = fitted_params(mach) @test fp.features == [:x1, :x2, :x3] @test_throws KeyError predict(mach, (x1 = [2,3,4], x2 = categorical([0,1,2]), x3 = categorical([1,0,1], ordered=true))) @test all(isapprox.(pdf.(predict(mach, X), true), [0,0,1,1], atol = 1e-3)) # only a categorical variable, with and without intercept X2 = (; x = X.x2) y2 = [0., 2., 1., 2.] fitresult, _, report = fit(LinearRegressor(), 1, X2, y2) pred = predict_mean(LinearRegressor(), fitresult, X2) fitresult_nointercept, _, report = fit(LinearRegressor(fit_intercept = false), 1, X2, y2) @test all(isapprox.(fitresult.coefs, [1.0, 1.0])) @test all(isapprox.(fitresult_nointercept.coefs, [1.0, 2.0])) end @testset "Issue 27" begin n, p = (100, 2) Xmat = rand(p, n)' # note using adjoint X = MLJBase.table(Xmat) y = rand(n) lr = LinearRegressor() # Smoke test whether it crashes on an LinearAlgebra.Adjoint. fit(lr, 1, X, y) end
MLJGLMInterface
https://github.com/JuliaAI/MLJGLMInterface.jl.git
[ "MIT" ]
0.3.7
db318813a5f07e3f93a1e530c8fd0e6bdc9cabac
docs
619
# MLJGLMInterface.jl Repository implementing [MLJ](https://alan-turing-institute.github.io/MLJ.jl/dev/) interface for [GLM](https://github.com/JuliaStats/GLM.jl) models. [![Build Status](https://github.com/JuliaAI/MLJGLMInterface.jl/workflows/CI/badge.svg)](https://github.com/JuliaAI/MLJGLMInterface.jl/actions) [![Code Coverage](https://codecov.io/gh/JuliaAI/MLJGLMInterface.jl/branch/master/graphs/badge.svg?branch=master)](hhttps://codecov.io/github/JuliaAI/MLJGLMInterface.jl?branch=master) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle)
MLJGLMInterface
https://github.com/JuliaAI/MLJGLMInterface.jl.git
[ "MIT" ]
1.1.1
87d51a3ee9a4b0d2fe054bdd3fc2436258db2603
code
503
using Static using Documenter makedocs(; modules = [Static], authors = "chriselrod, ChrisRackauckas, Tokazama", repo = "https://github.com/SciML/Static.jl/blob/{commit}{path}#L{line}", sitename = "Static.jl", format = Documenter.HTML(; prettyurls = get(ENV, "CI", "false") == "true", canonical = "https://SciML.github.io/Static.jl", assets = String[]), pages = [ "Home" => "index.md" ]) deploydocs(; repo = "github.com/SciML/Static.jl")
Static
https://github.com/SciML/Static.jl.git
[ "MIT" ]
1.1.1
87d51a3ee9a4b0d2fe054bdd3fc2436258db2603
code
33279
module Static import IfElse: ifelse export StaticInt, StaticFloat64, StaticSymbol, True, False, StaticBool, NDIndex export dynamic, is_static, known, static, static_promote import PrecompileTools: @recompile_invalidations @recompile_invalidations begin import CommonWorldInvalidations end """ StaticSymbol A statically typed `Symbol`. """ struct StaticSymbol{s} StaticSymbol{s}() where {s} = new{s::Symbol}() StaticSymbol(s::Symbol) = new{s}() StaticSymbol(@nospecialize x::StaticSymbol) = x StaticSymbol(x) = StaticSymbol(Symbol(x)) StaticSymbol(x, y) = StaticSymbol(Symbol(x, y)) @generated function StaticSymbol(::StaticSymbol{X}, ::StaticSymbol{Y}) where {X, Y} StaticSymbol(Symbol(X, Y)) end StaticSymbol(x, y, z...) = StaticSymbol(StaticSymbol(x, y), z...) end Base.Symbol(@nospecialize(s::StaticSymbol)) = known(s) abstract type StaticInteger{N} <: Number end """ StaticBool(x::Bool) -> True/False A statically typed `Bool`. """ abstract type StaticBool{bool} <: StaticInteger{bool} end struct True <: StaticBool{true} end struct False <: StaticBool{false} end StaticBool{true}() = True() StaticBool{false}() = False() StaticBool(x::StaticBool) = x function StaticBool(x::Bool) if x return True() else return False() end end """ StaticInt(N::Int) -> StaticInt{N}() A statically sized `Int`. Use `StaticInt(N)` instead of `Val(N)` when you want it to behave like a number. """ struct StaticInt{N} <: StaticInteger{N} StaticInt{N}() where {N} = new{N::Int}() StaticInt(N::Int) = new{N}() StaticInt(@nospecialize N::StaticInt) = N StaticInt(::Val{N}) where {N} = StaticInt(N) end """ IntType(x::Integer) -> Union{Int,StaticInt} `IntType` is a union of `Int` and `StaticInt`. As a function, it ensures that `x` one of the two. """ const IntType = Union{StaticInt, Int} IntType(x::Integer) = Int(x) IntType(@nospecialize x::Union{Int, StaticInt}) = x Base.isinteger(@nospecialize x::StaticInteger) = true include("float.jl") const StaticNumber{N} = Union{StaticInt{N}, StaticBool{N}, StaticFloat64{N}} Base.promote_rule(::Type{Bool}, T::Type{<:StaticNumber}) = promote_rule(Bool, eltype(T)) Base.getindex(x::Tuple, ::StaticInt{N}) where {N} = getfield(x, N) Base.getindex(x::NamedTuple, ::StaticSymbol{N}) where {N} = getfield(x, N) function Base.getindex(x::NamedTuple, symbols::Tuple{StaticSymbol, Vararg{StaticSymbol}}) return x[map(known, symbols)] end Base.zero(@nospecialize(::StaticInt)) = StaticInt{0}() Base.to_index(x::StaticInt) = known(x) function Base.checkindex(::Type{Bool}, inds::AbstractUnitRange, ::StaticNumber{N}) where {N} checkindex(Bool, inds, N) end function Base.checkindex(::Type{Bool}, inds::Base.IdentityUnitRange, ::StaticFloat64{N}) where {N} checkindex(Bool, inds.indices, N) end ifelse(::True, @nospecialize(x), @nospecialize(y)) = x ifelse(::False, @nospecialize(x), @nospecialize(y)) = y const Zero = StaticInt{0} const One = StaticInt{1} const FloatOne = StaticFloat64{one(Float64)} const FloatZero = StaticFloat64{zero(Float64)} const StaticType{T} = Union{StaticNumber{T}, StaticSymbol{T}} StaticInt(x::False) = Zero() StaticInt(x::True) = One() Base.Bool(::True) = true Base.Bool(::False) = false Base.eltype(@nospecialize(T::Type{<:StaticFloat64})) = Float64 Base.eltype(@nospecialize(T::Type{<:StaticInt})) = Int Base.eltype(@nospecialize(T::Type{<:StaticBool})) = Bool """ NDIndex(i, j, k...) -> I NDIndex((i, j, k...)) -> I A multidimensional index that refers to a single element. Each dimension is represented by a single `Int` or `StaticInt`. ```julia julia> using Static julia> i = NDIndex(static(1), 2, static(3)) NDIndex(static(1), 2, static(3)) julia> i[static(1)] static(1) julia> i[1] 1 ``` """ struct NDIndex{N, I <: Tuple{Vararg{Union{StaticInt, Int}, N}}} <: Base.AbstractCartesianIndex{N} index::I NDIndex{N}(i::Tuple{Vararg{Union{StaticInt, Int}, N}}) where {N} = new{N, typeof(i)}(i) NDIndex{N}(index::Tuple) where {N} = _ndindex(static(N), _flatten(index...)) NDIndex{N}(index...) where {N} = NDIndex{N}(index) NDIndex{0}(::Tuple{}) = new{0, Tuple{}}(()) NDIndex{0}() = NDIndex{0}(()) NDIndex(i::Tuple{Vararg{Union{StaticInt, Int}, N}}) where {N} = new{N, typeof(i)}(i) NDIndex(i::Vararg{Union{StaticInt, Int}, N}) where {N} = NDIndex(i) NDIndex(index::Tuple) = NDIndex(_flatten(index...)) NDIndex(index...) = NDIndex(index) end _ndindex(n::StaticInt{N}, i::Tuple{Vararg{Union{Int, StaticInt}, N}}) where {N} = NDIndex(i) function _ndindex(n::StaticInt{N}, i::Tuple{Vararg{Any, M}}) where {N, M} M > N && throw(ArgumentError("input tuple of length $M, requested $N")) return NDIndex(_fill_to_length(i, n)) end _fill_to_length(x::Tuple{Vararg{Any, N}}, n::StaticInt{N}) where {N} = x @inline function _fill_to_length(x::Tuple{Vararg{Any, M}}, n::StaticInt{N}) where {M, N} return _fill_to_length((x..., static(1)), n) end _flatten(i::StaticInt{N}) where {N} = (i,) _flatten(i::Integer) = (Int(i),) _flatten(i::Base.AbstractCartesianIndex) = _flatten(Tuple(i)...) @inline _flatten(i::StaticInt, I...) = (i, _flatten(I...)...) @inline _flatten(i::Integer, I...) = (Int(i), _flatten(I...)...) @inline function _flatten(i::Base.AbstractCartesianIndex, I...) return (_flatten(Tuple(i)...)..., _flatten(I...)...) end Base.Tuple(@nospecialize(x::NDIndex)) = getfield(x, :index) """ known(T::Type) Returns the known value corresponding to a static type `T`. If `T` is not a static type then `nothing` is returned. `known` ensures that the type of the returned value is always inferred, even if the compiler fails to infer the exact value. See also: [`static`](@ref), [`is_static`](@ref), [`dynamic`](@ref) # Examples ```julia julia> known(StaticInt{1}) 1 julia> known(Int) ``` """ known(@nospecialize(x)) = known(typeof(x)) _get_known(::Type{T}, dim::StaticInt{D}) where {T, D} = known(field_type(T, dim)) known(@nospecialize(T::Type{<:Tuple})) = eachop(_get_known, nstatic(Val(fieldcount(T))), T) known(T::DataType) = nothing known(@nospecialize(T::Type{<:NDIndex})) = known(T.parameters[2]) known(::Union{True, Type{True}}) = true known(::Union{False, Type{False}}) = false known(::Union{Val{V}, Type{Val{V}}}) where {V} = V known(::Union{StaticInt{N}, Type{StaticInt{N}}}) where {N} = _return_int(N) _return_int(x::Int) = x known(::Union{StaticSymbol{S}, Type{StaticSymbol{S}}}) where {S} = _return_symbol(S) _return_symbol(x::Symbol) = x known(::Union{StaticFloat64{F}, Type{StaticFloat64{F}}}) where {F} = _return_float(F) _return_float(x::Float64) = x """ static(x) Returns a static form of `x`. If `x` is already in a static form then `x` is returned. If there is no static alternative for `x` then an error is thrown. See also: [`is_static`](@ref), [`known`](@ref) # Examples ```julia julia> using Static julia> static(1) static(1) julia> static(true) True() julia> static(:x) static(:x) ``` """ static(@nospecialize(x::Union{StaticSymbol, StaticNumber})) = x static(x::Integer) = StaticInt(x) function static(x::Union{AbstractFloat, Complex, Rational, AbstractIrrational}) StaticFloat64(Float64(x)) end static(x::Bool) = StaticBool(x) static(x::Union{Symbol, AbstractChar, AbstractString}) = StaticSymbol(x) static(x::Tuple{Vararg{Any}}) = map(static, x) static(::Val{V}) where {V} = static(V) static(x::CartesianIndex) = NDIndex(static(Tuple(x))) function static(x::X) where {X} Base.issingletontype(X) && return x error("There is no static alternative for type $(typeof(x)).") end """ is_static(::Type{T}) -> StaticBool Returns `True` if `T` is a static type. See also: [`static`](@ref), [`known`](@ref) """ is_static(@nospecialize(x)) = is_static(typeof(x)) is_static(@nospecialize(x::Type{<:StaticType})) = True() is_static(@nospecialize(x::Type{<:Val})) = True() _tuple_static(::Type{T}, i) where {T} = is_static(field_type(T, i)) @inline function is_static(@nospecialize(T::Type{<:Tuple})) if all(eachop(_tuple_static, nstatic(Val(fieldcount(T))), T)) return True() else return False() end end is_static(T::DataType) = False() """ dynamic(x) Returns the "dynamic" or non-static form of `x`. If `x` is not a static type, then it is returned unchanged. `dynamic` ensures that the type of the returned value is always inferred, even if the compiler fails to infer the exact value. See also: [`known`](@ref) # Examples ```julia julia> dynamic(static(1)) 1 julia> dynamic(1) 1 ``` """ @inline dynamic(@nospecialize x::StaticInt) = known(x) @inline dynamic(@nospecialize x::StaticFloat64) = known(x) @inline dynamic(@nospecialize x::StaticSymbol) = known(x) @inline dynamic(@nospecialize x::Union{True, False}) = known(x) @inline dynamic(@nospecialize x::Tuple) = map(dynamic, x) dynamic(@nospecialize(x::NDIndex)) = CartesianIndex(dynamic(Tuple(x))) dynamic(@nospecialize x) = x """ static_promote(x, y) Throws an error if `x` and `y` are not equal, preferentially returning the one that is known at compile time. """ @inline static_promote(x::StaticType{X}, ::StaticType{X}) where {X} = x @noinline function static_promote(::StaticType{X}, ::StaticType{Y}) where {X, Y} error("$X and $Y are not equal") end Base.@propagate_inbounds function static_promote(::StaticType{N}, x) where {N} static(static_promote(N, x)) end Base.@propagate_inbounds function static_promote(x, ::StaticType{N}) where {N} static(static_promote(N, x)) end Base.@propagate_inbounds static_promote(x, y) = _static_promote(x, y) Base.@propagate_inbounds function _static_promote(x, y) @boundscheck x === y || error("$x and $y are not equal") x end _static_promote(::Nothing, ::Nothing) = nothing _static_promote(x, ::Nothing) = x _static_promote(::Nothing, y) = y """ static_promote(x::AbstractRange{<:Integer}, y::AbstractRange{<:Integer}) A type stable method for combining two equal ranges into a new range that preserves static parameters. Throws an error if `x != y`. # Examples ```julia julia> static_promote(static(1):10, 1:static(10)) static(1):static(10) julia> static_promote(1:2:9, static(1):static(2):static(9)) static(1):static(2):static(9) ``` """ Base.@propagate_inbounds @inline function static_promote(x::AbstractUnitRange{<:Integer}, y::AbstractUnitRange{<:Integer}) fst = static_promote(static_first(x), static_first(y)) lst = static_promote(static_last(x), static_last(y)) return OptionallyStaticUnitRange(fst, lst) end Base.@propagate_inbounds @inline function static_promote(x::AbstractRange{<:Integer}, y::AbstractRange{<:Integer}) fst = static_promote(static_first(x), static_first(y)) stp = static_promote(static_step(x), static_step(y)) lst = static_promote(static_last(x), static_last(y)) return _OptionallyStaticStepRange(fst, stp, lst) end function static_promote(x::Base.Slice, y::Base.Slice) Base.Slice(static_promote(x.indices, y.indices)) end Base.@propagate_inbounds function _promote_shape(a::Tuple{A, Vararg{Any}}, b::Tuple{B, Vararg{Any}}) where {A, B} (static_promote(getfield(a, 1), getfield(b, 1)), _promote_shape(Base.tail(a), Base.tail(b))...) end _promote_shape(::Tuple{}, ::Tuple{}) = () Base.@propagate_inbounds function _promote_shape(::Tuple{}, b::Tuple{B}) where {B} (static_promote(static(1), getfield(b, 1)),) end Base.@propagate_inbounds function _promote_shape(a::Tuple{A}, ::Tuple{}) where {A} (static_promote(static(1), getfield(a, 1)),) end Base.@propagate_inbounds function Base.promote_shape( a::Tuple{ Vararg{Union{Int, StaticInt}}, }, b::Tuple{Vararg{Union{Int, StaticInt}} }) _promote_shape(a, b) end function Base.promote_rule(@nospecialize(T1::Type{<:StaticNumber}), @nospecialize(T2::Type{<:StaticNumber})) promote_rule(eltype(T1), eltype(T2)) end function Base.promote_rule(::Type{<:Base.TwicePrecision{R}}, @nospecialize(T::Type{<:StaticNumber})) where {R <: Number} promote_rule(Base.TwicePrecision{R}, eltype(T)) end function Base.promote_rule(@nospecialize(T1::Type{<:StaticNumber}), T2::Type{<:Union{Rational, AbstractFloat, Signed}}) promote_rule(T2, eltype(T1)) end Base.:(~)(::StaticInteger{N}) where {N} = static(~N) Base.inv(x::StaticInteger{N}) where {N} = one(x) / x Base.zero(@nospecialize T::Type{<:StaticInt}) = StaticInt(0) Base.zero(@nospecialize T::Type{<:StaticBool}) = False() Base.one(@nospecialize T::Type{<:StaticBool}) = True() Base.one(@nospecialize T::Type{<:StaticInt}) = StaticInt(1) @inline Base.iszero(::Union{StaticInt{0}, StaticFloat64{0.0}, False}) = true @inline Base.iszero(@nospecialize x::Union{StaticInt, True, StaticFloat64}) = false @inline Base.isone(::Union{One, True, StaticFloat64{1.0}}) = true @inline Base.isone(@nospecialize x::Union{StaticInt, False, StaticFloat64}) = false @inline Base.iseven(@nospecialize x::StaticNumber) = iseven(known(x)) @inline Base.isodd(@nospecialize x::StaticNumber) = isodd(known(x)) Base.AbstractFloat(x::StaticNumber) = StaticFloat64(x) Base.abs(::StaticNumber{N}) where {N} = static(abs(N)) Base.abs2(::StaticNumber{N}) where {N} = static(abs2(N)) Base.sign(::StaticNumber{N}) where {N} = static(sign(N)) Base.widen(@nospecialize(x::StaticNumber)) = widen(known(x)) function Base.convert(::Type{T}, @nospecialize(N::StaticNumber)) where {T <: Number} convert(T, known(N)) end #Base.Bool(::StaticInt{N}) where {N} = Bool(N) Base.Integer(@nospecialize(x::StaticInt)) = x (::Type{T})(x::StaticInteger) where {T <: Real} = T(known(x)) function (@nospecialize(T::Type{<:StaticNumber}))(x::Union{AbstractFloat, AbstractIrrational, Integer, Rational}) static(convert(eltype(T), x)) end @inline Base.:(-)(::StaticNumber{N}) where {N} = static(-N) Base.:(*)(::Union{AbstractFloat, AbstractIrrational, Integer, Rational}, y::Zero) = y Base.:(*)(x::Zero, ::Union{AbstractFloat, AbstractIrrational, Integer, Rational}) = x Base.:(*)(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(X * Y) Base.:(/)(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(X / Y) Base.:(-)(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(X - Y) Base.:(+)(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(X + Y) @generated Base.sqrt(::StaticNumber{N}) where {N} = :($(static(sqrt(N)))) function Base.div(::StaticNumber{X}, ::StaticNumber{Y}, m::RoundingMode) where {X, Y} static(div(X, Y, m)) end Base.div(x::Real, ::StaticInteger{Y}, m::RoundingMode) where {Y} = div(x, Y, m) Base.div(::StaticNumber{X}, y::Real, m::RoundingMode) where {X} = div(X, y, m) Base.div(x::StaticBool, y::False) = throw(DivideError()) Base.div(x::StaticBool, y::True) = x Base.rem(@nospecialize(x::StaticNumber), T::Type{<:Integer}) = rem(known(x), T) Base.rem(::StaticNumber{X}, ::StaticNumber{Y}) where {X, Y} = static(rem(X, Y)) Base.rem(x::Real, ::StaticInteger{Y}) where {Y} = rem(x, Y) Base.rem(::StaticInteger{X}, y::Real) where {X} = rem(X, y) Base.mod(::StaticNumber{X}, ::StaticNumber{Y}) where {X, Y} = static(mod(X, Y)) Base.mod(x::Real, ::StaticNumber{Y}) where {Y} = mod(x, Y) Base.mod(::StaticNumber{X}, y::Real) where {X} = mod(X, y) Base.:(==)(::StaticNumber{X}, ::StaticNumber{Y}) where {X, Y} = ==(X, Y) Base.:(<)(::StaticNumber{X}, ::StaticNumber{Y}) where {X, Y} = <(X, Y) Base.isless(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = isless(X, Y) Base.isless(::StaticInteger{X}, y::Real) where {X} = isless(X, y) Base.isless(x::Real, ::StaticInteger{Y}) where {Y} = isless(x, Y) Base.min(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(min(X, Y)) Base.min(::StaticInteger{X}, y::Number) where {X} = min(X, y) Base.min(x::Number, ::StaticInteger{Y}) where {Y} = min(x, Y) Base.max(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(max(X, Y)) Base.max(::StaticInteger{X}, y::Number) where {X} = max(X, y) Base.max(x::Number, ::StaticInteger{Y}) where {Y} = max(x, Y) Base.minmax(::StaticNumber{X}, ::StaticNumber{Y}) where {X, Y} = static(minmax(X, Y)) Base.:(<<)(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(<<(X, Y)) Base.:(<<)(::StaticInteger{X}, n::Integer) where {X} = <<(X, n) Base.:(<<)(x::Integer, ::StaticInteger{N}) where {N} = <<(x, N) Base.:(>>)(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(>>(X, Y)) Base.:(>>)(::StaticInteger{X}, n::Integer) where {X} = >>(X, n) Base.:(>>)(x::Integer, ::StaticInteger{N}) where {N} = >>(x, N) Base.:(>>>)(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(>>>(X, Y)) Base.:(>>>)(::StaticInteger{X}, n::Integer) where {X} = >>>(X, n) Base.:(>>>)(x::Integer, ::StaticInteger{N}) where {N} = >>>(x, N) Base.:(&)(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(X & Y) Base.:(&)(::StaticInteger{X}, y::Union{Integer, Missing}) where {X} = X & y Base.:(&)(x::Union{Integer, Missing}, ::StaticInteger{Y}) where {Y} = x & Y Base.:(&)(x::Bool, y::True) = x Base.:(&)(x::Bool, y::False) = y Base.:(&)(x::True, y::Bool) = y Base.:(&)(x::False, y::Bool) = x Base.:(|)(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(|(X, Y)) Base.:(|)(::StaticInteger{X}, y::Union{Integer, Missing}) where {X} = X | y Base.:(|)(x::Union{Integer, Missing}, ::StaticInteger{Y}) where {Y} = x | Y Base.:(|)(x::Bool, y::True) = y Base.:(|)(x::Bool, y::False) = x Base.:(|)(x::True, y::Bool) = x Base.:(|)(x::False, y::Bool) = y Base.xor(::StaticInteger{X}, ::StaticInteger{Y}) where {X, Y} = static(xor(X, Y)) Base.xor(::StaticInteger{X}, y::Union{Integer, Missing}) where {X} = xor(X, y) Base.xor(x::Union{Integer, Missing}, ::StaticInteger{Y}) where {Y} = xor(x, Y) Base.:(!)(::True) = False() Base.:(!)(::False) = True() Base.all(::Tuple{Vararg{True}}) = true Base.all(::Tuple{Vararg{Union{True, False}}}) = false Base.all(::Tuple{Vararg{False}}) = false Base.any(::Tuple{Vararg{True}}) = true Base.any(::Tuple{Vararg{Union{True, False}}}) = true Base.any(::Tuple{Vararg{False}}) = false Base.real(@nospecialize(x::StaticNumber)) = x Base.real(@nospecialize(T::Type{<:StaticNumber})) = eltype(T) Base.imag(@nospecialize(x::StaticNumber)) = zero(x) """ field_type(::Type{T}, f) Functionally equivalent to `fieldtype(T, f)` except `f` may be a static type. """ @inline field_type(T::Type, f::Union{Int, Symbol}) = fieldtype(T, f) @inline field_type(::Type{T}, ::StaticInt{N}) where {T, N} = fieldtype(T, N) @inline field_type(::Type{T}, ::StaticSymbol{S}) where {T, S} = fieldtype(T, S) @inline Base.exponent(::StaticNumber{M}) where {M} = static(exponent(M)) Base.:(^)(::StaticFloat64{x}, y::Float64) where {x} = exp2(log2(x) * y) Base.:(+)(x::True) = One() Base.:(+)(x::False) = Zero() # from `^(x::Bool, y::Bool) = x | !y` Base.:(^)(x::StaticBool, y::False) = True() Base.:(^)(x::StaticBool, y::True) = x Base.:(^)(x::Integer, y::False) = one(x) Base.:(^)(x::Integer, y::True) = x Base.:(^)(x::BigInt, y::False) = one(x) Base.:(^)(x::BigInt, y::True) = x @inline function Base.ntuple(f::F, ::StaticInt{N}) where {F, N} (N >= 0) || throw(ArgumentError(string("tuple length should be ≥ 0, got ", N))) if @generated quote Base.Cartesian.@ntuple $N i->f(i) end else Tuple(f(i) for i in 1:N) end end @inline function invariant_permutation(@nospecialize(x::Tuple), @nospecialize(y::Tuple)) if y === x === ntuple(static, StaticInt(nfields(x))) return True() else return False() end end @inline nstatic(::Val{N}) where {N} = ntuple(StaticInt, Val(N)) permute(@nospecialize(x::Tuple), @nospecialize(perm::Val)) = permute(x, static(perm)) @inline function permute(@nospecialize(x::Tuple), @nospecialize(perm::Tuple)) if invariant_permutation(nstatic(Val(nfields(x))), perm) === False() return eachop(getindex, perm, x) else return x end end """ eachop(op, args...; iterator::Tuple{Vararg{StaticInt}}) -> Tuple Produces a tuple of `(op(args..., iterator[1]), op(args..., iterator[2]),...)`. """ @inline function eachop(op::F, itr::Tuple{T, Vararg{Any}}, args::Vararg{Any}) where {F, T} (op(args..., first(itr)), eachop(op, Base.tail(itr), args...)...) end eachop(::F, ::Tuple{}, args::Vararg{Any}) where {F} = () """ eachop_tuple(op, arg, args...; iterator::Tuple{Vararg{StaticInt}}) -> Type{Tuple} Produces a tuple type of `Tuple{op(arg, args..., iterator[1]), op(arg, args..., iterator[2]),...}`. Note that if one of the arguments passed to `op` is a `Tuple` type then it should be the first argument instead of one of the trailing arguments, ensuring type inference of each element of the tuple. """ eachop_tuple(op, itr, arg, args...) = _eachop_tuple(op, itr, arg, args) @generated function _eachop_tuple(op, ::I, arg, args::A) where {A, I} t = Expr(:curly, Tuple) narg = length(A.parameters) for p in I.parameters call_expr = Expr(:call, :op, :arg) if narg > 0 for i in 1:narg push!(call_expr.args, :(getfield(args, $i))) end end push!(call_expr.args, :(StaticInt{$(p.parameters[1])}())) push!(t.args, call_expr) end Expr(:block, Expr(:meta, :inline), t) end #= find_first_eq(x, collection::Tuple) Finds the position in the tuple `collection` that is exactly equal (i.e. `===`) to `x`. If `x` and `collection` are static (`is_static`) and `x` is in `collection` then the return value is a `StaticInt`. =# @generated function find_first_eq(x::X, itr::I) where {X, N, I <: Tuple{Vararg{Any, N}}} # we avoid incidental code gen when evaluated a tuple of known values by iterating # through `I.parameters` instead of `known(I)`. index = known(X) === nothing ? nothing : findfirst(==(X), I.parameters) if index === nothing :(Base.Cartesian.@nif $(N + 1) d->(dynamic(x) == dynamic(getfield(itr, d))) d->(d) d->(nothing)) else :($(static(index))) end end function Base.invperm(p::Tuple{StaticInt, Vararg{StaticInt, N}}) where {N} map(Base.Fix2(find_first_eq, p), ntuple(static, StaticInt(N + 1))) end """ reduce_tup(f::F, inds::Tuple{Vararg{Any,N}}) where {F,N} An optimized `reduce` for tuples. `Base.reduce`'s `afoldl` will often not inline. Additionally, `reduce_tup` attempts to order the reduction in an optimal manner. ```julia julia> using StaticArrays, Static, BenchmarkTools julia> rsum(v::SVector) = Static.reduce_tup(+, v.data) rsum (generic function with 2 methods) julia> for n ∈ 2:16 @show n v = @SVector rand(n) s1 = @btime sum(\$(Ref(v))[]) s2 = @btime rsum(\$(Ref(v))[]) end n = 2 0.863 ns (0 allocations: 0 bytes) 0.863 ns (0 allocations: 0 bytes) n = 3 0.862 ns (0 allocations: 0 bytes) 0.863 ns (0 allocations: 0 bytes) n = 4 0.862 ns (0 allocations: 0 bytes) 0.862 ns (0 allocations: 0 bytes) n = 5 1.074 ns (0 allocations: 0 bytes) 0.864 ns (0 allocations: 0 bytes) n = 6 0.864 ns (0 allocations: 0 bytes) 0.862 ns (0 allocations: 0 bytes) n = 7 1.075 ns (0 allocations: 0 bytes) 0.864 ns (0 allocations: 0 bytes) n = 8 1.077 ns (0 allocations: 0 bytes) 0.865 ns (0 allocations: 0 bytes) n = 9 1.081 ns (0 allocations: 0 bytes) 0.865 ns (0 allocations: 0 bytes) n = 10 1.195 ns (0 allocations: 0 bytes) 0.867 ns (0 allocations: 0 bytes) n = 11 1.357 ns (0 allocations: 0 bytes) 1.400 ns (0 allocations: 0 bytes) n = 12 1.543 ns (0 allocations: 0 bytes) 1.074 ns (0 allocations: 0 bytes) n = 13 1.702 ns (0 allocations: 0 bytes) 1.077 ns (0 allocations: 0 bytes) n = 14 1.913 ns (0 allocations: 0 bytes) 0.867 ns (0 allocations: 0 bytes) n = 15 2.076 ns (0 allocations: 0 bytes) 1.077 ns (0 allocations: 0 bytes) n = 16 2.273 ns (0 allocations: 0 bytes) 1.078 ns (0 allocations: 0 bytes) ``` More importantly, `reduce_tup(_pick_range, inds)` often performs better than `reduce(_pick_range, inds)`. ```julia julia> using ArrayInterface, BenchmarkTools, Static julia> inds = (Base.OneTo(100), 1:100, 1:static(100)) (Base.OneTo(100), 1:100, 1:static(100)) julia> @btime reduce(ArrayInterface._pick_range, \$(Ref(inds))[]) 6.405 ns (0 allocations: 0 bytes) Base.Slice(static(1):static(100)) julia> @btime Static.reduce_tup(ArrayInterface._pick_range, \$(Ref(inds))[]) 2.570 ns (0 allocations: 0 bytes) Base.Slice(static(1):static(100)) julia> inds = (Base.OneTo(100), 1:100, 1:UInt(100)) (Base.OneTo(100), 1:100, 0x0000000000000001:0x0000000000000064) julia> @btime reduce(ArrayInterface._pick_range, \$(Ref(inds))[]) 6.411 ns (0 allocations: 0 bytes) Base.Slice(static(1):100) julia> @btime Static.reduce_tup(ArrayInterface._pick_range, \$(Ref(inds))[]) 2.592 ns (0 allocations: 0 bytes) Base.Slice(static(1):100) julia> inds = (Base.OneTo(100), 1:100, 1:UInt(100), Int32(1):Int32(100)) (Base.OneTo(100), 1:100, 0x0000000000000001:0x0000000000000064, 1:100) julia> @btime reduce(ArrayInterface._pick_range, \$(Ref(inds))[]) 9.048 ns (0 allocations: 0 bytes) Base.Slice(static(1):100) julia> @btime Static.reduce_tup(ArrayInterface._pick_range, \$(Ref(inds))[]) 2.569 ns (0 allocations: 0 bytes) Base.Slice(static(1):100) ``` """ @generated function reduce_tup(f::F, inds::Tuple{Vararg{Any, N}}) where {F, N} q = Expr(:block, Expr(:meta, :inline, :propagate_inbounds)) if N == 1 push!(q.args, :(inds[1])) return q end syms = Vector{Symbol}(undef, N) i = 0 for n in 1:N syms[n] = iₙ = Symbol(:i_, (i += 1)) push!(q.args, Expr(:(=), iₙ, Expr(:ref, :inds, n))) end W = 1 << (8sizeof(N) - 2 - leading_zeros(N)) while W > 0 _N = length(syms) for _ in (2W):W:_N for w in 1:W new_sym = Symbol(:i_, (i += 1)) push!(q.args, Expr(:(=), new_sym, Expr(:call, :f, syms[w], syms[w + W]))) syms[w] = new_sym end deleteat!(syms, (1 + W):(2W)) end W >>>= 1 end q end # This method assumes that `f` uetrieves compile time information and `g` is the fall back # for the corresponding dynamic method. If the `f(x)` doesn't return `nothing` that means # the value is known and compile time and returns `static(f(x))`. @inline function maybe_static(f::F, g::G, x) where {F, G} L = f(x) if L === nothing return g(x) else return static(L) end end """ eq(x, y) Equivalent to `!=` but if `x` and `y` are both static returns a `StaticBool. """ eq(x::X, y::Y) where {X, Y} = ifelse(is_static(X) & is_static(Y), static, identity)(x == y) eq(x) = Base.Fix2(eq, x) """ ne(x, y) Equivalent to `!=` but if `x` and `y` are both static returns a `StaticBool. """ ne(x::X, y::Y) where {X, Y} = !eq(x, y) ne(x) = Base.Fix2(ne, x) """ gt(x, y) Equivalent to `>` but if `x` and `y` are both static returns a `StaticBool. """ gt(x::X, y::Y) where {X, Y} = ifelse(is_static(X) & is_static(Y), static, identity)(x > y) gt(x) = Base.Fix2(gt, x) """ ge(x, y) Equivalent to `>=` but if `x` and `y` are both static returns a `StaticBool. """ ge(x::X, y::Y) where {X, Y} = ifelse(is_static(X) & is_static(Y), static, identity)(x >= y) ge(x) = Base.Fix2(ge, x) """ le(x, y) Equivalent to `<=` but if `x` and `y` are both static returns a `StaticBool. """ le(x::X, y::Y) where {X, Y} = ifelse(is_static(X) & is_static(Y), static, identity)(x <= y) le(x) = Base.Fix2(le, x) """ lt(x, y) Equivalent to `<` but if `x` and `y` are both static returns a `StaticBool. """ lt(x::X, y::Y) where {X, Y} = ifelse(is_static(X) & is_static(Y), static, identity)(x < y) lt(x) = Base.Fix2(lt, x) """ mul(x) -> Base.Fix2(*, x) mul(x, y) -> Equivalent to `*` but allows for lazy multiplication when passing functions. """ mul(x) = Base.Fix2(*, x) """ add(x) -> Base.Fix2(+, x) add(x, y) -> Equivalent to `+` but allows for lazy addition when passing functions. """ add(x) = Base.Fix2(+, x) const Mul{X} = Base.Fix2{typeof(*), X} const Add{X} = Base.Fix2{typeof(+), X} Base.:∘(::Add{StaticInt{X}}, ::Add{StaticInt{Y}}) where {X, Y} = Base.Fix2(+, static(X + Y)) Base.:∘(x::Mul{Int}, ::Add{StaticInt{0}}) = x Base.:∘(x::Mul{StaticInt{X}}, ::Add{StaticInt{0}}) where {X} = x Base.:∘(x::Mul{StaticInt{0}}, ::Add{StaticInt{0}}) = x Base.:∘(x::Mul{StaticInt{1}}, ::Add{StaticInt{0}}) = x Base.:∘(x::Mul{StaticInt{0}}, y::Add{StaticInt{Y}}) where {Y} = x Base.:∘(::Mul{StaticInt{1}}, y::Add{StaticInt{Y}}) where {Y} = y Base.:∘(x::Mul{StaticInt{0}}, y::Add{Int}) = x Base.:∘(::Mul{StaticInt{1}}, y::Add{Int}) = y Base.:∘(::Mul{StaticInt{X}}, ::Mul{StaticInt{Y}}) where {X, Y} = Base.Fix2(*, static(X * Y)) Base.:∘(x::Mul{StaticInt{0}}, y::Mul{Int}) = x Base.:∘(::Mul{Int}, y::Mul{StaticInt{0}}) = y Base.:∘(::Mul{StaticInt{1}}, y::Mul{Int}) = y Base.:∘(x::Mul{Int}, ::Mul{StaticInt{1}}) = x # length Base.length(@nospecialize(x::NDIndex))::Int = length(Tuple(x)) Base.length(::Type{<:NDIndex{N}}) where {N} = N # indexing Base.@propagate_inbounds function Base.getindex(x::NDIndex{N, T}, i::Int)::Int where {N, T} return Int(getfield(Tuple(x), i)) end Base.@propagate_inbounds function Base.getindex(x::NDIndex{N, T}, i::StaticInt{I}) where {N, T, I} return getfield(Tuple(x), I) end # Base.get(A::AbstractArray, I::CartesianIndex, default) = get(A, I.I, default) # eltype(::Type{T}) where {T<:CartesianIndex} = eltype(fieldtype(T, :I)) Base.setindex(x::NDIndex, i, j) = NDIndex(Base.setindex(Tuple(x), i, j)) # equality Base.:(==)(@nospecialize(x::NDIndex), @nospecialize(y::NDIndex)) = ==(Tuple(x), Tuple(y)) # zeros and ones Base.zero(@nospecialize(x::NDIndex)) = zero(typeof(x)) function Base.zero(@nospecialize(T::Type{<:NDIndex})) NDIndex(ntuple(_ -> static(0), Val(length(T)))) end Base.oneunit(@nospecialize(x::NDIndex)) = oneunit(typeof(x)) function Base.oneunit(@nospecialize(T::Type{<:NDIndex})) NDIndex(ntuple(_ -> static(1), Val(length(T)))) end @inline function Base.IteratorsMD.split(i::NDIndex, V::Val) i, j = Base.IteratorsMD.split(Tuple(i), V) return NDIndex(i), NDIndex(j) end # arithmetic, min/max @inline Base.:(-)(@nospecialize(i::NDIndex)) = NDIndex(map(-, Tuple(i))) @inline function Base.:(+)(@nospecialize(i1::NDIndex), @nospecialize(i2::NDIndex)) NDIndex(map(+, Tuple(i1), Tuple(i2))) end @inline function Base.:(-)(@nospecialize(i1::NDIndex), @nospecialize(i2::NDIndex)) NDIndex(map(-, Tuple(i1), Tuple(i2))) end @inline function Base.min(@nospecialize(i1::NDIndex), @nospecialize(i2::NDIndex)) NDIndex(map(min, Tuple(i1), Tuple(i2))) end @inline function Base.max(@nospecialize(i1::NDIndex), @nospecialize(i2::NDIndex)) NDIndex(map(max, Tuple(i1), Tuple(i2))) end @inline function Base.:(*)(a::Integer, @nospecialize(i::NDIndex)) NDIndex(map(x -> a * x, Tuple(i))) end @inline Base.:(*)(@nospecialize(i::NDIndex), a::Integer) = *(a, i) Base.CartesianIndex(@nospecialize(x::NDIndex)) = dynamic(x) # comparison @inline function Base.isless(@nospecialize(x::NDIndex), @nospecialize(y::NDIndex)) Bool(_isless(static(0), Tuple(x), Tuple(y))) end function lt(@nospecialize(x::NDIndex), @nospecialize(y::NDIndex)) _isless(static(0), Tuple(x), Tuple(y)) end _final_isless(c::Int) = c === 1 _final_isless(::StaticInt{N}) where {N} = static(false) _final_isless(::StaticInt{1}) = static(true) _isless(c::C, x::Tuple{}, y::Tuple{}) where {C} = _final_isless(c) function _isless(c::C, x::Tuple, y::Tuple) where {C} _isless(icmp(c, x, y), Base.front(x), Base.front(y)) end icmp(::StaticInt{0}, x::Tuple, y::Tuple) = icmp(last(x), last(y)) icmp(::StaticInt{N}, x::Tuple, y::Tuple) where {N} = static(N) function icmp(cmp::Int, x::Tuple, y::Tuple) if cmp === 0 return icmp(Int(last(x)), Int(last(y))) else return cmp end end icmp(a, b) = _icmp(lt(a, b), a, b) _icmp(x::StaticBool, a, b) = ifelse(x, static(1), __icmp(eq(a, b))) _icmp(x::Bool, a, b) = ifelse(x, 1, __icmp(a == b)) __icmp(x::StaticBool) = ifelse(x, static(0), static(-1)) __icmp(x::Bool) = ifelse(x, 0, -1) # Necessary for compatibility with Base # In simple cases, we know that we don't need to use axes(A). Optimize those # until Julia gets smart enough to elide the call on its own: @inline function Base.to_indices(A, inds, I::Tuple{NDIndex, Vararg{Any}}) to_indices(A, inds, (Tuple(I[1])..., Base.tail(I)...)) end # But for arrays of CartesianIndex, we just skip the appropriate number of inds @inline function Base.to_indices(A, inds, I::Tuple{AbstractArray{NDIndex{N, J}}, Vararg{Any}}) where { N, J } _, indstail = Base.IteratorsMD.split(inds, Val(N)) return (Base.to_index(A, I[1]), to_indices(A, indstail, Base.tail(I))...) end function Base.show(io::IO, @nospecialize(x::Union{StaticNumber, StaticSymbol, NDIndex})) show(io, MIME"text/plain"(), x) end function Base.show(io::IO, ::MIME"text/plain", @nospecialize(x::Union{StaticNumber, StaticSymbol})) print(io, "static(" * repr(known(typeof(x))) * ")") nothing end function Base.show(io::IO, m::MIME"text/plain", @nospecialize(x::NDIndex)) print(io, "NDIndex") show(io, m, Tuple(x)) nothing end include("ranges.jl") end
Static
https://github.com/SciML/Static.jl.git
[ "MIT" ]
1.1.1
87d51a3ee9a4b0d2fe054bdd3fc2436258db2603
code
5623
""" StaticFloat64{N} A statically sized `Float64`. Use `StaticInt(N)` instead of `Val(N)` when you want it to behave like a number. """ struct StaticFloat64{N} <: Real StaticFloat64{N}() where {N} = new{N::Float64}() StaticFloat64(x::Float64) = new{x}() StaticFloat64(x::Int) = new{Base.sitofp(Float64, x)::Float64}() StaticFloat64(x::StaticInt{N}) where {N} = StaticFloat64(convert(Float64, N)) StaticFloat64(x::Complex) = StaticFloat64(convert(Float64, x)) StaticFloat64(@nospecialize x::StaticFloat64) = x end Base.zero(@nospecialize T::Type{<:StaticFloat64}) = Float64(0.0) Base.one(@nospecialize T::Type{<:StaticFloat64}) = Float64(1.0) Base.round(::StaticFloat64{M}) where {M} = StaticFloat64(round(M)) roundtostaticint(::StaticFloat64{M}) where {M} = StaticInt(round(Int, M)) roundtostaticint(x::AbstractFloat) = round(Int, x) floortostaticint(::StaticFloat64{M}) where {M} = StaticInt(Base.fptosi(Int, M)) floortostaticint(x::AbstractFloat) = Base.fptosi(Int, x) Base.rad2deg(::StaticFloat64{M}) where {M} = StaticFloat64(rad2deg(M)) Base.deg2rad(::StaticFloat64{M}) where {M} = StaticFloat64(deg2rad(M)) @generated Base.cbrt(::StaticFloat64{M}) where {M} = StaticFloat64(cbrt(M)) Base.mod2pi(::StaticFloat64{M}) where {M} = StaticFloat64(mod2pi(M)) @generated Base.sinpi(::StaticFloat64{M}) where {M} = StaticFloat64(sinpi(M)) @generated Base.cospi(::StaticFloat64{M}) where {M} = StaticFloat64(cospi(M)) Base.exp(::StaticFloat64{M}) where {M} = StaticFloat64(exp(M)) Base.exp2(::StaticFloat64{M}) where {M} = StaticFloat64(exp2(M)) Base.exp10(::StaticFloat64{M}) where {M} = StaticFloat64(exp10(M)) @generated Base.expm1(::StaticFloat64{M}) where {M} = StaticFloat64(expm1(M)) @generated Base.log(::StaticFloat64{M}) where {M} = StaticFloat64(log(M)) @generated Base.log2(::StaticFloat64{M}) where {M} = StaticFloat64(log2(M)) @generated Base.log10(::StaticFloat64{M}) where {M} = StaticFloat64(log10(M)) @generated Base.log1p(::StaticFloat64{M}) where {M} = StaticFloat64(log1p(M)) @generated Base.sin(::StaticFloat64{M}) where {M} = StaticFloat64(sin(M)) @generated Base.cos(::StaticFloat64{M}) where {M} = StaticFloat64(cos(M)) @generated Base.tan(::StaticFloat64{M}) where {M} = StaticFloat64(tan(M)) Base.sec(x::StaticFloat64{M}) where {M} = inv(cos(x)) Base.csc(x::StaticFloat64{M}) where {M} = inv(sin(x)) Base.cot(x::StaticFloat64{M}) where {M} = inv(tan(x)) @generated Base.asin(::StaticFloat64{M}) where {M} = StaticFloat64(asin(M)) @generated Base.acos(::StaticFloat64{M}) where {M} = StaticFloat64(acos(M)) @generated Base.atan(::StaticFloat64{M}) where {M} = StaticFloat64(atan(M)) @generated Base.sind(::StaticFloat64{M}) where {M} = StaticFloat64(sind(M)) @generated Base.cosd(::StaticFloat64{M}) where {M} = StaticFloat64(cosd(M)) Base.tand(x::StaticFloat64{M}) where {M} = sind(x) / cosd(x) Base.secd(x::StaticFloat64{M}) where {M} = inv(cosd(x)) Base.cscd(x::StaticFloat64{M}) where {M} = inv(sind(x)) Base.cotd(x::StaticFloat64{M}) where {M} = inv(tand(x)) Base.asind(x::StaticFloat64{M}) where {M} = rad2deg(asin(x)) Base.acosd(x::StaticFloat64{M}) where {M} = rad2deg(acos(x)) Base.asecd(x::StaticFloat64{M}) where {M} = rad2deg(asec(x)) Base.acscd(x::StaticFloat64{M}) where {M} = rad2deg(acsc(x)) Base.acotd(x::StaticFloat64{M}) where {M} = rad2deg(acot(x)) Base.atand(x::StaticFloat64{M}) where {M} = rad2deg(atan(x)) @generated Base.sinh(::StaticFloat64{M}) where {M} = StaticFloat64(sinh(M)) Base.cosh(::StaticFloat64{M}) where {M} = StaticFloat64(cosh(M)) Base.tanh(x::StaticFloat64{M}) where {M} = StaticFloat64(tanh(M)) Base.sech(x::StaticFloat64{M}) where {M} = inv(cosh(x)) Base.csch(x::StaticFloat64{M}) where {M} = inv(sinh(x)) Base.coth(x::StaticFloat64{M}) where {M} = inv(tanh(x)) @generated Base.asinh(::StaticFloat64{M}) where {M} = StaticFloat64(asinh(M)) @generated Base.acosh(::StaticFloat64{M}) where {M} = StaticFloat64(acosh(M)) @generated Base.atanh(::StaticFloat64{M}) where {M} = StaticFloat64(atanh(M)) Base.asech(x::StaticFloat64{M}) where {M} = acosh(inv(x)) Base.acsch(x::StaticFloat64{M}) where {M} = asinh(inv(x)) Base.acoth(x::StaticFloat64{M}) where {M} = atanh(inv(x)) Base.asec(x::StaticFloat64{M}) where {M} = acos(inv(x)) Base.acsc(x::StaticFloat64{M}) where {M} = asin(inv(x)) Base.acot(x::StaticFloat64{M}) where {M} = atan(inv(x)) Base.rem(x::Real, ::StaticFloat64{Y}) where {Y} = rem(x, Y) Base.rem(::StaticFloat64{X}, y::Real) where {X} = rem(X, y) Base.rem(::StaticFloat64{X}, ::StaticFloat64{Y}) where {X, Y} = StaticFloat64(rem(X, Y)) Base.min(x::StaticFloat64{X}, y::StaticFloat64{Y}) where {X, Y} = X > Y ? y : x Base.min(x::Real, ::StaticFloat64{Y}) where {Y} = min(x, Y) Base.min(::StaticFloat64{X}, y::Real) where {X} = min(X, y) Base.max(x::StaticFloat64{X}, y::StaticFloat64{Y}) where {X, Y} = X > Y ? x : y Base.max(x::Real, ::StaticFloat64{Y}) where {Y} = max(x, Y) Base.max(::StaticFloat64{X}, y::Real) where {X} = max(X, y) Base.isless(::StaticFloat64{X}, ::StaticFloat64{Y}) where {X, Y} = isless(X, Y) Base.isless(x::AbstractFloat, ::StaticFloat64{Y}) where {Y} = isless(x, Y) Base.isless(::StaticFloat64{X}, y::AbstractFloat) where {X} = isless(X, y) Base.inv(::StaticFloat64{N}) where {N} = StaticFloat64(1.0 / N) Base.:(*)(::StaticFloat64{X}, ::StaticFloat64{Y}) where {X, Y} = static(X * Y) Base.:(/)(::StaticFloat64{X}, ::StaticFloat64{Y}) where {X, Y} = static(X / Y) Base.:(-)(::StaticFloat64{X}, ::StaticFloat64{Y}) where {X, Y} = static(X - Y) Base.:(+)(::StaticFloat64{X}, ::StaticFloat64{Y}) where {X, Y} = static(X + Y) Base.isinteger(x::StaticFloat64{X}) where {X} = isinteger(X)
Static
https://github.com/SciML/Static.jl.git
[ "MIT" ]
1.1.1
87d51a3ee9a4b0d2fe054bdd3fc2436258db2603
code
14880
