licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
143
# do not remove this first line using PkgPage # # Feel free to add whatever custom hfun_* or lx_* # you might want to use in your site here #
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
1169
__precompile__() module FinancialToolbox using SpecialFunctions: erfc using Dates, Requires, ChainRulesCore include("dates.jl") include("financial.jl") include("financial_implied_volatility.jl") include("financial_lets_be_rational.jl") function __init__() @require DualNumbers = "fa6b7ba4-c1ee-5f82-b5fc-ecf0adba8f74" include("financial_dual.jl") @require ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" include("financial_forward_diff.jl") @require ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" include("financial_reverse_diff.jl") @require HyperDualNumbers = "50ceba7f-c3ee-5a84-a6e8-3ad40456ec97" include("financial_hyper.jl") @require TaylorSeries = "6aa5eb33-94cf-58f4-a9d0-e4b2c4fc25ea" include("financial_taylor.jl") @require Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" include("financial_symbolics.jl") end export normcdf, normpdf, blsprice, blsbin, blkprice, blsdelta, blsgamma, blsvega, blsrho, blstheta, blslambda, blsimpv, blkimpv, ## ADDITIONAL Function blspsi, blsvanna, #Dates fromExcelNumberToDate, daysact, yearfrac end#End Module
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
5035
function dayNumber(inDate::Date) return Dates.date2epochdays(inDate)::Integer end excelcostant = 693959; """ From Excel Number Format to Date Date=fromExcelNumberToDate(ExcelNumber) Where:\n ExcelNumber = Integer representing a date in the excel format. Date = Date representing the input in the Julia object format. # Example ```julia-repl julia> fromExcelNumberToDate(45000) 2023-03-15 ``` """ function fromExcelNumberToDate(num::Integer)::Date return Dates.Dates.epochdays2date(excelcostant + num) end """ Actual Number of days between two dates ndays=daysact(Date1,Date2) Where:\n Date1 = Start date. Date2 = End date. ndays = Actual Number of days between Start Date and End Date. # Example ```julia-repl julia> daysact(Date(1996,10,12),Date(1998,1,10)) 455 ``` """ function daysact(Date1::Date, Date2::Date)::Integer D1 = dayNumber(Date1) D2 = dayNumber(Date2) dayCount = D2 - D1 return dayCount end function isLastOfFebruary(inDate::Date)::Bool return (Dates.isleapyear(Dates.year(inDate)) && (Dates.day(inDate) == 29) && (Dates.month(inDate) == 2)) || ((!Dates.isleapyear(Dates.year(inDate))) && (Dates.day(inDate) == 28) && (Dates.month(inDate) == 2)) end currMaxImplemented = 7; """ Fraction of year between two Dates according the following convention yfr=yearfrac(Date1,Date2,basis) Where:\n Date1 = Start date. Date2 = End date. basis = Integer representing the following conventions: - 0 = (ACT/ACT) - 1 = (30/360 SIA) - 2 = (ACT/360) - 3 = (ACT/365) - 4 = (30/360 PSA) - 5 = (30/360 ISDA) - 6 = (30E/360) - 7 = (ACT/365 JPN) yfr = fraction of year between start and end date according to basis. # Example ```julia-repl julia> yearfrac(Date(1996,10,12),Date(1998,1,10),1) 1.2444444444444445 ``` """ function yearfrac(startDate::Date, endDate::Date, convention::Integer)::Real if (convention < 0) error("Negative basis are not defined, check the help") end if (convention > currMaxImplemented) error("Convention not implemented yet") end if (startDate > endDate) return -yearfrac(endDate, startDate, convention) elseif (startDate == endDate) return 0.0 end yearFrac = 0.0 y1 = Dates.year(startDate) m1 = Dates.month(startDate) y2 = Dates.year(endDate) m2 = Dates.month(endDate) d1 = Dates.day(startDate) d2 = Dates.day(endDate) if (convention == 0)#(ACT/ACT) Nday = daysact(startDate, endDate) EndOFYear = Date(1) if (isLastOfFebruary(startDate) && (Dates.day(startDate) == 29)) EndOFYear = Date(Dates.year(startDate) + 1, 3, 1) else EndOFYear = Date(Dates.year(startDate) + 1, Dates.month(startDate), Dates.day(startDate)) end yearFrac = (Nday) / daysact(startDate, EndOFYear) elseif (convention == 1) #(30/360 SIA) if (isLastOfFebruary(startDate) && isLastOfFebruary(endDate)) d2 = 30 end if (isLastOfFebruary(startDate) || Dates.day(startDate) == 31) d1 = 30 end if (d1 == 30 && d2 == 31) d2 = 30 end dy = y2 - y1 dm = m2 - m1 dd = d2 - d1 yearFrac = (360.0 * dy + 30.0 * dm + dd) / 360.0 elseif (convention == 2)#(ACT/360) Nday = daysact(startDate, endDate) yearFrac = (Nday) / 360.0 elseif (convention == 3)# (ACT/365) Nday = daysact(startDate, endDate) yearFrac = (Nday) / 365.0 elseif (convention == 4)# (30/360 PSA) if ((Dates.day(startDate) == 31) || isLastOfFebruary(startDate)) d1 = 30 end if ((Dates.day(startDate) == 30 || isLastOfFebruary(startDate)) && Dates.day(endDate) == 31) d2 = 30 end dy = y2 - y1 dm = m2 - m1 dd = d2 - d1 yearFrac = (360.0 * dy + 30.0 * dm + dd) / 360.0 elseif (convention == 5)#(30/360 ISDA) y1 = Dates.year(startDate) m1 = Dates.month(startDate) y2 = Dates.year(endDate) m2 = Dates.month(endDate) if (Dates.day(startDate) < 31) d1 = Dates.day(startDate) else d1 = 30 end if ((Dates.day(endDate) == 31) && (d1 > 29)) d2 = 30 else d2 = Dates.day(endDate) end yearFrac = (360.0 * ((y2 - y1)) + 30.0 * ((m2 - m1)) + (d2 - d1)) / 360.0 elseif (convention == 6)#(30E/360) if (d1 == 31) d1 = 30 end if (d2 == 31) d2 = 30 end dy = y2 - y1 dm = m2 - m1 dd = d2 - d1 yearFrac = (360.0 * dy + 30.0 * dm + dd) / 360.0 elseif (convention == 7)#(ACT/365 JPN) daydistance = [0; 31; 59; 90; 120; 151; 181; 212; 243; 273; 304; 334] dy = y2 - y1 dd = d2 - d1 dayCount = (365.0 * dy + daydistance[m2] - daydistance[m1] + dd) yearFrac = dayCount / 365.0 end return yearFrac end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
13397
using IrrationalConstants const one_internal = ChainRulesCore.@ignore_derivatives(Int8(1)) const minus_one_internal = ChainRulesCore.@ignore_derivatives(Int8(-1)) const two_internal = ChainRulesCore.@ignore_derivatives(Int8(2)) """ Cumulative Distribution Function of a Standard Gaussian Random Variable y=normcdf(x) Where:\n x = point of evaluation. y = probability that a standard gaussian random variable is below x. # Example ```julia-repl julia> normcdf(0.0) 0.5 ``` """ function normcdf(x) return erfc(-x * invsqrt2) / two_internal end """ Probability Distribution Function of a Standard Gaussian Random Variable y=normpdf(x) Where:\n x = point of evaluation. y = value. # Example ```julia-repl julia> normpdf(0.0) 0.3989422804014327 ``` """ function normpdf(x) return exp(x^2 / (-two_internal)) * invsqrt2π end """ Black Price for Binary European Options Price=blsbin(S0,K,r,T,σ,FlagIsCall=true) Where:\n F0 = Value of the Forward. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility. FlagIsCall = true for Call Options, false for Put Options. Price = price of the Binary European Option. # Example ```julia-repl julia> blsbin(10.0,10.0,0.01,2.0,0.2) 0.4624714677292208 ``` """ function blsbin(S0, K, r, T, σ, d, FlagIsCall::Bool = true) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) rt = r * T dt = -d * T sqrtT = sqrt(T) sigma_sqrtT = σ * sqrtT d2 = (log(S0 / K) + rt + dt) / sigma_sqrtT - sigma_sqrtT / two_internal iscall = ChainRulesCore.@ignore_derivatives(ifelse(FlagIsCall, one_internal, minus_one_internal)) Price = exp(-rt) * normcdf(iscall * d2) return Price end """ Black & Scholes Delta for European Options Δ=blsdelta(S0,K,r,T,σ,d=0.0,FlagIsCall=true) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. Δ = delta of the European Option. # Example ```julia-repl julia> blsdelta(10.0,10.0,0.01,2.0,0.2,0.01) 0.5452173371920436 ``` """ function blsdelta(S0, K, r, T, σ, d, FlagIsCall::Bool = true) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) rt = r * T dt = -d * T sigma_sqrtT = σ * sqrt(T) S0_K = S0 / K d1 = (log(S0_K) + rt + dt) / sigma_sqrtT + sigma_sqrtT / two_internal iscall = ChainRulesCore.@ignore_derivatives(ifelse(FlagIsCall, one_internal, minus_one_internal)) Δ = exp(dt) * normcdf(iscall * d1) * iscall return Δ end function blprice_impl(S0, K, T, σ, FlagIsCall::Bool = true) iscall = ChainRulesCore.@ignore_derivatives(ifelse(FlagIsCall, one_internal, minus_one_internal)) sigma_sqrtT = σ * sqrt(T) d1 = log(S0 / K) / sigma_sqrtT + sigma_sqrtT / two_internal Price = iscall * (S0 * normcdf(iscall * d1) - K * normcdf(iscall * (d1 - sigma_sqrtT))) return Price end function blprice(S0, K, T, σ, FlagIsCall::Bool = true) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) return blprice_impl(S0, K, T, σ, FlagIsCall) end """ Black & Scholes Price for European Options Price=blsprice(S0,K,r,T,σ,d=0.0,FlagIsCall=true) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. Price = price of the European Option. # Example ```julia-repl julia> blsprice(10.0,10.0,0.01,2.0,0.2,0.01) 1.1023600107733191 ``` """ function blsprice(S0, K, r, T, σ, d, FlagIsCall::Bool = true) cv = exp(r * T) cv2 = exp((r - d) * T) F = S0 * cv2 return blprice(F, K, T, σ, FlagIsCall) / cv end """ Black Price for European Options Price=blkprice(F0,K,r,T,σ,FlagIsCall=true) Where:\n F0 = Value of the Forward. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility. FlagIsCall = true for Call Options, false for Put Options. Price = price of the European Option. # Example ```julia-repl julia> blkprice(10.0,10.0,0.01,2.0,0.2) 1.1023600107733191 ``` """ function blkprice(F0, K, r, T, σ, FlagIsCall::Bool = true) cv = exp(r * T) return blprice(F0, K, T, σ, FlagIsCall) / cv end """ Black & Scholes Gamma for European Options Γ=blsgamma(S0,K,r,T,σ,d=0.0,FlagIsCall=true) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. Γ = gamma of the European Option. # Example ```julia-repl julia> blsgamma(10.0,10.0,0.01,2.0,0.2,0.01) 0.13687881535712826 ``` """ function blsgamma(S0, K, r, T, σ, d, ::Bool = true) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) rt = r * T dt = -d * T sigma_sqrtT = σ * sqrt(T) S0_K = S0 / K d1 = (log(S0_K) + rt + dt) / sigma_sqrtT + sigma_sqrtT / two_internal Γ = exp(dt) * normpdf(d1) / (S0 * sigma_sqrtT) return Γ end function blvega_impl(S0, K, T, σ) sqrtT = sqrt(T) sigma_sqrtT = σ * sqrtT d1 = log(S0 / K) / sigma_sqrtT + sigma_sqrtT / two_internal ν = S0 * normpdf(d1) * sqrtT return ν end function blvega(S0, K, T, σ) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) return blvega_impl(S0, K, T, σ) end """ Black & Scholes Vega for European Options ν=blsvega(S0,K,r,T,σ,d=0.0,FlagIsCall=true) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. ν = vega of the European Option. # Example ```julia-repl julia> blsvega(10.0,10.0,0.01,2.0,0.2,0.01) 5.475152614285131 ``` """ function blsvega(S0, K, r, T, σ, d, ::Bool = true) cv = exp(r * T) cv2 = exp(-d * T) F = S0 * cv * cv2 return blvega(F, K, T, σ) / cv end """ Black & Scholes Rho for European Options ρ=blsrho(S0,K,r,T,σ,d=0.0,FlagIsCall=true) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. ρ = rho of the European Option. # Example ```julia-repl julia> blsrho(10.0,10.0,0.01,2.0,0.2,0.01) 8.699626722294234 ``` """ function blsrho(S0, K, r, T, σ, d, FlagIsCall::Bool = true) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) iscall = ChainRulesCore.@ignore_derivatives(ifelse(FlagIsCall, one_internal, minus_one_internal)) rt = r * T dt = -d * T sqrtT = sqrt(T) sigma_sqrtT = σ * sqrtT d2 = (log(S0 / K) + rt + dt) / sigma_sqrtT - sigma_sqrtT / two_internal ρ = iscall * K * exp(-rt) * normcdf(iscall * d2) * T return ρ end """ Black & Scholes Theta for European Options Θ=blstheta(S0,K,r,T,σ,d=0.0,FlagIsCall=true) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. Θ = theta of the European Option. # Example ```julia-repl julia> blstheta(10.0,10.0,0.01,2.0,0.2,0.01) -0.26273403060652334 ``` """ function blstheta(S0, K, r, T, σ, d, FlagIsCall::Bool = true) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) rt = r * T dt = -d * T sqrtT = sqrt(T) sigma_sqrtT = σ * sqrtT d1 = (log(S0 / K) + rt + dt) / sigma_sqrtT + sigma_sqrtT / two_internal d2 = d1 - sigma_sqrtT S0_adj = S0 * exp(dt) shift = -S0_adj * normpdf(d1) * σ / (sqrtT * two_internal) t1 = r * K * exp(-rt) t2 = d * S0_adj iscall = ChainRulesCore.@ignore_derivatives(ifelse(FlagIsCall, one_internal, minus_one_internal)) Θ = shift - iscall * (t1 * normcdf(iscall * d2) - t2 * normcdf(iscall * d1)) return Θ end """ Black & Scholes Lambda for European Options Λ=blslambda(S0,K,r,T,σ,d=0.0,FlagIsCall=true) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. Λ = lambda of the European Option. # Example ```julia-repl julia> blslambda(10.0,10.0,0.01,2.0,0.2,0.01) 4.945909973725978 ``` """ function blslambda(S0, K, r, T, σ, d, FlagIsCall::Bool = true) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) rt = r * T dt = -d * T sigma_sqrtT = σ * sqrt(T) S0_K = S0 / K d1 = (log(S0_K) + rt + dt) / sigma_sqrtT + sigma_sqrtT / two_internal d2 = d1 - sigma_sqrtT iscall = ChainRulesCore.@ignore_derivatives(ifelse(FlagIsCall, one_internal, minus_one_internal)) Δ = exp(dt) * normcdf(iscall * d1) * iscall Δ_adj = S0 * Δ Price = Δ_adj - iscall * K * exp(-rt) * normcdf(iscall * d2) Λ = Δ_adj / Price return Λ end #Check input for Black Scholes Formula function blcheck_impl(::num0, S0::num1, K::num2, T::num4, σ::num5) where {num0, num1, num2, num4, num5} lesseq(x, y) = x <= y if (lesseq(S0, zero(num1))) throw(DomainError(S0, "Spot Price Cannot Be Negative")) elseif (lesseq(K, zero(num2))) throw(DomainError(K, "Strike Price Cannot Be Negative")) elseif (lesseq(T, zero(num4))) throw(DomainError(T, "Time to Maturity Cannot Be Negative")) elseif (lesseq(σ, zero(num5))) throw(DomainError(σ, "Volatility Cannot Be Negative")) end return end function blcheck_impl(::num0, S0::num1, K::num2, T::num4, σ::num5) where {num0 <: Complex, num1, num2, num4, num5} lesseq(x::Complex, y::Complex) = real(x) <= real(y) lesseq(x, y) = x <= y if (lesseq(S0, zero(num1))) throw(DomainError(S0, "Spot Price Cannot Be Negative")) elseif (lesseq(K, zero(num2))) throw(DomainError(K, "Strike Price Cannot Be Negative")) elseif (lesseq(T, zero(num4))) throw(DomainError(T, "Time to Maturity Cannot Be Negative")) elseif (lesseq(σ, zero(num5))) throw(DomainError(σ, "Volatility Cannot Be Negative")) end return end function blcheck(S0::num1, K::num2, T::num4, σ::num5) where {num1, num2, num4, num5} zero_typed = S0 * K * T * σ blcheck_impl(zero_typed, S0, K, T, σ) return end ## ADDITIONAL Functions """ Black & Scholes Psi for European Options Ψ=blspsi(S0,K,r,T,σ,d=0.0,FlagIsCall=true) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. Ψ = psi of the European Option. # Example ```julia-repl julia> blspsi(10.0,10.0,0.01,2.0,0.2,0.01) -10.904346743840872 ``` """ function blspsi(S0, K, r, T, σ, d, FlagIsCall::Bool = true) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) rt = r * T dt = -d * T sigma_sqrtT = σ * sqrt(T) S0_K = S0 / K d1 = (log(S0_K) + rt + dt) / sigma_sqrtT + sigma_sqrtT / two_internal iscall = ChainRulesCore.@ignore_derivatives(ifelse(FlagIsCall, one_internal, minus_one_internal)) Ψ = -iscall * S0 * exp(dt) * normcdf(iscall * d1) * T return Ψ end """ Black & Scholes Vanna for European Options Vanna=blsvanna(S0,K,r,T,σ,d=0.0,FlagIsCall=true) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. σ = Implied Volatility d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. Vanna = vanna of the European Option. # Example ```julia-repl julia> blsvanna(10.0,10.0,0.01,2.0,0.2,0.01) 0.2737576307142566 ``` """ function blsvanna(S0, K, r, T, σ, d, ::Bool = true) ChainRulesCore.@ignore_derivatives(FinancialToolbox.blcheck(S0, K, T, σ)) rt = r * T dt = -d * T sigma_sqrtT = σ * sqrt(T) S0_K = S0 / K d1 = (log(S0_K) + rt + dt) / sigma_sqrtT + sigma_sqrtT / two_internal d2 = d1 - sigma_sqrtT Vanna = -exp(dt) * normpdf(d1) * d2 / σ return Vanna end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
424
using .DualNumbers value__d(x::Dual) = x.value value__d(x) = x function blimpv_impl(::Dual, S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) S0_r = value__d(S0) K_r = value__d(K) T_r = value__d(T) p_r = value__d(price_d) σ = blimpv(S0_r, K_r, T_r, p_r, FlagIsCall, xtol, n_iter_max) der_ = blprice_diff_impl(S0, K, T, σ, price_d, FlagIsCall) / blvega_impl(S0_r, K_r, T_r, σ) return σ + der_ end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
447
using .ForwardDiff value__d(x::ForwardDiff.Dual) = x.value value__d(x) = x function blimpv_impl(::ForwardDiff.Dual, S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) S0_r = value__d(S0) K_r = value__d(K) T_r = value__d(T) p_r = value__d(price_d) σ = blimpv(S0_r, K_r, T_r, p_r, FlagIsCall, xtol, n_iter_max) der_ = blprice_diff_impl(S0, K, T, σ, price_d, FlagIsCall) / blvega_impl(S0_r, K_r, T_r, σ) return σ + der_ end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
610
using .HyperDualNumbers function blimpv_impl(::Hyper, S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) S0_r = HyperDualNumbers.value(S0) K_r = HyperDualNumbers.value(K) T_r = HyperDualNumbers.value(T) pr_r = HyperDualNumbers.value(price_d) σ = blimpv(S0_r, K_r, T_r, pr_r, FlagIsCall, xtol, n_iter_max) vega = blvega_impl(S0_r, K_r, T_r, σ) σ_hyper = σ + blprice_diff_impl(S0, K, T, σ, price_d, FlagIsCall) / vega σ_hyper -= Hyper(0, 0, 0, HyperDualNumbers.eps1eps2(σ_hyper)) σ_hyper += (price_d - blprice_impl(S0, K, T, σ_hyper, FlagIsCall)) / vega return σ_hyper end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
4594
function blimpv_check(S0::num1, K::num2, T::num4) where {num1, num2, num4} lesseq(x::Complex, y::Complex) = real(x) <= real(y) lesseq(x, y) = x <= y if (lesseq(S0, zero(num1))) throw(DomainError(S0, "Spot Price Cannot Be Negative")) elseif (lesseq(K, zero(num2))) throw(DomainError(K, "Strike Price Cannot Be Negative")) elseif (lesseq(T, zero(num4))) throw(DomainError(T, "Time to Maturity Cannot Be Negative")) end return end function blimpv_impl(::AbstractFloat, S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) ChainRulesCore.ignore_derivatives() do FinancialToolbox.blimpv_check(S0, K, T) if xtol <= 0.0 throw(DomainError(xtol, "x tollerance cannot be negative")) end if n_iter_max <= 0 throw(DomainError(n_iter_max, "maximum number of iterations must be positive")) end max_price = ifelse(FlagIsCall, S0, K) if max_price <= price_d throw(DomainError(price_d, "Price is reaching maximum value")) end min_price = eps(zero(price_d)) if min_price >= price_d throw(DomainError(price_d, "Price is reaching minimum value")) end end return blimpv_lets_be_rational(S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) end function blimpv(S0::num1, K::num2, T::num4, Price::num5, FlagIsCall::Bool, xtol::Real, n_iter_max::Integer) where {num1, num2, num4, num5} zero_typed = ChainRulesCore.@ignore_derivatives(zero(promote_type(num1, num2, num4, num5))) σ = blimpv_impl(zero_typed, S0, K, T, Price, FlagIsCall, xtol, n_iter_max) return σ end """ Black & Scholes Implied Volatility for European Options σ=blsimpv(S0,K,r,T,Price,d=0.0,FlagIsCall=true,xtol=1e-14,ytol=1e-15) Where:\n S0 = Value of the Underlying. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. Price = Price of the Option. d = Implied Dividend of the Underlying. FlagIsCall = true for Call Options, false for Put Options. σ = implied volatility of the European Option. # Example ```julia-repl julia> blsimpv(10.0,10.0,0.01,2.0,2.0) 0.3433730534290586 ``` """ function blsimpv(S0, K, r, T, Price, d = 0, FlagIsCall::Bool = true, xtol::Real = 100 * eps(Float64), n_iter_max::Integer = 4) cv = exp(r * T) cv2 = exp(-d * T) adj_S0 = S0 * cv * cv2 adj_price = Price * cv σ = blimpv(adj_S0, K, T, adj_price, FlagIsCall, xtol, n_iter_max) return σ end """ Black Implied Volatility for European Options σ=blkimpv(F0,K,r,T,Price,FlagIsCall=true,xtol=1e-14,ytol=1e-15) Where:\n F0 = Value of the Forward. K = Strike Price of the Option. r = Zero Rate. T = Time to Maturity of the Option. Price = Price of the Option. FlagIsCall = true for Call Options, false for Put Options. σ = implied volatility of the European Option. # Example ```julia-repl julia> blkimpv(10.0,10.0,0.01,2.0,2.0) 0.36568658096623635 ``` """ function blkimpv(F0, K, r, T, Price, FlagIsCall::Bool = true, xtol::Real = 1e-14, n_iter_max::Integer = 4) adj_price = Price * exp(r * T) σ = blimpv(F0, K, T, adj_price, FlagIsCall, xtol, n_iter_max) return σ end import ChainRulesCore: rrule, frule, NoTangent, @thunk, rrule_via_ad, frule_via_ad function blprice_diff_impl(S0, K, T, σ, price_d, FlagIsCall) return price_d - blprice_impl(S0, K, T, σ, FlagIsCall) end function rrule(config::RuleConfig{>:HasReverseMode}, ::typeof(blimpv), S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) σ = blimpv(S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) function update_pullback(slice) _, pullback_blprice = ChainRulesCore.rrule_via_ad(config, blprice_impl, S0, K, T, σ, FlagIsCall) _, der_S0, der_K, der_T, der_σ, _ = pullback_blprice(slice) slice_mod = -inv(der_σ) return NoTangent(), slice_mod * der_S0, slice_mod * der_K, slice_mod * der_T, -slice_mod, NoTangent(), NoTangent(), NoTangent() end return σ, update_pullback end function frule(config::RuleConfig{>:HasForwardsMode}, (_, dS, dK, dT, dprice, _, _, _), ::typeof(blimpv), S0, K, T, price_d, FlagIsCall::Bool, xtol, n_iter_max::Integer) σ = blimpv(S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) vega = blvega_impl(S0, K, T, σ) _, der_fwd = ChainRulesCore.frule_via_ad(config, (NoTangent(), dS, dK, dT, NoTangent(), dprice, NoTangent()), blprice_diff_impl, S0, K, T, σ, price_d, FlagIsCall) return σ, der_fwd / vega end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
34637
using MuladdMacro function dbl_min(::T) where {T <: Number} return eps(zero(T)) end function dbl_max(::T) where {T <: Number} return prevfloat(typemax(T)) end using IrrationalConstants function dbl_epsilon(::T) where {T <: Number} return eps(T) end function minimum_rational_cubic_control_parameter_value(x) return -(1 - sqrt(dbl_epsilon(x))) end square(x) = x^2 positive_part(x::T) where {T <: Number} = max(x, zero(T)) function maximum_rational_cubic_control_parameter_value(x) return 2 / square(dbl_epsilon(x)) end const norm_cdf_asymptotic_expansion_first_threshold = -10; function rational_cubic_interpolation(x, x_l, x_r, y_l, y_r, d_l, d_r, r) h = (x_r - x_l) if (abs(h) <= 0) return (y_l + y_r) / 2 end # r should be greater than -1. We do not use assert(r > -1) here in order to allow values such as NaN to be propagated as they should. t = (x - x_l) / h omt = 1 - t if (!(r >= maximum_rational_cubic_control_parameter_value(r))) t2 = square(t) # omt2 = square(omt) # Formula (2.4) divided by formula (2.5) # return @muladd (y_r * t2 * t + (r * y_r - h * d_r) * t2 * omt + (r * y_l + h * d_l) * t * omt2 + y_l * omt2 * omt) / (1 + (r - 3) * t * omt) # return @muladd (y_r * t2 * t + (r * y_r - h * d_r) * t2 * omt + omt2 * ((r * y_l + h * d_l) * t + y_l * omt)) / (1 + (r - 3) * t * omt) return @muladd (y_r * t2 * t + omt * ((r * y_r - h * d_r) * t2 + omt * ((r * y_l + h * d_l) * t + y_l * omt))) / (1 + (r - 3) * t * omt) end # Linear interpolation without over-or underflow. return y_r * t + y_l * omt end is_zero(x) = abs(x) < dbl_min(x); function rational_cubic_control_parameter_to_fit_second_derivative_at_left_side(x_l, x_r, y_l, y_r, d_l, d_r, second_derivative_l) h = (x_r - x_l) @muladd numerator = h * second_derivative_l / 2 + d_r - d_l zero_num = zero(numerator) if (is_zero(numerator)) return zero_num end denominator = (y_r - y_l) / h - d_l zero_typed = zero_num + zero(denominator) if (is_zero(denominator)) return ifelse(numerator > 0, maximum_rational_cubic_control_parameter_value(zero_typed), minimum_rational_cubic_control_parameter_value(zero_typed)) end return numerator / denominator end function rational_cubic_control_parameter_to_fit_second_derivative_at_right_side(x_l, x_r, y_l, y_r, d_l, d_r, second_derivative_r) h = (x_r - x_l) @muladd numerator = h * second_derivative_r / 2 + d_r - d_l zero_num = zero(numerator) if (is_zero(numerator)) return zero_num end denominator = d_r - (y_r - y_l) / h zero_typed = zero_num + zero(denominator) if (is_zero(denominator)) return ifelse(numerator > 0, maximum_rational_cubic_control_parameter_value(zero_typed), minimum_rational_cubic_control_parameter_value(zero_typed)) end return numerator / denominator end function minimum_rational_cubic_control_parameter(d_l::T, d_r::U, s::V, prefer_shape_preservation_over_smoothness) where {T <: Real, U <: Real, V <: Real} monotonic = d_l * s >= 0 && d_r * s >= 0 convex = d_l <= s && s <= d_r concave = d_l >= s && s >= d_r zero_typed = zero(promote_type(T, U, V)) if (!monotonic && !convex && !concave) # If 3==r_non_shape_preserving_target, this means revert to standard cubic. return minimum_rational_cubic_control_parameter_value(zero_typed) end d_r_m_d_l = d_r - d_l d_r_m_s = d_r - s s_m_d_l = s - d_l r1 = -dbl_max(zero_typed) r2 = r1 # If monotonicity on this interval is possible, set r1 to satisfy the monotonicity condition (3.8). if (monotonic) if (!is_zero(s)) # (3.8), avoiding division by zero. r1 = (d_r + d_l) / s # (3.8) elseif (prefer_shape_preservation_over_smoothness) # If division by zero would occur, and shape preservation is preferred, set value to enforce linear interpolation. r1 = maximum_rational_cubic_control_parameter_value(zero_typed) # This value enforces linear interpolation. end end if (convex || concave) if (!(is_zero(s_m_d_l) || is_zero(d_r_m_s))) # (3.18), avoiding division by zero. r2 = max(abs(d_r_m_d_l / d_r_m_s), abs(d_r_m_d_l / s_m_d_l)) elseif (prefer_shape_preservation_over_smoothness) r2 = maximum_rational_cubic_control_parameter_value(zero_typed) # This value enforces linear interpolation. end elseif (monotonic && prefer_shape_preservation_over_smoothness) r2 = maximum_rational_cubic_control_parameter_value(zero_typed) # This enforces linear interpolation along segments that are inconsistent with the slopes on the boundaries, e.g., a perfectly horizontal segment that has negative slopes on either edge. end return max(minimum_rational_cubic_control_parameter_value(zero_typed), r1, r2) end function convex_rational_cubic_control_parameter_to_fit_second_derivative_at_left_side(x_l, x_r, y_l, y_r, d_l, d_r, second_derivative_l, prefer_shape_preservation_over_smoothness) r = rational_cubic_control_parameter_to_fit_second_derivative_at_left_side(x_l, x_r, y_l, y_r, d_l, d_r, second_derivative_l) r_min = minimum_rational_cubic_control_parameter(d_l, d_r, (y_r - y_l) / (x_r - x_l), prefer_shape_preservation_over_smoothness) return max(r, r_min) end function convex_rational_cubic_control_parameter_to_fit_second_derivative_at_right_side(x_l, x_r, y_l, y_r, d_l, d_r, second_derivative_r, prefer_shape_preservation_over_smoothness) r = rational_cubic_control_parameter_to_fit_second_derivative_at_right_side(x_l, x_r, y_l, y_r, d_l, d_r, second_derivative_r) r_min = minimum_rational_cubic_control_parameter(d_l, d_r, (y_r - y_l) / (x_r - x_l), prefer_shape_preservation_over_smoothness) return max(r, r_min) end function sqrt_dbl_epsilon(x) return sqrt(dbl_epsilon(x)) end function fourth_root_dbl_epsilon(x) return sqrt(sqrt_dbl_epsilon(x)) end function eighth_root_dbl_epsilon(x) return sqrt(fourth_root_dbl_epsilon(x)) end function sixteenth_root_dbl_epsilon(x) return sqrt(eighth_root_dbl_epsilon(x)) end function sqrt_dbl_min(x) return sqrt(dbl_min(x)) end # Set this to 0 if you want positive results for (positive) denormalised inputs, else to dbl_min. # Note that you cannot achieve full machine accuracy from denormalised inputs! householder_factor(newton, halley, hh3) = @muladd (1 + halley * newton / 2) / (1 + newton * (halley + hh3 * newton / 6)); # Asymptotic expansion of # # b = Φ(h+t)·exp(x/2) - Φ(h-t)·exp(-x/2) # with # h = x/s and t = s/2 # which makes # b = Φ(h+t)·exp(h·t) - Φ(h-t)·exp(-h·t) # # exp(-(h²+t²)/2) # = --------------- · [ Y(h+t) - Y(h-t) ] # √(2π) # with # Y(z) := Φ(z)/φ(z) # # for large negative (t-|h|) by the aid of Abramowitz & Stegun (26.2.12) where Φ(z) = φ(z)/|z|·[1-1/z^2+...]. # We define # r # A(h,t) := --- · [ Y(h+t) - Y(h-t) ] # t # # with r := (h+t)·(h-t) and give an expansion for A(h,t) in q:=(h/r)² expressed in terms of e:=(t/h)² . function asymptotic_expansion_of_normalised_black_call(h, t) e = square(t / h) r = (h + t) * (h - t) q = square(h / r) twice_e = 2 * e # 17th order asymptotic expansion of A(h,t) in q, sufficient for Φ(h) [and thus y(h)] to have relative accuracy of 1.64E-16 for h <= η with η:=-10. #TODO: this is too much for "less" than Float64 @muladd asymptotic_expansion_sum = ( 2 + q * ( -6 - twice_e + 3 * q * ( 10 + e * (20 + twice_e) + 5 * q * ( -14 + e * (-70 + e * (-42 - twice_e)) + 7 * q * ( 18 + e * (168 + e * (252 + e * (72 + twice_e))) + 9 * q * ( -22 + e * (-330 + e * (-924 + e * (-660 + e * (-110 - twice_e)))) + 11 * q * ( 26 + e * (572 + e * (2574 + e * (3432 + e * (1430 + e * (156 + twice_e))))) + 13 * q * ( -30 + e * (-910 + e * (-6006 + e * (-12870 + e * (-10010 + e * (-2730 + e * (-210 - twice_e)))))) + 15 * q * ( 34 + e * (1360 + e * (12376 + e * (38896 + e * (48620 + e * (24752 + e * (4760 + e * (272 + twice_e))))))) + 17 * q * ( -38 + e * (-1938 + e * (-23256 + e * (-100776 + e * (-184756 + e * (-151164 + e * (-54264 + e * (-7752 + e * (-342 - twice_e)))))))) + 19 * q * ( 42 + e * (2660 + e * (40698 + e * (232560 + e * (587860 + e * (705432 + e * (406980 + e * (108528 + e * (11970 + e * (420 + twice_e))))))))) + 21 * q * ( -46 + e * (-3542 + e * (-67298 + e * (-490314 + e * (-1634380 + e * (-2704156 + e * (-2288132 + e * (-980628 + e * (-201894 + e * (-17710 + e * (-506 - twice_e)))))))))) + 23 * q * ( 50 + e * (4600 + e * (106260 + e * (961400 + e * (4085950 + e * (8914800 + e * (10400600 + e * (6537520 + e * (2163150 + e * (354200 + e * (25300 + e * (600 + twice_e))))))))))) + 25 * q * ( -54 + e * (-5850 + e * (-161460 + e * (-1776060 + e * (-9373650 + e * (-26075790 + e * (-40116600 + e * (-34767720 + e * (-16872570 + e * (-4440150 + e * (-592020 + e * (-35100 + e * (-702 - twice_e)))))))))))) + 27 * q * (58 + e * (7308 + e * (237510 + e * (3121560 + e * (20030010 + e * (69194580 + e * (135727830 + e * (155117520 + e * (103791870 + e * (40060020 + e * (8584290 + e * (950040 + e * (47502 + e * (812 + twice_e))))))))))))) + 29 * q * (-62 + e * (-8990 + e * (-339822 + e * (-5259150 + e * (-40320150 + e * (-169344630 + e * (-412506150 + e * (-601080390 + e * (-530365050 + e * (-282241050 + e * (-88704330 + e * (-15777450 + e * (-1472562 + e * (-62930 + e * (-930 - twice_e)))))))))))))) + 31 * q * (66 + e * (10912 + e * (474672 + e * (8544096 + e * (77134200 + e * (387073440 + e * (1146332880 + e * (2074316640 + e * (2333606220 + e * (1637618400 + e * (709634640 + e * (185122080 + e * (27768312 + e * (2215136 + e * (81840 + e * (1056 + twice_e))))))))))))))) + 33 * (-70 + e * (-13090 + e * (-649264 + e * (-13449040 + e * (-141214920 + e * (-834451800 + e * (-2952675600 + e * (-6495886320 + e * (-9075135300 + e * (-8119857900 + e * (-4639918800 + e * (-1668903600 + e * (-367158792 + e * (-47071640 + e * (-3246320 + e * (-104720 + e * (-1190 - twice_e))))))))))))))))) * q))) ) ) ) ) ) ) ) ) ) ) ) ) ) ) z = exp((-(square(h) + square(t)) / 2)) b = z * (t / r) * asymptotic_expansion_sum / sqrt2π return abs(positive_part(b)) end const asymptotic_expansion_accuracy_threshold = -10 function normalised_black_call_using_erfcx(h, t) # Given h = x/s and t = s/2, the normalised Black function can be written as # # b(x,s) = Φ(x/s+s/2)·exp(x/2) - Φ(x/s-s/2)·exp(-x/2) # = Φ(h+t)·exp(h·t) - Φ(h-t)·exp(-h·t) . (*) # # It is mentioned in section 4 (and discussion of figures 2 and 3) of George Marsaglia's article "Evaluating the # Normal Distribution" (available at http:#www.jstatsoft.org/v11/a05/paper) that the error of any cumulative normal # function Φ(z) is dominated by the hardware (or compiler implementation) accuracy of exp(-z²/2) which is not # reliably more than 14 digits when z is large. The accuracy of Φ(z) typically starts coming down to 14 digits when # z is around -8. For the (normalised) Black function, as above in (*), this means that we are subtracting two terms # that are each products of terms with about 14 digits of accuracy. The net result, in each of the products, is even # less accuracy, and then we are taking the difference of these terms, resulting in even less accuracy. When we are # using the asymptotic expansion asymptotic_expansion_of_normalised_black_call() invoked in the second branch at the # beginning of this function, we are using only *one* exponential instead of 4, and this improves accuracy. It # actually improves it a bit more than you would expect from the above logic, namely, almost the full two missing # digits (in 64 bit IEEE floating point). Unfortunately, going higher order in the asymptotic expansion will not # enable us to gain more accuracy (by extending the range in which we could use the expansion) since the asymptotic # expansion, being a divergent series, can never gain 16 digits of accuracy for z=-8 or just below. The best you can # get is about 15 digits (just), for about 35 terms in the series (26.2.12), which would result in an prohibitively # long expression in function asymptotic expansion asymptotic_expansion_of_normalised_black_call(). In this last branch, # here, we therefore take a different tack as follows. # The "scaled complementary error function" is defined as erfcx(z) = exp(z²)·erfc(z). Cody's implementation of this # function as published in "Rational Chebyshev approximations for the error function", W. J. Cody, Math. Comp., 1969, pp. # 631-638, uses rational functions that theoretically approximates erfcx(x) to at least 18 significant decimal digits, # *without* the use of the exponential function when x>4, which translates to about z<-5.66 in Φ(z). To make use of it, # we write # Φ(z) = exp(-z²/2)·erfcx(-z/√2)/2 # # to transform the normalised black function to # # b = ½ · exp(-½(h²+t²)) · [ erfcx(-(h+t)/√2) - erfcx(-(h-t)/√2) ] # # which now involves only one exponential, instead of three, when |h|+|t| > 5.66 , and the difference inside the # square bracket is between the evaluation of two rational functions, which, typically, according to Marsaglia, # retains the full 16 digits of accuracy (or just a little less than that). # arg_minus = (t - h) / sqrt2 arg_plus = (-t - h) / sqrt2 b = exp(-(square(h) + square(t)) / 2) * (erfcx(arg_plus) - erfcx(arg_minus)) / 2 return abs(positive_part(b)) end # Calculation of # # b = Φ(h+t)·exp(h·t) - Φ(h-t)·exp(-h·t) # # exp(-(h²+t²)/2) # = --------------- · [ Y(h+t) - Y(h-t) ] # √(2π) # with # Y(z) := Φ(z)/φ(z) # # using an expansion of Y(h+t)-Y(h-t) for small t to twelvth order in t. # Theoretically accurate to (better than) precision ε = 2.23E-16 when h<=0 and t < τ with τ := 2·ε^(1/16) ≈ 0.21. # The main bottleneck for precision is the coefficient a:=1+h·Y(h) when |h|>1 . function small_t_expansion_of_normalised_black_call(h, t) # Y(h) := Φ(h)/φ(h) = √(π/2)·erfcx(-h/√2) # a := 1+h·Y(h) --- Note that due to h<0, and h·Y(h) -> -1 (from above) as h -> -∞, we also have that a>0 and a -> 0 as h -> -∞ # w := t² , h2 := h² half_h_sqrt2 = h / sqrt2 a = 1 + sqrtπ * half_h_sqrt2 * erfcx(-half_h_sqrt2) w = square(t) h2 = square(h) #TODO: this is too much for float "less" than Float64 @muladd expansion = 2 * t * (a + w * ((-1 + a * (3 + h2)) / 6 + w * ((-7 + 15 * a + h2 * (-1 + a * (10 + h2))) / 120 + w * ((-57 + 105 * a + h2 * (-18 + 105 * a + h2 * (-1 + a * (21 + h2)))) / 5040 + w * ((-561 + 945 * a + h2 * (-285 + 1260 * a + h2 * (-33 + 378 * a + h2 * (-1 + a * (36 + h2))))) / 362880 + w * ((-6555 + 10395 * a + h2 * (-4680 + 17325 * a + h2 * (-840 + 6930 * a + h2 * (-52 + 990 * a + h2 * (-1 + a * (55 + h2)))))) / 39916800 + ((-89055 + 135135 * a + h2 * (-82845 + 270270 * a + h2 * (-20370 + 135135 * a + h2 * (-1926 + 25740 * a + h2 * (-75 + 2145 * a + h2 * (-1 + a * (78 + h2))))))) * w) / 6227020800)))))) b = exp((-(h2 + w) / 2)) * expansion / sqrt2π return abs(positive_part(b)) end # const small_t_expansion_of_normalised_black_threshold = 2 * sixteenth_root_dbl_epsilon function small_t_expansion_of_normalised_black_threshold(x) return 2 * sixteenth_root_dbl_epsilon(x) end # b(x,s) = Φ(x/s+s/2)·exp(x/2) - Φ(x/s-s/2)·exp(-x/2) # = Φ(h+t)·exp(x/2) - Φ(h-t)·exp(-x/2) # with # h = x/s and t = s/2 function normalised_black_call_using_normcdf(x, s) h = x / s t = s / 2 b_max = exp(x / 2) @muladd b = normcdf(h + t) * b_max - normcdf(h - t) / b_max return abs(positive_part(b)) end # # Introduced on 2017-02-18 # # b(x,s) = Φ(x/s+s/2)·exp(x/2) - Φ(x/s-s/2)·exp(-x/2) # = Φ(h+t)·exp(x/2) - Φ(h-t)·exp(-x/2) # = ½ · exp(-u²-v²) · [ erfcx(u-v) - erfcx(u+v) ] # = ½ · [ exp(x/2)·erfc(u-v) - exp(-x/2)·erfc(u+v) ] # = ½ · [ exp(x/2)·erfc(u-v) - exp(-u²-v²)·erfcx(u+v) ] # = ½ · [ exp(-u²-v²)·erfcx(u-v) - exp(-x/2)·erfc(u+v) ] # with # h = x/s , t = s/2 , # and # u = -h/√2 and v = t/√2 . # # Cody's erfc() and erfcx() functions each, for some values of their argument, involve the evaluation # of the exponential function exp(). The normalised Black function requires additional evaluation(s) # of the exponential function irrespective of which of the above formulations is used. However, the total # number of exponential function evaluations can be minimised by a judicious choice of one of the above # formulations depending on the input values and the branch logic in Cody's erfc() and erfcx(). # function normalised_black_call(x::T, s::V) where {T <: Real, V <: Real} if (s <= 0) return zero(x) # sigma=0 -> intrinsic value. end zero_typed = zero(promote_type(T, V)) small_t_expansion_of_normalised_black_threshold_ = small_t_expansion_of_normalised_black_threshold(zero_typed) # Denote h := x/s and t := s/2. # We evaluate the condition |h|>|η|, i.e., h<η && t < τ+|h|-|η| avoiding any divisions by s , where η = asymptotic_expansion_accuracy_threshold and τ = small_t_expansion_of_normalised_black_threshold . s_2 = s / 2 s_square_mod = square(s) / 2 + x z = x / s s_div = s_square_mod / s if (z < asymptotic_expansion_accuracy_threshold && s_div < (small_t_expansion_of_normalised_black_threshold_ + asymptotic_expansion_accuracy_threshold)) return asymptotic_expansion_of_normalised_black_call(z, s_2) end if (s_2 < small_t_expansion_of_normalised_black_threshold_) return small_t_expansion_of_normalised_black_call(z, s_2) end if (s_div > 17 // 20) return normalised_black_call_using_normcdf(x, s) end return normalised_black_call_using_erfcx(z, s_2) end function normalised_vega(x::T, s::V) where {T <: Real, V <: Real} ax = abs(x) zero_typed = zero(promote_type(T, V)) if (ax <= 0) z = exp(-square(s) / 8) return z / sqrt2π elseif (s <= 0 || s <= ax * sqrt_dbl_min(zero_typed)) return zero_typed end return exp(-(square(x / s) + square(s / 2)) / 2) / sqrt2π end function normalised_vega_inverse(x::T, s::V) where {T <: Real, V <: Real} ax = abs(x) zero_typed = zero(promote_type(T, V)) if (ax <= 0) z = exp(square(s) / 8) return sqrt2π * z elseif (s <= 0 || s <= ax * sqrt_dbl_min(zero_typed)) return dbl_max(zero_typed) end return exp((square(x / s) + square(s / 2)) / 2) * sqrt2π end function compute_f_lower_map_and_first_two_derivatives(x, s) ax = abs(x) z = ax / (sqrt3 * s) y = square(z) s2 = square(s) Phi = normcdf(-z) phi = normpdf(z) exp_y_adj = exp(y + s2 / 8) @muladd fpp = pi * y / (6 * s2 * s) * Phi * (8 * s * sqrt3 * ax + (3 * s2 * (s2 - 8) - 8 * square(x)) * Phi / phi) * square(exp_y_adj) Phi2 = twoπ * square(Phi) fp = y * Phi2 * exp_y_adj f = ax * Phi2 / 3 * Phi / sqrt3 return f, fp, fpp end using SpecialFunctions function inverse_normcdf(el) return -erfcinv(2 * el) * sqrt2 end function inverse_f_lower_map(x, f) y = twoπ * abs(x) / 3 return abs(x / (sqrt3 * inverse_normcdf(cbrt(sqrt3 * f / y)))) end function compute_f_upper_map_and_first_two_derivatives(x, s) f = normcdf(-s / 2) w = square(x / s) fp = -exp(w / 2) / 2 fpp = sqrt2π * exp(w + square(s) / 8) / 2 * w / s return f, fp, fpp end function inverse_f_upper_map(f) return -2 * inverse_normcdf(f) end function unchecked_normalised_implied_volatility_from_a_transformed_rational_guess_with_limited_iterations(beta::T, x::V, N) where {T <: Real, V <: Real} # Subtract intrinsic. typed_zero = zero(promote_type(T, V)) typed_one = typed_zero + 1 b_max = exp(x / 2) iterations = 0 direction_reversal_count = 0 dbl_max_typed = dbl_max(typed_zero) dbl_eps_typed = dbl_epsilon(typed_zero) dbl_min_typed = dbl_min(typed_zero) sqrt_dbl_max_typed = sqrt(dbl_max_typed) f = -dbl_max_typed s = -dbl_max_typed ds = s ds_previous = 0 s_left = dbl_min_typed s_right = dbl_max_typed # The temptation is great to use the optimised form b_c = exp(x/2)/2-exp(-x/2)·Phi(sqrt(-2·x)) but that would require implementing all of the above types of round-off and over/underflow handling for this expression, too. s_c = sqrt(abs(2 * x)) b_c = normalised_black_call(x, s_c) v_c_inv = normalised_vega_inverse(x, s_c) # Four branches. if (beta < b_c) s_l = s_c - b_c * v_c_inv b_l = normalised_black_call(x, s_l) if (beta < b_l) f_lower_map_l, d_f_lower_map_l_d_beta, d2_f_lower_map_l_d_beta2 = compute_f_lower_map_and_first_two_derivatives(x, s_l) r_ll = convex_rational_cubic_control_parameter_to_fit_second_derivative_at_right_side(typed_zero, b_l, typed_zero, f_lower_map_l, typed_one, d_f_lower_map_l_d_beta, d2_f_lower_map_l_d_beta2, true) f = rational_cubic_interpolation(beta, typed_zero, b_l, typed_zero, f_lower_map_l, typed_one, d_f_lower_map_l_d_beta, r_ll) if (!(f > 0)) # This can happen due to roundoff truncation for extreme values such as |x|>500. # We switch to quadratic interpolation using f(0)≡0, f(b_l), and f'(0)≡1 to specify the quadratic. t = beta / b_l @muladd f = (f_lower_map_l * t + b_l * (1 - t)) * t end s = inverse_f_lower_map(x, f) s_right = s_l # # In this branch, which comprises the lowest segment, the objective function is # g(s) = 1/ln(b(x,s)) - 1/ln(beta) # ≡ 1/ln(b(s)) - 1/ln(beta) # This makes # g' = -b'/(b·ln(b)²) # newton = -g/g' = (ln(beta)-ln(b))·ln(b)/ln(beta)·b/b' # halley = g''/g' = b''/b' - b'/b·(1+2/ln(b)) # hh3 = g'''/g' = b'''/b' + 2(b'/b)²·(1+3/ln(b)·(1+1/ln(b))) - 3(b''/b)·(1+2/ln(b)) # # The Householder(3) iteration is # s_n+1 = s_n + newton · [ 1 + halley·newton/2 ] / [ 1 + newton·( halley + hh3·newton/6 ) ] # while (iterations < N && abs(ds) > dbl_eps_typed * s) iterations += 1 if (ds * ds_previous < 0) direction_reversal_count += 1 end if (iterations > 0 && (3 == direction_reversal_count || !(s > s_left && s < s_right))) # If looping inefficently, or the forecast step takes us outside the bracket, or onto its edges, switch to binary nesting. # NOTE that this can only really happen for very extreme values of |x|, such as |x| = |ln(F/K)| > 500. s = (s_left + s_right) / 2 if (s_right - s_left <= dbl_eps_typed * s) break end direction_reversal_count = 0 ds = 0 end ds_previous = ds b = normalised_black_call(x, s) bp = normalised_vega(x, s) if (b > beta && s < s_right) s_right = s elseif (b < beta && s > s_left) s_left = s # Tighten the bracket if applicable. end if (b <= 0 || bp <= 0) # Numerical underflow. Switch to binary nesting for this iteration. ds = (s_left + s_right) / 2 - s else ln_b = log(b) ln_beta = log(beta) bpob = bp / b h = x / s b_halley = square(h) / s - s / 4 newton = (ln_beta - ln_b) * ln_b / ln_beta / bpob inv_lnb = inv(ln_b) @muladd halley = b_halley - bpob * (1 + 2 * inv_lnb) @muladd b_hh3 = square(b_halley) - 3 * square(h / s) - 1 // 4 @muladd hh3 = b_hh3 + 2 * square(bpob) * (1 + 3 * inv_lnb * (1 + inv_lnb)) - 3 * b_halley * bpob * (1 + 2 * inv_lnb) ds = newton * householder_factor(newton, halley, hh3) end ds = max(-s / 2, ds) s += ds end return s else v_l_inv = normalised_vega_inverse(x, s_l) r_lm = convex_rational_cubic_control_parameter_to_fit_second_derivative_at_right_side(b_l, b_c, s_l, s_c, v_l_inv, v_c_inv, typed_zero, false) s = rational_cubic_interpolation(beta, b_l, b_c, s_l, s_c, v_l_inv, v_c_inv, r_lm) s_left = s_l s_right = s_c end else s_h = s_c if (v_c_inv < dbl_max_typed) s_h += (b_max - b_c) * v_c_inv end b_h = normalised_black_call(x, s_h) if (beta <= b_h) v_h_inv = normalised_vega_inverse(x, s_h) r_hm = convex_rational_cubic_control_parameter_to_fit_second_derivative_at_left_side(b_c, b_h, s_c, s_h, v_c_inv, v_h_inv, typed_zero, false) s = rational_cubic_interpolation(beta, b_c, b_h, s_c, s_h, v_c_inv, v_h_inv, r_hm) s_left = s_c s_right = s_h else f_upper_map_h, d_f_upper_map_h_d_beta, d2_f_upper_map_h_d_beta2 = compute_f_upper_map_and_first_two_derivatives(x, s_h) if (d2_f_upper_map_h_d_beta2 > -sqrt_dbl_max_typed && d2_f_upper_map_h_d_beta2 < sqrt_dbl_max_typed) r_hh = convex_rational_cubic_control_parameter_to_fit_second_derivative_at_left_side(b_h, b_max, f_upper_map_h, typed_zero, d_f_upper_map_h_d_beta, -typed_one * 1 // 2, d2_f_upper_map_h_d_beta2, true) f = rational_cubic_interpolation(beta, b_h, b_max, f_upper_map_h, typed_zero, d_f_upper_map_h_d_beta, -typed_one * 1 // 2, r_hh) end if (f <= 0) h = b_max - b_h t = (beta - b_h) / h omt = 1 - t @muladd f = (f_upper_map_h * omt + h * t / 2) * omt # We switch to quadratic interpolation using f(b_h), f(b_max)≡0, and f'(b_max)≡-1/2 to specify the quadratic. end s = inverse_f_upper_map(f) s_left = s_h if (beta > b_max / 2) # Else we better drop through and let the objective function be g(s) = b(x,s)-beta. # # In this branch, which comprises the upper segment, the objective function is # g(s) = ln(b_max-beta)-ln(b_max-b(x,s)) # ≡ ln((b_max-beta)/(b_max-b(s))) # This makes # g' = b'/(b_max-b) # newton = -g/g' = ln((b_max-b)/(b_max-beta))·(b_max-b)/b' # halley = g''/g' = b''/b' + b'/(b_max-b) # hh3 = g'''/g' = b'''/b' + g'·(2g'+3b''/b') # and the iteration is # s_n+1 = s_n + newton · [ 1 + halley·newton/2 ] / [ 1 + newton·( halley + hh3·newton/6 ) ]. # while (iterations < N && abs(ds) > dbl_eps_typed * s) iterations += 1 if (ds * ds_previous < 0) direction_reversal_count += 1 end if (iterations > 0 && (3 == direction_reversal_count || !(s > s_left && s < s_right))) # If looping inefficently, or the forecast step takes us outside the bracket, or onto its edges, switch to binary nesting. # NOTE that this can only really happen for very extreme values of |x|, such as |x| = |ln(F/K)| > 500. s = (s_left + s_right) / 2 if (s_right - s_left <= dbl_eps_typed * s) break end direction_reversal_count = 0 ds = 0 end ds_previous = ds b = normalised_black_call(x, s) bp = normalised_vega(x, s) if (b > beta && s < s_right) s_right = s elseif (b < beta && s > s_left) s_left = s # Tighten the bracket if applicable. end if (b >= b_max || bp <= dbl_min_typed) # Numerical underflow. Switch to binary nesting for this iteration. ds = (s_left + s_right) / 2 - s else b_max_minus_b = b_max - b g = log((b_max - beta) / b_max_minus_b) gp = bp / b_max_minus_b b_halley = square(x / s) / s - s / 4 @muladd b_hh3 = square(b_halley) - 3 * square(x / square(s)) - 1 // 4 newton = -g / gp halley = b_halley + gp @muladd hh3 = b_hh3 + gp * (2 * gp + 3 * b_halley) ds = newton * householder_factor(newton, halley, hh3) end ds = max(-s / 2, ds) s += ds end return s end end end # In this branch, which comprises the two middle segments, the objective function is g(s) = b(x,s)-beta, or g(s) = b(s) - beta, for short. # This makes # newton = -g/g' = -(b-beta)/b' # halley = g''/g' = b''/b' = x²/s³-s/4 # hh3 = g'''/g' = b'''/b' = halley² - 3·(x/s²)² - 1/4 # and the iteration is # s_n+1 = s_n + newton · [ 1 + halley·newton/2 ] / [ 1 + newton·( halley + hh3·newton/6 ) ]. # while (iterations < N && abs(ds) > dbl_eps_typed * s) iterations += 1 if (ds * ds_previous < 0) direction_reversal_count += 1 end if (iterations > 0 && (3 == direction_reversal_count || !(s > s_left && s < s_right))) # If looping inefficently, or the forecast step takes us outside the bracket, or onto its edges, switch to binary nesting. # NOTE that this can only really happen for very extreme values of |x|, such as |x| = |ln(F/K)| > 500. s = (s_left + s_right) / 2 if (s_right - s_left <= dbl_eps_typed * s) break end direction_reversal_count = 0 ds = 0 end ds_previous = ds b = normalised_black_call(x, s) bp_inv = normalised_vega_inverse(x, s) if (b > beta && s < s_right) s_right = s elseif (b < beta && s > s_left) s_left = s # Tighten the bracket if applicable. end newton = (beta - b) * bp_inv halley = square(x / s) / s - s / 4 hh3 = square(halley) - 3 * square(x / square(s)) - 1 // 4 ds = max(-s / 2, newton * householder_factor(newton, halley, hh3)) s += ds end return s end function blimpv_lets_be_rational(F::num1, K::num2, T::num4, price::num5, FlagIsCall::Bool, ::Real, niter::Integer) where {num1, num2, num4, num5} x = log(F / K) q = ifelse(FlagIsCall, 1, -1) return unchecked_normalised_implied_volatility_from_a_transformed_rational_guess_with_limited_iterations(price / sqrt(F * K), x * q, niter) / sqrt(T) end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
1522
using .ReverseDiff # blsimpv_impl(x::ReverseDiff.TrackedReal,S0, K, r, T, price_d, d, FlagIsCall, xtol, ytol) = ReverseDiff.track(blsimpv_impl,x,S0, K, r, T, price_d, d, FlagIsCall, xtol, ytol) # ReverseDiff.@grad function blsimpv_impl(x,S0, K, r, T, price_d, d, FlagIsCall, xtol, ytol) # S0_r=ReverseDiff.value(S0) # K_r=ReverseDiff.value(K) # r_r=ReverseDiff.value(r) # T_r=ReverseDiff.value(T) # p_r=ReverseDiff.value(price_d) # d_r=ReverseDiff.value(d) # sigma = blsimpv(S0_r, K_r, r_r, T_r, p_r, d_r, FlagIsCall, xtol, ytol) # function update_pullback(slice) # inputs = [S0_r, K_r, r_r, T_r, sigma, d_r]; # @views fwd_grad=ReverseDiff.gradient(x -> blsprice(x[1], x[2], x[3], x[4], x[5], x[6], FlagIsCall), inputs) # @views der_S0 = fwd_grad[1] # @views der_K = fwd_grad[2] # @views der_r = fwd_grad[3] # @views der_T = fwd_grad[4] # @views der_d = fwd_grad[6] # @views slice_mod = -1 / fwd_grad[5] # return 0, slice_mod * der_S0, slice_mod * der_K, slice_mod * der_r, slice_mod * der_T, -slice_mod, slice_mod * der_d, 0, 0, 0 # end # return sigma, update_pullback # end function FinancialToolbox.blimpv_impl(::ReverseDiff.TrackedReal, S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) S0_r = ReverseDiff.value(S0) K_r = ReverseDiff.value(K) T_r = ReverseDiff.value(T) p_r = ReverseDiff.value(price_d) σ = blimpv(S0_r, K_r, T_r, p_r, FlagIsCall, xtol, n_iter_max) der_ = blprice_diff_impl(S0, K, T, σ, price_d, FlagIsCall) / blvega_impl(S0_r, K_r, T_r, σ) out = σ + der_ return out end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
2341
using .Symbolics function blcheck_impl(::num0, S0::num1, K::num2, T::num4, σ::num5) where {num0 <: Num, num1, num2, num4, num5} return end @register_symbolic blimpv(S0, K, T, Price, FlagIsCall::Bool, xtol::Float64, n_iter_max::Int64) function finalize_derivative_fwd(S0, K, T, σ, der_fwd) vega = blvega_impl(S0, K, T, σ) return der_fwd / vega end #TODO: implement derivatives function Symbolics.derivative(::typeof(blimpv), args::NTuple{7, Any}, ::Val{1}) S0, K, T, price_d, FlagIsCall, xtol, n_iter_max = args σ = blimpv(S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) @variables new_S0 D_S0 = Differential(new_S0) price_diff = -blprice_impl(new_S0, K, T, σ, FlagIsCall) der_fwd = expand_derivatives(D_S0(price_diff)) der_fwd = substitute(der_fwd, Dict(new_S0 => S0)) # der_fwd = -bldelta(S0, K, T, σ, FlagIsCall) return finalize_derivative_fwd(S0, K, T, σ, der_fwd) end function Symbolics.derivative(::typeof(blimpv), args::NTuple{7, Any}, ::Val{2}) S0, K, T, price_d, FlagIsCall, xtol, n_iter_max = args σ = blimpv(S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) @variables new_K D_K = Differential(new_K) price_diff = -blprice_impl(S0, new_K, T, σ, FlagIsCall) der_fwd = expand_derivatives(D_K(price_diff)) der_fwd = substitute(der_fwd, Dict(new_K => K)) #der_fwd = bldelta(S0, K, r, T, σ, d, FlagIsCall) return finalize_derivative_fwd(S0, K, T, σ, der_fwd) end function Symbolics.derivative(::typeof(blimpv), args::NTuple{7, Any}, ::Val{3}) S0, K, T, price_d, FlagIsCall, xtol, n_iter_max = args σ = blimpv(S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) @variables new_T D_T = Differential(new_T) price_diff = -blprice_impl(S0, K, new_T, σ, FlagIsCall) der_fwd = expand_derivatives(D_T(price_diff)) der_fwd = substitute(der_fwd, Dict(new_T => T)) #der_fwd = bldelta(S0, K, r, T, σ, d, FlagIsCall) return finalize_derivative_fwd(S0, K, T, σ, der_fwd) end function Symbolics.derivative(::typeof(blimpv), args::NTuple{7, Any}, ::Val{4}) S0, K, T, price_d, FlagIsCall, xtol, n_iter_max = args σ = blimpv(S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) vega = blvega_impl(S0, K, T, σ) return inv(vega) end function Symbolics.derivative(::typeof(blimpv), ::NTuple{7, Any}, ::Any) return 0 end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
7917
using .TaylorSeries # function integrate_correct(a::Taylor1{T}, x::S) where {T <: Number, S <: Number} # order = get_order(a) # @views aa = a[0] / 1 + zero(x) # R = typeof(aa) # coeffs = Array{typeof(aa)}(undef, order + 2) # # fill!(coeffs, zero(aa)) # @inbounds @views coeffs[1] = convert(R, x) # @inbounds for i = 1:order+1 # @views coeffs[i+1] = a[i-1] / i # end # return Taylor1(coeffs) # end function mul_internal(f_der::Taylor1{T}, x::Taylor1{T}, k::Int) where {T <: Number} k_1 = k + 1 @views @inbounds res = sum(f_der[i] * x[k_1-i] * (k_1 - i) for i = 0:k) return res / k_1 end function mul_and_integrate(f_der::Taylor1{T}, x::Taylor1{T}, y::S) where {T <: Number, S <: Number} order = get_order(x) res = Array{T}(undef, order + 1) res_t = Taylor1(res) @views @inbounds res_t[0] = y @inbounds for i = 1:order @views res_t[i] = mul_internal(f_der, x, i - 1) end return res_t end # function define_diff_rule(f, df) # @eval function (op::typeof($f))(x::Taylor1) # @views val = x[0] # normpdf_res = ($df)(x) # return FinancialToolbox.mul_and_integrate(normpdf_res, x, ($f)(val)) # end # end # define_diff_rule(normcdf, normpdf) function FinancialToolbox.normcdf(x::Taylor1) @views val = x[0] # x_adj=Taylor1(x.co) normpdf_res = normpdf(x) # der = derivative(x) return mul_and_integrate(normpdf_res, x, normcdf(val)) end # function mul2!(c::HomogeneousPolynomial, a::HomogeneousPolynomial, b::HomogeneousPolynomial) # (iszero(b) || iszero(a)) && return nothing # @inbounds num_coeffs_a = size_table[a.order+1] # @inbounds num_coeffs_b = size_table[b.order] # @inbounds posTb = pos_table[c.order+1] # @inbounds indTa = index_table[a.order+1] # @inbounds indTb = index_table[b.order] # @inbounds for na = 1:num_coeffs_a # ca = a[na] # # iszero(ca) && continue # inda = indTa[na] # @inbounds for nb = 1:num_coeffs_b # cb = b[1+nb] # # iszero(cb) && continue # indb = indTb[nb] # pos = posTb[inda+indb] # c[pos] += ca * cb # end # end # return nothing # end # function mul_and_integrate(f_der::TaylorN{T}, x::TaylorN{T}, y::S) where {T <: Number, S <: Number} # order = get_order(x) # res_t = Taylor1(order) # @views @inbounds res_t[0] = y # @inbounds for i = 1:order # @views res_t[i] = mul_internal(f_der, x, i - 1) # end # return res_t # end # TODO: move to proper implementation: https://github.com/JuliaDiff/TaylorSeries.jl/issues/285 function FinancialToolbox.normcdf(x::TaylorN) Nmax = 20000 xmin = -20.0 x_ = range(xmin, length = Nmax, stop = x) dx = (x - xmin) / (Nmax - 1) return sum(FinancialToolbox.normpdf.(x_)) * dx end # function normcdf2(x::TaylorN) # @views val = x[0][1] # normpdf_res = normpdf(x) # grad = TaylorSeries.gradient(x) # # PriceCall2-integrate(derivative(PriceCall2,3),3,PriceCall2[0][1]) # extreme_points2 = [(x - val - integrate(derivative(x, i), i)) for i in eachindex(grad)] # # normpdf_res_adj = [(normpdf_res[0][1] + integrate(derivative(normpdf_res, i), i)) for i in eachindex(grad)] # # @show grad # # extreme_points2 = [sum(integrate(derivative(x, j), j) for j in eachindex(grad) if i != j) for i in eachindex(grad)] # @show extreme_points2 # return normcdf(val) + sum(integrate(normpdf_res * grad[i], i, extreme_points2[i]) for i in eachindex(grad)) #- tmp_el # end # function normcdf3(x::TaylorN) # @views val = x[0][1] # normpdf_res = normpdf(x) # # grad = TaylorSeries.gradient(x) # # PriceCall2-integrate(derivative(PriceCall2,3),3,PriceCall2[0][1]) # # extreme_points = [(x - val - integrate(derivative(x, i), i)) for i in eachindex(grad)] # # extreme_points = [(x - val - integrate(derivative(x, i), i)) for i in eachindex(grad)] # # @show extreme_points # # TaylorN([HomogeneousPolynomial([0.0]), HomogeneousPolynomial([0.0, 1.0, 1.0])]) # return normcdf(x[0][1]) + integrate(normpdf_res * derivative(x, 1), 1, x - integrate(derivative(x, 1), 1, x[0][1])) # # return normcdf(val) + sum(integrate(normpdf_res * grad[i], i, extreme_points[i][0][1]) for i in eachindex(grad)) #- tmp_el # end value__d(x::Taylor1) = @views x[0] value__d(x::TaylorN) = @views x[0][1] value__d(x) = x !hasmethod(isless, (Taylor1, Taylor1)) ? (Base.isless(x::Taylor1, y::Taylor1) = @views value__d(x) < value__d(y)) : nothing !hasmethod(isless, (TaylorN, TaylorN)) ? (Base.isless(x::TaylorN, y::TaylorN) = @views value__d(x) < value__d(y)) : nothing # function blsimpv_impl(::Taylor1, S0, K, r, T, price_d, d, FlagIsCall, xtol, ytol) # S0_r = value__d(S0) # K_r = value__d(K) # r_r = value__d(r) # T_r = value__d(T) # p_r = value__d(price_d) # d_r = value__d(d) # sigma = blsimpv(S0_r, K_r, r_r, T_r, p_r, d_r, FlagIsCall, xtol, ytol) # der_ = (price_d - blsprice(S0, K, r, T, sigma, d, FlagIsCall)) / blsvega(S0_r, K_r, r_r, T_r, sigma, d_r) # out = sigma + der_ # return out # end get_order_adj(x::Taylor1) = get_order(x) get_order_adj(::Any) = 0 function blimpv_impl(::Taylor1{V}, S0, K, T, price_d, FlagIsCall, xtol, n_iter_max) where {V} S0_r = value__d(S0) K_r = value__d(K) T_r = value__d(T) p_r = value__d(price_d) sigma = blimpv(S0_r, K_r, T_r, p_r, FlagIsCall, xtol, n_iter_max) max_order = maximum(map(x -> get_order_adj(x), (S0, K, T, price_d))) vega = blvega_impl(S0_r, K_r, T_r, sigma) σ_coeffs = Array{V}(undef, max_order + 1) σ_coeffs .= NaN @views σ_coeffs[1] = sigma for i = 1:max_order # @show σ_coeffs new_c = deepcopy(σ_coeffs[1:i]) cur_sigma = Taylor1(new_c, i) # cur_sigma += (price_d - blsprice(S0, K, r, T, cur_sigma, d, FlagIsCall)) cur_sigma += (price_d - blprice_impl(S0, K, T, cur_sigma, FlagIsCall)) / vega # @views σ_coeffs[i+1] = cur_sigma[i] / vega sigma_n = cur_sigma[i] @views σ_coeffs[i+1] = sigma_n end return Taylor1(σ_coeffs) end # function blsimpv_impl(::TaylorN, S0, K, r, T, price_d, d, FlagIsCall, xtol, ytol) # S0_r = value__d(S0) # K_r = value__d(K) # r_r = value__d(r) # T_r = value__d(T) # p_r = value__d(price_d) # d_r = value__d(d) # sigma = blsimpv(S0_r, K_r, r_r, T_r, p_r, d_r, FlagIsCall, xtol, ytol) # der_ = (price_d - blsprice(S0, K, r, T, sigma, d, FlagIsCall)) / blsvega(S0_r, K_r, r_r, T_r, sigma, d_r, FlagIsCall) # out = sigma + der_ # return out # end # @inline function blsimpv_impl(::TaylorN, S0, K, r, T, price_d, d, FlagIsCall, xtol, ytol) # zero_type = S0 * K * r * T * d * price_d * 0 # S0_r = value__d(S0) # K_r = value__d(K) # r_r = value__d(r) # T_r = value__d(T) # p_r = value__d(price_d) # d_r = value__d(d) # sigma = blsimpv(S0_r, K_r, r_r, T_r, p_r, d_r, FlagIsCall, xtol, ytol) # max_order = get_order(zero_type) # vega = blsvega(S0_r, K_r, r_r, T_r, sigma, d_r) # σ_coeffs = Array{Float64}[] # # σ_coeffs = Array{Array{Float64}}(undef, get_order(zero_type) + 1) # # σ_coeffs = Array{Float64}(undef, max_order + 1) # push!(σ_coeffs, [sigma]) # # @views σ_coeffs[1] = [sigma] # for i = 1:max_order # @show σ_coeffs # cur_sigma = TaylorN(HomogeneousPolynomial.(deepcopy(σ_coeffs))) # @show cur_sigma # @show price_d - blsprice(S0, K, r, T, cur_sigma, d, FlagIsCall) # cur_sigma += (price_d - blsprice(S0, K, r, T, cur_sigma, d, FlagIsCall)) / vega # @show cur_sigma # σ_der = cur_sigma[i-1] # push!(σ_coeffs, σ_der.coeffs) # # @views σ_coefkfs[i+1] = σ_der # end # return TaylorN(HomogeneousPolynomial.(σ_coeffs)) # # return Taylor1(σ_coeffs) # end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
877
function print_colored(in::String, color1) if (VERSION.major == 0 && VERSION.minor <= 6) return print_with_color(color1, in) else return printstyled(in, color = color1) end end test_list = ["testRealNumbers.jl", "test_implied_volatility.jl", "test_implied_volatility_black.jl", "testComplexNumbers.jl", "testForwardDiff.jl", "testReverseDiff.jl", "testDual_.jl", "testHyperDualNumbers.jl", "testDates.jl", "testTaylor.jl", "testZygote.jl", "testDiffractor.jl", "testSymbolics.jl"] println("Running tests:\n") for (current_test, i) in zip(test_list, 1:length(test_list)) println("------------------------------------------------------------") println(" * $(current_test) *") include(current_test) println("------------------------------------------------------------") if (i < length(test_list)) println("") end end
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
5982
if !(VERSION.major == 0 && VERSION.minor <= 6) using Test else using Base.Test end using FinancialToolbox print_colored("Starting Complex Number Test\n", :green) #Test Parameters testToll = 1e-14; spot = 10; K = 10; r = 0.02; T = 2.0; sigma = 0.2; d = 0.01; assert_(value, toll) = @test abs(value) < toll #EuropeanCall Option PriceCall = blsprice(spot, K, r, T, sigma, d); DeltaCall = blsdelta(spot, K, r, T, sigma, d); ThetaCall = blstheta(spot, K, r, T, sigma, d); LambdaCall = blslambda(spot, K, r, T, sigma, d); RhoCall = blsrho(spot, K, r, T, sigma, d); #EuropeanPut Option PricePut = blsprice(spot, K, r, T, sigma, d, false); DeltaPut = blsdelta(spot, K, r, T, sigma, d, false); ThetaPut = blstheta(spot, K, r, T, sigma, d, false); RhoPut = blsrho(spot, K, r, T, sigma, d, false); LambdaPut = blslambda(spot, K, r, T, sigma, d, false); #Equals for both Options Gamma = blsgamma(spot, K, r, T, sigma, d); Vega = blsvega(spot, K, r, T, sigma, d); ## Complex Test with Complex Step Approximation for European Call #Test parameters DerToll = 1e-13; di = 1e-15; df(f, x) = f(x + 1im * di) / di; #Function definition Fcall1(spot) = blsprice(spot, K, r, T, sigma, d); Gcall1(r) = blsprice(spot, K, r, T, sigma, d); Hcall1(T) = blsprice(spot, K, r, T, sigma, d); Lcall1(sigma) = blsprice(spot, K, r, T, sigma, d); Pcall1(spot) = blsprice(spot, K, r, T, sigma, d) * spot.re / blsprice(spot.re, K, r, T, sigma, d); #TEST print_colored("--- European Call Sensitivities: Complex Step Approximation\n", :yellow) print_colored("-----Testing Delta\n", :blue); assert_(df(Fcall1, spot).im - DeltaCall, DerToll) print_colored("-----Testing Rho\n", :blue); assert_(df(Gcall1, r).im - RhoCall, DerToll) print_colored("-----Testing Theta\n", :blue); assert_(-df(Hcall1, T).im - ThetaCall, DerToll) print_colored("-----Testing Lambda\n", :blue); assert_(df(Pcall1, spot).im - LambdaCall, DerToll) ## Complex Test with Complex Step Approximation for European Put #Function definition Fput1(spot) = blsprice(spot, K, r, T, sigma, d, false); Gput1(r) = blsprice(spot, K, r, T, sigma, d, false); Hput1(T) = blsprice(spot, K, r, T, sigma, d, false); Pput1(spot) = blsprice(spot, K, r, T, sigma, d, false) * spot.re / blsprice(spot.re, K, r, T, sigma, d, false); #TEST print_colored("--- European Put Sensitivities: Complex Step Approximation\n", :yellow) print_colored("-----Testing Delta\n", :blue); assert_(df(Fput1, spot).im - DeltaPut, DerToll) print_colored("-----Testing Rho\n", :blue); assert_(df(Gput1, r).im - RhoPut, DerToll) print_colored("-----Testing Theta\n", :blue); assert_(-df(Hput1, T).im - ThetaPut, DerToll) print_colored("-----Testing Lambda\n", :blue); assert_(df(Pput1, spot).im - LambdaPut, DerToll) print_colored("-----Testing Vega\n", :blue); assert_(df(Lcall1, sigma).im - Vega, DerToll) print_colored("Complex Number Test Passed\n", :green) println("") #TEST OF INPUT VALIDATION print_colored("Starting Input Validation Test Complex\n", :magenta) print_colored("----Testing Negative Spot Price \n", :cyan) @test_throws(DomainError, blsprice(-spot + 1im, K, r, T, sigma, d)) @test_throws(DomainError, blkprice(-spot + 1im, K, r, T, sigma)) @test_throws(DomainError, blsdelta(-spot + 1im, K, r, T, sigma, d)) @test_throws(DomainError, blsgamma(-spot + 1im, K, r, T, sigma, d)) @test_throws(DomainError, blstheta(-spot + 1im, K, r, T, sigma, d)) @test_throws(DomainError, blsrho(-spot + 1im, K, r, T, sigma, d)) @test_throws(DomainError, blspsi(-spot + 1im, K, r, T, sigma, d)) @test_throws(DomainError, blslambda(-spot + 1im, K, r, T, sigma, d)) @test_throws(DomainError, blsvanna(-spot + 1im, K, r, T, sigma, d)) @test_throws(DomainError, blsvega(-spot + 1im, K, r, T, sigma, d)) print_colored("----Testing Negative Strike Price \n", :cyan) @test_throws(DomainError, blsprice(spot, -K + 1im, r, T, sigma, d)) @test_throws(DomainError, blkprice(spot, -K + 1im, r, T, sigma)) @test_throws(DomainError, blsdelta(spot, -K + 1im, r, T, sigma, d)) @test_throws(DomainError, blsgamma(spot, -K + 1im, r, T, sigma, d)) @test_throws(DomainError, blstheta(spot, -K + 1im, r, T, sigma, d)) @test_throws(DomainError, blsrho(spot, -K + 1im, r, T, sigma, d)) @test_throws(DomainError, blspsi(spot, -K + 1im, r, T, sigma, d)) @test_throws(DomainError, blslambda(spot, -K + 1im, r, T, sigma, d)) @test_throws(DomainError, blsvanna(spot, -K + 1im, r, T, sigma, d)) @test_throws(DomainError, blsvega(spot, -K + 1im, r, T, sigma, d)) print_colored("----Testing Negative Time to Maturity \n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, -T + 1im, sigma, d)) @test_throws(DomainError, blkprice(spot, K, r, -T + 1im, sigma)) @test_throws(DomainError, blsdelta(spot, K, r, -T + 1im, sigma, d)) @test_throws(DomainError, blsgamma(spot, K, r, -T + 1im, sigma, d)) @test_throws(DomainError, blstheta(spot, K, r, -T + 1im, sigma, d)) @test_throws(DomainError, blsrho(spot, K, r, -T + 1im, sigma, d)) @test_throws(DomainError, blspsi(spot, K, r, -T + 1im, sigma, d)) @test_throws(DomainError, blslambda(spot, K, r, -T + 1im, sigma, d)) @test_throws(DomainError, blsvanna(spot, K, r, -T + 1im, sigma, d)) @test_throws(DomainError, blsvega(spot, K, r, -T + 1im, sigma, d)) print_colored("----Testing Negative Volatility \n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, T, -sigma + 1im, d)) @test_throws(DomainError, blkprice(spot, K, r, T, -sigma + 1im)) @test_throws(DomainError, blsdelta(spot, K, r, T, -sigma + 1im, d)) @test_throws(DomainError, blsgamma(spot, K, r, T, -sigma + 1im, d)) @test_throws(DomainError, blstheta(spot, K, r, T, -sigma + 1im, d)) @test_throws(DomainError, blsrho(spot, K, r, T, -sigma + 1im, d)) @test_throws(DomainError, blspsi(spot, K, r, T, -sigma + 1im, d)) @test_throws(DomainError, blslambda(spot, K, r, T, -sigma + 1im, d)) @test_throws(DomainError, blsvanna(spot, K, r, T, -sigma + 1im, d)) @test_throws(DomainError, blsvega(spot, K, r, T, -sigma + 1im, d)) print_colored("Complex Input Validation Test Passed\n", :magenta)
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
2923