""" OptionallyStaticUnitRange(start, stop) <: AbstractUnitRange{Int} Similar to `UnitRange` except each field may be an `Int` or `StaticInt`. An `OptionallyStaticUnitRange` is intended to be constructed internally from other valid indices. Therefore, users should not expect the same checks are used to ensure construction of a valid `OptionallyStaticUnitRange` as a `UnitRange`. """ struct OptionallyStaticUnitRange{F <: IntType, L <: IntType} <: AbstractUnitRange{Int} start::F stop::L function OptionallyStaticUnitRange(start::IntType, stop::IntType) new{typeof(start), typeof(stop)}(start, stop) end function OptionallyStaticUnitRange(start, stop) OptionallyStaticUnitRange(IntType(start), IntType(stop)) end OptionallyStaticUnitRange(@nospecialize x::OptionallyStaticUnitRange) = x function OptionallyStaticUnitRange(x::AbstractRange) step(x) == 1 && return OptionallyStaticUnitRange(static_first(x), static_last(x)) errmsg(x) = throw(ArgumentError("step must be 1, got $(step(x))")) # avoid GC frame errmsg(x) end function OptionallyStaticUnitRange{F, L}(x::AbstractRange) where {F, L} OptionallyStaticUnitRange(x) end function OptionallyStaticUnitRange{StaticInt{F}, StaticInt{L}}() where {F, L} new{StaticInt{F}, StaticInt{L}}() end end """ OptionallyStaticStepRange(start, step, stop) <: OrdinalRange{Int,Int} Similarly to [`OptionallyStaticUnitRange`](@ref), `OptionallyStaticStepRange` permits a combination of static and standard primitive `Int`s to construct a range. It specifically enables the use of ranges without a step size of 1. It may be constructed through the use of `OptionallyStaticStepRange` directly or using static integers with the range operator (i.e., `:`). ```julia julia> using Static julia> x = static(2); julia> x:x:10 static(2):static(2):10 julia> Static.OptionallyStaticStepRange(x, x, 10) static(2):static(2):10 ``` """ struct OptionallyStaticStepRange{F <: IntType, S <: IntType, L <: IntType} <: OrdinalRange{Int, Int} start::F step::S stop::L global function _OptionallyStaticStepRange(@nospecialize(start::IntType), @nospecialize(step::IntType), @nospecialize(stop::IntType)) new{typeof(start), typeof(step), typeof(stop)}(start, step, stop) end end @noinline function OptionallyStaticStepRange(@nospecialize(start::IntType), ::StaticInt{0}, @nospecialize(stop::IntType)) throw(ArgumentError("step cannot be zero")) end # we don't need to check the `stop` if we know it acts like a unit range function OptionallyStaticStepRange(@nospecialize(start::IntType), step::StaticInt{1}, @nospecialize(stop::IntType)) _OptionallyStaticStepRange(start, step, stop) end function OptionallyStaticStepRange(@nospecialize(start::IntType), @nospecialize(step::StaticInt), @nospecialize(stop::IntType)) _OptionallyStaticStepRange(start, step, _steprange_last(start, step, stop)) end function OptionallyStaticStepRange(start, step, stop) OptionallyStaticStepRange(IntType(start), IntType(step), IntType(stop)) end function OptionallyStaticStepRange(@nospecialize(start::IntType), step::Int, @nospecialize(stop::IntType)) if step === 0 throw(ArgumentError("step cannot be zero")) else _OptionallyStaticStepRange(start, step, _steprange_last(start, step, stop)) end end OptionallyStaticStepRange(@nospecialize x::OptionallyStaticStepRange) = x function OptionallyStaticStepRange(x::AbstractRange) _OptionallyStaticStepRange(IntType(static_first(x)), IntType(static_step(x)), IntType(static_last(x))) end # to make StepRange constructor inlineable, so optimizer can see `step` value @inline function _steprange_last(start::StaticInt, step::StaticInt, stop::StaticInt) StaticInt(_steprange_last(Int(start), Int(step), Int(stop))) end @inline function _steprange_last(start::Union{StaticInt, Int}, step::Union{StaticInt, Int}, stop::Union{StaticInt, Int}) _steprange_last(Int(start), Int(step), Int(stop)) end @inline function _steprange_last(start::Int, step::Int, stop::Int) if stop === start return stop elseif step > 0 if stop > start return stop - rem(stop - start, step) else return start - 1 end else if stop > start return start + 1 else return stop + rem(start - stop, -step) end end end """ SUnitRange(start::Int, stop::Int) An alias for `OptionallyStaticUnitRange` where both the start and stop are known statically. """ const SUnitRange{F, L} = OptionallyStaticUnitRange{StaticInt{F}, StaticInt{L}} SUnitRange(start::Int, stop::Int) = SUnitRange{start, stop}() """ SOneTo(n::Int) An alias for `OptionallyStaticUnitRange` usfeul for statically sized axes. """ const SOneTo{L} = SUnitRange{1, L} SOneTo(n::Int) = SOneTo{n}() Base.oneto(::StaticInt{N}) where {N} = SOneTo{N}() const OptionallyStaticRange{F, L} = Union{OptionallyStaticUnitRange{F, L}, OptionallyStaticStepRange{F, <:Any, L}} # these probide a generic method for extracting potentially static values. static_first(x::Base.OneTo) = StaticInt(1) static_first(x::Union{Base.Slice, Base.IdentityUnitRange}) = static_first(x.indices) static_first(x::OptionallyStaticRange) = getfield(x, :start) static_first(x) = first(x) static_step(@nospecialize x::AbstractUnitRange) = StaticInt(1) static_step(x::OptionallyStaticStepRange) = getfield(x, :step) static_step(x) = step(x) static_last(x::OptionallyStaticRange) = getfield(x, :stop) static_last(x) = last(x) static_last(x::Union{Base.Slice, Base.IdentityUnitRange}) = static_last(x.indices) Base.first(x::OptionallyStaticRange{Int}) = getfield(x, :start) Base.first(::OptionallyStaticRange{StaticInt{F}}) where {F} = F Base.step(x::OptionallyStaticStepRange{<:Any, Int}) = getfield(x, :step) Base.step(::OptionallyStaticStepRange{<:Any, StaticInt{S}}) where {S} = S Base.last(x::OptionallyStaticRange{<:Any, Int}) = getfield(x, :stop) Base.last(::OptionallyStaticRange{<:Any, StaticInt{L}}) where {L} = L # FIXME this line causes invalidations Base.:(:)(L::Integer, ::StaticInt{U}) where {U} = OptionallyStaticUnitRange(L, StaticInt(U)) Base.:(:)(::StaticInt{L}, U::Integer) where {L} = OptionallyStaticUnitRange(StaticInt(L), U) function Base.:(:)(::StaticInt{L}, ::StaticInt{U}) where {L, U} OptionallyStaticUnitRange(StaticInt(L), StaticInt(U)) end function Base.:(:)(::StaticInt{F}, ::StaticInt{S}, ::StaticInt{L}) where {F, S, L} OptionallyStaticStepRange(StaticInt(F), StaticInt(S), StaticInt(L)) end function Base.:(:)(start::Integer, ::StaticInt{S}, ::StaticInt{L}) where {S, L} OptionallyStaticStepRange(start, StaticInt(S), StaticInt(L)) end function Base.:(:)(::StaticInt{F}, ::StaticInt{S}, stop::Integer) where {F, S} OptionallyStaticStepRange(StaticInt(F), StaticInt(S), stop) end function Base.:(:)(::StaticInt{F}, step::Integer, ::StaticInt{L}) where {F, L} OptionallyStaticStepRange(StaticInt(F), step, StaticInt(L)) end function Base.:(:)(start::Integer, step::Integer, ::StaticInt{L}) where {L} OptionallyStaticStepRange(start, step, StaticInt(L)) end function Base.:(:)(start::Integer, ::StaticInt{S}, stop::Integer) where {S} OptionallyStaticStepRange(start, StaticInt(S), stop) end function Base.:(:)(::StaticInt{F}, step::Integer, stop::Integer) where {F} OptionallyStaticStepRange(StaticInt(F), step, stop) end Base.:(:)(start::StaticInt{F}, ::StaticInt{1}, stop::StaticInt{L}) where {F, L} = start:stop Base.:(:)(start::Integer, ::StaticInt{1}, stop::StaticInt{L}) where {L} = start:stop Base.:(:)(start::StaticInt{F}, ::StaticInt{1}, stop::Integer) where {F} = start:stop function Base.:(:)(start::Integer, ::StaticInt{1}, stop::Integer) OptionallyStaticUnitRange(start, stop) end Base.isempty(r::OptionallyStaticUnitRange) = first(r) > last(r) @inline function Base.isempty(x::OptionallyStaticStepRange) start = first(x) stop = last(x) if start === stop return false else s = step(x) s > 0 ? start > stop : start < stop end end function Base.checkindex(::Type{Bool}, ::SUnitRange{F1, L1}, ::SUnitRange{F2, L2}) where {F1, L1, F2, L2} (F1::Int <= F2::Int) && (L1::Int >= L2::Int) end function Base.getindex(r::OptionallyStaticUnitRange, s::AbstractUnitRange{<:Integer}) @boundscheck checkbounds(r, s) f = static_first(r) fnew = f - one(f) return (fnew + static_first(s)):(fnew + static_last(s)) end function Base.getindex(x::OptionallyStaticUnitRange{StaticInt{1}}, i::Int) @boundscheck checkbounds(x, i) i end function Base.getindex(x::OptionallyStaticUnitRange, i::Int) val = first(x) + (i - 1) @boundscheck ((i < 1) || val > last(x)) && throw(BoundsError(x, i)) val::Int end ## length @inline function Base.length(x::OptionallyStaticUnitRange) start = first(x) stop = last(x) start > stop ? 0 : stop - start + 1 end Base.length(r::OptionallyStaticStepRange) = _range_length(first(r), step(r), last(r)) @inline function _range_length(start::Int, s::Int, stop::Int) if s > 0 stop < start ? 0 : div(stop - start, s) + 1 else stop > start ? 0 : div(start - stop, -s) + 1 end end Base.AbstractUnitRange{Int}(r::OptionallyStaticUnitRange) = r function Base.AbstractUnitRange{T}(r::OptionallyStaticUnitRange) where {T} start = static_first(r) if isa(start, StaticInt{1}) && T <: Integer return Base.OneTo{T}(T(static_last(r))) else return UnitRange{T}(T(static_first(r)), T(static_last(r))) end end Base.isdone(x::OptionallyStaticRange, state::Int) = state === last(x) function _next(x::OptionallyStaticRange) new_state = first(x) (new_state, new_state) end @inline function _next(@nospecialize(x::OptionallyStaticUnitRange), state::Int) new_state = state + 1 (new_state, new_state) end @inline function _next(x::OptionallyStaticStepRange, state::Int) new_state = state + step(x) (new_state, new_state) end @inline Base.iterate(x::OptionallyStaticRange) = isempty(x) ? nothing : _next(x) @inline function Base.iterate(x::OptionallyStaticRange, s::Int) Base.isdone(x, s) ? nothing : _next(x, s) end Base.to_shape(x::OptionallyStaticRange) = length(x) Base.to_shape(x::Base.Slice{T}) where {T <: OptionallyStaticRange} = length(x) Base.axes(S::Base.Slice{<:OptionallyStaticUnitRange{StaticInt{1}}}) = (S.indices,) Base.axes(S::Base.Slice{<:OptionallyStaticRange}) = (Base.IdentityUnitRange(S.indices),) Base.axes(x::OptionallyStaticRange) = (Base.axes1(x),) function Base.axes1(x::OptionallyStaticUnitRange) OptionallyStaticUnitRange(StaticInt(1), length(x)) end Base.axes1(x::OptionallyStaticUnitRange{StaticInt{1}}) = x function Base.axes1(x::OptionallyStaticUnitRange{StaticInt{F}, StaticInt{L}}) where {F, L} OptionallyStaticUnitRange(StaticInt(1), StaticInt(L - F + 1)) end function Base.axes1(x::OptionallyStaticStepRange) OptionallyStaticUnitRange(StaticInt(1), length(x)) end function Base.axes1(x::OptionallyStaticStepRange{ StaticInt{F}, StaticInt{S}, StaticInt{L}}) where { F, S, L } OptionallyStaticUnitRange(StaticInt(1), StaticInt(_range_length(F, S, L))) end Base.axes1(x::Base.Slice{<:OptionallyStaticUnitRange{One}}) = x.indices Base.axes1(x::Base.Slice{<:OptionallyStaticRange}) = Base.IdentityUnitRange(x.indices) Base.:(-)(r::OptionallyStaticRange) = (-static_first(r)):(-static_step(r)):(-static_last(r)) function Base.reverse(x::OptionallyStaticUnitRange) _OptionallyStaticStepRange(getfield(x, :stop), StaticInt(-1), getfield(x, :start)) end function Base.reverse(x::OptionallyStaticStepRange) _OptionallyStaticStepRange(getfield(x, :stop), -getfield(x, :step), getfield(x, :start)) end Base.show(io::IO, @nospecialize(x::OptionallyStaticRange)) = show(io, MIME"text/plain"(), x) function Base.show(io::IO, ::MIME"text/plain", @nospecialize(r::OptionallyStaticUnitRange)) print(io, "$(getfield(r, :start)):$(getfield(r, :stop))") end function Base.show(io::IO, ::MIME"text/plain", @nospecialize(r::OptionallyStaticStepRange)) print(io, "$(getfield(r, :start)):$(getfield(r, :step)):$(getfield(r, :stop))") end # we overload properties because occasionally Base assumes that abstract range types have # the same exact same set up as native types where `x.start === first(x)` @inline function Base.getproperty(x::OptionallyStaticRange, s::Symbol) if s === :start return first(x) elseif s === :step return step(x) elseif s === :stop return last(x) else error("$x has no property $s") end end function Base.Broadcast.axistype(r::OptionallyStaticUnitRange{StaticInt{1}}, _) Base.OneTo(last(r)) end function Base.Broadcast.axistype(_, r::OptionallyStaticUnitRange{StaticInt{1}}) Base.OneTo(last(r)) end function Base.Broadcast.axistype(r::OptionallyStaticUnitRange{StaticInt{1}}, ::OptionallyStaticUnitRange{StaticInt{1}}) Base.OneTo(last(r)) end function Base.similar(::Type{<:Array{T}}, axes::Tuple{OptionallyStaticUnitRange{StaticInt{1}}, Vararg{ Union{Base.OneTo, OptionallyStaticUnitRange{StaticInt{1}}}}}) where { T } Array{T}(undef, map(last, axes)) end function Base.similar(::Type{<:Array{T}}, axes::Tuple{Base.OneTo, OptionallyStaticUnitRange{StaticInt{1}}, Vararg{ Union{Base.OneTo, OptionallyStaticUnitRange{StaticInt{1}}}}}) where { T } Array{T}(undef, map(last, axes)) end function Base.first(x::OptionallyStaticUnitRange, n::IntType) n < 0 && throw(ArgumentError("Number of elements must be nonnegative")) start = static_first(x) OptionallyStaticUnitRange(start, min(start - one(start) + n, static_last(x))) end function Base.first(x::OptionallyStaticStepRange, n::IntType) n < 0 && throw(ArgumentError("Number of elements must be nonnegative")) start = static_first(x) s = static_step(x) stop = min(((n - one(n)) * s) + static_first(x), static_last(x)) OptionallyStaticStepRange(start, s, stop) end function Base.last(x::OptionallyStaticUnitRange, n::IntType) n < 0 && throw(ArgumentError("Number of elements must be nonnegative")) stop = static_last(x) OptionallyStaticUnitRange(max(stop + one(stop) - n, static_first(x)), stop) end function Base.last(x::OptionallyStaticStepRange, n::IntType) n < 0 && throw(ArgumentError("Number of elements must be nonnegative")) start = static_first(x) s = static_step(x) stop = static_last(x) OptionallyStaticStepRange(max(stop + one(stop) - (n * s), start), s, stop) end
Static
https://github.com/SciML/Static.jl.git
[ "MIT" ]
1.1.1
87d51a3ee9a4b0d2fe054bdd3fc2436258db2603
code
7894
@testset "Range Constructors" begin @test @inferred(static(1):static(10)) == 1:10 @test @inferred(Static.SUnitRange{1, 10}()) == 1:10 @test @inferred(static(1):static(2):static(10)) == 1:2:10 @test @inferred(1:static(2):static(10)) == 1:2:10 @test @inferred(static(1):static(2):10) == 1:2:10 @test @inferred(static(1):2:static(10)) == 1:2:10 @test @inferred(1:2:static(10)) == 1:2:10 @test @inferred(1:static(2):10) == 1:2:10 @test @inferred(static(1):2:10) == 1:2:10 @test @inferred(static(1):UInt(10)) === static(1):10 @test @inferred(UInt(1):static(1):static(10)) === 1:static(10) @test Static.SUnitRange(1, 10) == 1:10 @test @inferred(Static.OptionallyStaticUnitRange{Int, Int}(1:10)) == 1:10 @test @inferred(Static.OptionallyStaticUnitRange(1:10)) == 1:10 == @inferred(Static.OptionallyStaticUnitRange(Static.OptionallyStaticUnitRange(1:10))) sr = Static.OptionallyStaticStepRange(static(1), static(1), static(1)) @test @inferred(Static.OptionallyStaticStepRange(sr)) == sr == 1:1:1 @test @inferred(Static.OptionallyStaticStepRange(static(1), 1, UInt(10))) == static(1):1:10 == Static.SOneTo(10) @test @inferred(Static.OptionallyStaticStepRange(UInt(1), 1, static(10))) == static(1):1:10 @test @inferred(Static.OptionallyStaticStepRange(1:10)) == 1:1:10 @test_throws ArgumentError Static.OptionallyStaticUnitRange(1:2:10) @test_throws ArgumentError Static.OptionallyStaticUnitRange{Int, Int}(1:2:10) @test_throws ArgumentError Static.OptionallyStaticStepRange(1, 0, 10) @test_throws ArgumentError Static.OptionallyStaticStepRange(1, StaticInt(0), 10) @test @inferred(static(1):static(1):static(10)) === Static.OptionallyStaticUnitRange(static(1), static(10)) @test @inferred(static(1):static(1):10) === Static.OptionallyStaticUnitRange(static(1), 10) @test @inferred(1:static(1):10) === Static.OptionallyStaticUnitRange(1, 10) @test length(static(-1):static(-1):static(-10)) == 10 == lastindex(static(-1):static(-1):static(-10)) @test UnitRange(Static.OptionallyStaticUnitRange(static(1), static(10))) === UnitRange(1, 10) @test UnitRange{Int}(Static.OptionallyStaticUnitRange(static(1), static(10))) === UnitRange(1, 10) @test AbstractUnitRange{Int}(Static.OptionallyStaticUnitRange( static(1), static(10))) isa Static.OptionallyStaticUnitRange @test AbstractUnitRange{UInt}(Static.OptionallyStaticUnitRange( static(1), static(10))) isa Base.OneTo @test AbstractUnitRange{UInt}(Static.OptionallyStaticUnitRange( static(2), static(10))) isa UnitRange @test @inferred((static(1):static(10))[static(2):static(3)]) === static(2):static(3) @test @inferred((static(1):static(10))[static(2):3]) === static(2):3 @test @inferred((static(1):static(10))[2:3]) === 2:3 @test @inferred((1:static(10))[static(2):static(3)]) === 2:3 @test Base.checkindex(Bool, static(1):static(10), static(1):static(5)) @test -(static(1):static(10)) === static(-1):static(-1):static(-10) @test reverse(static(1):static(10)) === static(10):static(-1):static(1) @test reverse(static(1):static(2):static(9)) === static(9):static(-2):static(1) end @testset "range properties" begin x = static(1):static(2):static(9) @test getproperty(x, :start) === first(x) @test getproperty(x, :step) === step(x) @test getproperty(x, :stop) === last(x) @test_throws ErrorException getproperty(x, :foo) end @testset "iterate" begin @test iterate(static(1):static(5)) === (1, 1) @test iterate(static(1):static(5), 1) === (2, 2) @test iterate(static(1):static(5), 5) === nothing @test iterate(static(2):static(5), 5) === nothing @test iterate(static(1):static(2):static(9), 1) === (3, 3) @test iterate(static(1):static(2):static(9), 9) === nothing # make sure single length ranges work correctly @test iterate(static(2):static(3):static(2))[1] === 2 === (static(2):static(3):static(2))[1] @test iterate(static(2):static(3):static(2), 2) === nothing end # CartesianIndices CI = CartesianIndices((static(1):static(2), static(1):static(2))) @testset "length" begin @test @inferred(length(Static.OptionallyStaticUnitRange(1, 0))) == 0 @test @inferred(length(Static.OptionallyStaticUnitRange(1, 10))) == 10 @test @inferred(length(Static.OptionallyStaticUnitRange(static(1), 10))) == 10 @test @inferred(length(Static.OptionallyStaticUnitRange(static(0), 10))) == 11 @test @inferred(length(Static.OptionallyStaticUnitRange(static(1), static(10)))) == 10 @test @inferred(length(Static.OptionallyStaticUnitRange(static(0), static(10)))) == 11 @test @inferred(length(static(1):static(2):static(0))) == 0 @test @inferred(length(static(0):static(-2):static(1))) == 0 @test @inferred(length(Static.OptionallyStaticStepRange(static(1), 2, 10))) == 5 @test @inferred(length(Static.OptionallyStaticStepRange(static(1), static(1), static(10)))) == 10 @test @inferred(length(Static.OptionallyStaticStepRange(static(2), static(1), static(10)))) == 9 @test @inferred(length(Static.OptionallyStaticStepRange(static(2), static(2), static(10)))) == 5 end @test @inferred(getindex(static(1):10, Base.Slice(static(1):10))) === static(1):10 @test @inferred(getindex(Static.OptionallyStaticUnitRange(static(1), 10), 1)) == 1 @test @inferred(getindex(Static.OptionallyStaticUnitRange(static(0), 10), 1)) == 0 @test_throws BoundsError getindex(Static.OptionallyStaticUnitRange(static(1), 10), 0) @test_throws BoundsError getindex(Static.OptionallyStaticStepRange(static(1), 2, 10), 0) @test_throws BoundsError getindex(Static.OptionallyStaticUnitRange(static(1), 10), 11) @test_throws BoundsError getindex(Static.OptionallyStaticStepRange(static(1), 2, 10), 11) @test Static.static_first(Base.OneTo(one(UInt))) === static(1) @test Static.static_step(Base.OneTo(one(UInt))) === static(1) @test @inferred(eachindex(static(-7):static(7))) === static(1):static(15) @test @inferred((static(-7):static(7))[first(eachindex(static(-7):static(7)))]) == -7 @test @inferred(firstindex(128:static(-1):1)) == 1 @test identity.(static(1):5) isa Vector{Int} @test (static(1):5) .+ (1:3)' isa Matrix{Int} @test similar(Array{Int}, (static(1):(4),)) isa Vector{Int} @test similar(Array{Int}, (static(1):(4), Base.OneTo(4))) isa Matrix{Int} @test similar(Array{Int}, (Base.OneTo(4), static(1):(4))) isa Matrix{Int} @test Base.to_shape(static(1):10) == 10 @test Base.to_shape(Base.Slice(static(1):10)) == 10 @test Base.axes1(Base.Slice(static(1):10)) === static(1):10 @test axes(Base.Slice(static(1):10)) === (static(1):10,) @test isa(axes(Base.Slice(static(0):static(1):10))[1], Base.IdentityUnitRange) @test isa(Base.axes1(Base.Slice(static(0):static(1):10)), Base.IdentityUnitRange) @test Base.Broadcast.axistype(static(1):10, static(1):10) === Base.OneTo(10) @test Base.Broadcast.axistype(Base.OneTo(10), static(1):10) === Base.OneTo(10) @testset "static_promote(::AbstractRange, ::AbstractRange)" begin ur1 = static(1):10 ur2 = 1:static(10) @test @inferred(static_promote(ur1, ur2)) === static(1):static(10) @test static_promote(Base.Slice(ur1), Base.Slice(ur2)) === Base.Slice(static(1):static(10)) sr1 = static(1):2:10 sr2 = static(1):static(2):static(10) @test @inferred(static_promote(sr1, sr2)) === sr2 end @testset "n-last/first" begin ur = static(2):static(10) sr = static(2):static(2):static(10) n3 = static(3) @test @inferred(first(ur, n3)) === static(2):static(4) @test @inferred(last(ur, n3)) === static(8):static(10) @test @inferred(first(sr, n3)) === static(2):static(2):static(6) @test @inferred(last(sr, n3)) === static(5):static(2):static(9) end
Static
https://github.com/SciML/Static.jl.git
[ "MIT" ]
1.1.1
87d51a3ee9a4b0d2fe054bdd3fc2436258db2603
code
22356
using Static, Aqua using Static: Zero using Test @testset "Aqua" begin Aqua.find_persistent_tasks_deps(Static) Aqua.test_ambiguities(Static, recursive = false) Aqua.test_deps_compat(Static) Aqua.test_piracies(Static, broken = true) Aqua.test_project_extras(Static) Aqua.test_stale_deps(Static) Aqua.test_unbound_args(Static) Aqua.test_undefined_exports(Static) end @testset "StaticSymbol" begin x = StaticSymbol(:x) y = StaticSymbol("y") z = StaticSymbol(1) @test y === StaticSymbol(:y) @test z === StaticSymbol(Symbol(1)) @test z == StaticSymbol(Symbol(1)) @test @inferred(StaticSymbol(x)) === x @test @inferred(StaticSymbol(x, y)) === StaticSymbol(:x, :y) @test @inferred(StaticSymbol(x, y, z)) === static(:xy1) @test @inferred(static(nothing)) === nothing nt = (x = :x, y = "y", z = 1) @test @inferred(getindex(nt, x)) == :x @test @inferred(getindex(nt, (x, y))) == (x = :x, y = "y") @test_throws ErrorException static([]) end @testset "StaticInt" begin @test static(UInt(8)) === StaticInt(UInt(8)) === StaticInt{8}() @test iszero(StaticInt(0)) @test !iszero(StaticInt(1)) @test !isone(StaticInt(0)) @test isone(StaticInt(1)) @test @inferred(one(StaticInt(1))) === StaticInt(1) @test @inferred(zero(StaticInt(1))) === StaticInt(0) @test @inferred(one(StaticInt)) === StaticInt(1) @test @inferred(zero(StaticInt)) === StaticInt(0) === StaticInt(StaticInt(Val(0))) @test eltype(one(StaticInt)) <: Int @test @inferred(isodd(one(StaticInt))) @test @inferred(iseven(zero(StaticInt))) x = StaticInt(1) y = static(3) @test isinteger(y) @test @inferred(minmax(x, y)) == @inferred(minmax(y, x)) == minmax(1, 3) @test @inferred(Bool(x)) isa Bool @test @inferred(BigInt(x)) isa BigInt @test @inferred(Integer(x)) === x @test @inferred(%(x, Integer)) === 1 # test for ambiguities and correctness for i in Any[StaticInt(0), StaticInt(1), StaticInt(2), 3] for j in Any[StaticInt(0), StaticInt(1), StaticInt(2), 3] i === j === 3 && continue for f in [+, -, *, ÷, %, <<, >>, >>>, &, |, ⊻, ==, ≤, ≥, min, max] (iszero(j) && ((f === ÷) || (f === %))) && continue # integer division error @test convert(Int, @inferred(f(i, j))) == f(convert(Int, i), convert(Int, j)) end end i == 3 && break for f in [+, -, *, /, ÷, %, ==, ≤, ≥] w = f(convert(Int, i), 1.4) x = f(1.4, convert(Int, i)) @test convert(typeof(w), @inferred(f(i, 1.4))) === w @test convert(typeof(x), @inferred(f(1.4, i))) === x # if f is division and i === StaticInt(0), returns `NaN`; hence use of ==== in check. (((f === ÷) || (f === %)) && (i === StaticInt(0))) && continue y = f(convert(Int, i), 2 // 7) z = f(2 // 7, convert(Int, i)) @test convert(typeof(y), @inferred(f(i, 2 // 7))) === y @test convert(typeof(z), @inferred(f(2 // 7, i))) === z end end @test @inferred(*(Zero(), 3)) === @inferred(*(3, Zero())) === *(Zero(), Zero()) @test float(StaticInt(8)) === static(8.0) @test @inferred(cld(40, static(4))) === cld(40, 4) @test @inferred(fld(40, static(4))) === fld(40, 4) @test @inferred(cld(static(40), static(4))) === static(cld(40, 4)) @test @inferred(fld(static(40), static(4))) === static(fld(40, 4)) # test specific promote rules to ensure we don't cause ambiguities SI = StaticInt{1} IR = typeof(1 // 1) PI = typeof(pi) @test @inferred(convert(SI, SI())) === SI() @test @inferred(promote_type(SI, PI)) <: promote_type(Int, PI) @test @inferred(promote_type(SI, IR)) <: promote_type(Int, IR) @test @inferred(promote_rule(SI, SI)) <: Int @test @inferred(promote_type(Base.TwicePrecision{Int}, StaticInt{1})) <: Base.TwicePrecision{Int} @test static(Int8(-18)) === static(-18) @test static(0xef) === static(239) @test static(Int16(-18)) === static(-18) @test static(0xffef) === static(65519) if sizeof(Int) == 8 @test static(Int32(-18)) === static(-18) @test static(0xffffffef) === static(4294967279) end @test @inferred(getindex([1], static(1))) == 1 @test @inferred(Base.checkindex(Bool, 1:10, static(1))) @test widen(static(1)) isa Int128 @test isless(static(1), static(2)) v = rand(3) @test real(static(3)) === static(3) @test imag(static(3)) === static(0) @test mod(static(3), static(3)) === static(0) @test mod(static(3), 3) == 0 @test mod(3, static(3)) == 0 @test mod(static(3), static(2)) === static(1) @test mod(static(3), 2) == 1 @test mod(3, static(2)) == 1 end @testset "StaticBool" begin t = static(static(true)) f = StaticBool(static(false)) @test @inferred(dynamic(t)) === @inferred(known(t)) === true @test StaticBool{true}() === t @test StaticBool{false}() === f @test @inferred(StaticInt(t)) === StaticInt(1) @test @inferred(StaticInt(f)) === StaticInt(0) @test isinteger(static(true)) @test @inferred(~t) === f @test @inferred(~f) === t @test @inferred(!t) === f @test @inferred(!f) === t @test @inferred(+t) === StaticInt(1) @test @inferred(+f) === StaticInt(0) @test @inferred(-t) === StaticInt(-1) @test @inferred(-f) === StaticInt(0) @test @inferred(sign(t)) === t @test @inferred(abs(t)) === t @test @inferred(abs2(t)) === t @test @inferred(iszero(zero(True))) @test @inferred(isone(one(True))) @test !@inferred(iszero(t)) @test @inferred(isone(t)) @test @inferred(iszero(f)) @test !@inferred(isone(f)) @test @inferred(xor(true, f)) @test @inferred(xor(f, true)) @test @inferred(xor(f, f)) === f @test @inferred(xor(f, t)) === t @test @inferred(xor(t, f)) === t @test @inferred(xor(t, t)) === f @test @inferred(|(true, f)) @test @inferred(|(true, t)) === t @test @inferred(|(f, true)) @test @inferred(|(t, true)) === t @test @inferred(|(f, f)) === f @test @inferred(|(f, t)) === t @test @inferred(|(t, f)) === t @test @inferred(|(t, t)) === t @test @inferred(Base.:(&)(true, f)) === f @test @inferred(Base.:(&)(true, t)) @test @inferred(Base.:(&)(f, true)) === f @test @inferred(Base.:(&)(t, true)) @test @inferred(Base.:(&)(f, f)) === f @test @inferred(Base.:(&)(f, t)) === f @test @inferred(Base.:(&)(t, f)) === f @test @inferred(Base.:(&)(t, t)) === t @test @inferred(<(f, f)) === false @test @inferred(<(f, t)) === true @test @inferred(<(t, f)) === false @test @inferred(<(t, t)) === false @test @inferred(<=(f, f)) === true @test @inferred(<=(f, t)) === true @test @inferred(<=(t, f)) === false @test @inferred(<=(t, t)) === true @test @inferred(==(f, f)) === true @test @inferred(==(f, t)) === false @test @inferred(==(t, f)) === false @test @inferred(==(t, t)) === true @test @inferred(*(f, t)) === t & f @test @inferred(-(f, t)) === StaticInt(f) - StaticInt(t) @test @inferred(+(f, t)) === StaticInt(f) + StaticInt(t) @test @inferred(^(t, f)) == ^(true, false) @test @inferred(^(t, t)) == ^(true, true) @test @inferred(^(2, f)) == 1 @test @inferred(^(2, t)) == 2 @test @inferred(^(BigInt(2), f)) == 1 @test @inferred(^(BigInt(2), t)) == 2 @test @inferred(div(t, t)) === t @test_throws DivideError div(t, f) @test @inferred(rem(t, t)) === f @test_throws DivideError rem(t, f) @test @inferred(mod(t, t)) === f @test @inferred(all((t, t, t))) @test !@inferred(all((t, f, t))) @test !@inferred(all((f, f, f))) @test @inferred(any((t, t, t))) @test @inferred(any((t, f, t))) @test !@inferred(any((f, f, f))) @test static(true) == true @test static(false) != true @test static(true) != false @test static(false) == false @test !(static(true) != true) @test !(static(false) == true) @test !(static(true) == false) @test !(static(false) != false) @test true == static(true) @test false != static(true) @test true != static(false) @test false == static(false) @test !(true != static(true)) @test !(false == static(true)) @test !(true == static(false)) @test !(false != static(false)) end @testset "operators" begin f = static(false) t = static(true) x = StaticInt(1) y = StaticInt(0) z = StaticInt(-1) @test @inferred(Static.eq(y)(x)) === f @test @inferred(Static.eq(x, x)) === t @test @inferred(Static.ne(y)(x)) === t @test @inferred(Static.ne(x, x)) === f @test @inferred(Static.gt(y)(x)) === t @test @inferred(Static.gt(y, x)) === f @test @inferred(Static.ge(y)(x)) === t @test @inferred(Static.ge(y, x)) === f @test @inferred(Static.lt(x)(y)) === t @test @inferred(Static.lt(x, y)) === f @test @inferred(Static.le(x)(y)) === t @test @inferred(Static.le(x, y)) === f @test @inferred(Static.ifelse(t, x, y)) === x @test @inferred(Static.ifelse(f, x, y)) === y sa1 = Static.add(x) sa0 = Static.add(y) saz = Static.add(z) da = Static.add(dynamic(x)) sm1 = Static.mul(x) sm0 = Static.mul(y) smz = Static.mul(z) dm = Static.mul(dynamic(x)) @test (sa1 ∘ sa1) === Static.add(static(2)) @test (sm1 ∘ sa0) === sm1 @test (sm0 ∘ sa0) === sm0 @test (smz ∘ sa0) === smz @test (dm ∘ sa0) === dm @test (sm1 ∘ saz) === saz @test (sm0 ∘ saz) === sm0 @test (sm1 ∘ da) === da @test (sm0 ∘ da) === sm0 @test (sm1 ∘ smz) === smz # 1 * -1 @test (sm0 ∘ dm) === sm0 @test (dm ∘ sm0) === sm0 @test (sm1 ∘ dm) === dm @test (dm ∘ sm1) === dm end @testset "static interface" begin v = Val((:a, 1, true)) @test static(1) === StaticInt(1) @test static(true) === True() @test static(:a) === StaticSymbol{:a}() === static("a") === static('a') @test Symbol(static(:a)) === :a @test static((:a, 1, true)) === (static(:a), static(1), static(true)) @test @inferred(static(v)) === (static(:a), static(1), static(true)) @test @inferred(Static.is_static(v)) === True() @test @inferred(Static.is_static(typeof(v))) === True() @test @inferred(Static.is_static(typeof(static(true)))) === True() @test @inferred(Static.is_static(typeof(static(1)))) === True() @test @inferred(Static.is_static(typeof(static(:x)))) === True() @test @inferred(Static.is_static(typeof(1))) === False() @test @inferred(Static.is_static(typeof((static(:x), static(:x))))) === True() @test @inferred(Static.is_static(typeof((static(:x), :x)))) === False() @test @inferred(Static.is_static(typeof(static(1.0)))) === True() @test @inferred(Static.known(v)) === (:a, 1, true) @test @inferred(Static.known(typeof(v))) === (:a, 1, true) @test @inferred(Static.known(typeof(static(true)))) @test @inferred(Static.known(typeof(static(false)))) === false @test @inferred(Static.known(typeof(static(1.0)))) === 1.0 @test @inferred(Static.known(typeof(static(1)))) === 1 @test @inferred(Static.known(typeof(static(:x)))) === :x @test @inferred(Static.known(typeof(1))) === nothing @test @inferred(Static.known(typeof((static(:x), static(:x))))) === (:x, :x) @test @inferred(Static.known(typeof((static(:x), :x)))) === (:x, nothing) @test @inferred(Static.dynamic((static(:a), static(1), true))) === (:a, 1, true) end @testset "promote_shape" begin x = (static(1), 1) y = (1, static(1), 1) @test @inferred(Base.promote_shape(x, x)) === (static(1), 1) @test @inferred(Base.promote_shape(x, y)) === (static(1), static(1), static(1)) @test @inferred(Base.promote_shape(y, x)) === (static(1), static(1), static(1)) @test static_promote(1, nothing) === 1 @test static_promote(nothing, 1) === 1 @test static_promote(nothing, nothing) === nothing @test_throws ErrorException Base.promote_shape((static(1),), (static(2),)) end @testset "tuple utilities" begin x = (static(1), static(2), static(3)) y = (static(3), static(2), static(1)) z = (static(1), static(2), static(3), static(4)) T = Tuple{Int, Float64, String} @test @inferred(Static.invariant_permutation(x, x)) === True() @test @inferred(Static.invariant_permutation(x, y)) === False() @test @inferred(Static.invariant_permutation(x, z)) === False() @test @inferred(Static.permute(x, Val(x))) === x @test @inferred(Static.permute(x, (static(1), static(2)))) === (static(1), static(2)) @test @inferred(Static.permute(x, x)) === x @test @inferred(Static.permute(x, y)) === y @test @inferred(Static.eachop(getindex, x)) === x @test Static.field_type(typeof((x = 1, y = 2)), :x) <: Int @test Static.field_type(typeof((x = 1, y = 2)), static(:x)) <: Int function get_tuple_add(::Type{T}, ::Type{X}, dim::StaticInt) where {T, X} Tuple{Static.field_type(T, dim), X} end @test @inferred(Static.eachop_tuple(Static.field_type, y, T)) === Tuple{String, Float64, Int} @test @inferred(Static.eachop_tuple(get_tuple_add, y, T, String)) === Tuple{Tuple{String, String}, Tuple{Float64, String}, Tuple{Int, String}} @test @inferred(Static.find_first_eq(static(1), y)) === static(3) @test @inferred(Static.find_first_eq(static(2), (1, static(2)))) === static(2) @test @inferred(Static.find_first_eq(static(2), (1, static(2), 3))) === static(2) # inferred is Union{Int,Nothing} @test Static.find_first_eq(1, map(Int, y)) === 3 @testset "reduce_tup" begin for n in 2:16 x = ntuple( _ -> rand(Bool) ? rand() : (rand(Bool) ? rand(0x00:0x1f) : rand(0:31)), n) @test @inferred(Static.reduce_tup(+, x)) ≈ reduce(+, x) end end end @testset "invperm" begin perm = static((10, 3, 4, 5, 6, 2, 9, 7, 8, 1)) invp = static((10, 6, 2, 3, 4, 5, 8, 9, 7, 1)) @test @inferred(invperm(perm)) === invp end @testset "NDIndex" begin x = NDIndex((1, 2, 3)) y = NDIndex((1, static(2), 3)) z = NDIndex(static(3), static(3), static(3)) @testset "constructors" begin @test static(CartesianIndex(3, 3, 3)) === z == Base.setindex(Base.setindex(x, 3, 1), 3, 2) @test @inferred(CartesianIndex(z)) === @inferred(Static.dynamic(z)) === CartesianIndex(3, 3, 3) @test @inferred(Static.known(z)) === (3, 3, 3) @test Tuple(@inferred(NDIndex{0}())) === () @test @inferred(NDIndex{3}(1, static(2), 3)) === y @test @inferred(NDIndex{3}((1, static(2), 3))) === y @test @inferred(NDIndex{3}((1, static(2)))) === NDIndex(1, static(2), static(1)) @test @inferred(NDIndex(x, y)) === NDIndex(1, 2, 3, 1, static(2), 3) end @test @inferred(Base.IteratorsMD.split(x, Val(2))) === (NDIndex(1, 2), NDIndex(3)) @test @inferred(length(x)) === 3 @test @inferred(length(typeof(x))) === 3 NDIndex2{I <: Tuple{Vararg{Union{StaticInt, Int}, 2}}} = NDIndex{2, I} @test length(NDIndex2) === 2 @test @inferred(y[2]) === 2 @test @inferred(y[static(2)]) === static(2) @test @inferred(-y) === NDIndex((-1, -static(2), -3)) @test @inferred(y+y) === NDIndex((2, static(4), 6)) @test @inferred(y-y) === NDIndex((0, static(0), 0)) @test @inferred(zero(x)) === NDIndex(static(0), static(0), static(0)) @test @inferred(oneunit(x)) === NDIndex(static(1), static(1), static(1)) @test @inferred(x*3) === NDIndex((3, 6, 9)) @test @inferred(3*x) === NDIndex((3, 6, 9)) @test @inferred(min(x, z)) === x @test @inferred(max(x, z)) === NDIndex(3, 3, 3) @test !@inferred(isless(y, x)) @test @inferred(isless(x, z)) @test @inferred(Static.lt(oneunit(z), z)) === static(true) A = rand(3, 3, 3) @test @inferred(to_indices(A, axes(A), (x,))) === (1, 2, 3) @test @inferred(to_indices(A, axes(A), ([y, y],))) == ([y, y],) # issue #44 @test deleteat!(Union{}[], Union{}[]) == Union{}[] end # for some reason this can't be inferred when in the "Static.jl" test set known_length(x) = known_length(typeof(x)) known_length(::Type{T}) where {N, T <: Tuple{Vararg{Any, N}}} = N known_length(::Type{T}) where {T} = nothing maybe_static_length(x) = Static.maybe_static(known_length, length, x) x = ntuple(+, 10) y = 1:10 @test @inferred(maybe_static_length(x)) === StaticInt(10) @test @inferred(maybe_static_length(y)) === 10 @testset "StaticFloat64" begin f = static(1.0) @test @inferred(dynamic(f)) === @inferred(known(f)) === 1.0 for i in -10:10 for j in -10:10 @test i + j == @inferred(Static.StaticInt(i)+Static.StaticFloat64(j)) == @inferred(i+Static.StaticFloat64(Static.StaticFloat64(j))) == @inferred(Static.StaticFloat64(i)+j) == @inferred(Static.StaticFloat64(i)+Static.StaticInt(j)) == @inferred(Static.StaticFloat64(i)+Static.StaticFloat64(j)) @test i - j == @inferred(Static.StaticInt(i)-Static.StaticFloat64(j)) == @inferred(i-Static.StaticFloat64(j)) == @inferred(Static.StaticFloat64(i)-Static.StaticInt(j)) == @inferred(Static.StaticFloat64(i)-j) == @inferred(Static.StaticFloat64(i)-Static.StaticFloat64(j)) @test i * j == @inferred(Static.StaticInt(i)*Static.StaticFloat64(j)) == @inferred(i*Static.StaticFloat64(j)) == @inferred(Static.StaticFloat64(i)*Static.StaticInt(j)) == @inferred(Static.StaticFloat64(i)*j) == @inferred(Static.StaticFloat64(i)*Static.StaticFloat64(j)) i == j == 0 && continue @test i / j == @inferred(Static.StaticInt(i)/Static.StaticFloat64(j)) == @inferred(i/Static.StaticFloat64(j)) == @inferred(Static.StaticFloat64(i)/Static.StaticInt(j)) == @inferred(Static.StaticFloat64(i)/j) == @inferred(Static.StaticFloat64(i)/Static.StaticFloat64(j)) end if i ≥ 0 @test sqrt(i) == @inferred(sqrt(Static.StaticInt(i))) == @inferred(sqrt(Static.StaticFloat64(i))) == @inferred(sqrt(Static.StaticFloat64(Float64(i)))) end end @test Static.floortostaticint(1.0) === 1 @test Static.floortostaticint(prevfloat(2.0)) === 1 @test @inferred(Static.floortostaticint(Static.StaticFloat64(1.0))) === Static.StaticInt(1) @test @inferred(Static.floortostaticint(Static.StaticFloat64(prevfloat(2.0)))) === Static.StaticInt(1) @test Static.roundtostaticint(1.0) === 1 @test Static.roundtostaticint(prevfloat(2.0)) === 2 @test @inferred(Static.roundtostaticint(Static.StaticFloat64(1.0))) === Static.StaticInt(1) @test @inferred(Static.roundtostaticint(Static.StaticFloat64(prevfloat(2.0)))) === Static.StaticInt(2) @test @inferred(round(Static.StaticFloat64{1.0}())) === Static.StaticFloat64(1) @test @inferred(round(Static.StaticFloat64(prevfloat(2.0)))) === Static.StaticFloat64(ComplexF64(2)) x = static(5.0) y = static(10.0) @test @inferred(rem(x, y)) === x @test @inferred(rem(x, 10.0)) === 5.0 @test @inferred(rem(5.0, y)) === 5.0 @test @inferred(min(x, y)) === x @test @inferred(min(x, 10.0)) === 5.0 @test @inferred(min(5.0, y)) === 5.0 @test @inferred(max(x, y)) === y @test @inferred(max(x, 10.0)) === 10.0 @test @inferred(max(5.0, y)) === 10.0 @test @inferred(isless(x, y)) @test @inferred(isless(x, 10.0)) @test @inferred(isless(5.0, y)) fone = static(1.0) fzero = static(0.0) @test @inferred(isone(fone)) @test @inferred(isone(one(fzero))) @test @inferred(isone(fzero)) === false @test @inferred(iszero(fone)) === false @test @inferred(iszero(fzero)) @test @inferred(iszero(zero(typeof(fzero)))) @test typeof(fone)(1) isa Static.StaticFloat64 @test typeof(fone)(1.0) isa Static.StaticFloat64 @test @inferred(eltype(Static.StaticFloat64(static(1)))) <: Float64 @test @inferred(promote_rule(typeof(fone), Int)) <: promote_type(Float64, Int) @test @inferred(promote_rule(typeof(fone), Float64)) <: Float64 @test @inferred(promote_rule(typeof(fone), Float32)) <: Float32 @test @inferred(promote_rule(typeof(fone), Float16)) <: Float16 @test @inferred(inv(static(2.0))) === static(inv(2.0)) === inv(static(2)) @test @inferred(static(2.0)^2.0) === 2.0^2.0 @testset "trig" begin for f in [sin, cos, tan, asin, atan, acos, sinh, cosh, tanh, asinh, atanh, exp, exp2, exp10, expm1, log, log2, log10, log1p, exponent, sqrt, cbrt, sec, csc, cot, sech, secd, csch, cscd, cotd, cosd, tand, asind, acosd, atand, acotd, sech, coth, asech, acsch, deg2rad, mod2pi, sinpi, cospi] @info "Testing $f(0.5)" @test @inferred(f(static(0.5))) === static(f(0.5)) end end @test @inferred(asec(static(2.0))) === static(asec(2.0)) @test @inferred(acsc(static(2.0))) === static(acsc(2.0)) @test @inferred(acot(static(2.0))) === static(acot(2.0)) @test @inferred(asecd(static(2.0))) === static(asecd(2.0)) @test @inferred(acscd(static(2.0))) === static(acscd(2.0)) @test @inferred(acoth(static(2.0))) === static(acoth(2.0)) @info "Testing acosh(1.5)" @inferred acosh(static(1.5)) @test @inferred(isinteger(static(1.0))) @test @inferred(!isinteger(static(1.5))) end @testset "string/print/show" begin f = static(float(2)) repr(f) @test repr(static(float(1))) == "static($(float(1)))" @test repr(static(1)) == "static(1)" @test repr(static(:x)) == "static(:x)" @test repr(static(true)) == "static(true)" @test repr(static(CartesianIndex(1, 1))) == "NDIndex(static(1), static(1))" @test string(static(true)) == "static(true)" == "$(static(true))" @test repr(static(1):static(10)) == "static(1):static(10)" @test repr(static(1):static(2):static(9)) == "static(1):static(2):static(9)" end include("ranges.jl")
Static
https://github.com/SciML/Static.jl.git
[ "MIT" ]
1.1.1
87d51a3ee9a4b0d2fe054bdd3fc2436258db2603
docs
2113
# Static [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://sciml.github.io/Static.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://sciml.github.io/Static.jl/dev) [![Build Status](https://github.com/SciML/Static.jl/workflows/CI/badge.svg)](https://github.com/SciML/Static.jl/actions) [![Coverage](https://codecov.io/gh/SciML/Static.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SciML/Static.jl) `Static` defines a set of types (`True`, `False`, `StaticInt{value::Int}`, `StaticFloat64{value::Float64}`, `StaticSymbol{value::Symbol}`) that may be dispatched on (similar to `Base.Val{value}`). Unlike `Base.Val`, instances of these types provide "static" values (meaning known at compile time) that in many cases work interchangeably with dynamic values (meaning the value is known at runtime but not compile time). This is particularly useful when designing types whose fields may be dynamically or statically known, such as a range whose size may be dynamic or statically known. Generic conversion to static values, dynamic values, and compile time known values is accomplished with the methods `static`, `dynamic`, and `known`, respectively. ```julia julia> using Static julia> static(1) static(1) julia> dynamic(static(1)) 1 julia> dynamic(1) 1 julia> typeof(static(1)) StaticInt{1} julia> known(typeof(static(1))) 1 julia> known(typeof(1)) === nothing # `Int` has no compile time known value true ``` ## Types, Dispatch, Compile-Time, and StaticNumbers.jl Static.jl does not subtype the Base number types. For example, `!(StaticInt <: Integer)`. The reason for this is that it invalidates all downstream compilation caches. This has a major effect, for example, causing LoopVectorization.jl to not precompile and ultimately giving the ODE solvers >20 second extra compile times. To avoid these invalidations, the dispatches were removed. An alternative library [StaticNumbers.jl](https://github.com/perrutquist/StaticNumbers.jl) is more ergonomic but has these invalidations. Use the library that is more appropriate for your use case.
Static
https://github.com/SciML/Static.jl.git
[ "MIT" ]
1.1.1
87d51a3ee9a4b0d2fe054bdd3fc2436258db2603
docs
98
```@meta CurrentModule = Static ``` # Static ```@index ``` ```@autodocs Modules = [Static] ```
Static
https://github.com/SciML/Static.jl.git
[ "MIT" ]
4.0.0
98a5b8742c045c30af566c5046e2e7a9b44481c3
code
672
using EquationsOfState using Documenter DocMeta.setdocmeta!(EquationsOfState, :DocTestSetup, :(using EquationsOfState); recursive=true) makedocs(; modules=[EquationsOfState], authors="Qi Zhang <singularitti@outlook.com>", repo="https://github.com/MineralsCloud/EquationsOfState.jl/blob/{commit}{path}#{line}", sitename="EquationsOfState.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://MineralsCloud.github.io/EquationsOfState.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/MineralsCloud/EquationsOfState.jl", )
EquationsOfState
https://github.com/MineralsCloud/EquationsOfState.jl.git
[ "MIT" ]
4.0.0
98a5b8742c045c30af566c5046e2e7a9b44481c3
code
188
module EquationsOfState abstract type EquationOfStateOfSolidsParameters{T} end const Parameters = EquationOfStateOfSolidsParameters abstract type EquationOfState{T<:Parameters} end end
EquationsOfState
https://github.com/MineralsCloud/EquationsOfState.jl.git
[ "MIT" ]
4.0.0
98a5b8742c045c30af566c5046e2e7a9b44481c3
code
105
using EquationsOfState using Test @testset "EquationsOfState.jl" begin # Write your tests here. end
EquationsOfState
https://github.com/MineralsCloud/EquationsOfState.jl.git
[ "MIT" ]
4.0.0
98a5b8742c045c30af566c5046e2e7a9b44481c3
docs
1421
# EquationsOfState [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://MineralsCloud.github.io/EquationsOfState.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://MineralsCloud.github.io/EquationsOfState.jl/dev) [![Build Status](https://github.com/MineralsCloud/EquationsOfState.jl/workflows/CI/badge.svg)](https://github.com/MineralsCloud/EquationsOfState.jl/actions) [![Build Status](https://ci.appveyor.com/api/projects/status/github/MineralsCloud/EquationsOfState.jl?svg=true)](https://ci.appveyor.com/project/singularitti/EquationsOfState-jl) [![Build Status](https://cloud.drone.io/api/badges/MineralsCloud/EquationsOfState.jl/status.svg)](https://cloud.drone.io/MineralsCloud/EquationsOfState.jl) [![Build Status](https://api.cirrus-ci.com/github/MineralsCloud/EquationsOfState.jl.svg)](https://cirrus-ci.com/github/MineralsCloud/EquationsOfState.jl) [![Coverage](https://codecov.io/gh/MineralsCloud/EquationsOfState.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/MineralsCloud/EquationsOfState.jl) Note: starting from version `v4.0.0`, we will move all the past functionalities to package [`EquationsOfStateOfSolids.jl`](https://github.com/MineralsCloud/EquationsOfStateOfSolids.jl). This package is only served as a "base" package or a high-level package for similar packages. To use the previous functionalities, please use `EquationsOfStateOfSolids.jl`.
EquationsOfState
https://github.com/MineralsCloud/EquationsOfState.jl.git
[ "MIT" ]
4.0.0
98a5b8742c045c30af566c5046e2e7a9b44481c3
docs
221
```@meta CurrentModule = EquationsOfState ``` # EquationsOfState Documentation for [EquationsOfState](https://github.com/MineralsCloud/EquationsOfState.jl). ```@index ``` ```@autodocs Modules = [EquationsOfState] ```
EquationsOfState
https://github.com/MineralsCloud/EquationsOfState.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
3306
using Distributed using ArgParse procs_id = addprocs(4) @everywhere using Distributions @everywhere using Cumulants @everywhere using SymmetricTensors using JLD2 using FileIO using Random @everywhere import CumulantsFeatures: reduceband @everywhere using DatagenCopulaBased @everywhere using CumulantsFeatures @everywhere using HypothesisTests @everywhere cut_order(x) = (x->x[3]).(x) @everywhere function gmarg2t(X::Matrix{T}, nu::Int) where T <: AbstractFloat Y = copy(X) for i = 1:size(X, 2) x = X[:,i] s = var(x) mu = mean(x) d = Normal(mu, s) u = cdf.(d, x) pvalue(ExactOneSampleKSTest(u,Uniform(0,1)))>0.0001 || throw(AssertionError("$i marg. not unif.")) Y[:,i] = quantile.(TDist(nu), u) end return Y end function main(args) s = ArgParseSettings("description") @add_arg_table! s begin "--nu", "-n" default = 4 help = "the number of degrees of freedom for the t-Student copula" arg_type = Int "--nuu", "-u" default = 25 help = "the number of degrees of freedom for the t-Student marginals" arg_type = Int end parsed_args = parse_args(s) ν = parsed_args["nu"] νu = parsed_args["nuu"] println(ν) @everywhere t = 100_000 @everywhere n = 50 @everywhere malf_size = 10 data_dir = "." test_number = 10 filename = "tstudent_$(ν)_marg_$(νu)-t_size-$(n)_malfsize-$malf_size-t_$t.jld2" data = Dict{String, Any}("variables_no" => n, "sample_number" => t, "ν" => ν, "test_number" => test_number, "malf_size" => malf_size, "data" => Dict{String, Dict{String,Any}}()) known_data_size = 0 if isfile("$data_dir/$filename") data["data"] = load("$data_dir/$filename")["data"] known_data_size += length(data["data"]) println("Already have $known_data_size samples \n Will generate $(test_number-known_data_size) more") end #true calculations println("Calculation started") for m=(known_data_size+1):test_number @time begin println(" > $m ($ν)") malf = randperm(n)[1:malf_size] Σ = cormatgen_rand(n) samples_orig = Array(rand(MvNormal(Σ), t)') versions = [(x->gmarg2t(x, νu), "original"), (x->gmarg2t(gcop2tstudent(x, malf, ν), νu), "malf")] cur_dict = Dict{String, Any}("malf" => malf, "cor_source" => Σ) data_dict = @distributed (merge) for (sampler, label)=versions println(label) samples = Array(sampler(samples_orig)) Σ_malf = SymmetricTensor(cov(samples)) cum = cumulants(samples, 4) bands2 = cut_order(cumfsel(Σ_malf)) bands3 = cut_order(cumfsel(cum[2], cum[3], "hosvd")) bands4 = cut_order(cumfsel(cum[2], cum[4], "hosvd")) bands4n = cut_order(cumfsel(cum[2], cum[4], "norm", n-1)) bands4n = vcat(bands4n, setdiff(collect(1:n), bands4n)) Dict("cor_$label" => Σ_malf, "bands_MEV_$label" => bands2, "bands_JSBS_$label" => bands3, "bands_JKFS_$label" => bands4, "bands_JKN_$label" => bands4n) end data["data"]["$m"] = merge(cur_dict, data_dict) save("$data_dir/$filename", data) end end end main(ARGS)
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
2981
#!/usr/bin/env julia using JLD2 using FileIO using ArgParse using PyCall using SymmetricTensors mpl = pyimport("matplotlib") mc = pyimport("matplotlib.colors") mpl.rc("text", usetex=true) mpl.use("Agg") using PyPlot function union_size(list1::Vector, list2::Vector) return length(list1 ∩ list2) end function features_selection_results(data::Dict, d::Int = 0) malf_size = data["malf_size"] check_size = malf_size labels = ["malf"] algorithms = ["MEV", "JKN", "JSBS", "JKFS"] data_parts_label = sort([ "bands_$(alg)_$l" for l=labels for alg=algorithms]) plot_data = Dict() for label = data_parts_label plot_data[label] = zeros(Int, malf_size+1) end for m=1:length(data["data"]), label = data_parts_label list1 = data["data"]["$m"][label][end-check_size+1-d:end] list2 = data["data"]["$m"]["malf"] no_common = union_size(list1, list2) plot_data[label][no_common+1] += 1 end plot_data, data_parts_label end function theoretical(sizedata::Int, malfsize::Int, found::Int) binomial(malfsize, found)*binomial(sizedata-malfsize, malfsize-found)/binomial(sizedata,malfsize) end function los(n, ksize, p, r = 500_000) ret = [] for s in 1:r b = [] x = collect(1:n) for a in 1:p y = rand(x) push!(b, y) filter!(i -> i != y, x) end push!(ret, (count(b .<= ksize))) end [count(ret .== i) for i in 0:ksize]./r, collect(0:ksize) end function plotdata(plot_data, data_parts_label, ν, malf_size, var_number, repeating, δ::Int = 0) mpl.rc("font", family="serif", size = 7) fig, ax = subplots(figsize = (2.5, 2.)) cols = ["red", "green", "blue", "brown", "grey"] p = ["--d", "--o", "--^", "--<", "--v"] cla() i = 0 for data_label = data_parts_label i += 1 data_y = plot_data[data_label] data_x = collect(0:(length(data_y)-1)) println(data_y) d = replace(data_label, "bands_"=>"") plot(data_x, data_y/repeating, p[i], label=replace(d, "_malf"=>""), color = cols[i], linewidth = 0.8, markersize = 3.) end data_x = 0:malf_size data_y = los(var_number, malf_size, malf_size+δ)[1] plot(data_x, data_y, "--x", label="rand choice", color = "black", linewidth = 1., markersize = 3.) if true ax.legend(fontsize = 4.5, loc = 2, ncol = 2) end subplots_adjust(left = 0.15, bottom = 0.16) xlabel("no. selected features", labelpad = 0.) ylabel("selection probability", labelpad = 0.) savefig("$(ν)_$(δ)jkfs.pdf") end function main(args) s = ArgParseSettings("description") @add_arg_table! s begin "file" help = "the file name" arg_type = String "--delta", "-d" help = "no. additiona features" default = 0 arg_type = Int end parsed_args = parse_args(s) data = load(parsed_args["file"]) d = parsed_args["delta"] plot_data, data_parts_label = features_selection_results(data, d) plotdata(plot_data, data_parts_label, data["ν"], data["malf_size"], data["variables_no"], data["test_number"], d) end main(ARGS)
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
6283
#!/usr/bin/env julia using Distributed using JLD2 using FileIO using ArgParse using Distributions using CumulantsFeatures using LinearAlgebra using Cumulants addprocs(3) @everywhere using CumulantsFeatures @everywhere using Cumulants using PyCall mpl = pyimport("matplotlib") mc = pyimport("matplotlib.colors") mpl.rc("text", usetex=true) mpl.use("Agg") using PyPlot """ rand_withour_return(s::Int, b::Int) out of numbers 1,2,3 , ... s returns no_pools random iterms without replacements """ function rand_withour_return(s::Int, no_pools::Int) data = collect(1:s) ret = [] for i in 1:no_pools temp = rand(data) data = filter!(i -> i != temp, data) ret = vcat(ret, temp) end ret end """ random_choice(data::Dict, β::Int) Given data Dict and the parameter no_pools returns a vector of random choice detections: [TruePositive, FalsePosotiveRate] FalsePosotiveRate is the probability of type 1 error. """ function random_choice(data::Dict, no_pools::Int) no_cases = length(data["data"]) ret = zeros(no_cases, 2) println("random_choice detector") for c=1:no_cases println("case n. = ", c) s = size(data["data"]["$c"]["x_malf"],1) detected = rand_withour_return(s, no_pools) no_positive = data["a"] # it is assumed by the random data generation #that outliers are at the beginning of data set theshold = no_positive no_true_detected = count(detected .<= theshold) no_false_detercted = count(detected .> theshold) sample_size = size(data["data"]["$c"]["x_malf"], 1) no_negative = sample_size-no_positive truePositiveRate = no_true_detected/no_positive #type 1 error flasePositiveRate = no_false_detercted/no_negative ret[c,:] = [truePositiveRate, flasePositiveRate] end ret end """ detection_hosvd(data::Dict, β::Float64, r::Int = 3) Given data Dict and the parameter β (threshold) and r (number of direction data are projected) returns a vector of hosvd detection: [TruePositive, FalsePosotiveRate] """ function detection_hosvd(data::Dict, β::Float64, r::Int = 3) no_cases = length(data["data"]) ret = zeros(no_cases, 2) println("4th cumulant detector") for c=1:no_cases println("case no = ", c) detected = hosvdc4detect(data["data"]["$c"]["x_malf"], β, r) no_positive = data["a"] # it is assumed by the random data generation #that outliers are at the beginning of data set theshold = no_positive no_true_detected = count(findall(detected) .<= theshold) no_false_detected = count(findall(detected) .> theshold) sample_size = size(data["data"]["$c"]["x_malf"], 1) no_negative = sample_size-no_positive truePositiveRate = no_true_detected/no_positive #type 1 error flasePositiveRate = no_false_detected/no_negative ret[c,:] = [truePositiveRate, flasePositiveRate] end ret end """ detection_rx(data::Dict, α::Float64 = 0.99) Given data Dict and the parameter α ("probability" threshold) returns a vector of RX detection: [TruePositive, FalsePosotiveRate] """ function detection_rx(data::Dict, α::Float64 = 0.99) no_cases = length(data["data"]) ret = zeros(no_cases, 2) print("rx detector") for c=1:no_cases println("case no = ", c) detected = rxdetect(data["data"]["$c"]["x_malf"], α) no_positive = data["a"] # it is assumed by the random data generation #that outliers are at the beginning of data set theshold = no_positive no_true_detected = count(findall(detected) .<= theshold) no_false_detected = count(findall(detected) .> theshold) sample_size = size(data["data"]["$c"]["x_malf"], 1) no_negative = sample_size-no_positive truePositiveRate = no_true_detected/no_positive #type 1 error flasePositiveRate = no_false_detected/no_negative ret[c,:] = [truePositiveRate, flasePositiveRate] end ret end """ plotdet(hosvd, rx, rand, nu::Int = 6) plot results of detection """ function plotdet(hosvd, rx, rand, nu::Int = 6) mpl.rc("font", family="serif", size = 7) fig, ax = subplots(figsize = (2.5, 2.)) # raking each data case for i in 1:size(hosvd[1],1) xh = [k[i,2] for k in hosvd] yh = [k[i,1] for k in hosvd] # excluding [0., 0.] case where the parameter is out of range j = (xh .> 0.) .* (yh .> 0.) xh = xh[j] yh = yh[j] xrx = [k[i,2] for k in rx] yrx = [k[i,1] for k in rx] xrand = [k[i,2] for k in rand] yrand = [k[i,1] for k in rand] plt.plot(xh, yh, "o-", label = "4th cumulant", color = "blue") plt.plot(xrx, yrx, "d-", label = "RX", color = "red") plt.plot(xrand, yrand, "x-", label = "random", color = "gray") ax.legend(fontsize = 6., loc = 2, ncol = 2) subplots_adjust(left = 0.15, bottom = 0.16) xlabel("False Positive Rate (type 1 error rate)", labelpad = -1.0) ylabel("True Positive Rate", labelpad = 0.) savefig("./pics/$(nu)_$(i)detect.pdf") PyPlot.clf() end end function main(args) s = ArgParseSettings("description") @add_arg_table! s begin "file" help = "the file name" arg_type = String end parsed_args = parse_args(s) str = parsed_args["file"] data = load(str) # copulas parameter for outliers ν = data["ν"] if !isfile("./data/roc_rand"*str) no_pools = [1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50, 10] print("number random= ", size(no_pools)) roc = [random_choice(data, k) for k in no_pools] save("./data/roc_rand"*str, "roc", roc, "ks", no_pools) print(roc) end if !isfile("./data/roc"*str) threshold = [8., 6., 5., 4., 3., 2.5, 2., 1.8, 1.6, 1.40, 1.30, 1.28] print("number hosvd= ", size(threshold)) roc = [detection_hosvd(data, k) for k in threshold] print(threshold) print(roc) save("./data/roc"*str, "roc", roc, "ks", threshold) end if !isfile("./data/rocrx"*str) as = vcat([0.0005, 0.002, 0.01], collect(0.02:0.1:0.85), [0.9, 0.99, 0.999, 0.9999, 0.99999]) print("number rx= ", size(as)) rocrx = [detection_rx(data, k) for k in as] print(as) print(rocrx) save("./data/rocrx"*str, "roc", rocrx, "alpha", as) end r = load("./data/roc"*str)["roc"] rx = load("./data/rocrx"*str)["roc"] rr = load("./data/roc_rand"*str)["roc"] plotdet(r, rx, rr, ν) end main(ARGS)
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
3566
#!/usr/bin/env julia using Distributed using Random using LinearAlgebra procs_id = addprocs(4) using DatagenCopulaBased @everywhere using Distributions @everywhere using Cumulants @everywhere using SymmetricTensors using CumulantsFeatures using JLD2 using FileIO using ArgParse @everywhere import CumulantsFeatures: reduceband @everywhere using DatagenCopulaBased @everywhere using CumulantsFeatures @everywhere using HypothesisTests Random.seed!(1234) @everywhere function gmarg2t(X::Matrix{T}, nu::Int) where T <: AbstractFloat # transform univariate gasussian marginals into t-Student with nu degrees of freedom Y = copy(X) for i = 1:size(X, 2) x = X[:,i] s = var(x) mu = mean(x) d = Normal(mu, s) u = cdf.(d, x) pvalue(ExactOneSampleKSTest(u,Uniform(0,1)))>0.0001 || throw(AssertionError("$i marg. not unif.")) Y[:,i] = quantile.(TDist(nu), u) end return Y end function main(args) s = ArgParseSettings("description") @add_arg_table! s begin "--nu", "-n" default = 6 help = "the number of degrees of freedom for the t-Student copula" arg_type = Int "--nuu", "-u" default = 6 help = "the number of degrees of freedom for the t-Student marginal" arg_type = Int "--reals", "-N" default = 5 help = "number of tests realisations" arg_type = Int end parsed_args = parse_args(s) ν = parsed_args["nu"] νu = parsed_args["nuu"] # number of generated data sets test_number = parsed_args["reals"] println("copula's degreen of freedom = ", ν) println("matginal's degree of freedom = ", νu) # parameters, data sie @everywhere t = 1000 # no of marginals @everywhere n = 30 # no of marginals with t-Student copula @everywhere malf_size = 15 # outliers places on the beginning of data @everywhere a = 100 data_dir = "." filename = "tstudent_$(ν)_marg$(νu)-t_size-$(n)_malfsize-$malf_size-t_$(t)_$a.jld2" data = Dict{String, Any}("variables_no" => n, "sample_number" => t, "ν" => ν, "test_number" => test_number, "malf_size" => malf_size, "a" => a, "data" => Dict{String, Dict{String,Any}}()) known_data_size = 0 if isfile("./$filename") data["data"] = load("./$filename")["data"] known_data_size += length(data["data"]) println("Already have $known_data_size samples \n Will generate $(test_number-known_data_size) more") end println("Calculation started") for m=(known_data_size+1):test_number @time begin println(" > $m ($ν)") malf = randperm(n)[1:malf_size] Σ = cormatgen_rand(n) samples_orig = rand(MvNormal(Σ), t)' # gcop2tstudent(x[1:a, :], malf, ν) - outliers, given gaussian multivariate copula is changed for Gaussian # x[a+1:end, :] - ordinary data # gmarg2t( ..., νu) - univariate marginals are changed to t-Student # "malf" - dict key versions = [(x->gmarg2t(vcat(gcop2tstudent(x[1:a, :], malf, ν), x[a+1:end, :]), νu), "malf")] cur_dict = Dict{String, Any}("malf" => malf, "cor_source" => Σ) data_dict = @distributed (merge) for (sampler, label)=versions println(label) samples = sampler(samples_orig) Σ_malf = cov(samples) Dict("cor_$label" => Σ_malf, "x_$label" => samples) end data["data"]["$m"] = merge(cur_dict, data_dict) save("./$filename", data) end end end main(ARGS)
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
505
module CumulantsFeatures using Distributions using SymmetricTensors using Cumulants using Distributed using StatsBase using LinearAlgebra using SharedArrays using CumulantsUpdates #using DistributedArrays if VERSION >= v"1.3" using CompilerSupportLibraries_jll end import SymmetricTensors: issymetric, getblock, pyramidindices include("optimizationalgorithms.jl") include("detectors.jl") include("symten2mat.jl") export cumfsel, rxdetect, hosvdc4detect, cum2mat end
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
4104
""" function rxdetect(X::Matrix{T}, alpha::Float64 = 0.99) Takes data in the form of matrix where first index correspond to realisations and second to feratures (marginals). Using the RX (Reed-Xiaoli) Anomaly Detection returns the array of Bool that correspond to outlier realisations. alpha is the sensitivity parameter of the RX detector ```jldoctest julia> Random.seed!(42); julia> x = vcat(rand(8,2), 20*rand(2,2)) 10×2 Array{Float64,2}: 0.533183 0.956916 0.454029 0.584284 0.0176868 0.937466 0.172933 0.160006 0.958926 0.422956 0.973566 0.602298 0.30387 0.363458 0.176909 0.383491 11.8582 5.25618 14.9036 10.059 julia> rxdetect(x, 0.95) 10-element Array{Bool,1}: false false false false false false false false true true ``` """ function rxdetect(X::Matrix{T}, alpha::Float64 = 0.99) where T <: AbstractFloat t = size(X,1) outliers = fill(false, t) mu = mean(X,dims=1)[1,:] Kinv = inv(cov(X)) d = Chisq(size(X,2)) for i in 1:t if (X[i,:] - mu)'*Kinv*(X[i,:] - mu) > quantile(d, alpha) outliers[i] = true end end outliers end """ hosvdstep(X::Matrix{T}, ls::Vector{Bool}, β::Float64, r::Int, cc::SymmetricTensor{T,4}) where T <: AbstractFloat Returns Vector{Bool} - outliers form an itteration step of th hosvd algorithm and Vector{Float64} vector of univariate kurtosis for data projected on specific directions """ function hosvdstep(X::Matrix{T}, ls::Vector{Bool}, β::Float64, r::Int, cc::SymmetricTensor{T,4}) where T <: AbstractFloat bestls = copy(ls) M = Array(cum2mat(cc)) # sorting eigenvalues for highest to lowest p = sortperm(eigvals(M), rev = true) W = eigvecs(M)[:,p[1:r]] Z = X*W mm = [mad(Z[ls,i]; center=median(Z[ls,i]), normalize=true) for i in 1:r] me = [median(Z[ls,i]) for i in 1:r] for i in findall(ls) if maximum(abs.(Z[i,:].-me)./mm) .> β bestls[i] = false end end bestls, norm([kurtosis(Z[bestls,i]) for i in 1:r]) end """ function hosvdc4detect(X::Matrix{T}, β::Float64 = 4.1, r::Int = 3; b::Int = 4) Takes data in the form of matrix where first index correspond to realisations and second to feratures (marginals). Using the HOSVD of the 4'th cumulant's tensor of data returns the array of Bool that correspond to outlier realisations. β is the sensitivity parameter while r a number of specific directions, data are projected onto. Parameter b is a size of blocks in a SymmetricTensors structure ```jldoctest julia> Random.seed!(42); julia> x = vcat(rand(8,2), 20*rand(2,2)) 10×2 Array{Float64,2}: 0.533183 0.956916 0.454029 0.584284 0.0176868 0.937466 0.172933 0.160006 0.958926 0.422956 0.973566 0.602298 0.30387 0.363458 0.176909 0.383491 11.8582 5.25618 14.9036 10.059 julia> rxdetect(x, 0.95) 10-element Array{Bool,1}: false false false false false false false false true true ``` """ function hosvdc4detect(X::Matrix{T}, β::Float64 = 4.1, r::Int = 3; b::Int = 4) where T <: AbstractFloat X = X.-mean(X,dims=1) s = cov(X) X = X*Real.(sqrt(inv(s))) ls = fill(true, size(X,1)) lsold = copy(ls) aold = 1000000000. ma = momentarray(X, 4, b) t = size(X,1) while count(ls) > div(size(X,1)+r+1, 2) ma, t = updatemoments(ma, t, X, ls, lsold) lsold = copy(ls) c = copy(ma) moms2cums!(c) ls, a = hosvdstep(X, lsold, β, r, c[4]) if (aold-a)/a < 0.0001 return .!lsold end aold = a end .!lsold end """ updatemoments(ma::Vector{SymmetricTensor{Float64,N} where N}, t::Int, X::Matix{T}, ls::Vector{Bool}, lsold::Vector{Bool}) Returns Array{SymmetricTensor} - an array of updated moments (after outliers removal) and t - number of realisations of data after outliers removal """ function updatemoments(ma::Vector{SymmetricTensor{Float64,N} where N}, t::Int, X::Matrix{T}, ls::Vector{Bool}, lsold::Vector{Bool}) where T <: AbstractFloat lstemp = (lsold.+ls) .== 1 if true in lstemp dt = count(lstemp) ma = t/(t-dt).*ma .- dt/(t-dt).*momentarray(X[lstemp,:], 4, ma[1].bls) t = t - dt end ma, t end
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
5694
mev(Σ::Matrix{T}, c, ls::Vector{Bool}) where T <: AbstractFloat = det(reduceband(Σ, ls)) function mormbased(Σ::Matrix{T}, c::Array{T, N}, ls::Vector{Bool}) where {T <: AbstractFloat, N} norm(reduceband(c, ls))/norm(reduceband(Σ, ls))^(N/2) end """ detoverdetfitfunction(a::Array{N}, b::Array{N}) computes the maximizing function det(C_n)/det(C_2)^(n/2). It assumes, that product of singular values from HOSVD of tensor is a good approximation of hyperdeterminant of the tensor (whatever that means). Returns the value of the maximizin function """ function hosvdapprox(Σ::Matrix{T}, c::Array{T,N}, fibres::Vector{Bool} = [fill(true, size(Σ, 1))...]) where {T <: AbstractFloat, N} c = reduceband(c, fibres) Σ = reduceband(Σ, fibres) cunf = unfoldsym(c) eigc = abs.(eigvals(cunf*cunf')) eigΣ = abs.(eigvals(Σ*Σ')) sum(log.(eigc)-N/2*log.(eigΣ))/2 end """ reduceband(ar::Array{N}, k::Vector{Bool}) Returns n-array without values at indices in ind ```jldoctest julia> reshape(collect(1.:27.),(3,3,3)) 3×3×3 Array{Float64,3}: [:, :, 1] = 1.0 4.0 7.0 2.0 5.0 8.0 3.0 6.0 9.0 [:, :, 2] = 10.0 13.0 16.0 11.0 14.0 17.0 12.0 15.0 18.0 [:, :, 3] = 19.0 22.0 25.0 20.0 23.0 26.0 21.0 24.0 27.0 julia> reduceband(reshape(collect(1.:27.),(3,3,3)), [true, false, false]) 1×1×1 Array{Float64,3}: [:, :, 1] = 1.0 ``` TODO reimplement in blocks """ reduceband(ar::Array{T,N}, fibres::Vector{Bool}) where {T <: AbstractFloat, N} = ar[fill(fibres, N)...] """ function unfoldsym{T <: Real, N}(ar::Array{T,N}) Returns a matrix of size (i, k^(N-1)) that is an unfold of symmetric array ar """ function unfoldsym(ar::Array{T,N}) where {T <: AbstractFloat, N} i = size(ar, 1) return reshape(ar, i, i^(N-1)) end """ TODO reimplement in blocks """ function unfoldsym(t::SymmetricTensor{T, N}) where {T <: AbstractFloat, N} t = unfoldsym(Array(t)) t*t' end #greedy algorithm """ greedestep(c::Vector{Array{Float}}, maxfunction::Function, ls::Vector{Bool}) Returns vector of bools that determines bands that maximise a function. True means include a band, false exclude a band. It changes one true to false in input ls ```jldoctest julia> a = reshape(collect(1.:9.), 3,3); julia> b = reshape(collect(1.: 27.), 3,3,3); julia> testf(ar,bool)= det(ar[1][bool,bool]) julia> greedestep(ar, testf, [true, true, true]) 3-element Array{Bool,1}: true true false ``` """ function greedestep(Σ::Matrix{T}, c::Array{T, N}, maxfunction::Function, ls::Vector{Bool}) where {T <: AbstractFloat, N} inds = findall(ls) bestval = SharedArray{T}(length(ls)) bestval .= -Inf bestls = copy(ls) @sync @distributed for i in inds templs = copy(ls) templs[i] = false bestval[i] = maxfunction(Σ, c, templs) end v, i = findmax(bestval) bestls[i] = false return bestls, v, i end """ greedesearchdata(Σ::SymmetricTensor{T,2}, c::SymmetricTensor{T, N}, maxfunction::Function, k::Int) returns array of bools that are non-outliers features """ function greedesearchdata(Σ::SymmetricTensor{T,2}, c::SymmetricTensor{T, N}, maxfunction::Function, k::Int) where {T <: AbstractFloat, N} ls = [true for i=1:Σ.dats] Σ = Array(Σ) c = Array(c) result = [] for i = 1:k ls, value, j = greedestep(Σ, c, maxfunction, ls) push!(result, (ls,value,j)) value != -Inf || throw(AssertionError(" for k = $(k) optimisation does not work")) end result end """ function cumfsel(Σ::SymmetricTensor{T,2}, c::SymmetricTensor{T, N}, f::String, k::Int = Σ.dats) where {T <: AbstractFloat, N} Returns an Array of tuples (ind::Array{Bool}, fval::Float64, i::Int). Given k-th Array ind are marginals removed after k -steps as those with low N'th order dependency, fval, the value of the target function at step k and i, a feature removed at step k. Uses Σ - the covariance matrix and c - the N'th cumulant tensor to measure the N'th order dependencies between marginals. Function f is the optimization function, ["hosvd", "norm", "mev"] are supported. ```jldoctest julia> Random.seed!(42); julia> x = rand(12,10); julia> c = cumulants(x, 4); julia> cumfsel(c[2], c[4], "hosvd") 10-element Array{Any,1}: (Bool[true, true, true, false, true, true, true, true, true, true], 27.2519, 4) (Bool[true, true, false, false, true, true, true, true, true, true], 22.6659, 3) (Bool[true, true, false, false, false, true, true, true, true, true], 18.1387, 5) (Bool[false, true, false, false, false, true, true, true, true, true], 14.4492, 1) (Bool[false, true, false, false, false, true, true, false, true, true], 11.2086, 8) (Bool[false, true, false, false, false, true, true, false, true, false], 7.84083, 10) (Bool[false, false, false, false, false, true, true, false, true, false], 5.15192, 2) (Bool[false, false, false, false, false, false, true, false, true, false], 2.56748, 6) (Bool[false, false, false, false, false, false, true, false, false, false], 0.30936, 9) (Bool[false, false, false, false, false, false, false, false, false, false], 0.0, 7) ``` """ function cumfsel(Σ::SymmetricTensor{T,2}, c::SymmetricTensor{T, N}, f::String, k::Int = Σ.dats) where {T <: AbstractFloat, N} if f == "hosvd" return greedesearchdata(Σ, c, hosvdapprox, k) elseif f == "norm" return greedesearchdata(Σ, c, mormbased, k) elseif f == "mev" return greedesearchdata(Σ, c ,mev, k) end throw(AssertionError("$(f) not supported use hosvd, norm or mev")) end """ cumfsel(Σ::Matrix{T}, k::Int = size(Σ, 1)) cumfsel that uses as default the mev method """ cumfsel(Σ::SymmetricTensor{T,2}, k::Int = Σ.dats) where T <: AbstractFloat = cumfsel(Σ, SymmetricTensor(convert(Array{T}, ones(2,2,2))), "mev", k)
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
2803
""" makeblocksize(bm::SymmetricTensor{T, N}, i::Tuple{Int, Int}) where {T <: AbstractFloat, N} Returns Tuple{Int, Int} of the size ob the block in the output matrix """ function makeblocksize(bm::SymmetricTensor{T, N}, i::Tuple{Int, Int}) where {T <: AbstractFloat, N} a = bm.bls b = bm.bls if !bm.sqr if i[1] == bm.bln a = bm.dats - (bm.bln-1)*bm.bls end if i[2] == bm.bln b = bm.dats - (bm.bln-1)*bm.bls end end a,b end """ computeblock(bm::SymmetricTensor{T, N}, i::Tuple{Int, Int}, dims::Tuple) where {T <: AbstractFloat, N} Returns Matrix{T}, the single block of the output higher correlation matrix """ function computeblock(bm::SymmetricTensor{T, N}, i::Tuple{Int, Int}, dims::Tuple) where {T <: AbstractFloat, N} x = bm.bln^(N-2) R = zeros(T, makeblocksize(bm, i)) for j in 1:x @inbounds k = Tuple(CartesianIndices(dims)[j]) for k1 in 1:bm.bln @inbounds M1 = unfold(getblock(bm, (i[1],k1, k...)),1) @inbounds M2 = unfold(getblock(bm, (k1,i[2],k...)),2) @inbounds R += M1*transpose(M2) end end return R end """ computeblock_p(bm::SymmetricTensor{T, N}, i::Tuple{Int, Int}, dims::Tuple) where {T <: AbstractFloat, N} Returns Matrix{T}, the single block of the output higher correlation matrix Parallel implementation """ function computeblock_p(bm::SymmetricTensor{T, N}, i::Tuple{Int, Int}, dims::Tuple) where {T <: AbstractFloat, N} x = bm.bln^(N-2) @inbounds R = SharedArray(zeros(T, (makeblocksize(bm, i)..., x))) @sync @distributed for j in 1:x @inbounds k = Tuple(CartesianIndices(dims)[j]) for k1 in 1:bm.bln @inbounds M1 = unfold(getblock(bm, (i[1],k1, k...)),1) @inbounds M2 = unfold(getblock(bm, (k1,i[2],k...)),2) @inbounds R[:,:,j] += M1*transpose(M2) end end @inbounds R = Array(R) return mapreduce(i -> R[:,:,i], +, 1:size(R,3)) end """ cum2mat(bm::SymmetricTensor{T, N}) where {T <: AbstractFloat, N} Returns higher order correlation matrix in the form of bm::SymmetricTensor{T, 2} ```jldoctest julia> Random.seed!(42); julia> t = rand(SymmetricTensor{Float64, 3}, 4); julia> cum2mat(t) SymmetricTensor{Float64,2}(Union{Nothing, Array{Float64,2}}[[7.69432 4.9757; 4.9757 5.72935] [6.09424 4.92375; 5.05157 3.17723]; nothing [7.33094 4.93128; 4.93128 4.7921]], 2, 2, 4, true) ``` """ function cum2mat(bm::SymmetricTensor{T, N}) where {T <: AbstractFloat, N} ret = arraynarrays(T, bm.bln, bm.bln) ds = (fill(bm.bln, N-2)...,) if nworkers() == 1 for i in pyramidindices(2, bm.bln) @inbounds ret[i...] = computeblock(bm, i, ds) end else for i in pyramidindices(2, bm.bln) @inbounds ret[i...] = computeblock_p(bm, i, ds) end end SymmetricTensor(ret; testdatstruct = false) end
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
2715
Random.seed!(42) a = rand(SymmetricTensor{Float64, 2}, 3) b = rand(SymmetricTensor{Float64, 3}, 3) @everywhere using LinearAlgebra @everywhere testf(a,b,bool)= det(a[bool,bool]) println("nworkers()") println(nworkers()) @testset "greedesearch parallel implementation" begin g = greedesearchdata(a,b, testf, 3) if VERSION <= v"1.7" @test g[1][1] == [true, false, true] @test g[2][1] == [false, false, true] @test g[3][1] == [false, false, false] @test g[1][2] ≈ 0.48918301293211774 @test g[2][2] ≈ 0.9735659798036858 @test g[3][2] == 1.0 @test g[1][3] == 2 @test g[2][3] == 1 @test g[3][3] == 3 else @test g[1][1] == [true, true, false] @test g[2][1] == [true, false, false] @test g[3][1] == [false, false, false] @test g[1][2] ≈ 0.09764869605558585 @test g[2][2] ≈ 0.6293451231426089 @test g[3][2] == 1.0 @test g[1][3] == 3 @test g[2][3] == 2 @test g[3][3] == 1 end end Random.seed!(42) @testset "cum2mat parallel tests on cumulants" begin @testset "small data sie" begin x = rand(200,12) c = cumulants(x,5,2) s = cum2mat(c[3]) X = unfold(Array(c[3]), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) s = cum2mat(c[4]) X = unfold(Array(c[4]), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) s = cum2mat(c[5]) X = unfold(Array(c[5]), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) end @testset "larger data size" begin x = rand(200,27) c = cumulants(x,5,5) s = cum2mat(c[3]) X = unfold(Array(c[3]), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) s = cum2mat(c[4]) X = unfold(Array(c[4]), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) s = cum2mat(c[5]) X = unfold(Array(c[5]), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) end end @testset "cum2mat parallel tests on random tensors" begin @testset "m = 5, n = 24, d = 4" begin Random.seed!(42) t = rand(SymmetricTensor{Float64, 5}, 24, 4) s = cum2mat(t) X = unfold(Array(t), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-8) end @testset "m = 5, n = 37, d = 6" begin t = rand(SymmetricTensor{Float64, 5}, 37, 6) s = cum2mat(t) X = unfold(Array(t), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-8) end end
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
617
using Test using Distributed using LinearAlgebra using SymmetricTensors using Cumulants using CumulantsFeatures using Combinatorics using Distributions using Random using CumulantsUpdates import CumulantsFeatures: reduceband, greedestep, unfoldsym, hosvdstep, greedesearchdata, mev, mormbased, hosvdapprox import CumulantsFeatures: updatemoments include("test_select.jl") include("test_detectors.jl") include("symten2mattest.jl") addprocs(3) @everywhere using CumulantsFeatures @everywhere using SymmetricTensors @everywhere using Cumulants @everywhere import SymmetricTensors: getblock include("paralleltests.jl")
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
3268
import CumulantsFeatures: makeblocksize, computeblock @testset "axiliary for cum2mat" begin Random.seed!(42) t = rand(SymmetricTensor{Float64, 3}, 9, 4) @test makeblocksize(t, (1,1)) == (4,4) @test makeblocksize(t, (1,3)) == (4,1) @test makeblocksize(t, (3,1)) == (1,4) t1 = rand(SymmetricTensor{Float64, 3}, 9, 3) @test makeblocksize(t1, (1,1)) == (3,3) dims = (fill(t.bln, 1)...,) if VERSION <= v"1.7" @test computeblock(t, (1,1), dims)[1,1] ≈ 21.8503 atol = 0.01 else @test computeblock(t, (1,1), dims)[1,1] ≈ 19.1174 atol = 0.01 end end @testset "cum2mat tests on cumulants" begin x = rand(20,13) c = cumulants(x,5,2) s = cum2mat(c[3]) X = unfold(Array(c[3]), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) s = cum2mat(c[4]) X = unfold(Array(c[4]), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) s = cum2mat(c[5]) X = unfold(Array(c[5]), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) end @testset "cum2mat tests on random tensor one core" begin @testset "order 3" begin Random.seed!(42) t = rand(SymmetricTensor{Float64, 3}, 12, 4) s = cum2mat(t) X = unfold(Array(t), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) end @testset "order 4" begin t = rand(SymmetricTensor{Float64, 4}, 12, 3) s = cum2mat(t) X = unfold(Array(t), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) end @testset "order 5" begin t = rand(SymmetricTensor{Float64, 5}, 10, 2) s = cum2mat(t) X = unfold(Array(t), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) end @testset "order 5 not squared" begin t = rand(SymmetricTensor{Float64, 5}, 11, 3) s = cum2mat(t) X = unfold(Array(t), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) end @testset "order 6" begin t = rand(SymmetricTensor{Float64, 6}, 9, 3) s = cum2mat(t) X = unfold(Array(t), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) end @testset "order 6 not squared" begin t = rand(SymmetricTensor{Float64, 6}, 7, 3) s = cum2mat(t) X = unfold(Array(t), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-10) end @testset "larger data set" begin t = rand(SymmetricTensor{Float64, 5}, 26, 4) s = cum2mat(t) X = unfold(Array(t), 1) M = X*transpose(X) @test maximum(abs.(M - Array(s))) ≈ 0 atol = 10^(-8) end end @testset "test on Gaussian data" begin Random.seed!(1234) s = 0.5*(ones(4,4)+1*Matrix(I, 4, 4)) x = Array(rand(MvNormal(s), 1_000_000)'); c = cumulants(x, 5) M3 = cum2mat(c[3]) M4 = cum2mat(c[4]) M5 = cum2mat(c[5]) @test norm(c[2]) ≈ 2.64 atol = 10^(-2) @test norm(M3) ≈ 0. atol = 2*10^(-4) @test norm(M4)≈ 0. atol = 4*10^(-3) @test norm(M5)≈ 0. atol = 7*10^(-2) end
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
818
@testset "detectors" begin Random.seed!(42) x = vcat(rand(8,2), 5*rand(1,2), 30*rand(1,2)) x1 = vcat(rand(20,3), 5*rand(1,3), 30*rand(1,3)) @test rxdetect(x, 0.8) == [false, false, false, false, false, false, false, false, true, true] @test hosvdc4detect(x, 4., 2; b=2) == [false, false, false, false, false, false, false, false, true, true] @test hosvdc4detect(x1, 3.9, 1; b=1) == vcat(fill(false, 20), [true, true]) x2 = [[0. 0.]; [1. 2.]; [1. 1.]] @test hosvdc4detect(x2, .1, 2; b=2) == [false, false, false] @test rxdetect(x1, 0.9) == vcat(fill(false, 20), [true, true]) ls = fill(true, 10) ls1 = [true, true, true, true, true, true, true, true, false, false] c = cumulants(x, 4) @test hosvdstep(x, ls, 4., 2, c[4])[1] == ls1 @test hosvdstep(x, ls, 3., 1, c[4])[2] ≈ 1.15 atol= 0.1 end
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
code
5066
te = [-0.112639 0.124715 0.124715 0.268717 0.124715 0.268717 0.268717 0.046154] st = (reshape(te, (2,2,2))) mat = reshape(te[1:4], (2,2)) ar = reshape(collect(1.:27.),(3,3,3)) @testset "unfoldsym reduce" begin @test unfoldsym(st) == reshape(te, (2,4)) stt = SymmetricTensor(st) @test unfoldsym(stt) == reshape(te, (2,4))*reshape(te, (2,4))' @test reduceband(ar, [true, false, false]) ≈ ones(Float64, (1,1,1)) @test reduceband(ar, [true, true, true]) ≈ ar end Random.seed!(42) a = rand(SymmetricTensor{Float64, 2}, 3) b = rand(SymmetricTensor{Float64, 3}, 3) testf(a,b,bool)= det(a[bool,bool]) @testset "optimisation" begin @testset "greedestep" begin g = greedestep(Array(a), Array(b), testf, [true, true, true]) if VERSION <= v"1.7" @test g[1] == [true, false, true] @test g[3] == 2 @test g[2] ≈ 0.48918301293211774 else @test g[1] == [true, true, false] @test g[3] == 3 @test g[2] ≈ 0.09764869605558585 end end @testset "greedesearch" begin g = greedesearchdata(a,b, testf, 3) if VERSION <= v"1.7" @test g[1][1] == [true, false, true] @test g[2][1] == [false, false, true] @test g[3][1] == [false, false, false] @test g[1][2] ≈ 0.48918301293211774 @test g[2][2] ≈ 0.9735659798036858 @test g[3][2] == 1.0 @test g[1][3] == 2 @test g[2][3] == 1 @test g[3][3] == 3 else @test g[1][1] == [true, true, false] @test g[2][1] == [true, false, false] @test g[3][1] == [false, false, false] @test g[1][2] ≈ 0.09764869605558585 @test g[2][2] ≈ 0.6293451231426089 @test g[3][2] == 1.0 @test g[1][3] == 3 @test g[2][3] == 2 @test g[3][3] == 1 end end end @testset "target functions" begin Σ = [1. 0.5 0.5; 0.5 1. 0.5; 0.5 0.5 1.] @test mev(Σ, ones(2,2,2), [true, true, true]) == 0.5 c3 = ones(3,3,3) #@test hosvdapprox(Σ,c3, [true, true, true]) ≈ -33.905320329609154 c4 = ones(3,3,3,3) #@test hosvdapprox(Σ,c4, [true, true, true]) ≈ -30.23685187275532 @test mormbased(Σ,c4, [true, true, true]) ≈ 2. c5 = ones(3,3,3,3,3) #@test hosvdapprox(Σ,c5, [true, true, true]) ≈ -29.34097213814129 end @testset "hosvdapprox additional tests" begin Random.seed!(44) c3 = rand(SymmetricTensor{Float64, 3}, 5) Σ = rand(SymmetricTensor{Float64, 2}, 5) m3 = unfoldsym(c3) @test size(m3) == (5,5) Σ = Array(Σ) @test hosvdapprox(Σ, Array(c3)) ≈ log(det(m3)^(1/2)/det(Σ)^(3/2)) c4 = rand(SymmetricTensor{Float64, 4}, 5) m4 = unfoldsym(c4) @test size(m4) == (5,5) @test hosvdapprox(Σ, Array(c4)) ≈ log(det(m4)^(1/2)/det(Σ)^(4/2)) c5 = rand(SymmetricTensor{Float64, 5}, 5) m5 = unfoldsym(c5) @test size(m5) == (5,5) @test hosvdapprox(Σ, Array(c5)) ≈ log(det(m5)^(1/2)/det(Σ)^(5/2)) end @testset "cumfsel tests" begin Random.seed!(43) Σ = rand(SymmetricTensor{Float64, 2}, 5) c = 0.1*ones(5,5,5) c[1,1,1] = 20. c[2,2,2] = 10. c[3,3,3] = 10. for j in permutations([1,2,3]) c[j...] = 20. end for j in permutations([1,2,2]) c[j...] = 20. end for j in permutations([2,2,3]) c[j...] = 10. end for j in permutations([1,3,3]) c[j...] = 20. end c = SymmetricTensor(c) ret = cumfsel(Σ, c, "hosvd", 5) retn = cumfsel(Σ, c, "norm", 4) if VERSION <= v"1.7" @test ret[3][1] == [true, true, false, false, false] @test ret[3][2] ≈ 7.943479150509705 @test (x->x[3]).(ret) == [4, 5, 3, 2, 1] #from lest important to most important" @test retn[3][1] == [true, true, false, false, false] @test retn[3][2] ≈ 24.285620999564703 @test (x->x[3]).(retn) == [4, 5, 3, 2] @test cumfsel(Σ, c, "mev", 5)[1][3] == 5 @test cumfsel(Σ, 5)[1][3] == 5 @test_throws AssertionError cumfsel(Σ, c, "mov", 5) @test_throws AssertionError cumfsel(Σ, c, "hosvd", 7) else @test ret[3][1] == [false, true, true, false, false] @test ret[3][2] ≈ 10.943399558215603 @test (x->x[3]).(ret) == [4, 5, 1, 3, 2] #from lest important to most important" @test retn[3][1] == [true, false, true, false, false] @test retn[3][2] ≈ 46.617412130431866 @test (x->x[3]).(retn) == [4, 5, 2, 3] @test cumfsel(Σ, c, "mev", 5)[1][3] == 5 @test cumfsel(Σ, 5)[1][3] == 5 @test_throws AssertionError cumfsel(Σ, c, "mov", 5) @test_throws AssertionError cumfsel(Σ, c, "hosvd", 7) end Random.seed!(42) x = rand(12,10); c = cumulants(x,4); f = cumfsel(c[2], c[4], "hosvd") if VERSION <= v"1.7" @test f[9][1] == [false, false, false, false, false, false, true, false, false, false] @test f[9][3] == 9 @test f[10][3] == 7 else @test f[9][1] == [false, false, false, false, false, false, false, false, true, false] @test f[9][3] == 6 @test f[10][3] == 9 end end @testset "cumfsel tests on Float32" begin Random.seed!(42) x = rand(Float32, 12,10); c = cumulants(x,4); f = cumfsel(c[2], c[4], "hosvd") if VERSION <= v"1.7" @test f[9][3] == 6 @test f[10][3] == 5 else @test f[9][3] == 2 @test f[10][3] == 6 end end
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
1.3.6
d126c3731d9c9d21ab25b26f0ab7809dc39a5543
docs
9453
# CumulantsFeatures.jl [![Coverage Status](https://coveralls.io/repos/github/iitis/CumulantsFeatures.jl/badge.svg?branch=master)](https://coveralls.io/github/iitis/CumulantsFeatures.jl?branch=master) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7716695.svg)](https://doi.org/10.5281/zenodo.7716695) CumulantsFeatures.jl uses multivariate cumulants to provide the algorithms for the outliers detection and the features selection given the multivariate data represented in the form of `t x n` matrix of Floats, `t` numerates the realisations, while `n` numerates the marginals. Requires SymmetricTensors.jl Cumulants.jl and CumulantsUpdates.jl to compute and update multivariate cumulants of data. As of 24/09/2018 [@kdomino](https://github.com/kdomino) is the lead maintainer of this package. ## Installation Within Julia, run ```julia pkg> add CumulantsFeatures ``` Parallel computation is supported ## Features selection Given `n`-variate data, iteratively determines its `k`-marginals that are little informative. Uses `C2`- the covariance matrix, and `CN` - the `N`th cumulant's tensor, both in the `SymmetricTensor` type, see SymmetricTensors.jl. Uses one of the following optimisation functions `f`: `["hosvd", "norm", "mev"]. ```julia julia> function cumfsel(C2::SymmetricTensor{T,2}, CN::SymmetricTensor{T, N}, f::String, k::Int = n) where {T <: AbstractFloat, N} ``` The "norm" uses the norm of the higher-order cumulant tensor, this is a benchmark method for comparison. The "mev" uses only the corrlelation matrix, see: C. Sheffield, 'Selecting band combinations from multispectral data', Photogrammetric Engineering and Remote Sensing, vol. 51 (1985) The "hosvd" uses the Higher Order Singular Value decomposition of cumulant's tensor to extract information. For the `N=3` case, the Joint Skewness Band Selection (JSBS), see X. Geng, K. Sun, L. Ji, H. Tang & Y. Zhao 'Joint Skewness and Its Application in Unsupervised Band Selection for Small Target Detection Sci Rep. vol.5 (2015) (https://www.nature.com/articles/srep09915). For the JSBS application in biomedical data analysis see: M. Domino, K. Domino, Z. Gajewski, 'An application of higher order multivariate cumulants in modelling of myoelectrical activity of porcine uterus during early pregnancy', Biosystems (2018), (https://doi.org/10.1016/j.biosystems.2018.10.019). For `N = 4` and `N = 5` see also P. Głomb, K. Domino, M. Romaszewski, M. Cholewa 'Band selection with Higher Order Multivariate Cumulants for small target detection in hyperspectral images' (2018) (https://arxiv.org/abs/1808.03513). ```julia julia> Random.seed!(42); julia> using Cumulants julia> using SymmetricTensors julia> x = rand(12,10); julia> c = cumulants(x, 4); julia> cumfsel(c[2], c[4], "hosvd") 10-element Array{Any,1}: (Bool[true, true, true, false, true, true, true, true, true, true], 27.2519, 4) (Bool[true, true, false, false, true, true, true, true, true, true], 22.6659, 3) (Bool[true, true, false, false, false, true, true, true, true, true], 18.1387, 5) (Bool[false, true, false, false, false, true, true, true, true, true], 14.4492, 1) (Bool[false, true, false, false, false, true, true, false, true, true], 11.2086, 8) (Bool[false, true, false, false, false, true, true, false, true, false], 7.84083, 10) (Bool[false, false, false, false, false, true, true, false, true, false], 5.15192, 2) (Bool[false, false, false, false, false, false, true, false, true, false], 2.56748, 6) (Bool[false, false, false, false, false, false, true, false, false, false], 0.30936, 9) (Bool[false, false, false, false, false, false, false, false, false, false], 0.0, 7) ``` The output is the Array of tuples `(ind::Array{Bool}, fval::Float64, i::Int)`, each tuple corresponds to the one step of the features selection. Marginals are removed in the information hierarchy, starting from the least informatve and ending on the most infomrative. The vector `ind` consist of `false` that determines the removed marginal, and `true` that determines the left marginal. The `fval` is the value of the target function. The `i` numerates the marginal removed at the given step. To limit number of steps use the default parameter `k`: ```julia julia> cumfsel(Array(c[2]), Array(c[4]), "hosvd", 2) 2-element Array{Any,1}: (Bool[true, true, true, false, true, true, true, true, true, true], 27.2519, 4) (Bool[true, true, false, false, true, true, true, true, true, true], 22.6659, 3) ``` For the mev optimization run: ```julia julia> cumfsel(Σ::SymmetricTensor{T,2}, k::Int = Σ.dats) ``` ## The higher-order cross-correlation matrix ```julia cum2mat(c::SymmetricTensor{T, N}) where {T <: AbstractFloat, N} ``` Returns the higher-order cross-correlation matrix in the form of `SymmetricTensor{T, 2}`. Such matrix is the contraction of the corresponding higher-order cumulant tensor `c::SymmetricTensor{T, N}` with itself in all modes but one. ```julia julia> Random.seed!(42); julia> t = rand(SymmetricTensor{Float64, 3}, 4); julia> cum2mat(t) SymmetricTensor{Float64,2}(Union{Nothing, Array{Float64,2}}[[7.69432 4.9757; 4.9757 5.72935] [6.09424 4.92375; 5.05157 3.17723]; nothing [7.33094 4.93128; 4.93128 4.7921]], 2, 2, 4, true) ``` ## Outliers detection Let `X` be the multivariate data represented in the form of `t x n` matrix of Floats, `t` numerates the realisations, while `n` numerates the marginals. ### RX detector ```julia rxdetect(X::Matrix{T}, α::Float64 = 0.99) ``` The RX (Reed-Xiaoli) Anomaly Detection returns the array of Bool, where `true` corresponds to the outlier realisations while `false` corresponds to the ordinary data. The parameter `α` is the sensitivity (threshold) parameter of the RX detector. ```julia julia> Random.seed!(42); julia> x = vcat(rand(8,2), 20*rand(2,2)) 10×2 Array{Float64,2}: 0.533183 0.956916 0.454029 0.584284 0.0176868 0.937466 0.172933 0.160006 0.958926 0.422956 0.973566 0.602298 0.30387 0.363458 0.176909 0.383491 11.8582 5.25618 14.9036 10.059 julia> rxdetect(x, 0.95) 10-element Array{Bool,1}: false false false false false false false false true true ``` ### The 4th order multivariate cumulant outlier detector ```julia function hosvdc4detect(X::Matrix{T}, β::Float64 = 4.1, r::Int = 3) ``` The 4th order multivariate cumulant outlier detector returns the array of Bool, where `true` corresponds to the outlier realisations while `false` corresponds to the ordinary data. The parameter `β` is the sensitivity parameter, the parameter `r` is the number of specific directions (with high `4`th order cumulant) on which data are projected. See K. Domino: 'Multivariate cumulants in outlier detection for financial data analysis', [arXiv:1804.00541] (https://arxiv.org/abs/1804.00541). ```julia julia> Random.seed!(42); julia> x = vcat(rand(8,2), 20*rand(2,2)) 10×2 Array{Float64,2}: 0.533183 0.956916 0.454029 0.584284 0.0176868 0.937466 0.172933 0.160006 0.958926 0.422956 0.973566 0.602298 0.30387 0.363458 0.176909 0.383491 11.8582 5.25618 14.9036 10.059 julia> rxdetect(x, 0.95) 10-element Array{Bool,1}: false false false false false false false false true true ``` ## Tests on artificial data. In folder `benchmarks/outliers_detect` and `benchmarks/features_select` there are the Julia executable files for testing features selection and outliers detection on artificial data. ### Features selection In `./benchmarks/features_select` the executable file `gendat4selection.jl` generates multivariate data where the subset of `infomrative` margianls is modelled by the t-Student copula with `--nu` degrees of freedom (by defalt `4`). All univariate marginal distributions are t-Student with `-nuu` degrees of freedom (by defalt `25`). The `gendat4selection.jl` returns a `.jld2` file with data. Run `jkfs_selection.jl` on this file to display the characteristics of features selection plotted in `./benchmarks/features_select/pics/` ### Outlier detection In `./benchmarks/outliers_detect/` the executable file `gendat4detection.jl` generates multivariate data with outliers modelled by the t-Student copula with `--nu` degrees of freedom (by defalt `6`). All univariate marginal distributions are t-Student with `--nuu` degrees of freedom (by defalt `6`). The number of test realisations is `--reals` (by default `5`). The `gendat4detection.jl` returns a `.jld2` file with data. Run `detect_outliers.jl` on this file to display the characteristics of outlier detection plotted in `./benchmarks/outliers_detect/pics/' ` # Citing this work This project was partially financed by the National Science Centre, Poland – project number 2014/15/B/ST6/05204. While using `hosvdc4detect()` - please cite: K. Domino: 'Multivariate cumulants in outlier detection for financial data analysis', Physica A: Statistical Mechanics and its Applications Volume 558, 15 November 2020, 124995 (https://doi.org/10.1016/j.physa.2020.124995). While using `cumfsel()` - please cite: P. Głomb, K. Domino, M. Romaszewski, M. Cholewa, 'Band selection with Higher Order Multivariate Cumulants for small target detection in hyperspectral images', Wroclaw University of Science and Technology, Conference Proceedings: PP-RAI'2019 (2019), ISBN: 978-83-943803-2-8; [arxiv: 1808.03513] (https://arxiv.org/abs/1808.03513).