using FinancialToolbox if !(VERSION.major == 0 && VERSION.minor <= 6) using Test, Dates else using Base.Test end function yearFractionTester(StartDate, EndDate, MatlabResults, TestToll = 1e-14) for i = 0:FinancialToolbox.currMaxImplemented @test(abs(MatlabResults[i+1] - yearfrac(StartDate, EndDate, i)) < TestToll) end return end StartDate = Date(1992, 12, 14); EndDate = Date(1996, 2, 28); @test(-yearfrac(StartDate, StartDate, 0) == 0) @test(-yearfrac(StartDate, EndDate, 0) == yearfrac(EndDate, StartDate, 0)) MatlabResults = [3.20821917808219; 3.20555555555556; 3.25277777777778; 3.20821917808219; 3.20555555555556; 3.20555555555556; 3.20555555555556; 3.20821917808219; 3.20821917808219; 3.25277777777778; 3.20821917808219; 3.20555555555556; 3.20765027322409]; yearFractionTester(StartDate, EndDate, MatlabResults); EndDate2 = Date(1996, 2, 29); MatlabResults2 = [3.21095890410959; 3.20833333333333; 3.25555555555556; 3.21095890410959; 3.20833333333333; 3.20833333333333; 3.20833333333333; 3.21095890410959; 3.21095890410959; 3.25555555555556; 3.21095890410959; 3.20833333333333; 3.21038251366122]; yearFractionTester(StartDate, EndDate2, MatlabResults2); EndDate3 = Date(2026, 2, 28); MatlabResults3 = [33.2301369863014; 33.2055555555556; 33.6916666666667; 33.2301369863014; 33.2055555555556; 33.2055555555556; 33.2055555555556; 33.2082191780822; 33.2301369863014; 33.6916666666667; 33.2301369863014; 33.2055555555556; 33.2080844374580]; TestToll = 1e-13; yearFractionTester(StartDate, EndDate3, MatlabResults3, TestToll); StartDate2 = Date(1992, 2, 29); EndDate4 = Date(1996, 2, 29); MatlabResults4 = [3.99180327868852; 4; 4.05833333333333; 4.00273972602740; 3.99722222222222; 4; 4; 4; 3.99180327868852; 4.05833333333333; 4.00273972602740; 4; 4] yearFractionTester(StartDate2, EndDate4, MatlabResults4); StartDate3 = Date(1992, 3, 30); EndDate5 = Date(1996, 12, 31); MatlabResults5 = [4.75890410958904; 4.75000000000000; 4.82500000000000; 4.75890410958904; 4.75000000000000; 4.75000000000000; 4.75000000000000; 4.75616438356164; 4.75890410958904; 4.82500000000000; 4.75890410958904; 4.75000000000000; 4.75409836065569] yearFractionTester(StartDate3, EndDate5, MatlabResults5); StartDate4 = Date(1992, 3, 31); EndDate6 = Date(1996, 12, 30); MatlabResults6 = [4.75342465753425; 4.75000000000000; 4.81944444444445; 4.75342465753425; 4.75000000000000; 4.75000000000000; 4.75000000000000; 4.75068493150685; 4.75342465753425; 4.81944444444445; 4.75342465753425; 4.75000000000000; 4.74863387978144] yearFractionTester(StartDate4, EndDate6, MatlabResults6); @test_throws(ErrorException, yearfrac(StartDate, EndDate3, FinancialToolbox.currMaxImplemented + 1)); @test_throws(ErrorException, yearfrac(StartDate, EndDate3, -1)); @test(daysact(Date(1992, 12, 14), Date(1992, 12, 13)) == -1) ##Excel test @test(fromExcelNumberToDate(33952) == Date(1992, 12, 14)) println("Test Dates Passed")
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
578
using FinancialToolbox, Diffractor, AbstractDifferentiation S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; σ = 0.2; d = 0.01; price = blsprice(S0, K, r, T, σ, d); price_grad = AbstractDifferentiation.gradient(Diffractor.DiffractorForwardBackend(), x -> blsprice(x...), [S0, K, r, T, σ, d]) price_grad_r = Diffractor.reversediff(x -> blsprice(x...), [S0, K, r, T, σ, d]) sigma_grad = AbstractDifferentiation.gradient(Diffractor.DiffractorForwardBackend(), x -> blsimpv(x...), [S0, K, r, T, price, d]) sigma_grad_r = Diffractor.reversediff(x -> blsimpv(x...), [S0, K, r, T, price, d])
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
7581
using Test using FinancialToolbox, DualNumbers #Test Parameters testToll = 1e-14; #print_colored("Starting Standard Test\n",:green) spot = 10; K = 10; r = 0.02; T = 2.0; sigma = 0.2; d = 0.01; spotDual = dual(spot, 1.0); toll = 1e-6 #EuropeanCall Option PriceCall = blsprice(spot, K, r, T, sigma, d); PriceCallBlack = blkprice(spot, K, r, T, sigma); df(f, x, dx) = (f(x + dx) - f(x)) / dx dx = 1e-8; assert_(value, toll) = @test abs(value) < toll sigma1 = blsimpv(spot, K, r, T, PriceCall, d); ResDual = blsimpv(spotDual, K, r, T, PriceCall, d); DerDF_ = df(spot -> blsimpv(spot, K, r, T, PriceCall, d), spot, dx); assert_(sigma1 - ResDual, toll) assert_(DerDF_ - ResDual.epsilon, toll) sigma1 = blkimpv(spot, K, r, T, PriceCallBlack); ResDual = blkimpv(spotDual, K, r, T, PriceCallBlack); DerDF_ = df(spot -> blkimpv(spot, K, r, T, PriceCallBlack), spot, dx); assert_(sigma1 - ResDual, toll) assert_(DerDF_ - ResDual.epsilon, toll) print_colored("Starting DualNumbers Test\n", :green) #Test Parameters testToll = 1e-14; spot = 10; K = 10; r = 0.02; T = 2.0; sigma = 0.2; d = 0.01; #EuropeanCall Option PriceCall = blsprice(spot, K, r, T, sigma, d); DeltaCall = blsdelta(spot, K, r, T, sigma, d); ThetaCall = blstheta(spot, K, r, T, sigma, d); RhoCall = blsrho(spot, K, r, T, sigma, d); LambdaCall = blslambda(spot, K, r, T, sigma, d); VannaCall = blsvanna(spot, K, r, T, sigma, d); #EuropeanPut Option PricePut = blsprice(spot, K, r, T, sigma, d, false); DeltaPut = blsdelta(spot, K, r, T, sigma, d, false); ThetaPut = blstheta(spot, K, r, T, sigma, d, false); RhoPut = blsrho(spot, K, r, T, sigma, d, false); LambdaPut = blslambda(spot, K, r, T, sigma, d, false); VannaPut = blsvanna(spot, K, r, T, sigma, d, false); #Equals for both Options Gamma = blsgamma(spot, K, r, T, sigma, d); Vega = blsvega(spot, K, r, T, sigma, d); ########DUAL NUMBERS DerToll = 1e-13; #Function definition #Call FcallDual(spot) = blsprice(spot, K, r, T, sigma, d); GcallDual(r) = blsprice(spot, K, r, T, sigma, d); HcallDual(T) = blsprice(spot, K, r, T, sigma, d); LcallDual(sigma) = blsprice(spot, K, r, T, sigma, d); PcallDual(spot) = blsprice(spot, K, r, T, sigma, d) * spot.value / blsprice(spot.value, K, r, T, sigma, d); VcallDual(sigma) = blsdelta(spot, K, r, T, sigma, d); #Put FputDual(spot) = blsprice(spot, K, r, T, sigma, d, false); GputDual(r) = blsprice(spot, K, r, T, sigma, d, false); HputDual(T) = blsprice(spot, K, r, T, sigma, d, false); PputDual(spot) = blsprice(spot, K, r, T, sigma, d, false) * spot.value / blsprice(spot.value, K, r, T, sigma, d, false); VPutDual(sigma) = blsdelta(spot, K, r, T, sigma, d, false); #Input SpotDual = Dual(spot, 1.0); rDual = Dual(r, 1.0); TDual = Dual(T, 1.0); SigmaDual = Dual(sigma, 1.0); #Automatic Differentiation Test #TEST print_colored("--- European Call Sensitivities: DualNumbers\n", :yellow) print_colored("-----Testing Delta\n", :blue); assert_(FcallDual(SpotDual).epsilon - DeltaCall, DerToll) print_colored("-----Testing Rho\n", :blue); assert_(GcallDual(rDual).epsilon - RhoCall, DerToll) print_colored("-----Testing Theta\n", :blue); assert_(-HcallDual(TDual).epsilon - ThetaCall, DerToll) print_colored("-----Testing Lambda\n", :blue); assert_(PcallDual(SpotDual).epsilon - LambdaCall, DerToll) print_colored("-----Testing Vanna\n", :blue); assert_(VcallDual(SigmaDual).epsilon - VannaCall, DerToll) #TEST print_colored("--- European Put Sensitivities: DualNumbers\n", :yellow) print_colored("-----Testing Delta\n", :blue); assert_(FputDual(SpotDual).epsilon - DeltaPut, DerToll) print_colored("-----Testing Rho\n", :blue); assert_(GputDual(rDual).epsilon - RhoPut, DerToll) print_colored("-----Testing Theta\n", :blue); assert_(-HputDual(TDual).epsilon - ThetaPut, DerToll) print_colored("-----Testing Lambda\n", :blue); assert_(PputDual(SpotDual).epsilon - LambdaPut, DerToll) print_colored("-----Testing Vanna\n", :blue); assert_(VPutDual(SigmaDual).epsilon - VannaPut, DerToll) print_colored("-----Testing Vega\n", :blue); assert_(LcallDual(SigmaDual).epsilon - Vega, DerToll) print_colored("Dual Numbers Test Passed\n", :green) println("") #TEST OF INPUT VALIDATION print_colored("Starting Input Validation Test Dual\n", :magenta) print_colored("----Testing Negative Spot Price \n", :cyan) @test_throws(DomainError, blsprice(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blkprice(-SpotDual, K, r, T, sigma)) @test_throws(DomainError, blsdelta(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blsgamma(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blstheta(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blsrho(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blspsi(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blslambda(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blsvanna(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blsvega(-SpotDual, K, r, T, sigma, d)) print_colored("----Testing Negative Strike Price \n", :cyan) KK = Dual(K, 0); @test_throws(DomainError, blsprice(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blkprice(spot, -KK, r, T, sigma)) @test_throws(DomainError, blsdelta(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blsgamma(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blstheta(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blsrho(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blspsi(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blslambda(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blsvanna(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blsvega(spot, -KK, r, T, sigma, d)) print_colored("----Testing Negative Time to Maturity \n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blkprice(spot, K, r, -TDual, sigma)) @test_throws(DomainError, blsdelta(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blsgamma(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blstheta(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blsrho(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blspsi(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blslambda(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blsvanna(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blsvega(spot, K, r, -TDual, sigma, d)) print_colored("----Testing Negative Volatility \n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blkprice(spot, K, r, T, -SigmaDual)) @test_throws(DomainError, blsdelta(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blsgamma(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blstheta(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blsrho(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blspsi(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blslambda(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blsvanna(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blsvega(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blsimpv(spotDual, K, r, T, -0.2, d)) print_colored("Dual Input Validation Test Passed\n", :magenta) price_dual = blsprice(SpotDual, K, r, T, sigma, d) sigma_h1 = blsimpv(SpotDual, K, r, T, price_dual, d) assert_(sigma_h1.value - sigma, DerToll) assert_(sigma_h1.epsilon, DerToll) price_dual2 = blsprice(SpotDual, K, r, T, SigmaDual, d) sigma_h2 = blsimpv(SpotDual, K, r, T, price_dual2, d) assert_(sigma_h2.value - SigmaDual.value, DerToll) assert_(sigma_h2.epsilon - SigmaDual.epsilon, DerToll)
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
6774
using Test using ForwardDiff; using FinancialToolbox Dual_ = ForwardDiff.Dual print_colored("Starting Forward Diff Dual Numbers Test\n", :green) #Test Parameters testToll = 1e-14; spot = 10; K = 10; r = 0.02; T = 2.0; sigma = 0.2; d = 0.01; assert_(value, toll) = @test abs(value) < toll #EuropeanCall Option PriceCall = blsprice(spot, K, r, T, sigma, d); DeltaCall = blsdelta(spot, K, r, T, sigma, d); ThetaCall = blstheta(spot, K, r, T, sigma, d); RhoCall = blsrho(spot, K, r, T, sigma, d); LambdaCall = blslambda(spot, K, r, T, sigma, d); VannaCall = blsvanna(spot, K, r, T, sigma, d); #EuropeanPut Option PricePut = blsprice(spot, K, r, T, sigma, d, false); DeltaPut = blsdelta(spot, K, r, T, sigma, d, false); ThetaPut = blstheta(spot, K, r, T, sigma, d, false); RhoPut = blsrho(spot, K, r, T, sigma, d, false); LambdaPut = blslambda(spot, K, r, T, sigma, d, false); VannaPut = blsvanna(spot, K, r, T, sigma, d, false); #Equals for both Options Gamma = blsgamma(spot, K, r, T, sigma, d); Vega = blsvega(spot, K, r, T, sigma, d); ########DUAL NUMBERS DerToll = 1e-13; #Function definition #Call FcallDual(spot) = blsprice(spot, K, r, T, sigma, d); GcallDual(r) = blsprice(spot, K, r, T, sigma, d); HcallDual(T) = blsprice(spot, K, r, T, sigma, d); LcallDual(sigma) = blsprice(spot, K, r, T, sigma, d); PcallDual(spot) = blsprice(spot, K, r, T, sigma, d) * spot.value / blsprice(spot.value, K, r, T, sigma, d); VcallDual(sigma) = blsdelta(spot, K, r, T, sigma, d); #Put FputDual(spot) = blsprice(spot, K, r, T, sigma, d, false); GputDual(r) = blsprice(spot, K, r, T, sigma, d, false); HputDual(T) = blsprice(spot, K, r, T, sigma, d, false); PputDual(spot) = blsprice(spot, K, r, T, sigma, d, false) * spot.value / blsprice(spot.value, K, r, T, sigma, d, false); VPutDual(sigma) = blsdelta(spot, K, r, T, sigma, d, false); #Input SpotDual = Dual_(spot, 1.0); rDual = Dual_(r, 1.0); TDual = Dual_(T, 1.0); SigmaDual = Dual_(sigma, 1.0); #Automatic Differentiation Test #TEST print_colored("--- European Call Sensitivities: DualNumbers\n", :yellow) print_colored("-----Testing Delta\n", :blue); assert_(FcallDual(SpotDual).partials[1] - DeltaCall, DerToll) print_colored("-----Testing Rho\n", :blue); assert_(GcallDual(rDual).partials[1] - RhoCall, DerToll) print_colored("-----Testing Theta\n", :blue); assert_(-HcallDual(TDual).partials[1] - ThetaCall, DerToll) print_colored("-----Testing Lambda\n", :blue); assert_(PcallDual(SpotDual).partials[1] - LambdaCall, DerToll) print_colored("-----Testing Vanna\n", :blue); assert_(VcallDual(SigmaDual).partials[1] - VannaCall, DerToll) #TEST print_colored("--- European Put Sensitivities: DualNumbers\n", :yellow) print_colored("-----Testing Delta\n", :blue); assert_(FputDual(SpotDual).partials[1] - DeltaPut, DerToll) print_colored("-----Testing Rho\n", :blue); assert_(GputDual(rDual).partials[1] - RhoPut, DerToll) print_colored("-----Testing Theta\n", :blue); assert_(-HputDual(TDual).partials[1] - ThetaPut, DerToll) print_colored("-----Testing Lambda\n", :blue); assert_(PputDual(SpotDual).partials[1] - LambdaPut, DerToll) print_colored("-----Testing Vanna\n", :blue); assert_(VPutDual(SigmaDual).partials[1] - VannaPut, DerToll) print_colored("-----Testing Vega\n", :blue); assert_(LcallDual(SigmaDual).partials[1] - Vega, DerToll) print_colored("Dual Numbers Test Passed\n", :green) println("") #TEST OF INPUT VALIDATION print_colored("Starting Input Validation Test Dual\n", :magenta) print_colored("----Testing Negative Spot Price \n", :cyan) @test_throws(DomainError, blsprice(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blkprice(-SpotDual, K, r, T, sigma)) @test_throws(DomainError, blsdelta(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blsgamma(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blstheta(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blsrho(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blspsi(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blslambda(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blsvanna(-SpotDual, K, r, T, sigma, d)) @test_throws(DomainError, blsvega(-SpotDual, K, r, T, sigma, d)) print_colored("----Testing Negative Strike Price \n", :cyan) KK = Dual_(K, 0); @test_throws(DomainError, blsprice(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blkprice(spot, -KK, r, T, sigma)) @test_throws(DomainError, blsdelta(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blsgamma(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blstheta(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blsrho(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blspsi(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blslambda(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blsvanna(spot, -KK, r, T, sigma, d)) @test_throws(DomainError, blsvega(spot, -KK, r, T, sigma, d)) print_colored("----Testing Negative Time to Maturity \n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blkprice(spot, K, r, -TDual, sigma)) @test_throws(DomainError, blsdelta(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blsgamma(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blstheta(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blsrho(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blspsi(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blslambda(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blsvanna(spot, K, r, -TDual, sigma, d)) @test_throws(DomainError, blsvega(spot, K, r, -TDual, sigma, d)) print_colored("----Testing Negative Volatility \n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blkprice(spot, K, r, T, -SigmaDual)) @test_throws(DomainError, blsdelta(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blsgamma(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blstheta(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blsrho(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blspsi(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blslambda(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blsvanna(spot, K, r, T, -SigmaDual, d)) @test_throws(DomainError, blsvega(spot, K, r, T, -SigmaDual, d)) print_colored("Dual Input Validation Test Passed\n", :magenta) price_dual = blsprice(SpotDual, K, r, T, sigma, d) sigma_h1 = blsimpv(SpotDual, K, r, T, price_dual, d) assert_(sigma_h1.value - sigma, DerToll) assert_(sigma_h1.partials[1], DerToll) price_dual2 = blsprice(SpotDual, K, r, T, SigmaDual, d) sigma_h2 = blsimpv(SpotDual, K, r, T, price_dual2, d) assert_(sigma_h2.value - SigmaDual.value, DerToll) assert_(sigma_h2.partials[1] - SigmaDual.partials[1], DerToll)
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
8338
if !(VERSION.major == 0 && VERSION.minor <= 6) using Test else using Base.Test end using FinancialToolbox print_colored("Starting Hyper Dual Numbers Test\n", :green) #Test Parameters testToll = 1e-14; spot = 10; K = 10; r = 0.02; T = 2.0; sigma = 0.2; d = 0.01; assert_(value, toll) = @test abs(value) < toll #EuropeanCall Option PriceCall = blsprice(spot, K, r, T, sigma, d); DeltaCall = blsdelta(spot, K, r, T, sigma, d); ThetaCall = blstheta(spot, K, r, T, sigma, d); RhoCall = blsrho(spot, K, r, T, sigma, d); LambdaCall = blslambda(spot, K, r, T, sigma, d); VannaCall = blsvanna(spot, K, r, T, sigma, d); #EuropeanPut Option PricePut = blsprice(spot, K, r, T, sigma, d, false); DeltaPut = blsdelta(spot, K, r, T, sigma, d, false); ThetaPut = blstheta(spot, K, r, T, sigma, d, false); RhoPut = blsrho(spot, K, r, T, sigma, d, false); LambdaPut = blslambda(spot, K, r, T, sigma, d, false); VannaPut = blsvanna(spot, K, r, T, sigma, d, false); #Equals for both Options Gamma = blsgamma(spot, K, r, T, sigma, d); Vega = blsvega(spot, K, r, T, sigma, d); ########HYPER DUAL NUMBERS using HyperDualNumbers; DerToll = 1e-13; di = 1e-15; #Function definition SpotHyper = hyper(spot, 1.0, 1.0, 0.0); rHyper = hyper(r, 1.0, 1.0, 0.0); THyper = hyper(T, 1.0, 1.0, 0.0); SigmaHyper = hyper(sigma, 1.0, 1.0, 0.0); KHyper = hyper(K, 1.0, 1.0, 0.0); #Function definition #Call F(spot) = blsprice(spot, K, r, T, sigma, d); FF(spot) = blsdelta(spot, K, r, T, sigma, d); G(r) = blsprice(spot, K, r, T, sigma, d); H(T) = blsprice(spot, K, r, T, sigma, d); L(sigma) = blsprice(spot, K, r, T, sigma, d); P(spot) = blsprice(spot, K, r, T, sigma, d) * spot.value / blsprice(spot.value, K, r, T, sigma, d); V(sigma) = blsdelta(spot, K, r, T, sigma, d); VV(spot, sigma) = blsprice(spot, K, r, T, sigma, d); #Put F1(spot) = blsprice(spot, K, r, T, sigma, d, false); FF1(spot) = blsdelta(spot, K, r, T, sigma, d, false); G1(r) = blsprice(spot, K, r, T, sigma, d, false); H1(T) = blsprice(spot, K, r, T, sigma, d, false); P1(spot) = blsprice(spot, K, r, T, sigma, d, false) * spot.value / blsprice(spot.value, K, r, T, sigma, d, false); V1(sigma) = blsdelta(spot, K, r, T, sigma, d, false); V11(spot, sigma) = blsprice(spot, K, r, T, sigma, d, false); #TEST print_colored("--- European Call Sensitivities: HyperDualNumbers\n", :yellow) print_colored("-----Testing Delta\n", :blue); assert_(F(SpotHyper).epsilon1 - DeltaCall, DerToll) print_colored("-----Testing Gamma\n", :blue); assert_(FF1(SpotHyper).epsilon1 - Gamma, DerToll) print_colored("-----Testing Gamma 2\n", :blue); assert_(F(SpotHyper).epsilon12 - Gamma, DerToll) print_colored("-----Testing Rho\n", :blue); assert_(G(rHyper).epsilon1 - RhoCall, DerToll) print_colored("-----Testing Theta\n", :blue); assert_(-H(THyper).epsilon1 - ThetaCall, DerToll) print_colored("-----Testing Lambda\n", :blue); assert_(P(SpotHyper).epsilon1 - LambdaCall, DerToll) print_colored("-----Testing Vanna\n", :blue); assert_(V(SigmaHyper).epsilon1 - VannaCall, DerToll) print_colored("-----Testing Vanna 2\n", :blue); assert_(VV(hyper(spot, 1, 0, 0), hyper(sigma, 0, 1, 0)).epsilon12 - VannaCall, DerToll) ## Complex Test with Complex Step Approximation for European Put #TEST print_colored("--- European Put Sensitivities: HyperDualNumbers\n", :yellow) print_colored("-----Testing Delta\n", :blue); assert_(F1(SpotHyper).epsilon1 - DeltaPut, DerToll) print_colored("-----Testing Rho\n", :blue); assert_(G1(rHyper).epsilon1 - RhoPut, DerToll) print_colored("-----Testing Theta\n", :blue); assert_(-H1(THyper).epsilon1 - ThetaPut, DerToll) print_colored("-----Testing Lambda\n", :blue); assert_(P1(SpotHyper).epsilon1 - LambdaPut, DerToll) print_colored("-----Testing Vanna\n", :blue); assert_(V1(SigmaHyper).epsilon1 - VannaPut, DerToll) print_colored("-----Testing Vanna 2\n", :blue); assert_(V11(hyper(spot, 1, 0, 0), hyper(sigma, 0, 1, 0)).epsilon12 - VannaPut, DerToll) print_colored("-----Testing Vega\n", :blue); assert_(L(SigmaHyper).epsilon1 - Vega, DerToll) print_colored("Hyper Dual Numbers Test Passed\n\n", :green) #TEST OF INPUT VALIDATION print_colored("Starting Input Validation Test Hyper Dual Numbers\n", :magenta) print_colored("----Testing Negative Spot Price \n", :cyan) @test_throws(DomainError, blsprice(-SpotHyper, K, r, T, sigma, d)) @test_throws(DomainError, blkprice(-SpotHyper, K, r, T, sigma)) @test_throws(DomainError, blsdelta(-SpotHyper, K, r, T, sigma, d)) @test_throws(DomainError, blsgamma(-SpotHyper, K, r, T, sigma, d)) @test_throws(DomainError, blstheta(-SpotHyper, K, r, T, sigma, d)) @test_throws(DomainError, blsrho(-SpotHyper, K, r, T, sigma, d)) @test_throws(DomainError, blspsi(-SpotHyper, K, r, T, sigma, d)) @test_throws(DomainError, blslambda(-SpotHyper, K, r, T, sigma, d)) @test_throws(DomainError, blsvanna(-SpotHyper, K, r, T, sigma, d)) @test_throws(DomainError, blsvega(-SpotHyper, K, r, T, sigma, d)) print_colored("----Testing Negative Strike Price \n", :cyan) @test_throws(DomainError, blsprice(spot, -KHyper, r, T, sigma, d)) @test_throws(DomainError, blkprice(spot, -KHyper, r, T, sigma)) @test_throws(DomainError, blsdelta(spot, -KHyper, r, T, sigma, d)) @test_throws(DomainError, blsgamma(spot, -KHyper, r, T, sigma, d)) @test_throws(DomainError, blstheta(spot, -KHyper, r, T, sigma, d)) @test_throws(DomainError, blsrho(spot, -KHyper, r, T, sigma, d)) @test_throws(DomainError, blspsi(spot, -KHyper, r, T, sigma, d)) @test_throws(DomainError, blslambda(spot, -KHyper, r, T, sigma, d)) @test_throws(DomainError, blsvanna(spot, -KHyper, r, T, sigma, d)) @test_throws(DomainError, blsvega(spot, -KHyper, r, T, sigma, d)) print_colored("----Testing Negative Time to Maturity \n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, -THyper, sigma, d)) @test_throws(DomainError, blkprice(spot, K, r, -THyper, sigma)) @test_throws(DomainError, blsdelta(spot, K, r, -THyper, sigma, d)) @test_throws(DomainError, blsgamma(spot, K, r, -THyper, sigma, d)) @test_throws(DomainError, blstheta(spot, K, r, -THyper, sigma, d)) @test_throws(DomainError, blsrho(spot, K, r, -THyper, sigma, d)) @test_throws(DomainError, blspsi(spot, K, r, -THyper, sigma, d)) @test_throws(DomainError, blslambda(spot, K, r, -THyper, sigma, d)) @test_throws(DomainError, blsvanna(spot, K, r, -THyper, sigma, d)) @test_throws(DomainError, blsvega(spot, K, r, -THyper, sigma, d)) print_colored("----Testing Negative Volatility \n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, T, -SigmaHyper, d)) @test_throws(DomainError, blkprice(spot, K, r, T, -SigmaHyper)) @test_throws(DomainError, blsdelta(spot, K, r, T, -SigmaHyper, d)) @test_throws(DomainError, blsgamma(spot, K, r, T, -SigmaHyper, d)) @test_throws(DomainError, blstheta(spot, K, r, T, -SigmaHyper, d)) @test_throws(DomainError, blsrho(spot, K, r, T, -SigmaHyper, d)) @test_throws(DomainError, blspsi(spot, K, r, T, -SigmaHyper, d)) @test_throws(DomainError, blslambda(spot, K, r, T, -SigmaHyper, d)) @test_throws(DomainError, blsvanna(spot, K, r, T, -SigmaHyper, d)) @test_throws(DomainError, blsvega(spot, K, r, T, -SigmaHyper, d)) print_colored("Hyper Dual Input Validation Test Passed\n", :magenta) price_dual = blsprice(SpotHyper, K, r, T, sigma, d) sigma_h1 = blsimpv(SpotHyper, K, r, T, price_dual, d) assert_(sigma_h1.value - sigma, DerToll) assert_(sigma_h1.epsilon1, DerToll) assert_(sigma_h1.epsilon12, DerToll) price_dual2 = blsprice(SpotHyper, K, r, T, SigmaHyper, d) sigma_h2 = blsimpv(SpotHyper, K, r, T, price_dual2, d) assert_(sigma_h2.value - SigmaHyper.value, DerToll) assert_(sigma_h2.epsilon1 - SigmaHyper.epsilon1, DerToll) assert_(sigma_h2.epsilon12 - SigmaHyper.epsilon12, DerToll) price_dual2 = blsprice(SpotHyper, KHyper, r, T, SigmaHyper, d) sigma_h2 = blsimpv(SpotHyper, KHyper, r, T, price_dual2, d) assert_(sigma_h2.value - SigmaHyper.value, DerToll) assert_(sigma_h2.epsilon1 - SigmaHyper.epsilon1, DerToll) assert_(sigma_h2.epsilon12 - SigmaHyper.epsilon12, DerToll) SigmaHyper = hyper(sigma, 1.0, 2.0, 3.0); price_dual2 = blsprice(SpotHyper, KHyper, r, T, SigmaHyper, d) sigma_h2 = blsimpv(SpotHyper, KHyper, r, T, price_dual2, d) assert_(sigma_h2.value - SigmaHyper.value, DerToll) assert_(sigma_h2.epsilon1 - SigmaHyper.epsilon1, DerToll) assert_(sigma_h2.epsilon2 - SigmaHyper.epsilon2, DerToll) assert_(sigma_h2.epsilon12 - SigmaHyper.epsilon12, DerToll)
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
8130
if !(VERSION.major == 0 && VERSION.minor <= 6) using Test else using Base.Test end using FinancialToolbox #Test Parameters testToll = 1e-14; print_colored("Starting Standard Test\n", :green) spot = 10; K = 10; r = 0.02; T = 2.0; sigma = 0.2; d = 0.01; assert_(value, toll) = @test abs(value) < toll #EuropeanCall Option PriceCall = blsprice(spot, K, r, T, sigma, d); PriceCallBig = blsprice(big.([spot, K, r, T, sigma, d])...); PriceCall32 = blsprice(Float32.([spot, K, r, T, sigma, d])...); PriceCall16 = blsprice(Float16.([spot, K, r, T, sigma, d])...); PriceBinaryCall = blsbin(spot, K, r, T, sigma, d); PriceCallBlack = blkprice(spot, K, r, T, sigma); DeltaCall = blsdelta(spot, K, r, T, sigma, d); ThetaCall = blstheta(spot, K, r, T, sigma, d); RhoCall = blsrho(spot, K, r, T, sigma, d); VannaCall = blsvanna(spot, K, r, T, sigma, d); PsiCall = blspsi(spot, K, r, T, sigma, d); LambdaCall = blslambda(spot, K, r, T, sigma, d); SigmaCall = blsimpv(spot, K, r, T, PriceCall, d); SigmaCallBlack = blkimpv(spot, K, r, T, PriceCallBlack); #EuropeanPut Option PricePut = blsprice(spot, K, r, T, sigma, d, false); PriceBinaryPut = blsbin(spot, K, r, T, sigma, d, false); PricePutBlack = blkprice(spot, K, r, T, sigma, false); DeltaPut = blsdelta(spot, K, r, T, sigma, d, false); ThetaPut = blstheta(spot, K, r, T, sigma, d, false); VannaPut = blsvanna(spot, K, r, T, sigma, d, false); PsiPut = blspsi(spot, K, r, T, sigma, d, false); LambdaPut = blslambda(spot, K, r, T, sigma, d, false); RhoPut = blsrho(spot, K, r, T, sigma, d, false); SigmaPut = blsimpv(spot, K, r, T, PricePut, d, false); SigmaPutBlack = blkimpv(spot, K, r, T, PricePutBlack, false); #Equals for both Options Gamma = blsgamma(spot, K, r, T, sigma, d); Vega = blsvega(spot, K, r, T, sigma, d); print_colored("--- European Call: Price and Sensitivities\n", :yellow) #Standard Test European Call Option print_colored("-----Testing Price\n", :blue); assert_(PriceCall - 1.191201316999582, testToll) assert_(PriceCall - 1.191201316999582, testToll) assert_(PriceCall - 1.191201316999582, testToll) print_colored("-----Testing Price Binary\n", :blue); assert_(PriceBinaryCall - 0.4533139191104102, testToll) print_colored("-----Testing Black Price\n", :blue); assert_(PriceCallBlack - 1.080531820066428, testToll) print_colored("-----Testing Delta\n", :blue); assert_(DeltaCall - 0.572434050810368, testToll) print_colored("-----Testing Theta\n", :blue); assert_(ThetaCall + 0.303776337550247, testToll) print_colored("-----Testing Rho\n", :blue); assert_(RhoCall - 9.066278382208203, testToll) print_colored("-----Testing Lambda\n", :blue); assert_(LambdaCall - 4.805518955034612, testToll) print_colored("-----Testing Implied Volatility\n", :blue); assert_(SigmaCall - 0.2, testToll) print_colored("-----Testing Implied Volatility Black\n", :blue); assert_(SigmaCallBlack - 0.2, testToll) print_colored("--- European Put: Price and Sensitivities\n", :yellow) #Standard Test European Put Option print_colored("-----Testing Price\n", :blue); assert_(PricePut - 0.997108975455260, testToll) print_colored("-----Testing Binary Price\n", :blue); assert_(PriceBinaryPut - 0.507475520041913, testToll) print_colored("-----Testing Price Black\n", :blue); assert_(PricePutBlack - 1.080531820066428, testToll) print_colored("-----Testing Delta\n", :blue); assert_(DeltaPut + 0.407764622496387, testToll) print_colored("-----Testing Theta\n", :blue); assert_(ThetaPut + 0.209638317050458, testToll) print_colored("-----Testing Rho\n", :blue); assert_(RhoPut + 10.149510400838260, testToll) print_colored("-----Testing Lambda\n", :blue); assert_(LambdaPut + 4.089468980160465, testToll) print_colored("-----Testing Implied Volatility\n", :blue); assert_(SigmaPut - 0.2, testToll) print_colored("-----Testing Implied Volatility Black\n", :blue); assert_(SigmaPutBlack - 0.2, testToll) #Standard Test for Common Sensitivities print_colored("-----Testing Gamma\n", :blue); assert_(Gamma - 0.135178479404601, testToll) print_colored("-----Testing Vega\n", :blue); assert_(Vega - 5.407139176184034, testToll) print_colored("Standard Test Passed\n", :green) println("") #TEST OF INPUT VALIDATION print_colored("Starting Input Validation Test Real\n", :magenta) print_colored("----Testing Negative Spot Price\n", :cyan) @test_throws(DomainError, blsprice(-spot, K, r, T, sigma, d)) @test_throws(DomainError, blkprice(-spot, K, r, T, sigma)) @test_throws(DomainError, blsdelta(-spot, K, r, T, sigma, d)) @test_throws(DomainError, blsgamma(-spot, K, r, T, sigma, d)) @test_throws(DomainError, blstheta(-spot, K, r, T, sigma, d)) @test_throws(DomainError, blsrho(-spot, K, r, T, sigma, d)) @test_throws(DomainError, blsvega(-spot, K, r, T, sigma, d)); @test_throws(DomainError, blspsi(-spot, K, r, T, sigma, d)) @test_throws(DomainError, blslambda(-spot, K, r, T, sigma, d)) @test_throws(DomainError, blsvanna(-spot, K, r, T, sigma, d)) @test_throws(DomainError, blsimpv(-spot, K, r, T, PriceCall, d)) @test_throws(DomainError, blkimpv(-spot, K, r, T, PriceCall)) print_colored("----Testing Negative Strike Price\n", :cyan) @test_throws(DomainError, blsprice(spot, -K, r, T, sigma, d)) @test_throws(DomainError, blkprice(spot, -K, r, T, sigma)) @test_throws(DomainError, blsdelta(spot, -K, r, T, sigma, d)) @test_throws(DomainError, blsgamma(spot, -K, r, T, sigma, d)) @test_throws(DomainError, blstheta(spot, -K, r, T, sigma, d)) @test_throws(DomainError, blsrho(spot, -K, r, T, sigma, d)) @test_throws(DomainError, blsvega(spot, -K, r, T, sigma, d)) @test_throws(DomainError, blspsi(spot, -K, r, T, sigma, d)) @test_throws(DomainError, blslambda(spot, -K, r, T, sigma, d)) @test_throws(DomainError, blsvanna(spot, -K, r, T, sigma, d)) @test_throws(DomainError, blsimpv(spot, -K, r, T, PriceCall, d)) @test_throws(DomainError, blkimpv(spot, -K, r, T, PriceCall)) print_colored("----Testing Negative Time to Maturity\n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, -T, sigma, d)) @test_throws(DomainError, blkprice(spot, K, r, -T, sigma)) @test_throws(DomainError, blsdelta(spot, K, r, -T, sigma, d)) @test_throws(DomainError, blsgamma(spot, K, r, -T, sigma, d)) @test_throws(DomainError, blstheta(spot, K, r, -T, sigma, d)) @test_throws(DomainError, blsrho(spot, K, r, -T, sigma, d)) @test_throws(DomainError, blsvega(spot, K, r, -T, sigma, d)) @test_throws(DomainError, blspsi(spot, K, r, -T, sigma, d)) @test_throws(DomainError, blslambda(spot, K, r, -T, sigma, d)) @test_throws(DomainError, blsvanna(spot, K, r, -T, sigma, d)) @test_throws(DomainError, blsimpv(spot, K, r, -T, PriceCall, d)) @test_throws(DomainError, blkimpv(spot, K, r, -T, PriceCall)) print_colored("----Testing Negative Volatility\n", :cyan) @test_throws(DomainError, blsprice(spot, K, r, T, -sigma, d)) @test_throws(DomainError, blkprice(spot, K, r, T, -sigma)) @test_throws(DomainError, blsdelta(spot, K, r, T, -sigma, d)) @test_throws(DomainError, blsgamma(spot, K, r, T, -sigma, d)) @test_throws(DomainError, blstheta(spot, K, r, T, -sigma, d)) @test_throws(DomainError, blsrho(spot, K, r, T, -sigma, d)) @test_throws(DomainError, blspsi(spot, K, r, T, -sigma, d)) @test_throws(DomainError, blslambda(spot, K, r, T, -sigma, d)) @test_throws(DomainError, blsvanna(spot, K, r, T, -sigma, d)) @test_throws(DomainError, blsvega(spot, K, r, T, -sigma, d)) print_colored("----Testing Negative Option Price\n", :cyan) @test_throws(DomainError, blsimpv(spot, K, r, T, -PriceCall, d)) @test_throws(DomainError, blkimpv(spot, K, r, T, -PriceCall)) print_colored("----Testing Negative Tollerance\n", :cyan) @test_throws(DomainError, blsimpv(spot, K, r, T, PriceCall, d, true, -1e-12, 1)) @test_throws(DomainError, blkimpv(spot, K, r, T, PriceCall, true, -1e-12, 1)) @test_throws(DomainError, blsimpv(spot, K, r, T, PriceCall, d, true, 1e-12, -1)) @test_throws(DomainError, blkimpv(spot, K, r, T, PriceCall, true, 1e-12, -1)) #Too low tollerance # @test_throws(DomainError, blsimpv(spot, K, r, T, PriceCall, d, true, 0.0, 0.0)) # @test_throws(DomainError, blkimpv(spot, K, r, T, PriceCall, true, 0.0, 0.0)) print_colored("Real Input Validation Test Passed\n", :magenta) #End of the Test
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
488
using Test using FinancialToolbox, ReverseDiff #Test Parameters spot = 10.0; K = 10; r = 0.02; T = 2.0; sigma = 0.2; d = 0.01; toll = 1e-4 #EuropeanCall Option f(S0) = blsprice(S0[1], K, r, T, sigma, d); delta_1 = blsdelta(spot, K, r, T, sigma, d); delta_v = ReverseDiff.gradient(f, [spot]) @test(abs(delta_v[1] - delta_1) < toll) price = f(spot) f2(S0) = blsimpv(S0[1], K, r, T, price, d); delta_v = ReverseDiff.gradient(f2, [spot]) @test(abs(delta_v[1] + 0.10586634302510232) < toll)
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
2795
using Test using FinancialToolbox, Symbolics toll = 1e-7 @variables S0_s, r_s, d_s, T_s, sigma_s, K_s, price_s S0 = 100.0; K = 100.0; r = 0.02; T = 1.2; sigma = 0.2; d = 0.01; price = blsprice(S0, K, r, T, sigma, d) dict_vals = Dict(S0_s => S0, r_s => r, d_s => d, K_s => K, T_s => T, sigma_s => sigma, price_s => price) price_s_c = blsprice(S0_s, K_s, r_s, T_s, sigma_s, d_s) price_v = substitute(price_s_c, dict_vals) @test abs(price - price_v) < toll vol_s = blsimpv(S0_s, K_s, r_s, T_s, price_s, d_s) vol_v = substitute(vol_s, dict_vals) vol = blsimpv(S0, K, r, T, price, d) @test abs(vol - vol_v) < toll #Test multiple order derivatives of blsimpv using HyperDualNumbers #S0 der_vol_S0 = Symbolics.derivative(vol_s, S0_s, simplify = true); der_vol_S02 = Symbolics.derivative(der_vol_S0, S0_s, simplify = true); @show vol_h_S0 = blsimpv(hyper(S0, 1.0, 1.0, 0.0), K, r, T, price, d) delta = substitute(der_vol_S0, dict_vals) @show gamma = substitute(der_vol_S02, dict_vals) @test abs(delta - vol_h_S0.epsilon1) < toll #K der_vol_K = Symbolics.derivative(vol_s, K_s, simplify = true); der_vol_K2 = Symbolics.derivative(der_vol_K, K_s, simplify = true); vol_h_K = blsimpv(S0, hyper(K, 1.0, 1.0, 0.0), r, T, price, d) delta_k = substitute(der_vol_K, dict_vals) gamma_k = substitute(der_vol_K2, dict_vals) @test abs(delta_k - vol_h_K.epsilon1) < toll #r der_vol_r = Symbolics.derivative(vol_s, r_s, simplify = true); der_vol_r2 = Symbolics.derivative(der_vol_r, r_s, simplify = true); vol_h_r = blsimpv(S0, K, hyper(r, 1.0, 1.0, 0.0), T, price, d) delta_r = substitute(der_vol_r, dict_vals) gamma_r = substitute(der_vol_r2, dict_vals) @test abs(delta_r - vol_h_r.epsilon1) < toll #T der_vol_T = Symbolics.derivative(vol_s, T_s, simplify = true); der_vol_T2 = Symbolics.derivative(der_vol_T, T_s, simplify = true); vol_h_T = blsimpv(S0, K, r, hyper(T, 1.0, 1.0, 0.0), price, d) delta_T = substitute(der_vol_T, dict_vals) gamma_T = substitute(der_vol_T2, dict_vals) @test abs(delta_T - vol_h_T.epsilon1) < toll #Mixed derivative r,T der_vol_T = Symbolics.derivative(vol_s, T_s, simplify = true); der_vol_T_r_s = Symbolics.derivative(der_vol_T, r_s, simplify = true); vol_h_T = blsimpv(S0, K, hyper(r, 0.0, 1.0, 0.0), hyper(T, 1.0, 0.0, 0.0), price, d) delta_T = substitute(der_vol_T, dict_vals) gamma_T = substitute(der_vol_T_r_s, dict_vals) @test abs(delta_T - vol_h_T.epsilon1) < toll println("Test First Order Passed") @test abs(gamma - vol_h_S0.epsilon12) < toll @test abs(gamma_k - vol_h_K.epsilon12) < toll @test abs(gamma_r - vol_h_r.epsilon12) < toll @test abs(gamma_T - vol_h_T.epsilon12) < toll @test abs(gamma_T - vol_h_T.epsilon12) < toll println("Test Second Order Passed") inp=NTuple{7,Any}((1,2,3,4,5,6,7)) @test Symbolics.derivative(FinancialToolbox.blimpv, inp, Val(5))==0
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
2109
using Test using FinancialToolbox, TaylorSeries #Test Parameters spot = 10.0; K = 10; r = 0.02; T = 2.0; sigma = 0.2; d = 0.01; spotDual = taylor_expand(identity, spot, order = 22) toll = 1e-4 #EuropeanCall Option PriceCall = blsprice(spotDual, K, r, T, sigma, d); @test(abs(1.1912013169995816 - PriceCall[0]) < toll) @test(abs(0.5724340508103682 - PriceCall[1]) < toll) gamma_opt = blsgamma(spot, K, r, T, sigma, d); @test(abs(gamma_opt - PriceCall[2] * 2) < toll) dS0, dr, dsigma = set_variables("dS0 dr dsigma", order = 4) PriceCall2 = blsprice(spot + dS0, K, r + dr, T, sigma + dsigma, d); @test(abs(1.1912013169995816 - PriceCall2[0][1]) < toll) @test(abs(0.5724340508103682 - PriceCall2[1][1]) < toll) @test(abs(gamma_opt - PriceCall2[2][1] * 2) < toll) #Broken for some reason VolaCall = blsimpv(spotDual, K, r, T, PriceCall, d); @test(abs(VolaCall[0] - 0.2) < toll) # @test(abs(VolaCall[1]) < toll) # #EuropeanCall Option sigma_dual = taylor_expand(identity, sigma, order = 22) PriceCall3 = blsprice(spotDual, K, r, T, sigma_dual, d); VolaCall3 = blsimpv(spotDual, K, r, T, PriceCall3, d); @test(abs(VolaCall3[0] - sigma_dual[0]) < toll) @test(abs(VolaCall3[1] - sigma_dual[1]) < toll) @test(abs(VolaCall3[2] - sigma_dual[2]) < toll) @test(abs(VolaCall3[3] - sigma_dual[3]) < toll) sigma_dual_new = deepcopy(PriceCall3) sigma_dual_new[0] = sigma PriceCall3 = blsprice(spotDual, K, r, T, sigma_dual_new, d); VolaCall3 = blsimpv(spotDual, K, r, T, PriceCall3, d); @show VolaCall3 @show sigma_dual_new @test(abs(VolaCall3[0] - sigma_dual_new[0]) < toll) @show @test(abs(VolaCall3[1] - sigma_dual_new[1]) < toll) @test(abs(VolaCall3[2] - sigma_dual_new[2]) < toll) @test(abs(VolaCall3[3] - sigma_dual_new[3]) < toll) sigma_dual_new = deepcopy(PriceCall3) sigma_dual_new[0] = sigma PriceCall3 = blsprice(spot, K, r, T, sigma_dual_new, d); VolaCall3 = blsimpv(spot, K, r, T, PriceCall3, d); @test(abs(VolaCall3[0] - sigma_dual_new[0]) < toll) @test(abs(VolaCall3[1] - sigma_dual_new[1]) < toll) @test(abs(VolaCall3[2] - sigma_dual_new[2]) < toll) @test(abs(VolaCall3[3] - sigma_dual_new[3]) < toll)
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
463
using Test using FinancialToolbox, Zygote #Test Parameters spot = 10.0; K = 10; r = 0.02; T = 2.0; sigma = 0.2; d = 0.01; toll = 1e-4 #EuropeanCall Option f(S0) = blsprice(S0, K, r, T, sigma, d); delta_1 = blsdelta(spot, K, r, T, sigma, d); delta_v = Zygote.gradient(f, spot) @test(abs(delta_v[1] - delta_1) < toll) price = f(spot) f2(S0) = blsimpv(S0, K, r, T, price, d); delta_v = Zygote.gradient(f2, spot) @test(abs(delta_v[1] + 0.10586634302510232) < toll)
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
3987
using Test using FinancialToolbox #Test Parameters testToll_float64 = 1e-10; print_colored("Starting Implied Volatility Test\n", :green) function test_implied_volatility_from_σ(toll, S0, K, r, T, σ, d, FlagIsCall) price_t = blsprice(S0, K, r, T, σ, d, FlagIsCall) σ_cp = blsimpv(S0, K, r, T, price_t, d, FlagIsCall) @test abs(σ_cp - σ) < toll end function test_broken_implied_volatility_from_σ(toll, S0, K, r, T, σ, d, FlagIsCall) price_t = blsprice(S0, K, r, T, σ, d, FlagIsCall) new_σ = blsimpv(S0, K, r, T, price_t, d, FlagIsCall) @test_broken abs(new_σ - σ) < toll end S0 = 100.0; K = 100.0; r = 0.02; T = 1.2; σ = 0.2; d = 0.01; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) K = 90.0; d = 0.03; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) K = 120.0; r = 0.02; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) S0 = 160.0; r = 0.03; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) S0 = 100.0; K = 70.0; r = 0.02; T = 1.2; σ = 3.5; d = 0.01; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) S0 = 100.0; K = 70.0; r = 0.02; T = 1.2; σ = 13.5; d = 0.01; test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; σ = 13.5; d = 0.01; test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) @test_throws(DomainError, blsimpv(S0, K, r, T, S0 * 10, d)) #New test from issue #21 S0 = 4753.63; K = 4085.0; r = 0.0525; T = 0.13870843734533175; price_1 = 701.3994 d = 0.0 σ = blsimpv(S0, K, r, T, price_1, d); @test !isnan(σ) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) S0 = 100.0; K = 10.0; r = 0.02; T = 1.2; σ = 0.2; d = 0.01; test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) #TODO: FIX q>0 and x >0 test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) S0 = 10.0; K = 100.0; r = 0.02; T = 1.2; σ = 0.2; d = 0.01; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false)#TODO: FIX q<0 and x <0 S0 = 100.0; K = 100.0; r = 0.2; T = 1.2; σ = 0.2; d = 0.01; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) S0 = 100.0; K = 100.0; r = 0.02; T = 0.2; σ = 0.2; d = 0.01; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.2; σ = 0.2; d = 0.1; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) S0 = 100.0; K = 100.0; r = 0.02; T = 10.2; σ = 0.2; d = 0.01; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) # S0 = 1000000.0; # K = 1.0; # r = 0.2; # T = 1.2; # σ = 0.2; # d = 0.01; # test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, true) # test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, d, false) print_colored("Implied Volatility Test Passed\n", :magenta) #End of the Test
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
code
1927
using Test using FinancialToolbox #Test Parameters testToll_float64 = 1e-10; print_colored("Starting Implied Volatility Test\n", :green) function test_implied_volatility_from_σ(toll, S0, K, r, T, σ, FlagIsCall) price_t = blkprice(S0, K, r, T, σ, FlagIsCall) σ_cp = blkimpv(S0, K, r, T, price_t, FlagIsCall) @test abs(σ_cp - σ) < toll end function test_broken_implied_volatility_from_σ(toll, S0, K, r, T, σ, FlagIsCall) price_t = blkprice(S0, K, r, T, σ, FlagIsCall) @test_broken abs(blkimpv(S0, K, r, T, price_t, FlagIsCall) - σ) < toll end S0 = 100.0; K = 100.0; r = 0.02; T = 1.2; σ = 0.2; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, false) K = 90.0; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, false) K = 120.0; r = 0.02; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, false) S0 = 160.0; r = 0.03; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, false) S0 = 100.0; K = 70.0; r = 0.02; T = 1.2; σ = 3.5; test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, true) test_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, false) S0 = 100.0; K = 70.0; r = 0.02; T = 1.2; σ = 13.5; test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, true) test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; σ = 13.5; test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, true) test_broken_implied_volatility_from_σ(testToll_float64, S0, K, r, T, σ, false) print_colored("Implied Volatility Test Passed\n", :magenta) #End of the Test
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
docs
2992
# FinancialToolbox [![status](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://rcalxrc08.github.io/FinancialToolbox.jl/) [![CI](https://github.com/rcalxrc08/FinancialToolbox.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/rcalxrc08/FinancialToolbox.jl/actions/workflows/CI.yml) [![codecov](https://codecov.io/gh/rcalxrc08/FinancialToolbox.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/rcalxrc08/FinancialToolbox.jl?branch=master) ##### This is a Julia package containing some useful Financial functions for Pricing and Risk Management under the Black and Scholes Model. ###### The syntax is the same of the Matlab Financial Toolbox. It currently contains the following functions: - blsprice : Black & Scholes Price for European Options. - blsbin : Black & Scholes Price for Binary European Options. - blkprice : Black Price for European Options. - blsdelta : Black & Scholes Delta sensitivity for European Options. - blsgamma : Black & Scholes Gamma sensitivity for European Options. - blstheta : Black & Scholes Theta sensitivity for European Options. - blsvega : Black & Scholes Vega sensitivity for European Options. - blsrho : Black & Scholes Rho sensitivity for European Options. - blslambda: Black & Scholes Lambda sensitivity for European Options. - blspsi : Black & Scholes Psi sensitivity for European Options. - blsvanna : Black & Scholes Vanna sensitivity for European Options. - blsimpv : Black & Scholes Implied Volatility for European Options. - blkimpv : Black Implied Volatility for European Options. Currently supports classical numerical input and other less common like: - Complex Numbers - [Dual Numbers](https://github.com/JuliaDiff/DualNumbers.jl) - [HyperDual Numbers](https://github.com/JuliaDiff/HyperDualNumbers.jl) It also contains some functions that could be useful for the Dates Management: - yearfrac : fraction of years between two Dates (currently only the first seven convention of Matlab are supported). - daysact : number of days between two Dates. The module is standalone. ## How to Install To install the package simply type on the Julia REPL the following: ```Julia Pkg.add("FinancialToolbox") ``` ## How to Test After the installation, to test the package type on the Julia REPL the following: ```Julia Pkg.test("FinancialToolbox") ``` ## Example of Usage The following example is the pricing of a European Call Option with underlying varying according to the Black Scholes Model, given the implied volatility. After that it is possible to check the result computing the inverse of the Black Scholes formula. ```Julia #Import the Package using FinancialToolbox #Define input data spot=10;K=10;r=0.02;T=2.0;σ=0.2;d=0.01; #Call the function Price=blsprice(spot,K,r,T,σ,d) #Price=1.1912013169995816 #Check the Result Volatility=blsimpv(spot,K,r,T,Price,d) #Volatility=0.20000000000000002 ```
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
docs
6306
<!-- The definitions here control the layout of the page: basic geometry, colors, and elements. To avoid errors, do not remove definitions, rather, leave them empty. Some definitions are only used if a toggle is set. You can add your own rules if you so desire by either: - directly modifying `_css/custom.css` - adding rules to `_layout/style_tuning.fcss` The latter allows you to plug in values that you would have defined here. --> <!-- META DEFINITIONS NOTE: - prepath: this is used to specify the base URLs; if your site should be available at `https://username.github.io/YourPackage.jl/` then the pre-path should be `YourPackage.jl`. If your site is meant to be hosted on a specific URL such as `https://awesomepkg.org` then set `prepath` to an empty string. Finally, adjust this if you want the deployed page to be in a subfolder e.g.: `YourPackage.jl/web/`. --> @def title = "FinancialToolbox.jl" @def prepath = "FinancialToolbox.jl" @def description = """ Black and Scholes utility functions. """ @def authors = "Nicola Scaramuzzino" <!-- NAVBAR SPECS NOTE: - add_docs: whether to add a pointer to your docs website - docs_url: the url of the docs website (ignored if add_docs=false) - docs_name: how the link should be named in the navbar - add_nav_logo: whether to add a logo left of the package name - nav_logo_path: where the logo is --> @def add_docs = false @def docs_url = "https://franklinjl.org/" @def docs_name = "Docs" @def add_nav_logo = true @def nav_logo_path = "/assets/logo.png" @def nav_logo_alt = "Logo" @def nav_logo_style = """ height: 25px; padding-right: 10px; """ <!-- HEADER SPECS NOTE: - use_header: if false, toggle the header off completely - use_header_img: to use an image as background for the header - header_img_path: either a path to an asset or a SVG like here. Note that the path must be CSS-compatible. - header_img_style: additional styling, for instance whether to repeat or not. For a SVG pattern, use repeat, otherwise use no-repeat. - header_margin_top: vertical margin above the header, if <= 55px there will be no white space, if >= 60 px, there will be white space between the navbar and the header. (Ideally don't pick a value between the two as the exact look is browser dependent). When use_hero = true, hero_margin_top is used instead. - use_hero: if false, main bar stretches from left to right otherwise boxed - hero_width: width of the hero, for instance 80% will mean the hero will stretch over 80% of the width of the page. - hero_margin_top used instead of header_margin_top if use_hero is true - add_github_view: whether to add a "View on GitHub" button in header - add_github_star: whether to add a "Star this package" button in header - github_repo: path to the GitHub repo for the GitHub button --> @def use_header = true @def use_header_img = true @def header_img_path = "url(\"assets/diagonal-lines.svg\")" @def header_img_style = """ background-repeat: repeat; """ @def header_margin_top = "59px" <!-- 55-60px ~ touching nav bar --> @def use_hero = false @def hero_width = "90%" @def hero_margin_top = "90px" @def add_github_view = true @def add_github_star = true @def github_repo = "rcalxrc08/FinancialToolbox.jl" <!-- SECTION LAYOUT NOTE: - section_width: integer number to control the default width of sections you can also set it for individual sections by specifying the width argument: `\begin{:section, ..., width=10}`. --> @def section_width = 10 <!-- COLOR PALETTE You can use Hex, RGB or SVG color names; these tools are useful to choose: - color wheel: https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Colors/Color_picker_tool - color names: https://developer.mozilla.org/en-US/docs/Web/CSS/color_value NOTE: - header_color: background color of the header - link_color: color of links - link_hover_color: color of links when hovered - section_bg_color: background color of "secondary" sections to help visually separate between sections. - footer_link_color: color of links in the footer --> @def header_color = "#3f6388" @def link_color = "#2669DD" @def link_hover_color = "teal" @def section_bg_color = "#f6f8fa" @def footer_link_color = "cornflowerblue" <!-- CODE LAYOUT NOTE: - highlight_theme: theme for the code, pick one from https://highlightjs.org/static/demo/ for instance "github" or "atom-one-dark"; use lower case and replace spaces with `-`. - code_border_radius: how rounded the corners of code blocks should be - code_output_indent: how much left-identation to add for "output blocks" (results of the evaluation of code blocks), use 0 if you don't want indentation. --> @def highlight_theme = "atom-one-dark" @def code_border_radius = "10px" @def code_output_indent = "15px" <!-- YOUR DEFINITIONS See franklinjl.org for more information on how to introduce your own definitions and how they can be useful. --> <!-- INTERNAL DEFINITIONS ===================================================== =============================================================================== These definitions are important for the good functioning of some of the commands that are defined and used in PkgPage.jl --> @def sections = Pair{String,String}[] @def section_counter = 1 @def showall = true \newcommand{\html}[1]{~~~#1~~~} \newenvironment{center}{\html{<div style="text-align:center;">}}{\html{</div>}} \newenvironment{columns}{\html{<div class="container"><div class="row">}}{\html{</div></div>}}
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
0.7.0
56dddf9619ef896307031c8c0515e4f7ad1da0b1
docs
8696
<!-- ============================= ABOUT ============================== --> \begin{section}{title="About this Package", name="About"} \lead{FinancialToolbox.jl is a Julia package containing some useful Financial functions for Pricing and Risk Management under the Black and Scholes Model.} The syntax is the same of the Matlab Financial Toolbox. Currently supports classical numerical input and other less common like: * Complex Numbers * [Dual Numbers](https://github.com/JuliaDiff/DualNumbers.jl) * [HyperDual Numbers](https://github.com/JuliaDiff/HyperDualNumbers.jl) * [TaylorSeries.jl](https://github.com/JuliaDiff/TaylorSeries.jl) * [TaylorDiff.jl](https://github.com/JuliaDiff/TaylorDiff.jl) \end{section} <!-- ============================== GETTING STARTED ============================== --> \begin{section}{title="Getting started"} In order to get started, just add the package: ``` pkg> add FinancialToolbox ``` and load it: ```julia:ex__1 using FinancialToolbox ``` \end{section} <!-- ============================== SPECIAL COMMANDS ============================== --> \begin{section}{title="Example of Usage"} * [Pricing European Options in the Black and Scholes model](#blsprice) * [Pricing European Options in the Black model](#blkprice) * [Implied Volatility in the Black and Scholes model](#blsimpv) * [Implied Volatility in the Black model](#blkimpv) \label{blsprice} **Pricing a European Option in Black and Scholes framework**:\\ According to Black and Scholes model, the price of a european option can be expressed as follows: \begin{columns} \begin{column}{} **_European Call Price_** $$ C_{bs}(S,K,r,T,\sigma,d) = S e^{-d\,T} N(d_1) - Ke^{-r\,T} N(d_2) $$ \end{column} \begin{column}{} **_European Put Price_** $$ P_{bs}(S,K,r,T,\sigma,d) = Ke^{-r\,T} N(-d_2) - S e^{-d\,T} N(-d_1) $$ \end{column} \end{columns} where: $$d_1 = \frac{\ln\left(\frac{S}{K}\right) + \left(r - q + \frac{\sigma^2}{2}\right) T}{\sigma\sqrt{T}}$$ $$d_2 = d_1 - \sigma\sqrt{T}$$ \\ And: * $S$ is the underlying spot price. * $K$ is the strike price. * $r$ is the risk free rate. * $T$ is the time to maturity. * $\sigma$ is the implied volatility of the underlying. * $d$ is the implied dividend of the underlying. The way to compute the price in this library is: \begin{columns} \begin{column}{} **_European Call Price_** ```julia:ex_7 S=100.0; K=100.0; r=0.02; T=1.2; σ=0.2; d=0.01; Price_call=blsprice(S,K,r,T,σ,d) ``` \end{column} \begin{column}{} **_European Put Price_** ```julia:ex_7 S=100.0; K=100.0; r=0.02; T=1.2; σ=0.2; d=0.01; Price_put=blsprice(S,K,r,T,σ,d,false) ``` \end{column} \end{columns} \\ \label{blkprice} **Pricing a European Option in Black framework**:\\ According to Black model, the price of a european option can be expressed as follows: \begin{columns} \begin{column}{} **_European Call Price_** $$ C_{bk}(F,K,r,T,\sigma) = F e^{-r\,T} N(d_1) - Ke^{-r\,T} N(d_2) $$ \end{column} \begin{column}{} **_European Put Price_** $$ P_{bk}(F,K,r,T,\sigma) = Ke^{-r\,T} N(-d_2) - F e^{-r\,T} N(-d_1) $$ \end{column} \end{columns} where: $$d_1 = \frac{\ln\left(\frac{F}{K}\right) + \frac{\sigma^2}{2}T}{\sigma\sqrt{T}}$$ $$d_2 = d_1 - \sigma\sqrt{T}$$ \\ And: * $F$ is the underlying forward price. * $K$ is the strike price. * $r$ is the risk free rate. * $T$ is the time to maturity. * $\sigma$ is the implied volatility of the underlying. The way to compute the price in this library is: \begin{columns} \begin{column}{} **_European Call Price_** ```julia:ex_7 F=100.0; K=102.0; r=0.02; T=1.2; σ=0.2; Price_call=blkprice(S,K,r,T,σ) ``` \end{column} \begin{column}{} **_European Put Price_** ```julia:ex_7 F=100.0; K=102.0; r=0.02; T=1.2; σ=0.2; Price_put=blkprice(S,K,r,T,σ,false) ``` \end{column} \end{columns} \\ \label{blsimpv} **Computing Implied Volatility in a Black and Scholes framework**: Given an option price $V$, the Black and Scholes implied volatility is defined as the positive number $\sigma$ which solves: \begin{columns} \begin{column}{} **_From European Call Price_** $$ V = S e^{-d\,T} N(d_1) - Ke^{-r\,T} N(d_2) $$ \end{column} \begin{column}{} **_From European Put Price_** $$ V = Ke^{-r\,T} N(-d_2) - S e^{-d\,T} N(-d_1) $$ \end{column} \end{columns} where: $$d_1 = \frac{\ln\left(\frac{S}{K}\right) + \left(r - q + \frac{\sigma^2}{2}\right) T}{\sigma\sqrt{T}}$$ $$d_2 = d_1 - \sigma\sqrt{T}$$ \\ The way to compute the volatility in this library is: \begin{columns} \begin{column}{} **_Implied Volatility from Call Price_** ```julia:ex_7 S=100.0; K=100.0; r=0.02; T=1.2; d=0.01; call_price=9.169580760087896 σ=blsimpv(S,K,r,T,call_price,d) ``` \end{column} \begin{column}{} **_Implied Volatility from Put Price_** ```julia:ex_7 S=100.0; K=100.0; r=0.02; T=1.2; d=0.01; put_price=7.990980449685762 σ=blsimpv(S,K,r,T,put_price,d,false) ``` \end{column} \end{columns} blsimpv accepts additional arguments such as the absolute tolerance and the maximum numbers of steps of the numerical inversion. \alert{Currently blsimpv is using the rational inversion method based on [LetsBeRational](http://www.jaeckel.org/LetsBeRational.pdf) method in order to invert the relation between the price and the volatility. If you notice something wrong with the numerical inversion, you are strongly suggested to open a issue.} \\ \label{blkimpv} **Computing Implied Volatility in Black framework**:\\ Given an option price $V$, the Black implied volatility is defined as the positive number $\sigma$ which solves: \begin{columns} \begin{column}{} **_From European Call Price_** $$ V = F e^{-r\,T} N(d_1) - Ke^{-r\,T} N(d_2) $$ \end{column} \begin{column}{} **_From European Put Price_** $$ V = Ke^{-r\,T} N(-d_2) - F e^{-r\,T} N(-d_1) $$ \end{column} \end{columns} where: $$d_1 = \frac{\ln\left(\frac{F}{K}\right) + \frac{\sigma^2}{2}T}{\sigma\sqrt{T}}$$ $$d_2 = d_1 - \sigma\sqrt{T}$$ \\ The way to compute the volatility in this library is: \begin{columns} \begin{column}{} **_Implied Volatility from Call Price_** ```julia:ex_7 S=100.0; K=102.0; r=0.02; T=1.2; call_price=7.659923984582901 σ=blkimpv(S,K,r,T,call_price) ``` \end{column} \begin{column}{} **_Implied Volatility from Put Price_** ```julia:ex_7 S=100.0; K=102.0; r=0.02; T=1.2; put_price=9.612495404098706 σ=blkimpv(S,K,r,T,put_price,false) ``` \end{column} \end{columns} blkimpv accepts additional arguments such as the absolute tolerance and the maximum numbers of steps of the numerical inversion. \alert{Currently blkimpv is using the rational inversion method based on [LetsBeRational](http://www.jaeckel.org/LetsBeRational.pdf) method in order to invert the relation between the price and the volatility. If you notice something wrong with the numerical inversion, you are strongly suggested to open a issue.} \end{section} \begin{section}{title="Automatic Differentiation", name="AD"} Pricers and sensitivities functions are differentiable as far as the AD engine is capable of differentiating the erfc function.\\ Implied volatility computations are fully differentiable by using ChainRulesCore.jl. Explicit support for ForwardDiff, ReverseDiff, TaylorDiff, TaylorSeries is added. In case your package does not support ChainRulesCore.jl APIs, please open an issue if you need the support for implied volatility differentiation. \\ **Automatic Differentiation of Implied Volatility**: \\ In a Black and Scholes setup, let's define $f(S,K,r,T,\sigma,d)$ as follows: \begin{columns} \begin{column}{} **_For European Call_** $$ f = C_{bs}(S,K,r,T,\sigma,d) $$ \end{column} \begin{column}{} **_For European Put_** $$ f = P_{bs}(S,K,r,T,\sigma,d) $$ \end{column} \end{columns} Let's fix a feasible option price $V$. Then we can compute the derivative of the implied volatility as follows:\\ Since $\sigma=\sigma(S,K,r,T,V,d)$ solves the inversion, then: $$ f(S,K,r,T,\sigma(S,K,r,T,V,d),d) = V $$ <!--_--> By differentating both sides for a generic parameter $\theta$ we get: $$ \partial_{\theta}\sigma = \frac{\partial_{\theta}(V-f(S,K,r,T,\sigma,d))}{\partial_{\sigma}f(S,K,r,T,\sigma,d)} $$ <!--_--> Very similar applies to Black model: $$ \partial_{\theta}\sigma = \frac{\partial_{\theta}(V-f(F,K,r,T,\sigma))}{\partial_{\sigma}f(F,K,r,T,\sigma)} $$ <!--_--> with: \begin{columns} \begin{column}{} **_For European Call_** $$ f = C_{bk}(F,K,r,T,\sigma) $$ \end{column} \begin{column}{} **_For European Put_** $$ f = P_{bk}(F,K,r,T,\sigma) $$ \end{column} \end{columns} This formulation of the derivative allows to define analytically the frule and the rrule for the function blsimpv and blkimpv, without the need of differentiating the numerical solver, proving once again the superiority of automatic differentiation against numerical one. \end{section}
FinancialToolbox
https://github.com/rcalxrc08/FinancialToolbox.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
2160
using Documenter, Vahana using Pkg Pkg.status("Vahana") using GraphMakie, Makie, DataFrames # this is a really dirty workaround, but for whatever reason the # sandboxing mechanism of Documenter clashes with the way Vahana # constructs the model. # But we do not need the sandboxing, as we can have different models # in a single julia session. import Documenter.get_sandbox_module! get_sandbox_module!(_, _, _) = Main import Literate cd(@__DIR__) Literate.markdown(joinpath(@__DIR__, "examples", "tutorial1.jl"), "src"; execute = false) Literate.markdown(joinpath(@__DIR__, "examples", "predator.jl"), "src"; execute = false) Literate.markdown(joinpath(@__DIR__, "examples", "hegselmann.jl"), "src"; execute = false) ### makedocs(sitename="Vahana Documentation", modules = [Vahana], # format = Documenter.LaTeX(), format = Documenter.HTML(prettyurls = false, edit_link = :commit), clean = false, pages = [ "Introduction" => "index.md", "Tutorials" => [ "First Steps" => "tutorial1.md", "Utilizing Graphs.jl" => "hegselmann.md", "Adding Spatial Information" => "predator.md" ], "Performance Tuning" => "performance.md", "Parallel Simulations" => "parallel.md", "API" => [ "Model Definition" => "definition.md", "Initialization" => "initialization.md", "Transition Function" => "transition.md", "Global Layer" => "global.md", "Raster" => "raster.md", # "REPL helpers" => "repl.md", "Plots" => "plots.md", "File storage" => "hdf5.md", "Logging" => "logging.md", "Configuration" => "config.md", "Misc" => "misc.md", "Index" => "apiindex.md" ], # "Glossary" => "glossary.md", "Change Log" => "changelog.md" ]) deploydocs( repo = "github.com/s-fuerst/Vahana.jl.git", devbranch = "main" )
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
8175
# # Utilizing Graphs.jl # # Goal #= This tutorial illustrates how to integrate graphs that support the `AbstractGraph` interface from the Graphs.jl package into a Vahana simulation and the visualization support for Vahana graphs. For this purpose, we implement the opinion dynamics model of [Hegselmann and Krause (2002)](http://jasss.soc.surrey.ac.uk/5/3/2.html). An alternative implementation of the same model using the Agents.jl package can be found [here](https://juliadynamics.github.io/Agents.jl/v4.0/examples/hk/). =# # # Agent and Edge Types using Vahana, Statistics # We have a finite number $n$ of agents, where the state of # the agents are a real number $x_i(t)$ in the [0,1] interval which # represents the opinion of that agent. struct HKAgent opinion::Float64 end # This time we have only one network that determine the agents that # will be considered when an agent updates its opinion. struct Knows end # Beside these two types there is a *confidence bound* $\epsilon > 0$, # opinions with a difference greater than $\epsilon$ are ignored by # the agents in the transition function. All agents have the same # confidence bound, so we introduce this bound as a parameter. const hkmodel = ModelTypes() |> register_agenttype!(HKAgent) |> register_edgetype!(Knows) |> register_param!(:ϵ, 0.02) |> # the confidence bound create_model("Hegselmann-Krause"); # # Adding a Graph # Vahana allows adding `SimpleGraphs` and `SimpleDiGraphs` from the # [Graphs.jl](https://juliagraphs.org/Graphs.jl/dev/) package via the # [`add_graph!`](@ref) function. So it is possible to use e.g. # [SNAPDatasets](https://github.com/JuliaGraphs/SNAPDatasets.jl) to # run the opinion model on real datasets, or the SimpleGraphs module # from Graphs.jl to create synthetic graphs. # We demonstrate here both use cases and are creating a separate # simulation for each one. const cgsim = create_simulation(hkmodel); const snapsim = create_simulation(hkmodel) # ## SimpleGraphs # First we will show how we can add a synthetic graph. For this we # need to import the SimpleGraphs module. Since there are many # functions in the Graphs.jl package with the same name as in Vahana # (e.g. add_edge!), it is advisable to import only the needed parts of # Graphs.jl instead of loading the whole package via `using Graphs`. import Graphs.SimpleGraphs # We want to add a complete graph, where each agent is connected with # all the other agents, like in the Agents.jl implementation. We can # create such a graph via `SimpleGraphs.complete_graph`. g = SimpleGraphs.complete_graph(50) # Vahana needs the information how to convert the nodes and edges of # the SimpleGraphs object to the Vahana structure. This is done by the # constructor functions in the third and forth arguments of # [`add_graph!`](@ref). We do not need the Graph.vertex and Graph.edge # arguments of this constructor functions, but for other use cases # e.g. for bipartite graphs, it would be possible to create agents of # different types depending on this information. const agentids = add_graph!(cgsim, g, _ -> HKAgent(rand()), _ -> Knows()); # Each agent also adds its own opinion to the calculation. We can use # the ids returned by the [`add_graph!`](@ref) functions for this. foreach(id -> add_edge!(cgsim, id, id, Knows()), agentids) finish_init!(cgsim) # ## SNAPDataset.jl # The SNAPDataset.jl package delivers Graphs.jl formatted datasets from # the [Stanford Large Network Dataset # Collection](https://snap.stanford.edu/data/index.html). using SNAPDatasets # With this package we can use the `loadsnap` function to create the graph # that is then added to the Vahana graph, e.g. in our example the # facebook dataset. const snapids = add_graph!(snapsim, loadsnap(:facebook_combined), _ -> HKAgent(rand()), _ -> Knows()); # Again each agent adds its own opinion to the calculation. foreach(id -> add_edge!(snapsim, id, id, Knows()), snapids) finish_init!(snapsim) # # The Transition Function # Opinions are updated synchronously according to # ```math # \begin{aligned} # x_i(t+1) &= \frac{1}{| \mathcal{N}_i(t) |} \sum_{j \in \mathcal{N}_i(t)} x_j(t)\\ # \textrm{where } \quad \mathcal{N}_i(t) &= \{ j : \| x_j(t) - x_i(t) \| \leq \epsilon \} # \end{aligned} # ``` # So we first filter all agents from the neighbors with an opinion # outside of the confidence bound, and then calculate the mean of the # opinions of the remaining agents. function step(agent, id, sim) ϵ = param(sim, :ϵ) opinions = map(a -> a.opinion, neighborstates(sim, id, Knows, HKAgent)) accepted = filter(opinions) do opinion abs(opinion - agent.opinion) < ϵ end HKAgent(mean(accepted)) end; # We can now apply the transition function to the complete graph simulation apply!(cgsim, step, HKAgent, [ HKAgent, Knows ], HKAgent) # Or to our facebook dataset apply!(snapsim, step, HKAgent, [ HKAgent, Knows ], HKAgent) # # Creating Plots # Finally, we show the visualization possibilities for graphs, and import the # necessary packages for this and create a colormap for the nodes. import CairoMakie, GraphMakie, NetworkLayout, Colors, Graphs, Makie # Since the full graph is very cluttered and the Facebook dataset is # too large, we construct a Clique graph using Graphs.jl. const cysim = create_simulation(hkmodel) |> set_param!(:ϵ, 0.25); const cyids = add_graph!(cysim, SimpleGraphs.clique_graph(7, 8), _ -> HKAgent(rand()), _ -> Knows()); foreach(id -> add_edge!(cysim, id, id, Knows()), cyids) finish_init!(cysim); # Vahana implements an interactive plot function based on GraphMakie, where # agents and edges are given different colors per type by default, and # the state of each agent/edge is displayed via mouse hover # actions. vp = create_graphplot(cysim) figure(vp) # To modify the created plot, the Makie figure, axis and plot, can be # accessed via the methods `figure`, `axis` and `plot`. This allows us to modify # the graph layout and to remove the decorations. Vahana.plot(vp).layout = NetworkLayout.Stress() Makie.hidedecorations!(axis(vp)) figure(vp) # To visualize the agents' opinions, we can leverage Vahana's # integration with Makie's plotting capabilities. Instead of directly # modifying the `node_color` property of the Makie plot, we can define # custom visualization functions. These functions, which can have # methods for different agent and edge types, are used by [`create_graphplot`](@ref) # to determine various properties of nodes and edges in the plot. # This approach not only allows for more dynamic and type-specific # visualizations but also supports interactive plots when using GLMakie as # the backend. We'll define a function called `modify_vis` that specifies how # different elements should be displayed. This function will be passed to # [`create_graphplot`](@ref) via the `update_fn` keyword argument. colors = Colors.range(Colors.colorant"red", stop=Colors.colorant"green", length=100) modify_vis(state::HKAgent, _ ,_) = Dict(:node_color => colors[state.opinion * 100 |> ceil |> Int], :node_size => 15) modify_vis(_::Knows, _, _, _) = Dict(:edge_color => :lightgrey, :edge_width => 0.5); function plot_opinion(sim) vp = create_graphplot(cysim, update_fn = modify_vis) Vahana.plot(vp).layout = NetworkLayout.Stress() Makie.hidedecorations!(axis(vp)) Makie.Colorbar(figure(vp)[:, 2]; colormap = colors) figure(vp) end; # And now we can plot the initial state plot_opinion(cysim) # And then the state after 500 iterations for _ in 1:500 apply!(cysim, step, [ HKAgent ], [ HKAgent, Knows ], [ HKAgent ]) end plot_opinion(cysim) # # Finish the Simulation # As always, it is important to call `finish_simulation` at the end of the # simulation to avoid memory leaks. finish_simulation!(cysim);
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