CumulantsFeatures
https://github.com/iitis/CumulantsFeatures.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
598
using MLUtils using Documenter # Copy the README to the home page in docs, to avoid duplication. readme = readlines(joinpath(@__DIR__, "..", "README.md")) open(joinpath(@__DIR__, "src/index.md"), "w") do f for l in readme println(f, l) end end DocMeta.setdocmeta!(MLUtils, :DocTestSetup, :(using MLUtils); recursive=true) makedocs(; modules=[MLUtils], doctest=true, clean=true, sitename = "MLUtils.jl", pages = ["Home" => "index.md", "API" => "api.md"], ) deploydocs(repo="github.com/JuliaML/MLUtils.jl.git", devbranch="main")
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
1608
module MLUtils using Random using Statistics using ShowCases: ShowLimit using FLoops: @floop using FLoops.Transducers: Executor, ThreadedEx import StatsBase: sample using Transducers using Tables using DataAPI using Base: @propagate_inbounds using Random: AbstractRNG, shuffle!, GLOBAL_RNG, rand!, randn! import ChainRulesCore: rrule using ChainRulesCore: @non_differentiable, unthunk, AbstractZero, NoTangent, ZeroTangent, ProjectTo using SimpleTraits import NNlib @traitdef IsTable{X} @traitimpl IsTable{X} <- Tables.istable(X) using Compat: stack include("observation.jl") export numobs, getobs, getobs! include("obstransform.jl") export mapobs, filterobs, groupobs, joinobs, shuffleobs include("batchview.jl") export batchsize, BatchView include("eachobs.jl") export eachobs, DataLoader include("parallel.jl") include("folds.jl") export kfolds, leavepout include("obsview.jl") export obsview, ObsView include("randobs.jl") export randobs include("resample.jl") export oversample, undersample include("splitobs.jl") export splitobs include("utils.jl") export batch, batchseq, chunk, fill_like, flatten, group_counts, group_indices, normalise, ones_like, rand_like, randn_like, rpad_constant, stack, # in Base since julia v1.9 unbatch, unsqueeze, unstack, zeros_like include("Datasets/Datasets.jl") using .Datasets export Datasets, load_iris include("deprecations.jl") end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
6254
""" BatchView(data, batchsize; partial=true, collate=nothing) BatchView(data; batchsize=1, partial=true, collate=nothing) Create a view of the given `data` that represents it as a vector of batches. Each batch will contain an equal amount of observations in them. The batch-size can be specified using the parameter `batchsize`. In the case that the size of the dataset is not dividable by the specified `batchsize`, the remaining observations will be ignored if `partial=false`. If `partial=true` instead the last batch-size can be slightly smaller. Note that any data access is delayed until `getindex` is called. If used as an iterator, the object will iterate over the dataset once, effectively denoting an epoch. For `BatchView` to work on some data structure, the type of the given variable `data` must implement the data container interface. See [`ObsView`](@ref) for more info. # Arguments - **`data`** : The object describing the dataset. Can be of any type as long as it implements [`getobs`](@ref) and [`numobs`](@ref) (see Details for more information). - **`batchsize`** : The batch-size of each batch. It is the number of observations that each batch must contain (except possibly for the last one). - **`partial`** : If `partial=false` and the number of observations is not divisible by the batch-size, then the last mini-batch is dropped. - **`collate`**: Batching behavior. If `nothing` (default), a batch is `getobs(data, indices)`. If `false`, each batch is `[getobs(data, i) for i in indices]`. When `true`, applies [`batch`](@ref) to the vector of observations in a batch, recursively collating arrays in the last dimensions. See [`batch`](@ref) for more information and examples. # Examples ```julia using MLUtils X, Y = MLUtils.load_iris() A = BatchView(X, batchsize=30) @assert typeof(A) <: BatchView <: AbstractVector @assert eltype(A) <: SubArray{Float64,2} @assert length(A) == 5 # Iris has 150 observations @assert size(A[1]) == (4,30) # Iris has 4 features # 5 batches of size 30 observations for x in BatchView(X, batchsize=30) @assert typeof(x) <: SubArray{Float64,2} @assert numobs(x) === 30 end # 7 batches of size 20 observations # Note that the iris dataset has 150 observations, # which means that with a batchsize of 20, the last # 10 observations will be ignored for (x, y) in BatchView((X, Y), batchsize=20, partial=false) @assert typeof(x) <: SubArray{Float64,2} @assert typeof(y) <: SubArray{String,1} @assert numobs(x) == numobs(y) == 20 end # collate tuple observations for (x, y) in BatchView((rand(10, 3), ["a", "b", "c"]), batchsize=2, collate=true, partial=false) @assert size(x) == (10, 2) @assert size(y) == (2,) end # randomly assign observations to one and only one batch. for (x, y) in BatchView(shuffleobs((X, Y)), batchsize=20) @assert typeof(x) <: SubArray{Float64,2} @assert typeof(y) <: SubArray{String,1} end ``` """ struct BatchView{TElem,TData,TCollate} <: AbstractDataContainer data::TData batchsize::Int count::Int partial::Bool end function BatchView(data::T; batchsize::Int=1, partial::Bool=true, collate=Val(nothing)) where {T} n = numobs(data) if n < batchsize @warn "Number of observations less than batch-size, decreasing the batch-size to $n" batchsize = n end collate = collate isa Val ? collate : Val(collate) if !(collate ∈ (Val(nothing), Val(true), Val(false))) throw(ArgumentError("`collate` must be one of `nothing`, `true` or `false`.")) end E = _batchviewelemtype(data, collate) count = partial ? cld(n, batchsize) : fld(n, batchsize) BatchView{E,T,typeof(collate)}(data, batchsize, count, partial) end _batchviewelemtype(::TData, ::Val{nothing}) where TData = Core.Compiler.return_type(getobs, Tuple{TData, UnitRange{Int}}) _batchviewelemtype(::TData, ::Val{false}) where TData = Vector{Core.Compiler.return_type(getobs, Tuple{TData, Int})} _batchviewelemtype(data, ::Val{true}) = Core.Compiler.return_type(batch, Tuple{_batchviewelemtype(data, Val(false))}) """ batchsize(data::BatchView) -> Int Return the fixed size of each batch in `data`. # Examples ```julia using MLUtils X, Y = MLUtils.load_iris() A = BatchView(X, batchsize=30) @assert batchsize(A) == 30 ``` """ batchsize(A::BatchView) = A.batchsize Base.length(A::BatchView) = A.count Base.@propagate_inbounds function getobs(A::BatchView) return _getbatch(A, 1:numobs(A.data)) end Base.@propagate_inbounds function Base.getindex(A::BatchView, i::Int) obsindices = _batchrange(A, i) _getbatch(A, obsindices) end Base.@propagate_inbounds function Base.getindex(A::BatchView, is::AbstractVector) obsindices = union((_batchrange(A, i) for i in is)...)::Vector{Int} _getbatch(A, obsindices) end function _getbatch(A::BatchView{TElem, TData, Val{true}}, obsindices) where {TElem, TData} batch([getobs(A.data, i) for i in obsindices]) end function _getbatch(A::BatchView{TElem, TData, Val{false}}, obsindices) where {TElem, TData} return [getobs(A.data, i) for i in obsindices] end function _getbatch(A::BatchView{TElem, TData, Val{nothing}}, obsindices) where {TElem, TData} getobs(A.data, obsindices) end Base.parent(A::BatchView) = A.data Base.eltype(::BatchView{Tel}) where Tel = Tel # override AbstractDataContainer default Base.iterate(A::BatchView, state = 1) = (state > numobs(A)) ? nothing : (A[state], state + 1) # Helper function to translate a batch-index into a range of observations. @inline function _batchrange(A::BatchView, batchindex::Int) @boundscheck (batchindex > A.count || batchindex < 0) && throw(BoundsError()) startidx = (batchindex - 1) * A.batchsize + 1 endidx = min(numobs(parent(A)), startidx + A.batchsize -1) return startidx:endidx end function Base.showarg(io::IO, A::BatchView, toplevel) print(io, "BatchView(") Base.showarg(io, parent(A), false) print(io, ", ") print(io, "batchsize=$(A.batchsize), ") print(io, "partial=$(A.partial)") print(io, ')') toplevel && print(io, " with eltype ", nameof(eltype(A))) # simplify end # --------------------------------------------------------------------
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
663
# Deprecated in v0.2 @deprecate unstack(x, dims) unstack(x; dims=dims) @deprecate unsqueeze(x::AbstractArray, dims::Int) unsqueeze(x; dims=dims) @deprecate unsqueeze(dims::Int) unsqueeze(dims=dims) @deprecate labelmap(x) group_indices(x) @deprecate frequencies(x) group_counts(x) @deprecate eachbatch(data, batchsize; kws...) eachobs(data; batchsize, kws...) @deprecate eachbatch(data; size=1, kws...) eachobs(data; batchsize=size, kws...) # Deprecated in v0.3 import Base: rpad @deprecate rpad(v::AbstractVector, n::Integer, p) rpad_constant(v, n, p) @deprecate rpad(v::AbstractVector, n::Integer, p::Union{AbstractChar, AbstractString}) rpad_constant(v, n, p)
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
9362
""" eachobs(data; kws...) Return an iterator over `data`. Supports the same arguments as [`DataLoader`](@ref). The `batchsize` default is `-1` here while it is `1` for `DataLoader`. # Examples ```julia X = rand(4,100) for x in eachobs(X) # loop entered 100 times @assert typeof(x) <: Vector{Float64} @assert size(x) == (4,) end # mini-batch iterations for x in eachobs(X, batchsize=10) # loop entered 10 times @assert typeof(x) <: Matrix{Float64} @assert size(x) == (4,10) end # support for tuples, named tuples, dicts for (x, y) in eachobs((X, Y)) # ... end ``` """ function eachobs(data; batchsize=-1, kws...) DataLoader(data; batchsize, kws...) end """ DataLoader(data; [batchsize, buffer, collate, parallel, partial, rng, shuffle]) An object that iterates over mini-batches of `data`, each mini-batch containing `batchsize` observations (except possibly the last one). Takes as input a single data array, a tuple (or a named tuple) of arrays, or in general any `data` object that implements the [`numobs`](@ref) and [`getobs`](@ref) methods. The last dimension in each array is the observation dimension, i.e. the one divided into mini-batches. The original data is preserved in the `data` field of the DataLoader. # Arguments - `data`: The data to be iterated over. The data type has to be supported by [`numobs`](@ref) and [`getobs`](@ref). - `batchsize`: If less than 0, iterates over individual observations. Otherwise, each iteration (except possibly the last) yields a mini-batch containing `batchsize` observations. Default `1`. - `buffer`: If `buffer=true` and supported by the type of `data`, a buffer will be allocated and reused for memory efficiency. You can also pass a preallocated object to `buffer`. Default `false`. - `collate`: Batching behavior. If `nothing` (default), a batch is `getobs(data, indices)`. If `false`, each batch is `[getobs(data, i) for i in indices]`. When `true`, applies [`batch`](@ref) to the vector of observations in a batch, recursively collating arrays in the last dimensions. See [`batch`](@ref) for more information and examples. - `parallel`: Whether to use load data in parallel using worker threads. Greatly speeds up data loading by factor of available threads. Requires starting Julia with multiple threads. Check `Threads.nthreads()` to see the number of available threads. **Passing `parallel = true` breaks ordering guarantees**. Default `false`. - `partial`: This argument is used only when `batchsize > 0`. If `partial=false` and the number of observations is not divisible by the batchsize, then the last mini-batch is dropped. Default `true`. - `rng`: A random number generator. Default `Random.GLOBAL_RNG`. - `shuffle`: Whether to shuffle the observations before iterating. Unlike wrapping the data container with `shuffleobs(data)`, `shuffle=true` ensures that the observations are shuffled anew every time you start iterating over `eachobs`. Default `false`. # Examples ```jldoctest julia> Xtrain = rand(10, 100); julia> array_loader = DataLoader(Xtrain, batchsize=2); julia> for x in array_loader @assert size(x) == (10, 2) # do something with x, 50 times end julia> array_loader.data === Xtrain true julia> tuple_loader = DataLoader((Xtrain,), batchsize=2); # similar, but yielding 1-element tuples julia> for x in tuple_loader @assert x isa Tuple{Matrix} @assert size(x[1]) == (10, 2) end julia> Ytrain = rand('a':'z', 100); # now make a DataLoader yielding 2-element named tuples julia> train_loader = DataLoader((data=Xtrain, label=Ytrain), batchsize=5, shuffle=true); julia> for epoch in 1:100 for (x, y) in train_loader # access via tuple destructuring @assert size(x) == (10, 5) @assert size(y) == (5,) # loss += f(x, y) # etc, runs 100 * 20 times end end julia> first(train_loader).label isa Vector{Char} # access via property name true julia> first(train_loader).label == Ytrain[1:5] # because of shuffle=true false julia> foreach(println∘summary, DataLoader(rand(Int8, 10, 64), batchsize=30)) # partial=false would omit last 10×30 Matrix{Int8} 10×30 Matrix{Int8} 10×4 Matrix{Int8} ``` """ struct DataLoader{T, R<:AbstractRNG, C<:Val} data::T batchsize::Int buffer::Bool partial::Bool shuffle::Bool parallel::Bool collate::C rng::R end function DataLoader( data; buffer = false, parallel = false, shuffle = false, batchsize::Int = 1, partial::Bool = true, collate = Val(nothing), rng::AbstractRNG = Random.GLOBAL_RNG) buffer = buffer isa Bool ? buffer : true collate = collate isa Val ? collate : Val(collate) if !(collate ∈ (Val(nothing), Val(true), Val(false))) throw(ArgumentError("`collate` must be one of `nothing`, `true` or `false`.")) end return DataLoader(data, batchsize, buffer, partial, shuffle, parallel, collate, rng) end function Base.iterate(e::DataLoader) # Wrapping with ObsView in order to work around # issue https://github.com/FluxML/Flux.jl/issues/1935 data = ObsView(e.data) data = e.shuffle ? shuffleobs(e.rng, data) : data data = e.batchsize > 0 ? BatchView(data; e.batchsize, e.partial, e.collate) : data iter = if e.parallel eachobsparallel(data; e.buffer) else if e.buffer buf = getobs(data, 1) (getobs!(buf, data, i) for i in 1:numobs(data)) else (getobs(data, i) for i in 1:numobs(data)) end end obs, state = iterate(iter) return obs, (iter, state) end function Base.iterate(::DataLoader, (iter, state)) ret = iterate(iter, state) isnothing(ret) && return obs, state = ret return obs, (iter, state) end function Base.length(e::DataLoader) numobs(if e.batchsize > 0 # Wrapping with ObsView in order to work around # issue https://github.com/FluxML/Flux.jl/issues/1935 data = ObsView(e.data) BatchView(data; e.batchsize, e.partial) else e.data end) end Base.IteratorEltype(::DataLoader) = Base.EltypeUnknown() ## This causes error in some cases of `collect(loader)` # function Base.eltype(e::DataLoader) # eltype(if e.batchsize > 0 # BatchView(e.data; e.batchsize, e.partial) # else # e.data # end) # end @inline function _dataloader_foldl1(rf, val, e::DataLoader, data) if e.shuffle _dataloader_foldl2(rf, val, e, shuffleobs(e.rng, data)) else _dataloader_foldl2(rf, val, e, data) end end @inline function _dataloader_foldl2(rf, val, e::DataLoader, data) if e.batchsize > 0 _dataloader_foldl3(rf, val, e, BatchView(data; e.batchsize, e.partial)) else _dataloader_foldl3(rf, val, e, data) end end @inline function _dataloader_foldl3(rf, val, e::DataLoader, data) if e.buffer > 0 _dataloader_foldl4_buffered(rf, val, data) else _dataloader_foldl4(rf, val, data) end end @inline function _dataloader_foldl4(rf, val, data) for i in 1:numobs(data) @inbounds x = getobs(data, i) # TODO: in 1.8 we could @inline this at the callsite, # optimizer seems to be very sensitive to inlining and # quite brittle in its capacity to keep this type stable val = Transducers.@next(rf, val, x) end Transducers.complete(rf, val) end @inline function _dataloader_foldl4_buffered(rf, val, data) buf = getobs(data, 1) for i in 1:numobs(data) @inbounds x = getobs!(buf, data, i) val = Transducers.@next(rf, val, x) end Transducers.complete(rf, val) end @inline function Transducers.__foldl__(rf, val, e::DataLoader) e.parallel && throw(ArgumentError("Transducer fold protocol not supported on parallel data loads")) _dataloader_foldl1(rf, val, e, ObsView(e.data)) end # Base uses this function for composable array printing, e.g. adjoint(view(::Matrix))) function Base.showarg(io::IO, e::DataLoader, toplevel) print(io, "DataLoader(") Base.showarg(io, e.data, false) e.buffer == false || print(io, ", buffer=", e.buffer) e.parallel == false || print(io, ", parallel=", e.parallel) e.shuffle == false || print(io, ", shuffle=", e.shuffle) e.batchsize == 1 || print(io, ", batchsize=", e.batchsize) e.partial == true || print(io, ", partial=", e.partial) e.collate == Val(nothing) || print(io, ", collate=", e.collate) e.rng == Random.GLOBAL_RNG || print(io, ", rng=", e.rng) print(io, ")") end Base.show(io::IO, e::DataLoader) = Base.showarg(io, e, false) function Base.show(io::IO, m::MIME"text/plain", e::DataLoader) if Base.haslength(e) print(io, length(e), "-element ") else print(io, "Unknown-length ") end Base.showarg(io, e, false) print(io, "\n with first element:") print(io, "\n ", _expanded_summary(first(e))) end _expanded_summary(x) = summary(x) function _expanded_summary(xs::Tuple) parts = [_expanded_summary(x) for x in xs] "(" * join(parts, ", ") * ",)" end function _expanded_summary(xs::NamedTuple) parts = ["$k = "*_expanded_summary(x) for (k,x) in zip(keys(xs), xs)] "(; " * join(parts, ", ") * ")" end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
5754
""" kfolds(n::Integer, k = 5) -> Tuple Compute the train/validation assignments for `k` repartitions of `n` observations, and return them in the form of two vectors. The first vector contains the index-vectors for the training subsets, and the second vector the index-vectors for the validation subsets respectively. A general rule of thumb is to use either `k = 5` or `k = 10`. The following code snippet generates the indices assignments for `k = 5` ```julia julia> train_idx, val_idx = kfolds(10, 5); ``` Each observation is assigned to the validation subset once (and only once). Thus, a union over all validation index-vectors reproduces the full range `1:n`. Note that there is no random assignment of observations to subsets, which means that adjacent observations are likely to be part of the same validation subset. ```julia julia> train_idx 5-element Array{Array{Int64,1},1}: [3,4,5,6,7,8,9,10] [1,2,5,6,7,8,9,10] [1,2,3,4,7,8,9,10] [1,2,3,4,5,6,9,10] [1,2,3,4,5,6,7,8] julia> val_idx 5-element Array{UnitRange{Int64},1}: 1:2 3:4 5:6 7:8 9:10 ``` """ function kfolds(n::Integer, k::Integer = 5) 2 <= k <= n || throw(ArgumentError("n must be positive and k must to be within 2:$(max(2,n))")) # Compute the size of each fold. This is important because # in general the number of total observations might not be # divideable by k. In such cases it is custom that the remaining # observations are divided among the folds. Thus some folds # have one more observation than others. sizes = fill(floor(Int, n/k), k) for i = 1:(n % k) sizes[i] = sizes[i] + 1 end # Compute start offset for each fold offsets = cumsum(sizes) .- sizes .+ 1 # Compute the validation indices using the offsets and sizes val_indices = map((o,s)->(o:o+s-1), offsets, sizes) # The train indices are then the indicies not in validation train_indices = map(idx->setdiff(1:n,idx), val_indices) # We return a tuple of arrays train_indices, val_indices end """ kfolds(data, [k = 5]) Repartition a `data` container `k` times using a `k` folds strategy and return the sequence of folds as a lazy iterator. Only data subsets are created, which means that no actual data is copied until [`getobs`](@ref) is invoked. Conceptually, a k-folds repartitioning strategy divides the given `data` into `k` roughly equal-sized parts. Each part will serve as validation set once, while the remaining parts are used for training. This results in `k` different partitions of `data`. In the case that the size of the dataset is not dividable by the specified `k`, the remaining observations will be evenly distributed among the parts. ```julia for (x_train, x_val) in kfolds(X, k=10) # code called 10 times # nobs(x_val) may differ up to ±1 over iterations end ``` Multiple variables are supported (e.g. for labeled data) ```julia for ((x_train, y_train), val) in kfolds((X, Y), k=10) # ... end ``` By default the folds are created using static splits. Use [`shuffleobs`](@ref) to randomly assign observations to the folds. ```julia for (x_train, x_val) in kfolds(shuffleobs(X), k = 10) # ... end ``` See [`leavepout`](@ref) for a related function. """ function kfolds(data, k::Integer) n = numobs(data) train_indices, val_indices = kfolds(n, k) ((obsview(data, itrain), obsview(data, ival)) for (itrain, ival) in zip(train_indices, val_indices)) end kfolds(data; k) = kfolds(data, k) """ leavepout(n::Integer, [size = 1]) -> Tuple Compute the train/validation assignments for `k ≈ n/size` repartitions of `n` observations, and return them in the form of two vectors. The first vector contains the index-vectors for the training subsets, and the second vector the index-vectors for the validation subsets respectively. Each validation subset will have either `size` or `size+1` observations assigned to it. The following code snippet generates the index-vectors for `size = 2`. ```julia julia> train_idx, val_idx = leavepout(10, 2); ``` Each observation is assigned to the validation subset once (and only once). Thus, a union over all validation index-vectors reproduces the full range `1:n`. Note that there is no random assignment of observations to subsets, which means that adjacent observations are likely to be part of the same validation subset. ```julia julia> train_idx 5-element Array{Array{Int64,1},1}: [3,4,5,6,7,8,9,10] [1,2,5,6,7,8,9,10] [1,2,3,4,7,8,9,10] [1,2,3,4,5,6,9,10] [1,2,3,4,5,6,7,8] julia> val_idx 5-element Array{UnitRange{Int64},1}: 1:2 3:4 5:6 7:8 9:10 ``` """ function leavepout(n::Integer, p::Integer = 1) 1 <= p <= floor(n/2) || throw(ArgumentError("p must to be within 1:$(floor(Int,n/2))")) k = floor(Int, n / p) kfolds(n, k) end """ leavepout(data, p = 1) Repartition a `data` container using a k-fold strategy, where `k` is chosen in such a way, that each validation subset of the resulting folds contains roughly `p` observations. Defaults to `p = 1`, which is also known as "leave-one-out" partitioning. The resulting sequence of folds is returned as a lazy iterator. Only data subsets are created. That means no actual data is copied until [`getobs`](@ref) is invoked. ```julia for (train, val) in leavepout(X, p=2) # if nobs(X) is dividable by 2, # then numobs(val) will be 2 for each iteraton, # otherwise it may be 3 for the first few iterations. end ``` See[`kfolds`](@ref) for a related function. """ function leavepout(data, p::Integer) n = numobs(data) 1 <= p <= floor(n/2) || throw(ArgumentError("p must to be within 1:$(floor(Int,n/2))")) k = floor(Int, n / p) kfolds(data, k) end leavepout(data; p::Integer=1) = leavepout(data, p)
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
6731
""" numobs(data) Return the total number of observations contained in `data`. If `data` does not have `numobs` defined, then in the case of `Tables.table(data) == true` returns the number of rows, otherwise returns `length(data)`. Authors of custom data containers should implement `Base.length` for their type instead of `numobs`. `numobs` should only be implemented for types where there is a difference between `numobs` and `Base.length` (such as multi-dimensional arrays). `getobs` supports by default nested combinations of array, tuple, named tuples, and dictionaries. See also [`getobs`](@ref). # Examples ```jldoctest # named tuples x = (a = [1, 2, 3], b = rand(6, 3)) numobs(x) == 3 # dictionaries x = Dict(:a => [1, 2, 3], :b => rand(6, 3)) numobs(x) == 3 ``` All internal containers must have the same number of observations: ```juliarepl julia> x = (a = [1, 2, 3, 4], b = rand(6, 3)); julia> numobs(x) ERROR: DimensionMismatch: All data containers must have the same number of observations. Stacktrace: [1] _check_numobs_error() @ MLUtils ~/.julia/dev/MLUtils/src/observation.jl:163 [2] _check_numobs @ ~/.julia/dev/MLUtils/src/observation.jl:130 [inlined] [3] numobs(data::NamedTuple{(:a, :b), Tuple{Vector{Int64}, Matrix{Float64}}}) @ MLUtils ~/.julia/dev/MLUtils/src/observation.jl:177 [4] top-level scope @ REPL[35]:1 ``` """ function numobs end # Generic Fallbacks @traitfn numobs(data::X) where {X; IsTable{X}} = DataAPI.nrow(data) @traitfn numobs(data::X) where {X; !IsTable{X}} = length(data) """ getobs(data, [idx]) Return the observations corresponding to the observation index `idx`. Note that `idx` can be any type as long as `data` has defined `getobs` for that type. If `idx` is not provided, then materialize all observations in `data`. If `data` does not have `getobs` defined, then in the case of `Tables.table(data) == true` returns the row(s) in position `idx`, otherwise returns `data[idx]`. Authors of custom data containers should implement `Base.getindex` for their type instead of `getobs`. `getobs` should only be implemented for types where there is a difference between `getobs` and `Base.getindex` (such as multi-dimensional arrays). The returned observation(s) should be in the form intended to be passed as-is to some learning algorithm. There is no strict interface requirement on how this "actual data" must look like. Every author behind some custom data container can make this decision themselves. The output should be consistent when `idx` is a scalar vs vector. `getobs` supports by default nested combinations of array, tuple, named tuples, and dictionaries. See also [`getobs!`](@ref) and [`numobs`](@ref). # Examples ```jldoctest # named tuples x = (a = [1, 2, 3], b = rand(6, 3)) getobs(x, 2) == (a = 2, b = x.b[:, 2]) getobs(x, [1, 3]) == (a = [1, 3], b = x.b[:, [1, 3]]) # dictionaries x = Dict(:a => [1, 2, 3], :b => rand(6, 3)) getobs(x, 2) == Dict(:a => 2, :b => x[:b][:, 2]) getobs(x, [1, 3]) == Dict(:a => [1, 3], :b => x[:b][:, [1, 3]]) ``` """ function getobs end # Generic Fallbacks getobs(data) = data @traitfn getobs(data::X, idx) where {X; IsTable{X}} = Tables.subset(data, idx, viewhint=false) @traitfn getobs(data::X, idx) where {X; !IsTable{X}} = data[idx] """ getobs!(buffer, data, idx) Inplace version of `getobs(data, idx)`. If this method is defined for the type of `data`, then `buffer` should be used to store the result, instead of allocating a dedicated object. Implementing this function is optional. In the case no such method is provided for the type of `data`, then `buffer` will be *ignored* and the result of [`getobs`](@ref) returned. This could be because the type of `data` may not lend itself to the concept of `copy!`. Thus, supporting a custom `getobs!` is optional and not required. See also [`getobs`](@ref) and [`numobs`](@ref). """ function getobs! end # getobs!(buffer, data) = getobs(data) getobs!(buffer, data, idx) = getobs(data, idx) # -------------------------------------------------------------------- # AbstractDataContainer # Having an AbstractDataContainer allows to define sensible defaults # for Base (or other) interfaces based on our interface. # This makes it easier for developers by reducing boilerplate. abstract type AbstractDataContainer end Base.size(x::AbstractDataContainer) = (numobs(x),) Base.iterate(x::AbstractDataContainer, state = 1) = (state > numobs(x)) ? nothing : (getobs(x, state), state + 1) Base.lastindex(x::AbstractDataContainer) = numobs(x) Base.firstindex(::AbstractDataContainer) = 1 # -------------------------------------------------------------------- # Arrays # We are very opinionated with arrays: the observation dimension # is th last dimension. For different behavior wrap the array in # a custom type, e.g. with Tables.table. numobs(A::AbstractArray{<:Any, N}) where {N} = size(A, N) # 0-dim arrays numobs(A::AbstractArray{<:Any, 0}) = 1 function getobs(A::AbstractArray{<:Any, N}, idx) where N I = ntuple(_ -> :, N-1) return A[I..., idx] end getobs(A::AbstractArray{<:Any, 0}, idx) = A[idx] function getobs!(buffer::AbstractArray, A::AbstractArray{<:Any, N}, idx) where N I = ntuple(_ -> :, N-1) buffer .= view(A, I..., idx) return buffer end function getobs!(buffer::AbstractArray, A::AbstractArray) buffer .= A return buffer end # -------------------------------------------------------------------- # Tuples and NamedTuples _check_numobs_error() = throw(DimensionMismatch("All data containers must have the same number of observations.")) function _check_numobs(data::Union{Tuple, NamedTuple, Dict}) length(data) == 0 && return 0 n = numobs(data[first(keys(data))]) for i in keys(data) ni = numobs(data[i]) n == ni || _check_numobs_error() end return n end numobs(data::Union{Tuple, NamedTuple}) = _check_numobs(data) getobs(tup::Union{Tuple, NamedTuple}) = map(x -> getobs(x), tup) Base.@propagate_inbounds function getobs(tup::Union{Tuple, NamedTuple}, indices) @boundscheck _check_numobs(tup) return map(x -> getobs(x, indices), tup) end function getobs!(buffers::Union{Tuple, NamedTuple}, tup::Union{Tuple, NamedTuple}, indices) _check_numobs(tup) return map(buffers, tup) do buffer, x getobs!(buffer, x, indices) end end ## Dict numobs(data::Dict) = _check_numobs(data) getobs(data::Dict, i) = Dict(k => getobs(v, i) for (k, v) in pairs(data)) getobs(data::Dict) = Dict(k => getobs(v) for (k, v) in pairs(data)) function getobs!(buffers, data::Dict, i) for (k, v) in pairs(data) getobs!(buffers[k], v, i) end return buffers end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
6308
# mapobs struct MappedData{batched, F, D} <: AbstractDataContainer f::F data::D end function Base.show(io::IO, data::MappedData{batched}) where {batched} print(io, "mapobs(") print(IOContext(io, :compact=>true), data.f) print(io, ", ") print(IOContext(io, :compact=>true), data.data) print(io, "; batched=:$(batched))") end Base.length(data::MappedData) = numobs(data.data) Base.getindex(data::MappedData, ::Colon) = data[1:length(data)] Base.getindex(data::MappedData{:auto}, idx::Int) = data.f(getobs(data.data, idx)) Base.getindex(data::MappedData{:auto}, idxs::AbstractVector) = data.f(getobs(data.data, idxs)) Base.getindex(data::MappedData{:never}, idx::Int) = data.f(getobs(data.data, idx)) Base.getindex(data::MappedData{:never}, idxs::AbstractVector) = [data.f(getobs(data.data, idx)) for idx in idxs] Base.getindex(data::MappedData{:always}, idx::Int) = getobs(data.f(getobs(data.data, [idx])), 1) Base.getindex(data::MappedData{:always}, idxs::AbstractVector) = data.f(getobs(data.data, idxs)) """ mapobs(f, data; batched=:auto) Lazily map `f` over the observations in a data container `data`. Returns a new data container `mdata` that can be indexed and has a length. Indexing triggers the transformation `f`. The batched keyword argument controls the behavior of `mdata[idx]` and `mdata[idxs]` where `idx` is an integer and `idxs` is a vector of integers: - `batched=:auto` (default). Let `f` handle the two cases. Calls `f(getobs(data, idx))` and `f(getobs(data, idxs))`. - `batched=:never`. The function `f` is always called on a single observation. Calls `f(getobs(data, idx))` and `[f(getobs(data, idx)) for idx in idxs]`. - `batched=:always`. The function `f` is always called on a batch of observations. Calls `getobs(f(getobs(data, [idx])), 1)` and `f(getobs(data, idxs))`. # Examples ```julia julia> data = (a=[1,2,3], b=[1,2,3]); julia> mdata = mapobs(data) do x (c = x.a .+ x.b, d = x.a .- x.b) end mapobs(#25, (a = [1, 2, 3], b = [1, 2, 3]); batched=:auto)) julia> mdata[1] (c = 2, d = 0) julia> mdata[1:2] (c = [2, 4], d = [0, 0]) ``` """ mapobs(f::F, data::D; batched=:auto) where {F,D} = MappedData{batched, F, D}(f, data) """ mapobs(fs, data) Lazily map each function in tuple `fs` over the observations in data container `data`. Returns a tuple of transformed data containers. """ mapobs(fs::Tuple, data) = Tuple(mapobs(f, data) for f in fs) struct NamedTupleData{TData,F} <: AbstractDataContainer data::TData namedfs::NamedTuple{F} end Base.length(data::NamedTupleData) = numobs(getfield(data, :data)) function Base.getindex(data::NamedTupleData{TData,F}, idx::Int) where {TData,F} obs = getobs(getfield(data, :data), idx) namedfs = getfield(data, :namedfs) return NamedTuple{F}(f(obs) for f in namedfs) end Base.getproperty(data::NamedTupleData, field::Symbol) = mapobs(getproperty(getfield(data, :namedfs), field), getfield(data, :data)) Base.show(io::IO, data::NamedTupleData) = print(io, "mapobs($(getfield(data, :namedfs)), $(getfield(data, :data)))") """ mapobs(namedfs::NamedTuple, data) Map a `NamedTuple` of functions over `data`, turning it into a data container of `NamedTuple`s. Field syntax can be used to select a column of the resulting data container. ```julia data = 1:10 nameddata = mapobs((x = sqrt, y = log), data) getobs(nameddata, 10) == (x = sqrt(10), y = log(10)) getobs(nameddata.x, 10) == sqrt(10) ``` """ function mapobs(namedfs::NamedTuple, data) return NamedTupleData(data, namedfs) end # filterobs """ filterobs(f, data) Return a subset of data container `data` including all indices `i` for which `f(getobs(data, i)) === true`. ```julia data = 1:10 numobs(data) == 10 fdata = filterobs(>(5), data) numobs(fdata) == 5 ``` """ function filterobs(f, data; iterfn = _iterobs) return obsview(data, [i for (i, obs) in enumerate(iterfn(data)) if f(obs)]) end _iterobs(data) = [getobs(data, i) for i = 1:numobs(data)] # groupobs """ groupobs(f, data) Split data container data `data` into different data containers, grouping observations by `f(obs)`. ```julia data = -10:10 datas = groupobs(>(0), data) length(datas) == 2 ``` """ function groupobs(f, data) groups = Dict{Any,Vector{Int}}() for i = 1:numobs(data) group = f(getobs(data, i)) if !haskey(groups, group) groups[group] = [i] else push!(groups[group], i) end end return Dict(group => obsview(data, idxs) for (group, idxs) in groups) end # joinumobs struct JoinedData{T,N} <: AbstractDataContainer datas::NTuple{N,T} ns::NTuple{N,Int} end JoinedData(datas) = JoinedData(datas, numobs.(datas)) Base.length(data::JoinedData) = sum(data.ns) function Base.getindex(data::JoinedData, idx) for (i, n) in enumerate(data.ns) if idx <= n return getobs(data.datas[i], idx) else idx -= n end end end """ joinobs(datas...) Concatenate data containers `datas`. ```julia data1, data2 = 1:10, 11:20 jdata = joinumobs(data1, data2) getobs(jdata, 15) == 15 ``` """ joinobs(datas...) = JoinedData(datas) """ shuffleobs([rng], data) Return a "subset" of `data` that spans all observations, but has the order of the observations shuffled. The values of `data` itself are not copied. Instead only the indices are shuffled. This function calls [`obsview`](@ref) to accomplish that, which means that the return value is likely of a different type than `data`. ```julia # For Arrays the subset will be of type SubArray @assert typeof(shuffleobs(rand(4,10))) <: SubArray # Iterate through all observations in random order for x in eachobs(shuffleobs(X)) ... end ``` The optional parameter `rng` allows one to specify the random number generator used for shuffling. This is useful when reproducible results are desired. By default, uses the global RNG. See `Random` in Julia's standard library for more info. For this function to work, the type of `data` must implement [`numobs`](@ref) and [`getobs`](@ref). See [`ObsView`](@ref) for more information. """ shuffleobs(data) = shuffleobs(Random.GLOBAL_RNG, data) function shuffleobs(rng::AbstractRNG, data) obsview(data, randperm(rng, numobs(data))) end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
7591
""" ObsView(data, [indices]) Used to represent a subset of some `data` of arbitrary type by storing which observation-indices the subset spans. Furthermore, subsequent subsettings are accumulated without needing to access actual data. The main purpose for the existence of `ObsView` is to delay data access and movement until an actual batch of data (or single observation) is needed for some computation. This is particularily useful when the data is not located in memory, but on the hard drive or some remote location. In such a scenario one wants to load the required data only when needed. Any data access is delayed until `getindex` is called, and even `getindex` returns the result of [`obsview`](@ref) which in general avoids data movement until [`getobs`](@ref) is called. If used as an iterator, the view will iterate over the dataset once, effectively denoting an epoch. Each iteration will return a lazy subset to the current observation. # Arguments - **`data`** : The object describing the dataset. Can be of any type as long as it implements [`getobs`](@ref) and [`numobs`](@ref) (see Details for more information). - **`indices`** : Optional. The index or indices of the observation(s) in `data` that the subset should represent. Can be of type `Int` or some subtype of `AbstractVector`. # Methods - **`getindex`** : Returns the observation(s) of the given index/indices. No data is copied aside from the required indices. - **`numobs`** : Returns the total number observations in the subset. - **`getobs`** : Returns the underlying data that the `ObsView` represents at the given relative indices. Note that these indices are in "subset space", and in general will not directly correspond to the same indices in the underlying data set. # Details For `ObsView` to work on some data structure, the desired type `MyType` must implement the following interface: - `getobs(data::MyType, idx)` : Should return the observation(s) indexed by `idx`. In what form is up to the user. Note that `idx` can be of type `Int` or `AbstractVector`. - `numobs(data::MyType)` : Should return the total number of observations in `data` The following methods can also be provided and are optional: - `getobs(data::MyType)` : By default this function is the identity function. If that is not the behaviour that you want for your type, you need to provide this method as well. - `obsview(data::MyType, idx)` : If your custom type has its own kind of subset type, you can return it here. An example for such a case are `SubArray` for representing a subset of some `AbstractArray`. - `getobs!(buffer, data::MyType, [idx])` : Inplace version of `getobs(data, idx)`. If this method is provided for `MyType`, then `eachobs` can preallocate a buffer that is then reused every iteration. Note: `buffer` should be equivalent to the return value of `getobs(::MyType, ...)`, since this is how `buffer` is preallocated by default. # Examples ```julia X, Y = MLUtils.load_iris() # The iris set has 150 observations and 4 features @assert size(X) == (4,150) # Represents the 80 observations as a ObsView v = ObsView(X, 21:100) @assert numobs(v) == 80 @assert typeof(v) <: ObsView # getobs indexes into v @assert getobs(v, 1:10) == X[:, 21:30] # Use `obsview` to avoid boxing into ObsView # for types that provide a custom "subset", such as arrays. # Here it instead creates a native SubArray. v = obsview(X, 1:100) @assert numobs(v) == 100 @assert typeof(v) <: SubArray # Also works for tuples of arbitrary length subset = obsview((X, Y), 1:100) @assert numobs(subset) == 100 @assert typeof(subset) <: Tuple # tuple of SubArray # Use as iterator for x in ObsView(X) @assert typeof(x) <: SubArray{Float64,1} end # iterate over each individual labeled observation for (x, y) in ObsView((X, Y)) @assert typeof(x) <: SubArray{Float64,1} @assert typeof(y) <: String end # same but in random order for (x, y) in ObsView(shuffleobs((X, Y))) @assert typeof(x) <: SubArray{Float64,1} @assert typeof(y) <: String end # Indexing: take first 10 observations x, y = ObsView((X, Y))[1:10] ``` # See also [`obsview`](@ref), [`getobs`](@ref), [`numobs`](@ref), [`splitobs`](@ref), [`shuffleobs`](@ref), [`kfolds`](@ref). """ struct ObsView{Tdata, I<:Union{Int,AbstractVector}} <: AbstractDataContainer data::Tdata indices::I function ObsView(data::T, indices::I) where {T,I} 1 <= minimum(indices) || throw(BoundsError(data, indices)) maximum(indices) <= numobs(data) || throw(BoundsError(data, indices)) new{T,I}(data, indices) end end ObsView(data) = ObsView(data, 1:numobs(data)) # # don't nest subsets ObsView(subset::ObsView) = subset function ObsView(subset::ObsView, indices::Union{Int,AbstractVector}) ObsView(subset.data, subset.indices[indices]) end function Base.show(io::IO, subset::ObsView) if get(io, :compact, false) print(io, "ObsView{", typeof(subset.data), "} with " , numobs(subset), " observations") else print(io, summary(subset), "\n ", numobs(subset), " observations") end end function Base.summary(subset::ObsView) io = IOBuffer() print(io, typeof(subset).name.name, "(") Base.showarg(io, subset.data, false) print(io, ", ") Base.showarg(io, subset.indices, false) print(io, ')') first(readlines(seek(io,0))) end # compare if both subsets cover the same observations of the same data # we don't care how the indices are stored, just that they match # in order and values function Base.:(==)(s1::ObsView, s2::ObsView) s1.data == s2.data && s1.indices == s2.indices end Base.IteratorEltype(::Type{<:ObsView}) = Base.EltypeUnknown() @propagate_inbounds Base.getindex(subset::ObsView, idx) = obsview(subset.data, subset.indices[idx]) Base.length(subset::ObsView) = length(subset.indices) getobs(subset::ObsView) = getobs(subset.data, subset.indices) @propagate_inbounds getobs(subset::ObsView, idx) = getobs(subset.data, subset.indices[idx]) getobs!(buffer, subset::ObsView) = getobs!(buffer, subset.data, subset.indices) @propagate_inbounds getobs!(buffer, subset::ObsView, idx) = getobs!(buffer, subset.data, subset.indices[idx]) Base.parent(x::ObsView) = x.data # -------------------------------------------------------------------- """ obsview(data, [indices]) Returns a lazy view of the observations in `data` that correspond to the given `indices`. No data will be copied except of the indices. It is similar to constructing an [`ObsView`](@ref), but returns a `SubArray` if the type of `data` is `Array` or `SubArray`. Furthermore, this function may be extended for custom types of `data` that also want to provide their own subset-type. In case `data` is a tuple, the constructor will be mapped over its elements. That means that the constructor returns a tuple of `ObsView` instead of a `ObsView` of tuples. If instead you want to get the subset of observations corresponding to the given `indices` in their native type, use `getobs`. See [`ObsView`](@ref) for more information. """ obsview(data, indices=1:numobs(data)) = ObsView(data, indices) ##### Arrays / SubArrays obsview(A::SubArray) = A function obsview(A::AbstractArray{T,N}, idx) where {T,N} I = ntuple(_ -> :, N-1) return view(A, I..., idx) end getobs(a::SubArray) = getobs(a.parent, last(a.indices)) ##### Tuples / NamedTuples function obsview(tup::Union{Tuple, NamedTuple}, indices) map(data -> obsview(data, indices), tup) end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