19052
# # Adding Spatial Information #= # Goal This example demonstrates how spatial information can be integrated into an agent-based model using Vahana. While Vahana's primary focus is on graph-based simulations, it support the inclusion of spatial information into models. It allows you to define a spatial grid, associate agents with specific locations, and implement interactions based on spatial proximity, even though the underlying implementation still operates on graph structures. It's worth noting that in its current version, Vahana may not be the optimal choice for models that primarily depend on frequent movement of agents across space. However, as this example will show, it is entirely possible to implement those models. It allows you to define a spatial grid, associate agents with specific locations, and implement interactions based on spatial proximity, all while leveraging Vahana's efficient graph-based computations. For the understanding of how Vahana handles spatial information and rasters, you may find it helpful to watch also the [corresponding section of the Vahana.jl Juliacon video](https://youtu.be/-318ec-kCBM?si=YNnWLrb-_7RPSEPB&t=1198). The video provides a visual explanation of how rasters are implemented within Vahana's graph-based framework and demonstrates some key concepts that we'll be applying in this tutorial. In this tutorial, we'll implement a predator-prey model with spatial components, showcasing how Vahana's raster functionality can be used to create a spatially-explicit ecological simulation. The model is based on the [Predator-Prey for High-Performance Computing](https://peerj.com/articles/cs-36/) (PPHPC) model. In PPHPC the agents move randomly, in our implementation the prey move to locations with grass (if one is in sight) and the predators move to locations with prey to demonstrate how features like this can be implemented in Vahana. =# # # Agent and Edge Types using CairoMakie, Vahana, Random Random.seed!(1); #hide detect_stateless(true) #hide # In our spatial predator-prey model, we define separate structures for # predators and prey, even though they share the same fields: struct Predator energy::Int64 pos::CartesianIndex{2} end struct Prey energy::Int64 pos::CartesianIndex{2} end #= Despite their identical structure, we define them as separate types because Vahana uses these types as tags for differentiating between agent categories. In the following sections, we'll use "Species" as an umbrella term to refer to both Predator and Prey. Functions that are applicable to both types will take the type as a parameter, which we'll denote as Species in the function arguments. =# # Aside from the predator and prey agents, the spatial environment is # represented by grid cells, which are also implemented as agents and # consequently function as nodes within the graph structure. struct Cell pos::CartesianIndex{2} countdown::Int64 end #= All agents maintain their position as part of their internal state. However, a cell can only perceive the animals if they are directly connected to the cell through an edge. Vahana facilitates the establishment of such edges via the [`move_to!`](@ref) function. Edges represent connections from prey or predators to cells. We define Position as a parametric type, enabling cells to distinguish between prey and predators based on the type of the edges. =# struct Position{T} end #= Views are also edges from the cells to the prey and predators respectively. These edges represent the cells that are visible to a prey or predator so that, for example, it is possible to check which cell in the visible area contains food. =# struct View{T} end # VisiblePrey edges represent connections from prey to # predator. Currently, all edge types link animals to cells, and without # an incoming edge from prey, a predator lacks awareness of prey # positions. The VisiblePrey edges are generated by cells through the # `find_prey` transition function, as cells possess knowledge of which Prey # entities are directly located on the cell via the Position{Prey} edges, # and consequently within the view of a predator via the View{Predator} # edges. struct VisiblePrey end # The last two edge types are messages to inform the agents that they # must die or find something to eat. struct Die end struct Eat end # # Params and Globals # We follow the parameter structure from the PPHPC model, but use # (besides the initial population) the same parameters for Prey and Predator # for the example run. Base.@kwdef mutable struct SpeciesParams init_population::Int64 = 500 gain_from_food::Int64 = 5 loss_per_turn::Int64 = 1 repro_thres::Int64 = 5 repro_prob::Int64 = 20 end Base.@kwdef struct AllParams raster_size::Tuple{Int64, Int64} = (100, 100) restart::Int64 = 5 predator::SpeciesParams = SpeciesParams() prey::SpeciesParams = SpeciesParams() end; params = AllParams() params.prey.init_population = 2000; # We are creating timeseries (in the form of `Vector`s) for the predator # and prey population, the number of cells with food, and the average # energy of the predators and prey. Base.@kwdef mutable struct PPGlobals predator_pop = Vector{Int64}() prey_pop = Vector{Int64}() cells_with_food = Vector{Int64}() mean_predator_energy = Vector{Float64}() mean_prey_energy = Vector{Float64}() end; # ## Create the Simulation # We have now defined all the Julia structs needed to create the model # and a simulation. const ppsim = ModelTypes() |> register_agenttype!(Predator) |> register_agenttype!(Prey) |> register_agenttype!(Cell) |> register_edgetype!(Position{Predator}) |> register_edgetype!(Position{Prey}) |> register_edgetype!(View{Predator}) |> register_edgetype!(View{Prey}) |> register_edgetype!(VisiblePrey) |> register_edgetype!(Die) |> register_edgetype!(Eat) |> create_model("Predator Prey") |> create_simulation(params, PPGlobals()) # ## Initialization # First we add the Cells to the Simulation. Therefore we define a # constructor function for the cells. There is a 50% probability that a cell # contains food (and in this case `countdown` is 0). init_cell(pos::CartesianIndex) = Cell(pos, rand() < 0.5 ? 0 : rand(1:param(ppsim, :restart))) add_raster!(ppsim, :raster, param(ppsim, :raster_size), init_cell); # We define a auxiliary functions to facilitate the relocation of an # agent to a new position. These functions will add a single `Position` # edge from the animal to the cell at the `newpos` position, and for all # cells within a Manhattan distance of 1, `View` edges will be # established from those cells to and from the animal, as well as to the # cell itself. function move!(sim, id, newpos, Species) move_to!(sim, :raster, id, newpos, nothing, Position{Species}()) move_to!(sim, :raster, id, newpos, View{Species}(), View{Species}(); distance = 1, metric = :manhatten) end; # The add_animals function is a generic initializer for both predators and # prey, taking species-specific parameters and the species type as # arguments. It creates a specified number of agents, each with a # random position on the raster and a random initial energy within a # defined range, then adds them to the simulation and places them on # the raster using the move! function. function add_animals(params, Species) energyrange = 1:(2*params.gain_from_food) foreach(1:params.init_population) do _ pos = random_pos(ppsim, :raster) id = add_agent!(ppsim, Species(rand(energyrange), pos)) move!(ppsim, id, pos, Species) end end add_animals(param(ppsim, :prey), Prey) add_animals(param(ppsim, :predator), Predator) # At the end of the initialization phase we have to call finish_init! finish_init!(ppsim) # ## Transition Functions # As mentioned in the comment for the View type, the cells are # responsible for connecting the Prey with the Predators. So each cell # iterate over each prey on the cell and add edges to all predators # that can view the cell. # The underscore (_) as the first argument in the find_prey function signifies # that we don't need to access the state of the cell itself. This is # because the function only needs to check for the presence of edges and create # new connections based on those edges, without using any information from # the cell's internal state. As a result, when we call apply! for # find_prey, we don't include Cell in the read argument. Consequently, # Vahana passes Val(Cell) as the first argument to find_prey for multiple # dispatch purposes, rather than the actual cell state. This approach # optimizes performance by avoiding unnecessary data access and allows # the function to operate solely on the graph structure of the simulation. function find_prey(_::Val{Cell}, id, sim) if has_edge(sim, id, Position{Prey}) && has_edge(sim, id, View{Predator}) for preyid in neighborids(sim, id, Position{Prey}) for predid in neighborids(sim, id, View{Predator}) add_edge!(sim, preyid, predid, VisiblePrey()) end end end end; # If a predator has enough energy left to move and there is a prey in the # predator's field of view, a random prey is selected and its position # is used as the new position. If no prey is visible, a random cell in # the predator's field of view is selected as the new position. # If there is not enough energy left, the transition function returns `nothing`, # which means that the predator dies and is no longer part of the graph. function move(state::Predator, id, sim) e = state.energy - param(sim, :predator).loss_per_turn if e > 0 ## we need to access the pos of the prey which is part of it's state prey = neighborstates(sim, id, VisiblePrey, Prey) newpos = if isnothing(prey) nextcellid = rand(neighborids(sim, id, View{Predator})) agentstate(sim, nextcellid, Cell).pos else rand(prey).pos end move!(sim, id, newpos, Predator) Predator(e, newpos) else nothing end end; # The movement logic for prey differs from that of predators in terms of # their target. While predators seek cells containing prey, prey agents # search for cells with available grass. In our implementation of the # PPHPC (Predator-Prey for High-Performance Computing) model, grass # availability is indicated by the countdown field of a # cell. Specifically, grass is considered available for consumption when a # cell's countdown value equals 0. function move(state::Prey, id, sim) e = state.energy - param(sim, :prey).loss_per_turn if e > 0 withgrass = filter(neighborids(sim, id, View{Prey})) do id agentstate(sim, id, Cell).countdown == 0 end nextcellid = if length(withgrass) == 0 rand(neighborids(sim, id, View{Prey})) else rand(withgrass) end newpos = agentstate(sim, nextcellid, Cell).pos move!(sim, id, newpos, Prey) Prey(e, newpos) else nothing end end; # If a cell has no grass and the countdown field is therefore > 0, the # countdown is decreased by 1. function grow_food(state::Cell, _, _) Cell(state.pos, max(state.countdown - 1, 0)) end; # The try_eat transition function simulates the predator-prey interactions and # feeding processes within each cell. When both predators and prey # occupy the same cell, the function generates random predator-prey pairings, # ensuring each prey is targeted at most once and each predator consumes # no more than one prey. These interactions are represented by creating # Die edges from the cell to the consumed prey and Eat edges from the # cell to the successful predators. If any prey survive this process and # the cell contains available grass (indicated by a countdown of 0), an # Eat edge is established between the cell and a randomly selected # surviving prey, simulating grazing behavior. function try_eat(state::Cell, id, sim) predators = neighborids(sim, id, Position{Predator}) prey = neighborids(sim, id, Position{Prey}) ## first the predators eat the prey, in case that both are on the cell if ! isnothing(predators) && ! isnothing(prey) prey = Set(prey) for pred in shuffle(predators) if length(prey) > 0 p = rand(prey) add_edge!(sim, id, p, Die()) add_edge!(sim, id, pred, Eat()) delete!(prey, p) end end end ## then check if there is prey left that can eat the grass if ! isnothing(prey) && length(prey) > 0 && state.countdown == 0 add_edge!(sim, id, rand(prey), Eat()) Cell(state.pos, param(sim, :restart)) else state end end; # The reproduction mechanism for both predators and prey follows a similar # pattern, allowing us to define a generic function applicable to both # species. This function first determines if the animal found something to eat # by checking for the presence of an Eat edge targeting the animal, a # result of previous transition functions. If such an edge exists, the # animal's energy increases. # The function then evaluates if the animal's energy # exceeds a specified threshold parameter. When this condition is met, # reproduction occurs: a new offspring is introduced to the simulation # via the add_agent call, inheriting half of its parent's energy, and is # positioned at the same location as its parent using the move! function. function try_reproduce_imp(state, id, sim, species_params, Species) if has_edge(sim, id, Eat) state = Species(state.energy + species_params.gain_from_food, state.pos) end if state.energy > species_params.repro_thres && rand() * 100 < species_params.repro_prob energy_offspring = Int64(round(state.energy / 2)) newid = add_agent!(sim, Species(energy_offspring, state.pos)) move!(sim, newid, state.pos, Species) Species(state.energy - energy_offspring, state.pos) else state end end; # For the Predator we can just call the reproduce function with the necessary # arguments. try_reproduce(state::Predator, id, sim) = try_reproduce_imp(state, id, sim, param(sim, :predator), Predator) # The prey animal needs an extra step because it might have been eaten # by a predator. So, we check if there is a `Die` edge leading to the # prey animal, and if so, the prey animal is removed from the # simulation (by returning nothing). Otherwise, we again just call the # reproduce function defined above. function try_reproduce(state::Prey, id, sim) if has_edge(sim, id, Die) return nothing end try_reproduce_imp(state, id, sim, param(sim, :prey), Prey) end; # We update the global values and use the `mapreduce` method to count # the population and the number of cells with food. Based on the # values, we can then also calculate the mean energy values. function update_globals(sim) push_global!(sim, :predator_pop, mapreduce(sim, _ -> 1, +, Predator; init = 0)) push_global!(sim, :prey_pop, mapreduce(sim, _ -> 1, +, Prey; init = 0)) push_global!(sim, :cells_with_food, mapreduce(sim, c -> c.countdown == 0, +, Cell)) push_global!(sim, :mean_predator_energy, mapreduce(sim, p -> p.energy, +, Predator; init = 0) / last(get_global(sim, :predator_pop))) push_global!(sim, :mean_prey_energy, mapreduce(sim, p -> p.energy, +, Prey; init = 0) / last(get_global(sim, :prey_pop))) end; # We add to our time series also the values after the initialization. update_globals(ppsim); # And finally we define in which order our transitions functions are called. # Worth mentioning here are the keyword arguments in `find_prey` and # `try_reproduce`. # The add_existing keyword in the try_reproduce transition function signify that # the currently existing position and view edges should not be # removed, and only additional edges should be added, in our case the # position of the potential offspring. function step!(sim) apply!(sim, move, [ Prey ], [ Prey, View{Prey}, Cell ], [ Prey, View{Prey}, Position{Prey} ]) apply!(sim, find_prey, [ Cell ], [ Position{Prey}, View{Predator} ], [ VisiblePrey ]) apply!(sim, move, [ Predator ], [ Predator, View{Predator}, Cell, Prey, VisiblePrey ], [ Predator, View{Predator}, Position{Predator} ]) apply!(sim, grow_food, Cell, Cell, Cell) apply!(sim, try_eat, [ Cell ], [ Cell, Position{Predator}, Position{Prey} ], [ Cell, Die, Eat ]) apply!(sim, try_reproduce, [ Predator, Prey ], [ Predator, Prey, Die, Eat ], [ Predator, Prey, Position{Predator}, Position{Prey}, View{Predator}, View{Prey} ]; add_existing = [ Position{Predator}, Position{Prey}, View{Predator}, View{Prey} ]) update_globals(sim) end; # Now we can run the simulation for _ in 1:400 step!(ppsim) end # ## Plots # To visualize the results we use the Makie package. # ### Time series # First, we will generate a line chart for the time series data stored in # the global state. Vahana provides the `plot_globals` function for this # purpose. This function not only returns the Makie Figure itself but also the # Axis and Plots, allowing for further processing of the result. If you # wish to display the default result, you can utilize the Julia `first` # function to extract the figure from the returned tuple. plot_globals(ppsim, [ :predator_pop, :prey_pop, :cells_with_food ]) |> first # ### Spatial distribution # To visualize the spatial information we can use `heatmap` in # combination with the Vahana's `calc_raster` function. E.g. the # number of Position{Prey} edges connected to a cell give us the # number of Prey individuals currently on that cell. # It would be nice to have a colorbar for the heatmaps so we define a small # helper function that can be used in a pipe. function add_colorbar(hm) Makie.Colorbar(hm.figure[:,2], hm.plot) hm end; # #### Predators Positions calc_raster(ppsim, :raster, Int64, [ Position{Predator} ]) do id num_edges(ppsim, id, Position{Predator}) end |> heatmap |> add_colorbar # #### Prey Positions calc_raster(ppsim, :raster, Int64, [ Position{Prey} ]) do id num_edges(ppsim, id, Position{Prey}) end |> heatmap |> add_colorbar # #### Cells that contains food calc_raster(ppsim, :raster, Int64, [ Cell ]) do id agentstate(ppsim, id, Cell).countdown == 0 end |> heatmap |> add_colorbar # # Finish the Simulation # As always, it is important to call `finish_simulation` at the end of the # simulation to avoid memory leaks. finish_simulation!(ppsim);
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
25551
#= # First Steps # Goal In this tutorial, we will build a simple market model with multiple buyers and sellers. Each buyer has a fixed budget and preferences for two goods, x and y. Sellers offer these goods, and buyers purchase from a randomly selected subset of sellers at each time step. The model illustrates several core concepts in Vahana, including: 1. Defining agent and edge types as structs 2. Initializing a simulation with agents and edges 3. Implementing transition functions to update agent states 4. Tracking simulation results This simple model serves as an introduction to Vahana's capabilities for agent-based modeling. While relatively basic, it demonstrates how to represent a multi-agent system with different types of agents, connections between agents, and state transitions driven by agent interactions. # Model Overview Our model simulates a dynamic market with $n$ buyers and $m$ sellers, trading two types of goods: $x$ and $y$. We use good $x$ as the numeraire, fixing its price at 1, while the price of good $y$, denoted as $p$, is variable and adjusted by sellers over time. Each buyer in our market has a unique preference and a constant budget $B$ for purchasing both commodities. These preference is represented by an individual parameter α, which determines the buyer's relative desire for good $x$ versus good $y$. Buyers make their purchasing decisions based on a Cobb-Douglas utility function: ```math \max_{x,y} u(x, y) = x^\alpha \cdot y^{1 - \alpha} ``` subject to their budget constraint: $x + y · p ≤ B$. This utility maximization leads to an optimal demand for each good: ```math \begin{aligned} x &= B \cdot \alpha \\ y &= \frac{B \cdot (1 - \alpha)}{p} \end{aligned} ``` On the supply side, sellers offer both goods $x$ and $y$, which we assume to be joint products. Their primary goal is to balance the production and sales of these two goods. To achieve this, sellers adjust their prices based on the aggregate demand from their customers. The price adjustment mechanism is given by: ```math \begin{aligned} p_t &= \frac{d_y}{d_x} \cdot p_{t-1} \\ \textrm{where } d_x &= \sum_{b \in \textrm{buyers}}x_b ,\quad d_y = \sum_{b \in \textrm{buyers}} y_b \end{aligned} ``` # Agent and Edge Types Now that we understand our market model, let's implement it using Vahana. We'll start by defining our agent types and edge types, then create and initialize our simulation. First, we need to import the necessary modules: =# using Vahana import Random: rand import DataFrames #= In Vahana, agents and the edges between them are represented by Julia structs. However, these structs must meet specific requirements: 1. They must be immutable. 2. They must be "bitstypes". A bitstype in Julia is a type that is composed entirely of primitive types (like Int, Float64, Bool) or other bitstypes, and has a known, fixed size in memory. This also implies that the type of a struct variables must be declared. This restrictions allows Vahana to efficiently manage and distribute agents across processes in parallel simulations. Let's define our agent types with these requirements in mind: =# struct Buyer α::Float64 # Preference parameter B::Float64 # Budget end struct Seller p::Float64 # Current price of good y d_y::Float64 # Total demand for good y (used for price adjustment) end # To facilitate agent creation with some randomization, we'll define # custom constructors: Buyer() = Buyer(rand(), rand((1:100))) Seller() = Seller(rand() + 0.5, 0); #= These constructors create: - Buyers with random $\alpha$ (between 0 and 1) and $B$ (between 1 and 100) - Sellers with a random initial price $p$ (between 0.5 and 1.5) and zero initial demand. Now, let's look at our edge types in more detail: This `KnownSeller` network is fixed and describes the sellers known to each buyer. In Vahana, the direction of an edge determines the flow of information. Since buyers need price information from sellers to calculate their demand, we define this as an edge from sellers to buyers. We call this network KnownSeller. The edges of the `KnownSeller` network don't carry additional information, so we define them as an empty struct. We'll use this as a kind of tag later to select only the edges of this type. =# struct KnownSeller end #= The Bought network represents actual transactions between buyers and sellers. This network is dynamic, with edges created during the simulation runtime. Each edge in the Bought network carries information about the quantities of goods purchased in a transaction. Specifically: =# struct Bought x::Float64 # Quantity of good x bought y::Float64 # Quantity of good y bought end # To make working with Bought edges easier, we'll define an addition # operation: import Base.+ +(a::Bought, b::Bought) = Bought(a.x + b.x, a.y + b.y); # This allows us to easily sum up multiple Bought edges, which will be # useful when sellers calculate total demand. # # Defining the Model Structure #= In Vahana, the [`ModelTypes`](@ref) constructor is the starting point for defining the structure of your agent-based model. To populate this instance, we use the `register_agenttype!` and `register_edgetype!` functions. These functions tell Vahana about the types of agents and edges in your model, allowing it to set up the necessary internal data structures and optimizations. The |> operator can be used for function chaining, providing a concise way to register multiple types. =# const modeltypes = ModelTypes() |> register_agenttype!(Buyer) |> register_agenttype!(Seller) |> register_edgetype!(KnownSeller) |> register_edgetype!(Bought); # # Defining Model Parameters and Globals #= Vahana offers two ways to define parameters for your model: using `register_param!` or creating a custom parameter struct. The `register_param!` function allows you to register individual parameters with your model. For example, you might use: =# modeltypes |> register_param!(:numBuyer, 50) |> register_param!(:numSeller, 5) |> register_param!(:knownSellers, 2); #= With this approach, the parameters can then be set to values other than the default value via [`set_param!`](@ref) calls until the simulation is initialized with [`finish_init!`](@ref). Alternatively you can define a custom parameter struct and then pass an instance of this struct to [`create_simulation`](@ref). In addition to parameters, Vahana allows you to manage global state variables that can change during the simulation. This is particularly useful for tracking aggregate statistics or maintaining shared information across all agents. Similar to parameters, you can register individual global variables: =# modeltypes |> register_global!(:x_minus_y, Vector{Float64}()) |> register_global!(:p, Vector{Float64}()); # Again, you could alternatively, you can define a custom struct for globals # and pass an instance of this struct to [`create_simulation`](@ref) as # shown in the other tutorials. # Please note that Vahana's global state is distinct from the # functionality of the `global` keyword in Julia programming # language. The two concepts are unrelated and should not be conflated. # # Create the Model and Simulation #= In Vahana, the term "model" is used in a somewhat unconventional way compared to other agent-based modeling frameworks. In Vahana, a model created via [`create_model`](@ref) does not contain any rules about how the state of a simulation changes over time. Instead, a Vahana model is more akin to a specification of the possible state space - it defines the set of all possible graphs that can be created with the specified agent and edge types. Think of a Vahana model as a blueprint or a schema. It outlines the structure of your simulation - what types of agents can exist, what types of relationships (edges) can exist between them, and what global parameters and variables are available. However, it doesn't dictate how these elements interact or evolve over time. A simulation, on the other hand, is a concrete realization within this state space. It's an actual graph with specific agents and edges, representing the current state of your simulated world at a given point in time. Transition functions, which we'll define later, are the mechanisms that actually change the state of the simulation over time. These functions operate on the current state of the simulation (the current graph of agents and edges) and produce a new state by modifying agent attributes, creating or removing agents and edges, and updating global variables. To create a model in Vahana, we use the [`create_model`](@ref) function. This function takes the ModelTypes object we've been building through our type registrations and parameter/globals definitions, and the name of the model: =# const model = create_model(modeltypes, "Excess Demand") # Once we have a model, we can create a simulation based on that model using # the [`create_simulation`](@ref) function: const sim = create_simulation(model) #= This function creates a new simulation instance based on our model. At this point, the simulation is empty - it doesn't contain any agents or edges yet. It's essentially a blank canvas ready for us to populate with agents and edges according to our model's specifications. # Populating the Simulation After creating our simulation, the next step is to populate it with agents and edges. Vahana provides [`add_agent!`](@ref), [`add_agents!`](@ref), [`add_edge!`](@ref), and [`add_edges!`](@ref) functions for this purpose. The [`add_agent!`](@ref) function returns an `AgentID`, while [`add_agents!`](@ref) returns a vector of `AgentID`s. These identifiers are unique to each agent at the current state of the simulation. In parallel simulations, the `AgentID` incorporates information about the process number to which the agent is assigned. Consequently, the ID may be modified if an agent is reassigned to a different process. In the current implementation of Vahana, agents only change processes during the [`finish_init!`](@ref) function. However, this design allows for potential future implementation of dynamic load balancing. It is also possible that the same `AgentID` is utilized multiple times for distinct agents. Consequently, an `AgentID` returned by a Vahana function call or passed as an argument to a callback function (refer to the [Transition functions](./performance.md#Transition functions) section below for more details) is only valid within a specific scope. This scope is limited to either the period before the finish_init! function is invoked or until the callback/transition function has completed its execution. After these points, the ID should not be considered reliable for further use or reference. If your model requires persistent identification of agents, you should implement this yourself by adding an ID field to your agent struct. For example: ``` struct BuyerWithID id::UUID # created via the UUIDs standard library α::Float64 B::Float64 end ``` You would then manage these IDs yourself, ensuring they remain constant throughout the simulation. In our case, we use the IDs returned by add_agents! to iterate over all buyer IDs, randomly select `numSellers` seller IDs for each buyer ID, and then create edges between them in the `KnownSeller` network. We can see in the following code snippet also how parameters of the Simulation can be accessed via the [`param`](@ref) function. =# buyerids = add_agents!(sim, [ Buyer() for _ in 1:param(sim, :numBuyer)]) sellerids = add_agents!(sim, [ Seller() for _ in 1:param(sim, :numSeller)]) for b in buyerids for s in rand(sellerids, param(sim, :knownSellers)) add_edge!(sim, s, b, KnownSeller()) end end sim # As you can see from the result of the code block above, Vahana has # "pretty print" functions for some of its data structures. # Finally, we call [`finish_init!`](@ref). This crucial step completes # the initialization process, setting up data structures and, in # parallel simulations, distributing agents across processes. finish_init!(sim) # # Defining Transition Functions #= In Vahana, transition functions define how your simulation evolves from one state to the next. They encapsulate the rules and behaviors of your agents, determining how agents interact, make decisions, and change their states. The transition function is called for each agent separately. A typical transition function in Vahana has the following signature: ```julia function transition_function(state, id, sim) # Function body return new_agent_state end ``` A transition function must have three parameters. The first represents the current state of the agent, allowing it to make decisions based on its own attributes and conditions. The second parameter is the temporary ID of the agent. This ID can be used within the transition function to access other elements of the graph that are visible to the agent via functions like [`edges`](@ref) or [`neighborstates`](@ref). It's important to note that this ID should not be stored, as it may change between time steps. Finally, there's `sim`, which is the simulation object. This provides access to the global state and parameters of the simulation. These three parameters together give the agent all the context it needs to determine its next state. The first transition function we are implementing calculates the demand for the goods $x$ and $y$. This transition function is called for all Buyers. First, the [`neighborids`](@ref) function is used to get a vector that contains the (temporary) IDs all the sellers known by the actual buyer. One of the IDs of the sellers is selected using the `rand` function. For this seller, the state is accessed via the [`agentstate`](@ref) function. In cases where the type of the agent whose state we want to access is unknown, it's possible to use [`agentstate_flexible`](@ref) instead. Then the agent calculates it's demand for the goods $x$ and $y$, and adds an edge with the information about the demand to the `Bought` network, which is then used in the next transition function by the sellers to sum up the demand and calculate the new price. =# function calc_demand(b::Buyer, id, sim) seller = rand(neighborids(sim, id, KnownSeller)) s = agentstate(sim, seller, Seller) x = b.B * b.α y = b.B * (1 - b.α) / s.p add_edge!(sim, id, seller, Bought(x, y)) end; #= In the `calc_price` transition function, sellers summarize all the goods $x$ and $y$ they sold. They do this by summing the state of all incoming Bought edges. If a seller hasn't made any sales (i.e., no incoming Bought edges exist), [`edgestates`](@ref) returns `nothing`, and the seller's state remains unchanged. Otherwise, `edgestates` returns a Vector containing the states of all relevant edges. We aggregate this vector using the `reduce` function, leveraging the previously defined `+` operator for Bought. Finally, we construct a new seller state. The new price is calculated as `q.y / q.x * s.p`. =# function calc_price(s::Seller, id, sim) sold = edgestates(sim, id, Bought) if isnothing(sold) return s end q = reduce(+, sold) Seller(q.y / q.x * s.p, q.y) end; #= # Applying Transition Functions To apply these transition functions to the current state of a simulation, Vahana provides the [`apply!`](@ref) method. This method is the key mechanism for evolving the simulation state over time, executing our defined transition functions across the population of agents. Let's examine its signature and behavior in more detail: ```julia apply!(sim, func, call, read, write; add_existing = [], with_edge = nothing) ``` `sim` is the simulation instance and `func` is the transition function to be applied to the simulation state. The `call` argument in `apply!` specifies which agent types the transition function should be applied to. This can be either a single agent type or a collection of agent types. In most cases, as in our market model, call will contain only a single type. For example, when we apply calc_demand, we only want to call it for Buyer agents. However, Vahana allows for more complex scenarios where a single transition function can be applied to multiple agent types. This flexibility allows for more complex agent interactions and behaviors within a single transition function, which can be particularly useful in models where different types of agents share similar behaviors or decision-making processes. The `read` argument must include all agent and edge state types that are accessed in the transition function. This is particularly important in parallel simulations, as it ensures that all necessary data is transmitted to the processes that need to access it. When Vahana's assertion system is active, it checks that only these specified types are accessed. However, if assertions are disabled via [`enable_asserts`](@ref), forgetting to include a type in read can lead to incorrect results without raising an error. It's worth noting that while including unnecessary types in read doesn't cause errors, it can negatively impact performance. A noteworthy scenario occurs when the `call` type is excluded from the `read` set. In these instances, the transition function's first argument is altered. Rather than representing the agent state, it becomes a Value Type corresponding to the 'call' type. Consequently, the state of the agent for which the transition function is invoked becomes inaccessible within the function itself. The `write` collection must contain all agent and edge state types that are modified in the transition function. Conceptually, one might think of the resulting graph after a transition as the union of all agents and edges returned by individual transition function calls. However, this approach would be inefficient, requiring the reconstruction of even stable parts of the graph. Instead, Vahana optimizes this process by removing only the parts of the graph specified in the write collection. This means you can only change the state of agents or edges of a type if you're also re-adding the state of constant elements of that type. But in cases where you want to add new elements (like additional edges) without modifying existing ones, you can use the optional `add_existing` keyword. This keyword takes a single or a collection of agent or edge state types. For all types in this collection, existing agents or edges will be preserved, even if the type is also in the write collection. This provides a flexible way to extend the graph without completely rebuilding it. But there is the restriction that agent types in `add_existing` can not be also in `call`. The `with_edge` keyword restricts the application of the transition function to agents that are targets of a specified edge type. It's equivalent to manually checking for the presence of the edge for each agent before applying the function, but allows Vahana to optimize this operation internally. `with_edge` should only be used when a small proportion of agents have edges of the specified type. If most agents have this edge type, using with_edge may decrease performance compared to a manual check inside the transition function. The implementation process, while seemingly complex, is quite straightforward in practice. Begin by crafting your transition function as previously demonstrated. Then, follow these steps: 1. Identify the agent types for which the transition function should be invoked and include these types in the `call` parameter. 2. Examine the function calls, such as [`edgestates`](@ref), to determine which types are utilized. Add these types to the `read` parameter. 3. If you access the first argument of the transition function (representing the agent's state), include that type in the `read` parameter as well. 4. Should you intend to return a modified agent state, add that type to the `write` parameter. 5. If your function includes additional `add_edge!` or `add_agent!` calls, incorporate their respective types into the `write` parameter. 6. Be aware that all existing agents and edges will be removed from the simulation unless their types are also specified in the `add_existing` parameter. Following this schema we get for our transition functions =# apply!(sim, calc_demand, Buyer, [ Buyer, Seller, KnownSeller ], Bought); # and apply!(sim, calc_price, Seller, [ Seller, Bought ], Seller); # # Working with Globals #= To summarize the state of a simulation, Vahana uses the map-reduce combination from functional programming. First, a function is applied to each agent or edge state, and then the result is reduced using a binary function. E.g. to calculate the excess demand we write =# mapreduce(sim, b -> b.x - b.y, +, Bought) #= The last argument of Vahana's mapreduce specifies the agent or edge type for which the aggregation should be performed. The anonymous function in the second position describes the assignment for each instance of that type. In this case, the function receives an edge of the 'Bought' type and calculates the additional quantity of good x that was purchased. This value is then summed across all edges of the specified type. To calculate the average price we define a helper function =# function calc_average_price(sim) m = mapreduce(sim, s -> s.p * s.d_y, +, Seller) q = mapreduce(sim, s -> s.d_y, +, Seller) m / q end calc_average_price(sim) # And now we have all elements to run the simulation, e.g. for 5 steps: for _ in 1:5 apply!(sim, calc_demand, Buyer, [ Buyer, Seller, KnownSeller ], Bought) push_global!(sim, :x_minus_y, mapreduce(sim, b -> b.x - b.y, +, Bought)) apply!(sim, calc_price, Seller, [ Seller, Bought ], Seller) push_global!(sim, :p, calc_average_price(sim)) end # To get a resulting timeseries, we use the [`get_global`](@ref) function: get_global(sim, :p) # # Investigating the Simulation State #= Vahana offers several methods to examine the current state of your simulation. For example, the user-defined show methods for the model and simulation instances, which provide a quick summary of your model/simulation: =# model # sim # Vahana offers the `show_agent` function to inspect the state of individual # agents. This function displays comprehensive information about a # randomly selected agent of the specified type. Additionally, users # have the option to specify a particular agent identifier if they wish # to examine a specific agent. The `show_agent` function returns the # identifier of the selected agent. show( #hide show_agent(sim, Seller, 1) ) #hide #= The `show_agent` function has an optional keyword argument, `neighborstate`, which enables the user to examine the state of neighboring agents. The `neighborstate` argument should be a vector of symbols representing the field names that should be displayed. =# show( #hide show_agent(sim, Seller, 1; neighborstate = [ :B ]) ) #hide #= As mentioned in the [Agent and Edge Types](#Agent-and-Edge-Types) section, all agent and edge types in Vahana must be of type `bitstype`. This has the usefull side effect that the state of the agents and edges can be nicely converted into a DataFrame. It is important to note that the DataFrame in a parallel simulation contains only the agents or edges of the process in which the function is called, and not those of the complete simulation. If the latter is required, [`all_agents`](@ref) or [`all_edges`](@ref) can be used. =# first(DataFrame(sim, Bought; types = true), 10) # # To get the DataFrame for the Globals, we call the `GlobalsDataFrame` # function for our sim. Be aware, that only global variable that are vectors # are added to the DataFrame. GlobalsDataFrame(sim) # # Finish the Simulation #= Vahana employs an internal C library for memory allocation during simulations. Upon completing a simulation, it is necessary to invoke the `finish_simulation` function to properly deallocate the memory resources utilized. This function returns the global variables associated with the concluded simulation. =# finish_simulation!(sim) # # Understanding Vahana's Edge Structure #= When we define edge types like `KnownSeller` or `Bought`, you might notice that these structs don't contain any information about the source or target agents of the edge. This is by design in Vahana, which uses a specific internal structure to represent edges efficiently. Internally, Vahana declares a parametric type for edges: ``` struct Edge{T} from::AgentID state::T end ``` In this structure, `T` is the type of our edge (like `KnownSeller` or `Bought`), and from is the ID of the agent at the source of the edge. You might wonder why there's no to field for the target agent. The reason lies in how Vahana stores these edges. Vahana uses container structures (like dictionaries) to store edges. The exact type of container depends on certain optimization hints (see Edge Hints for more details), but a typical structure might look like this: `Dict{AgentID, Vector{Edge{T}}}` This design means that the target agent's ID is implicitly stored as the dictionary key. Adding it to the Edge struct would be redundant and would unnecessarily consume memory and CPU cycles. As a user of Vahana, you don't need to interact with this internal structure directly, but understanding it can help you design more efficient models and better understand how Vahana works under the hood. =#
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
12731
# The overall AgentID is composed of three parts: # # - The TypeID by which the AgentType of the agent can be determined. # # - The ProcessID, which in the rank on which the agent is currently managed. # # - The AgentNr is the index of the vectors where agent specific # information is stored. Those indices can be reused when an agent dies # (see AgentReadWrite.reusable), so at different times different agents # can have the same AgentNr (and even AgentID). # # In this implementation these three values are packed into a single # UInt64, but since the construction of the AgentID and the # determination of the TypeID, ProcessID and AgentNr from the AgentID # is always done using the interface defined below, this could also be # changed to a tuple, for example (and this was also tested during # development, but the implementation found here had a noticeable # performance advantage and a better memory usage). It's also possible # to change the number of bits used for the different parts by adjusting # the following BITS_ values. export AgentID, ProcessID#, AgentNr export add_agent!, add_agents!, add_agent_per_process! export agentstate, agentstate_flexible export all_agents, all_agentids export num_agents const TypeID = UInt8 const BITS_TYPE = 8 const MAX_TYPES = 2 ^ BITS_TYPE """ ProcessID The rank on which the agent is currently managed. """ const ProcessID = UInt32 const BITS_PROCESS = 20 const AgentNr = UInt64 const BITS_AGENTNR = 36 """ AgentID The AgentID is a combination of different (Vahana internal) information about an agent, like e.g. the position where the agent state is stored. It's important to understand that at different times different agents can have the same agent id, therefore those ids can not be used to identify an agent a simulation run. If you need this, you must add an field to the agent state and create an unique value for this field in the agent constructor by yourself. """ const AgentID = UInt64 @assert round(log2(typemax(TypeID))) >= BITS_TYPE @assert round(log2(typemax(ProcessID))) >= BITS_PROCESS @assert round(log2(typemax(AgentNr))) >= BITS_AGENTNR @assert round(log2(typemax(AgentID))) >= BITS_TYPE + BITS_PROCESS + BITS_AGENTNR const SHIFT_TYPE = BITS_PROCESS + BITS_AGENTNR const SHIFT_RANK = BITS_AGENTNR function agent_id(typeID::TypeID, rank::Int64, agent_nr::AgentNr)::AgentID @mayassert typeID <= 2 ^ BITS_TYPE @mayassert rank <= 2 ^ BITS_PROCESS @mayassert agent_nr <= 2 ^ BITS_AGENTNR "agent_nr $(agent_nr) is too big" AgentID(typeID) << SHIFT_TYPE + rank << SHIFT_RANK + agent_nr end function agent_id(typeID::TypeID, agent_nr::AgentNr)::AgentID agent_id(typeID, mpi.rank, agent_nr) end const process_mask = (2 ^ BITS_PROCESS - 1) << BITS_AGENTNR remove_process(agentID::AgentID) = ~process_mask & agentID # there are other agent_id functions specialized for each AgentType constructed # via the construct_agent_methods with the signature # agent_id(sim::$simsymbol, agent_nr, ::Type{$T}) function type_nr(id::AgentID)::TypeID id >> SHIFT_TYPE end function type_of(sim, id::AgentID) sim.typeinfos.nodes_types[type_nr(id)] end function process_nr(id::AgentID)::ProcessID (id >> SHIFT_RANK) & (2 ^ BITS_PROCESS - 1) end function node_nr(id::AgentID) fld(process_nr(id), mpi.shmsize) end function agent_nr(id::AgentID)::AgentNr id & (2 ^ BITS_AGENTNR - 1) end @assert agent_id(TypeID(3), AgentNr(1)) |> type_nr == 3 @assert agent_id(TypeID(3), AgentNr(1)) |> agent_nr == 1 """ add_agent!(sim, agent::T)::AgentID Add a single agent of type T to the simulation `sim`. T must have been previously registered by calling [`register_agenttype!`](@ref). `add_agent!` returns a new AgentID, which can be used to create edges from or to this agent until [`finish_init!`](@ref) is called (in the case that `add_agent!` is called in the initialization phase), or until the transition funcion is finished (in the case that `add_agent!` is called in an [`apply!`](@ref) callback). Do not use the ID for other purposes, they are not guaranteed to be stable. See also [`add_agents!`](@ref), [`add_edge!`](@ref) and [`add_edges!`](@ref) """ function add_agent!(::Simulation, agent) if typeof(agent) == DataType error(""" `add_agent!(sim, agent)` is called with a DataType as value for `agent`. Maybe you forgot the `()` behind the DataType? """) else error(""" `add_agent!(sim, agent)` is called for the unregistered type $(typeof(agent)) """) end end """ add_agents!(sim, agents)::Vector{AgentID} Add multiple agents at once to the simulation `sim`. `agents` can be any iterable set of agents, or an arbitrary number of agents as arguments. The types of the agents must have been previously registered by calling [`register_agenttype!`](@ref). `add_agents!` returns a vector of AgentIDs, which can be used to create edges from or to this agents before [`finish_init!`](@ref) is called (in the case that `add_agents!` is called in the initialization phase), or before the transition funcion is finished (in the case that `add_agents!` is called in an [`apply!`](@ref) callback). Do not use the ID for other purposes, they are not guaranteed to be stable. See also [`add_agent!`](@ref), [`register_agenttype!`](@ref), [`add_edge!`](@ref) and [`add_edges!`](@ref) """ function add_agents!(sim, agents) [ add_agent!(sim, a) for a in agents ] end function add_agents!(sim, agents...) [ add_agent!(sim, a) for a in agents ] end """ agentstate(sim, id::AgentID, ::Type{T}) Returns the state of an agent of type T. In the case where the type T is not determinable when writing the code (e.g. since there may be edges between agents of different types, the function [`edges`](@ref) may also return agentIDs of different agent types), [`agentstate_flexible`](@ref) must be used instead. !!! warning if agentstate is called with a Type{T} that does not match the type of the agent with `id` and the vahana assertions are disabled via [`enable_asserts`](@ref), then it is possible that the state of an incorrect agent will be returned. When the assertions are active, there is a runtime check that the agent with the ID `id` has indeed the type T. """ function agentstate(::Simulation, ::AgentID, ::Type{T}) where T end """ agentstate_flexible(sim, id::AgentID) Returns the state of an agent with the `id`, where the type of the agent is determined at runtime. If the type is known at compile time, using [`agentstate`](@ref) is preferable as this improves performance. """ agentstate_flexible(sim, id::AgentID) = agentstate(sim, id, sim.typeinfos.nodes_id2type[type_nr(id)]) """ all_agents(sim, ::Type{T}, [all_ranks=true]) This function retrieves a vector of the states for all agents of type T of the simulation `sim`. The `all_ranks` argument determines whether to include agents from all ranks or just the current rank in parallel simulations. When `all_ranks` is `true`, the function returns a vector of all agent identifiers across all ranks. The states and IDs of the agents returned by `all_agents` and [`all_agentids`](@ref) are in the same order. !!! info `all_agents` cannot be called within a transition function if the argument `all_ranks` is set to true. See also [`all_agentids`](@ref), [`add_agents!`](@ref) and [`num_agents`](@ref). """ function all_agents(sim, ::Type{T}, all_ranks = true) where T @mayassert (! sim.intransition) || all_ranks == false """ all_agents with all_ranks == true can not be called within a transition function """ @assert fieldcount(T) > 0 """\n all_agents can be only called for agent types that have fields. To get the number of agents, you can call num_agents instead. """ states = sim.initialized ? getproperty(sim, Symbol(T)).read.state : getproperty(sim, Symbol(T)).write.state l = if has_hint(sim, T, :Immortal, :Agent) states else died = sim.initialized ? getproperty(sim, Symbol(T)).read.died : getproperty(sim, Symbol(T)).write.died [ states[i] for i in 1:length(died) if died[i] == false ] end if all_ranks && mpi.active join(l) else l end end """ all_agentids(sim, ::Type{T}, [all_ranks=true]) This function retrieves a vector of the current ids for all agents of type T of the simulation `sim`. These ids are not stable and can change during parallel simulations, e.g. by calling [`finish_init!`](@ref) (and hopefully in the future through dynamic load balancing). The `all_ranks` argument determines whether to include agents from all ranks or just the current rank in parallel simulations. When `all_ranks` is `true`, the function returns a vector of all agent identifiers across all ranks. The states and IDs of the agents returned by [`all_agents`](@ref) and `all_agentids` are in the same order. !!! info `all_agentids` cannot be called within a transition function if the argument `all_ranks` is set to true. See also [`all_agents`](@ref), [`add_agents!`](@ref) and [`num_agents`](@ref). """ function all_agentids(sim, ::Type{T}, all_ranks = true) where T @mayassert (! sim.intransition) || all_ranks == false """ all_agentids with all_ranks == true can not be called within a transition function """ # we are only interessted in the states field to get the length # as this vector is also used for stateless agenttypes states = sim.initialized ? getproperty(sim, Symbol(T)).read.state : getproperty(sim, Symbol(T)).write.state l = if has_hint(sim, T, :Immortal, :Agent) [ agent_id(typeid(sim, T), AgentNr(i)) for i in 1:length(states) ] else died = sim.initialized ? getproperty(sim, Symbol(T)).read.died : getproperty(sim, Symbol(T)).write.died [ agent_id(typeid(sim, T), AgentNr(i)) for i in 1:length(died) if died[i] == false ] end if all_ranks join(l) else l end end """ num_agents(sim, ::Type{T}, [all_ranks=true]) If `all_ranks` is `true` this function retrieves the number of agents of type T of the simulation `sim`. When it is set to `false`, the function will return the number of agents managed by the process. See also [`add_agents!`] and [`all_agents`](@ref). """ function num_agents(sim, ::Type{T}, sum_ranks = true) where T field = getproperty(sim, Symbol(T)) attr = sim.typeinfos.nodes_attr[T] # independent = :Independent in attr[:hints] local_num = if :Immortal in attr[:hints] # we can not just access the length of read.state, as for # types without field, we don't use the read.state vector field.nextid - 1 else died = sim.initialized ? readdied(sim, T) : writedied(sim, T) count(!, values(died)) end if sum_ranks MPI.Allreduce(local_num, +, MPI.COMM_WORLD) else local_num end end """ add_agent_per_process!(sim::Simulation, agent::T) where T Add a single agent of type `T` to each process in the simulation. This function is designed to be used after initialization (when the simulation is distributed to the different processes in a parallel run) but outside of transition functions. It allows each process to have its own dedicated agent, useful for tasks like random agent selection or process-specific operations. The function takes the simulation and the agent to be added as arguments. It returns the `AgentID` of the agent created on the current process. !!! warning This function is not designed or optimized for adding many agents. Use it sparingly, typically to create a single agent per process for special purposes. For adding multiple agents, use the standard `add_agent!` or `add_agents!` functions within the appropriate simulation phases. See also [`add_agent!`](@ref) and [`add_agents!`](@ref). """ function add_agent_per_process!(sim::Simulation, agent::T) where T # Check if the function is called correctly @assert sim.initialized """ add_agent_per_process! can only be called after finish_init!""" @assert !sim.intransition """ add_agent_per_process! cannot be called within a transition function""" prepare_write!(sim, [], true, T) # we fake that we a in a transition function, so that the assertion # in add_agent! does not trigger sim.intransition = true # Add agent on each process id = add_agent!(sim, agent) sim.intransition = false finish_write!(sim, T) # return only the id of the agent created on the process id end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
20886
# _memcpy! moved in Julia 1.10 from Base._memcpy! to Libc.memcpy. Before # I start to support two different versions, I just define my own _memcpy! @inline memcpy!(dst, src, n) = ccall(:memcpy, Cvoid, (Ptr{UInt8}, Ptr{UInt8}, Csize_t), dst, src, n) function construct_agent_methods(T::DataType, typeinfos, simsymbol) attr = typeinfos.nodes_attr[T] # in the case that the AgentType is stateless, we only check # in mpi calls the value of the died entry stateless = fieldcount(T) == 0 immortal = :Immortal in attr[:hints] independent = :Independent in attr[:hints] mortal = ! immortal nompi = ! mpi.active shmonly = mpi.size == mpi.shmsize multinode = mpi.size > mpi.shmsize if multinode construct_mpi_agent_methods(T, attr, simsymbol, mortal) end @eval function init_field!(sim::$simsymbol, ::Type{$T}) @agentread($T) = AgentReadWrite($T) # for independent types we only use the reusable field of the struct @agentwrite($T) = AgentReadWrite($T) for ET in sim.typeinfos.edges_types @agent($T).last_transmit[ET] = -1 end nothing end typeid = typeinfos.nodes_type2id[T] @eval function _get_next_id(sim::$simsymbol, ::Type{$T}) if $mortal && length(@readreuseable($T)) > 0 nr = pop!(@readreuseable($T)) @writedied($T)[nr] = false nr else # immortal or no reusable row was found, use the next row nr = @nextid($T) # TODO AGENT: add an assertions that we have ids left @nextid($T) = nr + 1 # this time we do not need an extra handling for the independent # hint, as we can not resize the read array (which is a # MPI shared array). Instead we copy in the case that the # array increased the new elements in finish_write. if nr > length(@writestate($T)) resize!(@writestate($T), nr) # the length of writestate and writedied is always # the same, so we don't need a seperate if if $mortal resize!(@writedied($T), nr) end end if $mortal @writedied($T)[nr] = false end nr end end @eval function add_agent!(sim::$simsymbol, agent::$T) @mayassert sim.initialized == false || sim.intransition """ You can call add_agent! only in the initialization phase (until `finish_init!` is called) or within a transition function called by `apply`. """ @mayassert begin T = $T sim.initialized == false || nodes_attrs(sim, $T)[:writeable] end """ $T must be in the `write` argument of the transition function. """ nr = _get_next_id(sim, $T) if $independent if nr <= length(@readstate($T)) @inbounds @readstate($T)[nr] = agent else @inbounds @writestate($T)[nr] = agent end else @inbounds @writestate($T)[nr] = agent end agent_id($typeid, nr) end @eval function agentstate(sim::$simsymbol, id::AgentID, ::Type{$T}) @mayassert begin $type_nr(id) == sim.typeinfos.nodes_type2id[$T] end "The id of the agent does not match the given type" @mayassert begin T = $T @windows($T).prepared || ! config.check_readable end """ $T must be in the `read` argument of the transition function. """ idrank = process_nr(id) if $nompi # highest priority: does the agent is still living if $mortal nr = agent_nr(id) @mayassert ! @readdied($T)[nr] """ agentstate was requested for agent $id that has been removed """ end # if it's living, but has no state, we can return directly if $stateless return $T() end # we haven't calculate nr in the $mortal case # but need it now (maybe the compiler is clever enough # to remove a second agent_nr(id) call, then this if could # be remove if ! $mortal nr = agent_nr(id) end @inbounds @readstate($T)[nr] else (node, sr) = fldmod(idrank, mpi.shmsize) if $shmonly || node == mpi.node # same procedure as above, but with access to shared memory if $mortal nr = agent_nr(id) @mayassert ! @agent($T).shmdied[sr + 1][nr] """ agentstate was requested for agent $id that has been removed """ end if $stateless return $T() end if ! $mortal nr = agent_nr(id) end @inbounds @agent($T).shmstate[sr + 1][nr] else # same procedure as above, but with access to foreign nodes if $mortal @mayassert ! @agent($T).foreigndied[id] """ agentstate was requested for agent $id that has been removed """ end if $stateless return $T() end @agent($T).foreignstate[id] end end end @eval agent_id(_::$simsymbol, agent_nr, ::Type{$T}) = agent_id($typeid, agent_nr) @eval @inline function transition_with_write!(sim, idx, newstate, ::Type{$T}) if $immortal @mayassert begin newstate !== nothing end "You can not return `nothing` for immortal agents" if $independent @inbounds @readstate($T)[idx] = newstate else @inbounds @writestate($T)[idx] = newstate end else if isnothing(newstate) push!(@writereuseable($T), idx) @inbounds @writedied($T)[idx] = true else if $independent @inbounds @readstate($T)[idx] = newstate else @inbounds @writestate($T)[idx] = newstate end end end end @eval @inline function transition_without_write!(sim, idx, newstate, ::Type{$T}) @mayassert begin T = $T typeof(newstate) != $T end """ The transition function returned an agent of type $T, but $T is not in the `write` vector. """ end @eval function transition_with_read!(wfunc, sim::$simsymbol, tfunc, ::Type{$T}) # an own counter (with the correct type) is faster then enumerate idx = AgentNr(0) for state::$T in @readstate($T) idx += AgentNr(1) # jump over died agents if $mortal @inbounds if @readdied($T)[idx] continue end end newstate = tfunc(state, agent_id($typeid, idx), sim) wfunc(sim, idx, newstate, $T) end end @eval function transition_with_read_with_edge!(wfunc, sim::$simsymbol, tfunc, ::Type{$T}, ET::DataType) @mayassert !has_hint(sim, ET, :SingleType) """ Only edge types without the :SingeType hint can be added to to the `with_edge` keyword of an apply! call, but $ET has the :SingleType hint. """ for id in keys(edgeread(sim, ET)) idx = agent_nr(id) state = @readstate($T)[idx] @mayassert ! @readdied($T)[idx] newstate = tfunc(state, id, sim) wfunc(sim, idx, newstate, $T) end end @eval function transition_without_read!(wfunc, sim::$simsymbol, tfunc, ::Type{$T}) # an own counter (with the correct type) is faster then enumerate idx = AgentNr(0) for _ in 1:length(@readstate($T)) idx += AgentNr(1) if $mortal @inbounds if @readdied($T)[idx] continue end end r = tfunc(Val($T), agent_id($typeid, idx), sim) wfunc(sim, idx, r, $T) end end @eval function transition_without_read_with_edge!(wfunc, sim::$simsymbol, tfunc, ::Type{$T}, ET::DataType) @mayassert !has_hint(sim, ET, :SingleType) """ Only edge types without the :SingeType hint can be added to to the `with_edge` keyword of an apply! call, but $ET has the :SingleType hint. """ for id in keys(edgeread(sim, ET)) idx = agent_nr(id) @mayassert ! @readdied($T)[idx] newstate = tfunc(Val($T), id, sim) wfunc(sim, idx, newstate, $T) end end @eval function prepare_write!(sim::$simsymbol, _, add_existing::Bool, ::Type{$T}) if $immortal # distributing the initial graph or reading from file will # also kill immortal agents, so we can assert this only # after the sim is initialized. # for agentypes in call, add_existing is always set to true if sim.initialized @assert begin T = $T add_existing == true end """ You can add $T to the `write` argument only when $T is also included in the `add_existing` argument, as $T has the hint :Immortal. """ end end if ! add_existing @agentread($T) = AgentReadWrite($T) @agentwrite($T) = AgentReadWrite($T) @nextid($T) = 1 if $mortal # As we start from 1, we empty the reuseable `nr` # vector (all are reuseable now) empty!(@readreuseable($T)) end end nodes_attrs(sim, $T)[:writeable] = true end @eval function finish_write!(sim::$simsymbol, ::Type{$T}) with_logger(sim) do @debug("<Begin> finish_write!", agenttype=$T, transition=sim.num_transitions) end must_copy_mem = length(@writestate($T)) > length(@readstate($T)) || ! sim.initialized || ! $independent # copy_mem needs collective calls, so if one rank want to # copy_mem, all must participate must_copy_mem = MPI.Allreduce(must_copy_mem, |, MPI.COMM_WORLD) if $mortal network_changed = fill(false, length(sim.typeinfos.edges_types)) # in writereuseable we have collected all agents that died # in this iteration aids = map(nr -> agent_id($typeid, nr), @writereuseable($T)) edges_types = sim.typeinfos.edges_types # first we remove all the edges, where the agent is in the # target position. As those edges are stored on the same # rank as the agent, we can do this locally. for id in aids for ET in edges_types idx = findfirst(x -> x == ET, edges_types) network_changed[idx] |= _remove_edges_agent_target!(sim, id, ET) end end # for the edges where we have the died agents on the source # position we have the agentsontarget dicts on each process. # So we first collect the ids of all died agents and then # call remove_edges! for all edges stored in agentsontarget for # the collected ids. alldied = $nompi ? aids : join(aids) if ! isempty(alldied) for ET in edges_types idx = findfirst(x -> x == ET, edges_types) network_changed[idx] |= _remove_edges_agent_source!(sim, alldied, ET) end end MPI.Allreduce!(network_changed, |, mpi.comm) for ET in edges_types idx = findfirst(x -> x == ET, edges_types) if network_changed[idx] getproperty(sim, Symbol(ET)).last_change = sim.num_transitions end end # maybe the state has change, so we must clear the cache empty!(@agent($T).foreigndied) end if ! $stateless && must_copy_mem if $independent && sim.initialized memcpy!(@writestate($T), @readstate($T), length(@readstate($T)) * sizeof($T)) end if ! isnothing(@windows($T).shmstate) MPI.free(@windows($T).shmstate) end (@windows($T).shmstate, sarr) = MPI.Win_allocate_shared(Array{$T}, length(@writestate($T)), mpi.shmcomm) memcpy!(sarr, @writestate($T), length(@writestate($T)) * sizeof($T)) MPI.Win_fence(0, @windows($T).shmstate) @readstate($T) = sarr # maybe the state has change, so we must clear the cache empty!(@agent($T).foreignstate) elseif $stateless # for stateless T this is a fast operation (25 ns), and # we need this to detect the number of agents in the # case that they are immortal (in this case we could use # the died array, but to avoid code complexity, we always # ensure that readstate is available @readstate($T) = fill($T(), length(@writestate($T))) end # for the independent case, we can not set died to true directly # in the transition function, as in the case that the reused id is # after the id of the agent that add the agent, we will # call the new agent already in the same iteration. # So we have no seperate handling for the indepent case for # the died vector. if $mortal if ! isnothing(@windows($T).shmdied) MPI.free(@windows($T).shmdied) end (@windows($T).shmdied, sarr) = MPI.Win_allocate_shared(Array{Bool}, length(@writedied($T)), mpi.shmcomm) memcpy!(sarr, @writedied($T), length(@writedied($T)) * sizeof(Bool)) MPI.Win_fence(0, @windows($T).shmdied) @readdied($T) = sarr end if ! $stateless && must_copy_mem @agent($T).shmstate = [ MPI.Win_shared_query(Array{$T}, @windows($T).shmstate; rank = i - 1) for i in 1:mpi.shmsize ] end if $mortal @agent($T).shmdied = [ MPI.Win_shared_query(Array{Bool}, @windows($T).shmdied; rank = i - 1) for i in 1:mpi.shmsize ] end # for the reusable vector, we merge the new reuseable indices # (from agent died in this transition) with the unused indicies that # are still in readreuseable. @readreuseable($T) = [ @readreuseable($T); @writereuseable($T) ] empty!(@writereuseable($T)) @agent($T).last_change = sim.num_transitions nodes_attrs(sim, $T)[:writeable] = false _log_debug(sim, "<End> finish_write!") nothing end # used in copy_simulation! @eval function copy_shm!(sim, ::Type{$T}) if ! $stateless (@windows($T).shmstate, sarr) = MPI.Win_allocate_shared(Array{$T}, length(@readstate($T)), mpi.shmcomm) memcpy!(sarr, @readstate($T), length(@readstate($T)) * sizeof($T)) MPI.Win_fence(0, @windows($T).shmstate) @readstate($T) = sarr @agent($T).shmstate = [ MPI.Win_shared_query(Array{$T}, @windows($T).shmstate; rank = i - 1) for i in 1:mpi.shmsize ] end if $mortal (@windows($T).shmdied, sarr) = MPI.Win_allocate_shared(Array{Bool}, length(@readdied($T)), mpi.shmcomm) memcpy!(sarr, @readdied($T), length(@readdied($T)) * sizeof(Bool)) MPI.Win_fence(0, @windows($T).shmdied) @readdied($T) = sarr @agent($T).shmdied = [ MPI.Win_shared_query(Array{Bool}, @windows($T).shmdied; rank = i - 1) for i in 1:mpi.shmsize ] end end # this is called after the agents where distributed to the different PEs. # In the process add_agent! is called. @eval function finish_distribute!(sim::$simsymbol, ::Type{$T}) end @eval function prepare_read!(sim::$simsymbol, readable::Vector{DataType}, ::Type{$T}) if $multinode # we check in the function itself, if it's really necessary to # transmit agentstate, but we need therefore all readable # edgetypes without the :IgnoreFrom hint readableET = filter(readable) do r r in sim.typeinfos.edges_types && ! has_hint(sim, r, :IgnoreFrom) end transmit_agents!(sim, readableET, $T) end # we use this as a check that the types are in the read # vector, and this check should also done in an nompi run @windows($T).prepared = true end # some mpi parts are in prepare_write, as we always use the shared_memory # mpi calls, even in single process runs. @eval function finish_read!(sim::$simsymbol, ::Type{$T}) # we use this as a check that the types are in the read # vector, and this check should also done in an nompi run @windows($T).prepared = false end @eval function agentsonthisrank(sim::$simsymbol, ::Type{$T}, write = false) max_agents = @agent($T).nextId - 1 if $immortal @agent($T).nextId - 1 if write @writestate($T) else @readstate($T) end else if write [ @writestate($T)[i] for i in 1:min(length(@writestate($T)), max_agents) if ! @writedied($T)[i] ] else [ @readstate($T)[i] for i in 1:min(length(@readstate($T)), max_agents) if ! @readdied($T)[i] ] end end end @eval function mapreduce(sim::$simsymbol, f, op, ::Type{$T}; kwargs...) with_logger(sim) do @info "<Begin> mapreduce agents" f op agenttype=$T end @mayassert ! sim.intransition """ You can not call mapreduce inside of a transition function.""" emptyval = val4empty(op; kwargs...) if $immortal reduced = emptyval for i in 1:(@agent($T).nextid - 1) reduced = op(f(@readstate($T)[i]), reduced) end else reduced = emptyval for i in 1:(@agent($T).nextid - 1) if ! @readdied($T)[i] reduced = op(f(@readstate($T)[i]), reduced) end end end r = if $nompi reduced else mpiop = get(kwargs, :mpiop, op) MPI.Allreduce(reduced, mpiop, MPI.COMM_WORLD) end _log_info(sim, "<End> mapreduce agents") r end end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
13457