6398
""" eachobsparallel(data; buffer, executor, channelsize) Construct a data iterator over observations in container `data`. It uses available threads as workers to load observations in parallel, leading to large speedups when threads are available. To ensure that the active Julia session has multiple threads available, check that `Threads.nthreads() > 1`. You can start Julia with multiple threads with the `-t n` option. If your data loading is bottlenecked by the CPU, it is recommended to set `n` to the number of physical CPU cores. ## Arguments - `data`: a data container that implements `getindex/getobs` and `length/numobs` - `buffer = false`: whether to use inplace data loading with `getobs!`. Only use this if you need the additional performance and `getobs!` is implemented for `data`. Setting `buffer = true` means that when using the iterator, an observation is only valid for the current loop iteration. You can also pass in a preallocated `buffer = getobs(data, 1)`. - `executor = Folds.ThreadedEx()`: task scheduler You may specify a different task scheduler which can be any `Folds.Executor`. - `channelsize = Threads.nthreads()`: the number of observations that are prefetched. Increasing `channelsize` can lead to speedups when per-observation processing time is irregular but will cause higher memory usage. """ function eachobsparallel( data; executor::Executor = _default_executor(), buffer = false, channelsize = Threads.nthreads()) if buffer return _eachobsparallel_buffered(data, executor; channelsize) else return _eachobsparallel_unbuffered(data, executor; channelsize) end end function _eachobsparallel_buffered( data, executor; buffer = getobs(data, 1), channelsize=Threads.nthreads()) buffers = [buffer] foreach(_ -> push!(buffers, deepcopy(buffer)), 1:channelsize) # This ensures the `Loader` will take from the `RingBuffer`s result # channel, and that a new results channel is created on repeated # iteration. (Since `Loader`) closes the previous at the end of # each iteration. setup_channel(sz) = RingBuffer(buffers) return Loader(1:numobs(data); executor, channelsize, setup_channel) do ringbuffer, i # Internally, `RingBuffer` will `put!` the result in the results channel put!(ringbuffer) do buf getobs!(buf, data, i) end end end function _eachobsparallel_unbuffered(data, executor; channelsize=Threads.nthreads()) return Loader(1:numobs(data); executor, channelsize) do ch, i obs = getobs(data, i) put!(ch, obs) end end # Unlike DataLoaders.jl, this currently does not use task pools # since `ThreadedEx` has shown to be more performant. This may # change in the future. # See PR 33 https://github.com/JuliaML/MLUtils.jl/pull/33 _default_executor() = ThreadedEx() # ## Internals # The `Loader` handles the asynchronous iteration and fills # a result channel. """ Loader(f, args; executor, channelsize, setup_channel) Create a threaded iterator that iterates over `(f(arg) for arg in args)` using threads that prefill a channel of length `channelsize`. Note: results may not be returned in the correct order, depending on `executor`. """ struct Loader f argiter::AbstractVector executor::Executor channelsize::Int setup_channel end function Loader( f, argiter; executor=_default_executor(), channelsize=Threads.nthreads(), setup_channel = sz -> Channel(sz)) Loader(f, argiter, executor, channelsize, setup_channel) end Base.length(loader::Loader) = length(loader.argiter) struct LoaderState spawnertask::Any channel::Any remaining::Any end function Base.iterate(loader::Loader) ch = loader.setup_channel(loader.channelsize) task = @async begin @floop loader.executor for arg in loader.argiter try loader.f(ch, arg) catch e close(ch, e) rethrow() end end end return Base.iterate(loader, LoaderState(task, ch, length(loader.argiter))) end function Base.iterate(::Loader, state::LoaderState) if state.remaining == 0 close(state.channel) return nothing else result = take!(state.channel) return result, LoaderState(state.spawnertask, state.channel, state.remaining - 1) end end # The `RingBuffer` ensures that the same buffers are reused # and the loading works asynchronously. """ RingBuffer(size, buffer) RingBuffer(buffers) A `Channel`-like data structure that rotates through `size` buffers. You can either pass in a vector of `buffers`, or a single `buffer` that is copied `size` times. `put!`s work by mutating one of the buffers: ``` put!(ringbuffer) do buf rand!(buf) end ``` The result can then be `take!`n: ``` res = take!(ringbuffer) ``` !!! warning "Invalidation" Only one result is valid at a time! On the next `take!`, the previous result will be reused as a buffer and be mutated by a `put!` """ mutable struct RingBuffer{T} buffers::Channel{T} results::Channel{T} current::T end function RingBuffer(bufs::Vector{T}) where T size = length(bufs) - 1 ch_buffers = Channel{T}(size + 1) ch_results = Channel{T}(size) foreach(bufs[begin+1:end]) do buf put!(ch_buffers, buf) end return RingBuffer{T}(ch_buffers, ch_results, bufs[begin]) end function Base.take!(ringbuffer::RingBuffer) put!(ringbuffer.buffers, ringbuffer.current) ringbuffer.current = take!(ringbuffer.results) return ringbuffer.current end """ put!(f!, ringbuffer::RingBuffer) Apply f! to a buffer in `ringbuffer` and put into the results channel. ```julia x = rand(10, 10) ringbuffer = RingBuffer(1, x) put!(ringbuffer) do buf @test x == buf copy!(buf, rand(10, 10)) end x_ = take!(ringbuffer) @test !(x ≈ x_) ``` """ function Base.put!(f!, ringbuffer::RingBuffer) buf = take!(ringbuffer.buffers) buf_ = f!(buf) put!(ringbuffer.results, buf_) return buf_ end Base.put!(c::Channel, b::MLUtils.RingBuffer) = throw(MethodError(put!, (c, b))) function Base.close(ringbuffer::RingBuffer, args...) close(ringbuffer.results, args...) close(ringbuffer.buffers, args...) end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
364
# TODO: allow passing a rng as first parameter """ randobs(data, [n]) Pick a random observation or a batch of `n` random observations from `data`. For this function to work, the type of `data` must implement [`numobs`](@ref) and [`getobs`](@ref). """ randobs(data) = getobs(data, rand(1:numobs(data))) randobs(data, n) = getobs(data, rand(1:numobs(data), n))
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
6343
""" oversample(data, classes; fraction=1, shuffle=true) oversample(data::Tuple; fraction=1, shuffle=true) Generate a re-balanced version of `data` by repeatedly sampling existing observations in such a way that every class will have at least `fraction` times the number observations of the largest class in `classes`. This way, all classes will have a minimum number of observations in the resulting data set relative to what largest class has in the given (original) `data`. As an example, by default (i.e. with `fraction = 1`) the resulting dataset will be near perfectly balanced. On the other hand, with `fraction = 0.5` every class in the resulting data with have at least 50% as many observations as the largest class. The `classes` input is an array with the same length as `numobs(data)`. The convenience parameter `shuffle` determines if the resulting data will be shuffled after its creation; if it is not shuffled then all the repeated samples will be together at the end, sorted by class. Defaults to `true`. The output will contain both the resampled data and classes. ```julia # 6 observations with 3 features each X = rand(3, 6) # 2 classes, severely imbalanced Y = ["a", "b", "b", "b", "b", "a"] # oversample the class "a" to match "b" X_bal, Y_bal = oversample(X, Y) # this results in a bigger dataset with repeated data @assert size(X_bal) == (3,8) @assert length(Y_bal) == 8 # now both "a", and "b" have 4 observations each @assert sum(Y_bal .== "a") == 4 @assert sum(Y_bal .== "b") == 4 ``` For this function to work, the type of `data` must implement [`numobs`](@ref) and [`getobs`](@ref). Note that if `data` is a tuple and `classes` is not given, then it will be assumed that the last element of the tuple contains the classes. ```julia julia> data = DataFrame(X1=rand(6), X2=rand(6), Y=[:a,:b,:b,:b,:b,:a]) 6×3 DataFrames.DataFrame │ Row │ X1 │ X2 │ Y │ ├─────┼───────────┼─────────────┼───┤ │ 1 │ 0.226582 │ 0.0443222 │ a │ │ 2 │ 0.504629 │ 0.722906 │ b │ │ 3 │ 0.933372 │ 0.812814 │ b │ │ 4 │ 0.522172 │ 0.245457 │ b │ │ 5 │ 0.505208 │ 0.11202 │ b │ │ 6 │ 0.0997825 │ 0.000341996 │ a │ julia> getobs(oversample(data, data.Y)) 8×3 DataFrame Row │ X1 X2 Y │ Float64 Float64 Symbol ─────┼───────────────────────────── 1 │ 0.376304 0.100022 a 2 │ 0.467095 0.185437 b 3 │ 0.481957 0.319906 b 4 │ 0.336762 0.390811 b 5 │ 0.376304 0.100022 a 6 │ 0.427064 0.0648339 a 7 │ 0.427064 0.0648339 a 8 │ 0.457043 0.490688 b ``` See [`ObsView`](@ref) for more information on data subsets. See also [`undersample`](@ref). """ function oversample(data, classes; fraction=1, shuffle::Bool=true) lm = group_indices(classes) maxcount = maximum(length, values(lm)) fraccount = round(Int, fraction * maxcount) # firstly we will start by keeping everything inds = collect(1:numobs(data)) for (lbl, inds_for_lbl) in lm num_extra_needed = fraccount - length(inds_for_lbl) while num_extra_needed > length(inds_for_lbl) num_extra_needed -= length(inds_for_lbl) append!(inds, inds_for_lbl) end if num_extra_needed > 0 if shuffle append!(inds, sample(inds_for_lbl, num_extra_needed; replace=false)) else append!(inds, inds_for_lbl[1:num_extra_needed]) end end end shuffle && shuffle!(inds) return obsview(data, inds), obsview(classes, inds) end function oversample(data::Tuple; kws...) d, c = oversample(data[1:end-1], data[end]; kws...) return (d..., c) end """ undersample(data, classes; shuffle=true) Generate a class-balanced version of `data` by subsampling its observations in such a way that the resulting number of observations will be the same number for every class. This way, all classes will have as many observations in the resulting data set as the smallest class has in the given (original) `data`. The convenience parameter `shuffle` determines if the resulting data will be shuffled after its creation; if it is not shuffled then all the observations will be in their original order. Defaults to `false`. The output will contain both the resampled data and classes. ```julia # 6 observations with 3 features each X = rand(3, 6) # 2 classes, severely imbalanced Y = ["a", "b", "b", "b", "b", "a"] # subsample the class "b" to match "a" X_bal, Y_bal = undersample(X, Y) # this results in a smaller dataset @assert size(X_bal) == (3,4) @assert length(Y_bal) == 4 # now both "a", and "b" have 2 observations each @assert sum(Y_bal .== "a") == 2 @assert sum(Y_bal .== "b") == 2 ``` For this function to work, the type of `data` must implement [`numobs`](@ref) and [`getobs`](@ref). Note that if `data` is a tuple, then it will be assumed that the last element of the tuple contains the targets. ```julia julia> data = DataFrame(X1=rand(6), X2=rand(6), Y=[:a,:b,:b,:b,:b,:a]) 6×3 DataFrames.DataFrame │ Row │ X1 │ X2 │ Y │ ├─────┼───────────┼─────────────┼───┤ │ 1 │ 0.226582 │ 0.0443222 │ a │ │ 2 │ 0.504629 │ 0.722906 │ b │ │ 3 │ 0.933372 │ 0.812814 │ b │ │ 4 │ 0.522172 │ 0.245457 │ b │ │ 5 │ 0.505208 │ 0.11202 │ b │ │ 6 │ 0.0997825 │ 0.000341996 │ a │ julia> getobs(undersample(data, data.Y)) 4×3 DataFrame Row │ X1 X2 Y │ Float64 Float64 Symbol ─────┼───────────────────────────── 1 │ 0.427064 0.0648339 a 2 │ 0.376304 0.100022 a 3 │ 0.467095 0.185437 b 4 │ 0.457043 0.490688 b ``` See [`ObsView`](@ref) for more information on data subsets. See also [`oversample`](@ref). """ function undersample(data, classes; shuffle::Bool=true) lm = group_indices(classes) mincount = minimum(length, values(lm)) inds = Int[] for (lbl, inds_for_lbl) in lm if shuffle append!(inds, sample(inds_for_lbl, mincount; replace=false)) else append!(inds, inds_for_lbl[1:mincount]) end end shuffle ? shuffle!(inds) : sort!(inds) return obsview(data, inds), obsview(classes, inds) end function undersample(data::Tuple; kws...) d, c = undersample(data[1:end-1], data[end]; kws...) return (d..., c) end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
2381
""" splitobs(n::Int; at) -> Tuple Compute the indices for two or more disjoint subsets of the range `1:n` with splits given by `at`. # Examples ```julia julia> splitobs(100, at=0.7) (1:70, 71:100) julia> splitobs(100, at=(0.1, 0.4)) (1:10, 11:50, 51:100) ``` """ splitobs(n::Int; at) = _splitobs(n, at) _splitobs(n::Int, at::Integer) = _splitobs(n::Int, at / n) _splitobs(n::Int, at::NTuple{N, <:Integer}) where {N} = _splitobs(n::Int, at ./ n) _splitobs(n::Int, at::Tuple{}) = (1:n,) function _splitobs(n::Int, at::AbstractFloat) 0 <= at <= 1 || throw(ArgumentError("the parameter \"at\" must be in interval (0, 1)")) n1 = clamp(round(Int, at*n), 0, n) (1:n1, n1+1:n) end function _splitobs(n::Int, at::NTuple{N,<:AbstractFloat}) where N at1 = first(at) a, b = _splitobs(n::Int, at1) n1 = a.stop n2 = b.stop at2 = Base.tail(at) .* n ./ (n2 - n1) rest = map(x -> n1 .+ x, _splitobs(n2-n1, at2)) return (a, rest...) end """ splitobs(data; at, shuffle=false) -> Tuple Partition the `data` into two or more subsets. When `at` is a number (between 0 and 1) this specifies the proportion in the first subset. When `at` is a tuple, each entry specifies the proportion an a subset, with the last having `1-sum(at)`. In all there are `length(at)+1` subsets returned. If `shuffle=true`, randomly permute the observations before splitting. Supports any datatype implementing the [`numobs`](@ref) and [`getobs`](@ref) interfaces -- including arrays, tuples & NamedTuples of arrays. # Examples ```jldoctest julia> splitobs(permutedims(1:100); at=0.7) # simple 70%-30% split, of a matrix ([1 2 … 69 70], [71 72 … 99 100]) julia> data = (x=ones(2,10), n=1:10) # a NamedTuple, consistent last dimension (x = [1.0 1.0 … 1.0 1.0; 1.0 1.0 … 1.0 1.0], n = 1:10) julia> splitobs(data, at=(0.5, 0.3)) # a 50%-30%-20% split, e.g. train/test/validation ((x = [1.0 1.0 … 1.0 1.0; 1.0 1.0 … 1.0 1.0], n = 1:5), (x = [1.0 1.0 1.0; 1.0 1.0 1.0], n = 6:8), (x = [1.0 1.0; 1.0 1.0], n = 9:10)) julia> train, test = splitobs((permutedims(1.0:100.0), 101:200), at=0.7, shuffle=true); # split a Tuple julia> vec(test[1]) .+ 100 == test[2] true ``` """ function splitobs(data; at, shuffle::Bool=false) if shuffle data = shuffleobs(data) end n = numobs(data) return map(idx -> obsview(data, idx), splitobs(n; at)) end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
19936
# Some general utility functions. Many of them were part of Flux.jl """ unsqueeze(x; dims) Return `x` reshaped into an array one dimensionality higher than `x`, where `dims` indicates in which dimension `x` is extended. `dims` can be an integer between 1 and `ndims(x)+1`. See also [`flatten`](@ref), [`stack`](@ref). # Examples ```jldoctest julia> unsqueeze([1 2; 3 4], dims=2) 2×1×2 Array{Int64, 3}: [:, :, 1] = 1 3 [:, :, 2] = 2 4 julia> xs = [[1, 2], [3, 4], [5, 6]] 3-element Vector{Vector{Int64}}: [1, 2] [3, 4] [5, 6] julia> unsqueeze(xs, dims=1) 1×3 Matrix{Vector{Int64}}: [1, 2] [3, 4] [5, 6] ``` """ function unsqueeze(x::AbstractArray{T,N}; dims::Int) where {T, N} @assert 1 <= dims <= N + 1 sz = ntuple(i -> i < dims ? size(x, i) : i == dims ? 1 : size(x, i - 1), N + 1) return reshape(x, sz) end """ unsqueeze(; dims) Returns a function which, acting on an array, inserts a dimension of size 1 at `dims`. # Examples ```jldoctest julia> rand(21, 22, 23) |> unsqueeze(dims=2) |> size (21, 1, 22, 23) ``` """ unsqueeze(; dims::Int) = Base.Fix2(_unsqueeze, dims) _unsqueeze(x, dims) = unsqueeze(x; dims) Base.show_function(io::IO, u::Base.Fix2{typeof(_unsqueeze)}, ::Bool) = print(io, "unsqueeze(dims=", u.x, ")") """ unstack(xs; dims) Unroll the given `xs` into an array of arrays along the given dimension `dims`. See also [`stack`](@ref), [`unbatch`](@ref), and [`chunk`](@ref). # Examples ```jldoctest julia> unstack([1 3 5 7; 2 4 6 8], dims=2) 4-element Vector{Vector{Int64}}: [1, 2] [3, 4] [5, 6] [7, 8] ``` """ unstack(xs; dims) = _unstack(dims, xs) dims2unstack(::Val{dims}) where dims = dims2unstack(dims) dims2unstack(dims::Integer) = dims @inline _unstack(dims, xs) = [copy(selectdim(xs, dims2unstack(dims), i)) for i in axes(xs, dims2unstack(dims))] """ chunk(x, n; [dims]) chunk(x; [size, dims]) Split `x` into `n` parts or alternatively, if `size` is an integer, into equal chunks of size `size`. The parts contain the same number of elements except possibly for the last one that can be smaller. In case `size` is a collection of integers instead, the elements of `x` are split into chunks of the given sizes. If `x` is an array, `dims` can be used to specify along which dimension to split (defaults to the last dimension). # Examples ```jldoctest julia> chunk(1:10, 3) 3-element Vector{UnitRange{Int64}}: 1:4 5:8 9:10 julia> chunk(1:10; size = 2) 5-element Vector{UnitRange{Int64}}: 1:2 3:4 5:6 7:8 9:10 julia> x = reshape(collect(1:20), (5, 4)) 5×4 Matrix{Int64}: 1 6 11 16 2 7 12 17 3 8 13 18 4 9 14 19 5 10 15 20 julia> xs = chunk(x, 2, dims=1) 2-element Vector{SubArray{Int64, 2, Matrix{Int64}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}: [1 6 11 16; 2 7 12 17; 3 8 13 18] [4 9 14 19; 5 10 15 20] julia> xs[1] 3×4 view(::Matrix{Int64}, 1:3, :) with eltype Int64: 1 6 11 16 2 7 12 17 3 8 13 18 julia> xes = chunk(x; size = 2, dims = 2) 2-element Vector{SubArray{Int64, 2, Matrix{Int64}, Tuple{Base.Slice{Base.OneTo{Int64}}, UnitRange{Int64}}, true}}: [1 6; 2 7; … ; 4 9; 5 10] [11 16; 12 17; … ; 14 19; 15 20] julia> xes[2] 5×2 view(::Matrix{Int64}, :, 3:4) with eltype Int64: 11 16 12 17 13 18 14 19 15 20 julia> chunk(1:6; size = [2, 4]) 2-element Vector{UnitRange{Int64}}: 1:2 3:6 ``` """ chunk(x; size::Int) = collect(Iterators.partition(x, size)) chunk(x, n::Int) = chunk(x; size = cld(length(x), n)) chunk(x::AbstractArray, n::Int; dims::Int=ndims(x)) = chunk(x; size = cld(size(x, dims), n), dims) function chunk(x::AbstractArray; size, dims::Int=ndims(x)) idxs = _partition_idxs(x, size, dims) return [_selectdim(x, dims, i) for i in idxs] end """ chunk(x, partition_idxs; [npartitions, dims]) Partition the array `x` along the dimension `dims` according to the indexes in `partition_idxs`. `partition_idxs` must be sorted and contain only positive integers between 1 and the number of partitions. If the number of partition `npartitions` is not provided, it is inferred from `partition_idxs`. If `dims` is not provided, it defaults to the last dimension. See also [`unbatch`](@ref). # Examples ```jldoctest julia> x = reshape([1:10;], 2, 5) 2×5 Matrix{Int64}: 1 3 5 7 9 2 4 6 8 10 julia> chunk(x, [1, 2, 2, 3, 3]) 3-element Vector{SubArray{Int64, 2, Matrix{Int64}, Tuple{Base.Slice{Base.OneTo{Int64}}, UnitRange{Int64}}, true}}: [1; 2;;] [3 5; 4 6] [7 9; 8 10] ``` """ function chunk(x::AbstractArray{T,N}, partition_idxs::AbstractVector; npartitions=nothing, dims=ndims(x)) where {T, N} @assert issorted(partition_idxs) "partition_idxs must be sorted" m = npartitions === nothing ? maximum(partition_idxs) : npartitions degrees = NNlib.scatter(+, ones_like(partition_idxs), partition_idxs, dstsize=(m,)) return chunk(x; size=degrees, dims) end # work around https://github.com/JuliaML/MLUtils.jl/issues/103 _selectdim(x::AbstractArray, dims::Int, i) = selectdim(x, dims, i) _selectdim(x::AbstractArray, dims::Int, i::UnitRange) = _selectdim(x, Val(dims), i) function _selectdim(x::AbstractArray{T,N}, ::Val{dims}, i::UnitRange) where {T,N,dims} return view(x, ntuple(_ -> Colon(), dims-1)..., i, ntuple(_ -> Colon(), N-dims)...) end function rrule(::typeof(chunk), x::AbstractArray; size, dims::Int=ndims(x)) # This is the implementation of chunk idxs = _partition_idxs(x, size, dims) y = [_selectdim(x, dims, i) for i in idxs] valdims = Val(dims) # TODO avoid capturing x in the pullback chunk_pullback(dy) = (NoTangent(), ∇chunk(unthunk(dy), x, idxs, valdims)) return y, chunk_pullback end _partition_idxs(x, size::Int, dims::Int) = Iterators.partition(axes(x, dims), size) _partition_idxs(x, size, dims::Int) = _partition_idxs(x, collect(size), dims) function _partition_idxs(x, size::AbstractVector{<:Integer}, dims::Int) n = length(axes(x, dims)) cumsz = cumsum(size) if cumsz[end] != n throw(ArgumentError("The sum of the sizes must be equal to $n, the length of the dimension.")) end return [(i==1 ? 1 : cumsz[i-1]+1):cumsz[i] for i=1:length(cumsz)] end @non_differentiable _partition_idxs(::Any...) # Similar to ∇eachslice https://github.com/JuliaDiff/ChainRules.jl/blob/8108a77a96af5d4b0c460aac393e44f8943f3c5e/src/rulesets/Base/indexing.jl#L77 function ∇chunk(dys, x, idxs, vd::Val{dim}) where {dim} i1 = findfirst(dy -> !(dy isa AbstractZero), dys) if i1 === nothing # all slices are Zero! return _zero_fill!(similar(x, float(eltype(x)))) end T = promote_type(eltype(dys[i1]), eltype(x)) # The whole point of this gradient is that we can allocate one `dx` array: dx = similar(x, T) for (k, i) in enumerate(idxs) slice = _selectdim(dx, dim, i) if dys[k] isa AbstractZero _zero_fill!(slice) # Avoids this: copyto!([1,2,3], ZeroTangent()) == [0,2,3] else copyto!(slice, dys[k]) end end return ProjectTo(x)(dx) end _zero_fill!(dx::AbstractArray{<:Number}) = fill!(dx, zero(eltype(dx))) _zero_fill!(dx::AbstractArray) = map!(zero, dx, dx) function rrule(::typeof(∇chunk), dys, x, idxs, vd::Val{dim}) where dim n = length(dys) function ∇∇chunk(dz_raw) dz = chunk(unthunk(dz_raw), n; dims=dim) return (NoTangent(), dz, NoTangent(), NoTangent(), NoTangent()) end return ∇chunk(dys, x, idxs, vd), ∇∇chunk end """ group_counts(x) Count the number of times that each element of `x` appears. See also [`group_indices`](@ref) # Examples ```jldoctest julia> group_counts(['a', 'b', 'b']) Dict{Char, Int64} with 2 entries: 'a' => 1 'b' => 2 ``` """ function group_counts(x) fs = Dict{eltype(x),Int}() for a in x fs[a] = get(fs, a, 0) + 1 end return fs end """ group_indices(x) -> Dict Computes the indices of elements in the vector `x` for each distinct value contained. This information is useful for resampling strategies, such as stratified sampling. See also [`group_counts`](@ref). # Examples ```jldoctest julia> x = [:yes, :no, :maybe, :yes]; julia> group_indices(x) Dict{Symbol, Vector{Int64}} with 3 entries: :yes => [1, 4] :maybe => [3] :no => [2] ``` """ function group_indices(classes::T) where T<:AbstractVector dict = Dict{eltype(T), Vector{Int}}() for (idx, elem) in enumerate(classes) if !haskey(dict, elem) push!(dict, elem => [idx]) else push!(dict[elem], idx) end end return dict end """ batch(xs) Batch the arrays in `xs` into a single array with an extra dimension. If the elements of `xs` are tuples, named tuples, or dicts, the output will be of the same type. See also [`unbatch`](@ref). # Examples ```jldoctest julia> batch([[1,2,3], [4,5,6]]) 3×2 Matrix{Int64}: 1 4 2 5 3 6 julia> batch([(a=[1,2], b=[3,4]) (a=[5,6], b=[7,8])]) (a = [1 5; 2 6], b = [3 7; 4 8]) ``` """ function batch(xs) # Fallback for generric iterables @assert length(xs) > 0 "Input should be non-empty" data = first(xs) isa AbstractArray ? similar(first(xs), size(first(xs))..., length(xs)) : Vector{eltype(xs)}(undef, length(xs)) for (i, x) in enumerate(xs) data[batchindex(data, i)...] = x end return data end batchindex(xs, i) = (reverse(Base.tail(reverse(axes(xs))))..., i) batch(xs::AbstractArray{<:AbstractArray}) = stack(xs) function batch(xs::Vector{<:Tuple}) @assert length(xs) > 0 "Input should be non-empty" n = length(first(xs)) @assert all(length.(xs) .== n) "Cannot batch tuples with different lengths" return ntuple(i -> batch([x[i] for x in xs]), n) end function batch(xs::Vector{<:NamedTuple}) @assert length(xs) > 0 "Input should be non-empty" all_keys = [sort(collect(keys(x))) for x in xs] ks = all_keys[1] @assert all(==(ks), all_keys) "Cannot batch named tuples with different keys" NamedTuple(k => batch([x[k] for x in xs]) for k in ks) end function batch(xs::Vector{<:Dict}) @assert length(xs) > 0 "Input should be non-empty" all_keys = [sort(collect(keys(x))) for x in xs] ks = all_keys[1] @assert all(==(ks), all_keys) "cannot batch dicts with different keys" Dict(k => batch([x[k] for x in xs]) for k in ks) end """ unbatch(x) Reverse of the [`batch`](@ref) operation, unstacking the last dimension of the array `x`. See also [`unstack`](@ref) and [`chunk`](@ref). # Examples ```jldoctest julia> unbatch([1 3 5 7; 2 4 6 8]) 4-element Vector{Vector{Int64}}: [1, 2] [3, 4] [5, 6] [7, 8] ``` """ unbatch(x::AbstractArray) = [getobs(x, i) for i in 1:numobs(x)] unbatch(x::AbstractVector) = x """ batchseq(seqs, val = 0) Take a list of `N` sequences, and turn them into a single sequence where each item is a batch of `N`. Short sequences will be padded by `val`. # Examples ```jldoctest julia> batchseq([[1, 2, 3], [4, 5]], 0) 3-element Vector{Vector{Int64}}: [1, 4] [2, 5] [3, 0] ``` """ function batchseq(xs, val = 0, n = nothing) n = n === nothing ? maximum(x -> size(x, ndims(x)), xs) : n xs_ = [rpad_constant(x, n, val; dims=ndims(x)) for x in xs] [batch([obsview(xs_[j], i) for j = 1:length(xs_)]) for i = 1:n] end """ rpad_constant(v::AbstractArray, n::Union{Integer, Tuple}, val = 0; dims=:) Return the given sequence padded with `val` along the dimensions `dims` up to a maximum length in each direction specified by `n`. # Examples ```jldoctest julia> rpad_constant([1, 2], 4, -1) # passing with -1 up to size 4 4-element Vector{Int64}: 1 2 -1 -1 julia> rpad_constant([1, 2, 3], 2) # no padding if length is already greater than n 3-element Vector{Int64}: 1 2 3 julia> rpad_constant([1 2; 3 4], 4; dims=1) # padding along the first dimension 4×2 Matrix{Int64}: 1 2 3 4 0 0 0 0 julia> rpad_constant([1 2; 3 4], 4) # padding along all dimensions by default 4×2 Matrix{Int64}: 1 2 3 4 0 0 0 0 ``` """ function rpad_constant(x::AbstractArray, n::Union{Integer, Tuple}, val=0; dims=:) ns = _rpad_pads(x, n, dims) return NNlib.pad_constant(x, ns, val; dims) end function _rpad_pads(x, n, dims) _dims = dims === Colon() ? (1:ndims(x)) : dims _n = n isa Integer ? ntuple(i -> n, length(_dims)) : n @assert length(_dims) == length(_n) ns = ntuple(i -> isodd(i) ? 0 : max(_n[i÷2] - size(x, _dims[i÷2]), 0), 2*length(_n)) return ns end @non_differentiable _rpad_pads(::Any...) """ flatten(x::AbstractArray) Reshape arbitrarly-shaped input into a matrix-shaped output, preserving the size of the last dimension. See also [`unsqueeze`](@ref). # Examples ```jldoctest julia> rand(3,4,5) |> flatten |> size (12, 5) ``` """ function flatten(x::AbstractArray) return reshape(x, :, size(x)[end]) end """ normalise(x; dims=ndims(x), ϵ=1e-5) Normalise the array `x` to mean 0 and standard deviation 1 across the dimension(s) given by `dims`. Per default, `dims` is the last dimension. `ϵ` is a small additive factor added to the denominator for numerical stability. """ function normalise(x::AbstractArray; dims=ndims(x), ϵ=ofeltype(x, 1e-5)) μ = mean(x, dims=dims) # σ = std(x, dims=dims, mean=μ, corrected=false) # use this when Zygote#478 gets merged σ = std(x, dims=dims, corrected=false) return (x .- μ) ./ (σ .+ ϵ) end ofeltype(x, y) = convert(float(eltype(x)), y) epseltype(x) = eps(float(eltype(x))) """ ones_like(x, [element_type=eltype(x)], [dims=size(x)])) Create an array with the given element type and size, based upon the given source array `x`. All element of the new array will be set to 1. The second and third arguments are both optional, defaulting to the given array's eltype and size. The dimensions may be specified as an integer or as a tuple argument. See also [`zeros_like`](@ref) and [`fill_like`](@ref). # Examples ```julia-repl julia> x = rand(Float32, 2) 2-element Vector{Float32}: 0.8621633 0.5158395 julia> ones_like(x, (3, 3)) 3×3 Matrix{Float32}: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 julia> using CUDA julia> x = CUDA.rand(2, 2) 2×2 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}: 0.82297 0.656143 0.701828 0.391335 julia> ones_like(x, Float64) 2×2 CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}: 1.0 1.0 1.0 1.0 ``` """ ones_like(x::AbstractArray, T::Type, sz=size(x)) = fill!(similar(x, T, sz), 1) ones_like(x::AbstractArray, sz=size(x)) = ones_like(x, eltype(x), sz) """ zeros_like(x, [element_type=eltype(x)], [dims=size(x)])) Create an array with the given element type and size, based upon the given source array `x`. All element of the new array will be set to 0. The second and third arguments are both optional, defaulting to the given array's eltype and size. The dimensions may be specified as an integer or as a tuple argument. See also [`ones_like`](@ref) and [`fill_like`](@ref). # Examples ```julia-repl julia> x = rand(Float32, 2) 2-element Vector{Float32}: 0.4005432 0.36934233 julia> zeros_like(x, (3, 3)) 3×3 Matrix{Float32}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 julia> using CUDA julia> x = CUDA.rand(2, 2) 2×2 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}: 0.0695155 0.667979 0.558468 0.59903 julia> zeros_like(x, Float64) 2×2 CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}: 0.0 0.0 0.0 0.0 ``` """ zeros_like(x::AbstractArray, T::Type, sz=size(x)) = fill!(similar(x, T, sz), 0) zeros_like(x::AbstractArray, sz=size(x)) = zeros_like(x, eltype(x), sz) """ rand_like([rng=default_rng()], x, [element_type=eltype(x)], [dims=size(x)]) Create an array with the given element type and size, based upon the given source array `x`. All element of the new array will be set to a random value. The last two arguments are both optional, defaulting to the given array's eltype and size. The dimensions may be specified as an integer or as a tuple argument. The default random number generator is used, unless a custom one is passed in explicitly as the first argument. See also `Base.rand` and [`randn_like`](@ref). # Examples ```julia-repl julia> x = ones(Float32, 2) 2-element Vector{Float32}: 1.0 1.0 julia> rand_like(x, (3, 3)) 3×3 Matrix{Float32}: 0.780032 0.920552 0.53689 0.121451 0.741334 0.5449 0.55348 0.138136 0.556404 julia> using CUDA julia> CUDA.ones(2, 2) 2×2 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}: 1.0 1.0 1.0 1.0 julia> rand_like(x, Float64) 2×2 CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}: 0.429274 0.135379 0.718895 0.0098756 ``` """ rand_like(x::AbstractArray, T::Type, sz=size(x)) = rand!(similar(x, T, sz)) rand_like(x::AbstractArray, sz=size(x)) = rand_like(x, eltype(x), sz) rand_like(rng::AbstractRNG, x::AbstractArray, T::Type, sz=size(x)) = rand!(rng, similar(x, T, sz)) rand_like(rng::AbstractRNG, x::AbstractArray, sz=size(x)) = rand_like(rng, x, eltype(x), sz) """ randn_like([rng=default_rng()], x, [element_type=eltype(x)], [dims=size(x)]) Create an array with the given element type and size, based upon the given source array `x`. All element of the new array will be set to a random value drawn from a normal distribution. The last two arguments are both optional, defaulting to the given array's eltype and size. The dimensions may be specified as an integer or as a tuple argument. The default random number generator is used, unless a custom one is passed in explicitly as the first argument. See also `Base.randn` and [`rand_like`](@ref). # Examples ```julia-repl julia> x = ones(Float32, 2) 2-element Vector{Float32}: 1.0 1.0 julia> randn_like(x, (3, 3)) 3×3 Matrix{Float32}: -0.385331 0.956231 0.0745102 1.43756 -0.967328 2.06311 0.0482372 1.78728 -0.902547 julia> using CUDA julia> CUDA.ones(2, 2) 2×2 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}: 1.0 1.0 1.0 1.0 julia> randn_like(x, Float64) 2×2 CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}: -0.578527 0.823445 -1.01338 -0.612053 ``` """ randn_like(x::AbstractArray, T::Type, sz=size(x)) = randn!(similar(x, T, sz)) randn_like(x::AbstractArray, sz=size(x)) = randn_like(x, eltype(x), sz) randn_like(rng::AbstractRNG, x::AbstractArray, T::Type, sz=size(x)) = randn!(rng, similar(x, T, sz)) randn_like(rng::AbstractRNG, x::AbstractArray, sz=size(x)) = randn_like(rng, x, eltype(x), sz) """ fill_like(x, val, [element_type=eltype(x)], [dims=size(x)])) Create an array with the given element type and size, based upon the given source array `x`. All element of the new array will be set to `val`. The third and fourth arguments are both optional, defaulting to the given array's eltype and size. The dimensions may be specified as an integer or as a tuple argument. See also [`zeros_like`](@ref) and [`ones_like`](@ref). # Examples ```julia-repl julia> x = rand(Float32, 2) 2-element Vector{Float32}: 0.16087806 0.89916044 julia> fill_like(x, 1.7, (3, 3)) 3×3 Matrix{Float32}: 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 julia> using CUDA julia> x = CUDA.rand(2, 2) 2×2 CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}: 0.803167 0.476101 0.303041 0.317581 julia> fill_like(x, 1.7, Float64) 2×2 CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}: 1.7 1.7 1.7 1.7 ``` """ fill_like(x::AbstractArray, val, T::Type, sz=size(x)) = fill!(similar(x, T, sz), val) fill_like(x::AbstractArray, val, sz=size(x)) = fill_like(x, val, eltype(x), sz) @non_differentiable zeros_like(::Any...) @non_differentiable ones_like(::Any...) @non_differentiable rand_like(::Any...) @non_differentiable randn_like(::Any...) function rrule(::typeof(fill_like), x::AbstractArray, val, T::Type, sz) function fill_like_pullback(Δ) return (NoTangent(), ZeroTangent(), sum(Δ), NoTangent(), NoTangent()) end return fill_like(x, val, T, sz), fill_like_pullback end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
189
module Datasets using Random using DelimitedFiles: readdlm include("load_datasets.jl") export load_iris include("generators.jl") export make_spiral, make_poly, make_sin end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
2161
""" make_sin(n, start, stop; noise = 0.3, f_rand = randn) -> x, y Generates `n` noisy equally spaces samples of a sinus from `start` to `stop` by adding `noise .* f_rand(length(x))` to the result of `fun(x)`. """ function make_sin(n::Int = 50, start::Real = 0, stop::Real = 2π; noise::Real = 0.3, f_rand::Function = randn) x = collect(range(start, stop=stop, length=n)) y = sin.(x) .+ noise .* f_rand.() return x, y end """ make_poly(coef, x; noise = 0.01, f_rand = randn) -> x, y Generates a noisy response for a polynomial of degree `length(coef)` using the vector `x` as input and adding `noise .* f_randn(length(x))` to the result. The vector `coef` contains the coefficients for the terms of the polynome. The first element of `coef` denotes the coefficient for the term with the highest degree, while the last element of `coef` denotes the intercept. """ function make_poly(coef::AbstractVector{R}, x::AbstractVector{T}; noise::Real = 0.1, f_rand::Function = randn) where {T<:Real,R<:Real} n = length(x) m = length(coef) x_vec = collect(x) y = zeros(n) @inbounds for i = 1:n for k = 1:m y[i] += coef[k] * x_vec[i]^(m-k) end end y .+= noise .* f_rand.() x_vec, y end """ make_spiral(n, a, theta, b; noise = 0.01, f_rand = randn) -> x, y Generates `n` noisy responses for a spiral with two labels. Uses the radius, angle and scaling arguments to space the points in 2D space and adding `noise .* f_randn(n)` to the response. """ function make_spiral(n::Int = 97, a::Real = 6.5, theta::Real = 16.0, b::Real=104.0; noise::Real = 0.1, f_rand::Function = randn) x = zeros(Float64, (2, 2*n)) y = zeros(Int, 2*n) index = 0:1.0:(n-1) for i = 1:n _angle = index[i]*pi/theta _radius = a * (b-index[i]) / b x_coord = _radius * sin(_angle) y_coord = _radius * cos(_angle) x[1, i] = x_coord x[2, i] = y_coord x[1, n+i] = -(x_coord) x[2, n+i] = -(y_coord) y[i] = 1 y[n+i] = 0 end x[1, :] .+= noise .* f_rand.() x[2, :] .+= noise .* f_rand.() x, y end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
827
DATAPATH = joinpath(@__DIR__, "data") """ load_iris() -> X, y, names Loads the first 150 observations from the Iris flower data set introduced by Ronald Fisher (1936). The 4 by 150 matrix `X` contains the numeric measurements, in which each individual column denotes an observation. The vector `y` contains the class labels as strings. The vector `names` contains the names of the features (i.e. rows of `X`) [1] Fisher, Ronald A. "The use of multiple measurements in taxonomic problems." Annals of eugenics 7.2 (1936): 179-188. """ function load_iris() path = joinpath(DATAPATH, "iris.csv") raw_csv = readdlm(path, ',') X = convert(Matrix{Float64}, raw_csv[:, 1:4]') y = convert(Vector{String}, raw_csv[:, 5]) vars = ["Sepal length", "Sepal width", "Petal length", "Petal width"] X, y, vars end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
4679
using MLUtils: obsview @testset "BatchView" begin @testset "constructor" begin @test_throws DimensionMismatch BatchView((rand(2,10),rand(9))) @test_throws DimensionMismatch BatchView((rand(2,10),rand(9))) @test_throws DimensionMismatch BatchView((rand(2,10),rand(4,9,10),rand(9))) @test_throws MethodError BatchView(EmptyType()) for var in (vars..., tuples..., Xs, ys) @test_throws MethodError BatchView(var...) @test_throws MethodError BatchView(var, 16) A = BatchView(var, batchsize=3) @test length(A) == 5 @test batchsize(A) == 3 @test numobs(A) == length(A) @test @inferred(parent(A)) === var end A = BatchView(X, batchsize=16) @test length(A) == 1 @test batchsize(A) == 15 end @testset "collated" begin @test BatchView(X, batchsize=2, collate=true)[1] |> size == (4, 2) @test BatchView(X, batchsize=2, collate=false)[1] |> size == (2,) @test size.(BatchView(tuples[1], batchsize=2, collate=true)[1]) == ((4, 2), (2,)) @test BatchView(tuples[1], batchsize=2, collate=false)[1] |> size == (2,) end @testset "typestability" begin for var in (vars..., tuples..., Xs, ys), batchsize in (1, 3), partial in (true, false), collate in (Val(true), Val(false), Val(nothing)) @test typeof(@inferred(BatchView(var; batchsize, partial, collate))) <: BatchView end @test typeof(@inferred(BatchView(CustomType()))) <: BatchView end @testset "AbstractArray interface" begin for var in (vars..., tuples..., Xs, ys) A = BatchView(var, batchsize=5) @test_throws BoundsError A[-1] @test_throws BoundsError A[4] @test @inferred(numobs(A)) == 3 @test @inferred(length(A)) == 3 @test @inferred(batchsize(A)) == 5 @test @inferred(size(A)) == (3,) @test @inferred(getobs(A[2:3])) == getobs(BatchView(ObsView(var, 6:15), batchsize=5)) @test @inferred(getobs(A[[1,3]])) == getobs(BatchView(ObsView(var, [1:5..., 11:15...]), batchsize=5)) @test @inferred(A[1]) == obsview(var, 1:5) @test @inferred(A[2]) == obsview(var, 6:10) @test @inferred(A[3]) == obsview(var, 11:15) @test A[end] == A[3] @test @inferred(getobs(A,1)) == getobs(var, 1:5) @test @inferred(getobs(A,2)) == getobs(var, 6:10) @test @inferred(getobs(A,3)) == getobs(var, 11:15) @test typeof(@inferred(collect(A))) <: Vector end for var in (vars..., tuples...) A = BatchView(var, batchsize=5) @test @inferred(getobs(A)) == var @test A[2:3] == obsview(var, [6:15;]) @test A[[1,3]] == obsview(var, [1:5..., 11:15...]) end end @testset "subsetting" begin for var in (vars..., tuples..., Xs, ys) A = BatchView(var, batchsize=3) @test getobs(@inferred(ObsView(A))) == @inferred(getobs(A)) @test_throws BoundsError ObsView(A,1:6) S = @inferred(ObsView(A, 1:2)) @test typeof(S) <: ObsView @test @inferred(numobs(S)) == 2 @test @inferred(length(S)) == numobs(S) @test @inferred(size(S)) == (length(S),) @test getobs(@inferred(A[1:2])) == getobs(S) @test @inferred(getobs(A,1:2)) == getobs(S) @test @inferred(getobs(S)) == getobs(BatchView(ObsView(var,1:6),batchsize=3)) S = @inferred(ObsView(A, 1:2)) @test typeof(S) <: ObsView end A = BatchView(X, batchsize=3) @test typeof(A.data) <: Array S = @inferred(obsview(A)) S === A end @testset "obsview and batchview" begin x = rand(2, 6) bv = BatchView(x; batchsize=2) ov = obsview(bv, 1:2) @test getobs(ov, 1) == x[:,1:2] end # @testset "nesting with ObsView" begin # for var in vars # @test eltype(@inferred(BatchView(ObsView(var)))[1]) <: Union{SubArray,String} # end # for var in tuples # @test eltype(@inferred(BatchView(ObsView(var)))[1]) <: Tuple # end # for var in (Xs, ys) # @test eltype(@inferred(BatchView(ObsView(var)))[1]) <: SubArray # end # end @testset "partial=false" begin x = [1:12;] bv = BatchView(x, batchsize=5, partial=false) @test length(bv) == 2 @test bv[1] == 1:5 @test bv[2] == 6:10 @test_throws BoundsError bv[3] end end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