export Edge, edgestates, edgestates_iter export add_edge!, add_edges!, edges export num_edges, has_edge export neighborstates, neighborstates_flexible export neighborstates_iter, neighborstates_flexible_iter export neighborids, neighborids_iter export remove_edges! export all_edges # For many function declared in this file, the concrete impementation depends # on the hints of the edge type and the function itself is build via # the construct_edge_methods function. The declaration here # are only used for the documentation, that they come with parameters # improves the experience with tools like LSP. """ struct Edge{T} from::AgentID state::T end An edge between to agents with (optionally) additional state. T can be also a struct without any field. The AgentID of the agent at the target of the edge is not a field of `Edge` itself, since this information is already part of the containers in which the edges are stored. See also [`register_edgetype!`](@ref) """ struct Edge{T} from::AgentID state::T end """ add_edge!(sim, to::AgentID, edge::Edge{T}) Add a single edge to the simulation `sim`. The edges is directed from the agent with ID `edge.from` (the source) to the agent with ID `to` (the target). add_edge!(sim, from::AgentID, to::AgentID, state::T) Add a single edge to the simulation `sim`. The edge is directed from the agent with ID `from` (the source) to the agent with ID `to` (the target) and has the state `state`. `T` must have been previously registered in the simulation by calling [`register_edgetype!`](@ref). See also [`Edge`](@ref) [`register_edgetype!`](@ref) and [`add_edges!`](@ref) """ function add_edge!(::Simulation, to::AgentID, edge::Edge) end function add_edge!(::Simulation, from::AgentID, to::AgentID, state::Edge) error(""" `add_edge!(sim, from, to, state)` can not be called with a complete edge as state. If `edge.from == from`, you can use `add_edge!(sim, to, edge)` instead, otherwise you must extract the state of the edge by adding `.state` to your current `state` argument. """) end function add_edge!(::Simulation, from::AgentID, to::AgentID, state::T) where T error("add_edge! can not be called with a state of type $T") end """ add_edges!(sim, to::AgentID, edges) Add multiple `edges` at once to the simulation `sim`, with all edges are directed to `to`. `edges` can be any iterable set of agents, or an arbitrary number of edges as arguments. See also [`Edge`](@ref) [`register_edgetype!`](@ref) and [`add_edge!`](@ref) """ function add_edges!(sim::Simulation, to::AgentID, edges::Vector{Edge{T}}) where T for e in edges add_edge!(sim, to, e) end nothing end function add_edges!(::Simulation, ::AgentID) nothing end function add_edges!(sim::Simulation, to::AgentID, edges::Edge{T}...) where T for e in edges add_edge!(sim, to, e) end nothing end """ remove_edges!(sim::Simulation, to::AgentID, ::Type{E}) Remove all edges of type `E` where `to` is at the target position. Can only be called within a transition function, where `E` is in the `write` argument and also in the `add_existing` list of [`apply!`](@ref). """ function remove_edges!(sim::Simulation, to::AgentID, edgetype::Type) @error "remove_edges! is called for the unregisterted edgetype $(edgetype)" end """ remove_edges!(sim::Simulation, from::AgentID, to::AgentID, ::Type{E}) Removes all edges of type `E` with `from` at the source position and `to` at the target position of an edge. `remove_edges!` in this form (with `from` as argument) can only be called if the edge type `E` does not have the `:IgnoreFrom` hint. Can also only be called within a transition function, where `E` is in the `write` argument and also in the `add_existing` list of [`apply!`](@ref). """ function remove_edges!(sim::Simulation, from::AgentID, to::AgentID, edgetype::Type) @error "remove_edges! is called for the unregisterted edgetype $(edgetype)" end """ edges(sim, id::AgentID, ::Type{E}) Returns the edge of type `E` with agent `id` as target if `E` has the hint :SingleEdge, or a vector of these edges otherwise. If there is no edge with agent `id` as target, `edges` returns `nothing`. edges is not defined if `E` has the hint :IgnoreFrom or :Stateless. See also [`apply!`](@ref), [`neighborids`](@ref), [`edgestates`](@ref), [`num_edges`](@ref), [`has_edge`](@ref) and [`neighborstates`](@ref) """ function edges(::Simulation, id::AgentID, edgetype::Type) end """ neighborids(sim, id::AgentID, ::Type{E}) Returns the ID of the agent on the source of the edge of type `E` with agent `id` as target if `E` has the hint :SingleEdge, or otherwise a vector of the IDs of the agents on the source side of those edges. If there is no edge with agent `id` as target, `neighborids` returns `nothing`. `neighborids` is not defined if `E` has the hint :IgnoreFrom. !!! tip If the edge type `E` does not have the :Stateless or :SingleEdge hint, `neighborids` allocates memory for the vector of agent ids. To avoid this allocation, you can use `neighborids_iter` instead. See also [`apply!`](@ref), [`edges`](@ref), [`edgestates`](@ref), [`num_edges`](@ref), [`has_edge`](@ref) and [`neighborstates`](@ref) """ function neighborids(::Simulation, id::AgentID, edgetype::Type) end """ neighborids_iter(sim, id::AgentID, ::Type{E}) Returns an iterator of the IDs of the agents on the source side of edges of type `E` with agent `id` as target. If there is no edge with agent `id` as target, the function returns `nothing`. `neighborids` is not defined if `E` has the hint :SingleEdge or :IgnoreFrom. See also [`apply!`](@ref), [`neighborids`](@ref), [`edges`](@ref), [`edgestates`](@ref), [`num_edges`](@ref), [`has_edge`](@ref) and [`neighborstates`](@ref) """ function neighborids_iter(::Simulation, id::AgentID, edgetype::Type) end """ edgestates(sim, id::AgentID, ::Type{E}) Returns the state of the edge of type `E` with agent `id` as target if `E` has the hint :SingleEdge, or a vector of these states otherwise. If there is no edge with agent `id` as target, `edgestates` returns `nothing`. `edgestates` is not defined if `E` has the hint :Stateless. !!! tip If the edge type `E` does not have the :Stateless or :SingleEdge hint, `edgestates` allocates memory for the vector of states. To avoid this allocation, you can use `edgestates_iter` instead. See also [`apply!`](@ref), [`edges`](@ref), [`neighborids`](@ref), [`num_edges`](@ref), [`has_edge`](@ref) and [`neighborstates`](@ref) """ function edgestates(::Simulation, id::AgentID, edgetype::Type) end """ edgestates_iter(sim, id::AgentID, ::Type{E}) Returns an iterator of the states of the edges of type `E` with agent `id` as target. If there is no edge with agent `id` as target, the function returns `nothing`. `edgestates_iter` is not defined if `E` has the hint :Stateless or :SingleEdge. See also [`apply!`](@ref), [`edgestates`](@ref), [`edges`](@ref), [`neighborids`](@ref), [`num_edges`](@ref), [`has_edge`](@ref) and [`neighborstates`](@ref) """ function edgestates_iter(::Simulation, id::AgentID, edgetype::Type) end """ neighborstates(sim::Simulation, id::AgentID, ::Type{E}, ::Type{A}) Returns the state of the agent with type `A` on the source of the edge of type `E` with agent `id` as target if `E` has the hint :SingleEdge, or a vector of these agent states otherwise. If there is no edge with agent `id` as target, `neighborstates` returns `nothing`. When the agents on the source side of the edges can have different types, and it is impossible to determine the Type{A} you can use [`neighborstates_flexible`](@ref) instead. `neighborstates` is not defined if T has the hint :IgnoreFrom !!! tip If the edge type `E` does not have the :SingleEdge hint, `neighborstates` allocates memory for the vector of agent states. To avoid this allocation, you can use `neighborstates_iter` instead. See also [`apply!`](@ref), [`edges`](@ref), [`neighborids`](@ref), [`num_edges`](@ref), [`has_edge`](@ref) and [`edgestates`](@ref) """ function neighborstates(::Simulation, id::AgentID, edgetype::Type, agenttype::Type) end """ neighborstates_iter(sim::Simulation, id::AgentID, ::Type{E}, ::Type{A}) Returns an iterator for the states of the agents with type `A` on the source of the edges of type `E` with agent `id` as target. If there is no edge with agent `id` as target, the function returns `nothing`. When the agents on the source side of the edges can have different types, and it is impossible to determine the Type{A} you can use [`neighborstates_flexible_iter`](@ref) instead. `neighborstates_iter` is not defined if T has the hint :IgnoreFrom or :SingleEdge. See also [`neighborstates`](@ref), [`apply!`](@ref), [`edges`](@ref), [`neighborids`](@ref), [`num_edges`](@ref), [`has_edge`](@ref) and [`edgestates`](@ref) """ function neighborstates_iter(::Simulation, id::AgentID, edgetype::Type, agenttype::Type) end """ neighborstates_flexible(sim::Simulation, id::AgentID, ::Type{E}) Returns the state of the agent on the source of the edge of type `E` with agent `id` as target if `E` has the hint :SingleEdge, or a vector of these agent states otherwise. If there is no edge with agent `id` as target, `neighborstates_flexible` returns `nothing`. `neighborstates_flexible` is the type instable version of [`neighborstates`](@ref) and should be only used in the case that the type of agent can not be determined. `neighborstates_flexible` is not defined if T has the hint :IgnoreFrom. !!! tip If the edge type `E` does not have the :SingleEdge hint, `neighborstates_flexible` allocates memory for the vector of agent states. To avoid this allocation, you can use `neighborstates_flexible_iter` instead. See also [`apply!`](@ref), [`edges`](@ref), [`neighborids`](@ref), [`num_edges`](@ref), [`has_edge`](@ref) and [`edgestates`](@ref) """ function neighborstates_flexible(sim::Simulation, id::AgentID, edgetype::Type) nids = neighborids(sim, id, edgetype) isnothing(nids) ? nothing : map(id -> agentstate_flexible(sim, id), nids) end """ neighborstates_flexible_iter(sim::Simulation, id::AgentID, ::Type{E}) Returns an iterator for the states of the agents on the source of the edges of type `E` with agent `id` as target. If there is no edge with agent `id` as target, the function returns `nothing`. `neighborstates_flexible_iter` is the type instable version of [`neighborstates_iter`](@ref) and should be only used in the case that the type of agent can not be determined. `neighborstates_flexible_iter` is not defined if T has the hint :IgnoreFrom or the hint :SingleEdge. See also [`neighborstates_flexible`](@ref), [`apply!`](@ref), [`edges`](@ref), [`neighborids`](@ref), [`num_edges`](@ref), [`has_edge`](@ref) and [`edgestates`](@ref) """ function neighborstates_flexible_iter(sim::Simulation, id::AgentID, edgetype::Type) nids = neighborids(sim, id, edgetype) if nids === nothing nothing else (agentstate_flexible(sim, nid) for nid in nids) end end """ num_edges(sim, id::AgentID, ::Type{E}) Returns the number of edges of type `E` with agent `id` as target. `num_edges` is not defined if T has the hint :SingleEdge See also [`apply!`](@ref), [`edges`](@ref), [`neighborids`](@ref), [`edgestates`](@ref), [`has_edge`](@ref) and [`neighborstates`](@ref) """ function num_edges(::Simulation, id::AgentID, edgetype::Type) end """ has_edge(sim, id::AgentID, ::Type{E}) Returns true if there is at least one edge of type `E` with agent `id` as target. `has_edge` is not defined if T has the :SingleEdge and :SingleType hints, with the exception that it has also the :IgnoreFrom and :Stateless hints. See also [`apply!`](@ref), [`edges`](@ref), [`neighborids`](@ref), [`edgestates`](@ref), [`num_edges`](@ref) and [`neighborstates`](@ref) """ function has_edge(::Simulation, id::AgentID, edgetype::Type) end """ num_edges(sim, ::Type{T}, [sum_ranks=true]) If `all_ranks` is `true` this function retrieves the number of edges of type `T` of the simulation `sim`. When it is set to `false`, the function will only return the number of edges of type `T` managed by the process. """ function num_edges(sim, t::Type{T}, sum_ranks = true; write = nothing) where T prepare_read!(sim, [], t) local_num = if write === nothing _num_edges(sim, t, ! sim.initialized) else _num_edges(sim, t, write) end finish_read!(sim, t) if sum_ranks MPI.Allreduce(local_num, +, MPI.COMM_WORLD) else local_num end end """ all_edges(sim, ::Type{T}, [all_ranks=true]) This function retrieves a vector of (AgentID, Edge) tuples for all edges of type T of the simulation `sim`. The AgentID in the tuple is the target of the edge. The specific form of the edge in the tuple depends on the hints for type T. The `all_ranks` argument determines whether to include edges from all ranks or just the current rank in parallel simulations. When `all_ranks` is `true`, the function returns a vector of all edges identifiers across all ranks. See also [`add_edge!`](@ref) and [`num_edges`](@ref). """ function all_edges(sim, edgetype::Type, all_ranks = true) @error "all_edges is called for the unregisterted edgetype $(edgetype)" end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
3970
import Base.length import Base.iterate # When we iterate over all edges, we have two nested iterators (the outer over # all the agents, and one over the edges for those agents). struct IterEdgesState{IT} agentiter::IT # the outer agent iterator currentagentid::AgentID # the current agent for the inner edge iterator nextedgeidx::Int64 # the next edge of in the inner edge iterator length::Int64 end struct IterEdgesWrapper{SIM, FT, T} sim::SIM read::Bool field::FT end function length(iw::IterEdgesWrapper{SIM, FT, T}) where {SIM, FT, T} _num_edges(iw.sim, T, ! iw.read) end function construct_edges_iter_methods(T::DataType, attr, simsymbol, FT) ignorefrom = :IgnoreFrom in attr[:hints] singleedge = :SingleEdge in attr[:hints] singletype = :SingleType in attr[:hints] stateless = :Stateless in attr[:hints] # for whatever reason, we cannot just use the field type in the # :SingleType case if singletype IT = Base.Iterators.Stateful else IT = Base.Iterators.Stateful{Base.KeySet{UInt64, FT}, Union{Nothing, Tuple{UInt64, Int64}}} end # for the singletype case we can access the type of the agent via AT if singletype AT = attr[:target] end @eval function edges_iterator(sim::$simsymbol, ::Type{$T}, r::Bool = true) @assert ! ($stateless && $ignorefrom) field = r ? @edgeread($T) : @edgewrite($T) if length(field) == 0 # we can not return nothing, but an empty vector will return nothing when # iterate is called on it [] else IterEdgesWrapper{$simsymbol, $FT, $T}(sim, r, field) end end @eval function iterate(iw::IterEdgesWrapper{$simsymbol, $FT, $T}) if length(iw.field) == 0 return nothing end field = iw.field ks = keys(field) # If the agent container is a vector, remove all #undefs if $singletype ks = filter(i -> isassigned(field, i), ks) end # in the case that no key is left, we also return immediately if length(ks) == 0 return nothing end # create an stateful iterator for the keys (the agentids), which # is added the the state of the outer iterator agentiter = Iterators.Stateful(ks) currentagentid = Iterators.take(agentiter, 1) |> only len = $singleedge ? 1 : length(field[currentagentid]) iterate(iw, IterEdgesState{$IT}(agentiter, currentagentid, 1, len)) end @eval function iterate(iw::IterEdgesWrapper{$simsymbol, $FT, $T}, is::IterEdgesState{$IT}) field = iw.field # innerisvec is false, if the edgetyspe has the hint :SingleEdge if is.nextedgeidx <= is.length if $singleedge return ((is.currentagentid, field[is.currentagentid]), IterEdgesState{$IT}(is.agentiter, is.currentagentid, 2, 1)) else return ((is.currentagentid, field[is.currentagentid][is.nextedgeidx]), IterEdgesState{$IT}(is.agentiter, is.currentagentid, is.nextedgeidx + 1, is.length)) end # this code is only reached for is.nextedgeidx > len, which means # we move on our outer iterator to the next agent and call # the iterate function recursivly. elseif isempty(is.agentiter) return nothing end currentagentid = Iterators.take(is.agentiter, 1) |> only len = $singleedge ? 1 : length(field[currentagentid]) iterate(iw, IterEdgesState{$IT}(is.agentiter, currentagentid, 1, len)) end end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
38022
import Base.zero # In the following comment: # SType stands for the :SingleType hint # SEdge stands for the :SingleEdge hint # and # Ignore stands for the :IgnoreFrom hint # # The overall form of the type for the edgefield is the string: A*C(B)}, where # # | | A | B | C(B) | # |-----------------------------+---------------+---------------+-----------| # | Default | Dict{AgentID, | Edge{$T} | Vector{B} | # | SType | Vector{ | | B | # | Stateless & !Ignore | | AgentID | | # | Ignore & !Stateless | | $T | | # | Stateless & Ignore & !SEdge | | | Int | # | Stateless & Ignore & SEdge | | | Bool | # # The following table show all the 16 type variante for the container that can be # constructed following the rules from the table above # # | | SType | Stateless | SEdge | Ignore | # |---------------------------------+-------+-----------+-------+--------| # | Dict{AgentID, Vector{Edge{$T}}} | | | | | # | Dict{AgentID, Edge{$T}} | | | x | | # | Dict{AgentID, Vector{AgentID}} | | x | | | # | Dict{AgentID, AgentID} | | x | x | | # | Vector{Vector{Edge{T}}} | x | | | | # | Vector{Edge{T}} | x | | x | | # | Vector{Vector{AgentID}} | x | x | | | # | Vector{AgentID} | x | x | x | | # | Dict{AgentID, Vector{$T}} | | | | x | # | Dict{AgentID, $T} | | | x | x | # | Dict{AgentID, Int64} | | x | | x | # | Dict{AgentID, Bool} | | x | x | x | # | Vector{Vector{$T}} | x | | | x | # | Vector{$T} | x | | x | x | # | Vector{Int64} | x | x | | x | # | Vector{Bool} | x | x | x | x | # # # C(B) alone is the type of the container stored per element. We need # this container type in function as add_agent to construct new container in the # case that the agent/node doesn't had any incoming edge before. So we # return also C(B) from the construct_types function. function construct_types(T, attr::Dict{Symbol, Any}) ignorefrom = :IgnoreFrom in attr[:hints] singleedge = :SingleEdge in attr[:hints] singletype = :SingleType in attr[:hints] stateless = :Stateless in attr[:hints] A = if singletype "Vector{" else "Dict{AgentID," end B = if stateless "AgentID" elseif ignorefrom "Main.$T" else "Edge{Main.$T}" end C(B) = if stateless && ignorefrom && singleedge "Bool" elseif stateless && ignorefrom "Int64" elseif singleedge B else "Vector{$B}" end A*C(B)*"}", C(B), B end edgefield_type(T, info) = Meta.parse(construct_types(T, info)[1]) edgefield_constructor(T, info) = Meta.parse(construct_types(T, info)[1] * "()") # storage is used for the edges that must be send to a different rank # as in the edge we do not store the to-id, we use the Tuple to attach this # information function edgestorage_type(T, info) type_strings = construct_types(T, info) CE = Meta.parse(type_strings[3]) |> eval Vector{Vector{Tuple{AgentID, CE}}} end # We have some functions that are do only something when some edge hints # are set and are in this case specialized for the edgetype. Here we define # the "fallback" functions for the case that no specialized versions are needed. _check_size!(_, _, _) = nothing init_field!(_, _) = nothing show_second_edge_warning = true function _can_remove_edges(sim, to, T) @mayassert sim.initialized == false || sim.intransition """ You can call remove_edges! only in the initialization phase (until `finish_init!` is called) or within a transition function called by `apply`. """ @mayassert begin ! config.check_readable || ! sim.initialized || edge_attrs(sim, T)[:writeable] == true end """ Edge of $T can not removed, as $T is not in the `write` argument of the transition function. """ @mayassert begin ! config.check_readable || ! sim.initialized || edge_attrs(sim, T)[:add_existing] == true end """ $T must be in the `add_existing` keyword of the transition function. """ end function construct_edge_methods(T::DataType, typeinfos, simsymbol, immortal) attr = typeinfos.edges_attr[T] ignorefrom = :IgnoreFrom in attr[:hints] singleedge = :SingleEdge in attr[:hints] singletype = :SingleType in attr[:hints] stateless = :Stateless in attr[:hints] singletype_size = get(attr, :size, 0) # FT is an abbrev. for FieldType (the type for the all the edges of a edgetype) # CT is an abbrev. for ContainerType (the type of the container for the edges # of a single agent). CE is an abbrev. for ContainerElement (B in the table # above). type_strings = construct_types(T, attr) FT = Meta.parse(type_strings[1]) |> eval CT = Meta.parse(type_strings[2]) |> eval CE = Meta.parse(type_strings[3]) |> eval # we need this when we send the edges via MPI attr[:containerelement] = CE # for the singletype case we can access the type of the agent via AT AT = if singletype attr[:target] else nothing end mpiactive = mpi.active multinode = mpi.size > mpi.shmsize construct_mpi_edge_methods(T, typeinfos, simsymbol, CE) construct_edges_iter_methods(T, attr, simsymbol, FT) #### Functions that helps to write generic versions of the edge functions # # The hints can be different when different models are create using # the same types, therefore we dispatch on $simsymbol # # _to2idx is used to convert the AgentID to the AgentNr, in the # case that the container for the Edges is a Vector (which is the # case when the :SingleEdge hint is set. if singletype @eval _to2idx(_::$simsymbol, to::AgentID, ::Type{$T}) = agent_nr(to) else @eval _to2idx(_::$simsymbol, to::AgentID, ::Type{$T}) = to end # _valuetostore is used to retrieve the value that should be stored # from an edge, or the (from, edgestate) combination if stateless && ignorefrom && singleedge @eval _valuetostore(_::$simsymbol, edge::Edge{$T}) = true @eval _valuetostore(_::$simsymbol, from::AgentID, edgestate::$T) = true elseif ignorefrom @eval _valuetostore(_::$simsymbol, edge::Edge{$T}) = edge.state @eval _valuetostore(_::$simsymbol, ::AgentID, edgestate::$T) = edgestate elseif stateless @eval _valuetostore(_::$simsymbol, edge::Edge{$T}) = edge.from @eval _valuetostore(_::$simsymbol, from::AgentID, ::$T) = from else @eval _valuetostore(_::$simsymbol, edge::Edge{$T}) = edge @eval _valuetostore(_::$simsymbol, from::AgentID, edgestate::$T) = Edge(from, edgestate) end # We must sometime construct the (per agent) containers, and those # can be also a primitivetype when the SingleEdge hint is # set. To have a uniform construction schema, we define zero # methods also for the other cases, and call the constructor in this # case. if !isprimitivetype(CT) @eval zero(::Type{$CT}) = $CT() end @eval _construct_container_func(::Type{$CT}) = () -> zero($CT) #- init_field!, _check_size! and _check_assigned! # # init_field! is (and must be) called, after the field is # constructed. If the field is a dict, init_field! is a noop, for # it is a vector with size information (:SingleType with size # keyword), the vector will be resized and the memory will be # initialized to zero if necessary (= the container is a bittype). # # _check_size! checks for vectors with a flexible size if the vector # is big enough for the agent that operate on this vector, and increase # the size if necessary (for other cases it's again a noop). if singletype if isbitstype(CT) #for bitstype we must initialize the new memory if singletype_size == 0 @eval function _check_size!(field, nr::AgentNr, ::Type{$T}) s = length(field) if (s < nr) resize!(field, nr) Base.securezero!(view(field, s+1:nr)) end end else @eval function init_field!(sim::$simsymbol, ::Type{$T}) resize!(@edgewrite($T), $singletype_size) Base.securezero!(@edgewrite($T)) end @eval function _check_size!(_, ::AgentNr, ::Type{$T}) end end else if singletype_size == 0 @eval function _check_size!(field, nr::AgentNr, ::Type{$T}) s = length(field) if (s < nr) resize!(field, nr) end end else @eval init_field!(sim::$simsymbol, ::Type{$T}) = resize!(@edgewrite($T), $singletype_size) end end else # in the other case we must also define this method # to ensure that we don't call an old implementation # of a previous model with different hints @eval function _check_size!(_, ::AgentNr, ::Type{$T}) end @eval function init_field!(sim::$simsymbol, ::Type{$T}) end end #- _can_add is used to check for some singleedge cases, if it's allowed # call add_edge! for the agent with id `to`. This should be only done maximal # one time, except for the ignorefrom && stateless case, in which we only # support the has_edge function, and as true && true = true, we allow multiple # add_edge calls in this case. For the singletype case we can not # check if add_edge! was already called reliably. @eval function _can_add(sim, field, to::AgentID, value, ::Type{$T}) @mayassert begin T = $T ! config.check_readable || ! sim.initialized || edge_attrs(sim, $T)[:writeable] == true end """ $T must be in the `write` argument of the transition function. """ if $singleedge && !$singletype && !($ignorefrom && $stateless) if haskey(field, to) && value !== nothing if field[to] === value && ! config.quiet if show_second_edge_warning global show_second_edge_warning = false print(""" An edge of type $T with agent $to as target was added the second time. Since the value of the edge (after applying hints like :IgnoreFrom) is identical to that of the first edge, this can be indented and is allowed. This warning is only shown once is a Julia session and can be disabled by calling suppress_warnings(true) after importing Vahana. """) end true else false end else true end else true end end #- _get_agent_container / _get_agent_container! unifies # the access to the field, incl. possible needed steps like # resizing the underlying vector. The *container version return `nothing` # in the case, that there is no container for this agent, the *container! # version constructs an empty container and returns this one. # The last one should be only used for writing edges like in add_edge! and # the first one one for read operations like edges if singletype @eval function _get_agent_container(sim::$simsymbol, to::AgentID, ::Type{$T}, field) nr = _to2idx(sim, to, $T) @mayassert begin t = $T @edge($T).readable || ! config.check_readable end """ You try to access an edge of type $(t) but the type is not in the `read` argument of the apply! function. """ @mayassert begin t = $T at = $(attr[:target]) tnr = type_nr(to) sim.typeinfos.nodes_id2type[tnr] == $(attr[:target]) end """ The :SingleType hint is set for $t, and the agent type is specified as $(at). But the type for the given agent is $(sim.typeinfos.nodes_id2type[tnr]). """ _check_size!(field, nr, $T) @inbounds isassigned(field, Int64(nr)) ? field[nr] : nothing end @eval function _get_agent_container!(sim::$simsymbol, to::AgentID, ::Type{$T}, field) nr = _to2idx(sim, to, $T) @mayassert begin t = $T at = $(attr[:target]) tnr = type_nr(to) sim.typeinfos.nodes_id2type[tnr] == $(attr[:target]) end """ The :SingleType hint is set for $t, and the agent type is specified as $(at). But the type for the given agent is $(sim.typeinfos.nodes_id2type[tnr]). """ _check_size!(field, nr, $T) if !isassigned(field, Int64(nr)) field[nr] = zero($CT) end @inbounds field[nr] end else @eval function _get_agent_container!(sim::$simsymbol, to::AgentID, ::Type{$T}, field) get!(_construct_container_func($CT), field, to) end @eval function _get_agent_container(sim::$simsymbol, to::AgentID, ::Type{$T}, field) @mayassert begin t = $T @edge($T).readable || ! config.check_readable end """ You try to access an edge of type $(t) but the type is not in the `read` argument of the apply! function. """ get(field, to, nothing) end end # when all agenttypes are immortal, there is no need to check # ! sim.model.immortal[type_nr(from)] for every add_edge if ignorefrom || reduce(&, immortal) @eval function _push_agentsontarget(sim, from, to, _::Type{$T}) end else @eval function _push_agentsontarget(sim, from, to, _::Type{$T}) if ! sim.model.immortal[type_nr(from)] push!(get!(@agentsontarget($T), from, Vector{AgentID}()), to) end end end #### The exported functions #- add_edge! if stateless && ignorefrom && !singleedge @eval function add_edge!(sim::$simsymbol, to::AgentID, _::Edge{$T}) @mayassert _can_add(sim, @edgewrite($T), to, nothing, $T) @mayassert sim.initialized == false || sim.intransition """ You can call add_edge! only in the initialization phase (until `finish_init!` is called) or within a transition function called by `apply`. """ if $mpiactive && process_nr(to) != mpi.rank push!(@storage($T)[process_nr(to) + 1], (to, 1)) else nr = _to2idx(sim, to, $T) field = @edgewrite($T) @inbounds field[nr] = _get_agent_container!(sim, to, $T, field) + 1 end nothing end @eval function add_edge!(sim::$simsymbol, _::AgentID, to::AgentID, _::$T) @mayassert _can_add(sim, @edgewrite($T), to, nothing, $T) @mayassert sim.initialized == false || sim.intransition """ You can call add_edge! only in the initialization phase (until `finish_init!` is called) or within a transition function called by `apply`. """ if $mpiactive && process_nr(to) != mpi.rank push!(@storage($T)[process_nr(to) + 1], (to, 1)) else nr = _to2idx(sim, to, $T) field = @edgewrite($T) @inbounds field[nr] = _get_agent_container!(sim, to, $T, field) + 1 end nothing end elseif singleedge @eval function add_edge!(sim::$simsymbol, to::AgentID, edge::Edge{$T}) @mayassert _can_add(sim, @edgewrite($T), to, _valuetostore(sim, edge), $T) """ An edge has already been added to the agent with the id $to (and the edgetype hints containing the :SingleEdge hint). """ _push_agentsontarget(sim, edge.from, to, $T) if $multinode && ! $ignorefrom && node_nr(edge.from) != mpi.node push!(@edge($T). accessible[type_nr(edge.from)][process_nr(edge.from) + 1], edge.from) end if $mpiactive && process_nr(to) != mpi.rank push!(@storage($T)[process_nr(to) + 1], (to, _valuetostore(sim, edge))) else nr = _to2idx(sim, to, $T) field = @edgewrite($T) _check_size!(field, nr, $T) @inbounds field[nr] = _valuetostore(sim, edge) end nothing end @eval function add_edge!(sim::$simsymbol, from::AgentID, to::AgentID, edgestate::$T) @mayassert sim.initialized == false || sim.intransition """ You can call add_edge! only in the initialization phase (until `finish_init!` is called) or within a transition function called by `apply`. """ @mayassert _can_add(sim, @edgewrite($T), to, _valuetostore(sim, from, edgestate), $T) """ An edge has already been added to the agent with the id $to (and the edgetype hints containing the :SingleEdge hint). """ _push_agentsontarget(sim, from, to, $T) if $multinode && ! $ignorefrom && node_nr(from) != mpi.node push!(@edge($T). accessible[type_nr(from)][process_nr(from) + 1], from) end if $mpiactive && process_nr(to) != mpi.rank push!(@storage($T)[process_nr(to) + 1], (to, _valuetostore(sim, from, edgestate))) else nr = _to2idx(sim, to, $T) field = @edgewrite($T) _check_size!(field, nr, $T) @inbounds field[nr] = _valuetostore(sim, from, edgestate) end nothing end else @eval function add_edge!(sim::$simsymbol, to::AgentID, edge::Edge{$T}) @mayassert _can_add(sim, @edgewrite($T), to, nothing, $T) @mayassert sim.initialized == false || sim.intransition """ You can call add_edge! only in the initialization phase (until `finish_init!` is called) or within a transition function called by `apply`. """ _push_agentsontarget(sim, edge.from, to, $T) if $multinode && ! $ignorefrom && node_nr(edge.from) != mpi.node push!(@edge($T). accessible[type_nr(edge.from)][process_nr(edge.from) + 1], edge.from) end if $mpiactive && process_nr(to) != mpi.rank push!(@storage($T)[process_nr(to) + 1], (to, _valuetostore(sim, edge))) else push!(_get_agent_container!(sim, to, $T, @edgewrite($T)), _valuetostore(sim, edge)) end nothing end @eval function add_edge!(sim::$simsymbol, from::AgentID, to::AgentID, edgestate::$T) @mayassert _can_add(sim, @edgewrite($T), to, nothing, $T) @mayassert sim.initialized == false || sim.intransition """ You can call add_edge! only in the initialization phase (until `finish_init!` is called) or within a transition function called by `apply`. """ _push_agentsontarget(sim, from, to, $T) if $multinode && ! $ignorefrom && node_nr(from) != mpi.node push!(@edge($T). accessible[type_nr(from)][process_nr(from) + 1], from) end if $mpiactive && process_nr(to) != mpi.rank push!(@storage($T)[process_nr(to) + 1], (to, _valuetostore(sim, from, edgestate))) else push!(_get_agent_container!(sim, to, $T, @edgewrite($T)), _valuetostore(sim, from, edgestate)) end nothing end end #- remove_edges! if singletype @eval function remove_edges!(sim::$simsymbol, to::AgentID, ::Type{$T}) _can_remove_edges(sim, to, $T) if $mpiactive && process_nr(to) != mpi.rank push!(@removeedges($T)[process_nr(to) + 1], (0, to)) else nr = _to2idx(sim, to, $T) field = @edgewrite($T) _check_size!(field, nr, $T) @inbounds field[nr] = zero($CT) end nothing end else @eval function remove_edges!(sim::$simsymbol, to::AgentID, ::Type{$T}) _can_remove_edges(sim, to, $T) if $mpiactive && process_nr(to) != mpi.rank push!(@removeedges($T)[process_nr(to) + 1], (0, to)) else delete!(@edgewrite($T), to) end nothing end end if ! ignorefrom @eval function remove_edges!(sim::$simsymbol, from::AgentID, to::AgentID, ::Type{$T}) _can_remove_edges(sim, to, $T) if $mpiactive && process_nr(to) != mpi.rank push!(@removeedges($T)[process_nr(to) + 1], (from, to)) else nr = _to2idx(sim, to, $T) if $singleedge if ($singletype && length(@edgewrite($T)) >= nr) || (! $singletype && haskey(@edgewrite($T), nr)) if $stateless && @edgewrite($T)[nr] == from remove_edges!(sim, to, $T) elseif !$stateless && @edgewrite($T)[nr].from == from remove_edges!(sim, to, $T) end end else if ($singletype && length(@edgewrite($T)) >= nr && isassigned(@edgewrite($T), nr) && length(@edgewrite($T)[nr]) > 0) || (! $singletype && haskey(@edgewrite($T), nr) && length(@edgewrite($T)[nr]) > 0) if $stateless @edgewrite($T)[nr] = filter(id -> id != from, @edgewrite($T)[nr]) else @edgewrite($T)[nr] = filter(e -> e.from != from, @edgewrite($T)[nr]) end end end end end else @eval function remove_edges!(sim::$simsymbol, from::AgentID, to::AgentID, ::Type{$T}) @assert false """ remove_edges! with a source agent is not defined for edgetypes with the :IgnoreFrom hint. """ end end # iterate over all edge containers for the agents on the rank, # search for edges where on of the agents in the from vector is in # the source position, and remove those edges. @eval function _remove_edges_agent_source!(sim::$simsymbol, from::Vector{AgentID}, ::Type{$T}) # when we don't know where there edges are come from, we can not # remove them if $ignorefrom return false end network_changed = false check_status = config.check_readable config.check_readable = false for f in from if haskey(@agentsontarget($T), f) network_changed = true for t in @agentsontarget($T)[f] remove_edges!(sim, f, t, $T) end delete!(@agentsontarget($T), f) end end config.check_readable = check_status network_changed end @eval function init_storage!(sim::$simsymbol, ::Type{$T}) @storage($T) = [ Tuple{AgentID, $CE}[] for _ in 1:mpi.size ] @removeedges($T) = [ Tuple{AgentID, AgentID}[] for _ in 1:mpi.size ] end @eval function prepare_write!(sim::$simsymbol, read, add_existing::Bool, t::Type{$T}) if add_existing # when we can not read the types that we are writing # there is no need to copy the elements if $T in read @edgewrite($T) = deepcopy(@edgeread($T)) else @edgewrite($T) = @edgeread($T) end else @edgewrite($T) = $FT() init_field!(sim, t) foreach(empty!, @storage($T)) for tnr in 1:length(sim.typeinfos.nodes_types) for i in 1:mpi.size empty!(@edge($T).accessible[tnr][i]) end end end edge_attrs(sim, $T)[:writeable] = true edge_attrs(sim, $T)[:add_existing] = add_existing end @eval function prepare_read!(sim::$simsymbol, _::Vector, ::Type{$T}) @edge($T).readable = true end @eval function finish_read!(sim::$simsymbol, ::Type{$T}) @edge($T).readable = false end # Important: When edges are removed because of dying agents, # it's allowed that the edgetypes are not in the write argument # of the apply function, and therefore prepare_write and finish_write # is not called. Thats okay, as $edgeread = $edgewrite, and # we update the last_change value when a edge was removed, # but in the case that in the future additional functionallity # is added to finish_write, keep this in mind @eval function finish_write!(sim::$simsymbol, ::Type{$T}) @edgeread($T) = @edgewrite($T) @edge($T).last_change = sim.num_transitions edge_attrs(sim, $T)[:writeable] = false end @eval function transmit_edges!(sim::$simsymbol, ::Type{$T}) edges_alltoall!(sim, @storage($T), $T) foreach(empty!, @storage($T)) end @eval function transmit_remove_edges!(sim::$simsymbol, ::Type{$T}) check_status = config.check_readable config.check_readable = false removeedges_alltoall!(sim, @removeedges($T), $T) foreach(empty!, @removeedges($T)) config.check_readable = check_status end # Rules for the edge functions: # stateless => !mapreduce, !edges, !edgestates # singledge => !num_edges # ignorefrom => !edges, !neighborids #- edges if !stateless && !ignorefrom @eval function edges(sim::$simsymbol, to::AgentID, ::Type{$T}) _get_agent_container(sim, to, $T, @edgeread($T)) end else @eval function edges(::$simsymbol, ::AgentID, t::Type{$T}) @assert false """ edges is not defined for the hint combination of $t """ end end #- neighborids if !ignorefrom if stateless @eval function neighborids(sim::$simsymbol, to::AgentID, ::Type{$T}) _get_agent_container(sim, to, $T, @edgeread($T)) end else if singleedge @eval function neighborids(sim::$simsymbol, to::AgentID, ::Type{$T}) ac = _get_agent_container(sim, to, $T, @edgeread($T)) isnothing(ac) ? nothing : ac.from end else @eval function neighborids(sim::$simsymbol, to::AgentID, ::Type{$T}) ac = _get_agent_container(sim, to, $T, @edgeread($T)) isnothing(ac) ? nothing : map(e -> e.from, ac) end end end else @eval function neighborids(::$simsymbol, ::AgentID, t::Type{$T}) @assert false """ neighborids is not defined for the hint combination of $t """ end end #- neighborids_iter if singleedge || ignorefrom @eval function neighborids_iter(sim::$simsymbol, to::AgentID, ::Type{$T}) @assert false """ neighborids_iter is not defined for edgetypes with the :SingleEdge or :IgnoreFrom hint """ end elseif stateless @eval function neighborids_iter(sim::$simsymbol, to::AgentID, ::Type{$T}) _get_agent_container(sim, to, $T, @edgeread($T)) end else @eval function neighborids_iter(sim::$simsymbol, to::AgentID, ::Type{$T}) ac = _get_agent_container(sim, to, $T, @edgeread($T)) isnothing(ac) ? nothing : (e.from for e in ac) end end #- neighborstates if singleedge @eval function neighborstates(sim::$simsymbol, id::AgentID, edgetype::Type{$T}, agenttype::Type) nid = neighborids(sim, id, edgetype) isnothing(nid) ? nothing : agentstate(sim, nid, agenttype) end else @eval function neighborstates(sim::$simsymbol, id::AgentID, edgetype::Type{$T}, agenttype::Type) nids = neighborids(sim, id, edgetype) if nids === nothing nothing else map(nid -> agentstate(sim, nid, agenttype), nids) end end end #- neighborstates_iter if singleedge || ignorefrom @eval function neighborstates_iter(sim::$simsymbol, id::AgentID, edgetype::Type{$T}, agenttype::Type) @assert false """ neighborstates_iter is not defined for edgetypes with the :SingleEdge or :IgnoreFrom hint """ end else @eval function neighborstates_iter(sim::$simsymbol, id::AgentID, edgetype::Type{$T}, agenttype::Type) nids = neighborids(sim, id, edgetype) if nids === nothing nothing else (agentstate(sim, nid, agenttype) for nid in nids) end end end #- edgestates if !stateless if ignorefrom @eval function edgestates(sim::$simsymbol, to::AgentID, ::Type{$T}) _get_agent_container(sim, to, $T, @edgeread($T)) end else if singleedge @eval function edgestates(sim::$simsymbol, to::AgentID, ::Type{$T}) ac = _get_agent_container(sim, to, $T, @edgeread($T)) isnothing(ac) ? nothing : ac.state end else @eval function edgestates(sim::$simsymbol, to::AgentID, ::Type{$T}) ac = _get_agent_container(sim, to, $T, @edgeread($T)) isnothing(ac) ? nothing : map(e -> e.state, ac) end end end else @eval function edgestates(::$simsymbol, ::AgentID, t::Type{$T}) @assert false """ edgestates is not defined for the hint combination of $t """ end end #- edgestate_iter if singleedge || stateless @eval function edgestates_iter(sim::$simsymbol, to::AgentID, ::Type{$T}) @assert false """ edgestates_iter is not defined for edgetypes with the :SingleEdge or :Stateless hint """ end elseif ignorefrom @eval function edgestates_iter(sim::$simsymbol, to::AgentID, ::Type{$T}) _get_agent_container(sim, to, $T, @edgeread($T)) end else @eval function edgestates_iter(sim::$simsymbol, to::AgentID, ::Type{$T}) ac = _get_agent_container(sim, to, $T, @edgeread($T)) isnothing(ac) ? nothing : (e.state for e in ac) end end #- num_edges if !singleedge if ignorefrom && stateless @eval function num_edges(sim::$simsymbol, to::AgentID, ::Type{$T}) n = _get_agent_container(sim, to, $T, @edgeread($T)) isnothing(n) ? 0 : n end else @eval function num_edges(sim::$simsymbol, to::AgentID, ::Type{$T}) ac = _get_agent_container(sim, to, $T, @edgeread($T)) isnothing(ac) ? 0 : length(ac) end end else @eval function num_edges(::$simsymbol, ::AgentID, t::Type{$T}) @assert false """ num_edges is not defined for the hint combination of $t """ end end #- has_edge if ignorefrom && stateless @eval function has_edge(sim::$simsymbol, to::AgentID, ::Type{$T}) ac = _get_agent_container(sim, to, $T, @edgeread($T)) isnothing(ac) || ac == 0 ? false : true end elseif !singleedge @eval function has_edge(sim::$simsymbol, to::AgentID, t::Type{$T}) num_edges(sim,to, t) >= 1 end elseif !singletype @eval function has_edge(sim::$simsymbol, to::AgentID, ::Type{$T}) haskey(@edgeread($T), to) end else @eval function has_edge(::$simsymbol, ::AgentID, t::Type{$T}) @assert false """ has_edge is not defined for the hint combination of $t """ end end # _remove_edges (called from Vahana itself to remove the edges of # died agents). returns true when edges where removed (and the network # changed) if singletype @eval function _remove_edges_agent_target!(sim::$simsymbol, to::AgentID, ::Type{$T}) if type_of(sim, to) == $AT nr = agent_nr(to) if length(@edgewrite($T)) >= nr @edgewrite($T)[nr] = zero($CT) true else false end else false end end else @eval function _remove_edges_agent_target!(sim::$simsymbol, to::AgentID, ::Type{$T}) if haskey(@edgewrite($T), to) delete!(@edgewrite($T), to) true else false end end end #- mapreduce incl. helper functions if singletype @eval _removeundef(sim::$simsymbol, ::Type{$T}) = edges -> begin [ @inbounds edges[i] for i=1:length(edges) if isassigned(edges, i)] end else @eval _removeundef(sim::$simsymbol, ::Type{$T}) = edges -> edges end if ignorefrom && stateless @eval function _num_edges(sim::$simsymbol, ::Type{$T}, write = false) field = write ? @edgewrite($T) : @edgeread($T) if length(field) == 0 return 0 end mapreduce(id -> field[id], +, keys(field)) end elseif singleedge @eval function _num_edges(sim::$simsymbol, t::Type{$T}, write = false) field = write ? @edgewrite($T) : @edgeread($T) # TODO: performance improvement with _countundef? length(_removeundef(sim, t)(field)) end else if !singletype @eval function _num_edges(sim::$simsymbol, ::Type{$T}, write = false) field = write ? @edgewrite($T) : @edgeread($T) if length(field) == 0 return 0 end mapreduce(id -> length(field[id]), +, keys(field)) end else @eval function _num_edges(sim::$simsymbol, ::Type{$T}, write = false) field = write ? @edgewrite($T) : @edgeread($T) if length(field) == 0 return 0 end n = 0 for i in 1:length(field) if isassigned(field, i) n += length(field[i]) end end n end end end #- mapreduce if ! stateless @eval function mapreduce(sim::$simsymbol, f, op, t::Type{$T}; kwargs...) with_logger(sim) do @info "<Begin> mapreduce edges" f op edgetype=$T end emptyval = val4empty(op; kwargs...) reduced = emptyval for e in edges_iterator(sim, $T) if $ignorefrom reduced = op(f(e[2]), reduced) else reduced = op(f(e[2].state), reduced) end end mpiop = get(kwargs, :mpiop, op) r = MPI.Allreduce(reduced, mpiop, MPI.COMM_WORLD) _log_info(sim, "<End> mapreduce edges") r end else @eval function mapreduce(::$simsymbol, f, op, t::Type{$T}; kwargs...) @assert false """ mapreduce is not defined for the hint combination of $t """ end end ### @eval function all_edges(sim, t::Type{$T}, all_ranks = true) if num_edges(sim, $T) == 0 return [] end prepare_read!(sim, [], $T) # when we use collect on edges_iterator, we loose # for whatever reason the type information we need to call join c = Tuple{AgentID, $CE}[] for e in edges_iterator(sim, $T, sim.initialized) push!(c, e) end finish_read!(sim, $T) if all_ranks && mpi.active join(c) else c end end end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
2438
export set_global!, get_global, push_global!, modify_global! """ get_global(sim::Simulation, name) Returns the value of the field `name` of the `globals` struct for simulation `sim`. See also [`create_simulation`](@ref), [`set_global!`](@ref) and [`push_global!`](@ref) """ get_global(sim, name) = getfield(sim.globals, name) """ set_global!(sim::Simulation, name, value) Set the value of the field `name` of the `globals` struct for simulation `sim`. In parallel simulations, `set_global!` must be called on all processes, and with identical `value` across all processes. `set_global!` must not be called within a transition function. See also [`create_simulation`](@ref), [`mapreduce`](@ref), [`modify_global!`](@ref) [`push_global!`](@ref) and [`get_global`](@ref) """ function set_global!(sim, name, value) sim.globals_last_change = sim.num_transitions - 1 setfield!(sim.globals, name, value) end """ modify_global!(sim::Simulation, name, f) Modify the value of the `name` field of the `globals` structure for the simulation `sim` using the `f` function, which receives the current value as an argument. This is a combination of [`set_global!`](@ref) and [`get_global`](@ref): `set_global!(sim, name, f(get_global(sim, name)))`. `modify_global!` must not be called within a transition function. In parallel simulations, `push_global!` must be called on all processes, and with identical `value` across all processes. See also [`create_simulation`](@ref), [`mapreduce`](@ref), [`set_global!`](@ref) [`push_global!`](@ref) and [`get_global`](@ref) """ function modify_global!(sim, name, f) set_global!(sim, name, f(get_global(sim, name))) end """ push_global!(sim::Simulation, name, value) In the case that a field of the `globals` struct from the Simulation constructor is a vector (e.g. for time series data), `push_global!` can be used to add a value to this vector, instead of writing `set_global!(sim, name, push!(get_global(sim, name), value)`. In parallel simulations, `push_global!` must be called on all processes, and with identical `value` across all processes. `push_global!` must not be called within a transition function. See also [`create_model`](@ref), [`mapreduce`](@ref), [`set_global!`](@ref) and [`get_global`](@ref) """ function push_global!(sim, name, value) sim.globals_last_change = sim.num_transitions - 1 push!(getfield(sim.globals, name), value) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
10120
export add_graph! export vahanagraph, vahanasimplegraph import Graphs: Graphs, edgetype, has_vertex, inneighbors, ne, nv, outneighbors, vertices, is_directed import Base: show, eltype """ add_graph!(sim::Simulation, graph, agent_constructor, edge_constructor) -> Vector{AgentID} Adds a `graph` from the Graphs.jl package to `sim`, incl. all vertices of `graph` as new agents. `graph` must be a Graphs.Graph or a Graphs.DiGraph. For each vertix of `graph` the `agent_constructor` function is called, with the Graphs.vertix as argument. For each edge of `graph` the `edge_constructor` function is called, with the Graphs.edge as argument. The agent types of agents created by the `agent_constructor` must be already registered via [`register_agenttype!`](@ref) and vis a vis the edge type via [`register_edgetype!`](@ref). !!! info add_graph! is only available when the Graphs.jl package is imported by the model implementation. Returns a vector with the IDs of the created agents. """ function add_graph!(sim::Simulation, graph, agent_constructor, edge_constructor) with_logger(sim) do @info "<Begin> add_graph!" end agents = add_agents!(sim, [ agent_constructor(v) for v in Graphs.vertices(graph) ]) for e in Graphs.edges(graph) add_edge!(sim, agents[Graphs.src(e)], agents[Graphs.dst(e)], edge_constructor(e)) if !Graphs.is_directed(graph) add_edge!(sim, agents[Graphs.dst(e)], agents[Graphs.src(e)], edge_constructor(e)) end end _log_info(sim, "<End> add_graph!") agents end ######################################## VahanaSimpleGraph # VahanaSimpleGraph is a concrete implementation # of an Graphs.AbstractSimpleGraph. We need this for Metis, # as it depends on the AbstractSimpleGraph structure instead # on the official AbstractGraph API. struct VahanaSimpleGraph <: Graphs.AbstractSimpleGraph{Integer} sim::Simulation agenttypes::Vector{DataType} networks::Vector{DataType} g2v::Vector{AgentID} v2g::Dict{AgentID, Int64} # for the AbstractSimpleGraph interface vertices::UnitRange{Integer} fadjlist::Vector{Vector{Integer}} ne::Integer end # like vahanagraph, only for the AbstractSimpleGraph, see also # the comment of VahanaSimpleGraph above """ vahanasimplegraph(sim::Simulation; [agenttypes::Vector{DataType}, edgetypes::Vector{DataType}, show_ignorefrom_warning = true]) Creates a subgraph with nodes for all agents that have one of the `agenttypes` types, and all edges that have one of the `edgetypes` types and whose both adjacent node types are in `agenttypes`. The default values for `agenttypes` and `edgetypes` are all registered agents/edgetypes (see [`register_agenttype!`](@ref) and [`register_edgetype!`](@ref)). This subgraphs implements the AbstractSimpleGraph interface from the Graphs.jl package. The edge types must not have the :IgnoreFrom property. If there are edge types with this property in the `edgetypes` vector, a warning will be displayed and these edges will be ignored. The warning can be suppressed by setting `show_ignorefrom_warning` to false. !!! warning The AbstractGraph interface allows multiple edges between two nodes, but some function (e.g. those that convert the graph into a binary (sparse)matrix can produce undefined results for those graphs. So use this function with care. """ function vahanasimplegraph(sim::Simulation; agenttypes::Vector{DataType} = sim.typeinfos.nodes_types, edgetypes::Vector{DataType} = sim.typeinfos.edges_types, show_ignorefrom_warning = true) g2v = Vector{AgentID}() v2g = Dict{AgentID, Int64}() nv = 0 for t in agenttypes for id in 1:length(readstate(sim, t)) if length(readdied(sim, t)) == 0 || readdied(sim, t)[id] == false nv += 1 aid = agent_id(sim, AgentNr(id), t) push!(g2v, aid) push!(v2g, aid => nv) end end end fadjlist = [ Vector{Integer}() for _ in 1:nv ] ne = 0 for t in edgetypes if has_hint(sim, t, :IgnoreFrom) if show_ignorefrom_warning printstyled(""" Edgetype $t has the :IgnoreFrom hint, therefore edges of this type can not added those edges to the created subgraph """; color = :red) end continue end for (to, e) in edges_iterator(sim, t) if has_hint(sim, t, :Stateless) fid = get(v2g, e, nothing) else fid = get(v2g, e.from, nothing) end tid = get(v2g, to, nothing) if fid !== nothing && tid !== nothing push!(fadjlist[fid], tid) ne += 1 end end end VahanaSimpleGraph(sim, agenttypes, edgetypes, g2v, v2g, 1:nv, fadjlist, ne) end ### AbstractGraph interface for VahanaSimpleGraph eltype(_::VahanaSimpleGraph) = Int64 edgetype(vg::VahanaSimpleGraph) = Graphs.SimpleEdge{eltype(vg)} is_directed(::VahanaSimpleGraph) = true is_directed(::Type{VahanaSimpleGraph}) = true Base.show(io::IO, _::MIME"text/plain", vg::VahanaSimpleGraph) = println(io, "VahanaSimpleGraph of $(vg.sim.name) for {$(vg.agenttypes), $(vg.networks)} {$(nv(vg)), $(ne(vg))}") ######################################## VahanaGraph mutable struct VahanaGraph <: Graphs.AbstractGraph{Int64} sim agenttypes::Vector{DataType} edgetypes::Vector{DataType} g2v::Vector{AgentID} v2g::Dict{AgentID, Int64} edges::Vector{Graphs.Edge} edgetypeidx::Vector{Int64} end # SingleType not supported (und IgnoreFrom sowieso nicht) """ vahanagraph(sim::Simulation; [agenttypes::Vector{DataType}, edgetypes::Vector{DataType}, show_ignorefrom_warning = true, drop_multiedges = false]) Creates a subgraph with nodes for all agents that have one of the `agenttypes` types, and all edges that have one of the `edgetypes` types and whose both adjacent agents have are of a type in `agenttypes`. The default values for `agenttypes` and `edgetypes` are all registered agents/edgetypes (see [`register_agenttype!`](@ref) and [`register_edgetype!`](@ref)). This subgraphs implements the AbstractGraph interface from the Graphs.jl package, so that e.g. GraphMakie can be used to visualize the subgraph. See also [`create_graphplot`](@ref). The AbstractGraph interface allows multiple edges between two nodes, but some functions (e.g. those that convert the graph to a binary (sparse) matrix) may produce undefined results for these graphs, e.g. when graphplot is called from GraphMakie.jl. If the keyword `drop_multiedges` is true and there are multiple edges, only the edge of the type that is first in the edgetypes vector is added to the generated graph. The edge types must not have the :IgnoreFrom property. If there are edge types with this property in the `edgetypes` vector, a warning will be displayed and these edges will be ignored. The warning can be suppressed by setting `show_ignorefrom_warning` to false. """ function vahanagraph(sim; agenttypes::Vector{DataType} = sim.typeinfos.nodes_types, edgetypes::Vector{DataType} = sim.typeinfos.edges_types, show_ignorefrom_warning = true, drop_multiedges = false) g2v = Vector{AgentID}() v2g = Dict{AgentID, Int64}() edgetype = Vector{Int64}() existing = Set{Tuple{AgentID, AgentID}}() nv = 0 for T in agenttypes for id in 1:length(readstate(sim, T)) if length(readdied(sim, T)) == 0 || readdied(sim, T)[id] == false nv += 1 aid = agent_id(sim, AgentNr(id), T) push!(g2v, aid) push!(v2g, aid => nv) end end end edges = Vector{Graphs.Edge}() edgetypeidx = 1 for T in edgetypes if has_hint(sim, T, :IgnoreFrom) if show_ignorefrom_warning printstyled(""" Edgetype $T has the :IgnoreFrom hint, therefore edges of this type can not added those edges to the created subgraph """; color = :red) end continue end for (to, e) in edges_iterator(sim, T) f = get(v2g, hasproperty(e, :from) ? e.from : e, nothing) t = get(v2g, to, nothing) if f !== nothing && t !== nothing if (f, t) in existing && drop_multiedges println("Edge $e to agent $(string(to, base=16)) will not be shown") else if drop_multiedges push!(existing, (f, t)) end push!(edges, Graphs.Edge(f, t)) push!(edgetype, edgetypeidx) end end end edgetypeidx += 1 end VahanaGraph(sim, agenttypes, edgetypes, g2v, v2g, edges, edgetype) end ### AbstractGraph interface for VahanaGraph Graphs.edges(vg::VahanaGraph) = vg.edges Base.eltype(::VahanaGraph) = Int64 edgetype(vg::VahanaGraph) = Graphs.SimpleEdge{eltype(vg)} Graphs.has_edge(vg::VahanaGraph, s, d) = Graphs.Edge(s, d) in vg.edges has_vertex(vg::VahanaGraph, v) = v <= length(vg.g2v) inneighbors(vg::VahanaGraph, v) = map(e -> e.src, filter(e -> e.dst == v, vg.edges)) |> unique ne(vg::VahanaGraph) = length(vg.edges) nv(vg::VahanaGraph) = length(vg.g2v) outneighbors(vg::VahanaGraph, v) = map(e -> e.dst, filter(e -> e.src == v, vg.edges)) |> unique vertices(vg::VahanaGraph) = 1:length(vg.g2v) is_directed(::VahanaGraph) = true is_directed(::Type{VahanaGraph}) = true Base.show(io::IO, mime::MIME"text/plain", vg::VahanaGraph) = println(io, "VahanaGraph of $(vg.sim.name) for {$(vg.agenttypes), $(vg.edgetypes)} {$(nv(vg)), $(ne(vg))}")
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
55435
using MPI, HDF5 import NamedTupleTools: ntfromstruct, structfromnt import Dates: format, now export create_h5file!, close_h5file! export write_globals, write_agents, write_edges, write_snapshot export read_params, read_globals, read_agents!, read_edges!, read_snapshot! export read_agents, read_edges export list_snapshots export create_namedtuple_converter, create_enum_converter export write_metadata, read_metadata, write_sim_metadata, read_sim_metadata # hdf5 does not allow to store (unnamed) tuples, but the CartesianIndex # are using those. The Pos2D/3D types can be used to add a Cell position # to an agent state, with automatical conversion from an Cartesianindex. import Base.convert import HDF5.hdf5_type_id """ create_enum_converter() The HDF5.jl library does not support Enums as fields of structs that should be stored. This function add this support but as this involves type piracy, this support must be enabled explicitly. """ function create_enum_converter() @eval hdf5_type_id(::Type{T}, ::Val{false}) where {I, T <: Enum{I}} = hdf5_type_id(I) @eval convert(::Type{T}, i::Int32) where { T <: Enum } = T(i) end # import Base.hash # hash(model::Model) = hash(model.types.edges_attr) + # hash(model.types.edges_types) + # hash(model.types.nodes_attr) + # hash(model.types.nodes_types) + # hash(model.types.nodes_type2id) transition_str(sim) = "t_$(sim.num_transitions-1)" parallel_write() = HDF5.has_parallel() && mpi.active mpio_mode() = parallel_write() ? Dict(:dxpl_mpio => :collective) : Dict() # since fileformat 2, empty_array and last_change starts with an _ empty_array_string(fids) = attrs(fids[1])["fileformat"] == 1 ? "empty_array" : "_empty_array" last_change_string(fids) = attrs(fids[1])["fileformat"] == 1 ? "last_change" : "_last_change" # in the case that write_metadata is called before the file is created # we store the information in the vector, so that write_metadata # can be also called before the simulation is initialized. _preinit_meta = Tuple{Union{Symbol, DataType}, Symbol, Symbol, Any}[] # the same for the simulation _preinit_meta_sim = Tuple{Symbol, Any}[] """ create_h5file!(sim::Simulation, [filename = sim.filename; overwrite = sim.overwrite_file]) The canonical way to create an HDF5 file is to call one of the `write_` functions like [`write_snapshot`](@ref). If `sim` does not already have an HDF5 file attached, such a file will then be created automatically using the filename specified as keyword in [`create_simulation`](@ref) or, if this keyword was not given, the model name. But sometime it can be useful to control this manually, e.g. after a call to [`copy_simulation`](@ref). The `filename` argument can be used to specify a filename other than `sim.filename`. If `overwrite` is true, existing files with this name will be overwritten. If it is false, the filename is automatically extended by an increasing 6-digit number, so that existing files are not overwritten. By default, the files are created in an `h5` subfolder, and this is created in the current working directory. However, the path can also be set with the function `set_hdf5_path`. In the case that an HDF5 file was already created for the simulation `sim`, this will be closed. `create_h5file!` can be only called after [`finish_init!`](@ref) See also [`close_h5file!`](@ref), [`write_agents`](@ref), [`write_edges`](@ref), [`write_globals`](@ref), [`read_agents!`](@ref), [`read_edges!`](@ref), [`read_globals`](@ref), [`read_snapshot!`](@ref) and [`list_snapshots`](@ref) """ function create_h5file!(sim::Simulation, filename = sim.filename; overwrite = sim.overwrite_file) #in the case that the simulation is already attached to a h5file, we relase it first close_h5file!(sim) @assert sim.initialized "You can only write initialized simulations" if endswith(filename, ".h5") filename = filename[1, end-3] end filename = if config.hdf5_path !== nothing mkpath(config.hdf5_path) * "/" * filename else mkpath("h5") * "/" * filename end if ! overwrite filename = add_number_to_file(filename) # to avoid that rank 0 creates a file before other ranks check this MPI.Barrier(MPI.COMM_WORLD) end fid = if parallel_write() _log_info(sim, "Create hdf5 file in parallel mode") filename = filename * ".h5" rm(filename; force = true) HDF5.h5open(filename, "w", mpi.comm, MPI.Info()) else _log_info(sim, "Create hdf5 file without parallel mode") filename = if mpi.active filename * "_" * string(mpi.rank) * ".h5" else filename * ".h5" end rm(filename; force = true) HDF5.h5open(filename, "w") end sim.h5file = fid # attrs(fid)["modelhash"] = hash(sim.model) # @info "wrote hash" attrs(fid)["modelhash"] hash(sim.model) attrs(fid)["fileformat"] = 2 attrs(fid)["mpisize"] = mpi.size attrs(fid)["mpirank"] = mpi.rank attrs(fid)["HDF5parallel"] = parallel_write() attrs(fid)["initialized"] = sim.initialized attrs(fid)["last_snapshot"] = -1 # we use this to attach metadata to a simulation mid = create_group(fid, "_meta") attrs(mid)["simulation_name"] = sim.name attrs(mid)["model_name"] = sim.model.name attrs(mid)["date"] = Dates.format(Dates.now(), "yyyy-mm-dd HH:MM:SS") pid = create_group(fid, "params") create_group(pid, "_meta") # See comment in write_globals. eid = create_group(pid, "_empty_array") if sim.params !== nothing for k in fieldnames(typeof(sim.params)) field = getfield(sim.params, k) if typeof(field) <: Array if length(field) > 0 pid[string(k)] = field attrs(pid[string(k)])["array"] = true else attrs(eid)[string(k)] = true end else pid[string(k)] = [ field ] attrs(pid[string(k)])["array"] = false end end end gid = create_group(fid, "globals") create_group(gid, "_meta") # # we create a group for each global field so that it's possible # # # if sim.globals !== nothing # for k in fieldnames(typeof(sim.globals)) # create_group(gid, k) # end # end rid = create_group(fid, "rasters") _log_time(sim, "write rasters") do for raster in keys(sim.rasters) rid[string(raster)] = sim.rasters[raster] end end aid = create_group(fid, "agents") # also here we have the problem that the hdf5 library doesn't like # vectors of size 0 in parallel mode and we must track those. # The group have a subgroup for each transition, and this subgroup # the agent types as attributes with a boolean value. create_group(aid, "_empty_array") foreach(sim.typeinfos.nodes_types) do T tid = create_group(aid, string(T)) attrs(tid)[":Immortal"] = has_hint(sim, T, :Immortal, :Agent) create_group(tid, "_meta") end eid = create_group(fid, "edges") # see comment for agent create_group(eid, "_empty_array") foreach(sim.typeinfos.edges_types) do T tid = create_group(eid, string(T)) attrs(tid)[":Stateless"] = has_hint(sim, T, :Stateless) attrs(tid)[":IgnoreFrom"] = has_hint(sim, T, :IgnoreFrom) attrs(tid)[":SingleEdge"] = has_hint(sim, T, :SingleEdge) attrs(tid)[":SingleType"] = has_hint(sim, T, :SingleType) attrs(tid)[":IgnoreSourceState"] = has_hint(sim, T, :IgnoreSourceState) create_group(tid, "_meta") end create_group(fid, "snapshots") if mpi.rank == 0 MPI.Bcast!(Ref(length(_preinit_meta)), MPI.COMM_WORLD) else len = Ref{Int}() MPI.Bcast!(len, MPI.COMM_WORLD) if mpi.rank == 1 @assert length(_preinit_meta) == len[] """ You must call write_metadata always on all ranks! """ end end for (type, field, key, value) in _preinit_meta write_metadata(sim, type, field, key, value) end empty!(_preinit_meta) if mpi.rank == 0 MPI.Bcast!(Ref(length(_preinit_meta_sim)), MPI.COMM_WORLD) else len = Ref{Int}() MPI.Bcast!(len, MPI.COMM_WORLD) if mpi.rank == 1 @assert length(_preinit_meta_sim) == len[] """ You must call write_sim_metadata always on all ranks! """ end end for (key, value) in _preinit_meta_sim write_sim_metadata(sim, key, value) end empty!(_preinit_meta_sim) fid end """ close_h5file!(sim::Simulation) Closes the HDF5 file attached to the simulation `sim`. Be aware that a following call to one of the `write_` functions like [`write_snapshot`](@ref) will automatically create a new file and, depending on the `overwrite_file` argument of [`create_simulation`](@ref) also overwrites to closed file. """ function close_h5file!(sim::Simulation) if sim.h5file === nothing return end _log_time(sim, "close h5file") do close(sim.h5file) end sim.h5file = nothing nothing end """ write_globals(sim::Simulation, [fields]) Writes the current global values to the attached HDF5 file. If only a subset of the fields is to be written, this subset can be specified via the optional `fields` argument. """ function write_globals(sim::Simulation, fields = sim.globals === nothing ? nothing : fieldnames(typeof(sim.globals))) if sim.h5file === nothing create_h5file!(sim) end if fields === nothing return end lcstr = last_change_string([sim.h5file]) gid = sim.h5file["globals"] if haskey(HDF5.attributes(gid), lcstr) && sim.globals_last_change == attrs(gid)[lcstr] return end attrs(gid)[lcstr] = sim.globals_last_change _log_time(sim, "write globals") do t = transition_str(sim) tid = create_group(gid, t) # for whatever reason parallel mpi does not like to write (and read) # nothing and throws a "unable to modify constant message" # in this case. Even worse, we can not access attributes of the emtpy # dataset. So we need an additional group to store this information. # Don't know what to say about this. eid = create_group(tid, "_empty_array") for k in fieldnames(typeof(sim.globals)) if k in fields field = getfield(sim.globals, k) if typeof(field) <: Array if length(field) > 0 tid[string(k)] = field attrs(tid[string(k)])["array"] = true else attrs(eid)[string(k)] = true end else tid[string(k)] = [ field ] attrs(tid[string(k)])["array"] = false end end end end flush(sim.h5file) nothing end function new_dset(gid, name, T, sum_size, data, create_datatype = true) dt = if create_datatype HDF5.Datatype(HDF5.hdf5_type_id(T)) else T end # We have seperate files, so we don't need the size of all agents/edges # but only the size of the array we want to write into this file if ! parallel_write() sum_size = length(data) end ds = if create_datatype dataspace((sum_size,)) else sum_size end if config.compression_level == 0 || (parallel_write() && config.no_parallel_compression) create_dataset(gid, name, dt, ds; mpio_mode()...) else chunk_size = if length(data) == 0 1 else HDF5.heuristic_chunk(data)[1] # On a parallel system I did run into problems with the # heuristic chunk but for whatever reason it worked with # half the size. As I had additional esoteric problems # like this I disabled the compression by default, # see also VahanaConfig.no_parallel_compression. # Int(ceil(HDF5.heuristic_chunk(data)[1]/2)) end create_dataset(gid, name, dt, ds; chunk=(chunk_size,), shuffle=(), compress=config.compression_level, mpio_mode()...) end end function calc_displace(num) vec_num = MPI.Allgather(num, mpi.comm) vec_displace = if parallel_write() # we use pop to remove the overall sum of agents, which # is not used as an offset d = [0; cumsum(vec_num)] pop!(d) d else # in the non parallel case there are no offsets at all # as each rank write into an own file fill(0, mpi.size) end (vec_num, vec_displace) end """ write_agents(sim::Simulation, [types]) Writes the current agent state to the attached HDF5 file. If only the agents of a subset of agent types are to be written, this subset can be specified via the optional `types` argument. """ function write_agents(sim::Simulation, types::Vector{DataType} = sim.typeinfos.nodes_types) if sim.h5file === nothing create_h5file!(sim) end lcstr = last_change_string([sim.h5file]) _log_time(sim, "write agents") do t = transition_str(sim) eid = create_group(sim.h5file["agents"]["_empty_array"], t) for T in types gid = sim.h5file["agents"][string(T)] field = getproperty(sim, Symbol(T)) if haskey(attrs(gid), lcstr) && field.last_change == attrs(gid)[lcstr] continue end attrs(gid)[lcstr] = field.last_change num_agents = Int64(field.nextid - 1) (vec_num_agents, vec_displace) = calc_displace(num_agents) sum_num_agents = sum(vec_num_agents) tid = create_group(gid, t) attrs(tid)[lcstr] = field.last_change attrs(tid)["size_per_rank"] = vec_num_agents attrs(tid)["displace"] = vec_displace attrs(eid)[string(T)] = sum_num_agents == 0 if sum_num_agents > 0 if parallel_write() start = vec_displace[mpi.rank + 1] + 1 last = start + vec_num_agents[mpi.rank + 1] - 1 else start = 1 last = num_agents end if ! has_hint(sim, T, :Immortal, :Agent) dset = new_dset(tid, "died", Bool, sum_num_agents, field.read.died, false) dset[start:last] = field.read.died end if fieldcount(T) > 0 dset = new_dset(tid, "state", T, sum_num_agents, field.read.state) dset[start:last] = field.read.state end end end end flush(sim.h5file) nothing end # We need to convert the Edges depending of the edge hints to # different structs that will be then saved to the HDF5 file struct CompleteEdge{T} to::AgentID edge::Edge{T} end struct StatelessEdge to::AgentID from::AgentID end struct EdgeCount to::AgentID count::Int64 end struct IgnoreFromEdge{T} to::AgentID state::T end _neighbors_only(sim, T) = (has_hint(sim, T, :Stateless) || fieldcount(T) == 0) && has_hint(sim, T, :IgnoreFrom) """ write_edges(sim::Simulation, [types]) Writes the current edge states to the attached HDF5 file. If only the edges of a subset of edge types are to be written, this subset can be specified via the optional `types` argument. """ function write_edges(sim::Simulation, types::Vector{DataType} = sim.typeinfos.edges_types) if sim.h5file === nothing create_h5file!(sim) end lcstr = last_change_string([sim.h5file]) _log_time(sim, "write edges") do t = transition_str(sim) eid = create_group(sim.h5file["edges"]["_empty_array"], t) for T in types gid = sim.h5file["edges"][string(T)] field = getproperty(sim, Symbol(T)) if haskey(attrs(gid), lcstr) && field.last_change == attrs(gid)[lcstr] continue end attrs(gid)[lcstr] = field.last_change # prepare_read! triggers the distributions of the edges to the # correct nodes prepare_read!(sim, Vector{DataType}(), T) edges = if _neighbors_only(sim, T) getproperty(sim, Symbol(T)).read else edges_iterator(sim, T) |> collect end num_edges = length(edges) (vec_num_edges, vec_displace) = calc_displace(num_edges) sum_num_edges = sum(vec_num_edges) # what we write depends on :Stateless, :IgnoreFrom # and :SingleType (converted, DT, create_dt) = if _neighbors_only(sim, T) if has_hint(sim, T, :SingleType) (edges, eltype(edges), false) else ([EdgeCount(to, count) for (to, count) in edges], EdgeCount, true) end elseif fieldcount(T) == 0 if has_hint(sim, T, :Stateless) (map(e -> StatelessEdge(e[1], e[2]), edges), StatelessEdge, true) else (map(e -> StatelessEdge(e[1], e[2].from), edges), StatelessEdge, true) end elseif has_hint(sim, T, :IgnoreFrom) (map(e -> IgnoreFromEdge(e[1], e[2]), edges), IgnoreFromEdge{T}, true) else (map(e -> CompleteEdge(e[1], e[2]), edges), CompleteEdge{T}, true) end tid = if length(converted) > 0 new_dset(gid, t, DT, sum_num_edges, converted, create_dt) else new_dset(gid, t, DT, sum_num_edges, Vector{DT}(), create_dt) end attrs(tid)[lcstr] = field.last_change attrs(tid)["size_per_rank"] = vec_num_edges attrs(tid)["displace"] = vec_displace if parallel_write() start = vec_displace[mpi.rank + 1] + 1 last = start + vec_num_edges[mpi.rank + 1] - 1 else start = 1 last = num_edges end attrs(eid)[string(T)] = sum_num_edges == 0 if sum_num_edges > 0 if length(converted) > 0 tid[start:last] = converted else tid[start:last] = Vector{DT}() end end finish_read!(sim, T) end end flush(sim.h5file) nothing end """ write_snapshot(sim::Simulation, [comment::String = "", ignore = []]) Writes the current state of the simulation `sim` to the attached HDF5 file. `comment` can be used to identify the snapshot via [`list_snapshots`](@ref). `ignore` is a list of agent and/or edge types, that should not be written. See also [`create_h5file!`](@ref) """ function write_snapshot(sim::Simulation, comment::String = ""; ignore = []) ignore = applicable(iterate, ignore) ? ignore : [ ignore ] if sim.h5file === nothing create_h5file!(sim) end fid = sim.h5file gid = create_group(fid["snapshots"], transition_str(sim)) attrs(gid)["comment"] = comment attrs(gid)["ignored"] = string(ignore) attrs(fid)["last_snapshot"] = sim.num_transitions if sim.globals !== nothing write_globals(sim) end write_agents(sim, filter(t -> !(t in ignore), sim.typeinfos.nodes_types)) write_edges(sim, filter(t -> !(t in ignore), sim.typeinfos.edges_types)) end # Returns a vector of fids (h5 file handles). The size of the vector # is equal to mpi.size of the simulation run that created the file(s). # In the case, that the file was stored using h5parallel, all elements # of the vector point to the same file. So # fid[mpi.rank][...][pe_mpi.rank] access always the data that was stored # by mpi.rank, independent if h5parallel was used or not. # # IMPORTANT: the files must be closed by the caller of open_h5file function open_h5file(sim::Union{Simulation, Nothing}, filename) # first we sanitize the filename if endswith(filename, ".h5") filename = filename[1:end-3] end if endswith(filename, "_0") filename = filename[1:end-2] end if config.hdf5_path !== nothing filename = mkpath(config.hdf5_path) * "/" * filename end if ! (isfile(filename * ".h5") || isfile(filename * "_0.h5")) filename = mkpath("h5") * "/" * filename if ! (isfile(filename * ".h5") || isfile(filename * "_0.h5")) println(""" No hdf5 file(s) for $(filename) found in $(pwd()) or $(pwd())/h5 """) return [] end end # we can have a single file written in parallel mode, or mpi.size files # written without parallel mode. In the later case, the filenames # end with _0, _1 ... _mpi.size-1 parallel = isfile(filename * ".h5") filenames::Vector{String} = if parallel [ filename * ".h5" ] else # first we open file _0 to get mpi.size fid = HDF5.h5open(filename * "_0.h5", "r") h5mpisize = attrs(fid)["mpisize"] close(fid) [ filename * "_$(i).h5" for i in 0:(h5mpisize-1) ] end # In the case that we have seperate files for each process, we don't # need to open the files in parallel mode fids = if HDF5.has_parallel() && parallel && mpi.size > 1 if sim !== nothing _log_info(sim, "Open hdf5 file in parallel mode") end [ HDF5.h5open(f, "r+", mpi.comm, MPI.Info()) for f in filenames ] else if sim !== nothing _log_info(sim, "Open hdf5 file without parallel mode") end [ HDF5.h5open(f, "r+") for f in filenames ] end h5mpisize = attrs(fids[1])["mpisize"] if mpi.size > 1 @assert mpi.size == h5mpisize """ The file can only be read with 1 or $(h5mpisize) processes """ end length(fids) > 1 ? fids : fill(fids[1], h5mpisize) end function find_transition_nr(ids, transition::Int) if length(ids) == 0 return nothing end only_numbers = filter(s -> s[1:2] == "t_", keys(ids)) ts = filter(<=(transition), map(s -> parse(Int64, s[3:end]), only_numbers)) if length(ts) == 0 return nothing end maximum(ts) end function find_transition_group(ids, transition::Int) trnr = find_transition_nr(ids, transition) if trnr === nothing nothing else ids["t_$(trnr)"] end end function _read_agents_restore!(sim::Simulation, field, tid, T::DataType) with_logger(sim) do @debug("<Begin> _read_agents_restore!", agenttype=T) end vec_num_agents = attrs(tid)["size_per_rank"] vec_displace = attrs(tid)["displace"] size = vec_num_agents[mpi.rank + 1] start = vec_displace[mpi.rank + 1] + 1 last = start + vec_num_agents[mpi.rank + 1] - 1 field.nextid = size + 1 if ! has_hint(sim, T, :Immortal, :Agent) if size > 0 field.write.died = HDF5.read(tid["died"], Bool, start:last) else field.write.died = Vector{Bool}() end end if fieldcount(T) > 0 if size > 0 field.write.state = HDF5.read(tid["state"], T, start:last) else field.write.state = Vector{T}() end else field.write.state = fill(T(), size) end # this move the state to the shared memory (and to read) finish_write!(sim, T) # We must also refresh the list of reuseable ids empty!(field.read.reuseable) if ! has_hint(sim, T, :Immortal, :Agent) for i in 1:size if field.read.died[i] push!(field.read.reuseable, i) end end end _log_debug(sim, "<End> _read_agents_restore!") end # merge distributed graph into a single one. function _read_agents_merge!(sim::Simulation, tid, T::DataType, fidx, parallel) with_logger(sim) do @debug("<Begin> _read_agents_merge!", agenttype=T, fidx) end idmapping = Dict{AgentID, AgentID}() typeid = sim.typeinfos.nodes_type2id[T] vec_num_agents = attrs(tid)["size_per_rank"] vec_displace = attrs(tid)["displace"] size = parallel ? sum(vec_num_agents) : vec_num_agents[fidx] died = if ! has_hint(sim, T, :Immortal, :Agent) HDF5.read(tid["died"], Bool) else fill(false, size) end state = if fieldcount(T) > 0 HDF5.read(tid["state"], T) else fill(T(), size) end if parallel # we must reconstruct the original indices of the agents as we # have them now in a long list. for rank in 1:length(vec_num_agents) agents_on_rank = vec_num_agents[rank] offset = vec_displace[rank] for i in 1:agents_on_rank if !died[i + offset] newid = add_agent!(sim, state[i + offset]) push!(idmapping, agent_id(typeid, rank-1, AgentNr(i)) => newid) end end end else for i in 1:size if !died[i] newid = add_agent!(sim, state[i]) push!(idmapping, agent_id(typeid, fidx-1, AgentNr(i)) => newid) end end end _log_debug(sim, "<End> _read_agents_merge!") idmapping end function _read_globals_or_params(hid, T, empty_array_str) eid = hid[empty_array_str] all_keys = map(string, filter(k -> k[1] != '_', [keys(hid); keys(attrs(eid))])) unsorted = Dict(map(all_keys) do k k => if haskey(HDF5.attributes(eid), k) Vector{fieldtype(T, Symbol(k))}() elseif attrs(hid[k])["array"] hid[k][] else hid[k][1] end end) map(n -> unsorted[string(n)], fieldnames(T)) end """ read_params(filename::String, T::DataType) read_params(sim::Simulation, T::DataType) read_params(sim::Simulation, nr::Int64, T::DataType) Read the parameters from an HDF5 file. If `filename` is given, the parameters are read from the file with this filename from the `h5` subfolder of the current working directory. If a simulation `sim` is given instead, the filename from the [`create_simulation`](@ref) call is used. If the `overwrite_file` argument of [`create_simulation`](@ref) is set to true, and the file names are supplemented with a number, the number of the meant file can be specified via the `nr` argument. In any case, the DataType `T` of the argument `params` of [`create_simulation`](@ref) used for the simulation that wrote the parameters must be specified. """ function read_params(filename::String, T::DataType) fids = open_h5file(nothing, filename) if length(fids) == 0 return end values = _read_globals_or_params(fids[1]["params"], T, empty_array_string(fids)) foreach(close, fids) T(values...) end read_params(sim::Simulation, T::DataType) = read_params(sim.filename, T) read_params(sim::Simulation, nr::Int64, T::DataType) = read_params(add_number_to_file(sim.filename, nr), T) """ read_globals(name::String, T::DataType; [ transition = typemax(Int64) ]) read_globals(sim::Simulation, T::DataType; [ transition = typemax(Int64) ]) read_globals(sim::Simulation, nr::Int64, T::DataType; [ transition = typemax(Int64) ]) Read the global values from an HDF5 file. If `filename` is given, the parameters are read from the file with this filename from the `h5` subfolder of the current working directory. If a simulation `sim` is given instead, the filename from the [`create_simulation`](@ref) call is used. If the `overwrite_file` argument of [`create_simulation`](@ref) is set to true, and the file names are supplemented with a number, the number of the meant file can be specified via the `nr` argument. In any case, the DataType `T` of the argument `globals` of [`create_simulation`](@ref) used for the simulation that wrote the parameters must be specified. Per default, the last written globals are read. The `transition` keyword allows to read also earlier versions. See also [Write simulations to dics](./hdf5.md) for details. """ function read_globals(name::String, T::DataType; transition = typemax(Int64)) fids = open_h5file(nothing, name) if length(fids) == 0 return end values = _read_globals_or_params(find_transition_group(fids[1]["globals"], transition), T, empty_array_string(fids)) foreach(close, fids) T(values...) end read_globals(sim, T::DataType; transition = typemax(Int64)) = read_globals(sim.filename, T; transition) read_globals(sim, nr::Int64, T::DataType; transition = typemax(Int64)) = read_globals(add_number_to_file(sim.filename, nr), T; transition) """ read_agents(filename::String, type; transition = typemax(Int64)) Read the agentstates of type `type` from an HDF5 file with the name `filename`. The agent are read from the `h5` subfolder of the current working directory, or from the subfolder set with [`set_hdf5_path`](@ref). Per default, the last written agents are read. The `transition` keyword allows to read also earlier versions. See also [Write simulations to disc](./hdf5.md) for details. Returns a vector of agentstates. """ function read_agents(filename::String, type; transition = typemax(Int64)) type = string(type) fids = open_h5file(nothing, filename) aid = fids[1]["agents"][type] t = find_transition_nr(aid, transition) immortal = attrs(aid)[":Immortal"] state = map(fids) do fid fid["agents/$(type)/t_$t/state"][] end |> Iterators.flatten if ! immortal died = map(fids) do fid fid["agents/$(type)/t_$t/died"][] end |> Iterators.flatten end foreach(close, fids) if immortal state |> collect else map(z -> z[1], filter(z -> !z[2], zip(state, died) |> collect)) end end """ read_agents!(sim::Simulation, [name::String = sim.filename; transition = typemax(Int64), types::Vector{DataType} ]) read_agents!(sim::Simulation, nr::Int64; [transition = typemax(Int64), types::Vector{DataType}]) Read the agents from an HDF5 file into the simulation `sim`. If `name` is given, the agent are read from the file with this filename from the `h5` subfolder of the current working directory, or from the subfolder set with [`set_hdf5_path`](@ref). In the other case the filename from the [`create_simulation`](@ref) call is used. If the `overwrite_file` argument of [`create_simulation`](@ref) is set to true, and the file names are supplemented with a number, the number of the meant file can be specified via the `nr` argument. Per default, the last written agents are read. The `transition` keyword allows to read also earlier versions. See also [Write simulations to dics](./hdf5.md) for details. If only the agents of a subset of agent types are to be read, this subset can be specified via the optional `types` argument. When the agents from a distributed simulation is read into a single threaded simulation, the IDs of the agents are modified. `read_agents!` returns a dictory that contains the ID mapping. """ function read_agents!(sim::Simulation, name::String = sim.filename; transition = typemax(Int64), types::Vector{DataType} = sim.typeinfos.nodes_types) fids = open_h5file(sim, name) if length(fids) == 0 return end original_size = attrs(fids[1])["mpisize"] parallel = attrs(fids[1])["HDF5parallel"] merge = original_size > mpi.size @assert !merge || mpi.size == 1 fidxs = merge && ! parallel ? (1:original_size) : (mpi.rank+1:mpi.rank+1) sim.intransition = true idmapping = Dict{AgentID, AgentID}() _log_time(sim, "read agents") do for T in types field = getproperty(sim, Symbol(T)) if ! haskey(fids[1]["agents"], string(T)) continue end t = find_transition_nr(fids[1]["agents"][string(T)], transition) if attrs(fids[1]["agents"][empty_array_string(fids)]["t_$t"])[string(T)] if ! has_hint(sim, T, :Immortal, :Agent) field.write.died = Vector{Bool}() end if fieldcount(T) > 0 field.write.state = Vector{T}() end continue end if merge # in prepare_write we have an immutable check that we # must disable by setting sim.initialized temporary to false was_initialized = sim.initialized sim.initialized = false prepare_write!(sim, [], false, T) sim.initialized = was_initialized end for fidx in fidxs gid = fids[fidx]["agents"] tid = find_transition_group(gid[string(T)], transition) if tid === nothing && fidx == 1 continue end if merge merge!(idmapping, _read_agents_merge!(sim, tid, T, fidx, parallel)) else _read_agents_restore!(sim, field, tid, T) end end if merge finish_write!(sim, T) end # must be after the _read calls, as they are modifying this also field.last_change = find_transition_nr(fids[1]["agents"][string(T)], transition) for ET in sim.typeinfos.edges_types field.last_transmit[ET] = -1 end end end foreach(close, fids) sim.intransition = false idmapping end read_agents!(sim::Simulation, nr::Int64; transition = typemax(Int64), types::Vector{DataType} = sim.typeinfos.nodes_types) = read_agents!(sim, add_number_to_file(sim.filename, nr); transition, types) """ read_edges(filename::String, type; transition = typemax(Int64)) Read the edgestates of type T from an HDF5 file with the name `filename`. The edgestates are read from the `h5` subfolder of the current working directory, or from the subfolder set with [`set_hdf5_path`](@ref). Per default, the last written edgestates are read. The `transition` keyword allows to read also earlier versions. See also [Write simulations to disc](./hdf5.md) for details. Returns a vector of edgestates. """ function read_edges(filename::String, type; transition = typemax(Int64)) type = string(type) fids = open_h5file(nothing, filename) eid = fids[1]["edges"][type] t = find_transition_nr(eid, transition) stateless = attrs(eid)[":Stateless"] if stateless error("Can not read the state of stateless edges") end state = map(fids) do fid fid["edges/$(type)/t_$t"][] end |> Iterators.flatten foreach(close, fids) state |> collect end """ read_edges!(sim::Simulation, [name::String = sim.filename; idmapfunc = identity, transition = typemax(Int64), types::Vector{DataType}]) read_edges!(sim::Simulation, nr::Int64; [ idmapfunc = identity, transition = typemax(Int64), types::Vector{DataType} ]) Read the edges from an HDF5 file into the simulation `sim`. If `name` is given, the edges are read from the file with this filename from the `h5` subfolder of the current working directory. In the other case the filename from the [`create_simulation`](@ref) call is used. If the `overwrite_file` argument of [`create_simulation`](@ref) is set to true, and the file names are supplemented with a number, the number of the meant file can be specified via the `nr` argument. Per default, the last written edges are read. The `transition` keyword allows to read also earlier versions. See also [Write simulations to disc](./hdf5.md) for details. If only the edges of a subset of edge types are to be read, this subset can be specified via the optional `types` argument. When the agents from a distributed simulation is read into a single threaded simulation, the IDs of the agents are modified. The `idmapfunc` must be a function that must return the new agent id for a given old agent id. [`read_agents!`](@ref) returns a `Dict{AgentID, AgentID}` that can be used for this via: `idmapfunc = (key) -> idmapping[key]`, where `idmapping` is such a `Dict`. """ function read_edges!(sim::Simulation, name::String = sim.filename; idmapfunc = identity, transition = typemax(Int64), types::Vector{DataType} = sim.typeinfos.edges_types) fids = open_h5file(sim, name) if length(fids) == 0 return end @assert length(fids) == mpi.size || idmapfunc !== identity """ read_edges! can be only merging a distributed graph when an idmap is given """ original_size = attrs(fids[1])["mpisize"] merge = original_size > mpi.size @assert !merge || mpi.size == 1 fidxs = merge ? (1:original_size) : (mpi.rank+1:mpi.rank+1) # we call add_edge! but there is a check that this is only done # at initialization time or in a transition function sim.intransition = true for T in types if ! haskey(fids[1]["edges"], string(T)) continue end with_logger(sim) do @info("<Begin> read edges", edgetype = T, transition = transition) end prepare_write!(sim, [], false, T) trnr = find_transition_nr(fids[1]["edges"][string(T)], transition) if trnr === nothing continue end if attrs(fids[1]["edges"][empty_array_string(fids)]["t_$(trnr)"])[string(T)] _log_info(sim, "<End> read edges") finish_write!(sim, T) continue end for fidx in fidxs tid = find_transition_group(fids[fidx]["edges"][string(T)], transition) _read_edges!(sim, tid, idmapfunc, T, fidx) end finish_write!(sim, T) if trnr === nothing getproperty(sim, Symbol(T)).last_change = 0 else getproperty(sim, Symbol(T)).last_change = trnr end _log_info(sim, "<End> read edges") end sim.intransition = false foreach(close, fids) end read_edges!(sim::Simulation, nr::Int64; idmapfunc = identity, transition = typemax(Int64), types::Vector{DataType} = sim.typeinfos.nodes_types) = read_edges!(sim, add_number_to_file(sim.filename, nr); idmapfunc, transition, types) function _read_edges!(sim::Simulation, tid, idmapfunc, T, fidx) field = getproperty(sim, Symbol(T)) vec_num_edges = attrs(tid)["size_per_rank"] vec_displace = attrs(tid)["displace"] start = vec_displace[fidx] + 1 last = start + vec_num_edges[fidx] - 1 if _neighbors_only(sim, T) if has_hint(sim, T, :SingleType) AT = sim.typeinfos.edges_attr[T][:target] typeid = sim.typeinfos.nodes_type2id[AT] data = if has_hint(sim, T, :SingleEdge) HDF5.read(tid, Bool, start:last) else HDF5.read(tid, Int64, start:last) end for (idx, num_edges) in enumerate(data) newid = idmapfunc(agent_id(typeid, fidx - 1, AgentNr(idx))) newidx = agent_nr(newid) # TODO: we know the size at the beginning, or? if length(field.read) < newidx resize!(field.write, newidx) end field.write[newidx] = num_edges end else # EdgeCount struct for ec in HDF5.read(tid, EdgeCount, start:last) field.write[idmapfunc(ec.to)] = ec.count end end elseif fieldcount(T) == 0 # StatelessEdge for se in HDF5.read(tid, StatelessEdge, start:last) add_edge!(sim, idmapfunc(se.from), idmapfunc(se.to), T()) end elseif has_hint(sim, T, :IgnoreFrom) # for add_edge! we need always a from id, even when it's ignored dummy = AgentID(0) for edge in HDF5.read(tid, IgnoreFromEdge{T}, start:last) add_edge!(sim, dummy, idmapfunc(edge.to), edge.state) end else if has_hint(sim, T, :SingleType) totype = sim.typeinfos.edges_attr[T][:target] totypeid = sim.typeinfos.nodes_type2id[totype] for ce in HDF5.read(tid, CompleteEdge{T}, start:last) add_edge!(sim, idmapfunc(ce.edge.from), idmapfunc(agent_id(totypeid, fidx - 1, ce.to)), ce.edge.state) end else for ce in HDF5.read(tid, CompleteEdge{T}, start:last) add_edge!(sim, idmapfunc(ce.edge.from), idmapfunc(ce.to), ce.edge.state) end end end end function read_rasters!(sim::Simulation, name::String = sim.filename; idmapping) # the rasters are immutable arrays of agents_ids. So there # is no need to read them more then once if length(sim.rasters) > 0 return end fids = open_h5file(sim, name) if length(fids) == 0 return end rid = first(fids)["rasters"] for raster in keys(rid) sim.rasters[Symbol(raster)] = length(idmapping) == 0 ? rid[raster][] : map(id -> get(idmapping, id, 0), rid[raster][]) end foreach(close, fids) end read_rasters!(sim::Simulation, nr::Int64; idmapping) = read_rasters!(sim, add_number_to_file(sim.filename, nr); idmapping) """ read_snapshot!(sim::Simulation, [name::String; transition = typemax(Int64), writeable = false, ignore_params = false]) read_snapshot!(sim::Simulation, nr::Int64; [transition = typemax(Int64), writeable = false, ignore_params = false]) Read a complete snapshot from a file into the simulation `sim`. If `name` is given, the snapshot is read from the file with this filename from the `h5` subfolder of the current working directory. In the other case the filename from the [`create_simulation`](@ref) call is used. If the `overwrite_file` argument of [`create_simulation`](@ref) is set to true, and the file names are supplemented with a number, the number of the meant file can be specified via the `nr` argument. Per default, the last written snapshot is read. The `transition` keyword allows to read also earlier versions. See also [Transition](./hdf5.md#Transition) for details. If `writeable` is set to true, the file is also attached to the simulation and following `write_` functions like [`write_snapshot`](@ref) will be append to the file. If `ignore_params` is set to true, the parameters of `sim` will not be changed. Returns false when no snapshot was found """ function read_snapshot!(sim::Simulation, name::String = sim.filename; transition = typemax(Int64), writeable = false, ignore_params = false) # First we free the memory allocated by the current state of sim _free_memory!(sim) fids = open_h5file(sim, name) if length(fids) == 0 return false end sim.initialized = attrs(fids[1])["initialized"] sim.num_transitions = transition == typemax(Int64) ? attrs(fids[1])["last_snapshot"] : transition globals_last_change = find_transition_nr(fids[1]["globals"], transition) if globals_last_change !== nothing sim.globals_last_change = globals_last_change end foreach(close, fids) if ignore_params == false && sim.params !== nothing sim.params = read_params(name, typeof(sim.params)) end if sim.globals !== nothing && globals_last_change !== nothing sim.globals = read_globals(name, typeof(sim.globals); transition) end idmapping = read_agents!(sim, name; transition = transition) if length(idmapping) > 0 read_edges!(sim, name; transition = transition, idmapfunc = (key) -> idmapping[key]) read_rasters!(sim, name; idmapping) else read_edges!(sim, name; transition = transition) read_rasters!(sim, name; idmapping) end if writeable fids = open_h5file(sim, name) sim.h5file = fids[mpi.rank+1] end true end read_snapshot!(sim::Simulation, nr::Int64; transition = typemax(Int64), writeable = false, ignore_params = false) = read_snapshot!(sim, add_number_to_file(sim.filename, nr); transition, writeable, ignore_params) """ list_snapshots(name::String) list_snapshots(sim::Simulation) list_snapshots(sim::Simulation, nr::Int64) List all snapshots of a HDF5 file. If `name` is given, the snapshots from the file with this filename is returned. In the other case the filename from the [`create_simulation`](@ref) call is used. If the `overwrite_file` argument of [`create_simulation`](@ref) is set to true, and the file names are supplemented with a number, the number of the meant file can be specified via the `nr` argument. Returns a vector of tuples, where the first element is the transition number for which a snapshot was saved, and the second element is the comment given in the [`write_snapshot`](@ref) call. """ function list_snapshots(name::String) fids = open_h5file(nothing, name) sid = fids[1]["snapshots"] if length(keys(sid)) == 0 return nothing end snapshots = map(t -> (parse(Int64, t[3:end]), attrs(sid[t])["comment"]), keys(sid)) foreach(close, fids) snapshots end list_snapshots(sim::Simulation) = list_snapshots(sim.filename) list_snapshots(sim::Simulation, nr::Int64) = list_snapshots(add_number_to_file(sim.filename, nr)) import Base.convert """ create_namedtuple_converter(T::DataType) The HDF5.jl library does not support the storage of nested structs, but structs can have `NamedTuples` as fields. This function creates a convert function from a struct to a corresponding `NamedTuple` (and also the other way around), so after calling this for a type `T`, `T` can be the type of an agent/edge/param/global field. """ function create_namedtuple_converter(T::DataType) NT = NamedTuple{fieldnames(T), Tuple{fieldtypes(T)...}} @eval convert(::Type{$NT}, st::$T) = ntfromstruct(st) @eval convert(::Type{$T}, nt::$NT) = structfromnt($T, nt) end """ write_metadata(sim::Simulation, type::Union{Symbol, DataType}, field::Symbol, key::Symbol, value) Attach metadata to a `field` of an agent- or edgetype or the `globals` or `params` struct (see [`create_simulation`](@ref)) or to a raster (in that case `field` must be the name of the raster). `type` must be an agent- or edgetype, :Global, :Param or :Raster. Metadata is stored via `key`, `value` pairs, so that multiple data of different types can be attached to a single field. See also: [`read_metadata`](@ref) """ function write_metadata(sim::Simulation, type::Union{Symbol, DataType}, field::Symbol, key::Symbol, value) if sim.h5file === nothing push!(_preinit_meta, (type, field, key, value)) return end if value === nothing value = "nothing" end field_str = String(field) mid = if type == :Param sim.h5file["params"]["_meta"] elseif type == :Global sim.h5file["globals"]["_meta"] elseif type == :Raster sim.h5file["rasters"] elseif type in sim.typeinfos.nodes_types || type in map(Symbol, sim.typeinfos.nodes_types) sim.h5file["agents"][String(type)]["_meta"] elseif type in sim.typeinfos.edges_types || type in map(Symbol, sim.typeinfos.edges_types) sim.h5file["edges"][String(type)]["_meta"] else @error """ Can not write metadata, `type` must be an agenttype or edgetype or one of the following symbols: :Param, :Global, :Raster. """ end if ! (field_str in keys(mid)) create_group(mid, field_str) end write_attribute(mid[field_str], String(key), value) flush(sim.h5file) end """ read_metadata(sim::Simulation, type::Union{Symbol, DataType}[, field::Symbol, key::Symbol ]) read_metadata(filename::String, type::Union{Symbol, DataType}[, field::Symbol, key::Symbol ]) Attach metadata to a `field` of an agent- or edgetype or the `globals` or `params` struct (see [`create_simulation`](@ref)) or to a raster (in that case `field` must be the name of the raster). `type` must be an agent- or edgetype, :Global, :Param or :Raster. Metadata is stored via `key`, `value` pairs, so that multiple data of different Read metadata for a `field` of an agent- or edgetype or the `globals` or `params` struct (see [`create_simulation`](@ref)) or to a raster (in that case `field` must be the name of the raster). `type` must be an agent- or edgetype :Global, :Param or :Raster. Metadata is stored via `key`, value pairs. Multiple data of different types can be attached to a single field, a single piece of the metadata can be retrived via the `key` parameter. If this is not set (or set to Symbol()), a Dict{Symbol, Any} with the complete metadata of this field is returned. See also: [`write_metadata`](@ref) """ function read_metadata(sim::Simulation, type::Union{Symbol, DataType}, field::Symbol = Symbol(), key::Symbol = Symbol()) if field == Symbol() _read_metadata_all_fields(open_h5file(sim, sim.filename), type) else _read_metadata(open_h5file(sim, sim.filename), type, field, key, true) end end function read_metadata(filename::String, type::Union{Symbol, DataType}, field::Symbol = Symbol(), key::Symbol = Symbol()) if field == Symbol() _read_metadata_all_fields(open_h5file(nothing, filename), type) else _read_metadata(open_h5file(nothing, filename), type, field, key, true) end end function _read_metadata_all_fields(fids, type::Symbol) all = Dict() for f in _read_metadata(fids, type, Symbol(), Symbol(), false) all[Symbol(f)] = _read_metadata(fids, type, f, Symbol(), false) end foreach(close, fids) all end function _read_metadata(fids, type, field, key, close_file) if length(fids) == 0 return end mid = if type == :Param fids[1]["params"]["_meta"] elseif type == :Global fids[1]["globals"]["_meta"] elseif type == :Raster fids[1]["rasters"] elseif type in keys(fids[1]["agents"]) || type in map(Symbol, keys(fids[1]["agents"])) fids[1]["agents"][String(type)]["_meta"] elseif type in keys(fids[1]["edges"]) || type in map(Symbol, keys(fids[1]["edges"])) fids[1]["edges"][String(type)]["_meta"] else @error """ Can not read metadata, `type` must be an agenttype or edgetype or one of the following symbols: :Param, :Global, :Raster. """ end if field == Symbol() r = keys(mid) if close_file foreach(close, fids) end return r end field_str = String(field) r = if field_str in keys(mid) if key == Symbol() Dict([ (Symbol(d[1]), d[2]) for d in Dict(attrs(mid[field_str])) ]) else get(attrs(mid[field_str]), String(key), nothing) end else nothing end if close_file foreach(close, fids) end r end """ write_sim_metadata(sim::Simulation, key::Symbol, value) Attach additional metadata to a simulation. See also: [`read_sim_metadata`](@ref) """ function write_sim_metadata(sim::Simulation, key::Symbol, value) if sim.h5file === nothing push!(_preinit_meta_sim, (key, value)) return end # to ensure that the user written meta data does not # interfere with the metadata from Vahana, we # also store this into a seperate group write_attribute(sim.h5file["_meta"], String(key), value) flush(sim.h5file) end """ read_sim_metadata(sim::Simulation, [ key::Symbol = Symbol() ]) read_sim_metadata(filename::String, [ key::Symbol = Symbol() ]) Read metadata for a simulation or from the file `filename`. Metadata is stored via `key`, value pairs. If `key` is not set (or set to Symbol()), a Dict{Symbol, Any} with the complete metadata of the simulation is returned. The following metadata is stored automatically: - simulation_name - model_name - date (in the format "yyyy-mm-dd hh:mm:ss") See also: [`write_metadata`](@ref) """ function read_sim_metadata(sim::Simulation, key::Symbol = Symbol()) read_sim_metadata(open_h5file(sim, sim.filename), key) end function read_sim_metadata(filename::String, key::Symbol = Symbol()) read_sim_metadata(open_h5file(nothing, filename), key) end function read_sim_metadata(fids, key::Symbol = Symbol()) if length(fids) == 0 return end mid = fids[1]["_meta"] r = if key == Symbol() Dict([ (Symbol(d[1]), d[2]) for d in Dict(attrs(mid)) ]) else get(attrs(mid), String(key), nothing) end foreach(close, fids) r end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
6045
export checked, @rootonly, @roottime """ checked(f, g, itr; kwargs...) Calls g(f, itr; kwargs...), but only if itr != nothing. As all the Vahana functions that access the edges of a specific agent can return nothing in the case, that there exist no incoming edge for this agent, it's often necessery to check this case. Example: Instead of writing ```@example nids = neighborids(sim, id, Contact) if nids != nothing foreach(nids) do nid add_edge!(sim, id, nid, Inform() end end ``` you can use the checked function to write ```@example checked(foreach, neighborids(sim, id, Contact)) do nid add_edge!(sim, id, nid, Inform()) end ``` """ function checked(f, g, itr; kwargs...) if !isnothing(itr) g(f, itr; kwargs...) end end ######################################## internal # this is for the reduce operations, and tries to determine # the default value for ranks without any agent/edge function val4empty(op; kwargs...) if (op == &) || (op == |) MT = get(kwargs, :datatype, Bool) else MT = get(kwargs, :datatype, Int) end # for MPI.reduce we must ensure that each rank has a value emptyval = get(kwargs, :init) do if op == + zero(MT) elseif op == * one(MT) elseif op == max -typemax(MT) elseif op == min typemax(MT) elseif op == & @assert typemax(MT) isa Int || typemax(MT) isa Bool """ The & operator is only supported for integer and boolean types """ typemax(MT) elseif op == | @assert typemax(MT) isa Int || typemax(MT) isa Bool """ The & operator is only supported for integer and boolean types """ typemax(MT) isa Int ? 0 : false else nothing end end @assert emptyval !== nothing """\n Can not derive the init value for the operator. You must add this information via the `init` keyword. """ emptyval end ##################### add_number_to_file # when sim.overwrite is false, we automatically create filenames with # appended numbers (for the h5 files and also the logs) function add_number_to_file(filename, i) if i < 999999 filename * '-' * lpad(string(i), 6, "0") else filename * '-' * string(i) end end function add_number_to_file(filename) i = 0 while true i += 1 numbered = add_number_to_file(filename, i) if ! isfile(numbered * ".h5") && ! isfile(numbered * "_0.h5") && ! isfile(numbered * "_0.log") return numbered end end end #################### field symbols # create symbol for the different fields of an agent/edgetype # TODO: adjust edgefieldfactory to macros writefield(T) = Symbol(T).write readfield(T) = Symbol(T).read # nextidfield(T) = Symbol(T, "_nextid") macro nextid(T) field = Symbol(T) :( sim.$(field).nextid ) |> esc end nextid(sim, T) = getproperty(sim, Symbol(T)).nextid macro agent(T) field = Symbol(T) :( sim.$(field) ) |> esc end macro edge(T) field = Symbol(T) :( sim.$(field) ) |> esc end macro windows(T) field = Symbol(T) :( sim.$(field).mpiwindows ) |> esc end windows(sim, T) = getproperty(sim, Symbol(T)).mpiwindows macro readdied(T) field = Symbol(T) :( sim.$(field).read.died ) |> esc end readdied(sim, T) = getproperty(sim, Symbol(T)).read.died macro writedied(T) field = Symbol(T) :( sim.$(field).write.died ) |> esc end writedied(sim, T) = getproperty(sim, Symbol(T)).write.died macro readstate(T) field = Symbol(T) :( sim.$(field).read.state ) |> esc end readstate(sim, T) = getproperty(sim, Symbol(T)).read.state macro writestate(T) field = Symbol(T) :( sim.$(field).write.state ) |> esc end writestate(sim, T) = getproperty(sim, Symbol(T)).write.state macro readreuseable(T) field = Symbol(T) :( sim.$(field).read.reuseable ) |> esc end readreuseable(sim, T) = getproperty(sim, Symbol(T)).read.reuseable macro writereuseable(T) field = Symbol(T) :( sim.$(field).write.reuseable ) |> esc end writereuseable(sim, T) = getproperty(sim, Symbol(T)).write.reuseable macro agentwrite(T) field = Symbol(T) :( sim.$(field).write ) |> esc end macro agentread(T) field = Symbol(T) :( sim.$(field).read ) |> esc end macro edgewrite(T) field = Symbol(T) :( sim.$(field).write ) |> esc end edgewrite(sim, T) = getproperty(sim, Symbol(T)).write macro edgeread(T) field = Symbol(T) :( sim.$(field).read ) |> esc end edgeread(sim, T) = getproperty(sim, Symbol(T)).read macro storage(T) field = Symbol(T) :( sim.$(field).storage ) |> esc end storage(sim, T) = getproperty(sim, Symbol(T)).storage macro agentsontarget(T) field = Symbol(T) :( sim.$(field).agentsontarget ) |> esc end agentsontarget(sim, T) = getproperty(sim, Symbol(T)).agentsontarget macro removeedges(T) field = Symbol(T) :( sim.$(field).removeedges ) |> esc end removeedges(sim, T) = getproperty(sim, Symbol(T)).removeedges # we use this tests are for the distributed version, in this case # the tests should be only run on the rank that the id is currently # living macro onrankof(aid, ex) quote if Vahana.process_nr($(esc(aid))) == mpi.rank $(esc(ex)) end end end macro rankonly(rank, ex) quote if $rank == mpi.rank $(esc(ex)) end end end macro rootonly(ex) quote if 0 == mpi.rank $(esc(ex)) end end end macro roottime(ex) quote if 0 == mpi.rank @time $(esc(ex)) else $(esc(ex)) end end end edge_attrs(sim, T::DataType) = sim.typeinfos.edges_attr[T] nodes_attrs(sim, T::DataType) = sim.typeinfos.nodes_attr[T] disable_transition_checks = (disable::Bool) -> config.check_readable = ! disable typeid(sim, T::DataType) = sim.typeinfos.nodes_type2id[T]
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
5141
using Logging, Dates using Base: debug_color import Logging: with_logger, shouldlog, min_enabled_level, catch_exceptions, handle_message export with_logger, create_logger!, log_overview struct VahanaLogger <: Logging.AbstractLogger stream::IO min_level::LogLevel debug::Bool starttime::Float64 begintimes::Dict{String, Float64} # store <Begin> kwargs to access them at <End> in the ! debug case kwargs::Dict{String, Dict} end Logging.shouldlog(logger::VahanaLogger, level, _module, group, id) = true Logging.min_enabled_level(logger::VahanaLogger) = logger.min_level Logging.catch_exceptions(logger::VahanaLogger) = false struct Log file::Union{IOStream, Nothing} logger::Union{VahanaLogger, Nothing} debug::Bool end function Logging.handle_message(logger::VahanaLogger, level::LogLevel, message, _module, group, id, filepath, line; kwargs...) @nospecialize now = time() buf = IOBuffer() iob = IOContext(buf, logger.stream) msglines = split(chomp(convert(String, string(message))::String), '\n') msg1, rest = Iterators.peel(msglines) # check for <Begin> or <End> tags msg1split = split(msg1, ">") if msg1split[1] == "<End" if logger.debug println(iob, "Time (sec): ", now - logger.starttime) else kwargs = logger.kwargs[msg1split[2]] println(iob, "Start (sec): ", logger.begintimes[msg1split[2]] - logger.starttime) end println(iob, " ", logger.debug ? msg1 : msg1split[2], " |#| Duration (ms): ", (now - logger.begintimes[msg1split[2]]) * 1000) elseif msg1split[1] != "<Begin" || logger.debug println(iob, "Time (sec): ", now - logger.starttime) println(iob, " ", msg1) end for msg in rest println(iob, msg) end if msg1split[1] != "<Begin" || logger.debug for (key, val) in kwargs println(iob, " ", key, " = ", val) end end write(logger.stream, take!(buf)) if logger.debug flush(logger.stream) end if msg1split[1] == "<Begin" logger.begintimes[msg1split[2]] = time() logger.kwargs[msg1split[2]] = kwargs end nothing end function create_logger(filename, logging, debug, overwrite_file) if logging filename = if config.log_path === nothing mkpath("log") * "/" * filename else mkpath(config.log_path) * "/" * filename end end if ! overwrite_file filename = add_number_to_file(filename) # to avoid that rank 0 creates a file before other ranks check this MPI.Barrier(MPI.COMM_WORLD) end logfile = logging ? open("""$(filename)_$(mpi.rank).log"""; write = true) : nothing logger = logging ? VahanaLogger(logfile, debug ? Logging.Debug : Logging.Info, debug, time(), Dict{String, Float64}(), Dict{String, Dict}()) : nothing Log(logfile, logger, debug) end """ create_logger!(sim::Simulation, [debug = false, name = sim.name; overwrite = sim.overwrite_file]) The canonical way to create log files for a simulation is by setting the logging keyword of [`create_simulation`](@ref) to true. But sometime it can be useful to control this manually, e.g. after a call to [`copy_simulation`](@ref). When also `debug` is set to true, the log file contains more details and the stream will be flushed after each write. The `filename` argument can be used to specify a filename other than `sim.filename`. If `overwrite` is true, existing files with this name will be overwritten. If it is false, the filename is automatically extended by an increasing 6-digit number, so that existing files are not overwritten. The files are always created in a `log` subfolder, and this one will be create in the current working directory. """ function create_logger!(sim::Simulation, debug = false, filename = sim.name; overwrite = sim.overwrite_file) sim.logger = create_logger(filename, true, debug, overwrite) end """ with_logger(f::Function, sim::Simulation) Execute function f, directing all log messages to the logger that is attached to simulation `sim`. """ function with_logger(f::Function, sim::Simulation) if sim.logger.logger !== nothing with_logger(f, sim.logger.logger) end end _log_info(sim, text) = with_logger(() -> @info(text), sim) _log_debug(sim, text) = with_logger(() -> @debug(text), sim) function _log_time(f, sim, text, debug = false) lf = debug ? _log_debug : _log_info lf(sim, "<Begin> " * text) r = f() lf(sim, "<End> " * text) r end """ log_overview(sim::Simulation) Dump an overview of the simulation `sim` to the attached logfile. """ function log_overview(sim::Simulation) if sim.logger.logger !== nothing show(sim.logger.logger.stream, MIME("text/plain"), sim) end end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
19832
using MPI using Logging # Distributing the whole graph to the different processes. # # This function is called from finish_init!, per default the sendmap # is created in finish_init! by Metis, but also a external # mapping can be used, e.g. for testing, or in the case that the # modeller can create a better partitioning him/herself then Metis. function distribute!(sim, sendmap::Dict{AgentID, ProcessID}) node_types = sim.typeinfos.nodes_types edge_types = sim.typeinfos.edges_types # We reconstruct the whole graph, so we call prepare_write for # all agent and edgetypes foreach(prepare_write!(sim, [], []), [ node_types; edge_types ]) MPI.Barrier(MPI.COMM_WORLD) disable_transition_checks(true) # we also reset the nextid count to 1 for every nodetype foreach(node_types) do T nextid(sim, T) = AgentNr(1) end # We add structure to the simple AgentID -> ProcessID mapping, # so that we can combine all agents of a AgentTypes etc. ssm = create_structured_send_map(sim, sendmap) # First we send all agentstates and collect the idmapping, as the # agent gets an new id in this process. idmapping is a Dict that # allows to get the new id when only the old id is known. idmapping = Dict{AgentID, AgentID}() for T in node_types merge!(idmapping, sendagents!(sim, ssm[T], T)) end # Currently, a PE knows only the idmapping of the agent that was # mapped to this PE. We collect now this information. As we can not send # the Dict directly, we join the keys and values indepently and create # a new dict afterwards allkeys = join(keys(idmapping) |> collect) allvalues = join(values(idmapping) |> collect) idmapping = Dict(allkeys .=> allvalues) # Till now we have distribute only the agents, and we have the mapping # of the agents-ids. We now transfer the edges, and are updating also # the id of the agents by this way for T in edge_types sendedges!(sim, sendmap, idmapping, T) end # we want to allow that add_raster is only called on the root rank # but in this case the sim.rasters Dict missings the keys on the # other ranks. So we first send the key names if mpi.rank == 0 rasternames = String.(keys(sim.rasters)) n = length(rasternames) MPI.Bcast!(Ref(n), MPI.COMM_WORLD) for s in rasternames len = length(s) MPI.Bcast!(Ref(len), MPI.COMM_WORLD) MPI.Bcast!(Vector{UInt8}(s), MPI.COMM_WORLD) end else n = Ref{Int}() MPI.Bcast!(n, MPI.COMM_WORLD) for _ in 1:n[] len = Ref{Int}() MPI.Bcast!(len, MPI.COMM_WORLD) buffer = Vector{UInt8}(undef, len[]) MPI.Bcast!(buffer, MPI.COMM_WORLD) push!(sim.rasters, Symbol(String(buffer)) => AgentID[]) end end # we must also update and broadcast the ids for each raster. As we # don't need the edges for that, we must not synchronize the PEs # before. foreach(grid -> broadcastids(sim, grid, idmapping), keys(sim.rasters)) # finish everything and return the idmapping disable_transition_checks(false) MPI.Barrier(MPI.COMM_WORLD) foreach(T -> finish_distribute!(sim, T), node_types) idmapping end # structured_send_map is Dict{DataType, Vector{Vector{AgentID}}, e.g. # Buyer --- PE1 --- AgentID1 # | |- AgentID4 # | '- AgentID7 # '- PE2 --- AgentID3 # '- AgentID4 # Seller ... # # This map is used by sendedges! function create_structured_send_map(sim, sendmap::Dict{AgentID, ProcessID}) _log_debug(sim, "<Begin> create_structured_send_map") ssm = Dict{DataType, Vector{Vector{AgentID}}}() for T in sim.typeinfos.nodes_types ssm[T] = [ Vector{AgentID}() for _ in 1:mpi.size ] end for (id, p) in sendmap push!(ssm[Vahana.type_of(sim, id)][p], id) end _log_debug(sim, "<End> create_structured_send_map") ssm end # Distribute agents of agenttype T to the different PEs. function sendagents!(sim, perPE::Vector{Vector{AgentID}}, T::DataType) with_logger(sim) do @debug "<Begin> sendagents!" agenttype=T end # ST is the transmitted datatype. Beside the state itself (T) we # need also the AgentID to create the mappning from the old # AgentID to the new AgentID ST = Vector{Tuple{AgentID,T}} longvec = reduce(vcat, perPE) sendbuf = if length(longvec) > 0 agentstates = map(longvec) do id (id, agentstate(sim, id, T)) end VBuffer(agentstates, [ length(perPE[i]) for i in 1:mpi.size ]) else VBuffer(ST(), [ 0 for _ in 1:mpi.size ]) end # first we transmit the number of agents a PE want to send to the # other PEs sendNumElems = [ length(perPE[i]) for i in 1:mpi.size ] recvNumElems = MPI.Alltoall(UBuffer(sendNumElems, 1), mpi.comm) # with this information we can prepare the receive buffer recvbuf = MPI.VBuffer(ST(undef, sum(recvNumElems)), recvNumElems) # and then transfer the {AgentID,T (AgentState)} tuples. MPI.Alltoallv!(sendbuf, recvbuf, mpi.comm) # we need oldid as key and newid as value idmapping = Dict{AgentID, AgentID}() foreach(recvbuf.data) do (id, agent) idmapping[id] = add_agent!(sim, agent) end _log_debug(sim, "<End> sendagents!") idmapping end function construct_mpi_agent_methods(T::DataType, attr, simsymbol, mortal) stateless = :Stateless in attr[:hints] @eval function transmit_agents!(sim::$simsymbol, readableET::Vector{DataType}, ::Type{$T}) if $stateless return end with_logger(sim) do @debug "<Begin> transmit_agents!" agenttype=$T end for ET in readableET if :IgnoreSourceState in sim.typeinfos.edges_attr[ET][:hints] continue end edgefield = getproperty(sim, Symbol(ET)) # there are two reasons why we must transmit the agentstate: # - the agentstates has changed since the last transmit: # last_change >= last_transmit[ET] # - a readable network R has changed since the last transmit # of agents caused by this network: # @edge($ET).last_change >= last_transmit[ET] if @agent($T).last_transmit[ET] <= @agent($T).last_change || @agent($T).last_transmit[ET] <= edgefield.last_change perPE = edgefield.accessible[sim.typeinfos.nodes_type2id[$T]] # only access the state if it isn't already in the dict # (the foreign dict is cleared when $T is writeable). if ! isempty(@agent($T).foreignstate) for i in 1:mpi.size filter!(d -> ! haskey(@agent($T).foreignstate, d), perPE[i]) end end ## first we transfer all the AgentIDs for which we need the state # for sending them via AllToAll we flatten the perPE structure asvec = map(s -> collect(s), filter(! isempty, perPE)) sendbuf = if ! isempty(asvec) VBuffer(reduce(vcat, asvec), [ length(perPE[i]) for i in 1:mpi.size ]) else VBuffer(Vector{AgentID}(), [ 0 for _ in 1:mpi.size ]) end # transmit the number of AgentIDs the current PE want to # send to the other PEs sendNumElems = [ length(perPE[i]) for i in 1:mpi.size ] recvNumElems = MPI.Alltoall(UBuffer(sendNumElems, 1), mpi.comm) # with this information we can prepare the receive buffer recvbuf = MPI.VBuffer(Vector{AgentID}(undef, sum(recvNumElems)), recvNumElems) # transmit the AgentIDs itself _log_time(sim, "transmit_agents Alltoallv! AgentIDs", true) do MPI.Alltoallv!(sendbuf, recvbuf, mpi.comm) end ## now we gather the agentstate send = if $mortal if ! isempty(recvbuf.data) map(recvbuf.data) do id (id, @readdied($T)[agent_nr(id)], @readstate($T)[agent_nr(id)]) end else Vector{Tuple{AgentID, Bool, $T}}() end else if ! isempty(recvbuf.data) map(recvbuf.data) do id (id, @readstate($T)[agent_nr(id)]) end else Vector{Tuple{AgentID, $T}}() end end ## and send this back # recvNumElems will be now sendNumElems and vis a vis sendbuf = VBuffer(send, recvNumElems) recv = if $mortal Vector{Tuple{AgentID, Bool, $T}}(undef, sum(sendNumElems)) else Vector{Tuple{AgentID, $T}}(undef, sum(sendNumElems)) end recvbuf = VBuffer(recv, sendNumElems) _log_time(sim, "transmit_agents Alltoallv! state", true) do MPI.Alltoallv!(sendbuf, recvbuf, mpi.comm) end ## And now fill the foreign dictonaries if $mortal for (id, died, state) in recvbuf.data @agent($T).foreigndied[id] = died @agent($T).foreignstate[id] = state end else for (id, state) in recvbuf.data @agent($T).foreignstate[id] = state end end @agent($T).last_transmit[ET] = sim.num_transitions end end _log_debug(sim, "<End> transmit_agents!") end end function construct_mpi_edge_methods(T::DataType, typeinfos, simsymbol, CE) attr = typeinfos.edges_attr[T] ignorefrom = :IgnoreFrom in attr[:hints] singleedge = :SingleEdge in attr[:hints] singletype = :SingleType in attr[:hints] stateless = :Stateless in attr[:hints] ST = Vector{Tuple{AgentID, CE}} # typeid = typeinfos.edges_type2id[T] # For sending the edges we need different versions, depending on the # edge hints, as e.g. for the :HasEdgeOnly or :NumEdgeOnly we # transfer only the number of edges. In overall, when we iterate over # the container, we get the following values: # | | Statel. | Ignore | get edges via | sending (ST below) | # |--------------------+---------+--------+---------------+--------------------| # | (Vector){Edge{$T}} | | | edges | [(toid, Edge{$T})] | # | (Vector){AgentID} | x | | neighborids | [(toid, fromid)] | # | (Vector){$T} | | x | edgestates | [(toid, $T)] | # | Int64 | x | x | num_edges | num_edges | @eval function sendedges!(sim::$simsymbol, sendmap::Dict{AgentID, ProcessID}, idmapping, ::Type{$T}) with_logger(sim) do @debug "<Begin> sendedges!" edgetype=$T end if $singletype AT = sim.typeinfos.edges_attr[$T][:target] agent_typeid = sim.typeinfos.nodes_type2id[AT] end ST = Vector{Tuple{AgentID, sim.typeinfos.edges_attr[$T][:containerelement]}} # We construct for each PE a vector with all the edges (incl. toid) that # should be transmit to the PE perPE = [ ST() for _ in 1:mpi.size ] # The iterator for the edges depends on the hints of the edgetype if $stateless && $ignorefrom iter = @edgeread($T) if $singletype iter = enumerate(iter) end else iter = edges_iterator(sim, $T) end # we now iterate over the edges and add them to the perPE vector # that corresponds to the process id given in the sendmap for the # target of the edge for (to, e) in iter id = if $singletype agent_id(agent_typeid, AgentNr(to)) else to end # in the default finish_init! case with an initialization # that does not care about mpi.isroot, we have edges on # all ranks, but on the sendmap there are only the edges # of rank 0, as this are the only edges we want to distribute if haskey(sendmap, id) # in the SingleType version, we also get entries with 0 edges # we skip them, there is no need to use bandwith for that if $stateless && $ignorefrom && e == 0 continue end push!(perPE[sendmap[id]], (id, e)) end end updateid(id::AgentID) = idmapping[id] |> AgentID edges_alltoall!(sim, perPE, $T, updateid) with_logger(sim) do @debug "<End> sendedges!" end end # updateid is a func that update the ids of the agents, for the case # that the ids have changed in the distribution process. @eval function edges_alltoall!(sim::$simsymbol, perPE, ::Type{$T}, updateid = identity) with_logger(sim) do @debug "<Begin> edges_alltoall!" edgetype=$T end # we call add_edge! but add_edge! has an check that we # are in the initialization phase or in a transition function. # So we set the intranstion flag, is necessary wasintransition = sim.intransition sim.intransition = true waswriteable = edge_attrs(sim, $T)[:writeable] edge_attrs(sim, $T)[:writeable] = true # for sending them via AllToAll we flatten the perPE structure longvec = reduce(vcat, perPE) sendbuf = if length(longvec) > 0 VBuffer(longvec, [ length(perPE[i]) for i in 1:mpi.size ]) else VBuffer($ST(), [ 0 for _ in 1:mpi.size ]) end # transmit the number of edges the current PE want to send to the # other PEs sendNumElems = [ length(perPE[i]) for i in 1:mpi.size ] recvNumElems = MPI.Alltoall(UBuffer(sendNumElems, 1), mpi.comm) # with this information we can prepare the receive buffer recvbuf = MPI.VBuffer($ST(undef, sum(recvNumElems)), recvNumElems) # transmit the edges itself MPI.Alltoallv!(sendbuf, recvbuf, mpi.comm) # In the case that the edgetype count only the number of edges, write # this number directly into the edges container of the receiving PE if $stateless && $ignorefrom for (to, numedges) in recvbuf.data up = if $singletype updateid(to) |> agent_nr else updateid(to) end _check_size!(@edgewrite($T), up, $T) if $singleedge @inbounds @edgewrite($T)[up] = true else if $singletype || haskey(@edgewrite($T), up) @inbounds @edgewrite($T)[up] += numedges else @inbounds @edgewrite($T)[up] = numedges end end end # Else iterate of the received edges and add them via add_edge! elseif $stateless for (to, from) in recvbuf.data add_edge!(sim, updateid(from), updateid(to), $T()) end elseif $ignorefrom for (to, edgestate) in recvbuf.data # fromid will be ignored, so we use an dummy id add_edge!(sim, AgentID(0), updateid(to), edgestate) end else for (to, edge) in recvbuf.data add_edge!(sim, updateid(to), Edge(updateid(edge.from), edge.state)) end end @edge($T).last_transmit = sim.num_transitions sim.intransition = wasintransition edge_attrs(sim, $T)[:writeable] = waswriteable _log_debug(sim, "<End> edges_alltoall!") nothing end @eval function removeedges_alltoall!(sim::$simsymbol, perPE, ::Type{$T}) with_logger(sim) do @debug "<Begin> removeedges_alltoall!" edgetype=$T end # we call remove_edges! but remove_edges! has an check that we # are in the initialization phase or in a transition function. # So we set the intranstion flag, is necessary wasintransition = sim.intransition sim.intransition = true waswriteable = edge_attrs(sim, $T)[:writeable] edge_attrs(sim, $T)[:writeable] = true # for sending them via AllToAll we flatten the perPE structure longvec = reduce(vcat, perPE) sendbuf = if length(longvec) > 0 VBuffer(longvec, [ length(perPE[i]) for i in 1:mpi.size ]) else VBuffer($ST(), [ 0 for _ in 1:mpi.size ]) end # transmit the number of edges the current PE want to send to the # other PEs sendNumElems = [ length(perPE[i]) for i in 1:mpi.size ] recvNumElems = MPI.Alltoall(UBuffer(sendNumElems, 1), mpi.comm) # with this information we can prepare the receive buffer recvbuf = MPI.VBuffer(fill((0,0), sum(recvNumElems)), recvNumElems) # transmit the information about the removed edge itself MPI.Alltoallv!(sendbuf, recvbuf, mpi.comm) for (source, target) in recvbuf.data target = AgentID(target) @mayassert process_nr(target) == mpi.rank if source == 0 remove_edges!(sim, target, $T) else remove_edges!(sim, AgentID(source), target, $T) end end sim.intransition = wasintransition edge_attrs(sim, $T)[:writeable] = waswriteable _log_debug(sim, "<End> removeedges_alltoall!") nothing end end # Join a vector that is distributed over serveral processes. vec can be []. # # # Example # rank 0: vec = [1, 2] # rank 1: vec = [] # rank 2: vec = [4] # # join(vec) returns [1, 2, 4] on all ranks function join(vec::Vector{T}) where T # transfer the vector sizes sizes = Vector{Int32}(undef, mpi.size) sizes[mpi.rank + 1] = length(vec) send = MPI.VBuffer(sizes, fill(Int32(1), mpi.size), fill(Int32(mpi.rank), mpi.size)) recv = MPI.VBuffer(sizes, fill(Int32(1), mpi.size)) MPI.Alltoallv!(send, recv, mpi.comm) sizes = recv.data # transfer the vector itself displace = append!([0], cumsum(sizes)[1 : length(sizes) - 1]) values = Vector{T}(undef, sum(sizes)) values[displace[mpi.rank+1] + 1 : displace[mpi.rank+1] + sizes[mpi.rank+1]] = vec send = MPI.VBuffer(values, fill(Int32(sizes[mpi.rank + 1]), mpi.size), fill(Int32(displace[mpi.rank + 1]), mpi.size)) recv = MPI.VBuffer(values, sizes) MPI.Alltoallv!(send, recv, mpi.comm) recv.data end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
846
using MPI export mpi mutable struct VMPI comm rank::Int64 size::Int64 isroot::Bool active::Bool # shm stands for shared memory shmcomm shmrank::Int64 shmsize::Int64 # node node::Int64 end const mpi = VMPI(nothing, 0, 0, false, false, nothing, 0, 0, 0) function mpiinit() MPI.Init(;threadlevel = :single) mpi.comm = MPI.COMM_WORLD mpi.rank = MPI.Comm_rank(mpi.comm) mpi.size = MPI.Comm_size(mpi.comm) mpi.isroot = mpi.rank == 0 mpi.active = mpi.size > 1 mpi.shmcomm = MPI.Comm_split_type(mpi.comm, MPI.COMM_TYPE_SHARED, 0) mpi.shmrank = MPI.Comm_rank(mpi.shmcomm) mpi.shmsize = MPI.Comm_size(mpi.shmcomm) (mpi.node, rank) = fldmod(mpi.rank, mpi.shmsize) # check that the ranks are really distributed as expected @assert mpi.shmrank == rank end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
10653