8266
@testset "DataLoader" begin X2 = reshape([1:10;], (2, 5)) Y2 = [1:5;] d = DataLoader(X2, batchsize=2) @test_broken @inferred(first(d)) isa Array batches = collect(d) @test_broken eltype(d) == typeof(X2) @test eltype(batches) == typeof(X2) @test length(batches) == 3 @test batches[1] == X2[:,1:2] @test batches[2] == X2[:,3:4] @test batches[3] == X2[:,5:5] d = DataLoader(X2, batchsize=2, partial=false) # @inferred first(d) batches = collect(d) @test_broken eltype(d) == typeof(X2) @test length(batches) == 2 @test batches[1] == X2[:,1:2] @test batches[2] == X2[:,3:4] d = DataLoader((X2,), batchsize=2, partial=false) # @inferred first(d) batches = collect(d) @test_broken eltype(d) == Tuple{typeof(X2)} @test eltype(batches) == Tuple{typeof(X2)} @test length(batches) == 2 @test batches[1] == (X2[:,1:2],) @test batches[2] == (X2[:,3:4],) d = DataLoader((X2, Y2), batchsize=2) # @inferred first(d) batches = collect(d) @test_broken eltype(d) == Tuple{typeof(X2), typeof(Y2)} @test eltype(batches) == Tuple{typeof(X2), typeof(Y2)} @test length(batches) == 3 @test length(batches[1]) == 2 @test length(batches[2]) == 2 @test length(batches[3]) == 2 @test batches[1][1] == X2[:,1:2] @test batches[1][2] == Y2[1:2] @test batches[2][1] == X2[:,3:4] @test batches[2][2] == Y2[3:4] @test batches[3][1] == X2[:,5:5] @test batches[3][2] == Y2[5:5] # test with NamedTuple d = DataLoader((x=X2, y=Y2), batchsize=2) # @inferred first(d) batches = collect(d) @test_broken eltype(d) == NamedTuple{(:x, :y), Tuple{typeof(X2), typeof(Y2)}} @test eltype(batches) == NamedTuple{(:x, :y), Tuple{typeof(X2), typeof(Y2)}} @test length(batches) == 3 @test length(batches[1]) == 2 @test length(batches[2]) == 2 @test length(batches[3]) == 2 @test batches[1][1] == batches[1].x == X2[:,1:2] @test batches[1][2] == batches[1].y == Y2[1:2] @test batches[2][1] == batches[2].x == X2[:,3:4] @test batches[2][2] == batches[2].y == Y2[3:4] @test batches[3][1] == batches[3].x == X2[:,5:5] @test batches[3][2] == batches[3].y == Y2[5:5] @testset "iteration default batchsize (+1)" begin # test iteration X3 = zeros(2, 10) d = DataLoader(X3) for x in d @test size(x) == (2,1) end # test iteration X3 = ones(2, 10) Y3 = fill(5, 10) d = DataLoader((X3, Y3)) for (x, y) in d @test size(x) == (2,1) @test y == [5] end end @testset "partial=false" begin x = [1:12;] d = DataLoader(x, batchsize=5, partial=false) |> collect @test length(d) == 2 @test d[1] == 1:5 @test d[2] == 6:10 end @testset "shuffle & rng" begin X4 = rand(2, 1000) d1 = DataLoader(X4, batchsize=2; shuffle=true) d2 = DataLoader(X4, batchsize=2; shuffle=true) @test first(d1) != first(d2) Random.seed!(17) d1 = DataLoader(X4, batchsize=2; shuffle=true) x1 = first(d1) Random.seed!(17) d2 = DataLoader(X4, batchsize=2; shuffle=true) @test x1 == first(d2) d1 = DataLoader(X4, batchsize=2; shuffle=true, rng=MersenneTwister(1)) d2 = DataLoader(X4, batchsize=2; shuffle=true, rng=MersenneTwister(1)) @test first(d1) == first(d2) end # numobs/getobs compatibility d = DataLoader(CustomType(), batchsize=2) @test first(d) == [1, 2] @test length(collect(d)) == 8 @testset "Dict" begin data = Dict("x" => rand(2,4), "y" => rand(4)) dloader = DataLoader(data, batchsize=2) @test_broken eltype(dloader) == Dict{String, Array{Float64}} c = collect(dloader) @test eltype(c) == Dict{String, Array{Float64}} @test c[1] == Dict("x" => data["x"][:,1:2], "y" => data["y"][1:2]) @test c[2] == Dict("x" => data["x"][:,3:4], "y" => data["y"][3:4]) data = Dict("x" => rand(2,4), "y" => rand(2,4)) dloader = DataLoader(data, batchsize=2) @test_broken eltype(dloader) == Dict{String, Matrix{Float64}} @test eltype(collect(dloader)) == Dict{String, Matrix{Float64}} end @testset "range" begin data = 1:10 dloader = DataLoader(data, batchsize=2) c = collect(dloader) @test eltype(c) == UnitRange{Int64} @test c[1] == 1:2 dloader = DataLoader(data, batchsize=2, shuffle=true) c = collect(dloader) @test eltype(c) == Vector{Int} end # https://github.com/FluxML/Flux.jl/issues/1935 @testset "no views of arrays" begin x = CustomArrayNoView(6) @test_throws ErrorException view(x, 1:2) d = DataLoader(x) @test length(collect(d)) == 6 # succesfull iteration d = DataLoader(x, batchsize=2, shuffle=false) @test length(collect(d)) == 3 # succesfull iteration d = DataLoader(x, batchsize=2, shuffle=true) @test length(collect(d)) == 3 # succesfull iteration end @testset "collating" begin X_ = rand(10, 20) d = DataLoader(X_, collate=false, batchsize = 2) for (i, x) in enumerate(d) @test x == [getobs(X_, 2i-1), getobs(X_, 2i)] end d = DataLoader(X_, collate=nothing, batchsize = 2) for (i, x) in enumerate(d) @test x == hcat(getobs(X_, 2i-1), getobs(X_, 2i)) end d = DataLoader(X_, collate=true, batchsize = 2) for (i, x) in enumerate(d) @test x == hcat(getobs(X_, 2i-1), getobs(X_, 2i)) end d = DataLoader((X_, X_), collate=false, batchsize = 2) for (i, x) in enumerate(d) @test x isa Vector all((isa).(x, Tuple)) end d = DataLoader((X_, X_), collate=true, batchsize = 2) for (i, x) in enumerate(d) @test all(==(hcat(getobs(X_, 2i-1), getobs(X_, 2i))), x) end @testset "nothing vs. true" begin d = CustomRangeIndex(10) @test first(DataLoader(d, batchsize = 2, collate=nothing)) isa UnitRange @test first(DataLoader(d, batchsize = 2, collate=true)) isa Vector end end @testset "Transducers foldl" begin dloader = DataLoader(1:10) @test foldl(+, Map(x -> x[1]), dloader; init = 0) == 55 @inferred foldl(+, Map(x -> x[1]), dloader; init = 0) dloader = DataLoader(1:10; shuffle = true) @test foldl(+, Map(x -> x[1]), dloader; init = 0) == 55 dloader = DataLoader(1:10; batchsize = 2) @test foldl(+, Map(x -> x[1]), dloader; init = 0) == 25 dloader = DataLoader(1:1000; shuffle = false) @test copy(Map(x -> x[1]), Vector{Int}, dloader) == collect(1:1000) dloader = DataLoader(1:1000; shuffle = true) @test copy(Map(x -> x[1]), Vector{Int}, dloader) != collect(1:1000) dloader = DataLoader(1:1000; batchsize = 2, shuffle = false) @test copy(Map(x -> x[1]), Vector{Int}, dloader) == collect(1:2:1000) dloader = DataLoader(1:1000; batchsize = 2, shuffle = true) @test copy(Map(x -> x[1]), Vector{Int}, dloader) != collect(1:2:1000) end if VERSION > v"1.10" @testset "printing" begin X2 = reshape(Float32[1:10;], (2, 5)) Y2 = [1:5;] d = DataLoader((X2, Y2), batchsize=3) @test contains(repr(d), "DataLoader(::Tuple{Matrix") @test contains(repr(d), "batchsize=3") @test contains(repr(MIME"text/plain"(), d), "2-element DataLoader") @test contains(repr(MIME"text/plain"(), d), "2×3 Matrix{Float32}, 3-element Vector") d2 = DataLoader((x = X2, y = Y2), batchsize=2, partial=false) @test contains(repr(d2), "DataLoader(::@NamedTuple") @test contains(repr(d2), "partial=false") @test contains(repr(MIME"text/plain"(), d2), "2-element DataLoader(::@NamedTuple") @test contains(repr(MIME"text/plain"(), d2), "x = 2×2 Matrix{Float32}, y = 2-element Vector") end end end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
2221
@testset "eachobs" begin for (i,x) in enumerate(eachobs(X)) @test x == X[:,i] end for (i,x) in enumerate(eachobs(X, buffer=true)) @test x == X[:,i] end b = zeros(size(X, 1)) for (i,x) in enumerate(eachobs(X, buffer=b)) @test x == X[:,i] end @test_broken b == X[:,end] @testset "batched" begin for (i, x) in enumerate(eachobs(X, batchsize=2, partial=true)) if i != 8 @test size(x) == (4,2) @test x == X[:,2i-1:2i] else @test size(x) == (4,1) @test x == X[:,2i-1:2i-1] end end for (i, x) in enumerate(eachobs(X, batchsize=2, buffer=true, partial=false)) @test size(x) == (4,2) @test x == X[:,2i-1:2i] end b = zeros(4, 2) for (i, x) in enumerate(eachobs(X, batchsize=2, buffer=b, partial=false)) @test size(x) == (4,2) @test x == X[:,2i-1:2i] end end @testset "shuffled" begin # does not reshuffle on iteration shuffled = eachobs(shuffleobs(1:50)) @test collect(shuffled) == collect(shuffled) # does reshuffle reshuffled = eachobs(1:50, shuffle = true) @test collect(reshuffled) != collect(reshuffled) reshuffled = eachobs(1:50, shuffle = true, buffer = true) @test collect(reshuffled) != collect(reshuffled) reshuffled = eachobs(1:50, shuffle = true, parallel = true) @test collect(reshuffled) != collect(reshuffled) reshuffled = eachobs(1:50, shuffle = true, buffer = true, parallel = true) @test collect(reshuffled) != collect(reshuffled) end @testset "Argument combinations" begin for batchsize ∈ (-1, 2), buffer ∈ (true, false), collate ∈ (nothing, true, false), parallel ∈ (true, false), shuffle ∈ (true, false), partial ∈ (true, false) if !(buffer isa Bool) && batchsize > 0 buffer = getobs(BatchView(X; batchsize), 1) end iter = eachobs(X; batchsize, shuffle, buffer, parallel, partial) @test_nowarn for _ in iter end end end end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
1212
@testset "kfolds" begin @test collect(kfolds(1:15, k=5)) == collect(kfolds(1:15, 5)) @test kfolds(15, k=5) == kfolds(15, 5) @testset "int" begin itrain, ival = kfolds(15, k=5) @test size(itrain) == (5,) @test size(ival) == (5,) @test all(i -> size(i) == (12,), itrain) @test all(i -> size(i) == (3,), ival) tot = [[it;iv] for (it, iv) in zip(itrain, ival)] @test all(x -> sort(x) == 1:15, tot) end @testset "data" begin for (xtr, xval) in kfolds(1:15, k=5) @test size(xtr) == (12,) @test size(xval) == (3,) @test sort([xtr; xval]) == 1:15 end for ((xtr,ytr), (xval, yval)) in kfolds((1:15, 11:25), k=5) @test size(xtr) == (12,) @test size(xval) == (3,) @test size(ytr) == (12,) @test size(yval) == (3,) @test sort([xtr; xval]) == 1:15 @test sort([ytr; yval]) == 11:25 end end end @testset "leavepout" begin @test leavepout(15) == kfolds(15, k=15) @test collect(leavepout(1:15)) == collect(kfolds(1:15, 15)) @test collect(leavepout(1:15, p=5)) == collect(kfolds(1:15, 3)) end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
6996
@testset "fallbacks" begin x = FallbackType() @test getobs(x, 3) == 1234 @test numobs(x) == 5678 end @testset "array" begin a = rand(2,3) @test numobs(a) == 3 @test @inferred getobs(a, 1) == a[:,1] @test @inferred getobs(a, 2) == a[:,2] @test @inferred getobs(a, 1:2) == a[:,1:2] end @testset "0-dim SubArray" begin v = view([3], 1) @test @inferred(numobs(v)) === 1 @test @inferred(getobs(v, 1)) === 3 @test_throws BoundsError getobs(v, 2) @test_throws BoundsError getobs(v, 2:3) end @testset "named tuple" begin X2, Y2 = rand(2, 3), rand(3) dataset = (x=X2, y=Y2) @test numobs(dataset) == 3 o = @inferred getobs(dataset, 2) @test o.x == X2[:,2] @test o.y == Y2[2] o = @inferred getobs(dataset, 1:2) @test o.x == X2[:,1:2] @test o.y == Y2[1:2] end @testset "dict" begin dataset = Dict("X" => X, "y" => y) @test numobs(dataset) == 15 @test_broken @inferred getobs(dataset, 2) # not inferred o = getobs(dataset, 2) @test o["X"] == X[:,2] @test o["y"] == y[2] o = getobs(dataset, 1:2) @test o["X"] == X[:,1:2] @test o["y"] == y[1:2] end @testset "numobs" begin @test_throws MethodError numobs(X,X) @test_throws MethodError numobs(X,y) @testset "Array, SparseArray, and Tuple" begin @test_throws DimensionMismatch numobs((X,XX,rand(100))) @test_throws DimensionMismatch numobs((X,X')) for var in (Xs, ys, vars...) @test @inferred(numobs(var)) === 15 end @test @inferred(numobs(())) === 0 end @testset "SubArray" begin @test @inferred(numobs(view(X,:,:))) === 15 @test @inferred(numobs(view(X,:,:))) === 15 @test @inferred(numobs(view(XX,:,:,:))) === 15 @test @inferred(numobs(view(XXX,:,:,:,:))) === 15 @test @inferred(numobs(view(y,:))) === 15 @test @inferred(numobs(view(Y,:,:))) === 15 end end @testset "getobs" begin @testset "Array and Subarray" begin # access outside numobs bounds @test_throws BoundsError getobs(X, -1) @test_throws BoundsError getobs(X, 0) @test_throws BoundsError getobs(X, 16) for i in (2, 2:10, [2,1,4]) @test getobs(XX, i) == XX[:, :, i] end for i in (2, 1:15, 2:10, [2,5,7], [2,1]) @test typeof(getobs(Xv, i)) <: Array @test typeof(getobs(yv, i)) <: ((i isa Int) ? String : Array) @test all(getobs(Xv, i) .== X[:, i]) @test getobs(Xv,i) == X[:,i] @test getobs(X,i) == X[:,i] @test getobs(XX,i) == XX[:,:,i] @test getobs(XXX,i) == XXX[:,:,:,i] @test getobs(y,i) == y[i] @test getobs(yv,i) == y[i] @test getobs(Y,i) == Y[:,i] end end @testset "SparseArray" begin @test typeof(getobs(Xs,2)) <: SparseVector @test typeof(getobs(Xs,1:5)) <: SparseMatrixCSC @test typeof(getobs(ys,2)) <: Float64 @test typeof(getobs(ys,1:5)) <: SparseVector for i in (2, 1:15, 2:10, [2,5,7], [2,1]) @test getobs(Xs,i) == Xs[:,i] @test getobs(ys,i) == ys[i] end end @testset "Tuple" begin # bounds checking correctly @test_throws BoundsError getobs((X,y), 16) # special case empty tuple @test @inferred(getobs((), 10)) === () tx, ty = getobs((Xv, yv), 2:5) @test typeof(tx) <: Array @test typeof(ty) <: Array for i in (1:15, 2:10, [2,5,7], [2,1]) @test_throws DimensionMismatch getobs((X', y), i) @test @inferred(getobs((X,y), i)) == (X[:,i], y[i]) @test @inferred(getobs((X,yv), i)) == (X[:,i], y[i]) @test @inferred(getobs((Xv,y), i)) == (X[:,i], y[i]) @test @inferred(getobs((X,Y), i)) == (X[:,i], Y[:,i]) @test @inferred(getobs((X,yt), i)) == (X[:,i], yt[:,i]) @test @inferred(getobs((XX,X,y), i)) == (XX[:,:,i], X[:,i], y[i]) # compare if obs match in tuple x1, y1 = getobs((X1,Y1), i) @test all(x1' .== y1) x1, y1, z1 = getobs((X1,Y1,sparse(X1)), i) @test all(x1' .== y1) @test all(x1 .== z1) end @test getobs((Xv,y), 2) == (X[:,2], y[2]) @test getobs((X,yv), 2) == (X[:,2], y[2]) @test getobs((X,Y), 2) == (X[:,2], Y[:,2]) @test getobs((XX,X,y), 2) == (XX[:,:,2], X[:,2], y[2]) end end @testset "getobs!" begin @testset "Array and Subarray" begin Xbuf = similar(X) getobs!(Xbuf, X) @test Xbuf == X # access outside numobs bounds @test_throws BoundsError getobs!(Xbuf, X, -1) @test_throws BoundsError getobs!(Xbuf, X, 0) @test_throws BoundsError getobs!(Xbuf, X, 151) buff = zeros(4) @test @inferred(getobs!(buff, X, 5)) == getobs(X, 5) buff = zeros(4, 8) @test @inferred(getobs!(buff, X, 3:10)) == getobs(X, 3:10) buff = zeros(20,30) @test @inferred(getobs!(buff, XX, 5)) == XX[:,:,5] buff = zeros(20, 30, 5) @test @inferred(getobs!(buff, XX, 6:10)) == XX[:,:,6:10] # string vector @test getobs!("setosa", y, 1) == "setosa" @test getobs!(nothing, y, 1) == "setosa" end @testset "SparseArray" begin # Sparse Arrays opt-out of buffer usage @test @inferred(getobs!(nothing, Xs, 1)) == getobs(Xs, 1) @test @inferred(getobs!(nothing, Xs, 5:10)) == getobs(Xs, 5:10) @test @inferred(getobs!(nothing, ys, 1)) === getobs(ys, 1) @test @inferred(getobs!(nothing, ys, 5:10)) == getobs(ys, 5:10) end @testset "Tuple" begin @test_throws MethodError getobs!((nothing,nothing), (X,y)) @test getobs!((nothing,nothing), (X,y), 1:5) == getobs((X,y), 1:5) @test_throws MethodError getobs!((nothing,nothing,nothing), (X,y)) xbuf = zeros(4,2) ybuf = ["foo", "bar"] @test_throws MethodError getobs!((xbuf,), (X,y)) @test_throws MethodError getobs!((xbuf,ybuf,ybuf), (X,y)) @test_throws DimensionMismatch getobs!((xbuf,), (X,y), 1:5) @test_throws DimensionMismatch getobs!((xbuf,ybuf,ybuf), (X,y), 1:5) @test @inferred(getobs!((xbuf,ybuf),(X,y), 2:3)) === (xbuf,ybuf) @test xbuf == getobs(X, 2:3) @test ybuf == getobs(y, 2:3) @test @inferred(getobs!((xbuf,ybuf),(X,y), [14,5])) === (xbuf,ybuf) @test xbuf == getobs(X, [14,5]) @test ybuf == getobs(y, [14,5]) @test getobs!((nothing,xbuf),(Xs,X), 3:4) == (getobs(Xs,3:4),xbuf) @test xbuf == getobs(X,3:4) end @testset "tables" begin df = DataFrame(a=[1,2,3], y=["a","b","c"]) @test getobs(df) == df @test getobs(df, 1) == df[1,:] @test getobs(df, 2:3) == df[2:3,:] @test numobs(df) == 3 end end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
4894
@testset "mapobs" begin data = 1:10 mdata = mapobs(-, data) @test getobs(mdata, 8) == -8 @test length(mdata) == 10 @test numobs(mdata) == 10 mdata2 = mapobs((-, x -> 2x), data) @test getobs(mdata2, 8) == (-8, 16) nameddata = mapobs((x = sqrt, y = log), data) @test getobs(nameddata, 10) == (x = sqrt(10), y = log(10)) @test getobs(nameddata.x, 10) == sqrt(10) # colon @test mapobs(x -> 2x, [1:10;])[:] == [2:2:20;] @testset "batched = :auto" begin data = (a = [1:10;],) m = mapobs(data; batched=:auto) do x @test x.a isa Int return (; c = 2 .* x.a) end[1] @test m == (; c = 2) m = mapobs(data) do x @test x.a isa Vector{Int} return (; c = 2 .* x.a) end[1:2] @test m == (; c = [2, 4]) # check that :auto is the default m = mapobs(data) do x @test x.a isa Int return (; c = 2 .* x.a) end[1] @test m == (; c = 2) m = mapobs(data) do x @test x.a isa Vector{Int} return (; c = 2 .* x.a) end[1:2] @test m == (; c = [2, 4]) end @testset "batched = :always" begin data = (; a = [1:10;],) m = mapobs(data; batched=:always) do x @test x.a isa Vector{Int} return (; c = 2 .* x.a) end[1] @test m == (; c = 2) m = mapobs(data; batched=:always) do x @test x.a isa Vector{Int} return (; c = 2 .* x.a) end[1:2] @test m == (; c = [2, 4]) end @testset "batched = :never" begin data = (; a = [1:10;],) m = mapobs(data; batched=:never) do x @test x.a isa Int return (; c = 2 .* x.a) end[1] @test m == (; c = 2) m = mapobs(data; batched=:never) do x @test x.a isa Int return (; c = 2 .* x.a) end[1:2] @test m == [(; c = 2), (; c = 4)] end end @testset "filterobs" begin data = 1:10 fdata = filterobs(>(5), data) @test numobs(fdata) == 5 end @testset "groupobs" begin data = -10:10 datas = groupobs(>(0), data) @test length(datas) == 2 end @testset "joinobs" begin data1, data2 = 1:10, 11:20 jdata = joinobs(data1, data2) @test getobs(jdata, 15) == 15 end @testset "shuffleobs" begin @test_throws DimensionMismatch shuffleobs((X, rand(149))) @testset "typestability" begin for var in vars @test typeof(@inferred(shuffleobs(var))) <: SubArray end for tup in tuples @test typeof(@inferred(shuffleobs(tup))) <: Tuple end end @testset "Array and SubArray" begin for var in vars @test size(shuffleobs(var)) == size(var) end # tests if all obs are still present and none duplicated @test sum(shuffleobs(Y1)) == 120 end @testset "Tuple of Array and SubArray" begin for var in ((X,yv), (Xv,y), tuples...) @test_throws MethodError shuffleobs(var...) @test typeof(shuffleobs(var)) <: Tuple @test all(map(x->(typeof(x)<:SubArray), shuffleobs(var))) @test all(map(x->(numobs(x)===15), shuffleobs(var))) end # tests if all obs are still present and none duplicated # also tests that both paramter are shuffled identically x1, y1, z1 = shuffleobs((X1,Y1,X1)) @test vec(sum(x1,dims=2)) == fill(120,10) @test vec(sum(z1,dims=2)) == fill(120,10) @test sum(y1) == 120 @test all(x1' .== y1) @test all(z1' .== y1) end @testset "SparseArray" begin for var in (Xs, ys) @test typeof(shuffleobs(var)) <: SubArray @test numobs(shuffleobs(var)) == numobs(var) end # tests if all obs are still present and none duplicated @test vec(sum(getobs(shuffleobs(sparse(X1))),dims=2)) == fill(120,10) @test sum(getobs(shuffleobs(sparse(Y1)))) == 120 end @testset "Tuple of SparseArray" begin for var in ((Xs,ys), (X,ys), (Xs,y), (Xs,Xs), (XX,X,ys)) @test_throws MethodError shuffleobs(var...) @test typeof(shuffleobs(var)) <: Tuple @test numobs(shuffleobs(var)) == numobs(var) end # tests if all obs are still present and none duplicated # also tests that both paramter are shuffled identically x1, y1 = getobs(shuffleobs((sparse(X1),sparse(Y1)))) @test vec(sum(x1,dims=2)) == fill(120,10) @test sum(y1) == 120 @test all(x1' .== y1) end @testset "RNG" begin # tests reproducibility explicit_shuffle = shuffleobs(MersenneTwister(42), (X, y)) @test explicit_shuffle == shuffleobs(MersenneTwister(42), (X, y)) end end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
9553
@testset "ObsView constructor" begin @test_throws DimensionMismatch ObsView((rand(2,10), rand(9))) @test_throws DimensionMismatch ObsView((rand(2,10), rand(9)), 1:2) @test_throws DimensionMismatch ObsView((rand(2,10), rand(4,9,10), rand(9))) @testset "bounds check" begin for var in (vars..., tuples..., CustomType()) @test_throws BoundsError ObsView(var, -1:100) @test_throws BoundsError ObsView(var, 1:16) @test_throws BoundsError ObsView(var, [1, 10, 0, 3]) @test_throws BoundsError ObsView(var, [1, 10, -10, 3]) @test_throws BoundsError ObsView(var, [1, 10, 18, 3]) end end @testset "Tuples" begin @test typeof(@inferred(ObsView((X,X)))) <: ObsView @test typeof(@inferred(ObsView((X,X), 1:15))) <: ObsView d = ObsView((X, y), 5:10) @test @inferred(getobs(d , 2)) == getobs((X, y), 6) @test numobs(d) == 6 end @testset "Array, SubArray, SparseArray" begin for var in (Xs, ys, vars...) subset = @inferred(ObsView(var)) @test subset.data === var @test subset.indices === 1:15 @test typeof(subset) <: ObsView @test @inferred(numobs(subset)) === numobs(var) @test @inferred(getobs(subset)) == getobs(var) @test @inferred(ObsView(subset)) === subset @test @inferred(ObsView(subset, 1:15)) === subset @test subset[begin] == obsview(var, 1) @test subset[end] == obsview(var, 15) @test @inferred(subset[15]) == obsview(var, 15) @test @inferred(subset[2:5]) == obsview(var, 2:5) for idx in (1:10, [1,10,15,3], [2]) @test ObsView(var)[idx] == obsview(var, idx) @test ObsView(var)[idx] == obsview(var, collect(idx)) subset = @inferred(ObsView(var, idx)) @test typeof(subset) <: ObsView{typeof(var), typeof(idx)} @test subset.data === var @test subset.indices === idx @test @inferred(numobs(subset)) === length(idx) @test @inferred(getobs(subset)) == getobs(var, idx) @test @inferred(ObsView(subset)) === subset @test @inferred(subset[1]) == obsview(var, idx[1]) @test numobs(subset[1:1]) == numobs(ObsView(var, obsview(idx, 1:1))) end end end @testset "custom types" begin @test_throws MethodError ObsView(EmptyType()) @test_throws MethodError ObsView(EmptyType(), 1:10) @test_throws BoundsError getobs(ObsView(CustomType(), 11:20), 11) @test typeof(@inferred(ObsView(CustomType()))) <: ObsView @test numobs(ObsView(CustomType())) === 15 @test numobs(ObsView(CustomType(), 1:10)) === 10 @test getobs(ObsView(CustomType())) == collect(1:15) @test getobs(ObsView(CustomType(),1:10),10) == 10 @test getobs(ObsView(CustomType(),1:10),[3,5]) == [3,5] @test obsview(CustomArray(5)) isa SubArray @test getobs(obsview(CustomArray(5)), 1:2) == CustomArray(2) end end @testset "ObsView getindex and getobs" begin @testset "Matrix and SubArray{T,2}" begin for var in (X, Xv) subset = @inferred(ObsView(var, 5:12)) @test typeof(@inferred(getobs(subset))) <: Array{Float64,2} @test @inferred(numobs(subset)) == length(subset) == 8 @test @inferred(subset[2:5]) == obsview(X, 6:9) @test @inferred(subset[3:6]) != obsview(X, 6:9) @test @inferred(getobs(subset, 2:5)) == X[:, 6:9] @test @inferred(getobs(subset, [3,1,4])) == X[:, [7,5,8]] @test typeof(subset[2:5]) <: SubArray @test @inferred(subset[collect(2:5)]) == obsview(X, collect(6:9)) @test typeof(subset[collect(2:5)]) <: SubArray @test @inferred(getobs(subset)) == getobs(subset[1:end]) == X[:, 5:12] end end @testset "Vector and SubArray{T,1}" begin for var in (y, yv) subset = @inferred(ObsView(var, 6:10)) @test typeof(getobs(subset)) <: Array{String,1} @test @inferred(numobs(subset)) == length(subset) == 5 @test @inferred(subset[2:3]) == obsview(y, 7:8) @test @inferred(getobs(subset, 2:3)) == y[7:8] @test @inferred(getobs(subset, [2,1,4])) == y[[7,6,9]] @test typeof(subset[2:3]) <: SubArray @test @inferred(subset[collect(2:3)]) == obsview(y, collect(7:8)) @test typeof(subset[collect(2:3)]) <: SubArray @test @inferred(getobs(subset)) == getobs(subset[1:end]) == y[6:10] end end end @testset "getobs!" begin @test getobs!(nothing, ObsView(y, 1)) == "setosa" @testset "ObsView" begin xbuf1 = zeros(4,8) s1 = ObsView(X, 2:9) @test @inferred(getobs!(xbuf1,s1)) === xbuf1 @test xbuf1 == getobs(s1) xbuf1 = zeros(4,5) s1 = ObsView(X, 5:12) @test @inferred(getobs!(xbuf1,s1,2:6)) === xbuf1 @test xbuf1 == getobs(s1,2:6) == getobs(X,6:10) s3 = ObsView(Xs, 6:10) @test @inferred(getobs!(nothing,s3)) == getobs(Xs,6:10) s4 = ObsView(CustomType(), 6:10) @test @inferred(getobs!(nothing,s4)) == getobs(s4) s5 = ObsView(CustomType(), 3:10) @test @inferred(getobs!(nothing,s5,2:6)) == getobs(s5,2:6) end @testset "Tuple with ObsView" begin xbuf = zeros(4,2) ybuf = ["foo", "bar"] s1 = ObsView(Xs, 5:9) s2 = ObsView(X, 5:9) @test getobs!((nothing,xbuf),(s1,s2), 2:3) == (getobs(Xs,6:7),xbuf) @test xbuf == getobs(X,6:7) @test getobs!((nothing,xbuf),(s1,s2), 2:3) == (getobs(Xs,6:7),xbuf) @test getobs!((nothing,xbuf),(s1,s2), 2:3) == (getobs(Xs,6:7),xbuf) end end @testset "ObsView other" begin @testset "constructor" begin # @test_throws DimensionMismatch ObsView((rand(2,10),rand(9))) # @test_throws DimensionMismatch ObsView((rand(2,10),rand(4,9,10),rand(9))) @test_throws MethodError ObsView(EmptyType()) @test_throws MethodError ObsView((EmptyType(),EmptyType())) @test_throws MethodError ObsView((EmptyType(),EmptyType())) for var in (vars..., Xs, ys) A = @inferred(ObsView(var)) end for var in (vars..., tuples..., Xs, ys) A = ObsView(var) @test @inferred(parent(A)) === var @test @inferred(ObsView(A)) == A @test @inferred(ObsView(var)) == A end end @testset "typestability" begin for var in (vars..., tuples..., Xs, ys) @test typeof(@inferred(ObsView(var))) <: ObsView @test typeof(@inferred(ObsView(var))) <: ObsView end for tup in tuples @test typeof(@inferred(ObsView(tup))) <: ObsView end @test typeof(@inferred(ObsView(CustomType()))) <: ObsView end @testset "AbstractArray interface" begin for var in (vars..., tuples..., Xs, ys) # for var in (vars[1], ) A = ObsView(var) @test_throws BoundsError A[-1] @test_throws BoundsError A[16] @test @inferred(numobs(A)) == 15 @test @inferred(length(A)) == 15 @test @inferred(size(A)) == (15,) @test @inferred(A[2:3]) == obsview(var, 2:3) @test @inferred(A[[1,3]]) == obsview(var, [1,3]) @test @inferred(A[1]) == obsview(var, 1) @test @inferred(A[11]) == obsview(var, 11) @test @inferred(A[15]) == obsview(var, 15) @test A[begin] == A[1] @test A[end] == A[15] @test @inferred(getobs(A,1)) == getobs(var, 1) @test @inferred(getobs(A,11)) == getobs(var, 11) @test @inferred(getobs(A,15)) == getobs(var, 15) @test typeof(@inferred(collect(A))) <: Vector end for var in vars A = ObsView(var) @test getobs(A) == var @test getobs.(A) == [getobs(var,i) for i in 1:numobs(var)] end for var in tuples A = ObsView(var) @test getobs(A) == var @test getobs.(A) == [map(x->getobs(x,i), var) for i in 1:numobs(var)] end end @testset "subsetting" begin for var_raw in (vars..., tuples..., Xs, ys) for var in (var_raw, ObsView(var_raw)) A = ObsView(var) @test getobs(@inferred(ObsView(A))) == @inferred(getobs(A)) S = @inferred(ObsView(A, 1:5)) @test typeof(S) <: ObsView @test @inferred(length(S)) == 5 @test @inferred(size(S)) == (5,) @test @inferred(A[1:5]) == S[:] @test @inferred(getobs(A,1:5)) == getobs(S) @test @inferred(getobs(S)) == getobs(ObsView(ObsView(var,1:5))) S = @inferred(ObsView(A, 1:5)) @test typeof(S) <: ObsView end end A = ObsView(X) @test typeof(A.data) <: Array S = @inferred(ObsView(A)) @test typeof(S) <: ObsView @test @inferred(length(S)) == 15 @test typeof(S.data) <: Array end @testset "iteration" begin count = 0 for (i,x) in enumerate(ObsView(X1)) @test all(i .== x) count += 1 end @test count == 15 end end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
1489
@testset "eachobsparallel" begin @testset "Iteration" begin iter = eachobsparallel(collect(1:10)) @test_nowarn for i in iter end X_ = collect(iter) @test all(x ∈ 1:10 for x in X_) @test length(unique(X_)) == 10 end @testset "With `ThreadedEx`" begin iter = eachobsparallel(collect(1:10); executor = ThreadedEx()) @test_nowarn for i in iter end X_ = collect(iter) @test all(x ∈ 1:10 for x in X_) @test length(unique(X_)) == 10 end end @testset "RingBuffer" begin @testset "fills correctly" begin x = rand(10, 10) ringbuffer = RingBuffer([x, deepcopy(x), deepcopy(x)]) @async begin for i ∈ 1:100 put!(ringbuffer) do buf rand!(buf) end end end @test_nowarn for _ ∈ 1:100 take!(ringbuffer) end end @testset "does mutate" begin x = rand(10, 10) ringbuffer = RingBuffer([x, deepcopy(x), deepcopy(x)]) put!(ringbuffer) do buf @test x ≈ buf copy!(buf, rand(10, 10)) buf end x_ = take!(ringbuffer) @test !(x ≈ x_) end end @testset "`eachobsparallel(buffer = true)`" begin iter = eachobsparallel(collect(1:10), buffer=true) @test_nowarn for i in iter end X_ = collect(iter) @test all(x ∈ 1:10 for x in X_) @test length(unique(X_)) == 10 end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
215
x = randobs(X[:,1:4]) @test size(x) == (4,) @test any(X[:,i] == x for i in 1:4) x = randobs(X[:,1:4], 2) @test size(x) == (4, 2) @test any(X[:,i] == x[:,1] for i in 1:4) @test any(X[:,i] == x[:,2] for i in 1:4)
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
1532
@testset "oversample" begin x = rand(2, 5) ya = ["a", "c", "c", "a", "b"] y2 = ["c", "c", "c", "a", "b"] o = oversample((x, ya), fraction=1, shuffle=false) @test o == oversample((x, ya), ya, shuffle=false)[1] xo, yo = oversample(x, ya, shuffle=false) @test (xo, yo) == o ox, oy = getobs(o) @test ox isa Matrix @test oy isa Vector @test size(ox) == (2, 6) @test size(oy) == (6,) @test ox[:,1:5] == x @test ox[:,6] == ox[:,5] @test oy[1:5] == ya @test oy[6] == ya[5] o = oversample((x, ya), y2, shuffle=false)[1] ox, oy = getobs(o) @test ox isa Matrix @test oy isa Vector @test size(ox) == (2, 9) @test size(oy) == (9,) @test ox[:,1:5] == x @test ox[:,6] == ox[:,7] == x[:,5] @test ox[:,8] == ox[:,9] == x[:,4] @test oy[1:5] == ya @test oy[6] == oy[7] == ya[5] @test oy[8] == oy[9] == ya[4] end @testset "undersample" begin x = rand(2, 5) ya = ["a", "c", "c", "a", "b"] y2 = ["c", "c", "c", "a", "b"] o = undersample((x, ya), shuffle=false) xo, yo = undersample(x, ya, shuffle=false) @test (xo, yo) == o ox, oy = getobs(o) @test ox isa Matrix @test oy isa Vector @test size(ox) == (2, 3) @test size(oy) == (3,) @test ox[:,3] == x[:,5] o = undersample((x, ya), y2, shuffle=false)[1] ox, oy = getobs(o) @test ox isa Matrix @test oy isa Vector @test size(ox) == (2, 3) @test size(oy) == (3,) @test ox[:,2:3] == x[:,4:5] end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
3513
using MLUtils using MLUtils.Datasets using MLUtils: RingBuffer, eachobsparallel using MLUtils: flatten, stack, unstack # also exported by DataFrames.jl using SparseArrays using Random, Statistics using Test using Transducers using ChainRulesTestUtils: test_rrule using Zygote: ZygoteRuleConfig using ChainRulesCore: rrule_via_ad using DataFrames using CUDA showcompact(io, x) = show(IOContext(io, :compact => true), x) # -------------------------------------------------------------------- # create some test data Random.seed!(1335) const X = rand(4, 15) const y = repeat(["setosa","versicolor","virginica"], inner = 5) const Y = permutedims(hcat(y,y), [2,1]) const Yt = hcat(y,y) const yt = Y[1:1,:] const Xv = view(X,:,:) const yv = view(y,:) const XX = rand(20,30,15) const XXX = rand(3,20,30,15) const vars = (X, Xv, yv, XX, XXX, y) const tuples = ((X,y), (X,Y), (XX,X,y), (XXX,XX,X,y)) const Xs = sprand(10, 15, 0.5) const ys = sprand(15, 0.5) const X1 = hcat((1:15 for i = 1:10)...)' const Y1 = collect(1:15) struct EmptyType end struct FallbackType end Base.getindex(::FallbackType, i) = 1234 Base.length(::FallbackType) = 5678 struct CustomType end MLUtils.numobs(::CustomType) = 15 MLUtils.getobs(::CustomType, i::Int) = i MLUtils.getobs(::CustomType, i::AbstractVector) = collect(i) struct CustomArray{T,N} <: AbstractArray{T,N} length::Int size::NTuple{N, Int} function CustomArray{T}(n...) where T N = length(n) new{T,N}(prod(n), Tuple(n)) end end CustomArray(n...) = CustomArray{Float32}(n...) Base.length(x::CustomArray) = x.length Base.size(x::CustomArray) = x.size Base.getindex(x::CustomArray{T}, i::Int) where T = T(1) Base.getindex(x::CustomArray{T, 1}, i::AbstractVector{Int}) where T = CustomArray{T}(length(i)) struct CustomArrayNoView{T,N} <: AbstractArray{T,N} length::Int size::NTuple{N, Int} function CustomArrayNoView{T}(n...) where T N = length(n) new{T,N}(prod(n), Tuple(n)) end end CustomArrayNoView(n...) = CustomArrayNoView{Float32}(n...) Base.length(x::CustomArrayNoView) = x.length Base.size(x::CustomArrayNoView) = x.size Base.getindex(x::CustomArrayNoView{T}, i::Int) where T = T(1) Base.getindex(x::CustomArrayNoView{T, 1}, i::AbstractVector{Int}) where T = CustomArrayNoView{T}(length(i)) Base.view(x::CustomArrayNoView, i...) = error("view not allowed") struct CustomRangeIndex n::Int end Base.length(r::CustomRangeIndex) = r.n Base.getindex(r::CustomRangeIndex, idx::Int) = idx Base.getindex(r::CustomRangeIndex, idxs::UnitRange) = idxs # -------------------------------------------------------------------- include("test_utils.jl") # @testset "MLUtils.jl" begin @testset "batchview" begin; include("batchview.jl"); end @testset "eachobs" begin; include("eachobs.jl"); end @testset "dataloader" begin; include("dataloader.jl"); end @testset "folds" begin; include("folds.jl"); end @testset "observation" begin; include("observation.jl"); end @testset "obsview" begin; include("obsview.jl"); end @testset "obstransform" begin; include("obstransform.jl"); end @testset "randobs" begin; include("randobs.jl"); end @testset "resample" begin; include("resample.jl"); end @testset "splitobs" begin; include("splitobs.jl"); end @testset "utils" begin; include("utils.jl"); end @testset "eachobsparallel" begin; include("parallel.jl"); end @testset "Datasets/datasets" begin; include("Datasets/datasets.jl"); end @testset "Datasets/generators" begin; include("Datasets/generators.jl"); end # end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
2229
@test_throws DimensionMismatch shuffleobs((X, rand(149))) @testset "typestability" begin for var in vars @test typeof(@inferred(shuffleobs(var))) <: SubArray end for tup in tuples @test typeof(@inferred(shuffleobs(tup))) <: Tuple end end @testset "Array and SubArray" begin for var in vars @test size(shuffleobs(var)) == size(var) end # tests if all obs are still present and none duplicated @test sum(shuffleobs(Y1)) == 120 end @testset "Tuple of Array and SubArray" begin for var in ((X,yv), (Xv,y), tuples...) @test_throws MethodError shuffleobs(var...) @test typeof(shuffleobs(var)) <: Tuple @test all(map(x->(typeof(x)<:SubArray), shuffleobs(var))) @test all(map(x->(numobs(x)===15), shuffleobs(var))) end # tests if all obs are still present and none duplicated # also tests that both paramter are shuffled identically x1, y1, z1 = shuffleobs((X1,Y1,X1)) @test vec(sum(x1,dims=2)) == fill(120,10) @test vec(sum(z1,dims=2)) == fill(120,10) @test sum(y1) == 120 @test all(x1' .== y1) @test all(z1' .== y1) end @testset "SparseArray" begin for var in (Xs, ys) @test typeof(shuffleobs(var)) <: SubArray @test numobs(shuffleobs(var)) == numobs(var) end # tests if all obs are still present and none duplicated @test vec(sum(getobs(shuffleobs(sparse(X1))),dims=2)) == fill(120,10) @test sum(getobs(shuffleobs(sparse(Y1)))) == 120 end @testset "Tuple of SparseArray" begin for var in ((Xs,ys), (X,ys), (Xs,y), (Xs,Xs), (XX,X,ys)) @test_throws MethodError shuffleobs(var...) @test typeof(shuffleobs(var)) <: Tuple @test numobs(shuffleobs(var)) == numobs(var) end # tests if all obs are still present and none duplicated # also tests that both paramter are shuffled identically x1, y1 = getobs(shuffleobs((sparse(X1),sparse(Y1)))) @test vec(sum(x1,dims=2)) == fill(120,10) @test sum(y1) == 120 @test all(x1' .== y1) end @testset "RNG" begin # tests reproducibility explicit_shuffle = shuffleobs(MersenneTwister(42), (X, y)) @test explicit_shuffle == shuffleobs(MersenneTwister(42), (X, y)) end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
4020
@test_throws DimensionMismatch splitobs((X, rand(149)), at=0.7) # ## These tests pass on julia 1.6 but fail on higher versions # @testset "typestability" begin # @testset "Int" begin # @test typeof(@inferred(splitobs(10, at=0.))) <: NTuple{2} # @test eltype(@inferred(splitobs(10, at=0.))) <: UnitRange # @test typeof(@inferred(splitobs(10, at=1.))) <: NTuple{2} # @test eltype(@inferred(splitobs(10, at=1.))) <: UnitRange # @test typeof(@inferred(splitobs(10, at=0.7))) <: NTuple{2} # @test eltype(@inferred(splitobs(10, at=0.7))) <: UnitRange # @test typeof(@inferred(splitobs(10, at=0.5))) <: NTuple{2} # @test typeof(@inferred(splitobs(10, at=(0.5,0.2)))) <: NTuple{3} # @test eltype(@inferred(splitobs(10, at=0.5))) <: UnitRange # @test eltype(@inferred(splitobs(10, at=(0.5,0.2)))) <: UnitRange # @test eltype(@inferred(splitobs(10, at=0.5))) <: UnitRange # @test eltype(@inferred(splitobs(10, at=(0.,0.2)))) <: UnitRange # end # for var in vars # @test typeof(@inferred(splitobs(var, at=0.7))) <: NTuple{2} # @test eltype(@inferred(splitobs(var, at=0.7))) <: SubArray # @test typeof(@inferred(splitobs(var, at=0.5))) <: NTuple{2} # @test typeof(@inferred(splitobs(var, at=(0.5,0.2)))) <: NTuple{3} # @test eltype(@inferred(splitobs(var, at=0.5))) <: SubArray # @test eltype(@inferred(splitobs(var, at=(0.5,0.2)))) <: SubArray # end # for tup in tuples # @test typeof(@inferred(splitobs(tup, at=0.5))) <: NTuple{2} # @test typeof(@inferred(splitobs(tup, at=(0.5,0.2)))) <: NTuple{3} # @test eltype(@inferred(splitobs(tup, at=0.5))) <: Tuple # @test eltype(@inferred(splitobs(tup, at=(0.5,0.2)))) <: Tuple # end # end @testset "Int" begin @test splitobs(10, at=0.7) == (1:7,8:10) @test splitobs(10, at=0.5) == (1:5,6:10) @test splitobs(10, at=(0.5,0.3)) == (1:5,6:8,9:10) @test splitobs(150, at=0.7) == splitobs(150, at=0.7) @test splitobs(150, at=0.5) == splitobs(150, at=0.5) @test splitobs(150, at=(0.5,0.2)) == splitobs(150, at=(0.5,0.2)) @test numobs.(splitobs(150, at=0.7)) == (105,45) @test numobs.(splitobs(150, at=(.2,.3))) == (30,45,75) @test numobs.(splitobs(150, at=(.1,.2,.3))) == (15,30,45,60) # tests if all obs are still present and none duplicated @test sum(sum.(getobs.(splitobs(150, at=0.7)))) == 11325 @test sum(sum.(splitobs(150,at=.1))) == 11325 @test sum(sum.(splitobs(150,at=(.2,.1)))) == 11325 @test sum(sum.(splitobs(150,at=(.1,.4,.2)))) == 11325 @test sum.(splitobs(150, at=0.7)) == (5565, 5760) end @testset "Array, SparseArray, and SubArray" begin for var in (Xs, ys, vars...) @test numobs.(splitobs(var, at=10)) == (10,5) @test numobs.(splitobs(var, at=0.7)) == (10, 5) @test numobs.(splitobs(var, at=(.2,.3))) == (3,4, 8) @test numobs.(splitobs(var, at=(.11,.2,.3))) == (2,3,4,6) @test numobs.(splitobs(var, at=(2,3,4))) == (2,3,4,6) end # tests if all obs are still present and none duplicated @test sum(sum.(splitobs(X1,at=.1))) == 1200 @test sum(sum.(splitobs(X1,at=(.2,.1)))) == 1200 @test sum(sum.(splitobs(X1,at=(.1,.4,.2)))) == 1200 end @testset "Tuple of Array, SparseArray, and SubArray" begin for tup in ((Xs,ys), (X,ys), (Xs,y), (Xs,Xs), (XX,X,ys), (X,yv), (Xv,y), tuples...) @test_throws MethodError splitobs(tup..., at=0.5) @test all(map(x->(typeof(x)<:Tuple), splitobs(tup,at=0.5))) @test numobs.(splitobs(tup, at=0.6)) == (9, 6) @test numobs.(splitobs(tup, at=(.2,.3))) == (3,4,8) end end @testset "shuffle" begin s = splitobs(X, at=0.1)[1] @test s == X[:,1:2] s = splitobs(X, at=0.1, shuffle=true)[1] @test size(s) == size(X[:,1:2]) @test s[:,1] !== s[:,2] @test s != X[:,1:2] @test any(s[:,1] == x for x in eachcol(X)) @test any(s[:,2] == x for x in eachcol(X)) end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
409