export ModelTypes export register_agenttype!, register_edgetype!, register_param!, register_global! Base.@kwdef struct Param{T} name::Symbol default_value::T end Base.@kwdef struct Global{T} name::Symbol init_value::T end #Param(name, default::T) where T = Param{T}(name, default, default) """ ModelTypes This struct stores all (internal) information about the agent and edge types of the model and is therefore the starting point of the model definition. Call the ModelType constructor without parameters, and then use the created object as the first parameter in [`register_agenttype!`](@ref) and [`register_edgetype!`](@ref), whereby the |> operator can be used to concatenate these registrations. See also [`create_model`](@ref), """ Base.@kwdef struct ModelTypes edges_attr = Dict{DataType, Dict{Symbol, Any}}() edges_types = Vector{DataType}() nodes_attr = Dict{DataType, Dict{Symbol, Any}}() nodes_types = Vector{DataType}() nodes_type2id::Dict{DataType, TypeID} = Dict{DataType, TypeID}() nodes_id2type::Vector{DataType} = Vector{DataType}(undef, MAX_TYPES) params::Vector{Param} = Vector{Param}() globals::Vector{Global} = Vector{Global}() end """ Model A Model instance is created by [`create_model`](@ref) and can then be used to create one or multiple simulations via [`create_simulation`](@ref). """ struct Model types::ModelTypes name::String immortal::Vector{Bool} end """ register_agenttype!(types::ModelTypes, ::Type{T}, [hints...]) Register an additional agent type to `types`. An agent type is a struct that define the state space for agents of type `T`. These structs must be "bits types", meaning the type is immutable and contains only primitive types and other bits types. By default, it is assumed that an agent can die (be removed from the simulation) by returning `nothing` in the transition function (see [`apply!`](@ref). In the case that agents are never removed, the hint :Immortal can be given to improve the performance of the simulation. If agents of this type never access the state of other agents of the same type in a transition function (e.g., via agentstate or neighborstates calls), then the :Independent hint can be given. This avoids unnecessary copies of the agents. A pipeable version of `register_agenttype!` is also available, enabling the construction of a Model via a sequence of `register_*` calls. This pipeline starts with `ModelTypes()` as the source and terminates in the [`create_model`](@ref) function as the destination. See also [`add_agent!`](@ref) and [`add_agents!`](@ref) """ function register_agenttype!(types::ModelTypes, ::Type{T}, hints...) where T @assert !(Symbol(T) in types.nodes_types) "Type $T is already registered" @assert isbitstype(T) "Agenttypes $T must be bitstypes" type_number = length(types.nodes_type2id) + 1 @assert type_number < MAX_TYPES "Can not add new type, maximal number of types already registered" push!(types.nodes_types, T) types.nodes_type2id[T] = type_number types.nodes_id2type[type_number] = T types.nodes_attr[T] = Dict{Symbol,Any}() hints = Set{Symbol}(hints) for hint in hints @assert hint in [:Immortal, :Independent] """\n The agent type hint $hint is unknown for type $T. The following hints are supported: :Immortal :Independent """ end types.nodes_attr[T][:hints] = hints types end register_agenttype!(t::Type{T}) where T = types -> register_agenttype!(types, t) register_agenttype!(t::Type{T}, hints...; kwargs...) where T = types -> register_agenttype!(types, t, hints...; kwargs...) """ register_edgetype!(types::ModelTypes, ::Type{T}, [hints...; kwargs...]) Register an additional edge type to `types`. An edge type T is a structure that defines the state (field) of [`Edge{T}`](@ref). These structs must be "bit types", that is, the type is immutable and contains only primitive types and other bit types. Often these types T are stateless, in which case they are used as a tag to distinguish between the existing types of edges of the model. The internal data structures used to store the graph in memory can be modified by the hints parameters: - `:IgnoreFrom`: The ID of the source agent is not stored. This implies that the state of the agents on the source of the edge is not accessible via e.g. the [`neighborstates`](@ref) function. - `:Stateless`: Store only the ID of the source agent. - `:SingleType`: All target agents have the same type, needs also keyword `target` (see below). - `:SingleEdge`: Each agent can be the target for max. one edge. - `:IgnoreSourceState`: The ID of the source agent is not used to access the state of the agent with this ID. - `:NumEdgesOnly`: Combines `:IgnoreFrom` and `:Stateless` - `:HasEdgeOnly`: Combines `:IgnoreFrom`, `:Stateless` and `:SingleEdge` If `:SingleType` is set, the keyword argument `target` must be added. The value of this argument must be the type of the target node. If the `target` keyword exists, but the `:SingleType` hint is not explicitly specified, it will be set implicitly If it is known how many agents of this type exist, this can also be specified via the optional `size` keyword. This can improve performance, but can also increase the memory usage. A pipeable version of `register_edgetype!` is also available, enabling the construction of a Model via a sequence of `register_*` calls. This pipeline starts with `ModelTypes()` as the source and terminates in the [`create_model`](@ref) function as the destination. See also [Edge Hints](./performance.md#Edge-Hints), [`add_edge!`](@ref) and [`add_edges!`](@ref) """ function register_edgetype!(types::ModelTypes, ::Type{T}, hints...; kwargs...) where T @assert !(T in types.edges_types) "Type $T is already registered" @assert isbitstype(T) "Edgetypes $T must be bitstypes" push!(types.edges_types, T) types.edges_attr[T] = kwargs hints = Set{Symbol}(hints) for hint in hints @assert hint in [:Stateless, :IgnoreFrom, :SingleEdge, :SingleType, :NumEdgesOnly, :HasEdgeOnly, :IgnoreSourceState] """ The edge type hint $hint is unknown for type $T. The following hints are supported: :Stateless :IgnoreFrom :SingleEdge :SingleType :NumEdgesOnly (which is equal to :Stateless & :IgnoreFrom) :HasEdgeOnly (which is equal to :Stateless & :IgnoreFrom & :SingleEdge) :IgnoreSourceState """ end if :NumEdgesOnly in hints union!(hints, Set([:Stateless, :IgnoreFrom])) end if :HasEdgeOnly in hints union!(hints, Set([:Stateless, :IgnoreFrom, :SingleEdge])) end if :SingleType in hints @assert haskey(kwargs, :target) """ For type $T the :SingleType hint is set, but in this case the agent type must also be specified via the target keyword. """ end if haskey(kwargs, :target) && !(:SingleType in hints) if ! config.quiet @rootonly printstyled(""" Since the `target` keyword exists for type $T, the :SingleType hint is added for this type. """; color = :red) end push!(hints, :SingleType) end if fieldcount(T) == 0 && !(:Stateless in hints) if config.detect_stateless union!(hints, Set([:Stateless])) elseif ! config.quiet @rootonly printstyled(""" Edgetype $T is a struct without any field, so you can increase the performance by setting the :Stateless hint. You can also calling detect_stateless() before calling register_edgetype!, then the :Stateless hint will be set automatically for structs without a field. """; color = :red) end end @assert !(:SingleType in hints && :SingleEdge in hints && !(:Stateless in hints && :IgnoreFrom in hints)) """\n The hints :SingleEdge and :SingleType can be only combined when the type $T has also the hints :Stateless and :IgnoreFrom. """ types.edges_attr[T][:hints] = hints types end register_edgetype!(t::Type{T}, props...; kwargs...) where T = types -> register_edgetype!(types, t, props...; kwargs...) has_hint(sim, T::DataType, hint::Symbol, ge = :Edge) = if ge == :Edge hint in sim.typeinfos.edges_attr[T][:hints] elseif ge == :Agent hint in sim.typeinfos.nodes_attr[T][:hints] else @error "Unknown graph element, use :Agent or :Edge" end """ register_param!(types::ModelTypes, name::Symbol, default_value::T) There are two ways to set up parameters for a simulation. Either the instance of a struct defined by the modeler must be passed via the `param` argument to [`create_simulation`](@ref), or the individual parameters are passed using `register_param!` before [`create_model`](@ref) is called. The parameters can also be set after [`create_simulation`](@ref) and before [`finish_init!`](@ref) is called. A pipeable version of `register_param!` is also available, enabling the construction of a Model via a sequence of `register_*` calls. This pipeline starts with `ModelTypes()` as the source and terminates in the [`create_model`](@ref) function as the destination. """ function register_param!(types::ModelTypes, name::Symbol, default_value::T) where T push!(types.params, Param{T}(name, default_value)) types end register_param!(name, default_value::T) where T = types -> register_param!(types, name, default_value) """ register_global!(types::ModelTypes, name::Symbol, default_value::T) There are two ways to set up globals for a simulation. Either the instance of a struct defined by the modeler must be passed via the `globals` argument to [`create_simulation`](@ref), or the individual parameters are passed using `register_global!` before [`create_model`](@ref) is called. A pipeable version of `register_global!` is also available, enabling the construction of a Model via a sequence of `register_*` calls. This pipeline starts with `ModelTypes()` as the source and terminates in the [`create_model`](@ref) function as the destination. """ function register_global!(types::ModelTypes, name::Symbol, init_value::T) where T push!(types.globals, Global{T}(name, init_value)) types end register_global!(name, init_value::T) where T = types -> register_global!(types, name, init_value)
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
14539
export num_edges export show_agent using Printf ######################################## <: EdgeState function Base.show(io::IO, mime::MIME"text/plain", edge::Edge{T}) where {T} show(io, mime, edge.from) if fieldnames(T) != () print(io, ": ") show(io, mime, edge.state) end end ######################################## Model function Base.show(io::IO, ::MIME"text/plain", model::Model) printstyled(io, "\nModel Name: ", model.name; color = :magenta) nodes_types = model.types.nodes_types if length(nodes_types) >= 1 printstyled(io, "\nAgent(s):"; color = :cyan) end for T in nodes_types node_hints = model.types.nodes_attr[T][:hints] firsthint = true print(io, "\n\t Type $T") for k in node_hints if firsthint firsthint = false printstyled(io, " with Hint(s): ") print(io, "$k") else print(io, ", $k") end end end edges_types = model.types.edges_types if length(edges_types) >= 1 printstyled(io, "\nEdge(s):"; color = :cyan) end for T in edges_types edge_hints = model.types.edges_attr[T][:hints] firsthint = true print(io, "\n\t Type $T") for k in edge_hints if firsthint firsthint = false printstyled(io, " with Hint(s): ") print(io, "$k") else print(io, ", $k") end end if :SingleType in edge_hints print(io, "{$(model.types.edges_attr[T][:target])}") end end params = model.types.params if length(params) >= 1 printstyled(io, "\nParameter(s) with default values:"; color = :cyan) end for param in model.types.params print(io, "\n\t$(param.name): $(param.default_value)") end globals = model.types.globals if length(globals) >= 1 printstyled(io, "\nGlobal(s) with init values:"; color = :cyan) end for g in model.types.globals print(io, "\n\t$(g.name): $(g.init_value)") end end ######################################## Simulation function construct_prettyprinting_methods(simsymbol) @eval function Base.show(io::IO, ::MIME"text/plain", sim::$simsymbol) function show_agent_types(io::IO, sim) nodes_types = sim.typeinfos.nodes_types if length(nodes_types) >= 1 printstyled(io, "\nAgent(s):"; color = :cyan) end for t in nodes_types print(io, "\n\t Type $t \ with $(num_agents(sim, t)) agent(s)") if mpi.active print(io, " ($(num_agents(sim, t, false)) on rank $(mpi.rank))") end end end function show_edge_types(io::IO, sim) edges_types = sim.typeinfos.edges_types if length(edges_types) >= 1 printstyled(io, "\nEdge(s):"; color = :cyan) end for t in edges_types edgetypehints = sim.typeinfos.edges_attr[t][:hints] if (:SingleEdge in edgetypehints && :SingleType in edgetypehints) || (:SingleType in edgetypehints && :size in keys(sim.typeinfos.edges_attr[t])) print(io, "\n\t Type $t with edge(s) for $(num_edges(sim, t)) agent(s)") else print(io, "\n\t Type $t \ with $(num_edges(sim, t)) edge(s)") if mpi.active print(io, " ($(num_edges(sim, t, false)) on rank $(mpi.rank))") end if ! (:SingleType in edgetypehints) print(io, " for $(_show_num_a_with_e(sim, t)) agent(s)") if mpi.active print(io, " on this rank") end end end end end function show_raster(io::IO, s) if length(s.rasters) >= 1 printstyled(io, "\nRaster(s):"; color = :cyan) for (k,v) in sim.rasters # print(io, "\n\t $k: $(getfield(s, k))") print(io, "\n\t :$k with dimension $(size(v))") end end end function show_struct(io::IO, s, name) if nfields(s) >= 1 printstyled(io, "\n$(name)(s):"; color = :cyan) for k in typeof(s) |> fieldnames f = getfield(s, k) if typeof(f) <: Array if length(f) == 0 print(io, "\n\t :$k (empty)") else print(io, "\n\t :$k |> last : $(last(f)) (length: $(length(f)))") end printstyled(io, " "; color = :yellow) else print(io, "\n\t :$k : $f") end end end end printstyled(io, "\nModel Name: ", sim.model.name; color = :magenta) printstyled(io, "\nSimulation Name: ", sim.name; color = :magenta) show_agent_types(io, sim) show_edge_types(io, sim) show_struct(io, sim.params, "Parameter") show_raster(io, sim) # print(io, "Globals: ", sim.globals) show_struct(io, sim.globals, "Global") if ! sim.initialized printstyled(io, "\nStill in initialization process!.", color = :red) end end end ######################################## Collections # In the :IgnoreFrom case we set edge.from to 0. function _reconstruct_edge(sim, e, edgetypehints, edgeT) if :Stateless in edgetypehints if :IgnoreFrom in edgetypehints Edge(AgentID(0), edgeT()) else Edge(e, edgeT()) end elseif :IgnoreFrom in edgetypehints Edge(AgentID(0), e) else e end end function _show_edge(sim, e, neighborstate, edgeT) function show_struct(s) if nfields(s) >= 1 for k in typeof(s) |> fieldnames if neighborstate == true || k in neighborstate f = getfield(s, k) print(" $k=$f,") end end end end edgetypehints = sim.typeinfos.edges_attr[edgeT][:hints] e = _reconstruct_edge(sim, e, edgetypehints, edgeT) if !(:IgnoreFrom in edgetypehints) && e.from == 0 return end print("\n\t") if :IgnoreFrom in edgetypehints print("unknown ") else _printid(e.from) end if ! (:Stateless in edgetypehints) print(" $(e.state)") end if (neighborstate == true || length(neighborstate) > 0) && !has_hint(sim, edgeT, :IgnoreFrom) # for the to edges we get an empty edgetype hints, as we constructed # those edges they don't have the same hints # But here we need the original hints, so we access them directly if has_hint(sim, edgeT, :SingleType) agentT = sim.typeinfos.edges_attr[edgeT][:target] aid = agent_id(sim.typeinfos.nodes_type2id[agentT], agent_nr(e.from)) # We disable assertions to call agentstate from the REPL # but this is only done temporary and in a newer world age show_struct(Base.invokelatest(agentstate, sim, aid, agentT)) # print(" $(Base.invokelatest(agentstate, sim, aid, agentT))") else show_struct(Base.invokelatest(agentstate_flexible, sim, e.from)) # print(" $(Base.invokelatest(agentstate_flexible, sim, e.from))") end end end ######################################## function _show_num_a_with_e(sim, ::Type{T}) where T if !sim.initialized "$(length(edgewrite(sim, T)))" else "$(length(edgeread(sim, T)))" end end # as a convention, we print only "complete" agentid as hex function _printid(id, nrformatted = true) if typeof(id) == UInt32 || agent_nr(AgentID(id)) == id if nrformatted Printf.@printf "%18i" id else print(id) end else Printf.@printf "0x%016x" id end end """ show_agent(sim, Type{T}, [id=0; max=5, neighborstate = []]) show_agent(sim, id=0; [max=5, neighborstate = []]) Display detailed information about the agent with ID `id`, or in the case that id is a value < 2^36, the information of the nth agent of type T. If `id` is 0 (the default value), a random agent of type T is selected. Returns the ID of the agent (which is especially useful when a random agent is selected). Keyword arguments: `max` controls the maximal number of edges that are shown per network (per direction). If a field of an agent on the source side of an edge is listed in the `neighborstate` vector, the value of this field will be also shown. """ function show_agent(sim::Simulation, t::Type{T}, id = 0; max::Int = 5, neighborstate = []) where T if !sim.initialized println("show_agent can not be called before finish_init!.") return end # find a random agent if no id is given (and no agent will ever have id 0 if id == 0 agents = readstate(sim, T) |> keys if ! has_hint(sim, T, :Immortal, :Agent) field = getproperty(sim, Symbol(T)) agents = [ a for a in agents if ! field.read.died[a] ] end if length(agents) == 0 println("No agent of type $T found.") return end id = rand(agents) end # we want to access the agentstate outside of a transition function, # assuming the the id is existing on the node assert_state = asserting() enable_asserts(false) typeid = sim.typeinfos.nodes_type2id[T] # id can be always the local nr, so we first ensure that id # is the complete agent_id id = if id <= 2 ^ BITS_AGENTNR agent_id(typeid, AgentNr(id)) else AgentID(id) end # first we print the id of the agent and the state of the agent printstyled("Id / Local Nr: "; color = :cyan) _printid(id, false) print(" / $(agent_nr(id))") # the assert modification has a newer world age as = Base.invokelatest(agentstate, sim, id, t) if nfields(as) > 0 printstyled("\nState:"; color = :cyan) fnames = as |> typeof |> fieldnames for f in fnames printstyled("\n $f=$(getfield(as, f))") end end # the all the edges for the agent printstyled("\nEdge(s):"; color = :cyan) for edgeT in sim.typeinfos.edges_types edgeTheadershown = false read_container = edgeread(sim, edgeT) edgetypehints = sim.typeinfos.edges_attr[edgeT][:hints] justcount = :IgnoreFrom in edgetypehints && :Stateless in edgetypehints if (:SingleEdge in edgetypehints && :SingleType in edgetypehints && !justcount) printstyled("\n\tIt is not possible to give reliable information " * "about the edges of the agent when the\n\tcorresponding edgetype " * "has the :SingleEdge and :SingleType hint combination."; color = :red) continue end # The agent_nr(id) returns wrong ids when used for agent of # a differnt type then given in :target, so we must check this if (!(:SingleType in edgetypehints) || T == sim.typeinfos.edges_attr[edgeT][:target]) # unify the agentid. For vector (:SingleAgent) types, this must # be the index, and for dict types, the AgentID aid = agent_id(sim.typeinfos.nodes_type2id[T], agent_nr(id)) nid = :SingleType in edgetypehints ? agent_nr(id) : aid # this rather complex statement checks that the agent has # edges of this type towards him. In the :SingleType case we # check the vector for #undef entries, in the other case we use haskey if (!(:SingleType in edgetypehints && !isassigned(read_container, nid)) && (:SingleType in edgetypehints || haskey(read_container, nid))) # output the network name and derive some information printstyled("\n $edgeT"; color = :yellow) edgeTheadershown = true d = read_container[nid] if justcount if :SingleEdge in edgetypehints printstyled("\n\thas_edge: "; color = :green) print("$(has_edge(sim, aid, edgeT))") else printstyled("\n\tnum_edges: "; color = :green) print("$(num_edges(sim, aid, edgeT))") end else # write the header for this edgetype, printstyled("\n\tfrom: "; color = :green) if ! (:Stateless in edgetypehints) printstyled("edge.state:"; color = :green) elseif neighborstate == true || length(neighborstate) > 0 printstyled("state of edge.from:"; color = :green) end if :SingleEdge in edgetypehints _show_edge(sim, d, neighborstate, edgeT) else for e in first(d, max) _show_edge(sim, e, neighborstate, edgeT) end if length(d) > max println("\n\t... ($(length(d)-max) not shown)") end end end end end end println() # set this back to the state at the beginning of the function enable_asserts(assert_state) id end function show_agent(sim::Simulation, id; kwargs...) # we call AgentID so that id can be also a signed value, or lower then 64bit show_agent(sim, type_of(sim, AgentID(id)), id; kwargs...) nothing end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
17265
import LinearAlgebra import StatsBase: sample, Weights export add_raster!, connect_raster_neighbors! export calc_raster, calc_rasterstate, rastervalues, move_to!, cellid export random_pos, random_cell """ add_raster!(sim, name::Symbol, dims::NTuple{N, Int}, agent_constructor) Adds a n-dimensional grid to `sim`, with the dimensions `dims`. For each cell a new node/agent is added to the graph. To create the agent, the `agent_constructor` function is called, with the cell position in form of an `CartesianIndex` as argument. The symbol `name` is an identifier for the created raster, as it is allowed to add multiple rasters to `sim`. The types of the agents created by the `agent_constructor` must be already registered via [`register_agenttype!`](@ref). Returns a vector with the IDs of the created agents. Can be only called before [`finish_init!`](@ref). See also [`calc_raster`](@ref) [`connect_raster_neighbors!`](@ref) and [`move_to!`](@ref). """ function add_raster!(sim, name::Symbol, dims::NTuple{N, Int}, agent_constructor) where N with_logger(sim) do @info "<Begin> add_raster!" name dims end @assert ! sim.initialized "add_raster! can be only called before finish_init!" grid = Array{AgentID, N}(undef, dims) positions = CartesianIndices(dims) nodeids = add_agents!(sim, [ agent_constructor(pos) for pos in positions ]) for (id, pos) in zip(nodeids, positions) grid[pos] = id end _log_info(sim, "<End> add_raster!") sim.rasters[name] = grid end # while distributing the Agents to the different PEs, the AgentIDs are # changed, so the ids of the grid most be updated function broadcastids(sim, raster, idmapping::Dict) with_logger(sim) do @info "<Begin> broadcastids" raster end if mpi.isroot MPI.Bcast!(Ref(ndims(sim.rasters[raster])), MPI.COMM_WORLD) MPI.Bcast!(Ref(size(sim.rasters[raster])), MPI.COMM_WORLD) sim.rasters[raster] = map(id -> idmapping[id], sim.rasters[raster]) MPI.Bcast!(sim.rasters[raster], MPI.COMM_WORLD) else rndims = Ref{Int}() MPI.Bcast!(rndims, MPI.COMM_WORLD) rsize = Ref{NTuple{rndims[], Int64}}() MPI.Bcast!(rsize, MPI.COMM_WORLD) sim.rasters[raster] = Array{AgentID}(undef, rsize[]) MPI.Bcast!(sim.rasters[raster], MPI.COMM_WORLD) end _log_info(sim, "<End> broadcastids") end function _stencil_core(metric, n::Int64, distance, d::Int64) @assert metric in [ :chebyshev, :euclidean, :manhatten ] stencil = Iterators.product([ (-d):d for _ in 1:n ]...) |> collect stencil = reshape(stencil, length(stencil)) # remove the zero point from the list, as we do not want to create loops filter!(s -> s !== Tuple(zeros(Int64, n)), stencil) if metric == :euclidean filter!(s -> LinearAlgebra.norm(s) <= distance, stencil) elseif metric == :manhatten filter!(s -> mapreduce(abs, +, s) <= distance, stencil) end map(CartesianIndex, stencil) end const stencil_cache = Dict{Tuple{Symbol, Int64, Int64}, Array{CartesianIndex}}() function stencil(metric, n::Int64, distance::Int64) get!(stencil_cache, (metric, n, distance)) do _stencil_core(metric, n, distance, distance) end end function stencil(metric, n::Int64, distance::Float64) d = distance |> floor |> Int _stencil_core(metric, n, distance, d) end """ connect_raster_neighbors!(sim, name::Symbol, edge_constructor; [distance::Int, metric:: Symbol, periodic::Bool]) All cells that are at most `distance` from each other (using the metric `metric`) are connected with edges, where the edges are created with the `edge_constructor`. The `edge_constructor` must be a function with one argument with type Tuple{CartesianIndex, CartesianIndex}. The first CartesianIndex is the position of the source node, and the second CartesianIndex the position of the target node. Valid metrics are :chebyshev, :euclidean and :manhatten. The keyword periodic determines whether all dimensions are cyclic (e.g., in the two-dimensional case, the raster is a torus). The default values of the optional keyword arguments are 1 for `distance`, :chebyshev for `metric` and true for `periodic`. which is equivalent to a Moore neighborhood. The :manhatten metric can be used to connect cells in the von Neumann neighborhood. The agent types of agents created by the `agent_constructor` must be already registered via [`register_agenttype!`](@ref). See also [`add_raster!`](@ref) """ function connect_raster_neighbors!(sim, name::Symbol, edge_constructor; distance = 1, metric::Symbol = :chebyshev, periodic = true) with_logger(sim) do @info "<Begin> connect_raster_neighbors!" name end # before a simulation is initialized, the raster existing # only on the root if mpi.isroot || sim.initialized raster = sim.rasters[name] dims = size(raster) st = stencil(metric, ndims(raster), distance) for org in keys(raster) for s in st shifted = _checkpos(org + s, dims, periodic) if ! isnothing(shifted) add_edge!(sim, raster[org], raster[shifted], edge_constructor(org, shifted)) end end end end _log_info(sim, "<End> connect_raster_neighbors!") end """ calc_raster(sim, raster::Symbol, f, f_returns::DataType, accessible::Vector{DataType}) Calculate values for the raster `raster` by applying `f` to each cell ID of the cells constructed by the `add_raster!` function. `f_returns` must be the type returned by the function f. There must be an implementation of the zero function for this type, and zero(returntype) | f(id) must be equal to f(id). `accessible` is a vector of Agent and/or Edge types. This vector must list all types that are accessed directly (e.g. via [`agentstate`](@ref) or indirectly (e.g. via [`neighborstates`](@ref) in the transition function. If the results of `calc_raster` depend only on the state of the cells (as in the following example) and all cells have the same type, [`calc_rasterstate`](@ref) can be used as concise alternatives. Returns a n-dimensional array (with the same dimensions as `raster`) with those values. Example: The following code from a "Game of Life" implementation generates a boolean matrix indicating which cells are alive (and therefore maps the internal graph structure to the usual representation of a cellular automaton): ```@example calc_raster(sim, :raster, id -> agentstate(sim, id, Cell).active, Bool, [ Cell ]) ``` Can be only called after [`finish_init!`](@ref). See also [`add_raster!`](@ref) and [`calc_rasterstate`](@ref) """ function calc_raster(sim::Simulation, raster::Symbol, f, f_returns::DataType, accessible::Vector{DataType}) with_logger(sim) do @info "<Begin> calc_raster!" raster end @assert sim.initialized "calc_raster can be only called after finish_init!" ids = sim.rasters[raster] idsvec = reshape(ids, length(ids)) onprocess = Vector{Tuple{Int64, f_returns}}() foreach(T -> prepare_read!(sim, Vector{DataType}(), T), accessible) for (idx, id) = enumerate(ids) if process_nr(id) == mpi.rank push!(onprocess, (idx, f(id))) end end foreach(T -> finish_read!(sim, T), accessible) all = join(onprocess) resvec = zeros(f_returns, length(idsvec)) for (idx, val) in all resvec[idx] = val end _log_info(sim, "<End> calc_raster!") reshape(resvec, size(sim.rasters[raster])) end calc_raster(f, sim::Simulation, raster::Symbol, f_returns::DataType, accessible::Vector{DataType}) = calc_raster(sim, raster, f, f_returns, accessible) """ calc_rasterstate(sim, raster::Symbol, f, f_returns::DataType = Nothing, ::Type{T} = Nothing) Combined calc_raster with agentstate for the cells of the raster. Calculate values for the raster `raster` by applying `f` to the state of each cell. `f_returns` must be the type returned by the function f. There must be an implementation of the zero function for this type, and zero(returntype) + f(state) must be equal to f(state). In the event that all cells in the raster returns the same `DataType`, `f_returns` can be set to `Nothing`, in which case `f_returns` is automatically derived. `T` can be set to `Nothing`, this decreases the performance, but is necessary in the unusual case that a raster contains different types of agents (in this case `agentstate_flexible` is used instead of `agentstate`). Returns a n-dimensional array (with the same dimensions as `raster`) with those values. Example: Instead of ```@example calc_raster(sim, :raster, id -> agentstate(sim, id, Cell).active, Bool, [ Cell ]) ``` it also possible to just write ```@example calc_rasterstate(sim, :raster, c -> c.active, Bool, Cell) ``` Can be only called after [`finish_init!`](@ref). See also [`add_raster!`](@ref), [`calc_rasterstate`](@ref) and [`rastervalues`](@ref) """ function calc_rasterstate(sim, raster::Symbol, f, f_returns::DataType = Nothing, ::Type{T} = Nothing) where T with_logger(sim) do @info "<Begin> calc_rasterstate" raster end @assert sim.initialized """ calc_rasterstate can be only called after finish_init!""" ids = sim.rasters[raster] idsvec = reshape(ids, length(ids)) disable_transition_checks(true) if f_returns == Nothing f_returns = typeof(f(agentstate_flexible(sim, idsvec[1]))) end onprocess = Vector{Tuple{Int64, f_returns}}() if T != Nothing for (idx, id) = enumerate(ids) if Vahana.process_nr(id) == mpi.rank push!(onprocess, (idx, f(agentstate(sim, id, T)))) end end else for (idx, id) = enumerate(ids) if Vahana.process_nr(id) == mpi.rank push!(onprocess, (idx, f(agentstate_flexible(sim, id)))) end end end disable_transition_checks(false) all = join(onprocess) resvec = zeros(f_returns, length(idsvec)) for (idx, val) in all resvec[idx] = val end _log_info(sim, "<End> calc_rasterstate") reshape(resvec, size(sim.rasters[raster])) end """ rastervalues(sim, raster::Symbol, fieldname::Symbol) Creates a matrix with the same dims as the raster `raster` with the values of the field `fieldnames`. All cells of the raster must have the same type, and also a `zeros` function must exist for the type of `fieldnames`. Example: Instead of ```@example calc_rasterstate(sim, :raster, c -> c.active, Bool, Cell) ``` it also possible to just write ```@example rastervalues(sim, :raster, :active) ``` Can be only called after [`finish_init!`](@ref). See also [`add_raster!`](@ref) and [`calc_rasterstate`](@ref) """ function rastervalues(sim, raster::Symbol, field::Symbol) with_logger(sim) do @info "<Begin> calc_rasterstate" raster end @assert sim.initialized """ rastervalues can be only called after finish_init!""" ids = sim.rasters[raster] idsvec = reshape(ids, length(ids)) T = type_of(sim, ids[1,1]) f_returns = fieldtype(T, field) onprocess = Vector{Tuple{Int64, f_returns}}() disable_transition_checks(true) for (idx, id) = enumerate(ids) if Vahana.process_nr(id) == mpi.rank push!(onprocess, (idx, getproperty(agentstate(sim, id, T), field))) end end disable_transition_checks(false) all = join(onprocess) resvec = zeros(f_returns, length(idsvec)) for (idx, val) in all resvec[idx] = val end _log_info(sim, "<End> calc_rasterstate") reshape(resvec, size(sim.rasters[raster])) end ### ### """ cellid(sim, name::Symbol, pos) Returns the ID of the agent (node) from the raster `name` at the position `pos`. `pos` must be of type CartesianIndex or a Dims{N}. See also [`add_raster!`](@ref), [`move_to!`](@ref), [`add_edge!`](@ref) and [`agentstate`](@ref) """ function cellid(sim, name::Symbol, pos) sim.rasters[name][CartesianIndex(pos)] end """ move_to!(sim, name::Symbol, id::AgentID, pos, edge_from_raster, edge_to_raster; [distance = 0, metric = :chebyshev, periodic = true]) Creates up to two edges of type between the agent with ID `id` and the cell from the raster `name` at the position `pos`. `pos` must be of type CartesianIndex or a Dims{N}. `edge_from_raster` is the edge that will be added with the cell as source node and the agent as target node. `edge_from_raster` can be `nothing`, in this case no edge will be added with the agent as target node. `edge_to_raster` is the edge that will be added with the agent as source node and the cell as target node. `edge_to_raster` can be `nothing`, in this case no edge will be added with the agent as source node. Using the keyword arguments, it is possible to add additional edges to the surroundings of the cell at position `pos` in the same raster, i.e. to all cells at distance `distance` under metric `metric`, where valid metrics are :chebyshev, :euclidean and :manhatten`. And the keyword `periodic` determines whether all dimensions are cyclic. See also [`add_raster!`](@ref) and [`connect_raster_neighbors!`](@ref) """ function move_to!(sim, name::Symbol, id::AgentID, pos, edge_from_raster, edge_to_raster; distance = 0, metric::Symbol = :chebyshev, periodic = true) # before a simulation is initialized, the raster existing # only on the root if mpi.isroot || sim.initialized raster = sim.rasters[name] dims = size(raster) pos = CartesianIndex(pos) if ! isnothing(edge_from_raster) add_edge!(sim, raster[pos], id, edge_from_raster) end if ! isnothing(edge_to_raster) add_edge!(sim, id, raster[pos], edge_to_raster) end if distance >= 1 for s in stencil(metric, ndims(raster), distance) shifted = _checkpos(CartesianIndex(pos) + s, dims, periodic) if ! isnothing(shifted) if ! isnothing(edge_from_raster) add_edge!(sim, raster[shifted], id, edge_from_raster) end if ! isnothing(edge_to_raster) add_edge!(sim, id, raster[shifted], edge_to_raster) end end end end end end function _checkpos(pos::CartesianIndex, dims, periodic) cpos = Array{Int64}(undef, length(dims)) outofbounds = false for i in 1:length(dims) if pos[i] < 1 || pos[i] > dims[i] outofbounds = true cpos[i] = mod1(pos[i], dims[i]) else cpos[i] = pos[i] end end if ! outofbounds pos else if periodic CartesianIndex(cpos...) else nothing end end end """ random_pos(sim, raster::Symbol, weights::Matrix) Return a CartesianIndex with random position coordinates, weighted by a probability matrix `weights`. The likelihood of selecting a particular cell/index is proportional to its corresponding value in the `weights` matrix. See also [`random_pos(sim, raster)`](@ref) and [`random_cell`](@ref) """ function random_pos(sim, raster::Symbol, weights::Array) dims = size(sim.rasters[raster]) @assert dims == size(weights) """ `weights` must have the same dimension as the raster :$(raster) """ W = Weights(vec(weights)) positions = CartesianIndices(dims) |> collect positions[sample(eachindex(positions), W)] end """ random_pos(sim, raster::Symbol) Return a CartesianIndex with random position coordinates. The returned index is sampled from the rasters indizies where each index has the same probability. See also [`random_pos(sim, raster, weights)`](@ref) and [`random_cell`](@ref) """ function random_pos(sim, raster::Symbol) dims = size(sim.rasters[raster]) positions = CartesianIndices(dims) |> collect positions[sample(eachindex(positions))] end """ random_cell(sim, raster::Symbol) Return a random cell id of the raster `raster` from the simulation `sim`. """ function random_cell(sim, name::Symbol) rand(sim.rasters[name]) end """ random_cell(sim, raster::Symbol, weights::Array) Return a random cell id of the raster `raster` from the simulation `sim`. The likelihood of selecting a particular cell is proportional to its corresponding value in the `weights` matrix. See also [`random_cell(sim, raster)`](@ref) and [`random_pos`](@ref) """ function random_cell(sim, raster::Symbol, weights::Array) W = Weights(vec(weights)) sample(vec(sim.rasters[raster]), W) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
29971
import Base.deepcopy import Logging.with_logger import Graphs.nv using DataFrames export create_model export create_simulation, finish_simulation!, copy_simulation export finish_init! export apply, apply! export param, set_param! export mapreduce # this is mutable, as we assign write -> read in finish_write! mutable struct AgentReadWrite{T} state::Vector{T} # This is a Vector of rows (AgentNr) that can be reused for the # next agents. It is redudant to died: died[e in reuseable] == true # Also this field is for immortal agents always just an empty vector reuseable::Vector{AgentNr} # This field is for immortal agents always just an empty vector died::Vector{Bool} end AgentReadWrite(T::DataType) = AgentReadWrite{T}(Vector{T}(), Vector{AgentNr}(), Vector{Bool}()) mutable struct MPIWindows # Access via shared memory shmstate::Union{MPI.Win, Nothing} shmdied::Union{MPI.Win, Nothing} # we are between prepare_read! and finished_mpi! prepared::Bool end MPIWindows() = MPIWindows(nothing, nothing, false) mutable struct AgentFields{T} read::AgentReadWrite{T} write::AgentReadWrite{T} # the state of all agents on the same node shmstate::Vector{Vector{T}} # the died flag of all agents on the same node shmdied::Vector{Vector{Bool}} # the state of agents on others nodes foreignstate::Dict{AgentID, T} # the died flag of agents on other nodes foreigndied::Dict{AgentID, Bool} nextid::AgentNr mpiwindows::MPIWindows # the last time (in number of transitions called) that the agentstate # was send due to the evaluation of an specific edgetype last_transmit::Dict{DataType, Int64} # the last time that the agenttype was writable last_change::Int64 end AgentFields(T::DataType) = AgentFields(AgentReadWrite(T), # read AgentReadWrite(T), # write [ Vector{T}() for _ in 1:mpi.shmsize ], #shmstate [ Vector{Bool}() for _ in 1:mpi.shmsize ], #shmdied Dict{AgentID, T}(), # foreignstate Dict{AgentID, Bool}(), # foreigndied AgentNr(1), #nextid MPIWindows(), Dict{DataType, Int64}(), #last_transmit 0) #last_change mutable struct EdgeFields{ET, EST} read::ET write::ET # when a edge is added with target-agents on a different process # it is stored here storage::EST # store which edges must be removed on other processes, # first UInt64 is the source, second UInt64 the target # the source is set to 0 if all edges of the target should be removed. # the vector index is the rank+1 of the target agent. removeedges::Vector{Vector{Tuple{AgentID, AgentID}}} # this tracks edges with source-agents on a different node, the # outer vector is the agenttype nr, the middle vector the process # index. It's possible that the sets are containing agents that # are died in the meantime, as edges/fromids can not be removed # from the sets, only the complete sets are resetted when the # edgetype is rewritten. accessible::Vector{Vector{Set{AgentID}}} # the last time (in number of transitions called) that the storage # (incl. removeedges) was send to the other processes (via edges_alltoall!) last_transmit::Int64 # the last time that the edgetype was writable last_change::Int64 # is set to true, when this field is in the read vector of a # transition function readable::Bool # here we track the agent on the target side of the edges, so # that in a case that an agent died, we can call # remove_edges! for the edges with the died agent at the source # position. We create a dict entry only for agents that are mortal. agentsontarget::Dict{AgentID, Vector{AgentID}} end """ create_model(types::ModelTypes, name::String) Creates a struct that is a subtype of the `Simulation` type and methods corresponding to the type information of `types` to the Julia session. The new structure is named `name`, and all methods are specific to this structure using Julia's multiple dispatch concept, so it is possible to have different models in the same Julia session (as long as `name` is different). Returns a [`Model`](@ref) that can be used in [`create_simulation`](@ref) to create a concrete simulation. """ function create_model(typeinfos::ModelTypes, name::String) simsymbol = Symbol(name) edgefields = [ Expr(Symbol("="), :($(Symbol(T))::EdgeFields{$(edgefield_type(T, typeinfos.edges_attr[T])), $(edgestorage_type(T, typeinfos.edges_attr[T]))}), :(EdgeFields($(edgefield_constructor(T, typeinfos.edges_attr[T])), $(edgefield_constructor(T, typeinfos.edges_attr[T])), $(edgestorage_type(T, typeinfos.edges_attr[T])()), Vector{Tuple{AgentID, AgentID}}[], [ [ Set{AgentID}() for _ in 1:mpi.size ] for _ in 1:MAX_TYPES ], 0,0,false, Dict{AgentID, Vector{AgentID}}()))) for T in typeinfos.edges_types ] nodefields = [ Expr(Symbol("="), :($(Symbol(T))::AgentFields{$T}), :(AgentFields($T))) for T in typeinfos.nodes_types ] fields = Expr(:block, :(model::Model), :(name::String), :(filename::String), :(overwrite_file::Bool), :(params::P), :(globals::G), :(globals_last_change::Int64), :(typeinfos::ModelTypes), :(rasters::Dict{Symbol, Array}), :(initialized::Bool), :(intransition::Bool), # after a transition this is the next transition nr # in a transtion this is the current transtion nr :(num_transitions::Int64), :(logger::Log), :(h5file::Union{HDF5.File, Nothing}), :(external::Dict{Any, Any}), edgefields..., nodefields...) # the true in the second arg makes the struct mutable strukt = Expr(:struct, true, :($simsymbol{P, G} <: Simulation), fields) kwdefqn = QuoteNode(Symbol("@kwdef")) # nothing in third argument is for the expected LineNumberNode # see also https://github.com/JuliaLang/julia/issues/43976 Expr(:macrocall, Expr(Symbol("."), :Base, kwdefqn), nothing, strukt) |> eval immortal = [ :Immortal in typeinfos.nodes_attr[T][:hints] for T in typeinfos.nodes_types ] # Construct all type specific functions for the edge typeinfos for T in typeinfos.edges_types construct_edge_methods(T, typeinfos, simsymbol, immortal) end # Construct all type specific functions for the agent typeinfos for T in typeinfos.nodes_types construct_agent_methods(T, typeinfos, simsymbol) end construct_prettyprinting_methods(simsymbol) ### Parameters paramfields = [ Expr(Symbol("="), :($(param.name)::$(typeof(param.default_value))), :($(param.default_value))) for param in typeinfos.params ] # the true in the second arg makes the struct mutable paramstrukt = Expr(:struct, true, :($(Symbol("Params_" * String(simsymbol)))), Expr(:block, paramfields...)) Expr(:macrocall, Expr(Symbol("."), :Base, kwdefqn), nothing, paramstrukt) |> eval ### Globals globalfields = [ Expr(Symbol("="), :($(g.name)::$(typeof(g.init_value))), :($(g.init_value))) for g in typeinfos.globals ] # the true in the second arg makes the struct mutable globalstrukt = Expr(:struct, true, :($(Symbol("Globals_" * String(simsymbol)))), Expr(:block, globalfields...)) Expr(:macrocall, Expr(Symbol("."), :Base, kwdefqn), nothing, globalstrukt) |> eval Model(typeinfos, name, immortal) end num_agenttypes(sim) = length(sim.typeinfos.nodes_types) """ create_simulation(model::Model, [params = nothing, globals = nothing; name = model.name, filename = name, overwrite_file = true, logging = false, debug = false]) Creates and return a new simulation object, which stores the complete state of a simulation. `model` is an `Model` instance created by [`create_model`](@ref). `params` must be a struct (or `nothing`) that contains all parameters of a simulation. Parameter values are constant in a simulation run and can be retrieved via the [`param`](@ref) function. `globals` must be a mutable struct (or `nothing`). The values of these fields are accessible for all agents via the [`get_global`](@ref) function. The values can be changed by calling [`set_global!`](@ref) or [`push_global!`](@ref). The optional keyword argument `name` is used as meta-information about the simulation and has no effect on the dynamics, since `name` is not accessible in the transition functions. If `name` is not given, the name of the model is used instead. The optional `filename` keyword is a string that will be used as the name of the hdf5 file when a simulation or a part of it is written via e.g. [`write_snapshot`](@ref). The file is created when a `write...` function is called for the first time, and it is created in an `h5` subfolder. By default an existing file with the same `filename` will be overwritten, but this behavior can be disabled with the `overwrite_file` keyword, in which case the files will be numbered. If `filename` is not provided, the `name` argument is used instead. The keywords `logging` is a boolean flag that enables an automatical log file. The log file contains information such as the time spent in different functions. When also `debug` is set to true, the log file contains more details and the stream will be flushed after each write. As with the hdf5 files, overwrite_file `the` keyword determines whether the log files are overwritten or numbered. The numbering is set independently from the numbering of the hdf5 files. The simulation starts in an uninitialized state. After adding the agents and edges for the initial state, it is necessary to call [`finish_init!`](@ref) before applying a transition function for the first time. See also [`create_model`](@ref), [`param`](@ref), [`get_global`](@ref), [`set_global!`](@ref), [`push_global!`](@ref) and [`finish_init!`](@ref) """ function create_simulation(model::Model, params::P = nothing, globals::G = nothing; name = model.name, filename = name, overwrite_file = true, logging = false, debug = false) where {P, G} simsymbol = Symbol(model.name) # Since v1.1 params and globals should be added to the model # via register_param! and register_global! # But to be backward compatible, it's still possible to # use own Param and Global Structs pstrukt = eval(Symbol("Params_" * model.name)) @assert(params === nothing || fieldcount(pstrukt) == 0, """\n You can not use `register_param!` and the `param` argument of `create_simulation` at the same time. """) params = if fieldcount(pstrukt) == 0 params else deepcopy(pstrukt()) end gstrukt = eval(Symbol("Globals_" * model.name)) @assert(globals === nothing || fieldcount(gstrukt) == 0, """\n You can not use `register_globals!` and the `global` argument of `create_simulation` at the same time. """) globals = if fieldcount(gstrukt) == 0 globals else deepcopy(gstrukt()) end sim::Simulation = @eval $(Symbol(model.name))( model = $model, name = $name, filename = $filename, overwrite_file = $overwrite_file, params = $params, globals = $globals, globals_last_change = 0, typeinfos = $(model.types), rasters = Dict{Symbol, Array}(), initialized = false, intransition = false, num_transitions = 0, logger = create_logger($name, $logging, $debug, $overwrite_file), h5file = nothing, # we need the sim instance to create the h5file # allows the client to attach arbitrary information, that will # be removed in finish_simulation. external = Dict{Any, Any}() ) for T in sim.typeinfos.edges_types init_field!(sim, T) init_storage!(sim, T) end for T in sim.typeinfos.nodes_types init_field!(sim, T) end global show_second_edge_warning = true with_logger(sim) do @info "New simulation created" name params date=Dates.now() starttime=time() end sim end # pipeable versions create_model(name::String) = types -> create_model(types, name) create_simulation(params::P = nothing, globals::G = nothing; kwargs...) where {P, G} = model -> create_simulation(model, params, globals; kwargs...) function _create_equal_partition(part_dict, ids) # Partitions a sequence into `n` nearly equally sized blocks. function partition(seq, n::Int) s, r = divrem(length(seq), n) [ ((i - 1) * s + 1 + min(i - 1, r)) : (i * s + min(i, r)) for i in 1:n ] end ps = partition(1:length(ids), mpi.size) for (i, range) in enumerate(ps) for idx in range part_dict[ids[idx]] = i end end end """ finish_init!(sim::Simulation; [distribute = true, partition::Dict{AgentID, ProcessID}, partition_algo = :Metis]) Finish the initialization phase of the simulation. `partition` is an option keyword and allows to specify an assignment of the agents to the individual MPI ranks. The dictonary must contain all agentids created on the rank as key, the corresponding value is the rank on which the agent "lives" after `finish_init!`. In the case that no `partition` is given and `distribute` is set to true, the Graph will be partitioned with the given `partition_algo`. Currently two algorithms are supported: - :Metis uses the Metis library for the graph partitioning. - :EqualAgentNumbers just ensures that per agent type more or less the same number of agents are distributed to each process. `finish_init!` must be called before applying a transition function. !!! info When a simulation is run on multiple PEs, per default the graph found on rank 0 will be partitioned using Metis, and distributed to the different ranks. Which means that it's allowed to run the initialization phase on all ranks (there is no need for a mpi.isroot check), but then all added agents and edges on other ranks then 0 will be discarded. If this is not intended `distribute` must be set to false. See also [`register_agenttype!`](@ref), [`register_edgetype!`](@ref), [`apply!`](@ref) and [`finish_simulation!`](@ref) """ function finish_init!(sim; partition = Dict{AgentID, ProcessID}(), return_idmapping = false, partition_algo = :Metis, distribute = true) @assert ! sim.initialized "You can not call finish_init! twice for the same simulation" _log_info(sim, "<Begin> finish_init!") foreach(finish_write!(sim), keys(sim.typeinfos.nodes_type2id)) foreach(finish_write!(sim), sim.typeinfos.edges_types) if distribute idmapping = if mpi.size > 1 # we are creating an own partition only when no partition is given if length(partition) == 0 && mpi.isroot if partition_algo == :Metis _log_info(sim, ">>> Partitioning the Simulation with Metis") vsg = _log_time(sim, "create simple graph", true) do vahanasimplegraph(sim; show_ignorefrom_warning = false) end part = _log_time(sim, "call Metis.partition", true) do # it's possible to load the graph after the initialization # in this case we have nothing to partition here. if Graphs.nv(vsg) > 0 Metis.partition(vsg, mpi.size; alg = :RECURSIVE) end end _log_debug(sim, "<Begin> remap ids") for (i, p) in enumerate(part) partition[vsg.g2v[i]] = p end _log_debug(sim, "<End> remap ids") elseif partition_algo == :EqualAgentNumbers _log_info(sim, ">>> Partitioning the Simulation / equal number of nodes per type") _log_debug(sim, "<Begin> create equal partitions") for T in sim.typeinfos.nodes_types ids = map(i -> agent_id(sim, AgentNr(i), T), keys(readstate(sim, T))) _create_equal_partition(partition, ids) end _log_debug(sim, "<End> create equal partitions") else @error "the partition_algo given is unknown" end end if mpi.isroot _log_info(sim, ">>> Distributing the Simulation") end _log_time(sim, "distribute!") do distribute!(sim, partition) end else if return_idmapping idmapping = Dict{AgentID, AgentID}() for T in sim.typeinfos.nodes_types for id in keys(readstate(sim, T)) aid = agent_id(sim, AgentNr(id), T) idmapping[aid] = aid end end idmapping else nothing end end foreach(finish_write!(sim), sim.typeinfos.nodes_types) foreach(finish_write!(sim), sim.typeinfos.edges_types) end sim.initialized = true sim.num_transitions = 1 _log_info(sim, "<End> finish_init!") distribute && return_idmapping ? idmapping : nothing end # this function is not exported and should be only used for unit tests function updateids(idmap, oldids) map(oldids) do id idmap[Vahana.remove_process(id)] end end """ copy_simulation(sim) Create an independent copy of the simulation `sim`. Since part of the memory is allocated via MPI, you should not use deepcopy. Also, the copy is detached from any output or logger file so that not sim and copy tried to write to the same file(s). If these are needed, you can create these files for the copy by calling [`create_h5file!`](@ref) and/or [`create_logger!`](@ref) and assigning the results to the h5file/logging field of the returned simulation. Returns the copy of the simulation. """ function copy_simulation(sim) copy = deepcopy(sim) # we also copied the MPI windows, so the copy points to the same # memory as the original. So this needs to be fixed. foreach(T -> copy_shm!(copy, T), sim.typeinfos.nodes_types) copy.h5file = nothing # disable logging for the copy copy.logger = create_logger(sim.name, false, false, sim.overwrite_file) copy end function _free_memory!(sim) for T in sim.typeinfos.nodes_types shmstatewin = getproperty(sim, Symbol(T)).mpiwindows.shmstate if ! isnothing(shmstatewin) MPI.free(shmstatewin) end shmdiedwin = getproperty(sim, Symbol(T)).mpiwindows.shmdied if ! isnothing(shmdiedwin) MPI.free(shmdiedwin) end init_field!(sim, T) end for T in sim.typeinfos.edges_types empty!(edgeread(sim, T)) empty!(edgewrite(sim, T)) end empty!(sim.rasters) end """ finish_simulation!(sim) Remove all agents/edges and rasters from the simulation to minimize the memory footprint. The `parameters` and `globals` of the simulation are still available, the remaining state of the simulation is undefined. Returns the globals of the simulation. """ function finish_simulation!(sim) _log_info(sim, "<Begin> finish_simulation!") _free_memory!(sim) close_h5file!(sim) empty!(sim.external) _log_info(sim, "<End> finish_simulation!") if sim.logger.file !== nothing close(sim.logger.file) end MPI.Barrier(MPI.COMM_WORLD) sim.globals end ######################################## Transition """ param(sim::Simulation, name) Returns the value of the field `name` of the `params` struct from the Simulation constructor. See also [`create_model`](@ref) """ param(sim, name) = getfield(sim.params, name) """ set_param!(sim::Simulation, param::Symbol, value) Assign the specified `value` to the `param` parameter. This operation is only allowed prior to calling the `finish_init!` method. A pipeable version of `set_param!` is also available. """ function set_param!(sim::Simulation, param::Symbol, value) @assert !sim.initialized """\n You can call `set_param!` only before `finish_init!`. For values that change while the simulation is running, register them as globals and use `set_global!` instead. """ setfield!(sim.params, param, value) end function set_param!(param::Symbol, value) sim -> begin set_param!(sim, param, value) sim end end function maybeadd(coll, id, agent) # the coll[id] writes into another container then # we use for the iteration @inbounds coll[id] = agent nothing end function maybeadd(_, ::AgentNr, ::Nothing) nothing end prepare_write!(sim, read, add_existing) = t -> prepare_write!(sim, read, t in add_existing, t) finish_write!(sim) = t -> finish_write!(sim, t) isiterable(v) = applicable(iterate, v) """ apply!(sim, func, call, read, write; [add_existing, with_edge]) Apply the transition function `func` to the simulation state. `call` must be a single agent type or a collection of agent types, likewise `read` and `write` must be a single agent/edge type or a collection of agent/edge types. `call` determines for which agent types the transition function `func` is called. Within the transition function, an agent has access to the state of agents (including its own state) and to edges only if their types are in the `read` collection. Accordingly, the agent can change its own state and/or create new agents or edges only if their types are in the `write` collection. Assume that T is an agent type that is in `call`. In case T is also in `read`, the transition function must have the following signature: `transition_function(agent::T, id, sim)`, where the type declaration of agent is optional if `call` contains only a single type. If T is not in `read`, it must have the signature `transition_function(::Val{T}, id::AgentID, sim::Simulation)`. If T is in `write`, the transition function must return either an agent of type T or `nothing`. If `nothing` is returned, the agent will be removed from the simulation, otherwise the agent with id `id` will get the returned state after the transition function was called for all agents. When an edge state type is in `write`, the current edges of that type are removed from the simulation. If you want to keep the existing edges for a specific type, you can add this type to the optional `add_existing` collection. Similarly, agent types that are in the `write` but not in the `call` argument can be part of the `add_existing` collection, so that the existing agents of this type are retained and can only be added. For agent types in `call`, however, this is achieved by returning their state in the transition function. With the keyword `with_edge` it is possible to restrict the set of agents for which the transition function is called to those agents who are on the target side of edges of the type `with_edge`. So ``` apply!(sim, AT, ET, []) do _, id, sim if has_edge(sim, id, ET) do_something end end ``` is equivalent to ``` apply!(sim, AT, ET, []; with_edge = ET) do _, id, sim do_something end ``` but saves all the `has_edge` checks. This `with_edge` keyword should only be set when a small subset of agents possess edges of this particular type, as performance will be adversely impacted in other scenarios. Also the keyword can only be used for edgetypes without the :SingleType hint. See also [`apply`](@ref) and the [Applying Transition Function section in the tutorial](tutorial1.md#Applying-Transition-Functions) """ function apply!(sim::Simulation, func::Function, call, read, write; add_existing = [], with_edge = nothing) @assert sim.initialized "You must call finish_init! before apply!" @assert with_edge === nothing || !has_hint(sim, with_edge, :SingleType) """ The `with_edge` keyword can only be used for edgetypes without the :SingleType hint. """ with_logger(sim) do @info "<Begin> apply!" func transition=sim.num_transitions+1 end # must be set to true before prepare_read! (as this calls add_edge!) sim.intransition = true # Do allow also just use a single type as argument, we check this # here and convert the single type to a vector if necessary call = applicable(iterate, call) ? call : [ call ] read = applicable(iterate, read) ? read : [ read ] write = applicable(iterate, write) ? write : [ write ] add_existing = applicable(iterate, add_existing) ? add_existing : [ add_existing ] for c in call @assert ! (c in add_existing) "$c can not be element of `add_existing`" end for ae in add_existing @assert ae in write "$ae is in `add_existing` but not in `write`" end readableET = filter(w -> w in sim.typeinfos.edges_types, read) foreach(T -> prepare_read!(sim, read, T), readableET) readableAT = filter(w -> w in sim.typeinfos.nodes_types, read) foreach(T -> prepare_read!(sim, read, T), readableAT) writeableAT = filter(w -> w in sim.typeinfos.nodes_types, write) writeableET = filter(w -> w in sim.typeinfos.edges_types, write) for T in writeableET if ! (T in add_existing) empty!(agentsontarget(sim, T)) end end foreach(prepare_write!(sim, read, [call; add_existing]), write) MPI.Barrier(MPI.COMM_WORLD) for C in call with_logger(sim) do @debug "<Begin> tf_call!" agenttype=C transition=sim.num_transitions+1 end wfunc = C in write ? transition_with_write! : transition_without_write! if with_edge === nothing rfunc = C in read ? transition_with_read! : transition_without_read! rfunc(wfunc, sim, func, C) else rfunc = C in read ? transition_with_read_with_edge! : transition_without_read_with_edge! rfunc(wfunc, sim, func, C, with_edge) end _log_debug(sim, "<End> tf_call!") end MPI.Barrier(MPI.COMM_WORLD) # we first remove all deleted edges, so that we can readd # new edges to an agent in the SingleEdge case. # This include the edges of died agents. foreach(ET -> transmit_remove_edges!(sim, ET), writeableET) # we must first call transmit_edges, so that they are exists # on the correct rank instead in @storage, where they are # not deleted in the case that an agent died foreach(ET -> transmit_edges!(sim, ET), writeableET) foreach(T -> finish_read!(sim, T), read) # then we can call finish_write! for the agents, as this will # remove the edges where are died agents are involved (and modifies # EdgeType_write). foreach(finish_write!(sim), writeableAT) foreach(finish_write!(sim), writeableET) sim.intransition = false # must be incremented after the transition, so that read only # functions like mapreduce tries to transfer the necessary states # only once sim.num_transitions = sim.num_transitions + 1 _log_info(sim, "<End> apply!") sim end function apply!(func::Function, sim::Simulation, call, read, write; kwargs ...) apply!(sim, func, call, read, write; kwargs ...) end """ apply!(sim, func, call, read, write; add_existing) Call [`apply!`](@ref) with a copy of the simulation so that the state of `sim` itself is not changed. Can be very useful during development, especially if Vahana is used in the REPL. However, for performance reasons, this function should not be used in the final code. Returns the copy of the simulation. See also [`apply!`](@ref) """ function apply(sim::Simulation, func::Function, call, read, write; kwargs ...) newsim = copy_simulation(sim) apply!(newsim, func, call, read, write; kwargs ...) newsim end function apply(func::Function, sim::Simulation, call, read, write; kwargs ...) apply(sim, func, call, read, write; kwargs ...) end ######################################## mapreduce import Base.mapreduce """ mapreduce(sim, f, op, ::Type{T}; [kwargs ...]) Calculate an aggregated value, based on the state of all agents or edges of type T. `f` is applied to all of these agents or edges and then `op` is used to reduce (aggregate) the values returned by `f`. mapreduce is calling Base.mapreduce, `f`, `op` and `kwargs` are passed directly to mapreduce, while `sim` and `T` are used to determine the iterator. """ function mapreduce(::Simulation, f, op, ::Type; kwargs...) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
4882
module Vahana using MPI, Metis, Requires export enable_asserts, suppress_warnings, detect_stateless export set_hdf5_path, set_log_path function __init__() @require Makie="ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a" begin include("optional/MakieSupport.jl") end @require GraphMakie="1ecd5474-83a3-4783-bb4f-06765db800d2" begin include("optional/GraphMakieSupport.jl") end @require DataFrames="a93c6f00-e57d-5684-b7b6-d8193f3e46c0" begin include("optional/DataFrames.jl") end mpiinit() end """ enable_asserts(enable::Bool) Vahana comes with some internal consistency checks, at the cost of run-time performance (e.g., in [`agentstate`](@ref) there are checks that the specified agenttype matches the agent's ID, which creates of course some overhead). The assertions that could degrade the run performance can be disabled by calling `enable_asssertions(false)`. The recommended approach is therefore to leave the assertions enabled during the development of the model, but to disable them when the model goes "into production", e.g. before the start of a parameter space exploration. """ function enable_asserts(enable::Bool) config.asserts_enabled = enable if enable @eval asserting() = true else @eval asserting() = false end end # making this a function results in code being invalidated and recompiled when # this gets changed asserting() = true macro mayassert(test) esc(:(if $(@__MODULE__).asserting() @assert($test) end)) end macro mayassert(test, msgs) esc(:(if $(@__MODULE__).asserting() @assert($test, $msgs) end)) end #################### Base.@kwdef mutable struct VahanaConfig quiet = false detect_stateless = false check_readable = true asserts_enabled = true compression_level = 3 # compression is implemented (see HDF5.jl/new_dset), but causes a lot of # strange problem in combination with HDF5 Parallel. So this is disabled # by default. Activate this only after careful testing (e.g. # run the run_mpitests script in Vahana's test folder. no_parallel_compression = true hdf5_path = nothing log_path = nothing end const config = VahanaConfig() """ suppress_warnings(suppress::Bool) In some cases Vahana print some hints or warnings to the stdout. This can be suppressed by calling the `suppress_warnings(true)` function after importing Vahana. """ suppress_warnings = (suppress::Bool) -> config.quiet = suppress #################### """ detect_stateless(detect::Bool) Per default, Vahana expects that the :Stateless hint is set manually. This design decision was made so as not to confuse users, since then, for example, the [`edges`](@ref) is not available. This behaviour can be customized by calling `detect_stateless` before calling [`register_edgetype!`](@ref). """ detect_stateless = (detect::Bool) -> config.detect_stateless = detect """ set_compression(level::Int, parallel_hdf5_compression = false) Set the compression level of HDF5 files. However, by default, HDF5 datasets are not compressed when the used HDF5 library supports Parallel HDF5 due to encountered issues. While the necessary code to compress datasets in the Parallel HDF5 case is implemented, its activation via the parallel_hdf5_compression argument is considered experimental and should be used with awareness of potential risks and the specificities of the HDF5 implementation in use. """ function set_compression(level::Int, parallel_hdf5_compression = false) config.compression_level = level config.no_parallel_compression = ! parallel_hdf5_compression end """ set_hdf5_path(path::String) Specify the path that is used to save and read the hdf5 files. If the directory does not exist, it is created the first time a file is written or tried to read. See also [`create_h5file!`](@ref) """ set_hdf5_path = (path::String) -> config.hdf5_path = path """ set_log_path(path::String) Specify the path that is used to save the log files. If the directory does not exist, it is created the first time a log file is written. Must be called before [`create_simulation`](@ref). If this is not done, the log files are written to a subfolder `log` of the current working directory. """ set_log_path = (path::String) -> config.log_path = path ######################################## include all other files abstract type Simulation end include("Helpers.jl") # MPIInit must be included before Agent/Edge, and Agent/Edge before MPI include("MPIinit.jl") include("Agent.jl") include("Edge.jl") include("MPI.jl") include("ModelTypes.jl") include("HDF5.jl") include("EdgeMethods.jl") include("AgentMethods.jl") include("Simulation.jl") include("Global.jl") include("EdgeIterator.jl") include("REPL.jl") include("Raster.jl") include("GraphsSupport.jl") include("Logging.jl") end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
5966
import DataFrames: DataFrame, subset!, nrow export DataFrame, GlobalsDataFrame show_parallel_dataframe_usage_warning = true """ DataFrame(sim::Simulation, T::DataType; types = false, localnr = false) Creates a DataFrame with the current state of agents or edges of type `T`. By default, the ID columns show the complete [`AgentID`](@ref). for readability (and the use of [`show_agent`](@ref)) it may be useful to show only the lowest 36 bits, which gives a much more readable value, by setting the `localnr` argument to true. Since for edges the type information of the source and target agents is no longer available in this case, the `types` argument can be used to create additional columns containing the types of these agents. !!! info `DataFrame` is only available when the DataFrame.jl package is imported by the model implementation. !!! warning In parallel simulations, the `DataFrame` method converts only the local graph partition (agents or edges) residing on the current MPI rank. It does not provide a global view of the entire distributed graph. To obtain a complete list of all agent states across all ranks, use the [`all_agents`](@ref) function. Similarly, for edges, use the [`all_edges`](@ref) function to get a global view of all edges in the distributed graph. """ function DataFrame(sim::Simulation, T::DataType; types = false, localnr = false) if localnr types = true end if mpi.active && mpi.rank == 0 && show_parallel_dataframe_usage_warning == true && config.quiet == false print(""" In a parallel simulation, the `DataFrame(sim...)` function call returns only the agents or edges corresponding to the local graph partition for each rank. This warning is displayed once per Julia session and can be suppressed by invoking `suppress_warnings(true)` after importing the Vahana package. """) global show_parallel_dataframe_usage_warning = false end df = DataFrame() tinfos = sim.typeinfos if T in tinfos.nodes_types # Agents read = sim.initialized ? getproperty(sim, Symbol(T)).read : getproperty(sim, Symbol(T)).write tid = tinfos.nodes_type2id[T] df.id = map(nr -> agent_id(tid, agent_nr(AgentID(nr))), 1:length(read.state)) if fieldcount(T) > 0 df = hcat(df, DataFrame(read.state)) end if ! has_hint(sim, T, :Immortal, :Agent) subset!(df, :id => id -> .! read.died[agent_nr.(id)]) end if localnr df.id = map(agent_nr, df.id) end elseif T in sim.typeinfos.edges_types # Networks if sim.initialized prepare_read!(sim, [], T) end read = sim.initialized ? getproperty(sim, Symbol(T)).read : getproperty(sim, Symbol(T)).write # First check the Num/HasNeighborsOnly case if has_hint(sim, T, :IgnoreFrom) && has_hint(sim, T, :Stateless) df.to = collect(keys(read)) if has_hint(sim, T, :SingleEdge) df.has_edge = map(>(0), values(read)) subset!(df, :has_edge => b -> b) else df.num_edges = collect(values(read)) subset!(df, :num_edges => n -> n .> 0) end else # for the remaining hints we can use the edges iterator edges = collect(edges_iterator(sim, T, sim.initialized)) if ! has_hint(sim, T, :IgnoreFrom) if has_hint(sim, T, :Stateless) df.from = last.(edges) else df.from = map(e -> e.from, last.(edges)) end end df.to = first.(edges) if fieldcount(T) > 0 if ! has_hint(sim, T, :IgnoreFrom) states = map(e -> e.state, last.(edges)) df = hcat(df, DataFrame(states); makeunique = true) else df = hcat(df, DataFrame(last.(edges)); makeunique = true) end end end # when the SingleType hint is active, we must transform the ids # from the vector index to the correct agent id if has_hint(sim, T, :SingleType) totype = tinfos.edges_attr[T][:target] totypeid = tinfos.nodes_type2id[totype] df.to = map(id -> agent_id(totypeid, AgentNr(id)), df.to) # if ! has_hint(sim, T, :IgnoreFrom) # df.from = map(id -> agent_id(totypeid, AgentNr(id)), df.from) # end end if types if ! has_hint(sim, T, :IgnoreFrom) df.from_type = map(id -> tinfos.nodes_id2type[type_nr(id)], df.from) end df.to_type = map(id -> tinfos.nodes_id2type[type_nr(id)], df.to) end if localnr df.to = map(agent_nr, df.to) if ! has_hint(sim, T, :IgnoreFrom) df.from = map(agent_nr, df.from) end end if sim.initialized finish_read!(sim, T) end elseif T == typeof(sim.globals) for i in 1:fieldcount(T) field = getfield(sim.globals, i) if typeof(field) <: Vector if nrow(df) > 0 && nrow(df) != length(field) # @rootonly printstyled(""" # Length of :$(fieldname(T,i)) does not match the length of the other vectors, # so this field will not be added to the dataframe # """; color = :red) else df[!,fieldname(T,i)] = field end end end else printstyled("Type $T is neither an agent type nor an edge type\n"; color = :red) end df end GlobalsDataFrame(sim::Simulation) = DataFrame(sim, typeof(sim.globals))
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
11613
using GraphMakie, Makie, ColorSchemes, Colors import Graphs, Graphs.SimpleGraphs export create_graphplot, update_graphplot! export plot, axis, figure export clicked_agent Base.@kwdef mutable struct VahanaPlot sim::Simulation vg::VahanaGraph # a Vahanaplot encapsulate a GraphMakie plot # figure, axis, plot are all returned by the graphplot function figure axis plot # the next field are AgentIDs or Edges that where clicked # or that are actually hovered clicked_agent = Vector{AgentID}() # all the agenttypes where the position should be jittered pos_jitter = Dict{DataType, Float64}() # the offset of an agent is keeped constant, and stored in this dict jitter_val = Dict{AgentID, NTuple{2, Float64}}() # the function to call for updating the attributes of the graph update_fn = nothing end function _set_plot_attrs!(vp, idx, attrs, aid, T) for (k, v) in attrs # jitter node positions if k == :node_pos j = get(vp.pos_jitter, T, 0.0) jit = get!(vp.jitter_val, aid, ( rand() * j - j/2, rand() * j - j/2 )) v = [ v[1] + jit[1], v[2] + jit[2]] # convert name colors to color values elseif (k == :node_color || k == :edge_color) && (typeof(v) == String || typeof(v) == Symbol) v = parse(Colorant, v) # elseif k == :edge_transparency # # change the # k = :edge_color # v = HSLA(HSL(vp.plot[:edge_color][][idx]), v) end vp.plot[k][][idx] = v end end function _set_agents_plot_attrs!(f, vp) disable_transition_checks(true) changed_attrs = Set{Symbol}() for T in vp.vg.agenttypes for id in 1:length(readstate(vp.sim, T)) if length(readdied(vp.sim, T)) == 0 || readdied(vp.sim, T)[id] == false aid = agent_id(vp.sim, AgentNr(id), T) state = agentstate(vp.sim, aid, T) new::Dict{Symbol, Any} = f(state, aid, vp) _set_plot_attrs!(vp, vp.vg.v2g[aid], new, aid, T) foreach(a -> push!(changed_attrs, a), keys(new)) end end end for a in changed_attrs vp.plot[a][] = vp.plot[a][] end disable_transition_checks(false) nothing end function _set_edge_plot_properties!(f, vp) disable_transition_checks(true) changed_attrs = Set{Symbol}() for i in 1:Graphs.ne(vp.vg) tid = vp.vg.edgetypeidx[i] T = vp.sim.typeinfos.edges_types[tid] vedge = vp.vg.edges[i] from = vp.vg.g2v[vedge.src] to = vp.vg.g2v[vedge.dst] es = edges(vp.sim, to, T) if isnothing(es) # this can happen after a state change of sim continue end es = has_hint(vp.sim, T, :Stateless) ? T() : (filter(es) do edge edge.from == from end |> only).state new = f(es, from, to, vp) _set_plot_attrs!(vp, i, new, 0, T) foreach(a -> push!(changed_attrs, a), keys(new)) end for a in changed_attrs vp.plot[a][] = vp.plot[a][] end disable_transition_checks(false) nothing end import Base.display display(vp::VahanaPlot) = Base.display(vp.figure) obsrange(x) = 1:length(x) """ create_graphplot(sim; [agenttypes, edgestatetypes, update_fn, pos_jitter]) Creates an interactive Makie plot for the the simulation `sim`. The graph can be restricted to a subgraph with the given `agentypes` and `edgestatetypes`, see [`vahanagraph`](@ref) for details. To modify the properties of the edges and agents a `update_fn` can be defined. This function is called for each agent and edge (of types in agenttypes and edgestatetypes) and must have for agents the signature f(state, id, vp::VahanaPlot) and for edges f(state, source, target, vp::VahanaPlot) The arguments of this functions are `state` for the agent or edgestate, ID for the `id` of the agent called, `from` and `to` for the ID of the agents at the source or target of the edge. `vp` is the struct returned by `create_graphplot` and can be used to determine the id of last clicked agent by calling `clicked_agent(vp)`. The function must return a Dict with property names (as Symbol) as keys and their values as values. The following properties are available: `node_color`, `node_size`, `node_marker`, `nlabels`, `nlabels_align`, `nlabels_color`, `nlabels_distance`, `nlabels_offset`, `nlabels_textsize`, `edge_color`, `edge_width`, `elables`, `elables_align`, `elables_color`, `elables_distance`, `elables_offset`, `elables_rotation`, `elables_shift`, `elables_side`, `elabes_textsize`, `arrow_shift`, and `arrow_size`. Returns a VahanaPlot structure that can be used to access the Makie figure, axis and plot via call to the methods `figure`, `axis` and `plot` with this struct as (single) argument. !!! info `create_graphplot` is only available when the GraphMakie package and a Makie backend is imported by the client. !!! warning For the mouse click and hover interaction, the current state of the simulation used to construct the VahanaGraph is accessed. In the case that a transition function is called after the construction of the VahanaGraph, and this transition function modifies the structure of the Graph (add/removes nodes or edges), then this changes are not reflected by the current implementation and can cause errors. See also [`vahanagraph`](@ref) """ function create_graphplot(sim::Simulation; agenttypes::Vector{DataType} = sim.typeinfos.nodes_types, edgetypes::Vector{DataType} = sim.typeinfos.edges_types, update_fn = nothing, pos_jitter = nothing) vg = vahanagraph(sim; agenttypes = agenttypes, edgetypes = edgetypes, drop_multiedges = true) f, ax, p = _plot(vg) vp = VahanaPlot(sim = sim, vg = vg, figure = f, axis = ax, plot = p, update_fn = update_fn) if !isnothing(pos_jitter) vp.pos_jitter = Dict(pos_jitter) end function _node_click_action(idx, _, _) vp.clicked_agent = vg.g2v[idx] update_graphplot!(vp) end register_interaction!(vp.axis, :nodeclick, NodeClickHandler(_node_click_action)) # if step_fn !== nothing # f[2, 1] = buttongrid = GridLayout(tellwidth = false) # buttongrid[1, 1] = resetbutton = Button(f, label="Reset") # on(resetbutton.clicks) do _ # @info "reset" # finish_simulation!(vp.sim) # vp.sim = copy_simulation(vp.original) # vp.vg = vahanagraph(vp.sim; agenttypes = agenttypes, edgetypes = edgetypes) # update_graphplot!(vp) # end # buttongrid[1, 2] = stepbutton = Button(f, label="Step") # on(stepbutton.clicks) do _ # step_fn(vp.sim) # vp.vg = vahanagraph(vp.sim; agenttypes = agenttypes, edgetypes = edgetypes) # update_graphplot!(vp) # end # end if update_fn === nothing && pos_jitter === nothing hidedecorations!(vp.axis) end update_graphplot!(vp) end function update_graphplot!(vp::VahanaPlot) if ! isnothing(vp.update_fn) _set_agents_plot_attrs!(vp.update_fn, vp) _set_edge_plot_properties!(vp.update_fn, vp) end autolimits!(vp.axis) vp end figure(vp::VahanaPlot) = vp.figure axis(vp::VahanaPlot) = vp.axis plot(vp::VahanaPlot) = vp.plot clicked_agent(vp::VahanaPlot) = vp.clicked_agent function _agenttostring(vg, idx) id = vg.g2v[idx] disable_transition_checks(true) as = agentstate_flexible(vg.sim, id) disable_transition_checks(false) str = " $(typeof(as)) (Nr: $(Vahana.agent_nr(id)))" if nfields(as) > 0 fnames = as |> typeof |> fieldnames for f in fnames str *= "\n $f=$(getfield(as, f))" end end str end function _edgetostring(vg, idx) # from and to are vahanagraph indicies vedge = vg.edges[idx] from = vg.g2v[vedge.src] to = vg.g2v[vedge.dst] totype = vg.edgetypes[vg.edgetypeidx[idx]] if :Stateless in vg.sim.typeinfos.edges_attr[totype][:hints] return string(totype) end disable_transition_checks(true) es = edges(vg.sim, to, totype) disable_transition_checks(false) if ! isnothing(es) es = (filter(es) do edge edge.from == from end |> first).state str = " $(typeof(es))" if nfields(es) > 0 fnames = es |> typeof |> fieldnames for f in fnames str *= "\n $f=$(getfield(es, f))" end end str else "" end end function _plot(vg::VahanaGraph) edgecolors = ColorSchemes.glasbey_bw_minc_20_maxl_70_n256 agentcolors = ColorSchemes.glasbey_bw_minc_20_hue_150_280_n256 rv = 1:nv(vg) re = 1:ne(vg) p = graphplot(vg, node_color = [ agentcolors[type_nr(vg.g2v[i])] for i in rv ], node_size = [ 12 for _ in rv ], node_marker = [ :circle for _ in rv ], # node_attr = [ Dict{Symbol, Observable}() for _ in rv ], nlabels = [ "" for _ in rv ], nlabels_align = [ (:left, :bottom) for _ in rv ], nlabels_color = [ :black for _ in rv ], nlabels_distance = [ 0.0 for _ in rv ], nlabels_offset = [ Makie.Point(0, 0) for _ in rv ], nlabels_textsize = [ 14 for _ in rv ], edge_color = [ edgecolors[vg.edgetypeidx[i]] for i in re ], edge_width = [ 1.0 for _ in re ], elabels = [ "" for _ in re ], elabels_align = [ (:left, :bottom) for _ in re ], elabels_color = [ :black for _ in re ], elabels_distance = [ 0.0 for _ in re ], elabels_offset = [ Makie.Point(0, 0) for _ in re ], elabels_rotation = Vector{Any}([ Makie.automatic for _ in re ]), elabels_shift = [ 0.5 for _ in re ], elabels_side = [ :left for _ in re ], elabels_textsize = [ 14 for _ in re ], arrow_shift = [ 0.5 for _ in re ], #arrow_show = [ true for _ in re ], ! supported by Makie arrow_size = [ 12.0 for _ in re ] ) # hidedecorations!(p.axis) hidespines!(p.axis) function _node_hover_action(state, idx, _, axis) p.plot.nlabels[][idx] = state ? string(_agenttostring(vg, idx)) : "" p.plot.nlabels[] = p.plot.nlabels[] end register_interaction!(p.axis, :nhover, NodeHoverHandler(_node_hover_action)) function _edge_hover_action(state, idx, _, axis) p.plot.elabels[][idx] = state ? string(_edgetostring(vg, idx)) : "" p.plot.elabels[] = p.plot.elabels[] end register_interaction!(p.axis, :ehover, EdgeHoverHandler(_edge_hover_action)) p.figure, p.axis, p.plot end function nodestate(vg::VahanaGraph, idx::Int64) disable_transition_checks(true) s = agentstate_flexible(vg.sim, vg.g2v[idx]) disable_transition_checks(false) s end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
773
using Makie export plot_globals """ plot_globals(sim, names::Vector{Symbol}) Creates a Makie lineplot with one line for each global in `names`, wherby those global values must be Vectors (or Iterable). Returns figure, axis, plots. `plots` is a vector of Plots, which one plot for element of `names`. !!! info `plot_globals` is only available when a Makie backend is imported by the client. See also [`push_global!`](@ref), [`get_global`](@ref) """ function plot_globals(sim, names::Vector{Symbol}) f = Figure() ax = Axis(f[1,1]) plots = Dict{Symbol, Lines}() for name in names vals = get_global(sim, name) plots[name] = lines!(ax, 1:length(vals), vals, label = String(name)) end axislegend() f, ax, plots end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
3763
using Test, Vahana detect_stateless(true) struct ComputeAgent end struct ConstructedAgent end struct Connection end function test_model(model) sim = create_simulation(model) computeid = add_agent!(sim, ComputeAgent()) constructedid = add_agent!(sim, ConstructedAgent()) add_edge!(sim, constructedid, computeid, Connection()) finish_init!(sim) @test length(Vahana.agentsontarget(sim, Connection)[constructedid]) == 1 # as we have Connection in add_existing, the agentsontarget dict # should be unchanged apply!(sim, ComputeAgent, [], Connection; add_existing = Connection) do _, id, sim end @test length(Vahana.agentsontarget(sim, Connection)[constructedid]) == 1 # add_existing is empty and we have added ConstructedAgent and # Connection to rebuild, so after the transition function only the # ComputeAgent exists anymore apply!(sim, [ ComputeAgent ], [], [ ConstructedAgent, Connection ]) do _, id, sim end @test length(Vahana.agentsontarget(sim, Connection)) == 0 @test num_agents(sim, ComputeAgent) == 1 @test num_agents(sim, ConstructedAgent) == 0 @test num_edges(sim, Connection) == 0 # this time we readd the second agent and the edge apply!(sim, [ ComputeAgent ], [], [ ConstructedAgent, Connection ]) do _, id, sim constructedid = add_agent!(sim, ConstructedAgent()) add_edge!(sim, constructedid, computeid, Connection()) end @test num_agents(sim, ComputeAgent) == 1 @test num_agents(sim, ConstructedAgent) == 1 @test num_edges(sim, Connection) == 1 # and as we add now ConstructedAgent and Connection to add_existing, we should # still have them even with this "do nothing" transition function. And thanks to # invariant_compute, we also must not return the ComputeAgent apply!(sim, [ ComputeAgent ], [], [ ConstructedAgent, Connection ]; add_existing = [ ConstructedAgent, Connection ]) do _, id, sim end @test num_agents(sim, ConstructedAgent) == 1 @test num_agents(sim, ComputeAgent) == 1 @test num_edges(sim, Connection) == 1 finish_simulation!(sim) end function test_assertion(model) sim = create_simulation(model) computeid = add_agent!(sim, ComputeAgent()) constructedid = add_agent!(sim, ConstructedAgent()) add_edge!(sim, constructedid, computeid, Connection()) finish_init!(sim) @test_throws AssertionError apply!(sim, [ ComputeAgent ], [], [ ConstructedAgent, Connection ]) do state, _, _ state end finish_simulation!(sim) end @testset "addexisiting" begin model = ModelTypes() |> register_agenttype!(ComputeAgent) |> register_agenttype!(ConstructedAgent) |> register_edgetype!(Connection) |> create_model("Test add_existing") test_model(model) model_imm_comp = ModelTypes() |> register_agenttype!(ComputeAgent, :Immortal) |> register_agenttype!(ConstructedAgent) |> register_edgetype!(Connection) |> create_model("Test add_existing vector") test_model(model_imm_comp) model_imm_cons = ModelTypes() |> register_agenttype!(ComputeAgent) |> register_agenttype!(ConstructedAgent, :Immortal) |> register_edgetype!(Connection) |> create_model("Test add_existing vector") test_assertion(model_imm_cons) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
17620
import Vahana.@onrankof import Vahana.@rootonly import Vahana.disable_transition_checks # A for Agent, Imm for Immortal # Fixed and Oversize doesn't have a real meaning anymore, in earlier versions # there was a size keyword that allows to give an upper bound for the size # of the population. struct AMortal foo::Int64 end struct AMortalFixed foo::Int64 end struct AImm foo::Int64 end struct AImmFixed foo::Int64 end struct AImmFixedOversize foo::Int64 end struct ADefault foo::Int64 bool::Bool end allagenttypes = [ AMortal, AImm, AImmFixed ] # ES = EdgeState and ESL = EdgeStateless struct ESDict foo::Int64 end struct ESLDict1 end struct ESLDict2 end model = ModelTypes() |> register_agenttype!(AMortal) |> register_agenttype!(AMortalFixed) |> register_agenttype!(AImm, :Immortal) |> register_agenttype!(AImmFixed, :Immortal) |> register_agenttype!(AImmFixedOversize, :Immortal) |> register_agenttype!(ADefault) |> register_edgetype!(ESDict) |> register_edgetype!(ESLDict1) |> register_edgetype!(ESLDict2, :SingleType; target = AImm) |> create_model("Test Core") function add_example_network!(sim) # construct 3 AMortal agents, 10 AImm agents and 10 AImmFixed a1id = add_agent!(sim, AMortal(1)) a2id, a3id = add_agents!(sim, AMortal(2), AMortal(3)) avids = add_agents!(sim, [ AImm(i) for i in 1:10 ]) avfids = add_agents!(sim, [ AImmFixed(i) for i in 1:10 ]) # agent with edges, used for mapreduce add_agents!(sim, [ AImmFixedOversize(i) for i in 1:10 ]) add_agents!(sim, [ AMortalFixed(i) for i in 1:10 ]) add_agents!(sim, [ ADefault(i, true) for i in 1:10 ]) # we construct the following network for ESDict: # a2 & a3 & avids[1] & avfids[10] -> a1 add_edge!(sim, a2id, a1id, ESDict(1)) add_edge!(sim, a3id, a1id, ESDict(2)) add_edge!(sim, avids[1], a1id, ESDict(3)) add_edge!(sim, avfids[10], a1id, ESDict(4)) # we construct the following network for ESLDict1: # avids -> a1 add_edges!(sim, a1id, [ Edge(avids[i], ESLDict1()) for i in 1:10 ]) # we construct the following network for ESLDict2: # avfids[i] -> avids[i] for i in 1:10 add_edge!(sim, avfids[i], avids[i], ESLDict2()) end (a1id, a2id, a3id, avids, avfids) end function create_sum_state_neighbors(edgetypeval) function sum_state_neighbors(agent, id, sim) # @info id edgetypeval getproperty(sim, Symbol(edgetypeval)).readable nstates = neighborstates_flexible(sim, id, edgetypeval) s = 0 if !isnothing(nstates) for n in nstates s = s + n.foo end end typeof(agent)(s) end end import Vahana.updateids function test_aggregate(sim, T::DataType) @test mapreduce(sim, a -> a.foo, +, T) == reduce(+, 1:10) @test mapreduce(sim, a -> a.foo, *, T) == reduce(*, 1:10) @test mapreduce(sim, a -> a.foo, &, T; datatype = Int) == reduce(&, 1:10) @test mapreduce(sim, a -> a.foo, |, T; datatype = Int) == reduce(|, 1:10) @test mapreduce(sim, a -> a.foo, max, T) == reduce(max, 1:10) @test mapreduce(sim, a -> a.foo, min, T) == reduce(min, 1:10) end function test_aggregate_mortal(sim, T::DataType) test_aggregate(sim, T) # we are testing that there aggregate also works when on a rank # no agent of this type is existing apply!(sim, [ T ], [ T ], [ T ]) do state, _, _ mpi.isroot ? state : nothing end # this should not cause an assertion mapreduce(sim, a -> a.foo, +, T) end function createsim() sim = create_simulation(model; logging = true, debug = true) (a1id, a2id, a3id, avids, avfids) = add_example_network!(sim) idmap = finish_init!(sim; return_idmapping = true, partition_algo=:EqualAgentNumbers) a1id, a2id, a3id = updateids(idmap, a1id), updateids(idmap, a2id), updateids(idmap, a3id) avids, avfids = updateids(idmap, avids), updateids(idmap, avfids) (sim, a1id, a2id, a3id, avids, avfids) end @testset "Core" begin @testset "ModelImmortal" begin @test model.immortal[1] == false @test model.immortal[2] == false @test model.immortal[3] == true @test model.immortal[4] == true @test model.immortal[5] == true @test model.immortal[6] == false end @testset "with_edge" begin sim = create_simulation(model; logging = true, debug = true) aids = [ add_agent!(sim, AMortal(i)) for i in 1:100 ] add_edge!(sim, aids[1], aids[2], ESLDict1()) finish_init!(sim) @test num_agents(sim, AMortal) == 100 sim2 = copy_simulation(sim) # with read apply!(sim, AMortal, AMortal, AMortal; with_edge = ESLDict1) do state,_,_ nothing end @test num_agents(sim, AMortal) == 99 # without read apply!(sim2, AMortal, [], AMortal; with_edge = ESLDict1) do state,_,_ nothing end @test num_agents(sim, AMortal) == 99 finish_simulation!(sim) finish_simulation!(sim2) end (sim, a1id, a2id, a3id, avids, avfids) = createsim() @testset "agentstate" begin @onrankof a2id @test_throws AssertionError agentstate(sim, a2id, AImm) @onrankof avids[1] @test_throws AssertionError agentstate(sim, avids[1], AMortal) enable_asserts(false) @onrankof a1id @test agentstate(sim, a1id, AMortal) == AMortal(1) @onrankof a1id @test agentstate_flexible(sim, a1id) == AMortal(1) @onrankof a1id @test agentstate_flexible(sim, a1id) == AMortal(1) @onrankof a2id @test agentstate(sim, a2id, AMortal) == AMortal(2) @onrankof avids[1] @test agentstate(sim, avids[1], AImm) == AImm(1) @onrankof avfids[1] @test agentstate(sim, avfids[1], AImmFixed) == AImmFixed(1) @onrankof avids[10] @test agentstate(sim, avids[10], AImm) == AImm(10) @onrankof avfids[10] @test agentstate(sim, avfids[10], AImmFixed) == AImmFixed(10) # # calling agentstate with the wrong typ should throw an AssertionError enable_asserts(true) end @testset "edges & neighborids" begin Vahana.disable_transition_checks(true) @onrankof a1id @test length(edges(sim, a1id, ESDict)) == 4 @onrankof a1id @test length(edges(sim, a1id, ESLDict1)) == 10 # # Check that we can call edges also for an empty set of neighbors @onrankof a2id @test edges(sim, a2id, ESDict) === nothing @onrankof a2id @test edges(sim, a2id, ESLDict1) === nothing # we must disable the neighborids checks @onrankof avids[1] @test length(neighborids(sim, avids[1], ESLDict2)) == 1 @onrankof avids[10] @test length(neighborids(sim, avids[10], ESLDict2)) == 1 @onrankof avids[1] @test length(neighborids_iter(sim, avids[1], ESLDict2)) == 1 @onrankof avids[10] @test length(neighborids_iter(sim, avids[10], ESLDict2)) == 1 es = edges(sim, a1id, ESLDict1) @onrankof a1id @test (es)[1].from == avids[1] @onrankof a1id @test (es)[10].from == avids[10] es = neighborids(sim, avids[10], ESLDict2) @onrankof avids[10] @test es[1] == avfids[10] es = neighborids_iter(sim, avids[10], ESLDict2) |> collect @onrankof avids[10] @test es[1] == avfids[10] Vahana.disable_transition_checks(false) end @testset "neighborstates" begin Vahana.disable_transition_checks(true) @onrankof a1id @test AImm(1) in neighborstates(sim, a1id, ESLDict1, AImm) @onrankof a1id @test AImm(1) in collect(neighborstates(sim, a1id, ESLDict1, AImm)) @onrankof a1id @test AMortal(3) in neighborstates_flexible(sim, a1id, ESDict) @onrankof a1id @test AMortal(3) in collect(neighborstates_flexible_iter(sim, a1id, ESDict)) Vahana.disable_transition_checks(false) end @testset "all_agents & num_agents" begin copy = copy_simulation(sim) @test length(all_agents(copy, AMortalFixed)) == 10 @test length(all_agents(copy, AImm)) == 10 @test num_agents(copy, AMortalFixed) == 10 @test num_agents(copy, AImm) == 10 for i in 1:10 @test AMortalFixed(i) in all_agents(copy, AMortalFixed) @test AImm(i) in all_agents(copy, AImm) end apply!(copy, AMortalFixed, AMortalFixed, AMortalFixed) do state, _, _ if state.foo < 6 state else nothing end end @test length(all_agents(copy, AMortalFixed)) == 5 @test num_agents(copy, AMortalFixed) == 5 for i in 1:5 @test AMortalFixed(i) in all_agents(copy, AMortalFixed) end for i in 6:10 @test !(AMortalFixed(i) in all_agents(copy, AMortalFixed)) end finish_simulation!(copy) end @testset "all_agentids" begin sim_agentids = ModelTypes() |> register_agenttype!(AMortal) |> create_model("all_agentids_test") |> create_simulation() foreach(i -> add_agent!(sim_agentids, AMortal(i)), 1:10) finish_init!(sim_agentids) @test length(all_agentids(sim_agentids, AMortal)) == 10 apply!(sim_agentids, AMortal, AMortal, AMortal) do state, id, sim state.foo % 2 == 0 ? state : nothing end @test length(all_agentids(sim_agentids, AMortal)) == 5 finish_simulation!(sim_agentids) # test also for immortal agents sim_agentids = ModelTypes() |> register_agenttype!(AImm) |> create_model("all_agentids_test_immortal") |> create_simulation() foreach(i -> add_agent!(sim_agentids, AImm(i)), 1:10) finish_init!(sim_agentids) allids = all_agentids(sim_agentids, AImm) @test length(allids) == 10 finish_simulation!(sim_agentids) end @testset "num_edges" begin Vahana.disable_transition_checks(true) @onrankof a1id @test num_edges(sim, a1id, ESDict) == 4 @onrankof a2id @test num_edges(sim, a2id, ESDict) == 0 @onrankof avids[1] @test num_edges(sim, avids[1], ESLDict2) == 1 Vahana.disable_transition_checks(false) end finish_simulation!(sim) @testset "transition" begin # check that with assertion enables, it is checked that the agent types # are in `read`. enable_asserts(true) (sim, a1id, a2id, a3id, avids, avfids) = createsim() # AImmFixed is missing @test_throws AssertionError apply!(sim, AImm, [ ESLDict2], []) do _, id, sim neighborstates_flexible(sim, id, ESLDict2) end finish_simulation!(sim) # normally it's not allowed to call add_edge! between transition # function, but because of the @onrankof this hack works here enable_asserts(false) # we want to check two iterations with the sum_state_neighbors, # so we just add an edge loop for the agents where we check the sum (sim, a1id, a2id, a3id, avids, avfids) = createsim() @onrankof a1id add_edge!(sim, a1id, a1id, ESLDict1()) @onrankof avids[1] add_edge!(sim, avids[1], avids[1], ESLDict2()) @onrankof avfids[1] add_edge!(sim, avfids[1], avfids[1], ESLDict1()) # for avfids[1] we need a second edge @onrankof avfids[1] add_edge!(sim, avfids[2], avfids[1], ESLDict1()) # and also avfids[2] should keep its value @onrankof avfids[2] add_edge!(sim, avfids[2], avfids[2], ESLDict1()) enable_asserts(true) # now check apply! for the different nodefieldfactories apply!(sim, create_sum_state_neighbors(ESLDict1), [ AMortal ], [ allagenttypes; ESLDict1 ], [ AMortal ]) disable_transition_checks(true) @onrankof a1id @test agentstate(sim, a1id, AMortal) == AMortal(sum(1:10) + 1) disable_transition_checks(false) apply!(sim, create_sum_state_neighbors(ESLDict1), [ AMortal ], [ allagenttypes; ESLDict1 ], [ AMortal ]) disable_transition_checks(true) @onrankof a1id @test agentstate(sim, a1id, AMortal) == AMortal(2 * sum(1:10) + 1) disable_transition_checks(false) finish_simulation!(sim) # copyvec = deepcopy(copy) (sim, a1id, a2id, a3id, avids, avfids) = createsim() # @onrankof a1id add_edge!(sim, a1id, a1id, ESLDict1()) enable_asserts(false) @onrankof avids[1] add_edge!(sim, avids[1], avids[1], ESLDict2()) enable_asserts(true) apply!(sim, create_sum_state_neighbors(ESLDict2), [ AImm ], [ allagenttypes; ESLDict2 ], [ AImm ]) disable_transition_checks(true) @onrankof avids[1] @test agentstate(sim, avids[1], AImm) == AImm(2) disable_transition_checks(false) apply!(sim, create_sum_state_neighbors(ESLDict2), [ AImm ], [ allagenttypes; ESLDict2 ], [ AImm ]) disable_transition_checks(true) @onrankof avids[1] @test agentstate(sim, avids[1], AImm) == AImm(3) disable_transition_checks(false) apply!(sim, create_sum_state_neighbors(ESLDict2), [ AImm ], [ allagenttypes; ESLDict2 ], [ AImm ]) disable_transition_checks(true) @onrankof avids[1] @test agentstate(sim, avids[1], AImm) == AImm(4) disable_transition_checks(false) finish_simulation!(sim) # copyvec = deepcopy(copy) (sim, a1id, a2id, a3id, avids, avfids) = createsim() enable_asserts(false) # @onrankof a1id add_edge!(sim, a1id, a1id, ESLDict1()) # @onrankof avids[1] add_edge!(sim, avids[1], avids[1], ESLDict2()) @onrankof avfids[1] add_edge!(sim, avfids[1], avfids[1], ESLDict1()) # for avfids[1] we need a second edge @onrankof avfids[1] add_edge!(sim, avfids[2], avfids[1], ESLDict1()) # and also avfids[2] should keep its value @onrankof avfids[2] add_edge!(sim, avfids[2], avfids[2], ESLDict1()) enable_asserts(true) apply!(sim, create_sum_state_neighbors(ESLDict1), [ AImmFixed ], [ allagenttypes; ESLDict1 ], [ AImmFixed ]) disable_transition_checks(true) @onrankof avfids[1] @test agentstate(sim, avfids[1], AImmFixed) == AImmFixed(3) disable_transition_checks(false) apply!(sim, create_sum_state_neighbors(ESLDict1), [ AImmFixed ], [ allagenttypes; ESLDict1 ], [ AImmFixed ]) disable_transition_checks(true) @onrankof avfids[1] @test agentstate(sim, avfids[1], AImmFixed) == AImmFixed(5) disable_transition_checks(false) apply!(sim, create_sum_state_neighbors(ESLDict1), [ AImmFixed ], [ allagenttypes; ESLDict1 ], [ AImmFixed ]) disable_transition_checks(true) @onrankof avfids[1] @test agentstate(sim, avfids[1], AImmFixed) == AImmFixed(7) disable_transition_checks(false) finish_simulation!(sim) end @testset "Mapreduce" begin sim = create_simulation(model; name = "Mapreduce") (a1id, a2id, a3id, avids, avfids) = add_example_network!(sim) finish_init!(sim) for T in [ AImmFixed, AImmFixedOversize ] test_aggregate(sim, T) end for T in [ AMortalFixed, ADefault ] test_aggregate_mortal(sim, T) end finish_simulation!(sim) sim = create_simulation(model; name = "Mapreduce") (a1id, a2id, a3id, avids, avfids) = add_example_network!(sim) finish_init!(sim) # testing the & and | for boolean # currenty all bool of ADefault are true @test mapreduce(sim, a -> a.bool, &, ADefault) == true @test mapreduce(sim, a -> a.bool, |, ADefault) == true # set all bool to false apply!(sim, [ ADefault ], [ ADefault ], [ ADefault ]) do state, id, sim ADefault(state.foo, false) end @test mapreduce(sim, a -> a.bool, &, ADefault) == false @test mapreduce(sim, a -> a.bool, |, ADefault) == false # every second will be true, so that && is false and || is true apply!(sim, [ ADefault ], [ ADefault ], [ ADefault ]) do state, id, sim ADefault(state.foo, mod(id, 2) == 1) end @test mapreduce(sim, a -> a.bool, &, ADefault) == false @test mapreduce(sim, a -> a.bool, |, ADefault) == true finish_simulation!(sim) end @testset "add_agent_per_process!" begin sim = create_simulation(model) # Add some initial agents for i in 1:10 add_agent!(sim, AMortal(i)) end finish_init!(sim) # Test adding an agent per process new_id = add_agent_per_process!(sim, AMortal(100)) # Check that the total number of agents has increased by the number of processes @test num_agents(sim, AMortal) == 10 + mpi.size # Test that the function cannot be called within a transition apply!(sim, AMortal, AMortal, AMortal) do state, id, sim @test_throws AssertionError add_agent_per_process!(sim, AMortal(200)) state end finish_simulation!(sim) end # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
14656
import Vahana: disable_transition_checks import Graphs: SimpleGraphs # We need a lot of edgetypes to test all the edge hint combinations # The hints are # (S) Stateless # (E) SingleEdge # (T) SingleType, which can also have a size information (Ts) # (I) IgnoreFrom # so EdgeET means an Edge(State) with the SingleEdge and SingleType hints struct Agent foo::Int64 end struct AgentB foo::Int64 end # this is used to test the removal of "dead" edges (in edgesiterator) struct EdgeD foo::Int64 end # D for default (no hint is set) struct EdgeS end struct EdgeE foo::Int64 end struct EdgeT foo::Int64 end struct EdgeI foo::Int64 end struct EdgeSE end struct EdgeST end struct EdgeSI end struct EdgeEI foo::Int64 end struct EdgeTI foo::Int64 end struct EdgeSEI end struct EdgeSTI end struct EdgeSETI end struct EdgeTs foo::Int64 end struct EdgeTsI foo::Int64 end struct EdgeSTs end struct EdgeSTsI end struct EdgeSETsI end statelessEdgeTypes = [ EdgeS, EdgeSE, EdgeST, EdgeSI, EdgeSEI, EdgeSTI, EdgeSETI, EdgeSTs, EdgeSTsI, EdgeSETsI ] statefulEdgeTypes = [ EdgeD, EdgeE, EdgeT, EdgeI, EdgeEI, EdgeTI, EdgeTs, EdgeTsI ] allEdgeTypes = [ statelessEdgeTypes; statefulEdgeTypes ] model_edges = ModelTypes() |> register_agenttype!(Agent) |> register_agenttype!(AgentB) |> register_edgetype!(EdgeD) |> register_edgetype!(EdgeS, :Stateless) |> register_edgetype!(EdgeE, :SingleEdge) |> register_edgetype!(EdgeT, :SingleType; target = Agent) |> register_edgetype!(EdgeI, :IgnoreFrom) |> register_edgetype!(EdgeSE, :Stateless, :SingleEdge) |> register_edgetype!(EdgeST, :Stateless, :SingleType; target = Agent) |> register_edgetype!(EdgeSI, :Stateless, :IgnoreFrom) |> register_edgetype!(EdgeEI, :SingleEdge, :IgnoreFrom) |> register_edgetype!(EdgeTI, :SingleType, :IgnoreFrom; target = Agent) |> register_edgetype!(EdgeSEI, :Stateless, :SingleEdge, :IgnoreFrom) |> register_edgetype!(EdgeSTI, :Stateless, :SingleType, :IgnoreFrom; target = Agent) |> register_edgetype!(EdgeSETI, :Stateless, :SingleEdge, :SingleType, :IgnoreFrom; target = Agent) |> register_edgetype!(EdgeTs, :SingleType; target = Agent, size = 10) |> register_edgetype!(EdgeTsI, :SingleType, :IgnoreFrom; target = Agent, size = 10) |> register_edgetype!(EdgeSTs, :Stateless, :SingleType; target = Agent, size = 10) |> register_edgetype!(EdgeSTsI, :Stateless, :SingleType, :IgnoreFrom; target = Agent, size = 10) |> register_edgetype!(EdgeSETsI, :Stateless, :SingleEdge, :SingleType, :IgnoreFrom; target = Agent, size = 10) |> create_model("Test Edges") hashint(type, hint::String) = occursin(hint, SubString(String(Symbol(type)), 5)) function runedgestest() @testset "Edges" begin sim = create_simulation(model_edges, nothing, nothing) (a1id, a2id, a3id) = add_agents!(sim, Agent(1), Agent(2), Agent(3)) # Lets add some edges for each of the different hint combinations # For each combination we will have # 2 -> 3 (with state 1 for stateful edges) # 3 -> 1 (with state 3 for stateful edges) # and for all combination that supports multiple edges we add also # 1 -> 3 (with state 2 for stateful edges) for t in statelessEdgeTypes add_edge!(sim, a2id, a3id, t()) # we can not check the "ET" combination, instead a warning # is given when register_edgetype is called if hashint(nameof(t), "E") && !hashint(nameof(t), "T") && !(hashint(nameof(t), "S") && hashint(nameof(t), "I")) # and check in the case that a second edge can not be added to # the same agent (and that this can be checked), # that this throws an assertion @test_throws AssertionError add_edge!(sim, a1id, a3id, t()) elseif !hashint(nameof(t), "E") add_edge!(sim, a1id, a3id, t()) end edge = Edge(a3id, t()) add_edge!(sim, a1id, edge) # println(t) # @eval println($sim.$(Symbol(nameof(t),"_write"))) # println() end for t in statefulEdgeTypes add_edge!(sim, a2id, a3id, t(1)) # we can not check the "ET" combination, instead a warning # is given when register_edgetype is called if hashint(nameof(t), "E") && !hashint(nameof(t), "T") && !(hashint(nameof(t), "S") && hashint(nameof(t), "I")) @test_throws AssertionError add_edge!(sim, a1id, a3id, t(2)) elseif !hashint(nameof(t), "E") add_edge!(sim, a1id, a3id, t(2)) end edge = Edge(a3id, t(3)) add_edge!(sim, a1id, edge) # println(t) # @eval println($sim.$(Symbol(t,"_write"))) # println() end finish_init!(sim) # # with this apply we ensure # apply(sim, [ Agent, AgentB ], allEdgeTypes, []) do _,_,_ end @testset "edges" begin disable_transition_checks(true) for t in [EdgeD, EdgeT, EdgeTs] e = edges(sim, a3id, t) @test e[1] == Edge(a2id, t(1)) @test e[2] == Edge(a1id, t(2)) e = edges(sim, a2id, t) @test e === nothing end for t in [EdgeE] e = edges(sim, a3id, t) @test e == Edge(a2id, t(1)) end disable_transition_checks(false) for t in [ EdgeI, EdgeEI, EdgeTI, EdgeTsI, EdgeS, EdgeSE, EdgeST, EdgeSI, EdgeSEI, EdgeSTI, EdgeSETI, EdgeSTs, EdgeSTsI, EdgeSETsI ] @test_throws AssertionError edges(sim, a1id, t) end end @testset "neighborids" begin disable_transition_checks(true) for t in [EdgeD, EdgeT, EdgeTs, EdgeS, EdgeST, EdgeSTs] e = neighborids(sim, a3id, t) @test e[1] == a2id @test e[2] == a1id e = neighborids(sim, a2id, t) @test e === nothing end for t in [EdgeE, EdgeSE] e = neighborids(sim, a3id, t) @test e == a2id end disable_transition_checks(false) for t in [EdgeI, EdgeTI, EdgeTsI, EdgeSI, EdgeSTI, EdgeSTsI, EdgeEI, EdgeSEI, EdgeSETI, EdgeSETsI] @test_throws AssertionError neighborids(sim, a1id, t) end end @testset "edgestates" begin disable_transition_checks(true) for t in [EdgeD, EdgeT, EdgeTs, EdgeI, EdgeTI, EdgeTsI] e = edgestates(sim, a3id, t) @test e[1] == t(1) @test e[2] == t(2) e = edgestates(sim, a2id, t) @test e === nothing e = edgestates_iter(sim, a3id, t) |> collect @test e[1] == t(1) @test e[2] == t(2) e = edgestates_iter(sim, a2id, t) @test e === nothing end for t in [EdgeE, EdgeEI] e = edgestates(sim, a3id, t) @test e == t(1) end disable_transition_checks(false) for t in [EdgeS, EdgeST, EdgeSTs, EdgeSI, EdgeSTI, EdgeSTsI, EdgeSE, EdgeSEI, EdgeSETI, EdgeSETsI] @test_throws AssertionError edgestates(sim, a1id, t) @test_throws AssertionError edgestates_iter(sim, a1id, t) end end @testset "num_edges" begin disable_transition_checks(true) for t in [EdgeD, EdgeT, EdgeTs, EdgeI, EdgeTI, EdgeTsI, EdgeS, EdgeST, EdgeSTs, EdgeST, EdgeSTI, EdgeSTsI] @test num_edges(sim, a1id, t) == 1 @test num_edges(sim, a2id, t) == 0 @test num_edges(sim, a3id, t) == 2 end disable_transition_checks(false) for t in [EdgeE, EdgeEI, EdgeSE, EdgeSETI, EdgeSETsI] @test_throws AssertionError num_edges(sim, a1id, t) end end @testset "has_edge" begin disable_transition_checks(true) for t in [ EdgeS, EdgeSE, EdgeST, EdgeSI, EdgeSEI, EdgeSTI, EdgeSETI, EdgeSTs, EdgeSTsI, EdgeSETsI, EdgeD, EdgeE, EdgeT, EdgeI, EdgeEI, EdgeTI, EdgeTs, EdgeTsI ] @test has_edge(sim, a1id, t) == true @test has_edge(sim, a2id, t) == false @test has_edge(sim, a3id, t) == true end disable_transition_checks(false) end @testset "mapreduce" begin for t in [ EdgeD, EdgeT, EdgeI, EdgeTI, EdgeTs, EdgeTsI ] @test mapreduce(sim, a -> a.foo, +, t) == 6 end for t in [ EdgeE, EdgeEI ] @test mapreduce(sim, a -> a.foo, +, t) == 4 end for t in [ EdgeS, EdgeSE, EdgeST, EdgeSI, EdgeSEI, EdgeSTI, EdgeSETI, EdgeSTs, EdgeSTsI, EdgeSETsI ] @test_throws AssertionError mapreduce(sim, a -> a.foo, +, t) end end @testset "neighbor_states" begin disable_transition_checks(true) for t in [EdgeD, EdgeT, EdgeTs, EdgeS, EdgeST, EdgeSTs] e = neighborids(sim, a3id, t) @test e[1] == a2id @test e[2] == a1id e = neighborids(sim, a2id, t) @test e === nothing end disable_transition_checks(false) end @testset "check Vahana state" begin for t in statelessEdgeTypes @test_throws AssertionError add_edge!(sim, AgentID(0), AgentID(0), t()) end for t in statefulEdgeTypes @test_throws AssertionError add_edge!(sim, AgentID(0), AgentID(0), t(0)) end end @testset "check edgetype in read and write" begin Vahana.config.check_readable = true enable_asserts(true) for t in statelessEdgeTypes @test_throws AssertionError apply(sim, Agent, [], []) do _, id, sim add_edge!(sim, id, id, t()) end apply(sim, Agent, [], t) do _, id, sim add_edge!(sim, id, id, t()) end end for t in statefulEdgeTypes @test_throws AssertionError apply(sim, Agent, [], []) do _, id, sim add_edge!(sim, id, id, t(0)) end apply(sim, Agent, [], t) do _, id, sim add_edge!(sim, id, id, t(0)) end end for t in [ statelessEdgeTypes; statefulEdgeTypes ] @test_throws AssertionError apply(sim, Agent, [], []) do _, id, sim edges(sim, id, t) end end end finish_simulation!(sim) end @testset "num_edges" begin sim = create_simulation(model_edges, nothing, nothing) for t in [ statefulEdgeTypes; statelessEdgeTypes ] @test num_edges(sim, t; write = false) == 0 end @test num_agents(sim, Agent) == 0 # We need a gap id1 = add_agent!(sim, Agent(0)) id2 = add_agent!(sim, Agent(0)) id3 = add_agent!(sim, Agent(0)) @test num_agents(sim, Agent) == 3 for t in [ statefulEdgeTypes; statelessEdgeTypes ] if fieldcount(t) > 0 add_edge!(sim, id1, id1, t(0)) add_edge!(sim, id3, id3, t(0)) else add_edge!(sim, id1, id1, t()) add_edge!(sim, id3, id3, t()) end end for t in [ statefulEdgeTypes; statelessEdgeTypes ] @test num_edges(sim, t; write = true) == 2 @test num_edges(sim, t; write = false) == 0 end finish_init!(sim) for t in [ statefulEdgeTypes; statelessEdgeTypes ] @test num_edges(sim, t; write = false) == 2 end finish_simulation!(sim) end end @testset "transition" begin for ET in [ EdgeD, EdgeE, EdgeT, EdgeI, EdgeEI, EdgeTI ] sim = create_simulation(model_edges) if Vahana.has_hint(sim, ET, :SingleEdge) finish_simulation!(sim) continue end nagents = mpi.size * 2 add_graph!(sim, SimpleGraphs.complete_graph(nagents), i -> Agent(i), e -> ET(e.dst) ) finish_init!(sim) apply!(sim, [ Agent ], [ ET ], []) do _, id, sim @test num_edges(sim, id, ET) == nagents-1 end # write was empty, so we should get the same results when doing # the same transition again apply!(sim, [ Agent ], [ ET ], []) do _, id, sim @test num_edges(sim, id, ET) == nagents-1 end # write the edges by copying them from before apply!(sim, [ Agent ], [], [ ET ]; add_existing = [ ET ]) do _, id, sim end apply!(sim, [ Agent ], [ ET ], []) do _, id, sim @test num_edges(sim, id, ET) == nagents-1 end if ET == EdgeD # write the edges by readding them apply!(sim, [ Agent ], [ ET ], [ ET ]) do _, id, sim add_edges!(sim, id, edges(sim, id, ET)) end apply!(sim, [ Agent ], [ ET ], []) do _, id, sim @test num_edges(sim, id, ET) == nagents-1 end apply!(sim, [ Agent ], [], []) do _, id, sim end # write the edges by copying and readding apply!(sim, [ Agent ], [ ET ], [ ET ]; add_existing = [ ET ]) do _, id, sim add_edges!(sim, id, edges(sim, id, ET)) end # (we should have them twice after now) apply!(sim, [ Agent ], [ ET ], []) do _, id, sim @test num_edges(sim, id, ET) == (nagents-1) * 2 end # this time no one adds the edges, so they should be gone afterwards apply!(sim, [ Agent ], [], [ ET ]) do _, id, sim end apply!(sim, [ Agent ], [ ET ], []) do _, id, sim @test num_edges(sim, id, ET) == 0 end end finish_simulation!(sim) end # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
7335
using Base: nothing_sentinel # the edge types and some other stuff is defined in edges.jl import Vahana: has_hint, @onrankof # this test does not work with MPI, as it assumes that all edges are on one rank if mpi.size == 1 @testset "Edges Iter" begin function runedgesitertest(ET) eisim = create_simulation(model_edges; logging = true, debug = true) @test Vahana.edges_iterator(eisim, ET) |> length == 0 @test Vahana.edges_iterator(eisim, ET) |> collect |> length == 0 aids = add_agents!(eisim, [ Agent(i) for i in 1:10 ]) for id in aids if fieldcount(ET) > 0 add_edge!(eisim, aids[1], id, ET(id)) if ! hashint(ET, "E") add_edge!(eisim, id, aids[1], ET(id)) end else add_edge!(eisim, aids[1], id, ET()) if ! hashint(ET, "E") add_edge!(eisim, id, aids[1], ET()) end end end expected = hashint(ET, "E") ? 10 : 20 @test Vahana.edges_iterator(eisim, ET, false) |> length == expected @test Vahana.edges_iterator(eisim, ET, false) |> collect |> length == expected finish_init!(eisim) @test Vahana.edges_iterator(eisim, ET) |> length == expected @test Vahana.edges_iterator(eisim, ET) |> collect |> length == expected finish_simulation!(eisim) end for ET in [ statelessEdgeTypes; statefulEdgeTypes ] if ! (hashint(ET, "S") & hashint(ET, "I")) runedgesitertest(ET) GC.gc(true) end end end # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end @testset "Edges Agg" begin function runedgesaggregatetest(ET::DataType) sim = create_simulation(model_edges; logging = true, debug = true) @test mapreduce(sim, e -> e.foo, +, ET) == 0 aids = add_agents!(sim, [ Agent(i) for i in 1:10 ]) for id in aids add_edge!(sim, aids[1], id, ET(Vahana.agent_nr(id))) end finish_init!(sim) @test mapreduce(sim, e -> e.foo, +, ET) == sum(1:10) # first we test that edges to the agents are removed apply!(sim, [ Agent ], [], [ Agent ]) do _, id, sim nothing end @test mapreduce(sim, e -> e.foo, +, ET) == 0 finish_simulation!(sim) # we now create edges from type AgentB to Agent and remove all # agents of type AgentB. This should also remove the edges. sim = create_simulation(model_edges; logging = true, debug = true) aids = add_agents!(sim, [ Agent(i) for i in 1:10 ]) bids = add_agents!(sim, [ AgentB(i) for i in 1:10 ]) for i in 1:10 add_edge!(sim, bids[i], aids[i], ET(i)) end finish_init!(sim) @test mapreduce(sim, e -> e.foo, +, ET) == sum(1:10) # first we test that edges to the agents are removed apply!(sim, [ Agent ], [], [ Agent ]) do _, id, sim nothing end @test mapreduce(sim, e -> e.foo, +, ET) == 0 finish_simulation!(sim) end for ET in statefulEdgeTypes runedgesaggregatetest(ET) GC.gc(true) end # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end @testset "Remove Edges" begin # some remove stuff is already tested above, but here we # use num_edges instead of mapreduce to test this for all types. # but this does not work for distributed runs function runremoveedgestest(ET::DataType) # we create edges from type AgentB to Agent and remove all # agents of type AgentB. This should also remove the edges. sim = create_simulation(model_edges; logging = true, debug = true) aids = add_agents!(sim, [ Agent(i) for i in 1:10 ]) bids = add_agents!(sim, [ AgentB(i) for i in 1:10 ]) for i in 1:10 if has_hint(sim, ET, :Stateless) add_edge!(sim, bids[i], aids[i], ET()) else add_edge!(sim, bids[i], aids[i], ET(i)) end end finish_init!(sim) @test num_edges(sim, ET) == 10 # first we test that edges to the agents are removed apply!(sim, [ Agent ], [], [ Agent ]) do _, id, sim nothing end @test num_edges(sim, ET) == 0 if has_hint(sim, ET, :IgnoreFrom) return end finish_simulation!(sim) # we create edges between all agent of type AgentB and Agent # with the same index i. sim = create_simulation(model_edges, nothing, nothing) aids = add_agents!(sim, [ Agent(i) for i in 1:10 ]) bids = add_agents!(sim, [ AgentB(i) for i in 1:10 ]) for i in 1:10 if has_hint(sim, ET, :Stateless) if ! has_hint(sim, ET, :SingleEdge) add_edge!(sim, aids[i], aids[i], ET()) if ! has_hint(sim, ET, :SingleType) add_edge!(sim, aids[i], bids[i], ET()) end end # test both add_edge! variants add_edge!(sim, aids[i], Edge(bids[i], ET())) if ! has_hint(sim, ET, :SingleType) add_edge!(sim, bids[i], Edge(bids[i], ET())) end else if ! has_hint(sim, ET, :SingleEdge) add_edge!(sim, aids[i], aids[i], ET(i)) if ! has_hint(sim, ET, :SingleType) add_edge!(sim, aids[i], bids[i], ET(i)) end end add_edge!(sim, aids[i], Edge(bids[i], ET(i))) if ! has_hint(sim, ET, :SingleType) add_edge!(sim, bids[i], Edge(bids[i], ET(i))) end end end finish_init!(sim) # And then remove every second agents of type AgentB. apply!(sim, AgentB, AgentB, AgentB) do self, id, sim self.foo % 2 == 0 ? self : nothing end # After this the: # 10 a-a edges, (but not for :SingleEdge) # 5 b-a edges, (! :SingleType or :SingleEdge) # 5 b-b edges (! :SingleType) # 5 a-b edges (always) # should be left count = 5 if ! has_hint(sim, ET, :SingleEdge) count += 10 end if ! has_hint(sim, ET, :SingleType) count += 5 end if (! has_hint(sim, ET, :SingleEdge) && ! has_hint(sim, ET, :SingleType)) count += 5 end if has_hint(sim, ET, :IgnoreFrom) # only the edges to the agent are removed @test num_edges(sim, ET) == 30 else @test num_edges(sim, ET) == count end finish_simulation!(sim) end for ET in [ statefulEdgeTypes; statelessEdgeTypes ] runremoveedgestest(ET) end # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
399
@testset "Globals" begin mutable struct TestGlobals foo::Float64 bar::Vector{Int64} end sim = create_simulation(model, nothing, TestGlobals(0,Vector{Int64}())) set_global!(sim, :foo, 1.1) push_global!(sim, :bar, 1) push_global!(sim, :bar, 2) @test get_global(sim, :foo) == 1.1 @test get_global(sim, :bar) == [1, 2] finish_simulation!(sim) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
1073
import Graphs.SimpleGraphs struct GraphA id::Int64 sum::Int64 end struct GraphE end model_graph = ModelTypes() |> register_agenttype!(GraphA) |> register_edgetype!(GraphE) |> create_model("Test Graph") @testset "Graphs" begin # calculate the sum of all ids function sumids(a, id, sim) GraphA(a.id, mapreduce(a -> a.id, +, neighborstates_flexible(sim, id, GraphE))) end sim = create_simulation(model_graph, nothing, nothing) nagents = 4 add_graph!(sim, SimpleGraphs.complete_graph(nagents), i -> GraphA(i, 0), _ -> GraphE() ) finish_init!(sim) apply!(sim, sumids, [GraphA], [GraphA, GraphE], [GraphA]) # we have a complete graph, and all agents sum the # ids of the neighbors (but ignoring the own) # so in overall we have the nagents-1 times the sum of all ids @test mapreduce(sim, a -> a.sum, +, GraphA) == sum(1:nagents) * (nagents - 1) finish_simulation!(sim) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
3005
using Vahana using Test suppress_warnings(true) set_hdf5_path(tempdir()) Pos2D = NamedTuple{(:x, :y), Tuple{Int64, Int64}} Pos3D = NamedTuple{(:x, :y, :z), Tuple{Int64, Int64, Int64}} Pos(x, y) = (x = x, y = y) Pos(x, y, z) = (x = x, y = y, z = z) struct InnerStruct f::Float64 i::Int64 end struct Agent inner::InnerStruct f::Float64 end struct RasterAgent end struct EmptyAgentVector end struct EdgeState f::AgentID t::AgentID end struct StatelessEdge end struct RasterEdge a::Int64 end struct EmptyEdgeVector end struct Globals pos::Pos2D ga::Int64 gb::Vector{Float64} gc::Vector{Int64} empty::Vector{Int64} end struct Params pb::Int64 pa::Vector{Float64} pos::Pos3D end function sumi2o(state, _, _) Agent(state.inner, state.inner.f + state.inner.i) end # the test model has the following structure: # we create mpi.size * 8 agent of type Agent function createsim(model, distribute = true) sim = model |> create_simulation(Params(1, [2.0, 2.1], (x = 3, y = 4, z = 5)), Globals(Pos(1, 2), 3, [4.0, 4.1], [5, 6, 7], []); logging = true, debug = true) ids = add_agents!(sim, [ Agent(InnerStruct(i,i+1),i+2) for i in 1:16 ]) for id in ids add_edge!(sim, id, id, EdgeState(id, id)) add_edge!(sim, id, ids[2], StatelessEdge()) add_edge!(sim, id, ids[5], StatelessEdge()) add_edge!(sim, id, ids[2], EdgeState(id, ids[1])) end rids = add_raster!(sim, :fourdspace, (2,2,2,1), _ -> RasterAgent()) for id in ids add_edge!(sim, id, rids[mod1(id, 8)], RasterEdge(id % 8 + 1)) end finish_init!(sim; partition_algo = :EqualAgentNumbers, distribute = distribute) sim end function runsim(model, write) sim = createsim(model) if write write_snapshot(sim, "Initial state") end apply!(sim, [ Agent ], [ Agent ], [ Agent ]) do state, id, sim Agent(state.inner, state.f - 2) end push_global!(sim, :gb, 2.1) push_global!(sim, :gc, 4) if write write_snapshot(sim) end apply!(sim, remove_some_rasternodes, [ RasterAgent ], [ RasterAgent, RasterEdge, Agent ], [ RasterAgent, RasterEdge ]) if write write_snapshot(sim, "Final state") close(sim.h5file) end sim end function remove_some_rasternodes(state, id, sim) nstate = neighborstates(sim, id, RasterEdge, Agent) |> first e = edges(sim, id, RasterEdge) |> first add_edge!(sim, e.from, id, RasterEdge(e.state.a * 2)) mod1(nstate.f, 8) > 4.5 ? nothing : state end function restore(model, sim; kwargs...) restored = create_simulation(model, Params(0, [0, 0], Pos(0, 0, 0)), Globals(Pos(0, 0), 0, [0], [0], [])) read_snapshot!(restored, sim.name; kwargs...) restored end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
4089
include("hdf5_common.jl") import Vahana: has_hint, type_nr, agent_id, agent_nr, AgentID, AgentNr set_hdf5_path(joinpath(dirname(@__FILE__), "h5")) function test_merge(model) sim = runsim(model, false) restored = restore(model, sim) fids = Vahana.open_h5file(restored, sim.name) @assert mpi.size == 1 && length(fids) > 1 """\n this should test the merge functionality (reading a distributed sim back to a single process), so the test should not be run with mpi but the files should be written from a mpi simulation """ foreach(close, fids) @test sim.params.pa == restored.params.pa @test sim.params.pb == restored.params.pb @test sim.params.pos == restored.params.pos # @test sim.globals == restored.globals @test sim.Agent.last_change == restored.Agent.last_change @test sim.RasterAgent.last_change == restored.RasterAgent.last_change function checkedges(sim_edges, restored_edges, T) @test getproperty(sim, Symbol(T)).last_change == getproperty(restored, Symbol(T)).last_change @test num_edges(sim, T) == num_edges(restored, T) for to in keys(sim_edges) to = AgentID(to) AT = has_hint(sim, T, :SingleType) ? Agent : sim.typeinfos.nodes_id2type[type_nr(to)] if AT == Agent rto = filter(enumerate(restored.Agent.read.state) |> collect) do (i, state) state.f == sim.Agent.read.state[agent_nr(to)].f end |> first |> first rto = Vahana.agent_id(sim, AgentNr(rto), Agent) if has_hint(sim, T, :IgnoreFrom) && has_hint(sim, T, :Stateless) if has_hint(sim, T, :SingleType) @test sim_edges[agent_nr(to)] == restored_edges[agent_nr(rto)] else @test sim_edges[to] == restored_edges[rto] end elseif ! has_hint(sim, T, :Stateless) for edge in sim_edges[to] if has_hint(sim, T, :IgnoreFrom) @test edge in restored_edges[rto] else states = map(e -> e.state, restored_edges[rto]) @test edge.state in states end end end end end end checkedges(sim.EdgeState.read, restored.EdgeState.read, EdgeState) checkedges(sim.RasterEdge.read, restored.RasterEdge.read, RasterEdge) checkedges(sim.StatelessEdge.read, restored.StatelessEdge.read, StatelessEdge) end @testset "HDF5 merge" begin model_default = ModelTypes() |> register_agenttype!(Agent) |> register_agenttype!(RasterAgent) |> register_edgetype!(EdgeState) |> register_edgetype!(RasterEdge) |> register_edgetype!(StatelessEdge) |> register_agenttype!(EmptyAgentVector) |> register_edgetype!(EmptyEdgeVector) |> create_model("hdf5_default") test_merge(model_default) model_immortal = ModelTypes() |> register_agenttype!(Agent, :Immortal) |> register_agenttype!(RasterAgent) |> register_edgetype!(EdgeState, :IgnoreFrom) |> register_edgetype!(RasterEdge) |> register_edgetype!(StatelessEdge, :Stateless) |> create_model("hdf5_ignore_immortal") test_merge(model_immortal) model_neighbors = ModelTypes() |> register_agenttype!(Agent, :Immortal) |> register_agenttype!(RasterAgent) |> register_edgetype!(EdgeState, :NumEdgesOnly) |> register_edgetype!(RasterEdge) |> register_edgetype!(StatelessEdge, :HasEdgeOnly, :SingleType; target = Agent) |> create_model("hdf5_neighbors") test_merge(model_neighbors) # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
6253
include("hdf5_common.jl") set_hdf5_path(joinpath(dirname(@__FILE__), "h5")) function test_write_restore(model) sim = runsim(model, true) restored = restore(model, sim) test(sim, restored) apply!(sim, remove_some_rasternodes, [ RasterAgent ], [ RasterAgent, RasterEdge, Agent ], [ RasterAgent, RasterEdge ]) apply!(restored, remove_some_rasternodes, [ RasterAgent ], [ RasterAgent, RasterEdge, Agent ], [ RasterAgent, RasterEdge ]) test(sim, restored) finish_simulation!(restored) finish_simulation!(sim) end function test(sim, restored) @test sim.Agent.read.died == restored.Agent.read.died @test sim.Agent.read.state == restored.Agent.read.state @test sim.Agent.read.reuseable == restored.Agent.read.reuseable @test sim.Agent.nextid == restored.Agent.nextid @test sim.Agent.last_change == restored.Agent.last_change @test sim.RasterAgent.read.died == restored.RasterAgent.read.died @test sim.RasterAgent.read.state == restored.RasterAgent.read.state @test sim.RasterAgent.read.reuseable == restored.RasterAgent.read.reuseable @test sim.RasterAgent.nextid == restored.RasterAgent.nextid @test sim.RasterAgent.last_change == restored.RasterAgent.last_change @test sim.params.pa == restored.params.pa @test sim.params.pb == restored.params.pb @test sim.params.pos == restored.params.pos # @test sim.globals == restored.globals @test sim.globals_last_change == restored.globals_last_change function checkedges(sim_edges, restored_edges, T) @test getproperty(sim, Symbol(T)).last_change == getproperty(restored, Symbol(T)).last_change if Vahana.has_hint(sim, T, :SingleType) @test sim_edges == restored_edges else for to in keys(sim_edges) for edge in sim_edges[to] @test edge in restored_edges[to] end end end end checkedges(sim.EdgeState.read, restored.EdgeState.read, EdgeState) checkedges(sim.RasterEdge.read, restored.RasterEdge.read, RasterEdge) checkedges(sim.StatelessEdge.read, restored.StatelessEdge.read, StatelessEdge) end @testset "Snapshot" begin model_default = ModelTypes() |> register_agenttype!(Agent) |> register_agenttype!(RasterAgent) |> register_edgetype!(EdgeState) |> register_edgetype!(RasterEdge) |> register_edgetype!(StatelessEdge) |> register_agenttype!(EmptyAgentVector) |> register_edgetype!(EmptyEdgeVector) |> create_model("hdf5_default") test_write_restore(model_default) model_immortal = ModelTypes() |> register_agenttype!(Agent, :Immortal) |> register_agenttype!(RasterAgent) |> register_edgetype!(EdgeState, :IgnoreFrom) |> register_edgetype!(RasterEdge) |> register_edgetype!(StatelessEdge, :Stateless) |> create_model("hdf5_ignore_immortal") test_write_restore(model_immortal) model_neighbors = ModelTypes() |> register_agenttype!(Agent, :Immortal) |> register_agenttype!(RasterAgent) |> register_edgetype!(EdgeState, :NumEdgesOnly) |> register_edgetype!(RasterEdge) |> register_edgetype!(StatelessEdge, :HasEdgeOnly, :SingleType; target = Agent) |> create_model("hdf5_neighbors") test_write_restore(model_neighbors) # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end @testset "Metadata" begin mutable struct ParGlo vec::Vector{Int64} mat::Matrix{Int64} arr::Array{Int64, 3} empty::Vector{Int64} end struct MetaDataCell end model_arrays = ModelTypes() |> register_agenttype!(MetaDataCell) |> create_model("Metadata") sim = create_simulation(model_arrays, ParGlo([1, 2, 3], [1 2 3; 4 5 6], ones(2,3,4), Int64[]), ParGlo([1, 2, 3], [1 2 3; 4 5 6], ones(2,3,4), Int64[]); name = "Metadata_sim") add_raster!(sim, :grid, (10,8), _ -> MetaDataCell()) # check that we can also write metadata before finish_inith! write_metadata(sim, :Param, :empty, :foo, 1) write_metadata(sim, :Raster,:grid, :bar, 2) write_sim_metadata(sim, :foo, 2) finish_init!(sim; partition_algo = :EqualAgentNumbers) write_metadata(sim, :Global, :mat, :dim1, "hhtype") write_metadata(sim, :Global, :mat, :foo, "bar") write_snapshot(sim) write_metadata(sim, :Global, :mat, :dim2, "agegroup") finish_simulation!(sim) sim = create_simulation(model_arrays, ParGlo(Int64[], zeros(1,1), zeros(1,1,1), Int64[]), ParGlo(Int64[], zeros(1,1), zeros(1,1,1), Int64[]); name = "Metadata_sim") read_snapshot!(sim) @test sim.params.vec == [1, 2, 3] @test sim.params.mat == [1 2 3; 4 5 6] @test sim.params.arr == ones(2,3,4) @test sim.params.empty == Int64[] @test sim.globals.vec == [1, 2, 3] @test sim.globals.mat == [1 2 3; 4 5 6] @test sim.globals.arr == ones(2,3,4) @test sim.globals.empty == Int64[] @test read_metadata(sim, :Param, :empty, :foo) == 1 @test read_metadata(sim, :Global, :mat, :dim1) == "hhtype" @test read_metadata(sim, :Global, :mat, :dim2) == "agegroup" @test read_metadata(sim, :Global, :mat, :nonsense) == nothing @test read_metadata(sim, :Global, :nonsense, :nonsense) == nothing @test read_metadata(sim, :Raster, :grid, :bar) == 2 asdict = read_metadata(sim, :Global, :mat) @test asdict[:dim1] == "hhtype" @test read_sim_metadata(sim, :foo) == 2 asdict = read_sim_metadata(sim) asdict[:model_name] == "Metadata" asdict[:simulation_name] == "Metadata_sim" finish_simulation!(sim) # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
7637
using Vahana using Test struct AIndependent foo::Int64 end struct ANotIndependent foo::Int64 end struct AIndependentImmortal foo::Int64 end struct AFooEdge foo::Int64 end struct AEdge end model = ModelTypes() |> register_agenttype!(AIndependent, :Independent) |> register_agenttype!(ANotIndependent) |> register_agenttype!(AIndependentImmortal, :Independent) |> register_edgetype!(AFooEdge) |> register_edgetype!(AEdge) |> create_model("Test Independent") @testset "independent" begin sim = create_simulation(model) simnot = create_simulation(model) simimmortal = create_simulation(model) ids = [ add_agent!(sim, AIndependent(i)) for i in 1:10 ] for from in ids for to in ids add_edge!(sim, from, to, AEdge()) end end ids = [ add_agent!(simnot, ANotIndependent(i)) for i in 1:10 ] for from in ids for to in ids add_edge!(simnot, from, to, AEdge()) end end ids = [ add_agent!(simimmortal, AIndependentImmortal(i)) for i in 1:10 ] for from in ids for to in ids add_edge!(simimmortal, from, to, AEdge()) end end finish_init!(sim) finish_init!(simnot) finish_init!(simimmortal) @test num_agents(sim, AIndependent) == 10 @test num_edges(sim, AEdge) == 10 * 10 # remove agent i, all other add edges of type AFooEdge to the neighbors apply!(sim, AIndependent, [AIndependent, AEdge], [AIndependent, AFooEdge]) do state, id, sim if state.foo == 1 nothing else foreach(neighborids(sim, id, AEdge)) do nid add_edge!(sim, nid, id, AFooEdge(state.foo)) add_edge!(sim, id, nid, AFooEdge(state.foo)) end state end end apply!(simnot, ANotIndependent, [ANotIndependent, AEdge], [ANotIndependent, AFooEdge]) do state, id, sim if state.foo == 1 nothing else foreach(neighborids(sim, id, AEdge)) do nid add_edge!(sim, nid, id, AFooEdge(state.foo)) add_edge!(sim, id, nid, AFooEdge(state.foo)) end state end end apply!(simimmortal, AIndependentImmortal, [AIndependentImmortal, AEdge], [AIndependentImmortal, AFooEdge]) do state, id, sim if state.foo == 1 nothing else foreach(neighborids(sim, id, AEdge)) do nid add_edge!(sim, nid, id, AFooEdge(state.foo)) add_edge!(sim, id, nid, AFooEdge(state.foo)) end state end end @test num_agents(sim, AIndependent) == num_agents(simnot, ANotIndependent) @test num_edges(sim, AEdge) == num_edges(simnot, AEdge) @test num_edges(sim, AFooEdge) == num_edges(simnot, AFooEdge) @test num_agents(simimmortal, AIndependentImmortal) == num_agents(simnot, ANotIndependent) @test num_edges(simimmortal, AEdge) == num_edges(simnot, AEdge) @test num_edges(simimmortal, AFooEdge) == num_edges(simnot, AFooEdge) apply!(sim, AIndependent, [AIndependent, AEdge], [AIndependent, AFooEdge]) do state, id, sim if state.foo == 2 nothing else foreach(neighborids(sim, id, AEdge)) do nid add_edge!(sim, nid, id, AFooEdge(state.foo)) add_edge!(sim, id, nid, AFooEdge(state.foo)) end state end end apply!(simnot, ANotIndependent, [ANotIndependent, AEdge], [ANotIndependent, AFooEdge]) do state, id, sim if state.foo == 2 nothing else foreach(neighborids(sim, id, AEdge)) do nid add_edge!(sim, nid, id, AFooEdge(state.foo)) add_edge!(sim, id, nid, AFooEdge(state.foo)) end state end end apply!(simimmortal, AIndependentImmortal, [AIndependentImmortal, AEdge], [AIndependentImmortal, AFooEdge]) do state, id, sim if state.foo == 2 nothing else foreach(neighborids(sim, id, AEdge)) do nid add_edge!(sim, nid, id, AFooEdge(state.foo)) add_edge!(sim, id, nid, AFooEdge(state.foo)) end state end end @test num_agents(sim, AIndependent) == num_agents(simnot, ANotIndependent) @test num_edges(sim, AEdge) == num_edges(simnot, AEdge) @test num_edges(sim, AFooEdge) == num_edges(simnot, AFooEdge) @test num_agents(simimmortal, AIndependentImmortal) == num_agents(simnot, ANotIndependent) @test num_edges(simimmortal, AEdge) == num_edges(simnot, AEdge) @test num_edges(simimmortal, AFooEdge) == num_edges(simnot, AFooEdge) apply!(sim, AIndependent, [AIndependent, AEdge], [AIndependent, AFooEdge]; add_existing = AFooEdge) do state, id, sim nid = add_agent!(sim, AIndependent(state.foo+10)) add_edge!(sim, nid, id, AFooEdge(nid)) add_edge!(sim, id, nid, AFooEdge(nid)) nid = add_agent!(sim, AIndependent(state.foo+20)) add_edge!(sim, nid, id, AFooEdge(nid)) add_edge!(sim, id, nid, AFooEdge(nid)) state end apply!(simnot, ANotIndependent, [ANotIndependent, AEdge], [ANotIndependent, AFooEdge]; add_existing = AFooEdge) do state, id, sim nid = add_agent!(sim, ANotIndependent(state.foo+10)) add_edge!(sim, nid, id, AFooEdge(nid)) add_edge!(sim, id, nid, AFooEdge(nid)) nid = add_agent!(sim, ANotIndependent(state.foo+20)) add_edge!(sim, nid, id, AFooEdge(nid)) add_edge!(sim, id, nid, AFooEdge(nid)) state end apply!(simimmortal, AIndependentImmortal, [AIndependentImmortal, AEdge], [AIndependentImmortal, AFooEdge]; add_existing = AFooEdge) do state, id, sim nid = add_agent!(sim, AIndependentImmortal(state.foo+10)) add_edge!(sim, nid, id, AFooEdge(nid)) add_edge!(sim, id, nid, AFooEdge(nid)) nid = add_agent!(sim, AIndependentImmortal(state.foo+20)) add_edge!(sim, nid, id, AFooEdge(nid)) add_edge!(sim, id, nid, AFooEdge(nid)) state end @test num_agents(sim, AIndependent) == num_agents(simnot, ANotIndependent) @test num_edges(sim, AEdge) == num_edges(simnot, AEdge) @test num_edges(sim, AFooEdge) == num_edges(simnot, AFooEdge) @test num_agents(simimmortal, AIndependentImmortal) == num_agents(simnot, ANotIndependent) @test num_edges(simimmortal, AEdge) == num_edges(simnot, AEdge) @test num_edges(simimmortal, AFooEdge) == num_edges(simnot, AFooEdge) finish_simulation!(sim) finish_simulation!(simnot) finish_simulation!(simimmortal) sleep(mpi.rank * 0.05) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
480
using Test nprocs_str = get(ENV, "JULIA_MPI_TEST_NPROCS", "") nprocs = nprocs_str == "" ? clamp(Sys.CPU_THREADS, 2, 4) : parse(Int, nprocs_str) testdir = string(@__DIR__) * "/mpi" istest(f) = endswith(f, ".jl") && startswith(f, "test_") testfiles = sort(filter(istest, readdir(testdir))) @testset "$f" for f in testfiles cmd(n=nprocs) = `mpiexec -n $n $(Base.julia_cmd()) $(joinpath(testdir, f))` #cmd(n=nprocs) = `mpirun -n 4 ls` run(cmd(2)) @test true end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
946
@testset "Parametric T." begin struct PAgent{T} t::T end struct PAgent2 t::Float64 end struct PEdge{T} t::T end model = ModelTypes() |> register_agenttype!(PAgent{Float64}) |> register_agenttype!(PAgent2) |> register_edgetype!(PEdge{Float64}) |> create_model("parametric types") sim = create_simulation(model) id1 = add_agent!(sim, PAgent(1.0)) id2 = add_agent!(sim, PAgent2(2.0)) add_edge!(sim, id1, id2, PEdge(3.0)) finish_init!(sim) apply!(sim, PAgent2, [ PAgent{Float64}, PAgent2, PEdge{Float64} ], PAgent2) do agent, id, sim @test (edges(sim, id, PEdge{Float64}) |> first).state.t == 3.0 @test edgestates(sim, id, PEdge{Float64}) == [ PEdge(3.0) ] @test neighborstates(sim, id, PEdge{Float64}, PAgent{Float64}) == [ PAgent(1.0) ] agent end finish_simulation!(sim) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
14623