""" Test gradients through zygote. # Arguments - `f`: function to test - `xs`: inputs to `f` # Keyword Arguments Keyword arguments are passed to `rrule`. - `fkwargs`: keyword arguments to `f` """ function test_zygote(f, xs...; kws...) config = ZygoteRuleConfig() test_rrule(config, f, xs...; kws..., rrule_f = rrule_via_ad) end function rr(seed) rng = Random.seed!(seed) return rng end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
7933
@testset "unsqueeze" begin x = randn(2, 3, 2) @test @inferred(unsqueeze(x; dims=1)) == reshape(x, 1, 2, 3, 2) @test @inferred(unsqueeze(x; dims=2)) == reshape(x, 2, 1, 3, 2) @test @inferred(unsqueeze(x; dims=3)) == reshape(x, 2, 3, 1, 2) @test @inferred(unsqueeze(x; dims=4)) == reshape(x, 2, 3, 2, 1) @test unsqueeze(dims=2)(x) == unsqueeze(x, dims=2) @test_throws AssertionError unsqueeze(rand(2,2), dims=4) end @testset "stack and unstack" begin x = randn(3,3) stacked = stack([x, x], dims=2) @test size(stacked) == (3,2,3) @test @inferred(stack([x, x], dims=2)) == stacked stacked_array=[ 8 9 3 5; 9 6 6 9; 9 1 7 2; 7 4 10 6 ] unstacked_array=[[8, 9, 9, 7], [9, 6, 1, 4], [3, 6, 7, 10], [5, 9, 2, 6]] @test unstack(stacked_array, dims=2) == unstacked_array @test @inferred(unstack(stacked_array, dims=Val(2))) == unstacked_array @test stack(unstacked_array, dims=2) == stacked_array @test stack(unstack(stacked_array, dims=1), dims=1) == stacked_array for d in (1,2,3) test_zygote(stack, [x,2x], fkwargs=(; dims=d), check_inferred=false) end # Issue #121 a = [[1] for i in 1:10000] @test size(stack(a, dims=1)) == (10000, 1) @test size(stack(a, dims=2)) == (1, 10000) end @testset "batch and unbatch" begin stacked_array=[ 8 9 3 5 9 6 6 9 9 1 7 2 7 4 10 6 ] unstacked_array=[[8, 9, 9, 7], [9, 6, 1, 4], [3, 6, 7, 10], [5, 9, 2, 6]] @test @inferred(unbatch(stacked_array)) == unstacked_array @test @inferred(batch(unstacked_array)) == stacked_array # no-op for vector of non-arrays @test batch([1,2,3]) == [1,2,3] @test unbatch([1,2,3]) == [1,2,3] # batching multi-dimensional arrays x = map(_ -> rand(4), zeros(2, 3)) @test size(batch(x)) == (4, 2, 3) x = map(_ -> rand(4, 5), zeros(2, 3, 6)) @test size(batch(x)) == (4, 5, 2, 3, 6) # generic iterable @test batch(ones(2) for i=1:3) == ones(2, 3) @test unbatch(ones(2, 3)) == [ones(2) for i=1:3] @testset "tuple" begin @test batch([(1,2), (3,4)]) == ([1,3], [2,4]) @test batch([([1,2], [3,4]), ([5,6],[7,8])]) == ([1 5 2 6], [3 7 4 8]) end @testset "named tuple" begin @test batch([(a=1,b=2), (a=3,b=4)]) == (a=[1,3], b=[2,4]) @test batch([(a=1,b=2), (b=4,a=3)]) == (a=[1,3], b=[2,4]) nt = [(a=[1,2], b=[3,4]), (a=[5,6],b=[7,8])] @test batch(nt) == (a = [1 5 2 6], b = [3 7 4 8]) end @testset "dict" begin @test batch([Dict(:a=>1,:b=>2), Dict(:a=>3,:b=>4)]) == Dict(:a=>[1,3], :b=>[2,4]) @test batch([Dict(:a=>1,:b=>2), Dict(:b=>4,:a=>3)]) == Dict(:a=>[1,3], :b=>[2,4]) d = [Dict(:a=>[1,2], :b=>[3,4]), Dict(:a=>[5,6],:b=>[7,8])] @test batch(d) == Dict(:a => [1 5 2 6], :b => [3 7 4 8]) end end @testset "flatten" begin x = randn(Float32, 10, 10, 3, 2) @test size(flatten(x)) == (300, 2) end @testset "normalise" begin x = randn(Float32, 3, 2, 2) @test normalise(x) == normalise(x; dims=3) end @testset "chunk" begin cs = chunk(collect(1:10), 3) @test length(cs) == 3 @test cs[1] == [1, 2, 3, 4] @test cs[2] == [5, 6, 7, 8] @test cs[3] == [9, 10] cs = chunk(collect(1:10), 3) @test length(cs) == 3 @test cs[1] == [1, 2, 3, 4] @test cs[2] == [5, 6, 7, 8] @test cs[3] == [9, 10] x = reshape(collect(1:20), (5, 4)) cs = chunk(x, 2) @test length(cs) == 2 @test cs[1] == [1 6; 2 7; 3 8; 4 9; 5 10] @test cs[2] == [11 16; 12 17; 13 18; 14 19; 15 20] x = permutedims(reshape(collect(1:10), (2, 5))) cs = chunk(x; size = 2, dims = 1) @test length(cs) == 3 @test cs[1] == [1 2; 3 4] @test cs[2] == [5 6; 7 8] @test cs[3] == [9 10] # test gradient test_zygote(chunk, rand(10), 3, check_inferred=false) # indirect test of second order derivates n = 2 dims = 2 x = rand(4, 5) l = chunk(x, 2) dl = randn!.(collect.(l)) idxs = MLUtils._partition_idxs(x, cld(size(x, dims), n), dims) test_zygote(MLUtils.∇chunk, dl, x, idxs, Val(dims), check_inferred=false) if CUDA.functional() # https://github.com/JuliaML/MLUtils.jl/issues/103 x = rand(2, 10) |> cu cs = chunk(x, 2) @test length(cs) == 2 @test cs[1] isa CuArray @test cs[1] == x[:, 1:5] end @testset "size collection" begin a = reshape(collect(1:10), (5, 2)) y = chunk(a; dims = 1, size = (1, 4)) @test length(y) == 2 @test y[1] == [1 6] @test y[2] == [2 7; 3 8; 4 9; 5 10] test_zygote(x -> chunk(x; dims = 1, size = (1, 4)), a) end @testset "chunk by partition_idxs" begin x = reshape(collect(1:15), (3, 5)) partition_idxs = [1,1,3,3,4] y = chunk(x, partition_idxs) @test length(y) == 4 @test y[1] == [1 4; 2 5; 3 6] @test size(y[2]) == (3, 0) @test y[3] == [7 10; 8 11; 9 12] @test y[4] == reshape([13, 14, 15], 3, 1) y = chunk(x, partition_idxs; npartitions=5) @test length(y) == 5 @test size(y[5]) == (3, 0) y = chunk(x, [1,1,2]; dims=1) @test length(y) == 2 @test y[1] == [1 4 7 10 13; 2 5 8 11 14] @test y[2] == [3 6 9 12 15] end end @testset "group_counts" begin d = group_counts(['a','b','b']) @test d == Dict('a' => 1, 'b' => 2) end @testset "batchseq" begin bs = batchseq([[1, 2, 3], [4, 5]], 0) @test bs[1] == [1, 4] @test bs[2] == [2, 5] @test bs[3] == [3, 0] bs = batchseq([[1, 2, 3], [4, 5]], -1) @test bs[1] == [1, 4] @test bs[2] == [2, 5] @test bs[3] == [3, -1] batchseq([ones(2,4), zeros(2, 3), ones(2,2)]) ==[[1.0 0.0 1.0; 1.0 0.0 1.0] [1.0 0.0 1.0; 1.0 0.0 1.0] [1.0 0.0 0.0; 1.0 0.0 0.0] [1.0 0.0 0.0; 1.0 0.0 0.0]] end @testset "ones_like" begin x = rand(Float16, 2, 3) y = ones_like(x, (2, 4, 2)) @test y isa AbstractArray{Float16} @test y == ones(Float16, 2, 4, 2) test_zygote(ones_like, rand(5), (2, 4, 2)) end @testset "zeros_like" begin x = rand(Float16, 2, 3) y = zeros_like(x, (2, 4, 2)) @test y isa AbstractArray{Float16} @test y == zeros(Float16, 2, 4, 2) test_zygote(zeros_like, rand(5), (2, 4, 2)) end @testset "rand_like" begin seed = 42 x = rand(Float16, 2, 3) y = rand_like(rr(seed), x, (2, 4, 2)) @test y isa AbstractArray{Float16} @test y == rand(rr(seed), Float16, 2, 4, 2) end @testset "randn_like" begin seed = 42 x = rand(Float16, 2, 3) y = randn_like(rr(seed), x, (2, 4, 2)) @test y isa AbstractArray{Float16} @test y == randn(rr(seed), Float16, 2, 4, 2) end @testset "fill_like" begin x = rand(Float16, 2, 3) y = fill_like(x, 2.2, (2, 4, 2)) @test y isa AbstractArray{Float16} @test y == fill!(rand(Float16, 2, 4, 2), 2.2) test_zygote(fill_like, rand(5), rand(), (2, 4, 2)) end @testset "rpad_constant" begin @test rpad_constant([1, 2], 4, -1) == [1, 2, -1, -1] @test rpad_constant([1, 2, 3], 2) == [1, 2, 3] @test rpad_constant([1 2; 3 4], 4; dims=1) == [1 2; 3 4; 0 0; 0 0] @test rpad_constant([1 2; 3 4], 4) == [1 2 0 0; 3 4 0 0; 0 0 0 0; 0 0 0 0] @test rpad_constant([1 2; 3 4], (3, 4)) == [1 2 0 0; 3 4 0 0; 0 0 0 0] end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
534
@testset "load_iris" begin xtmp, ytmp, vars = load_iris() @test typeof(xtmp) <: Matrix{Float64} @test typeof(ytmp) <: Vector{String} @test typeof(vars) <: Vector{String} @test size(xtmp) == (4, 150) @test length(ytmp) == 150 @test length(vars) == size(xtmp, 1) @test mean(xtmp, dims=2) ≈ [5.843333333333333333, 3.05733333333333333, 3.758000, 1.199333333333333] @test mean(xtmp[:,1:50], dims=2) ≈ [5.006, 3.428, 1.462, 0.246] @test mean(xtmp[:,51:100], dims=2) ≈ [5.936, 2.77, 4.26, 1.326] end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
code
942
@testset "make_sin" begin n = 50 xtmp, ytmp = make_sin(n; noise = 0.) @test length(xtmp) == length(ytmp) == n for i = 1:length(xtmp) @test sin.(xtmp[i]) ≈ ytmp[i] end # print(scatterplot(xtmp, ytmp; color = :blue, height = 5)) end @testset "make_poly" begin coef = [.8, .5, 2] xtmp, ytmp = make_poly(coef, -10:.1:10; noise = 0) @test length(xtmp) == length(ytmp) for i = 1:length(xtmp) @test (coef[1] * xtmp[i]^2 + coef[2] * xtmp[i]^1 + coef[3]) ≈ ytmp[i] end # print(scatterplot(xtmp, ytmp; color = :blue, height = 5)) end @testset "make_spiral" begin n = 97 xtmp, ytmp = make_spiral(n; noise = 0.) @test length(xtmp[1, :]) == length(ytmp) == 2*n # test_plot = scatterplot(xtmp[1, 1:97], xtmp[2, 1:97], title="Spiral Function", color=:blue, name="pos") # print(scatterplot!(test_plot, xtmp[1, 98:194], xtmp[2, 98:194], color=:yellow, name="neg" )) end
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
docs
3090
# MLUtils.jl [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaML.github.io/MLUtils.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaML.github.io/MLUtils.jl/dev) [![](https://github.com/JuliaML/MLUtils.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/JuliaML/MLUtils.jl/actions/workflows/CI.yml?query=branch%3Amain) [![](https://codecov.io/gh/JuliaML/MLUtils.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaML/MLUtils.jl) *MLUtils.jl* defines interfaces and implements common utilities for Machine Learning pipelines. ## Features - An extensible dataset interface (`numobs` and `getobs`). - Data iteration and dataloaders (`eachobs` and `DataLoader`). - Lazy data views (`obsview`). - Resampling procedures (`undersample` and `oversample`). - Train/test splits (`splitobs`) - Data partitioning and aggregation tools (`batch`, `unbatch`, `chunk`, `group_counts`, `group_indices`). - Folds for cross-validation (`kfolds`, `leavepout`). - Datasets lazy tranformations (`mapobs`, `filterobs`, `groupobs`, `joinobs`, `shuffleobs`). - Toy datasets for demonstration purpose. - Other data handling utilities (`flatten`, `normalise`, `unsqueeze`, `stack`, `unstack`). ## Examples Let us take a look at a hello world example to get a feeling for how to use this package in a typical ML scenario. ```julia using MLUtils # X is a matrix of floats # Y is a vector of strings X, Y = load_iris() # The iris dataset is ordered according to their labels, # which means that we should shuffle the dataset before # partitioning it into training- and test-set. Xs, Ys = shuffleobs((X, Y)) # We leave out 15 % of the data for testing cv_data, test_data = splitobs((Xs, Ys); at=0.85) # Next we partition the data using a 10-fold scheme. for (train_data, val_data) in kfolds(cv_data; k=10) # We apply a lazy transform for data augmentation train_data = mapobs(xy -> (xy[1] .+ 0.1 .* randn.(), xy[2]), train_data) for epoch = 1:10 # Iterate over the data using mini-batches of 5 observations each for (x, y) in eachobs(train_data, batchsize=5) # ... train supervised model on minibatches here end end end ``` In the above code snippet, the inner loop for `eachobs` is the only place where data other than indices is actually being copied. In fact, while `x` and `y` are materialized arrays, all the rest are data views. ## Related Packages *MLUtils.jl* brings together functionalities previously found in [LearnBase.jl](https://github.com/JuliaML/LearnBase.jl) , [MLDataPattern.jl](https://github.com/JuliaML/MLDataPattern.jl) and [MLLabelUtils.jl](https://github.com/JuliaML/MLLabelUtils.jl). These packages are now discontinued. Other features were ported from the deep learning library [Flux.jl](https://github.com/FluxML/Flux.jl), as they are of general use. [MLJ.jl](https://alan-turing-institute.github.io/MLJ.jl/dev/) is a more complete package for managing the whole machine learning pipeline if you are looking for a sklearn replacement.
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
docs
564
# API Reference ## Index ```@index Order = [:type, :function] Modules = [MLUtils] Pages = ["api.md"] ``` ## Docs ```@docs batch batchsize batchseq BatchView chunk DataLoader eachobs fill_like filterobs flatten getobs getobs! joinobs group_counts group_indices groupobs kfolds leavepout mapobs numobs normalise obsview ObsView ones_like oversample randobs rpad_constant shuffleobs splitobs stack unbatch undersample unsqueeze unstack zeros_like ``` ## Datasets Docs ```@docs Datasets.load_iris Datasets.make_sin Datasets.make_spiral Datasets.make_poly ```
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.4.4
b45738c2e3d0d402dffa32b2c1654759a2ac35a4
docs
2962
# MLUtils.jl [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaML.github.io/MLUtils.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaML.github.io/MLUtils.jl/dev) [![](https://github.com/JuliaML/MLUtils.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/JuliaML/MLUtils.jl/actions/workflows/CI.yml?query=branch%3Amain) [![](https://codecov.io/gh/JuliaML/MLUtils.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaML/MLUtils.jl) `MLUtils.jl` defines interfaces and implements common utilities for Machine Learning pipelines. ## Features - An extensible dataset interface (`numobs` and `getobs`). - Data iteration and dataloaders (`eachobs` and `DataLoader`). - Lazy data views (`obsview`). - Resampling procedures (`undersample` and `oversample`). - Train/test splits (`splitobs`) - Data partitioning and aggregation tools (`batch`, `unbatch`, `chunk`, `group_counts`, `group_indices`). - Folds for cross-validation (`kfolds`, `leavepout`). - Datasets lazy tranformations (`mapobs`, `filterobs`, `groupobs`, `joinobs`, `shuffleobs`). - Toy datasets for demonstration purpose. - Other data handling utilities (`flatten`, `normalise`, `unsqueeze`, `stack`, `unstack`). ## Examples Let us take a look at a hello world example to get a feeling for how to use this package in a typical ML scenario. ```julia using MLUtils # X is a matrix of floats # Y is a vector of strings X, Y = load_iris() # The iris dataset is ordered according to their labels, # which means that we should shuffle the dataset before # partitioning it into training- and test-set. Xs, Ys = shuffleobs((X, Y)) # We leave out 15 % of the data for testing cv_data, test_data = splitobs((Xs, Ys); at=0.85) # Next we partition the data using a 10-fold scheme. for (train_data, val_data) in kfolds(cv_data; k=10) for epoch = 1:100 # Iterate over the data using mini-batches of 5 observations each for (x, y) in eachobs(train_data, batchsize=5) # ... train supervised model on minibatches here end end end ``` In the above code snippet, the inner loop for `eachobs` is the only place where data other than indices is actually being copied. In fact, while `x` and `y` are materialized arrays, all the rest are data views. ## Related Packages `MLUtils.jl` brings together functionalities previously found in [LearnBase.jl](https://github.com/JuliaML/LearnBase.jl) , [MLDataPattern.jl](https://github.com/JuliaML/MLDataPattern.jl) and [MLLabelUtils.jl](https://github.com/JuliaML/MLLabelUtils.jl). These packages are now discontinued. Other features were ported from the deep learning library [`Flux.jl`](https://github.com/FluxML/Flux.jl), as they are of general use. [` MLJ.jl`](https://alan-turing-institute.github.io/MLJ.jl/dev/) is a more complete package for managing the whole machine learning pipeline if you are looking for a sklearn replacement.
MLUtils
https://github.com/JuliaML/MLUtils.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
2674
using BenchmarkTools using EarthSciData using Dates const fs = EarthSciData.GEOSFPFileSet("4x5", "A3dyn") const itp4 = EarthSciData.DataSetInterpolator{Float64}(fs, "U", DateTime(2022, 5, 1)) const ts = DateTime(2022, 5, 1):Hour(1):DateTime(2022, 5, 3) const lons = deg2rad.(-180.0:1:174) const lats = deg2rad.(-90:1:85) function interpfunc_serial() for t ∈ datetime2unix.(ts) EarthSciData.lazyload!(itp4, t) for lon ∈ lons, lat ∈ lats EarthSciData.interp_unsafe(itp4, t, lon, lat, 1.0) end end end function interpfunc_threads() for t ∈ datetime2unix.(ts) EarthSciData.lazyload!(itp4, t) Threads.@threads for lon ∈ deg2rad.(-180.0:1:174) for lat ∈ deg2rad.(-90:1:85) EarthSciData.interp_unsafe(itp4, t, lon, lat, 1.0) end end end end suite = BenchmarkGroup() suite["GEOSFP"] = BenchmarkGroup() suite["GEOSFP"]["Interpolation serial"] = @benchmarkable interpfunc_serial() suite["GEOSFP"]["Interpolation threaded"] = @benchmarkable interpfunc_threads() using EarthSciMLBase, ModelingToolkit using ModelingToolkit: t, D using DomainSets, Dates using DifferentialEquations using DynamicQuantities struct SysCoupler sys end function EarthSciMLBase.couple2(sys::SysCoupler, emis::EarthSciData.NEI2016MonthlyEmisCoupler) sys, emis = sys.sys, emis.sys operator_compose(sys, emis) end function nei_simulator() @parameters lat = deg2rad(40.0) lon = deg2rad(-97.0) lev = 0.0 @variables ACET(t) = 0.0 [unit = u"kg*m^-3"] @constants c = 1000 [unit = u"s"] @named sys = ODESystem( [D(ACET) ~ 0], t, metadata=Dict(:coupletype => SysCoupler) ) emis = NEI2016MonthlyEmis("mrggrid_withbeis_withrwc", lon, lat, lev; dtype=Float64) starttime = datetime2unix(DateTime(2016, 5, 1)) endtime = datetime2unix(DateTime(2016, 5, 2)) domain = DomainInfo( constIC(16.0, t ∈ Interval(starttime, endtime)), constBC(16.0, lon ∈ Interval(deg2rad(-115), deg2rad(-68.75)), lat ∈ Interval(deg2rad(25), deg2rad(53.7)), lev ∈ Interval(1, 2) )) csys = couple(sys, emis, domain) Simulator(csys, [deg2rad(1.25), deg2rad(1.2), 1]) end suite["NEI Simulator"] = BenchmarkGroup() sim = nei_simulator() st = SimulatorStrangSerial(Tsit5(), Euler(), 100.0) suite["NEI Simulator"]["Serial"] = @benchmarkable run!($sim, $st) st = SimulatorStrangThreads(Tsit5(), Euler(), 100.0) suite["NEI Simulator"]["Threads"] = @benchmarkable run!($sim, $st) tune!(suite, verbose = true) results = run(suite, verbose = true) BenchmarkTools.save("output.json", median(results))
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
841
using EarthSciData using Documenter DocMeta.setdocmeta!(EarthSciData, :DocTestSetup, :(using EarthSciData); recursive=true) makedocs(; modules=[EarthSciData], authors="EarthSciML Authors", repo="https://github.com/EarthSciML/EarthSciData.jl/blob/{commit}{path}#{line}", sitename="EarthSciData.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://earthsciml.github.io/EarthSciData.jl", assets=String[], repolink="https://github.com/EarthSciML/EarthSciData.jl" ), pages=[ "Home" => "index.md", "GEOS-FP" => "geosfp.md", "2016 NEI" => "nei2016.md", "API" => "api.md", "🔗 Benchmarks" => "benchmarks.md", ], ) deploydocs(; repo="github.com/EarthSciML/EarthSciData.jl", devbranch="main", )
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
812
module EarthSciData using Dates, Downloads, Printf using DocStringExtensions using SciMLBase: DiscreteCallback using Interpolations, DataInterpolations using NCDatasets, ModelingToolkit, Symbolics, Proj using ModelingToolkit: t using EarthSciMLBase, DiffEqCallbacks using DynamicQuantities, Latexify, ProgressMeter using Scratch # TODO: Hotfix to deal with issue https://github.com/SciML/DataInterpolations.jl/issues/331 # Remove this when the issue is fixed. (itp::DataInterpolations.LinearInterpolation)(x::DynamicQuantities.Quantity) = itp(ustrip(x.value)) # General utilities include("load.jl") include("utils.jl") include("update_callback.jl") # Specific data sets include("netcdf.jl") include("geosfp.jl") include("nei2016monthly.jl") include("netcdf_output.jl") # Coupling include("coupling.jl") end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
270
function EarthSciMLBase.couple2(e::NEI2016MonthlyEmisCoupler, g::GEOSFPCoupler) e, g = e.sys, g.sys e = param_to_var(e, :lat, :lon, :lev) ConnectorSystem([ e.lat ~ g.lat, e.lon ~ g.lon, e.lev ~ g.lev, ], e, g) end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
11651
export GEOSFP, partialderivatives_δPδlev_geosfp """ $(SIGNATURES) GEOS-FP data as archived for use with GEOS-Chem classic. Domain options (as of 2022-01-30): - 4x5 - 0.125x0.15625_AS - 0.125x0.15625_EU - 0.125x0.15625_NA - 0.25x0.3125 - 0.25x0.3125_AF - 0.25x0.3125_AS - 0.25x0.3125_CH - 0.25x0.3125_EU - 0.25x0.3125_ME - 0.25x0.3125_NA - 0.25x0.3125_OC - 0.25x0.3125_RU - 0.25x0.3125_SA - 0.5x0.625 - 0.5x0.625_AS - 0.5x0.625_CH - 0.5x0.625_EU - 0.5x0.625_NA - 2x2.5 - 4x5 - C180 - C720 - NATIVE - c720 Possible `filetype`s are: - `:A1` - `:A3cld` - `:A3dyn` - `:A3mstC` - `:A3mstE` - `:I3` See http://geoschemdata.wustl.edu/ExtData/ for current options. """ struct GEOSFPFileSet <: FileSet mirror::AbstractString domain filetype GEOSFPFileSet(domain, filetype) = new("http://geoschemdata.wustl.edu/ExtData/", domain, filetype) end """ $(SIGNATURES) File path on the server relative to the host root; also path on local disk relative to `ENV["EARTHSCIDATADIR"]` (or a scratch directory if that environment variable is not set). """ function relpath(fs::GEOSFPFileSet, t::DateTime) year = Dates.format(t, "Y") month = @sprintf("%.2d", Dates.month(t)) day = @sprintf("%.2d", Dates.day(t)) domain = replace(fs.domain, '.' => "") domain = replace(domain, '_' => ".") return joinpath("GEOS_$(fs.domain)/GEOS_FP/$year/$month", "GEOSFP.$(year)$(month)$day.$(fs.filetype).$(domain).nc") end function DataFrequencyInfo(fs::GEOSFPFileSet, t::DateTime)::DataFrequencyInfo lock(nclock) do filepath = maybedownload(fs, t) ds = getnc(filepath) sd = ds.attrib["Start_Date"] st = ds.attrib["Start_Time"] dt = ds.attrib["Delta_Time"] start = DateTime(sd * " " * st, dateformat"yyyymmdd HH:MM:SS.s") frequency = Second(parse(Int64, dt[1:2])) * 3600 + Second(parse(Int64, dt[3:4])) * 60 + Second(parse(Int64, dt[5:6])) centerpoints = ds["time"][:] return DataFrequencyInfo(start, frequency, centerpoints) end end """ $(SIGNATURES) Load the data in place for the given variable name at the given time. """ function loadslice!(data::AbstractArray, fs::GEOSFPFileSet, t::DateTime, varname) lock(nclock) do filepath = maybedownload(fs, t) ds = getnc(filepath) var = loadslice!(data, fs, ds, t, varname, "time") # Load data from NetCDF file. scale, _ = to_unit(var.attrib["units"]) if scale != 1 data .*= scale end end nothing end """ $(SIGNATURES) Load the data for the given variable name at the given time. """ function loadmetadata(fs::GEOSFPFileSet, t::DateTime, varname)::MetaData lock(nclock) do filepath = maybedownload(fs, t) ds = getnc(filepath) timedim = "time" var = ds[varname] dims = collect(NCDatasets.dimnames(var)) @assert timedim ∈ dims "Variable $varname does not have a dimension named '$timedim'." time_index = findfirst(isequal(timedim), dims) dims = deleteat!(dims, time_index) varsize = deleteat!(collect(size(var)), time_index) _, units = to_unit(var.attrib["units"]) description = var.attrib["long_name"] @assert var.attrib["scale_factor"] == 1.0 "Unexpected scale factor." coords = [ds[d][:] for d ∈ dims] xdim = findfirst((x) -> x == "lon", dims) ydim = findfirst((x) -> x == "lat", dims) @assert xdim > 0 "GEOSFP `lon` dimension not found" @assert ydim > 0 "GEOSFP `lat` dimension not found" # Convert from degrees to radians (so we are using SI units) coords[xdim] .= deg2rad.(coords[xdim]) coords[ydim] .= deg2rad.(coords[ydim]) # This projection will assume the inputs are radians when used within # a Proj pipeline: https://proj.org/en/9.3/operations/pipeline.html prj = "+proj=longlat +datum=WGS84 +no_defs" return MetaData(coords, units, description, dims, varsize, prj, xdim, ydim) end end """ $(SIGNATURES) Return the variable names associated with this FileSet. """ function varnames(fs::GEOSFPFileSet, t::DateTime) lock(nclock) do filepath = maybedownload(fs, t) ds = getnc(filepath) return [setdiff(keys(ds), keys(ds.dim))...] end end # Hybrid grid parameters from https://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_vertical_grids const Ap = DataInterpolations.LinearInterpolation([ 0.000000e+00, 4.804826e-02, 6.593752e+00, 1.313480e+01, 1.961311e+01, 2.609201e+01, 3.257081e+01, 3.898201e+01, 4.533901e+01, 5.169611e+01, 5.805321e+01, 6.436264e+01, 7.062198e+01, 7.883422e+01, 8.909992e+01, 9.936521e+01, 1.091817e+02, 1.189586e+02, 1.286959e+02, 1.429100e+02, 1.562600e+02, 1.696090e+02, 1.816190e+02, 1.930970e+02, 2.032590e+02, 2.121500e+02, 2.187760e+02, 2.238980e+02, 2.243630e+02, 2.168650e+02, 2.011920e+02, 1.769300e+02, 1.503930e+02, 1.278370e+02, 1.086630e+02, 9.236572e+01, 7.851231e+01, 6.660341e+01, 5.638791e+01, 4.764391e+01, 4.017541e+01, 3.381001e+01, 2.836781e+01, 2.373041e+01, 1.979160e+01, 1.645710e+01, 1.364340e+01, 1.127690e+01, 9.292942e+00, 7.619842e+00, 6.216801e+00, 5.046801e+00, 4.076571e+00, 3.276431e+00, 2.620211e+00, 2.084970e+00, 1.650790e+00, 1.300510e+00, 1.019440e+00, 7.951341e-01, 6.167791e-01, 4.758061e-01, 3.650411e-01, 2.785261e-01, 2.113490e-01, 1.594950e-01, 1.197030e-01, 8.934502e-02, 6.600001e-02, 4.758501e-02, 3.270000e-02, 2.000000e-02, 1.000000e-02] .* 100, 1:73) # Pa const Bp = DataInterpolations.LinearInterpolation([ 1.000000e+00, 9.849520e-01, 9.634060e-01, 9.418650e-01, 9.203870e-01, 8.989080e-01, 8.774290e-01, 8.560180e-01, 8.346609e-01, 8.133039e-01, 7.919469e-01, 7.706375e-01, 7.493782e-01, 7.211660e-01, 6.858999e-01, 6.506349e-01, 6.158184e-01, 5.810415e-01, 5.463042e-01, 4.945902e-01, 4.437402e-01, 3.928911e-01, 3.433811e-01, 2.944031e-01, 2.467411e-01, 2.003501e-01, 1.562241e-01, 1.136021e-01, 6.372006e-02, 2.801004e-02, 6.960025e-03, 8.175413e-09, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00], 1:73) struct GEOSFPCoupler sys end """ $(SIGNATURES) A data loader for GEOS-FP data as archived for use with GEOS-Chem classic. Domain options (as of 2022-01-30): - 4x5 - 0.125x0.15625_AS - 0.125x0.15625_EU - 0.125x0.15625_NA - 0.25x0.3125 - 0.25x0.3125_AF - 0.25x0.3125_AS - 0.25x0.3125_CH - 0.25x0.3125_EU - 0.25x0.3125_ME - 0.25x0.3125_NA - 0.25x0.3125_OC - 0.25x0.3125_RU - 0.25x0.3125_SA - 0.5x0.625 - 0.5x0.625_AS - 0.5x0.625_CH - 0.5x0.625_EU - 0.5x0.625_NA - 2x2.5 - 4x5 - C180 - C720 - NATIVE - c720 `coord_defaults` can be used to provide default values for the coordinates of the domain. For example if we want to perform a 2D simulation with a vertical dimension, we can set `coord_defaults = Dict(:lev => 1)`. `dtype` represents the desired data type of the interpolated values. The native data type for this dataset is Float32. See http://geoschemdata.wustl.edu/ExtData/ for current options. """ function GEOSFP(domain::AbstractString; coord_defaults=Dict{Symbol,Number}(), spatial_ref="+proj=longlat +datum=WGS84 +no_defs", dtype=Float32, name=:GEOSFP, kwargs...) filesets = Dict{String,GEOSFPFileSet}( "A1" => GEOSFPFileSet(domain, "A1"), "A3cld" => GEOSFPFileSet(domain, "A3cld"), "A3dyn" => GEOSFPFileSet(domain, "A3dyn"), "A3mstC" => GEOSFPFileSet(domain, "A3mstC"), "A3mstE" => GEOSFPFileSet(domain, "A3mstE"), "I3" => GEOSFPFileSet(domain, "I3")) sample_time = DateTime(2022, 5, 1) # Dummy time to get variable names and dimensions from data. eqs = [] vars = [] itps = [] for (filename, fs) in filesets for varname ∈ varnames(fs, sample_time) itp = DataSetInterpolator{dtype}(fs, varname, sample_time; spatial_ref, kwargs...) dims = dimnames(itp, sample_time) coords = Num[] for dim ∈ dims d = Symbol(dim) if d ∈ keys(coord_defaults) # Set a default value for this coordinate. v = (@parameters $d = coord_defaults[d])[1] else # No default value. v = (@parameters $d)[1] end push!(coords, v) end eq = create_interp_equation(itp, filename, t, sample_time, coords) push!(eqs, eq) push!(vars, eq.lhs) push!(itps, itp) end end # Implement hybrid grid pressure: https://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_vertical_grids @constants P_unit = 1.0 [unit = u"Pa", description = "Unit pressure"] @variables P(t) [unit = u"Pa", description = "Pressure"] @variables I3₊PS(t) [unit = u"Pa", description = "Pressure at the surface"] d = :lev if d ∈ keys(coord_defaults) # Set a default value for this coordinate. lev = (@parameters $d = coord_defaults[d])[1] else # No default value. lev = (@parameters $d)[1] end pressure_eq = P ~ P_unit * Ap(lev) + Bp(lev) * I3₊PS push!(eqs, pressure_eq) sys = ODESystem(eqs, t, name=name, metadata=Dict(:coupletype => GEOSFPCoupler)) cb = UpdateCallbackCreator(sys, vars, itps) return sys, cb end function EarthSciMLBase.couple2(mw::EarthSciMLBase.MeanWindCoupler, g::GEOSFPCoupler) mw, g = mw.sys, g.sys eqs = [mw.v_lon ~ g.A3dyn₊U] # Only add the number of dimensions present in the mean wind system. length(unknowns(mw)) > 1 ? push!(eqs, mw.v_lat ~ g.A3dyn₊V) : nothing length(unknowns(mw)) > 2 ? push!(eqs, mw.v_lev ~ g.A3dyn₊OMEGA) : nothing ConnectorSystem( eqs, mw, g, ) end """ $(SIGNATURES) Return a function to calculate coefficients to multiply the `δ(u)/δ(lev)` partial derivative operator by to convert a variable named `u` from δ(u)/δ(lev)` to `δ(u)/δ(P)`, i.e. from vertical level number to pressure in hPa. The return format is `coordinate_index => conversion_factor`. """ function partialderivatives_δPδlev_geosfp(geosfp; default_lev=1.0) # Find index for surface pressure. ii = findfirst((x) -> x == :I3₊PS, [Symbolics.tosymbol(eq.lhs, escape=false) for eq in equations(geosfp)]) # Get interpolator for surface pressure. ps = equations(geosfp)[ii].rhs @constants P_unit = 1.0 [unit = u"Pa", description = "Unit pressure"] # Function to calculate pressure at a given level in the hybrid grid. # This is on a staggered grid so level=1 is the grid bottom. P(levx) = (P_unit * Ap(levx) + Bp(levx) * ps) (pvars::AbstractVector) -> begin levindex = EarthSciMLBase.varindex(pvars, :lev) if !isnothing(levindex) lev = pvars[levindex] else lev = default_lev end # d(u) / d(P) = d(u) / d(lev) / ( d(P) / d(lev) ) δPδlev = 0.5 / (P(Num(lev) + 0.5) - P(Num(lev))) return Dict(levindex => δPδlev) end end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
18435
export interp! download_cache = ("EARTHSCIDATADIR" ∈ keys(ENV)) ? ENV["EARTHSCIDATADIR"] : @get_scratch!("earthsci_data") function __init__() global download_cache = ("EARTHSCIDATADIR" ∈ keys(ENV)) ? ENV["EARTHSCIDATADIR"] : @get_scratch!("earthsci_data") [delete!(ncfiledict, key) for key in keys(ncfiledict)] # Remove any files opened during precompilation because they're not valid any more. end """ An interface for types describing a dataset, potentially comprised of multiple files. To satisfy this interface, a type must implement the following methods: - `relpath(fs::FileSet, t::DateTime)` - `url(fs::FileSet, t::DateTime)` - `localpath(fs::FileSet, t::DateTime)` - `DataFrequencyInfo(fs::FileSet, t::DateTime)::DataFrequencyInfo` - `loadmetadata(fs::FileSet, t::DateTime, varname)::MetaData` - `loadslice!(cache::AbstractArray, fs::FileSet, t::DateTime, varname)` - `varnames(fs::FileSet, t::DateTime)` """ abstract type FileSet end """ $(SIGNATURES) Return the URL for the file for the given `DateTime`. """ url(fs::FileSet, t::DateTime) = joinpath(fs.mirror, relpath(fs, t)) """ $(SIGNATURES) Return the local path for the file for the given `DateTime`. """ localpath(fs::FileSet, t::DateTime) = joinpath(download_cache, relpath(fs, t)) """ $(SIGNATURES) Check if the specified file exists locally. If not, download it. """ function maybedownload(fs::FileSet, t::DateTime) p = localpath(fs, t) if isfile(p) return p end if !isdir(dirname(p)) @info "Creating directory $(dirname(p))" mkpath(dirname(p)) end u = url(fs, t) try prog = Progress(100; desc="Downloading $(basename(u)):", dt=0.1) Downloads.download(u, p, progress=(total::Integer, now::Integer) -> begin prog.n = total update!(prog, now) end) catch e # Delete partially downloaded file if an error occurs. rm(p, force=true) rethrow(e) end return p end """ Information about a data array. $(FIELDS) """ struct MetaData "The locations associated with each data point in the array." coords::Vector{Vector{Float64}} "Physical units of the data, e.g. m s⁻¹." units::DynamicQuantities.AbstractQuantity "Description of the data." description::AbstractString "Dimensions of the data, e.g. (lat, lon, layer)." dimnames::AbstractVector "Dimension sizes of the data, e.g. (180, 360, 30)." varsize::AbstractVector "The spatial reference system of the data, e.g. \"+proj=longlat +datum=WGS84 +no_defs\" for lat-lon data." native_sr::AbstractString "The index number of the x-dimension (e.g. longitude)" xdim::Int "The index number of the y-dimension (e.g. latitude)" ydim::Int end """ Information about the temporal frequency of archived data. $(FIELDS) """ struct DataFrequencyInfo "Beginning of time of the time series." start::DateTime "Interval between each record." frequency::Union{Dates.Period,Dates.CompoundPeriod} "Time representing the temporal center of each record." centerpoints::AbstractVector end """ Return the time endpoints correcponding to each centerpoint """ endpoints(t::DataFrequencyInfo) = [(cp - t.frequency / 2, cp + t.frequency / 2) for cp in t.centerpoints] """ Return the index of the centerpoint closest to the given time. """ function centerpoint_index(t_info::DataFrequencyInfo, t) eps = endpoints(t_info) if t > eps[end][2] return length(eps) + 1 end t_index = ((ep) -> ep[1] <= t < ep[2]).(eps) @assert sum(t_index) == 1 "Expected exactly one time step to match, instead $(sum(t_index)) timesteps match." argmax(t_index) end """ $(SIGNATURES) DataSetInterpolators are used to interpolate data from a `FileSet` to represent a given time and location. Data is loaded (and downloaded) lazily, so the first time you use it on a for a given dataset and time period it may take a while to load. Each time step is downloaded and loaded as it is needed during the simulation and cached on the hard drive at the path specified by the `\\\$EARTHSCIDATADIR` environment variable, or in a scratch directory if that environment variable has not been specified. The interpolator will also cache data in memory representing the data records for the times immediately before and after the current time step. `varname` is the name of the variable to interpolate. `default_time` is the time to use when initializing the interpolator. `spatial_ref` is the spatial reference system that the simulation will be using. `cache_size` is the number of time steps that should be held in the cache at any given time (default=3; must be >=3). !!! warning WARNING: This interpolator includes a hack so that the function `deepcopy` does not copy the interpolator, it just returns the interpolator. This is necessary to allow us to update the interpolator from a callback, but it may cause unintended side effects. """ mutable struct DataSetInterpolator{To,N,N2,FT,ITPT} fs::FileSet varname::AbstractString data::Array{To,N} interp_cache::Array{To,N} itp::ITPT load_cache::Array{To,N2} metadata::MetaData times::Vector{DateTime} currenttime::DateTime coord_trans::FT loadrequest::Channel{DateTime} loadresult::Channel copyfinish::Channel{Int} lock::ReentrantLock initialized::Bool kwargs function DataSetInterpolator{To}(fs::FileSet, varname::AbstractString, default_time::DateTime; spatial_ref="+proj=longlat +datum=WGS84 +no_defs", cache_size=3, kwargs...) where {To<:Real} cache_size >= 3 || throw(ArgumentError("cache_size must be at least 3")) metadata = loadmetadata(fs, default_time, varname; kwargs...) load_cache = zeros(To, repeat([1], length(metadata.varsize))...) data = zeros(To, repeat([2], length(metadata.varsize))..., cache_size) # Add a dimension for time. interp_cache = similar(data) N = ndims(data) N2 = N - 1 times = [DateTime(0, 1, 1) + Hour(i) for i ∈ 1:cache_size] _, itp2 = create_interpolator!(To, interp_cache, data, metadata, times) ITPT = typeof(itp2) if spatial_ref == metadata.native_sr coord_trans = (x) -> x # No transformation needed. else t = Proj.Transformation("+proj=pipeline +step " * spatial_ref * " +step " * metadata.native_sr) coord_trans = (locs) -> begin x, y = t(locs[metadata.xdim], locs[metadata.ydim]) replace_in_tuple(locs, metadata.xdim, To(x), metadata.ydim, To(y)) end end FT = typeof(coord_trans) itp = new{To,N,N2,FT,ITPT}(fs, varname, data, interp_cache, itp2, load_cache, metadata, times, DateTime(1, 1, 1), coord_trans, Channel{DateTime}(0), Channel(1), Channel{Int}(0), ReentrantLock(), false, kwargs) Threads.@spawn async_loader(itp) itp end end function replace_in_tuple(t::NTuple{N,T}, index1::Int, v1::T, index2::Int, v2::T) where {T,N} ntuple(i -> i == index1 ? v1 : i == index2 ? v2 : t[i], N) end function Base.show(io::IO, itp::DataSetInterpolator) print(io, "DataSetInterpolator{$(typeof(itp.fs)), $(itp.varname)}") end # FIXME: WARNING: This is a hack to make sure that the interpolator is not copied # so that we can update it from a callback. It may cause unintended side effects. Base.deepcopy_internal(itp::DataSetInterpolator, dict::IdDict) = itp """ Return the units of the data. """ ModelingToolkit.get_unit(itp::DataSetInterpolator) = itp.metadata.units """ Convert a vector of evenly spaced grid points to a range. The `reltol` parameter specifies the relative tolerance for the grid spacing, which is necessary to account for different numbers of days in each month and things like that. """ function knots2range(knots, reltol=0.05) dx = diff(knots) dx_mean = sum(dx) / length(dx) @assert all(abs.(1 .- dx ./ dx_mean) .<= reltol) "Knots ($knots) must be evenly spaced within reltol=$reltol." dx = (knots[end] - knots[begin]) / (length(knots) - 1) # Need to do weird range creation to avoid rounding errors. return knots[begin]:dx:(knots[begin]+dx*(length(knots)-1)) end """Create a new interpolator, overwriting `interp_cache`.""" function create_interpolator!(To, interp_cache, data, metadata::MetaData, times) # We originally create the interpolator with a small array to avoid # unnecessary memory use, so we size the coordinate to match the data size. # However, when we're updating the interpolator below me make sure the # data size matches the original coordinate size. coords = [metadata.coords[i][1:size(data, i)] for i ∈ 1:length(metadata.coords)] grid = Tuple(knots2range.([coords..., datetime2unix.(times)])) copyto!(interp_cache, data) itp = interpolate!(interp_cache, BSpline(Linear())) itp = scale(itp, grid) return grid, itp end function update_interpolator!(itp::DataSetInterpolator{To}) where {To} if size(itp.interp_cache) != size(itp.data) itp.interp_cache = similar(itp.data) end grid, itp2 = create_interpolator!(To, itp.interp_cache, itp.data, itp.metadata, itp.times) @assert all([length(g) for g in grid] .== size(itp.data)) "invalid data size: $([length(g) for g in grid]) != $(size(itp.data))" itp.itp = itp2 end " Return the next interpolation time point for this interpolator. " function nexttimepoint(itp::DataSetInterpolator, t::DateTime) ti = DataFrequencyInfo(itp.fs, t) currenttimepoint(itp, t + ti.frequency) end " Return the previous interpolation time point for this interpolator. " function prevtimepoint(itp::DataSetInterpolator, t::DateTime) ti = DataFrequencyInfo(itp.fs, t) ci = centerpoint_index(ti, t) if ci != 1 return ti.centerpoints[ci-1] end tt = t - ti.frequency * 0.75 # Just go most of the way because some months etc. have different lengths. ti = DataFrequencyInfo(itp.fs, tt) ti.centerpoints[centerpoint_index(ti, tt)] end " Return the current interpolation time point for this interpolator. " function currenttimepoint(itp::DataSetInterpolator, t::DateTime) ti = DataFrequencyInfo(itp.fs, t) ci = centerpoint_index(ti, t) if ci <= length(ti.centerpoints) return ti.centerpoints[ci] end tt = t + ti.frequency * 0.75 # Just go most of the way because some months etc. have different lengths. ti = DataFrequencyInfo(itp.fs, tt) ti.centerpoints[centerpoint_index(ti, tt)] end " Load the time points that should be cached in this interpolator. " function interp_cache_times!(itp::DataSetInterpolator, t::DateTime) cache_size = length(itp.times) times = Vector{DateTime}(undef, cache_size) centerpoint = currenttimepoint(itp, t) # Currently assuming we're going forwards in time. if t < centerpoint # Load data starting with current time step. tt = prevtimepoint(itp, t) else # Load data starting with previous time step. tt = centerpoint end for i in 1:cache_size times[i] = tt tt = nexttimepoint(itp, tt) end times end " Asynchronously load data, anticipating which time will be requested next. " function async_loader(itp::DataSetInterpolator) tt = DateTime(0, 1, 10) for t ∈ itp.loadrequest if t != tt try loadslice!(itp.load_cache, itp.fs, t, itp.varname; itp.kwargs...) tt = t catch err @error err put!(itp.loadresult, err) rethrow(err) end end put!(itp.loadresult, 0) # Let the requestor know that we've finished. # Anticipate what the next request is going to be for and load that data. take!(itp.copyfinish) try tt = nexttimepoint(itp, tt) loadslice!(itp.load_cache, itp.fs, tt, itp.varname; itp.kwargs...) catch err @error err rethrow(err) end end end function initialize!(itp::DataSetInterpolator, t::DateTime) if itp.initialized == false itp.load_cache = zeros(eltype(itp.load_cache), itp.metadata.varsize...) itp.data = zeros(eltype(itp.data), itp.metadata.varsize..., size(itp.data, length(size(itp.data)))) # Add a dimension for time. itp.initialized = true end times = interp_cache_times!(itp, t) # Figure out which times we need. # Figure out the overlap between the times we have and the times we need. times_in_cache = intersect(times, itp.times) idxs_in_cache = [findfirst(x -> x == times_in_cache[i], itp.times) for i in eachindex(times_in_cache)] idxs_in_times = [findfirst(x -> x == times_in_cache[i], times) for i in eachindex(times_in_cache)] idxs_not_in_times = setdiff(eachindex(times), idxs_in_times) # Move data we already have to where it should be. N = ndims(itp.data) selectdim(itp.data, N, idxs_in_times) .= selectdim(itp.data, N, idxs_in_cache) # Load the additional times we need for idx in idxs_not_in_times d = selectdim(itp.data, N, idx) put!(itp.loadrequest, times[idx]) # Request next data r = take!(itp.loadresult) # Wait for results if r != 0 throw(r) end d .= itp.load_cache # Copy results to correct location put!(itp.copyfinish, 0) # Let the loader know we've finished copying end itp.times = times itp.currenttime = t @assert issorted(itp.times) "Interpolator times are in wrong order" update_interpolator!(itp) end function lazyload!(itp::DataSetInterpolator, t::DateTime) lock(itp.lock) do if itp.currenttime == t return end if !itp.initialized # Initialize new interpolator. initialize!(itp, t) return end if t <= itp.times[begin] || t > itp.times[end-1] initialize!(itp, t) end end end lazyload!(itp::DataSetInterpolator, t::AbstractFloat) = lazyload!(itp, Dates.unix2datetime(t)) """ $(SIGNATURES) Return the dimension names associated with this interpolator. """ function dimnames(itp::DataSetInterpolator, t::DateTime) lazyload!(itp, t) itp.metadata.dimnames end """ $(SIGNATURES) Return the units of the data associated with this interpolator. """ function units(itp::DataSetInterpolator, t::DateTime) lazyload!(itp, t) itp.metadata.units end """ $(SIGNATURES) Return the description of the data associated with this interpolator. """ function description(itp::DataSetInterpolator, t::DateTime) lazyload!(itp, t) itp.metadata.description end """ $(SIGNATURES) Return the value of the given variable from the given dataset at the given time and location. """ function interp!(itp::DataSetInterpolator{T,N,N2}, t::DateTime, locs::Vararg{T,N2})::T where {T,N,N2} lazyload!(itp, t) interp_unsafe(itp, t, locs...) end """ Interpolate without checking if the data has been correctly loaded for the given time. """ @generated function interp_unsafe(itp::DataSetInterpolator{T,N,N2}, t::DateTime, locs::Vararg{T,N2})::T where {T,N,N2} if N2 == N - 1 # Number of locs has to be one less than the number of data dimensions so we can add the time in. quote locs = itp.coord_trans(locs) try itp.itp(locs..., datetime2unix(t)) catch err # FIXME(CT): This is needed because ModelingToolkit sometimes # calls the interpolator for the beginning of the simulation time period, # and we don't have a way to update for that proactively. lazyload!(itp, t) itp.itp(locs..., datetime2unix(t)) end end else throw(ArgumentError("N2 must be equal to N-1")) end end """ Interpolation with a unix timestamp. """ function interp!(itp::DataSetInterpolator, t::Real, locs::Vararg{T,N})::T where {T,N} interp!(itp, Dates.unix2datetime(t), locs...) end function interp_unsafe(itp::DataSetInterpolator, t::Real, locs::Vararg{T,N})::T where {T,N} interp_unsafe(itp, Dates.unix2datetime(t), locs...) end # Dummy function for unit validation. Basically ModelingToolkit # will call the function with a DynamicQuantities.Quantity or an integer to # get information about the type and units of the output. interp!(itp::Union{DynamicQuantities.AbstractQuantity,Real}, t, locs...) = itp interp_unsafe(itp::Union{DynamicQuantities.AbstractQuantity,Real}, t, locs...) = itp # Symbolic tracing, for different numbers of dimensions (up to three dimensions). @register_symbolic interp!(itp::DataSetInterpolator, t, loc1, loc2, loc3) @register_symbolic interp!(itp::DataSetInterpolator, t, loc1, loc2) false @register_symbolic interp!(itp::DataSetInterpolator, t, loc1) false @register_symbolic interp_unsafe(itp::DataSetInterpolator, t, loc1, loc2, loc3) @register_symbolic interp_unsafe(itp::DataSetInterpolator, t, loc1, loc2) false @register_symbolic interp_unsafe(itp::DataSetInterpolator, t, loc1) false """ $(SIGNATURES) Create an equation that interpolates the given dataset at the given time and location. `filename` is an identifier for the dataset, and `t` is the time variable. `wrapper_f` can specify a function to wrap the interpolated value, for example `eq -> eq / 2` to divide the interpolated value by 2. """ function create_interp_equation(itp::DataSetInterpolator, filename, t, sample_time, coords; wrapper_f=v -> v) # Create right hand side of equation. if length(coords) == 3 rhs = wrapper_f(interp_unsafe(itp, t, coords[1], coords[2], coords[3])) elseif length(coords) == 2 rhs = wrapper_f(interp_unsafe(itp, t, coords[1], coords[2])) elseif length(coords) == 1 rhs = wrapper_f(interp_unsafe(itp, t, coords[1])) else error("Unexpected number of coordinates: $(length(coords))") end # Create left hand side of equation. desc = description(itp, sample_time) uu = ModelingToolkit.get_unit(rhs) n = length(filename) > 0 ? Symbol("$(filename)₊$(itp.varname)") : Symbol("$(itp.varname)") lhs = only(@variables $n(t) [unit = uu, description = desc]) lhs ~ rhs end Latexify.@latexrecipe function f(itp::EarthSciData.DataSetInterpolator) return "$(split(string(typeof(itp.fs)), ".")[end]).$(itp.varname)" end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
6251
export NEI2016MonthlyEmis """ $(SIGNATURES) Archived CMAQ emissions data. Currently, only data for year 2016 is available. """ struct NEI2016MonthlyEmisFileSet <: FileSet mirror::AbstractString sector NEI2016MonthlyEmisFileSet(sector) = new("https://gaftp.epa.gov/Air/", sector) end """ $(SIGNATURES) File path on the server relative to the host root; also path on local disk relative to `ENV["EARTHSCIDATADIR"]`. """ function relpath(fs::NEI2016MonthlyEmisFileSet, t::DateTime) @assert Dates.year(t) == 2016 "Only 2016 emissions data is available with `NEI2016MonthlyEmis`." month = @sprintf("%.2d", Dates.month(t)) return "emismod/2016/v1/gridded/monthly_netCDF/2016fh_16j_$(fs.sector)_12US1_month_$(month).ncf" end function DataFrequencyInfo(fs::NEI2016MonthlyEmisFileSet, t::DateTime)::DataFrequencyInfo month = Dates.month(t) year = Dates.year(t) start = Dates.DateTime(year, month, 1) frequency = ((start + Dates.Month(1)) - start) centerpoints = [start + frequency / 2] return DataFrequencyInfo(start, frequency, centerpoints) end """ $(SIGNATURES) Load the data in place for the given variable name at the given time. """ function loadslice!(data::AbstractArray, fs::NEI2016MonthlyEmisFileSet, t::DateTime, varname) lock(nclock) do filepath = maybedownload(fs, t) ds = getnc(filepath) data = reshape(data, size(data)..., 1) var = loadslice!(data, fs, ds, t, varname, "TSTEP") Δx = ds.attrib["XCELL"] Δy = ds.attrib["YCELL"] scale, _ = to_unit(var.attrib["units"]) if scale != 1 data .*= scale end data ./= (Δx * Δy) end nothing end """ $(SIGNATURES) Load the data for the given variable name at the given time. """ function loadmetadata(fs::NEI2016MonthlyEmisFileSet, t::DateTime, varname)::MetaData lock(nclock) do filepath = maybedownload(fs, t) ds = getnc(filepath) timedim = "TSTEP" var = ds[varname] dims = collect(NCDatasets.dimnames(var)) @assert timedim ∈ dims "Variable $varname does not have a dimension named '$timedim'." time_index = findfirst(isequal(timedim), dims) dims = deleteat!(dims, time_index) varsize = deleteat!(collect(size(var)), time_index) @assert varsize[end] == 1 "Only 2D data is supported." varsize = varsize[1:end-1] # Last dimension is 1. Δx = ds.attrib["XCELL"] Δy = ds.attrib["YCELL"] _, units = to_unit(var.attrib["units"]) units /= u"m^2" description = var.attrib["var_desc"] x₀ = ds.attrib["XORIG"] y₀ = ds.attrib["YORIG"] Δx = ds.attrib["XCELL"] Δy = ds.attrib["YCELL"] nx = ds.attrib["NCOLS"] ny = ds.attrib["NROWS"] xs = x₀ + Δx / 2 .+ Δx .* (0:nx-1) ys = y₀ + Δy / 2 .+ Δy .* (0:ny-1) coords = [xs, ys] p_alp = ds.attrib["P_ALP"] p_bet = ds.attrib["P_BET"] #p_gam = ds.attrib["P_GAM"] # Don't think this is used for anything. x_cent = ds.attrib["XCENT"] y_cent = ds.attrib["YCENT"] native_sr = "+proj=lcc +lat_1=$(p_alp) +lat_2=$(p_bet) +lat_0=$(y_cent) +lon_0=$(x_cent) +x_0=0 +y_0=0 +a=6370997.000000 +b=6370997.000000 +to_meter=1" xdim = findfirst((x) -> x == "COL", dims) ydim = findfirst((x) -> x == "ROW", dims) @assert xdim > 0 "NEI2016 `COL` dimension not found" @assert ydim > 0 "NEI2016 `ROW` dimension not found" return MetaData(coords, units, description, dims, varsize, native_sr, xdim, ydim) end end """ $(SIGNATURES) Return the variable names associated with this FileSet. """ function varnames(fs::NEI2016MonthlyEmisFileSet, t::DateTime) lock(nclock) do filepath = maybedownload(fs, t) ds = getnc(filepath) return [setdiff(keys(ds), ["TFLAG"; keys(ds.dim)])...] end end struct NEI2016MonthlyEmisCoupler sys end """ $(SIGNATURES) A data loader for CMAQ-formatted monthly US National Emissions Inventory data for year 2016, available from: https://gaftp.epa.gov/Air/emismod/2016/v1/gridded/monthly_netCDF/. The emissions here are monthly averages, so there is no information about diurnal variation etc. `spatial_ref` should be the spatial reference system that the simulation will be using. `x` and `y`, and should be the coordinate variables and grid spacing values for the simulation that is going to be run, corresponding to the given x and y values of the given `spatial_ref`, and the `lev` represents the variable for the vertical grid level. x and y must be in the same units as `spatial_ref`. `dtype` represents the desired data type of the interpolated values. The native data type for this dataset is Float32. `scale` is a scaling factor to apply to the emissions data. The default value is 1.0. NOTE: This is an interpolator that returns an emissions value by interpolating between the centers of the nearest grid cells in the underlying emissions grid, so it may not exactly conserve the total emissions mass, especially if the simulation grid is coarser than the emissions grid. """ function NEI2016MonthlyEmis(sector, x, y, lev; spatial_ref="+proj=longlat +datum=WGS84 +no_defs", dtype=Float32, scale=1.0, name=:NEI2016MonthlyEmis, kwargs...) fs = NEI2016MonthlyEmisFileSet(sector) sample_time = DateTime(2016, 5, 1) # Dummy time to get variable names and dimensions from data. eqs = [] @parameters( Δz = 60.0, [unit = u"m", description = "Height of the first vertical grid layer"], ) vars = [] itps = [] for varname ∈ varnames(fs, sample_time) itp = DataSetInterpolator{dtype}(fs, varname, sample_time; spatial_ref, kwargs...) @constants zero_emis = 0 [unit = units(itp, sample_time) / u"m"] eq = create_interp_equation(itp, "", t, sample_time, [x, y], wrapper_f=(eq) -> ifelse(lev < 2, eq / Δz * scale, zero_emis), ) push!(eqs, eq) push!(vars, eq.lhs) push!(itps, itp) end sys = ODESystem(eqs, t; name=name, metadata=Dict(:coupletype => NEI2016MonthlyEmisCoupler)) cb = UpdateCallbackCreator(sys, vars, itps) return sys, cb end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
2090
function loadslice!(data::AbstractArray{T}, fs::FileSet, ds::NCDataset, t::DateTime, varname::AbstractString, timedim::AbstractString) where {T<:Number} var = ds[varname] dims = collect(NCDatasets.dimnames(var)) @assert timedim ∈ dims "Variable $varname does not have a dimension named '$timedim'." time_index = findfirst(isequal(timedim), dims) # Load only one time step, but the full array for everything else. slices = repeat(Any[:], length(dims)) slices[time_index] = centerpoint_index(DataFrequencyInfo(fs, t), t) varsize = deleteat!(collect(size(var)), time_index) rightsize = (varsize == collect(size(data))) vartype = only(setdiff(Base.uniontypes(eltype(var)), [Missing])) righttype = (vartype == T) if rightsize && righttype # The data is already the correct size and type, so # load in place. NCDatasets.load!(var, data, data, slices...) elseif rightsize && !righttype # The data is not the correct type, but is the correct size, # so we load it into a temporary array and then copy it tmp = zeros(vartype, size(data)) # TODO(CT): Figure out how to avoid allocating the temporary array. NCDatasets.load!(var, data, tmp, slices...) else # The data is not the correct size. ArgumentError("Data array is not the correct size for variable $varname.") end var end const ncfiledict = Dict{String,NCDataset}() const ncfilelist = Vector{String}() const nclock = ReentrantLock() " Get the NCDataset for the given file path, caching the last 20 files. " function getnc(filepath::String)::NCDataset if haskey(ncfiledict, filepath) return ncfiledict[filepath] else ds = NCDataset(filepath) push!(ncfilelist, filepath) ncfiledict[filepath] = ds # if length(ncfilelist) > 20 #TODO(CT): Tests fail when this is uncommented, don't know why. # fname = popfirst!(ncfilelist) # close(ncfiledict[fname]) # delete!(ncfiledict, fname) # end return ds end end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
3909
export NetCDFOutputter """ $(TYPEDSIGNATURES) Create an `EarthSciMLBase.Operator` to write simulation output to a NetCDF file. $(TYPEDFIELDS) """ mutable struct NetCDFOutputter "The path of the NetCDF file to write to" filepath::String "The netcdf dataset" file "The netcdf variables corresponding to the state variables" vars "The netcdf variable for time" tvar "Current time index for writing" h::Int "Simulation time interval (in seconds) at which to write to disk" time_interval::AbstractFloat "Extra observed variables to write to disk" extra_vars::AbstractVector "Functions to get the extra vars" extra_var_fs::AbstractVector "Spatial grid specification" grid "Data type of the output" dtype function NetCDFOutputter(filepath::AbstractString, time_interval::AbstractFloat; extra_vars=[], dtype=Float32) new(filepath, nothing, nothing, nothing, 1, time_interval, extra_vars, [], nothing, dtype) end end "Set up the output file and the callback function." function EarthSciMLBase.init_callback(nc::NetCDFOutputter, s::Simulator) rm(nc.filepath, force=true) ds = NCDataset(nc.filepath, "c") pv = EarthSciMLBase.pvars(s.sys.domaininfo) @assert length(pv) == 3 "Currently only 3D simulations are supported." @assert length(s.grid) == 3 "Currently only 3D simulations are supported." pvstr = [String(Symbol(p)) for p in pv] for (i, p) in enumerate(pvstr) ds.dim[p] = length(s.grid[i]) end ds.dim["time"] = Inf function makencvar(v, dims) n = string(Symbolics.tosymbol(v, escape=false)) ncvar = defVar(ds, n, Float32, dims) ncvar.attrib["description"] = ModelingToolkit.getdescription(v) ncvar.attrib["units"] = string(DynamicQuantities.dimension(ModelingToolkit.get_unit(v))) ncvar end ncvars = [makencvar(v, [pvstr..., "time"]) for v in vcat(unknowns(s.sys_mtk), nc.extra_vars)] nctvar = defVar(ds, "time", Float64, ("time",)) nctvar.attrib["description"] = "Time" nctvar.attrib["units"] = "seconds since 1970-1-1" for (i, p) in enumerate(pvstr) d = defVar(ds, p, nc.dtype, (p,)) d.attrib["description"] = ModelingToolkit.getdescription(pv[i]) d.attrib["units"] = string(DynamicQuantities.dimension(ModelingToolkit.get_unit(pv[i]))) d[:] = s.grid[i] end for j in eachindex(nc.extra_vars) push!(nc.extra_var_fs, s.obs_fs[s.obs_fs_idx[nc.extra_vars[j]]]) end nc.file = ds nc.vars = ncvars nc.tvar = nctvar nc.grid = s.grid nc.h = 1 start, finish = EarthSciMLBase.time_range(s.domaininfo) return PresetTimeCallback(start:nc.time_interval:finish, (integrator) -> affect!(nc, integrator), finalize=(c, u, t, integrator) -> close(nc.file), save_positions=(false, false), filter_tstops=false, ) end """ Write the current state of the `Simulator` to the NetCDF file. """ function affect!(nc::NetCDFOutputter, integrator) u = reshape(integrator.u, length(nc.vars) - length(nc.extra_vars), [length(g) for g in nc.grid]...) for j in 1:(length(nc.vars)-length(nc.extra_vars)) v = nc.vars[j] v[:, :, :, nc.h] = u[j, :, :, :] end if length(nc.extra_vars) > 0 u = zeros(length.(nc.grid)...) # Temporary array. for j in eachindex(nc.extra_vars) v = nc.vars[j+length(nc.vars)-length(nc.extra_vars)] f = nc.extra_var_fs[j] for (i, c1) ∈ enumerate(nc.grid[1]) for (j, c2) ∈ enumerate(nc.grid[2]) for (k, c3) ∈ enumerate(nc.grid[3]) u[i, j, k] = f(integrator.t, c1, c2, c3) end end end v[:, :, :, nc.h] = u end end nc.tvar[nc.h] = integrator.t nc.h += 1 return false end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
1484
""" This struct holds information that can be used to create a callback function that updates the states of the interpolators. """ struct UpdateCallbackCreator sys::ODESystem variables interpolators end function lazyload!(uc::UpdateCallbackCreator, t::AbstractFloat) dt = unix2datetime(t) for itp in uc.interpolators lazyload!(itp, dt) end end """ Create a callback for this simulator. We only want to update the interpolators that are actually used in the system. """ function EarthSciMLBase.init_callback(uc::UpdateCallbackCreator, s::Simulator) sysname = nameof(uc.sys) needvars = Symbol.([unknowns(s.sys_mtk); [eq.lhs for eq in observed(s.sys_mtk)]]) itps = [] for (v, itp) in zip(uc.variables, uc.interpolators) nv = Symbol(sysname, "₊", v) if nv ∈ needvars push!(itps, itp) end end function initialize(c, u, t, integrator) dt = unix2datetime(integrator.t) for itp in itps itp.initialized = false lazyload!(itp, dt) end end function update_callback(integrator) dt = unix2datetime(integrator.t) for itp in itps lazyload!(itp, dt) end end DiscreteCallback( (u, t, integrator) -> true, # TODO(CT): Could change to only run when we know interpolators need to be updated. update_callback, initialize = initialize, save_positions = (false, false), ) end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
954
""" Convert a string to a `DynamicQuantities.Quantity` object. """ function to_unit(u) d = Dict( "m s-1" => (1, u"m/s"), "Pa s-1" => (1, u"Pa/s"), "kg m-2 s-2" => (1, u"kg/m^2/s^2"), "kg kg-1" => (1, u"kg/kg"), "K" => (1, u"K"), "K m-2 kg-1 s-1" => (1, u"K/m^2/kg/s"), "hPa" => (100, u"Pa"), "kg m-2 s-1" => (1, u"kg/m^2/s"), "W m-2" => (1, u"W/m^2"), "m" => (1, u"m"), "Dobsons" => (2.69e16/6.022e23 * 10000, u"mol/m^2"), # Dobson Unit: https://ozonewatch.gsfc.nasa.gov/facts/dobson_SH.html "m2 m-2" => (1, u"m^2/m^2"), "kg m-2" => (1, u"kg/m^2"), "kg kg-1 s-1" => (1, u"kg/kg/s"), "tons/day" => (907.185 / 86400, u"kg/s"), "1" => (1, Quantity(1.0)), # unitless "<YYYYDD,HHMMSS>" => (1, Quantity(1.0)), ) if haskey(d, u) return d[u] end error(ArgumentError("unregistered unit `$(u)`")) end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
5425
using Main.EarthSciData using EarthSciMLBase using Test using Dates using ModelingToolkit, DomainSets using ModelingToolkit: t, D using DynamicQuantities import NCDatasets @testset "GEOS-FP" begin @parameters lev @parameters lon [unit = u"rad"] @parameters lat [unit = u"rad"] @constants c_unit = 6.0 [unit = u"rad" description = "constant to make units cancel out"] geosfp, _ = GEOSFP("4x5"; dtype=Float64) function Example() @variables c(t) = 5.0 [unit = u"mol/m^3"] ODESystem([D(c) ~ (sin(lat * c_unit) + sin(lon * c_unit)) * c / t], t, name=:ExampleSys) end examplesys = Example() domain = DomainInfo( [ partialderivatives_δxyδlonlat, partialderivatives_δPδlev_geosfp(geosfp), ], constIC(0.0, t ∈ Interval(Dates.datetime2unix(DateTime(2022, 1, 1)), Dates.datetime2unix(DateTime(2022, 1, 3)))), zerogradBC(lat ∈ Interval(deg2rad(-85.0f0), deg2rad(85.0f0))), periodicBC(lon ∈ Interval(deg2rad(-180.0f0), deg2rad(175.0f0))), zerogradBC(lev ∈ Interval(1.0f0, 10.0f0)), ) composed_sys = couple(examplesys, domain, Advection(), geosfp) pde_sys = convert(PDESystem, composed_sys) eqs = equations(pde_sys) want_terms = [ "MeanWind₊v_lon(t, lat, lon, lev)", "GEOSFP₊A3dyn₊U(t, lat, lon, lev)", "MeanWind₊v_lat(t, lat, lon, lev)", "GEOSFP₊A3dyn₊V(t, lat, lon, lev)", "MeanWind₊v_lev(t, lat, lon, lev)", "GEOSFP₊A3dyn₊OMEGA(t, lat, lon, lev)", "GEOSFP₊A3dyn₊U(t, lat, lon, lev)", "EarthSciData.interp_unsafe(DataSetInterpolator{EarthSciData.GEOSFPFileSet, U}, t, lon, lat, lev)", "GEOSFP₊A3dyn₊OMEGA(t, lat, lon, lev)", "EarthSciData.interp_unsafe(DataSetInterpolator{EarthSciData.GEOSFPFileSet, OMEGA}, t, lon, lat, lev)", "GEOSFP₊A3dyn₊V(t, lat, lon, lev)", "EarthSciData.interp_unsafe(DataSetInterpolator{EarthSciData.GEOSFPFileSet, V}, t, lon, lat, lev)", "Differential(t)(ExampleSys₊c(t, lat, lon, lev))", "Differential(lon)(ExampleSys₊c(t, lat, lon, lev)", "MeanWind₊v_lon(t, lat, lon, lev)", "lon2m", "Differential(lat)(ExampleSys₊c(t, lat, lon, lev)", "MeanWind₊v_lat(t, lat, lon, lev)", "lat2meters", "sin(ExampleSys₊c_unit*lat)", "sin(ExampleSys₊c_unit*lon)", "ExampleSys₊c(t, lat, lon, lev)", "t", "Differential(lev)(ExampleSys₊c(t, lat, lon, lev))", "MeanWind₊v_lev(t, lat, lon, lev)", "P_unit", ] have_eqs = string.(eqs) have_eqs = replace.(have_eqs, ("Main."=>"",)) for term ∈ want_terms @test any(occursin.((term,), have_eqs)) end end @testset "GEOS-FP pressure levels" begin @parameters lat, [unit=u"rad"], lon, [unit=u"rad"], lev geosfp, updater = GEOSFP("4x5"; dtype=Float64, coord_defaults=Dict(:lev => 1.0, :lat => deg2rad(39.1), :lon => deg2rad(-155.7))) # Rearrange pressure equation so it can be evaluated for P. iips = findfirst((x) -> x == :I3₊PS, [Symbolics.tosymbol(eq.lhs, escape=false) for eq in equations(geosfp)]) iip = findfirst((x) -> x == :P, [Symbolics.tosymbol(eq.lhs, escape=false) for eq in equations(geosfp)]) pseq = equations(geosfp)[iips] peq = substitute(equations(geosfp)[iip], pseq.lhs => pseq.rhs) # Check Pressure levels EarthSciData.lazyload!(updater, datetime2unix(DateTime(2022, 5, 1))) P = ModelingToolkit.subs_constants(peq.rhs) P_expr = build_function(P, [t, lon, lat, lev]) mypf = eval(P_expr) p_levels = [mypf([DateTime(2022, 5, 1), deg2rad(-155.7), deg2rad(39.1), lev]) for lev in [1, 1.5, 2, 72, 72.5, 73]] @test p_levels ≈ [1021.6242118225098, 1013.9615353827572, 1006.2988589430047, 0.02, 0.015, 0.01] .* 100 dp = partialderivatives_δPδlev_geosfp(geosfp) # Check level coordinate index ff = dp([lat, lon, lev]) @test all(keys(ff) .=== [3]) fff = ModelingToolkit.subs_constants(ff[3]) # Check δP at different levels f_expr = build_function(fff, [t, lon, lat, lev]) myf = eval(f_expr) δP_levels = [myf([DateTime(2022, 5, 1), deg2rad(-155.7), deg2rad(39.1), lev]) for lev in [1, 1.5, 2, 71.5, 72, 72.5]] @test 1.0 ./ δP_levels ≈ [-15.32535287950509, -15.325352879504862, -15.466211527927955, -0.012699999999999994, -0.010000000000000002, -0.009999999999999998] .* 100.0 end @testset "GEOS-FP new day" begin @parameters( lon = 0.0, [unit=u"rad"], lat = 0.0, [unit=u"rad"], lev = 1.0, ) starttime = datetime2unix(DateTime(2022, 5, 1, 23, 58)) endtime = datetime2unix(DateTime(2022, 5, 2, 0, 3)) geosfp, updater = GEOSFP("4x5"; dtype=Float64, coord_defaults=Dict(:lon => 0.0, :lat => 0.0, :lev => 1.0)) iips = findfirst((x) -> x == :I3₊PS, [Symbolics.tosymbol(eq.lhs, escape=false) for eq in equations(geosfp)]) pseq = equations(geosfp)[iips] PS_expr = build_function(pseq.rhs, t, lon, lat, lev) psf = eval(PS_expr) EarthSciData.lazyload!(updater, starttime) psf(starttime, 0.0, 0.0, 1.0) end @testset "GEOS-FP wrong year" begin @parameters( lon = 0.0, [unit=u"rad"], lat = 0.0, [unit=u"rad"], lev = 1.0, ) starttime = datetime2unix(DateTime(5000, 1, 1)) geosfp, updater = GEOSFP("4x5"; dtype=Float64, coord_defaults=Dict(:lon => 0.0, :lat => 0.0, :lev => 1.0)) @test_throws Base.Exception EarthSciData.lazyload!(updater, starttime) end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
5221
using Main.EarthSciData using Dates using ModelingToolkit using Random using Latexify, LaTeXStrings using AllocCheck using DynamicQuantities using Interpolations using Test fs = EarthSciData.GEOSFPFileSet("4x5", "A3dyn") t = DateTime(2022, 5, 1) @test EarthSciData.url(fs, t) == "http://geoschemdata.wustl.edu/ExtData/GEOS_4x5/GEOS_FP/2022/05/GEOSFP.20220501.A3dyn.4x5.nc" @test endswith(EarthSciData.localpath(fs, t), joinpath("GEOS_4x5", "GEOS_FP", "2022", "05", "GEOSFP.20220501.A3dyn.4x5.nc")) ti = EarthSciData.DataFrequencyInfo(fs, t) epp = EarthSciData.endpoints(ti) @test epp[1] == (DateTime("2022-05-01T00:00:00"), DateTime("2022-05-01T03:00:00")) @test epp[8] == (DateTime("2022-05-01T21:00:00"), DateTime("2022-05-02T00:00:00")) metadata = EarthSciData.loadmetadata(fs, t, "U") @test metadata.varsize == [72, 46, 72] @test metadata.dimnames == ["lon", "lat", "lev"] itp = EarthSciData.DataSetInterpolator{Float32}(fs, "U", t) @test String(latexify(itp)) == "\$\\mathrm{GEOSFPFileSet}\\left( U \\right)\$" @test EarthSciData.dimnames(itp, t) == ["lon", "lat", "lev"] @test issetequal(EarthSciData.varnames(fs, t), ["U", "OMEGA", "RH", "DTRAIN", "V"]) @testset "interpolation" begin uvals = [] times = DateTime(2022, 5, 1):Hour(1):DateTime(2022, 5, 3) for t ∈ times push!(uvals, interp!(itp, t, deg2rad(1.0f0), deg2rad(0.0f0), 1.0f0)) end for i ∈ 4:3:length(uvals)-1 @test uvals[i] ≈ (uvals[i-1] + uvals[i+1]) / 2 atol = 1e-2 end want_uvals = [-0.047425747f0, 0.064035736f0, 0.11166346f0, 0.09545743f0, 0.07925139f0, -0.011301707f0, -0.17620188f0, -0.34110206f0, -0.501398f0, -0.65708977f0] @test uvals[1:10] ≈ want_uvals # Test that shuffling the times doesn't change the results. uvals2 = [] idx = randperm(length(times)) for t ∈ times[idx] push!(uvals2, interp!(itp, t, deg2rad(1.0f0), deg2rad(0.0f0), 1.0f0)) end @test uvals2 ≈ uvals[idx] end @testset "DummyFileSet" begin struct DummyFileSet <: EarthSciData.FileSet start::DateTime finish::DateTime end function EarthSciData.DataFrequencyInfo(fs::DummyFileSet, t::DateTime)::EarthSciData.DataFrequencyInfo frequency = Second(3 * 3600) centerpoints = collect(fs.start+frequency/2:frequency:fs.finish) EarthSciData.DataFrequencyInfo(t, frequency, centerpoints) end tv(fs, t) = (t - fs.start) / (fs.finish - fs.start) function EarthSciData.loadslice!(cache::AbstractArray, fs::DummyFileSet, t::DateTime, varname) dfi = EarthSciData.DataFrequencyInfo(fs, t) tt = dfi.centerpoints[EarthSciData.centerpoint_index(dfi, t)] v = tv(fs, tt) cache .= [v, v * 0.5, v * 2.0] end function EarthSciData.loadmetadata(fs::DummyFileSet, t::DateTime, varname) return EarthSciData.MetaData([[0.0, 0.5, 1.0]], u"m", "description", ["x"], [3], "+proj=longlat +datum=WGS84 +no_defs", 1, 1) end fs = DummyFileSet(DateTime(2022, 4, 30), DateTime(2022, 5, 4)) @testset "big cache" begin @test_nowarn EarthSciData.DataSetInterpolator{Float32}(fs, "U", fs.start; cache_size=100) end itp = EarthSciData.DataSetInterpolator{Float32}(fs, "U", fs.start; cache_size=5) dfi = EarthSciData.DataFrequencyInfo(fs, fs.start) answerdata = [tv(fs, t) * v for t ∈ dfi.centerpoints, v ∈ [1.0, 0.5, 2.0]] grid = Tuple(EarthSciData.knots2range.([datetime2unix.(dfi.centerpoints), [0.0, 0.5, 1.0]])) answer_itp = scale(interpolate(answerdata, BSpline(Linear())), grid) times = DateTime(2022, 5, 1):Hour(1):DateTime(2022, 5, 3) xs = [0.0f0, 0.25f0, 0.75f0] uvals = zeros(Float32, length(times), length(xs)) answers = zeros(Float32, length(times), length(xs)) for (i, tt) ∈ enumerate(times) for (j, x) ∈ enumerate(xs) uvals[i, j] = interp!(itp, tt, x) answers[i, j] = answer_itp(datetime2unix(tt), x) end end @test uvals ≈ answers @test length(itp.times) == 5 @test itp.times == [DateTime("2022-05-02T19:30:00"), DateTime("2022-05-02T22:30:00"), DateTime("2022-05-03T01:30:00"), DateTime("2022-05-03T04:30:00"), DateTime("2022-05-03T07:30:00")] uvals = zeros(Float32, length(times), length(xs)) answers = zeros(Float32, length(times), length(xs)) for i ∈ randperm(length(times)) tt = times[i] for j ∈ randperm(length(xs)) x = xs[j] uvals[i, j] = interp!(itp, tt, x) answers[i, j] = answer_itp(datetime2unix(tt), x) end end @test uvals ≈ answers end @testset "allocations" begin itp = EarthSciData.DataSetInterpolator{Float64}(fs, "U", t) tt = DateTime(2022, 5, 1) interp!(itp, tt, 1.0, 0.0, 1.0) @test begin @check_allocs checkf(itp, t, loc1, loc2, loc3) = EarthSciData.interp_unsafe(itp, t, loc1, loc2, loc3) try checkf(itp, tt, 1.0, 0.0, 1.0) catch err @warn err.errors rethrow(err) end itp2 = EarthSciData.DataSetInterpolator{Float32}(fs, "U", t) interp!(itp2, tt, 1.0f0, 0.0f0, 1.0f0) checkf(itp2, tt, 1.0f0, 0.0f0, 1.0f0) true end end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
4192
using Main.EarthSciData using Test using DynamicQuantities, EarthSciMLBase, ModelingToolkit using ModelingToolkit: t using Dates using DifferentialEquations import Proj using AllocCheck @parameters lat, [unit = u"rad"], lon, [unit = u"rad"], lev emis, updater = NEI2016MonthlyEmis("mrggrid_withbeis_withrwc", lon, lat, lev; dtype=Float64) fileset = EarthSciData.NEI2016MonthlyEmisFileSet("mrggrid_withbeis_withrwc") eqs = equations(emis) @test length(eqs) == 69 @test contains(string(eqs[1].rhs), "/ Δz") sample_time = DateTime(2016, 5, 1) @testset "can't deepcopy" begin itp = EarthSciData.DataSetInterpolator{Float32}(fileset, "NOX", sample_time; spatial_ref="+proj=longlat +datum=WGS84 +no_defs") deepcopy(itp) === itp end @testset "correct projection" begin itp = EarthSciData.DataSetInterpolator{Float32}(fileset, "NOX", sample_time; spatial_ref="+proj=longlat +datum=WGS84 +no_defs") @test interp!(itp, sample_time, deg2rad(-97.0f0), deg2rad(40.0f0)) ≈ 9.211331f-10 end @testset "incorrect projection" begin itp = EarthSciData.DataSetInterpolator{Float32}(fileset, "NOX", sample_time; spatial_ref="+proj=axisswap +order=2,1 +step +proj=longlat +datum=WGS84 +no_defs") @test_throws Proj.PROJError interp!(itp, sample_time, deg2rad(-97.0f0), deg2rad(40.0f0)) end @testset "Out of domain" begin itp = EarthSciData.DataSetInterpolator{Float32}(fileset, "NOX", sample_time) @test_throws BoundsError interp!(itp, sample_time, deg2rad(0.0f0), deg2rad(40.0f0)) end @testset "monthly frequency" begin sample_time = DateTime(2016, 5, 1) itp = EarthSciData.DataSetInterpolator{Float32}(fileset, "NOX", sample_time; spatial_ref="+proj=longlat +datum=WGS84 +no_defs") EarthSciData.initialize!(itp, sample_time) ti = EarthSciData.DataFrequencyInfo(itp.fs, sample_time) @test month(itp.times[1]) == 4 @test month(itp.times[2]) == 5 sample_time = DateTime(2016, 5, 31) EarthSciData.initialize!(itp, sample_time) @test month(itp.times[1]) == 5 @test month(itp.times[2]) == 6 end @testset "run" begin @constants uc = 1.0 [unit = u"s" description = "unit conversion"] eq = Differential(t)(emis.ACET) ~ equations(emis)[1].rhs * 1e10 / uc sys = extend(ODESystem([eq], t, [], []; name=:test_sys), emis) sys = structural_simplify(sys) tt = Dates.datetime2unix(sample_time) EarthSciData.lazyload!(updater, tt) prob = ODEProblem(sys, zeros(1), (tt, tt + 60.0), [lat => deg2rad(40.0), lon => deg2rad(-97.0), lev => 1.0]) sol = solve(prob) @test 2 > sol.u[end][end] > 1 end @testset "allocations" begin @check_allocs checkf(itp, t, loc1, loc2) = EarthSciData.interp_unsafe(itp, t, loc1, loc2) sample_time = DateTime(2016, 5, 1) itp = EarthSciData.DataSetInterpolator{Float32}(fileset, "NOX", sample_time) interp!(itp, sample_time, deg2rad(-97.0f0), deg2rad(40.0f0)) # If there is an error, it should occur in the proj library. # https://github.com/JuliaGeo/Proj.jl/issues/104 try checkf(itp, sample_time, deg2rad(-97.0f0), deg2rad(40.0f0)) catch err @test length(err.errors) == 1 s = err.errors[1] contains(string(s), "libproj.proj_trans") end itp2 = EarthSciData.DataSetInterpolator{Float64}(fileset, "NOX", sample_time) interp!(itp2, sample_time, deg2rad(-97.0), deg2rad(40.0)) try # If there is an error, it should occur in the proj library. checkf(itp2, sample_time, deg2rad(-97.0), deg2rad(40.0)) catch err @test length(err.errors) == 1 s = err.errors[1] contains(string(s), "libproj.proj_trans") end end @testset "Coupling with GEOS-FP" begin gfp = GEOSFP("4x5"; dtype=Float64, coord_defaults=Dict(:lon => 0.0, :lat => 0.0, :lev => 1.0)) eqs = equations(convert(ODESystem, couple(emis, gfp))) @test occursin("NEI2016MonthlyEmis₊lat(t) ~ GEOSFP₊lat", string(eqs)) end @testset "wrong year" begin sample_time = DateTime(2016, 5, 1) itp = EarthSciData.DataSetInterpolator{Float32}(fileset, "NOX", sample_time) sample_time = DateTime(2017, 5, 1) @test_throws AssertionError EarthSciData.initialize!(itp, sample_time) end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
2066
using EarthSciData using Test using EarthSciMLBase, ModelingToolkit, DomainSets using ModelingToolkit: t, D using NCDatasets, DynamicQuantities, DifferentialEquations, Dates using SciMLOperators @parameters lev = 1.0 @parameters y = 2.0 [unit = u"kg"] @parameters x = 1.0 [unit = u"kg", description = "x coordinate"] @variables u(t) = 1.0 [unit = u"kg", description = "u value"] @variables v(t) = 2.0 [unit = u"kg", description = "v value"] @constants c = 1.0 [unit = u"kg^2"] @constants p = 1.0 [unit = u"kg/s"] eqs = [ D(u) ~ p + 1e-20*lev*p*x*y/c # Need to make sure all coordinates are included in model. v ~ (x + y) * lev ] sys = ODESystem(eqs, t; name=:Test₊sys) domain = DomainInfo( constIC(0.0, t ∈ Interval(0.0, 2.0)), constBC(16.0, x ∈ Interval(-1.0, 1.0), y ∈ Interval(-2.0, 2.0), lev ∈ Interval(1.0, 3.0))) file = tempname() * ".nc" csys = couple(sys, domain) o = NetCDFOutputter(file, 1.0; extra_vars=[ structural_simplify(convert(ODESystem, csys)).Test₊sys.v ]) csys = couple(csys, o) sim = Simulator(csys, [0.1, 0.1, 1]) st = SimulatorStrangThreads(Tsit5(), Euler(), 0.01) run!(sim, st) ds = NCDataset(file, "r") @test size(ds["Test₊sys₊u"], 4) == 3 @test all(isapprox.(ds["Test₊sys₊u"][:, :, :, 1], 1.0, atol=0.011)) @test sum(abs.(ds["Test₊sys₊v"][:, :, :, 1])) ≈ 5754.0f0 @test all(isapprox.(ds["Test₊sys₊u"][:, :, :, 2], 2.0, atol=0.011)) @test sum(abs.(ds["Test₊sys₊v"][:, :, :, 2])) ≈ 5754.0f0 @test all(isapprox.(ds["Test₊sys₊u"][:, :, :, 3], 3.0, atol=0.011)) @test sum(abs.(ds["Test₊sys₊v"][:, :, :, 3])) ≈ 5754.0f0 @test size(ds["Test₊sys₊u"]) == (21, 41, 3, 3) @test ds["time"][:] == [DateTime("1970-01-01T00:00:00"), DateTime("1970-01-01T00:00:01"), DateTime("1970-01-01T00:00:02")] @test ds["x"][:] ≈ -1.0:0.1:1.0 @test ds["y"][:] ≈ -2.0:0.1:2.0 @test ds["lev"] ≈ 1:3 @test ds["x"].attrib["description"] == "x coordinate" @test ds["x"].attrib["units"] == "kg" @test ds["Test₊sys₊u"].attrib["description"] == "u value" @test ds["Test₊sys₊u"].attrib["units"] == "kg" rm(file, force=true)
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
439
using EarthSciData using Test, SafeTestsets @testset "EarthSciData.jl" begin @safetestset "load" begin include("load_test.jl") end @safetestset "geosfp" begin include("geosfp_test.jl") end @safetestset "nei2016monthly" begin include("nei2016monthly_test.jl") end @safetestset "NetCDFOutputter" begin include("netcdf_output_test.jl") end @safetestset "Update Callback" begin include("update_callback_test.jl") end end
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
code
1365
using Main.EarthSciData using Test using EarthSciMLBase, ModelingToolkit using ModelingToolkit: t, D using DomainSets, Dates using DifferentialEquations using DynamicQuantities @parameters lat = deg2rad(40.0) lon = deg2rad(-97.0) lev = 0.0 @variables ACET(t) = 0.0 [unit = u"kg*m^-3"] @constants c = 1000 [unit = u"s"] struct SysCoupler sys end @named sys = ODESystem( [D(ACET) ~ 0], t, metadata=Dict(:coupletype => SysCoupler) ) function EarthSciMLBase.couple2(sys::SysCoupler, emis::EarthSciData.NEI2016MonthlyEmisCoupler) sys, emis = sys.sys, emis.sys operator_compose(sys, emis) end emis = NEI2016MonthlyEmis("mrggrid_withbeis_withrwc", lon, lat, lev; dtype=Float64) starttime = datetime2unix(DateTime(2016, 3, 1)) endtime = datetime2unix(DateTime(2016, 5, 2)) domain = DomainInfo( constIC(16.0, t ∈ Interval(starttime, endtime)), constBC(16.0, lon ∈ Interval(deg2rad(-115), deg2rad(-68.75)), lat ∈ Interval(deg2rad(25), deg2rad(53.71875)), lev ∈ Interval(1, 2) )) csys = couple(sys, emis, domain) sim = Simulator(csys, [deg2rad(15.0), deg2rad(15.0), 1]) st = SimulatorStrangSerial(Tsit5(), Euler(), 100.0) sol = run!(sim, st) @test sum(sol.u[end]) ≈ 3.3756746955152187e-6 st = SimulatorStrangThreads(Tsit5(), Euler(), 100.0) sol = run!(sim, st) @test sum(sol.u[end]) ≈ 3.3756746955152187e-6
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
docs
585
# EarthSciData [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://earthsciml.github.io/EarthSciData.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://earthsciml.github.io/EarthSciData.jl/dev) [![Build Status](https://github.com/EarthSciML/EarthSciData.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/EarthSciML/EarthSciData.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/EarthSciML/EarthSciData.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/EarthSciML/EarthSciData.jl)
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
docs
57
```@index ``` ```@autodocs Modules = [EarthSciData] ```
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
docs
290
# Redirecting... ```@raw html <html> <head> <meta http-equiv="refresh" content="0; url=https://data.earthsci.dev/benchmarks/" /> </head> <body> <p>If you are not redirected automatically, follow this <a href="https://data.earthsci.dev/benchmarks/">link</a>.</p> </body> </html> ```
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git
[ "MIT" ]
0.9.4
36b450a98090c6b6c57cc84fa647013402c84650
docs
3980
# Using data from GEOS-FP This example demonstrates how to use the GEOS-FP data loader in the EarthSciML ecosystem. The GEOS-FP data loader is used to load data from the [GEOS-FP](https://gmao.gsfc.nasa.gov/GMAO_products/NRT_products.php) dataset. First, let's initialize some packages and set up the [GEOS-FP](@ref GEOSFP) equation system. ```@example geosfp using EarthSciData, EarthSciMLBase using DomainSets, ModelingToolkit, MethodOfLines, DifferentialEquations using ModelingToolkit: t, D using Dates, Plots, DataFrames using DynamicQuantities using DynamicQuantities: dimension # Set up system @parameters( lev, lon, [unit=u"rad"], lat, [unit=u"rad"], ) geosfp, geosfp_updater = GEOSFP("4x5") geosfp ``` Note that the [`GEOSFP`](@ref) function returns to things, an equation system and an object that can used to update the time in the underlying data loaders. We can see above the different variables that are available in the GEOS-FP dataset. But also, here they are in table form: ```@example geosfp vars = unknowns(geosfp) DataFrame( :Name => [string(Symbolics.tosymbol(v, escape=false)) for v ∈ vars], :Units => [dimension(ModelingToolkit.get_unit(v)) for v ∈ vars], :Description => [ModelingToolkit.getdescription(v) for v ∈ vars], ) ``` The GEOS-FP equation system isn't an ordinary differential equation (ODE) system, so we can't run it by itself. To fix this, we create another equation system that is an ODE. (We don't actually end up using this system for anything, it's just necessary to get the system to compile.) ```@example geosfp function Example() @variables c(t) = 5.0 [unit=u"s"] ODESystem([D(c) ~ sin(lat * 6) + sin(lon * 6)], t, name=:Docs₊Example) end examplesys = Example() ``` Now, let's couple these two systems together, and also add in advection and some information about the domain: ```@example geosfp domain = DomainInfo( partialderivatives_δxyδlonlat, constIC(0.0, t ∈ Interval(Dates.datetime2unix(DateTime(2022, 1, 1)), Dates.datetime2unix(DateTime(2022, 1, 3)))), zerogradBC(lat ∈ Interval(deg2rad(-80.0f0), deg2rad(80.0f0))), periodicBC(lon ∈ Interval(deg2rad(-180.0f0), deg2rad(180.0f0))), zerogradBC(lev ∈ Interval(1.0f0, 11.0f0)), ) composed_sys = couple(examplesys, domain, geosfp, geosfp_updater) pde_sys = convert(PDESystem, composed_sys) ``` You can see above that we add both `geosfp` and `geosfp_updater` to our coupled system. If we didn't include the updater, the resulting model would not give the correct results. Now, finally, we can run the simulation and plot the GEOS-FP wind fields in the result: (The code below is commented out because it is very slow right now. A faster solution is coming soon!) ```julia # discretization = MOLFiniteDifference([lat => 10, lon => 10, lev => 10], t, approx_order=2) # @time pdeprob = discretize(pde_sys, discretization) # pdesol = solve(pdeprob, Tsit5(), saveat=3600.0) # discrete_lon = pdesol[lon] # discrete_lat = pdesol[lat] # discrete_lev = pdesol[lev] # discrete_t = pdesol[t] # @variables meanwind₊u(..) meanwind₊v(..) examplesys₊c(..) # sol_u = pdesol[meanwind₊u(t, lat, lon, lev)] # sol_v = pdesol[meanwind₊v(t, lat, lon, lev)] # sol_c = pdesol[examplesys₊c(t, lat, lon, lev)] # anim = @animate for k in 1:length(discrete_t) # p1 = heatmap(discrete_lon, discrete_lat, sol_c[k, 1:end, 1:end, 2], clim=(minimum(sol_c[:, :, :, 2]), maximum(sol_c[:, :, :, 2])), # xlabel="Longitude", ylabel="Latitude", title="examplesys.c: $(Dates.unix2datetime(discrete_t[k]))") # p2 = heatmap(discrete_lon, discrete_lat, sol_u[k, 1:end, 1:end, 2], clim=(minimum(sol_u[:, :, :, 2]), maximum(sol_u[:, :, :, 2])), # title="U") # p3 = heatmap(discrete_lon, discrete_lat, sol_v[k, 1:end, 1:end, 2], clim=(minimum(sol_v[:, :, :, 2]), maximum(sol_v[:, :, :, 2])), # title="V") # plot(p1, p2, p3, size=(800, 500)) # end # gif(anim, "animation.gif", fps = 8) ```
EarthSciData
https://github.com/EarthSciML/EarthSciData.jl.git