import Vahana: @onrankof, disable_transition_checks struct GridA pos::Tuple{Int64, Int64} active::Bool end struct Grid3D pos::Tuple{Int64, Int64, Int64} active::Bool end struct GridE end struct Position sum::Int64 end struct MovingAgent value::Int64 end struct OnPosition end raster_model = ModelTypes() |> register_agenttype!(GridA) |> register_agenttype!(Grid3D) |> register_edgetype!(GridE) |> register_agenttype!(Position) |> register_agenttype!(MovingAgent) |> register_edgetype!(OnPosition) |> create_model("Raster_Test") @testset "Raster" begin # calculate the sum of all ids function diffuse(a, id, sim) GridA(a.pos, a.active || mapreduce(a -> a.active, |, neighborstates(sim, id, GridE, GridA))) end sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (10,8), p -> (p[1] == 10 && p[2] == 8) ? GridA(p, true) : GridA(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE()) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, GridA) == 1 apply!(sim, diffuse, [GridA], [GridA, GridE], [GridA]) @test mapreduce(sim, a -> a.active, +, GridA) == 9 apply!(sim, diffuse, [GridA], [GridA, GridE], [GridA]) @test mapreduce(sim, a -> a.active, +, GridA) == 25 raster = calc_rasterstate(sim, :grid, c -> c.active, Bool, GridA) @test raster[1,3] == false @test raster[1,1] == true @test raster[4,4] == false raster = calc_raster(sim, :grid, id -> agentstate(sim, id, GridA).active, Bool, [ GridA ]) @test raster[1,3] == false @test raster[1,1] == true @test raster[4,4] == false finish_simulation!(sim) sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (7,9), p -> (p[1] == 3 && p[2] == 5) ? GridA(p, true) : GridA(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE()) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, GridA) == 1 apply!(sim, diffuse, [GridA], [GridA, GridE], [GridA]) @test mapreduce(sim, a -> a.active, +, GridA) == 9 apply!(sim, diffuse, [GridA], [GridA, GridE], [GridA]) @test mapreduce(sim, a -> a.active, +, GridA) == 25 # @test mapreduce(sim, GridA, a -> a.active, +) == 1 # apply!(sim, diffuse, [GridA], [GridA, GridE], []) # @test mapreduce(sim, GridA, a -> a.active, +) == 9 # apply!(sim, diffuse, [GridA], [GridA, GridE], []) # @test mapreduce(sim, GridA, a -> a.active, +) == 25 finish_simulation!(sim) sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (17,6), p -> (p[1] == 9 && p[2] == 1) ? GridA(p, true) : GridA(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE()) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, GridA) == 1 apply!(sim, diffuse, [GridA], [GridA, GridE], [GridA]) @test mapreduce(sim, a -> a.active, +, GridA) == 9 apply!(sim, diffuse, [GridA], [GridA, GridE], [GridA]) @test mapreduce(sim, a -> a.active, +, GridA) == 25 # @test mapreduce(sim, GridA, a -> a.active, +) == 1 # apply!(sim, diffuse, [GridA], [GridA, GridE], []) # @test mapreduce(sim, GridA, a -> a.active, +) == 9 # apply!(sim, diffuse, [GridA], [GridA, GridE], []) # @test mapreduce(sim, GridA, a -> a.active, +) == 25 finish_simulation!(sim) sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (6,7), p -> (p[1] == 1 && p[2] == 1) ? GridA(p, true) : GridA(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE()) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, GridA) == 1 apply!(sim, diffuse, [GridA], [GridA, GridE], [GridA]) @test mapreduce(sim, a -> a.active, +, GridA) == 9 apply!(sim, diffuse, [GridA], [GridA, GridE], [GridA]) @test mapreduce(sim, a -> a.active, +, GridA) == 25 ### 3D function diffuse3D(a, id, sim) Grid3D(a.pos, a.active || mapreduce(a -> a.active, |, neighborstates(sim, id, GridE, Grid3D))) end finish_simulation!(sim) sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (6,7,6), p -> (p[1] == 1 && p[2] == 1 && p[3] == 1) ? Grid3D(p, true) : Grid3D(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE()) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, Grid3D) == 1 apply!(sim, diffuse3D, [Grid3D], [Grid3D, GridE], [Grid3D]) @test mapreduce(sim, a -> a.active, +, Grid3D) == 3*3*3 apply!(sim, diffuse3D, [Grid3D], [Grid3D, GridE], [Grid3D]) @test mapreduce(sim, a -> a.active, +, Grid3D) == 5*5*5 ### non-periodic finish_simulation!(sim) sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (6,7,6), p -> (p[1] == 1 && p[2] == 1 && p[3] == 1) ? Grid3D(p, true) : Grid3D(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE(), periodic = false) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, Grid3D) == 1 apply!(sim, diffuse3D, [Grid3D], [Grid3D, GridE], [Grid3D]) @test mapreduce(sim, a -> a.active, +, Grid3D) == 2*2*2 apply!(sim, diffuse3D, [Grid3D], [Grid3D, GridE], [Grid3D]) @test mapreduce(sim, a -> a.active, +, Grid3D) == 3*3*3 ### distance 2 finish_simulation!(sim) sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (6,7,6), p -> (p[1] == 1 && p[2] == 1 && p[3] == 1) ? Grid3D(p, true) : Grid3D(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE(), periodic = false, distance = 2) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, Grid3D) == 1 apply!(sim, diffuse3D, [Grid3D], [Grid3D, GridE], [Grid3D]) @test mapreduce(sim, a -> a.active, +, Grid3D) == 3*3*3 apply!(sim, diffuse3D, [Grid3D], [Grid3D, GridE], [Grid3D]) @test mapreduce(sim, a -> a.active, +, Grid3D) == 5*5*5 finish_simulation!(sim) ### euclidean sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (6,7,6), p -> (p[1] == 1 && p[2] == 1 && p[3] == 1) ? Grid3D(p, true) : Grid3D(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE(); distance = 1.5, metric = :euclidean) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, Grid3D) == 1 apply!(sim, diffuse3D, [Grid3D], [Grid3D, GridE], [Grid3D]) @test mapreduce(sim, a -> a.active, +, Grid3D) == 3*3*3-8 finish_simulation!(sim) ### manhatten sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (6,7,6), p -> (p[1] == 1 && p[2] == 1 && p[3] == 1) ? Grid3D(p, true) : Grid3D(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE(); distance = 1.5, metric = :manhatten) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, Grid3D) == 1 apply!(sim, diffuse3D, [Grid3D], [Grid3D, GridE], [Grid3D]) @test mapreduce(sim, a -> a.active, +, Grid3D) == 7 finish_simulation!(sim) sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :grid, (6,7,6), p -> (p[1] == 1 && p[2] == 1 && p[3] == 1) ? Grid3D(p, true) : Grid3D(p, false)) connect_raster_neighbors!(sim, :grid, (_,_) -> GridE(); periodic = false, distance = 2, metric = :manhatten) finish_init!(sim) @test mapreduce(sim, a -> a.active, +, Grid3D) == 1 apply!(sim, diffuse3D, [Grid3D], [Grid3D, GridE], [Grid3D]) @test mapreduce(sim, a -> a.active, +, Grid3D) == 10 finish_simulation!(sim) # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end @testset "Raster_NodeID" begin # we have a raster with nodes of type Position and agents of type # MovingAgent that are connected to this raster via edges of # type OnPosition # sum the value of all agents that are on the cell position function sum_on_pos(::Val{Position}, id, sim) nstates = neighborstates_flexible(sim, id, OnPosition) if !isnothing(nstates) Position(mapreduce(c -> c.value, +, nstates)) else Position(0) end end # this transition function moves the agent to the new pos, wherby the new # pos is determined by the state of the current pos function value_on_pos(::Val{MovingAgent}, id, sim) # sum is not a sum operator, but a field of the agentstate of Position value = first(neighborstates_flexible(sim, id, OnPosition)).sum move_to!(sim, :raster, id, (value, value), OnPosition(), OnPosition()) MovingAgent(value) end sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :raster, (10,10), _ -> Position(0)) connect_raster_neighbors!(sim, :raster, (_,_) -> GridE()) p1 = add_agent!(sim, MovingAgent(1)) p2 = add_agent!(sim, MovingAgent(2)) p3 = add_agent!(sim, MovingAgent(3)) move_to!(sim, :raster, p1, (1,1), OnPosition(), OnPosition()) move_to!(sim, :raster, p2, (2,2), OnPosition(), OnPosition()) move_to!(sim, :raster, p3, (2,2), OnPosition(), OnPosition()) finish_init!(sim) apply!(sim, sum_on_pos, [ Position ], [ MovingAgent, OnPosition ], [ Position ]) raster = calc_rasterstate(sim, :raster, c -> c.sum, Int64, Position) @test raster[1,1] == 1 @test raster[1,2] == 0 @test raster[2,2] == 5 @test raster[2,3] == 0 # new versions of calc_rasterstate raster = calc_rasterstate(sim, :raster, c -> c.sum, Int64) @test raster[1,1] == 1 @test raster[1,2] == 0 @test raster[2,2] == 5 @test raster[2,3] == 0 raster = calc_rasterstate(sim, :raster, c -> c.sum) @test raster[1,1] == 1 @test raster[1,2] == 0 @test raster[2,2] == 5 @test raster[2,3] == 0 apply!(sim, value_on_pos, [ MovingAgent ], [ Position, OnPosition ], [ OnPosition, MovingAgent ]) apply!(sim, sum_on_pos, [ Position ], [ MovingAgent, OnPosition ], [ Position ]) raster = calc_rasterstate(sim, :raster, c -> c.sum, Int64, Position) @test raster[1,1] == 1 @test raster[1,2] == 0 @test raster[2,2] == 0 @test raster[5,5] == 10 finish_simulation!(sim) # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end @testset "MoveTo_Dist" begin sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :raster, (10,10), _ -> Position(0)) p1 = add_agent!(sim, MovingAgent(1)) p2 = add_agent!(sim, MovingAgent(1)) p3 = add_agent!(sim, MovingAgent(1)) move_to!(sim, :raster, p1, (4,4), OnPosition(), nothing; distance = 2) move_to!(sim, :raster, p2, (4,4), OnPosition(), nothing; distance = 2, metric = :manhatten) move_to!(sim, :raster, p3, (4,4), OnPosition(), nothing; distance = 2.5, metric = :euclidean) idmapping = finish_init!(sim, return_idmapping = true) p1 = Vahana.updateids(idmapping, p1) p2 = Vahana.updateids(idmapping, p2) p3 = Vahana.updateids(idmapping, p3) disable_transition_checks(true) @onrankof p1 @test num_edges(sim, p1, OnPosition) == 25 @onrankof p2 @test num_edges(sim, p2, OnPosition) == 13 @onrankof p3 @test num_edges(sim, p3, OnPosition) == 21 disable_transition_checks(false) finish_simulation!(sim) ######################################## 4D sim = create_simulation(raster_model, nothing, nothing) add_raster!(sim, :raster, (10,10,10,10), _ -> Position(0)) p1 = add_agent!(sim, MovingAgent(1)) p2 = add_agent!(sim, MovingAgent(1)) move_to!(sim, :raster, p1, (4,4,4,4), OnPosition(), nothing; distance = 1) move_to!(sim, :raster, p2, (4,4,4,4), OnPosition(), nothing; distance = 1, metric = :manhatten) idmapping = finish_init!(sim, return_idmapping = true) p1 = Vahana.updateids(idmapping, p1) p2 = Vahana.updateids(idmapping, p2) disable_transition_checks(true) @onrankof p1 @test num_edges(sim, p1, OnPosition) == 3*3*3*3 @onrankof p2 @test num_edges(sim, p2, OnPosition) == 1+4*2 disable_transition_checks(false) finish_simulation!(sim) # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end @testset "MoveTo_Dist" begin sim = create_simulation(raster_model) add_raster!(sim, :raster, (10,20,30), p -> Grid3D(p, true)) finish_init!(sim) w = zeros(10, 20, 30) w[7, 19, 23] = 1.0 @test random_pos(sim, :raster, w) == CartesianIndex(7, 19, 23) disable_transition_checks(true) @test agentstate(sim, random_cell(sim, :raster, w), Grid3D).pos == (7, 19, 23) disable_transition_checks(false) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
4018
using Vahana import Vahana.@onrankof import Vahana.@rootonly import Vahana.disable_transition_checks import Graphs.SimpleGraphs struct DAgent idx::Int64 end struct DAgentRemove end struct DEdgeState state::Int64 end struct DEdge end struct DSingleEdge end struct DEdgeST end # ST = SingleType model = ModelTypes() |> register_agenttype!(DAgent) |> register_agenttype!(DAgentRemove) |> register_edgetype!(DEdge) |> register_edgetype!(DEdgeState) |> register_edgetype!(DSingleEdge, :SingleEdge) |> register_edgetype!(DEdgeST, :SingleType; target = DAgent) |> create_model("remove_agents") @testset "Dying_Agents" begin function test_edgetype(E) sim = create_simulation(model) ids = add_agents!(sim, [ DAgent(i) for i in 1:(mpi.size * 3)]) rids = add_agents!(sim, [ DAgentRemove() for _ in 1:mpi.size ]) # we create a network where with an edge for each agent to ids[2] foreach(id -> add_edge!(sim, id, ids[2], E()), ids) foreach(id -> add_edge!(sim, id, ids[2], DEdgeState(0)), rids) # and a single edge from ids[1] to ids[3] add_edge!(sim, ids[2], ids[3], E()) finish_init!(sim; partition_algo = :EqualAgentNumbers) @test num_edges(sim, E) == (mpi.size * 3) + 1 @test num_edges(sim, DEdgeState) == mpi.size # we remove all (1 per rank) agents of type DAgentRemove apply!(sim, [ DAgentRemove ], [], [ DAgentRemove ]) do _,_,_ nothing end @test num_edges(sim, E) == (mpi.size * 3) + 1 @test num_edges(sim, DEdgeState) == 0 apply!(sim, [ DAgent ], [ DAgent, E ], [ DAgent ]) do state, id, sim if num_edges(sim, id, E) == 0 nothing else state end end # the remaining edges are ids[3]->ids[2],rids[3]->ids[2],ids[2]->ids[3] @test num_edges(sim, E) == 3 finish_simulation!(sim) # run nearly the same test, but add the edges two times if ! Vahana.has_hint(sim, E, :SingleEdge) sim = create_simulation(model) ids = add_agents!(sim, [ DAgent(i) for i in 1:(mpi.size * 3)]) rids = add_agents!(sim, [ DAgentRemove() for _ in 1:mpi.size ]) # we create a network where with an edge for each agent to ids[2] foreach(id -> add_edge!(sim, id, ids[2], E()), ids) foreach(id -> add_edge!(sim, id, ids[2], DEdgeState(0)), rids) foreach(id -> add_edge!(sim, id, ids[2], E()), ids) foreach(id -> add_edge!(sim, id, ids[2], DEdgeState(0)), rids) # and a single edge from ids[1] to ids[3] add_edge!(sim, ids[2], ids[3], E()) add_edge!(sim, ids[2], ids[3], E()) finish_init!(sim; partition_algo = :EqualAgentNumbers) @test num_edges(sim, E) == ((mpi.size * 3) + 1) * 2 @test num_edges(sim, DEdgeState) == mpi.size * 2 # we remove all ADefault edges, that should also remove the ESDict edges apply!(sim, [ DAgentRemove ], [], [ DAgentRemove ]) do _,_,_ nothing end @test num_edges(sim, E) == ((mpi.size * 3) + 1) * 2 apply!(sim, [ DAgent ], [ DAgent, E ], [ DAgent ]) do state, id, sim if num_edges(sim, id, E) == 0 nothing else state end end # the remaining edges are ids[3]->ids[2],rids[3]->ids[2],ids[2]->ids[3] @test num_edges(sim, E) == 6 finish_simulation!(sim) end end test_edgetype(DEdge) test_edgetype(DEdgeST) # this hack should help that the output is not scrambled in the mpi test sleep(mpi.rank * 0.05) end
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
607
# for whatever reason there is a pipline error when MPI.Init() is called before # run(`mpiexec ...`), so first the mpi versions of the tests are called, before # the single threaded versions. #include("mpi.jl") using Vahana using Test enable_asserts(true) suppress_warnings(true) include("core.jl") include("remove_agents.jl") include("addexisting.jl") include("edges.jl") runedgestest() #edgesiterator depends on edges.jl include("edgesiterator.jl") include("parametric_types.jl") include("independent.jl") # depends on core include("globals.jl") include("raster.jl") include("graphs.jl")
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
4935
# This test should be run on multiple nodes, as it is designed to # test the transfer of the agentstate between several nodes using Test using Vahana using MPI using Logging enable_asserts(true) suppress_warnings(true) if mpi.size == mpi.shmsize @rootonly println("This test is only for multi-node configurations") exit() end # Logging.disable_logging(Logging.Info) #MPI.set_errorhandler!(MPI.COMM_WORLD, MPI.ERRORS_RETURN) # All ids are the initial ids struct Agent state::Int64 end struct EdgeState state::Int64 end struct NewEdge state::Int64 end sim = ModelTypes() |> register_agenttype!(Agent, :Immortal) |> register_edgetype!(EdgeState, :SingleEdge) |> register_edgetype!(NewEdge, :SingleEdge) |> create_model("agentstatetest") |> create_simulation() ids = add_agents!(sim, [ Agent(i) for i in 1:mpi.size ]) for to in 2:mpi.size add_edge!(sim, ids[to-1], ids[to], EdgeState(to-1)) end newids = finish_init!(sim; partition_algo = :EqualAgentNumbers) # first a check that we can read the state after initialization apply!(sim, [ Agent ], [ Agent, EdgeState ], []) do _, id, sim e = edges(sim, id, EdgeState) if ! isnothing(e) a = agentstate(sim, e.from, Agent) @test e.state.state == a.state end end # now we update the agentstate and check afterwards that the # accessible state is also updated apply!(sim, [ Agent ], [ Agent ], [ Agent ]) do state, _, _ Agent(state.state * 2) end apply!(sim, [ Agent ], [ Agent, EdgeState ], []) do _, id, sim e = edges(sim, id, EdgeState) if ! isnothing(e) a = agentstate(sim, e.from, Agent) @test e.state.state * 2 == a.state end end # when we access the agentstate via the NewEdge type, this will not transfer any # new state apply!(sim, [ Agent ], [ Agent ], [ Agent ]) do state, _, _ Agent(state.state / 2) end apply!(sim, [ Agent ], [ Agent, NewEdge ], []) do _, id, sim e = edges(sim, id, NewEdge) @test isnothing(e) end # now add the NewEdges (by copying the old edges) apply!(sim, [ Agent ], [ EdgeState ], [ NewEdge ]) do _, id, simsymbol e = edges(sim, id, EdgeState) if ! isnothing(e) add_edge!(sim, e.from, id, NewEdge(e.state.state)) end end # and check that we get the correct agentstate via the new edges apply!(sim, [ Agent ], [ Agent, EdgeState ], []) do _, id, sim e = edges(sim, id, EdgeState) if ! isnothing(e) a = agentstate(sim, e.from, Agent) @test e.state.state == a.state end end finish_simulation!(sim) # Test the same for mortal agents sim = ModelTypes() |> register_agenttype!(Agent) |> register_edgetype!(EdgeState, :SingleEdge) |> register_edgetype!(NewEdge, :SingleEdge) |> create_model("agentstatetest-mortal") |> create_simulation() ids = add_agents!(sim, [ Agent(i) for i in 1:mpi.size ]) for to in 2:mpi.size add_edge!(sim, ids[to-1], ids[to], EdgeState(to-1)) end newids = finish_init!(sim; partition_algo = :EqualAgentNumbers) # first a check that we can read the state after initialization apply!(sim, [ Agent ], [ Agent, EdgeState ], []) do _, id, sim e = edges(sim, id, EdgeState) if ! isnothing(e) a = agentstate(sim, e.from, Agent) @test e.state.state == a.state end end # call it a second time to trigger the filter of already existing keys apply!(sim, [ Agent ], [ Agent, EdgeState ], []) do _, id, sim e = edges(sim, id, EdgeState) if ! isnothing(e) a = agentstate(sim, e.from, Agent) @test e.state.state == a.state end end # now we update the agentstate and check afterwards that the # accessible state is also updated apply!(sim, [ Agent ], [ Agent ], [ Agent ]) do state, _, _ Agent(state.state * 2) end apply!(sim, [ Agent ], [ Agent, EdgeState ], []) do _, id, sim e = edges(sim, id, EdgeState) if ! isnothing(e) a = agentstate(sim, e.from, Agent) @test e.state.state * 2 == a.state end end # when we access the agentstate via the NewEdge type, this will not transfer any # new state apply!(sim, [ Agent ], [ Agent ], [ Agent ]) do state, _, _ Agent(state.state / 2) end apply!(sim, [ Agent ], [ Agent, NewEdge ], []) do _, id, sim e = edges(sim, id, NewEdge) @test isnothing(e) end # now add the NewEdges (by copying the old edges) apply!(sim, [ Agent ], [ EdgeState ], [ NewEdge ]) do _, id, simsymbol e = edges(sim, id, EdgeState) if ! isnothing(e) add_edge!(sim, e.from, id, NewEdge(e.state.state)) end end # and check that we get the correct agentstate via the new edges apply!(sim, [ Agent ], [ Agent, EdgeState ], []) do _, id, sim e = edges(sim, id, EdgeState) if ! isnothing(e) a = agentstate(sim, e.from, Agent) @test e.state.state == a.state end end finish_simulation!(sim) # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05)
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
167
using Test using Vahana using MPI enable_asserts(true) suppress_warnings(true) #MPI.set_errorhandler!(MPI.COMM_WORLD, MPI.ERRORS_RETURN) include("../core.jl")
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
198
using Test using Vahana using MPI enable_asserts(true) suppress_warnings(true) #MPI.set_errorhandler!(MPI.COMM_WORLD, MPI.ERRORS_RETURN) include("../edges.jl") include("../edgesiterator.jl")
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
15849
using Revise using Test using Vahana import Vahana.has_hint using MPI using Logging import Graphs: SimpleGraphs enable_asserts(true) suppress_warnings(true) # Logging.disable_logging(Logging.Info) #MPI.set_errorhandler!(MPI.COMM_WORLD, MPI.ERRORS_RETURN) # All ids are the initial ids @assert mod(mpi.size, 2) == 0 """ We need as minimum 2 PEs and also an even number of PEs""" struct AgentState1 idx::Int64 end struct AgentState2 idx::Int64 something::Bool end struct MPIEdgeD fromid::AgentID; toid::AgentID end # D for default (no hint is set) struct MPIEdgeS end struct MPIEdgeE fromid::AgentID; toid::AgentID end struct MPIEdgeT fromid::AgentID; toid::AgentID end struct MPIEdgeI fromid::AgentID; toid::AgentID end struct MPIEdgeSE end struct MPIEdgeST end struct MPIEdgeSI end struct MPIEdgeEI fromid::AgentID; toid::AgentID end struct MPIEdgeTI fromid::AgentID; toid::AgentID end struct MPIEdgeSEI end struct MPIEdgeSTI end struct MPIEdgeSETI end struct MPIEdgeTs fromid::AgentID; toid::AgentID end struct MPIEdgeTsI fromid::AgentID; toid::AgentID end struct MPIEdgeSTs end struct MPIEdgeSTsI end struct MPIEdgeSETsI end struct SendId end statelessMPIEdgeTypes = [ MPIEdgeS, MPIEdgeSE, MPIEdgeST, MPIEdgeSI, MPIEdgeSEI, MPIEdgeSTI, MPIEdgeSETI, MPIEdgeSTs, MPIEdgeSTsI, MPIEdgeSETsI ] statefulMPIEdgeTypes = [ MPIEdgeD, MPIEdgeE, MPIEdgeT, MPIEdgeI, MPIEdgeEI, MPIEdgeTI, MPIEdgeTs, MPIEdgeTsI ] model = ModelTypes() |> register_agenttype!(AgentState1) |> register_agenttype!(AgentState2) |> register_edgetype!(MPIEdgeD) |> register_edgetype!(MPIEdgeS, :Stateless) |> register_edgetype!(MPIEdgeE, :SingleEdge) |> register_edgetype!(MPIEdgeT, :SingleType; target = AgentState1) |> register_edgetype!(MPIEdgeI, :IgnoreFrom) |> register_edgetype!(MPIEdgeSE, :Stateless, :SingleEdge) |> register_edgetype!(MPIEdgeST, :Stateless, :SingleType; target = AgentState1) |> register_edgetype!(MPIEdgeSI, :Stateless, :IgnoreFrom) |> register_edgetype!(MPIEdgeEI, :SingleEdge, :IgnoreFrom) |> register_edgetype!(MPIEdgeTI, :SingleType, :IgnoreFrom; target = AgentState1) |> register_edgetype!(MPIEdgeSEI, :Stateless, :SingleEdge, :IgnoreFrom) |> register_edgetype!(MPIEdgeSTI, :Stateless, :SingleType, :IgnoreFrom; target = AgentState1) |> register_edgetype!(MPIEdgeSETI, :Stateless, :SingleEdge, :SingleType, :IgnoreFrom; target = AgentState1) |> register_edgetype!(MPIEdgeTs, :SingleType; target = AgentState1, size = mpi.size * 2) |> register_edgetype!(MPIEdgeTsI, :SingleType, :IgnoreFrom; target = AgentState1, size = mpi.size* 2) |> register_edgetype!(MPIEdgeSTs, :Stateless, :SingleType; target = AgentState1, size = mpi.size * 2) |> register_edgetype!(MPIEdgeSTsI, :Stateless, :SingleType, :IgnoreFrom; target = AgentState1, size = mpi.size * 2) |> register_edgetype!(MPIEdgeSETsI, :Stateless, :SingleEdge, :SingleType, :IgnoreFrom; target = AgentState1, size = mpi.size * 2) |> register_edgetype!(SendId, :SingleEdge) |> create_model("MPI EdgeTypes"); ### # We have the following edge setup (as an example for mpi.size of 3, but # everything is modulo mpi.size) # AS1_1 -> AS1_2 # AS1_1 -> AS2_2 # AS1_2 -> AS1_3 # AS1_2 -> AS2_3 # AS1_3 -> AS1_1 # AS1_3 -> AS2_1 function check(ET) (agent, id, sim) -> begin @test has_edge(sim, id, ET) end end # non reversed function check_state(ET) (agent, id, sim) -> begin if has_hint(sim, ET, :SingleEdge) @test has_edge(sim, id, ET) if ! has_hint(sim, ET, :IgnoreFrom) @test neighborstates(sim, id, ET, AgentState1).idx == mod1(agent.idx - 1, mpi.size) end else @test num_edges(sim, id, ET) == 1 if ! has_hint(sim, ET, :IgnoreFrom) @test first(neighborstates(sim, id, ET, AgentState1)).idx == mod1(agent.idx - 1, mpi.size) end end end end # reversed # AS1_1 <- AS1_2 # AS1_1 <- AS2_2 # AS1_2 <- AS1_3 # AS1_2 <- AS2_3 # AS1_3 <- AS1_1 # AS1_3 <- AS2_1 # so the edges are going only to AgentState1. The edges from AS2 are # dropped for the :SingleEdge and :SingleType hints. function check_state_rev1(ET) (agent::AgentState1, id, sim) -> begin if has_hint(sim, ET, :SingleEdge) @test has_edge(sim, id, ET) if ! has_hint(sim, ET, :IgnoreFrom) @test neighborstates(sim, id, ET, AgentState1).idx == mod1(agent.idx + 1, mpi.size) end elseif has_hint(sim, ET, :SingleType) @test num_edges(sim, id, ET) == 1 if ! has_hint(sim, ET, :IgnoreFrom) @test first(neighborstates(sim, id, ET, AgentState1)).idx == mod1(agent.idx + 1, mpi.size) end else @test num_edges(sim, id, ET) == 2 if ! has_hint(sim, ET, :IgnoreFrom) @test first(neighborstates_flexible(sim, id, ET)).idx == mod1(agent.idx + 1, mpi.size) end end end end # check that nothing is going to the AS2 agents anymore function check_state_rev2(ET) (_, id, sim) -> begin # for the SingleType we determined that ET can only go to AS1 agents if ! has_hint(sim, ET, :SingleType) @test ! has_edge(sim, id, ET) end end end # we change the direction of the cycle, after the first call # the edges are going from id to id-1 (mod mpi.size) # as we use a hack that allows us to test also :IgnoreFrom edges, # a second reverse does not result in the original state function reverse_edge_direction(ET) (state, id, sim) -> begin # In the :SingleType case there are no edges to AgentState2 if has_hint(sim, ET, :SingleType) && typeof(state) == AgentState2 return end # If we would reverse the edges in the :SingleEdge case, # two edges would point to the same agent. if has_hint(sim, ET, :SingleEdge) && typeof(state) == AgentState2 return end # we are know how the edges are constructed and how ids are given # so we use this information to create the needed ids even # for the :IgnoreFrom case target_rank = mod(state.idx - 2, mpi.size) target_id = AgentID(1 << Vahana.SHIFT_TYPE + target_rank << Vahana.SHIFT_RANK + 1) if has_hint(sim, ET, :Stateless) add_edge!(sim, id, target_id, ET()) else if has_hint(sim, ET, :SingleEdge) nstate = edgestates(sim, id, ET) else nstate = edgestates(sim, id, ET) |> first end add_edge!(sim, id, target_id, nstate) end end end function testforedgetype(ET) sim = create_simulation(model, nothing, nothing) part = Dict{AgentID, UInt32}() # construct the edges as described above if mpi.isroot agentids = add_agents!(sim, [ AgentState1(i) for i in 1:mpi.size ]) agentids2 = add_agents!(sim, [ AgentState2(i, true) for i in 1:mpi.size ]) for i in 1:mpi.size # the edges construct a directed cycle, going from id-1 to id fromid = agentids[mod1(i-1, mpi.size)] toid = agentids[i] toid2 = agentids2[i] if ! has_hint(sim, ET, :Stateless) add_edge!(sim, fromid, toid, ET(fromid, toid)) if ! has_hint(sim, ET, :SingleType) add_edge!(sim, fromid, toid2, ET(fromid, toid)) end else add_edge!(sim, fromid, toid, ET()) if ! has_hint(sim, ET, :SingleType) add_edge!(sim, fromid, toid2, ET()) end end end for i in 1:mpi.size part[agentids[i]] = i part[agentids2[i]] = mod1(i, 2) end end # copy the simulation, so that we can test with an manual partition # so that we can test that the agents/edges are moved to the expected # nodes and also the partitioning via Metis later @test num_agents(sim, AgentState1, false) == (mpi.isroot ? mpi.size : 0) @test num_agents(sim, AgentState2, false) == (mpi.isroot ? mpi.size : 0) @test num_agents(sim, AgentState1) == mpi.size @test num_agents(sim, AgentState2) == mpi.size num_edges_per_PE = has_hint(sim, ET, :SingleType) ? 1 : 2 @test num_edges(sim, ET; write = true) == mpi.size * num_edges_per_PE finish_init!(sim; partition_algo = :EqualAgentNumbers) apply!(sim, check_state(ET), [ AgentState1 ], [ AgentState1, ET ], []) @test num_agents(sim, AgentState1, false) == 1 @test num_agents(sim, AgentState2, false) == 1 @test num_agents(sim, AgentState1) == mpi.size @test num_agents(sim, AgentState2) == mpi.size @test num_edges(sim, ET; write = true) == mpi.size * num_edges_per_PE # we are testing now that new edges in the transition functions are # send to the correct ranks apply!(sim, reverse_edge_direction(ET), [ AgentState1, AgentState2 ], [ AgentState1, AgentState2, ET ], [ ET ]) apply!(sim, check_state_rev1(ET), [ AgentState1 ], [ AgentState1, AgentState2, ET ], []) apply!(sim, check_state_rev2(ET), [ AgentState2 ], [ ET ], []) finish_simulation!(sim) end # @testset "EdgeTypes" begin # CurrentEdgeType = Nothing # if CurrentEdgeType === Nothing # for ET in [ statelessMPIEdgeTypes; statefulMPIEdgeTypes ] # testforedgetype(ET) # end # else # testforedgetype(CurrentEdgeType) # end # # this hack should help that the output is not scrambled # sleep(mpi.rank * 0.05) # end ### function testforedgetype_remove(ET) sim = create_simulation(model, nothing, nothing) # each agent has exact one neighbar if has_hint(sim, ET, :Stateless) add_graph!(sim, SimpleGraphs.cycle_digraph(100), i -> AgentState1(i), _ -> ET()) else add_graph!(sim, SimpleGraphs.cycle_digraph(100), i -> AgentState1(i), _ -> ET(0, 0)) end finish_init!(sim) removed = apply(sim, AgentState1, [AgentState1, ET], ET; add_existing = ET) do self, id, sim if self.idx % 2 == 0 remove_edges!(sim, id, ET) end end @test num_edges(removed, ET) == 50 finish_simulation!(removed) copy = copy_simulation(sim) if ! has_hint(sim, ET, :IgnoreFrom) removed = apply(sim, AgentState1, [AgentState1, ET], ET; add_existing = ET) do self, id, sim if self.idx % 2 == 0 nid = neighborids(sim, id, ET) |> first remove_edges!(sim, nid, ET) end end @test num_edges(removed, ET) == 50 finish_simulation!(removed) end finish_simulation!(sim) # remove_edges! and add_edge! for the same edge should keep the edge # (the order depends on the handling if the send edges) if ! has_hint(sim, ET, :IgnoreFrom) apply!(copy, AgentState1, ET, ET; add_existing = ET) do self, id, sim fromid = neighborids(sim, id, ET) |> first remove_edges!(sim, fromid, id, ET) if has_hint(sim, ET, :Stateless) add_edge!(sim, fromid, id, ET()) else add_edge!(sim, fromid, id, ET(0,0)) end end @test num_edges(copy, ET) == 100 end finish_simulation!(copy) end function testforedgetype_remove_from(ET) sim = create_simulation(model, nothing, nothing) graph = if has_hint(sim, ET, :SingleEdge) SimpleGraphs.cycle_digraph(100) else SimpleGraphs.complete_graph(100) end if has_hint(sim, ET, :Stateless) add_graph!(sim, graph, i -> AgentState1(i), _ -> ET()) else add_graph!(sim, graph, i -> AgentState1(i), _ -> ET(0, 0)) end finish_init!(sim) if has_hint(sim, ET, :SingleEdge) @assert num_edges(sim, ET) == 100 # all 100 agents have 1 edge else @assert num_edges(sim, ET) == 9900 # all 100 agents have 99 edges end sim2 = copy_simulation(sim) sim3 = copy_simulation(sim) apply!(sim, AgentState1, [AgentState1, ET], ET; add_existing = ET) do self, id, sim nids = neighborids(sim, id, ET) remove_edges!(sim, first(nids), id, ET) if ! has_hint(sim, ET, :SingleEdge) remove_edges!(sim, nids[2], id, ET) end end if has_hint(sim, ET, :SingleEdge) @test num_edges(sim, ET) == 0 else @test num_edges(sim, ET) == 9700 # we remove for 100 agent 2 edges end # test also to remove the edges in the other direction if !has_hint(sim, ET, :SingleEdge) apply!(sim2, AgentState1, [AgentState1, ET], ET; add_existing = ET) do self, id, sim if self.idx % 2 == 0 nid = rand(neighborids(sim, id, ET)) remove_edges!(sim, id, nid, ET) end end @test num_edges(sim2, ET) == 9850 # we remove for 50 agent 2 edges else apply!(sim2, AgentState1, ET, SendId) do _, id, sim nid = neighborids(sim, id, ET) add_edge!(sim2, id, nid, SendId()) end apply!(sim2, AgentState1, [AgentState1, ET, SendId], ET; add_existing = ET) do self, id, sim if self.idx < 100 nid = neighborids(sim, id, SendId) remove_edges!(sim, id, nid, ET) end end @test num_edges(sim2, ET) == 1 end # test that we can call it with a from value for which we did not # have added edges apply!(sim3, AgentState1, [], ET; add_existing = ET) do _, id, sim remove_edges!(sim, AgentID(0), id, ET) end if has_hint(sim, ET, :SingleEdge) @test num_edges(sim3, ET) == 100 # all 100 agents have 1 edge else @test num_edges(sim3, ET) == 9900 # all 100 agents have 99 edges end @test_throws AssertionError apply!(sim3, AgentState1, [], []) do _, id, sim remove_edges!(sim, AgentID(0), id, ET) end @test_throws AssertionError apply!(sim3, AgentState1, [], ET) do _, id, sim remove_edges!(sim, AgentID(0), id, ET) end finish_simulation!(sim) finish_simulation!(sim2) finish_simulation!(sim3) end @testset "remove edges" begin CurrentEdgeType = Nothing if CurrentEdgeType === Nothing for ET in [ MPIEdgeD, MPIEdgeS, MPIEdgeE, MPIEdgeI, MPIEdgeSE, MPIEdgeSI, MPIEdgeEI, MPIEdgeSEI, MPIEdgeSTI, MPIEdgeSETI, MPIEdgeT, MPIEdgeST ] testforedgetype_remove(ET) end else testforedgetype_remove(CurrentEdgeType) end if CurrentEdgeType === Nothing for ET in [ MPIEdgeD, MPIEdgeS, MPIEdgeE, MPIEdgeSE, MPIEdgeT, MPIEdgeST ] testforedgetype_remove_from(ET) end else testforedgetype_remove_from(CurrentEdgeType) end # this hack should help that the output is not scrambled sleep(mpi.rank * 0.05) end ###
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
114
using Test using Vahana using MPI enable_asserts(true) suppress_warnings(true) include("../independent.jl")
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
169
using Test using Vahana using MPI enable_asserts(true) suppress_warnings(true) #MPI.set_errorhandler!(MPI.COMM_WORLD, MPI.ERRORS_RETURN) include("../raster.jl")
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
code
175
using Test using Vahana using MPI enable_asserts(true) suppress_warnings(true) #MPI.set_errorhandler!(MPI.COMM_WORLD, MPI.ERRORS_RETURN) include("../remove_agents.jl")
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
3089
# Vahana - A framework (not only) for large-scale agent-based models Vahana is a high-performance, agent-based modelling library developed in Julia, specifically (but not only) designed for large-scale simulations of complex social networks. It leverages the power of Graph Dynamical Systems, coupled with advanced parallel computing methodologies, to provide a robust framework for the exploration of network-based systems. ## Key Features - Efficient and Scalable: Vahana uses Message Passing Interface (MPI) for distributed memory parallelism, allowing for efficient scaling to thousands of cores. - Expressive Interface: Despite its high-performance capabilities, Vahana is designed with an accessible and expressive interface, making the construction of complex models intuitive and easy. - Network-Oriented Approach: Vahana's design focuses on network dynamics, making it an excellent tool for simulations involving complex interactions and dependencies between agents. - Graph Dynamical Systems: Leveraging the principles of Graph Dynamical Systems, Vahana provides a solid theoretical foundation for modelling agent-based systems. - Integration into the Julia Ecosystem: Vahana interacts seamlessly with other Julia libraries, such as DataFrames and Graphs. - HDF5 Data Persistence: For efficient data storage and access, Vahana utilises the Hierarchical Data Format version 5 (HDF5), including optional support for parallel HDF5. ## Installation You can install Vahana in Julia using the following command: ``` using Pkg Pkg.add("Vahana") ``` If you want to run a simulation in parallel, it is useful to also read the configuration/installation sections of the [MPI.jl](https://juliaparallel.org/MPI.jl/stable/configuration/) and [HDF5.jl](https://juliaio.github.io/HDF5.jl/stable/#Installation) libraries. ## Documentation Full documentation, including tutorials, guides, and API references, is available [here](https://s-fuerst.github.io/Vahana.jl/). A JuliaCon 2023 Pre-recorded Video about Vahana is available [here](https://www.youtube.com/watch?v=-318ec-kCBM). The preprint of a Vahana.jl paper is available [here](https://doi.org/10.48550/arXiv.2406.14441) ## Citation If you use this package in a publication, or simply want to refer to it, please cite the paper below: ``` @article{vahana2024, title={Vahana.jl - A framework (not only) for large-scale agent-based models}, author={F{\"u}rst, Steffen and Conrad, Tim and Jaeger, Carlo and Wolf, Sarah}, journal={arXiv preprint arXiv:2406.14441}, year={2024}, doi={10.48550/arXiv.2406.14441}, url={https://doi.org/10.48550/arXiv.2406.14441}, eprint={2406.14441}, archivePrefix={arXiv}, primaryClass={cs.MA} } ``` ## Acknowledgments ![mathplus logo](/mathplus.png) This research has been partially funded under Germany’s Excellence Strategy, MATH+ : The Berlin Mathematics Research Center (EXC-2046/1), project no. 390685689 ## License Vahana is distributed under the MIT license. For more information, please refer to the LICENSE file in this repository.
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
74
```@meta CurrentModule = Vahana --> ``` ```@index Modules = [Vahana] ```
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
4379
```@meta CurrentModule = Vahana ``` # Change Log ## v1.2 ### Breaking changes - The `all_ranks` default value for [`num_agents`](@ref) changed to true. ### New features - The functions [`all_agentids`](@ref) and [`all_edges`](@ref) allows to get the ids of all agents or the edges on the rank or the complete simulation. - The functions [`write_metadata`](@ref), [`write_sim_metadata`](@ref), [`read_sim_metadata`](@ref) and [`read_metadata`](@ref) allows to attach Metadata to the simulation or individual parts of the model. - Instead of writing structs for Parameters and Globals it is now also possible to use [`register_param!`](@ref) and [`register_global!`](@ref). - Random cells or positions of a grid can be obtained via [`random_pos`](@ref) and [`random_cell`](@ref) - The function [`cellid`](@ref) allows to retrieve the id of a cell on a given position. - The functions [`remove_edges!`](@ref) allows to remove edges between to agents, or all edges to an agent. - The new function [`rastervalues`](@ref) can be sometimes a useful shorter version then [`calc_rasterstate`](@ref). - New functions [`set_log_path`](@ref) allows to set the path for log files. - The keyword `with_edge` of the function [`apply`](@ref) allows to restrict the called agents to those agents that have an edge of type `with_edge`. - The new `:Independet` hint can be given to agent types if agents of this type never access the state of other agents of this type. This allows Vahana to directly modify the state of an agent in its transition functions without having to copy all agents of that type. - The new hint `:Independent` can be given to agent types if agents of this type never access the state of other agents of this type. This allows Vahana to change the state of an agent directly in the corresponding vector in a transition functions without copying all agents of this type. - For [`neighborstates`](@ref), [`neighborstates_flexible`](@ref), [`neighborids`](@ref) and [`edgestates`](@ref) there are now also functions that return an iterator for of states/ids instead of a vector these states/ids. They have the same function name, extended with `_iter`, e.g. [`neighborstates_iter`](@ref). - The function [`add_agent_per_process!`](@ref) allows you to add a single agent of an agent type to each process of a parallel simulation. - New function [`modify_global!`](@ref) which is a combination of [`set_global!`](@ref) and [`get_global`](@ref). ### Improvements - [`read_snapshot!`](@ref) can be also used to read data that was written via calls to [`write_agents`](@ref), [`write_edges`](@ref) etc.. - [`calc_rasterstate`](@ref) tries to retrieve the returned type automatically by default. - When [`show_agent`](@ref) is called with an id, it is no longer necessary to give also the agent type. - Improved error messages. - Julia 1.11 introduced a breaking change in Stateful Iterators. Vahana's edge iterators have now been adapted to accommodate this breaking change. ### Performance Improvements - [`move_to!`](@ref) improvements. - Removed an unnecessary memcpy of edges for the case that the type is in the `add_existing` argument, but not in the `read` argument of a transition function. ### Fixes - When edges were removed as a consequence of removing agents, this change was not written to the hdf5 file until also other changes to the edges of this type happen. - In a parallel simulation, sometime not all edges were written to the hdf5 file. - Fixed a compability issue with Microsofts MPI implementation. - log folder was also created when no log file was written. - [`show_agent`](@ref) didn't work for all agent hint combinations. - It was necessary (and not documented) that [`add_raster!`](@ref) was called from all ranks. Now it is possible to call it only from rank 0 (like [`add_agent!`](@ref) etc.). ## v1.1 ### New features - New functions [`set_hdf5_path`](@ref) allows to set the path for hdf5 files. ### Improvements - Removed usage of Base.memcpy! do be compatible with Julia 1.10. - Improved error messages. ### Performance Improvements - For [`calc_raster`](@ref) and [`calc_rasterstate`](@ref). ### Fixes - Empty arrays where not supported for parameters or globals when they where writted to a hdf5 file.
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
198
```@meta CurrentModule = Vahana ``` # Configuration The following functions allows to configure Vahana's behaviour: ```@docs enable_asserts suppress_warnings detect_stateless set_compression ```
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
3410
```@meta CurrentModule = Vahana ``` # Model Definition This page describes the functions and data structures employed to define the model and to instantiate an uninitialized simulation. In Vahana the simulation state and the transition functions that changes the state are decoupled, eliminating the need to define the transition functions prior to creating the simulation instance. The usual workflow is as follows: - Define the Agent and Edge types - Create a [`ModelTypes`](@ref) instance - Register the Agent and Edge types and optionally the Parameters and Globals - Call [`create_model`](@ref) to create an model (state space) object - Call [`create_simulation`](@ref) to create an uninitialized simulation of this model The simplest example for such a workflow is: ``` struct Agent end struct EdgeState end const sim = ModelTypes() |> register_agenttype!(Agent) |> register_edgetype!(EdgeState) |> create_model("Minimal Example") |> create_simulation() ``` After the simulation is created, the next step is its initialization, which is described on the [next](./initialization.md) page. ## Construct the Model Before we can construct a model, we need to register all agent and edge types. ```@docs ModelTypes register_agenttype! register_edgetype! ``` We can then use the `ModelTypes` instance to construct the model. Which means that optimized methods that can be used to access or modify the simulation state during the transition function are generated. See [Performance Tuning](./performance.md) for details. The `ModelTypes` instance can subsequently be utilized to construct the model. This involves that optimized methods are generated, enabling access or modification of the simulation state during the execution of the transition function. For comprehensive details regarding this process, please refer to the [Performance Tuning](./performance.md) documentation. !!! tip As [`create_model`](@ref) adds new methods, it increments the ["world age counter"](https://docs.julialang.org/en/v1/manual/methods/#Redefining-Methods). This means, that you can not construct the model in the same function as you initialize it. But you can call [`create_simulation`](@ref) in the same function so ``` const model = create_model(modeltypes, "Minimal Example") function create_and_init() sim = create_simulation(model, nothing, nothing) add_agent!(sim, Agent()) end ``` is valid code. ```@docs create_model Model ``` ## Register Parameters and Globals Parameters are constant values used throughout the simulation, while globals are variables that can change during the simulation run. You can register them using `register_param!` and `register_global!`, or by defining custom types and pass instances of this types to [`create_simulation`](@ref). ```@docs register_param! register_global! ``` # Create a Simulation Finally, create an uninitialized simulation based on your model using ```@docs create_simulation ``` This creates a blank simulation ready for initialization. Remember, in Vahana, a "model" specifies the possible state space, while a simulation is a concrete realization within this space. Transition functions, defined later, determine how the simulation evolves over time. By following these steps, you set up the structure of your simulation. The next phase involves initializing the simulation with agents and edges.
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
539
```@meta CurrentModule = Vahana ``` # Modify Globals You can add a new or additional value to the `globals` struct with: ```@docs set_global! push_global! modify_global! Vahana.mapreduce ``` !!! warning The state of the globals struct (the `globals` argument of the [`create_simulation`](@ref) function can not be changed inside of a transition function, as a transition function is calculated on a per agent basis with many evaluations in parallel, and changes to the global layer must be a single, synchronized operation.
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
4011
```@meta CurrentModule = Vahana ``` # HDF5 data storage Vahana uses the Hierarchical Data Format version 5 (HDF5) as file format to store simulations to disc, utilizing the HDF5.jl libary. HDF5.jl again uses a C library, which is either installed with HDF5.jl or can be provided by the system. Please check the [HDF5.jl documentation](https://juliaio.github.io/HDF5.jl/stable/#Installation) for details. If the provided library supports Parallel HDF5, this will be used automatically. Using Parallel HDF5 has the advantage that all processes can write to a single file, without Parallel HDF5 multiple files are created for a single (parallel) simulation (but the Vahana API is the same in any case, so for the user this difference is only visible when looking into the h5 directory with a file manager or via the shell). But in the current Vahana version using Parallel HDF5 has the disadvantage, that the files are not compressed (see also [`set_compression`](@ref)). ## Write To write into a HDF5 file, they are `attached` to a Vahama simulation. Normally this happens automatically when the first time a write function like [`write_snapshot`](@ref) is called. All following `write_*` calls then add additional datasets to the file. ```@docs set_hdf5_path write_snapshot create_h5file! close_h5file! ``` Beside `write_snapshot` there exists also some more fine grained write functions: ```@docs write_agents write_edges write_globals ``` ## Read In the normal use case we call just `write_snapshot(sim, "snapshot description")` (assuming sim is a Vahama simulation). To read such a snapshot, we can then run another Script that creates the same model (see [`create_model`](@ref)) and simulation (see [`create_simulation`](@ref)) and then call `read_snapshot!(sim)`. [`read_snapshot!`](@ref) can read also a parallel simulation into a single (REPL) process, then the distributed graph is merged into a single one. ```@docs read_snapshot! ``` Also here exists also some more fine grained read functions: ```@docs read_params read_globals read_agents! read_edges! read_agents read_edges ``` ## Transition All `read_*` functions have a keyword called transition. If this is not set, the last stored data of a type is always read, but via this keyword it is also possible to read the previous state of the simulation (or a part of it) (assuming it was written multiple times, of course). Vahana counts internally how many times the function [`apply!`](@ref) is called (in the current Vahana implementation this is stored in a field called `num_transitions` of the simulation). When a new dataset is created by a `write_*` call, this information is stored with the dataset. When `read_snapshot!` is called, Vahana looks for the highest `num_transition` that is less than or equal to the transition keyword for the types to be read. Since the default value for the argument is typemax(Int64), the newest dataset is read by default. For snapshots the `list_snapshots` function returns a list of all stored snapshots in the file. ```@docs list_snapshots ``` ## Metadata It's possible to attach Metadata to the parameters and globals of a simulation. ```@docs write_metadata write_sim_metadata read_metadata read_sim_metadata ``` ## Restrictions and Workarounds The exact datastructs that can be stored and read from a HDF5 depends in the HDF5.jl implementation. E.g. before v0.16.15 Tuples where not supported. The following functions are workarounds for two current restrictions. ```@docs create_namedtuple_converter create_enum_converter ``` ## Example Model The tutorials in the documentation does not include examples for the file storage functionality, but this [model](https://git.zib.de/sfuerst/vahana-episim/) is a good example, which also demonstrates checkpointing (resuming a simulation after an interruption), and working with initial snapshots (the initialized simulation state is stored after the graph structure is constructed and distributed to the different processes).
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
8893
```@meta EditURL = "../examples/hegselmann.jl" ``` # Utilizing Graphs.jl # Goal This tutorial illustrates how to integrate graphs that support the `AbstractGraph` interface from the Graphs.jl package into a Vahana simulation and the visualization support for Vahana graphs. For this purpose, we implement the opinion dynamics model of [Hegselmann and Krause (2002)](http://jasss.soc.surrey.ac.uk/5/3/2.html). An alternative implementation of the same model using the Agents.jl package can be found [here](https://juliadynamics.github.io/Agents.jl/v4.0/examples/hk/). # Agent and Edge Types ````@example hegselmann using Vahana, Statistics ```` We have a finite number $n$ of agents, where the state of the agents are a real number $x_i(t)$ in the [0,1] interval which represents the opinion of that agent. ````@example hegselmann struct HKAgent opinion::Float64 end ```` This time we have only one network that determine the agents that will be considered when an agent updates its opinion. ````@example hegselmann struct Knows end ```` Beside these two types there is a *confidence bound* $\epsilon > 0$, opinions with a difference greater than $\epsilon$ are ignored by the agents in the transition function. All agents have the same confidence bound, so we introduce this bound as a parameter. ````@example hegselmann const hkmodel = ModelTypes() |> register_agenttype!(HKAgent) |> register_edgetype!(Knows) |> register_param!(:ϵ, 0.02) |> # the confidence bound create_model("Hegselmann-Krause"); nothing #hide ```` # Adding a Graph Vahana allows adding `SimpleGraphs` and `SimpleDiGraphs` from the [Graphs.jl](https://juliagraphs.org/Graphs.jl/dev/) package via the [`add_graph!`](@ref) function. So it is possible to use e.g. [SNAPDatasets](https://github.com/JuliaGraphs/SNAPDatasets.jl) to run the opinion model on real datasets, or the SimpleGraphs module from Graphs.jl to create synthetic graphs. We demonstrate here both use cases and are creating a separate simulation for each one. ````@example hegselmann const cgsim = create_simulation(hkmodel); const snapsim = create_simulation(hkmodel) ```` ## SimpleGraphs First we will show how we can add a synthetic graph. For this we need to import the SimpleGraphs module. Since there are many functions in the Graphs.jl package with the same name as in Vahana (e.g. add_edge!), it is advisable to import only the needed parts of Graphs.jl instead of loading the whole package via `using Graphs`. ````@example hegselmann import Graphs.SimpleGraphs ```` We want to add a complete graph, where each agent is connected with all the other agents, like in the Agents.jl implementation. We can create such a graph via `SimpleGraphs.complete_graph`. ````@example hegselmann g = SimpleGraphs.complete_graph(50) ```` Vahana needs the information how to convert the nodes and edges of the SimpleGraphs object to the Vahana structure. This is done by the constructor functions in the third and forth arguments of [`add_graph!`](@ref). We do not need the Graph.vertex and Graph.edge arguments of this constructor functions, but for other use cases e.g. for bipartite graphs, it would be possible to create agents of different types depending on this information. ````@example hegselmann const agentids = add_graph!(cgsim, g, _ -> HKAgent(rand()), _ -> Knows()); nothing #hide ```` Each agent also adds its own opinion to the calculation. We can use the ids returned by the [`add_graph!`](@ref) functions for this. ````@example hegselmann foreach(id -> add_edge!(cgsim, id, id, Knows()), agentids) finish_init!(cgsim) ```` ## SNAPDataset.jl The SNAPDataset.jl package delivers Graphs.jl formatted datasets from the [Stanford Large Network Dataset Collection](https://snap.stanford.edu/data/index.html). ````@example hegselmann using SNAPDatasets ```` With this package we can use the `loadsnap` function to create the graph that is then added to the Vahana graph, e.g. in our example the facebook dataset. ````@example hegselmann const snapids = add_graph!(snapsim, loadsnap(:facebook_combined), _ -> HKAgent(rand()), _ -> Knows()); nothing #hide ```` Again each agent adds its own opinion to the calculation. ````@example hegselmann foreach(id -> add_edge!(snapsim, id, id, Knows()), snapids) finish_init!(snapsim) ```` # The Transition Function Opinions are updated synchronously according to ```math \begin{aligned} x_i(t+1) &= \frac{1}{| \mathcal{N}_i(t) |} \sum_{j \in \mathcal{N}_i(t)} x_j(t)\\ \textrm{where } \quad \mathcal{N}_i(t) &= \{ j : \| x_j(t) - x_i(t) \| \leq \epsilon \} \end{aligned} ``` So we first filter all agents from the neighbors with an opinion outside of the confidence bound, and then calculate the mean of the opinions of the remaining agents. ````@example hegselmann function step(agent, id, sim) ϵ = param(sim, :ϵ) opinions = map(a -> a.opinion, neighborstates(sim, id, Knows, HKAgent)) accepted = filter(opinions) do opinion abs(opinion - agent.opinion) < ϵ end HKAgent(mean(accepted)) end; nothing #hide ```` We can now apply the transition function to the complete graph simulation ````@example hegselmann apply!(cgsim, step, HKAgent, [ HKAgent, Knows ], HKAgent) ```` Or to our facebook dataset ````@example hegselmann apply!(snapsim, step, HKAgent, [ HKAgent, Knows ], HKAgent) ```` # Creating Plots Finally, we show the visualization possibilities for graphs, and import the necessary packages for this and create a colormap for the nodes. ````@example hegselmann import CairoMakie, GraphMakie, NetworkLayout, Colors, Graphs, Makie ```` Since the full graph is very cluttered and the Facebook dataset is too large, we construct a Clique graph using Graphs.jl. ````@example hegselmann const cysim = create_simulation(hkmodel) |> set_param!(:ϵ, 0.25); const cyids = add_graph!(cysim, SimpleGraphs.clique_graph(7, 8), _ -> HKAgent(rand()), _ -> Knows()); foreach(id -> add_edge!(cysim, id, id, Knows()), cyids) finish_init!(cysim); nothing #hide ```` Vahana implements an interactive plot function based on GraphMakie, where agents and edges are given different colors per type by default, and the state of each agent/edge is displayed via mouse hover actions. ````@example hegselmann vp = create_graphplot(cysim) figure(vp) ```` To modify the created plot, the Makie figure, axis and plot, can be accessed via the methods `figure`, `axis` and `plot`. This allows us to modify the graph layout and to remove the decorations. ````@example hegselmann Vahana.plot(vp).layout = NetworkLayout.Stress() Makie.hidedecorations!(axis(vp)) figure(vp) ```` To visualize the agents' opinions, we can leverage Vahana's integration with Makie's plotting capabilities. Instead of directly modifying the `node_color` property of the Makie plot, we can define custom visualization functions. These functions, which can have methods for different agent and edge types, are used by [`create_graphplot`](@ref) to determine various properties of nodes and edges in the plot. This approach not only allows for more dynamic and type-specific visualizations but also supports interactive plots when using GLMakie as the backend. We'll define a function called `modify_vis` that specifies how different elements should be displayed. This function will be passed to [`create_graphplot`](@ref) via the `update_fn` keyword argument. ````@example hegselmann colors = Colors.range(Colors.colorant"red", stop=Colors.colorant"green", length=100) modify_vis(state::HKAgent, _ ,_) = Dict(:node_color => colors[state.opinion * 100 |> ceil |> Int], :node_size => 15) modify_vis(_::Knows, _, _, _) = Dict(:edge_color => :lightgrey, :edge_width => 0.5); function plot_opinion(sim) vp = create_graphplot(cysim, update_fn = modify_vis) Vahana.plot(vp).layout = NetworkLayout.Stress() Makie.hidedecorations!(axis(vp)) Makie.Colorbar(figure(vp)[:, 2]; colormap = colors) figure(vp) end; nothing #hide ```` And now we can plot the initial state ````@example hegselmann plot_opinion(cysim) ```` And then the state after 500 iterations ````@example hegselmann for _ in 1:500 apply!(cysim, step, [ HKAgent ], [ HKAgent, Knows ], [ HKAgent ]) end plot_opinion(cysim) ```` # Finish the Simulation As always, it is important to call `finish_simulation` at the end of the simulation to avoid memory leaks. ````@example hegselmann finish_simulation!(cysim); nothing #hide ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
3860
```@meta CurrentModule = Vahana --> ``` # Introduction Vahana.jl is an open-source high-performance software framework for the development of large-scale agent-based models (ABM) of complex social systems. Vahana is based on a discrete dynamical systems formulation referred to as a synchronous graph dynamical system (SyGDS)[^1], which is a generalization of cellular automata (CA). In a CA the cells can be interpreted as the agents, and when a cell/agent updates its state according to a rule, the new state depends only on the current state of the cell and the states of the cells in its neighborhood. In a SyGDS, the vertices of the graph are the agents of the model, and the (directed) edges determine the neighborhood. Vahana extends the SyGDSs concept so that even complex models like the Mobility Transition Model (https://github.com/CoeGSS-Project/motmo) or MATSim Episim (https://github.com/matsim-org/matsim-episim-libs) can be expressed as a SyGDS. The vertices are representing the agents and may be of different types and have a state that belongs to a type-specific state space. Edges between the agents are directed, if a transition of agent ``a`` depends on the state of agent ``b``, an edge from ``b`` to ``a`` is needed. Edges may also have different types (represent different kinds of interactions) and may have also a state. There can be multiple transition functions (which are the equivalent of a rule in a CA), and each transition function can act on a different subgraph. (Discrete) spatial information can be added using Vahana functions that insert grid cells as nodes in the graph and have access to a mapping from the Cartesian index of the underlaying space to the corresponding node. Since the cells are vertices of the graph, they can be treated in the same way as other agents To model the system's dynamic evolution, we consider discrete time steps. At each step ``t``, there is a set of vertices which can change their own state and also add new vertices and edges. The new state of a node at time ``t`` is computed based only on information from the previous step. Information from step ``t-1`` usually includes the previous state of the agent itself, and may include states of adjacent agents in the graph, possibly also the states of the respective edges themselves. The underlying idea is that of a functional programming approach: the transition cannot be implicitly affected by any other mutable state or unintended side effects. So expressing a model as a SyGDS has the advantage that a single simulation can be computed in parallel. Vahana therefore allows the simulation to be distributed across multiple nodes of a computer cluster, enabling the simulation of large-scale models that do not fit on a single node. Parallelization is done through the Message Passing Interface (via the MPI.jl package), but this is hidden to the user. Any model developed with Vahana can be automatically computed in parallel by simply starting the simulation via mpirun. The challenge for the user is mainly to think about how to express the model as a SyGDS, rather than thinking about technical details of the implementation such as which data structure is best to use. In addition to this documentation, Fürst et al. (2024)[^2] provides a comprehensive discussion of the SyGDS extension for Vahana.jl. It also includes two case studies and performance analyses. [^1]: Adiga, A., Kuhlman, C.J., Marathe, M.V. et al. Graphical dynamical systems and their applications to bio-social systems. [https://doi.org/10.1007/s12572-018-0237-6](https://doi.org/10.1007/s12572-018-0237-6) [^2]: Fürst, S., Conrad, T., Jaeger, C., & Wolf, S. (2024). Vahana.jl - A framework (not only) for large-scale agent-based models. arXiv:2406.14441. [https://doi.org/10.48550/arXiv.2406.14441](https://doi.org/10.48550/arXiv.2406.14441)
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
1996
```@meta CurrentModule = Vahana ``` # Initialization After we created a simulation by calling [`create_simulation`](@ref), we must build the initial state of the simulation. As in Vahana the state of a model is represented as a graph, this means we must add the nodes (our agents) and edges to the graph. ```@docs add_agent! add_agents! ``` !!! warning The IDs created by `add_agent(s)!` contain Vahana internal information, that can change after an [`apply!`](@ref) or the [`finish_init!`](@ref) call. It is even possible that different agents have the same ID at different times. This has the implication, that the IDs can only be used temporary and should not be stored in the state of an agent or edge. ```@docs Edge add_edge! add_edges! ``` ## Graphs It is also possible to use [graph generators](https://juliagraphs.org/Graphs.jl/stable/core_functions/simplegraphs_generators/) from the Graphs.jl package to construct the initial state. Or parts of it, since you can combine it with all the other functions described on this page. Since Graphs.jl has overlapping function names with Vahana, it is advisable to import only the SimpleGraphs module from Graphs.jl. ```@docs add_graph! ``` There is also two function with works the other way and converts the underlying graph of an simulation (or a subset of this graph) to a structure that fulfills the AbstractGraph or AbstractSimpleGraph interface from the Graphs.jl package. ```@docs vahanagraph vahanasimplegraph ``` ## Raster The process for adding raster data to a simulation is documented [here](raster.md). ## Set Parameters After creating a simulation, you can modify parameter values using [`set_param!`](@ref) until the simulation is initialized with [`finish_init!`](@ref). ```@docs set_param! ``` ## Finish initialization After all the initial state has been built using the functions described above, `finish_init!` must be called before the first call of [`apply!`](@ref) ```@docs finish_init! ```
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
291
```@meta CurrentModule = Vahana ``` # Logging Vahana utilize Julia's Standard Logging Library to optionally create log files with e.g. the duration of the transition functions. For each process a seperate file is created. ```@docs set_log_path create_logger! with_logger log_overview ```
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
1170
```@meta CurrentModule = Vahana ``` # Misc Here are the remaining exported Vahana definitions that do not fit into any of the previous categories: ## Agents ```@docs ProcessID AgentID all_agents all_agentids num_agents add_agent_per_process! ``` ## Edges ```@docs all_edges num_edges(sim, t::Type{T}, sum_ranks = true; write = nothing) where T ``` ## REPL Vahana has some features that support model development via Julia's interactive command line REPL. In this case, the simulation is not parallelized, but the same code runs later via parallelization without requiring any (or minimal) changes. Beside the pretty-printing of a simulation as shown in the tutorial(s), there are also additional functions that allows to investigate the current state of a simulation: ```@docs show_agent DataFrames.DataFrame(sim::Simulation, T::DataType) ``` [`apply`](@ref) can be used to calculate a transition function without modifying the original state. This can be useful in the development process, but for the final simulation the function should be replaced with the modifying version `apply!`. ## Simulation ```@docs copy_simulation finish_simulation! ```
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
6713
# Parallel simulations Vahana supports parallel simulations using MPI (Message Passing Interface), allowing for significant performance improvements when running large-scale models. To run a Vahana simulation in parallel, you can use the mpirun or mpiexec command, specifying the number of processes with the -np parameter. For example: ```mpirun -np 4 julia your_model.jl``` The `-np` parameter indicates the number of processes/threads to be used for the simulation. This approach works without any additional changes in the model code. However, there are ways to further optimize performance in a parallel simulation: ## MPI.jl Integration Vahana utilizes the MPI.jl package for its parallel computing capabilities. While no specific MPI knowledge is required to use Vahana's parallel features, users may find it beneficial to review the [Configuration section](https://juliaparallel.org/MPI.jl/stable/configuration/) of the [MPI.jl documentation](https://juliaparallel.org/MPI.jl/stable/) for a deeper understanding of the underlying parallel computing framework. For advanced users or specific scenarios, it's possible to work directly with MPI.jl functions within your Vahana model. When using Vahana in parallel mode, MPI is automatically initialized, and the following MPI-related variables are available: - `mpi.comm`: The MPI communicator object. - `mpi.rank`: An integer identifying the current process (0-based). - `mpi.size`: The total number of processes in the parallel computation. Remember that while direct use of MPI functions can provide additional flexibility, it also requires careful handling to maintain consistency across all processes and avoid potential race conditions or deadlocks. ## Partitioning The simulation graph is partitioned and distributed in the [`finish_init!`](@ref) call. By default, the [Metis.jl](https://github.com/JuliaSparse/Metis.jl) package is used for this. However, during this process, the information about the different agent types is lost. As a result, if multiple agent types are used, it is possible that the number of agents is unevenly distributed for a single agent type. To address this issue, an alternative partitioning scheme, `:EqualAgentNumbers`, is available. However, this scheme ignores the edges and number of cuts in the graph. In order to optimize the partitioning for your specific model, it can be very useful to perform your own partitioning and pass it to [`finish_init!`](@ref). An example of this can be seen in the `create_partition` function of the [Vahana Episim Example](https://git.zib.de/sfuerst/vahana-episim/-/blob/main/src/init.jl). ## Using @rootonly It's helpful to understand that in MPI programs, all processes execute the same program code, but operate on different data. In a typical Vahana program, up to the [`finish_init!`](@ref) call, all processes runs the same code that creates the initial graph and therefore, if there are `n` processes, the complete graph is generated `n` times. However, at the [`finish_init!`](@ref) step, only the graph from process 0 (the root process) is considered, and the graphs constructed on all other processes are discarded. Although this is not necessarily problematic, it can be beneficial to construct the graph only on the root processes, especially if files are being read during the initialization phase. To execute instructions only on the root process, you can use the `@rootonly` macro. For example, the [Vahana Episim example](https://git.zib.de/sfuerst/vahana-episim) includes the following code before the [`finish_init!`](@ref) call: ``` @rootonly begin worldid = add_agent!(sim, World()) healthauthid = add_agent!(sim, HealthAuthority(0, 0, 0)) @info "read persons" persons = read_persons!(config.synpop_file) @info "read events" read_events!(sim, config.events_all, persons, worldid, healthauthid) @info "finish init" end ``` Alternatively you could also check the `mpi.isroot` predicate. It is important that [`finish_init!`](@ref) is called by all processes and not only by the root process, and also some other functions like e.g. [`write_snapshot`](@ref) must be called collectively from all processes. ## Write a snapshot after `finish_init!` If creating the initial state takes time and the process is deterministic, it is a good idea to save the state after [`finish_init!`](@ref) with [`write_snapshot`](@ref) and read this snapshot with [`read_snapshot!`](@ref) instead of recreating the graph each time. If the process of generating the initial state is time-consuming, it is advisable to save the state after the `finish_init!` function completes. This can be achieved by calling the `write_snapshot` function. Subsequently, instead of recreating the initial graph for each simulation, you can read this snapshot using the `read_snapshot!` function instead. The [Vahana Episim example](https://git.zib.de/sfuerst/vahana-episim/episim.jl) serves as a demonstration of how to implement this approach effectively. ## The :IgnoreSourceState hint This hint requires additional explanation about what happens internally when [`apply!`](@ref) is called. In a parallel simulation, at the beginning of [`apply!`](@ref), it is checked whether the transition function needs to read the state of an agent type that may have changed since the last state read. If this is the case, it checks all accessible edges (specified in the `read` argument of `apply!`) and transmits the state of agents that can be accessed (i.e., the agent type must also be included in the `read` argument) to the corresponding process. However, there are cases where it is clear that only the IDs of the agents will be accessed via a specific edge type, and not the agent state itself. To avoid the overhead of transmitting state between agents that will never be read, the `:IgnoreSourceState` hint can be used for those edge types. This hint only affects parallel simulations, as there is nothing to transmit in a serial simulation. ## Avoid agentstate calls Instead of using [`agentstate`](@ref) to access the state of an agent, sometimes it is possible for an agent to actively send the required state associated with an edge to another agent that needs that information. This can significantly improve performance, especially when combined with the `:IgnoreSourceState` hint if necessary. For example, in a Game of Life implementation, active cells can generate an edge to their neighbors if the cell is active. If this edge has the `:NumEdgesOnly` hint, it will directly trigger the counting process of the neighbors without the need to transfer the full state to other agents/processes.
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
8118
# Performance Tuning This section provides some explanations on how to fine-tune the simulation performance. These tips are specific to Vahana. Of course, all the generic performance tips, such as writing `type-stable` functions, still apply. ## Optional Assertions Vahana includes some checks on the usage of the Vahana API that can impact runtime performance. For example, in [`agentstate`](@ref), there are checks to ensure that the specified agenttype matches the agent's ID. These assertions that could degrade performance can be disabled by calling `disable_asserts(false)`. The recommended approach is to enable assertions during the model development phase but disable them when the model "goes into production", such as before starting a parameter space exploration. ## Type Hints It is possible to provide Vahana with hints about the types of agents or edges to improve the runtime performance and/or reduce memory requirements. You can use either hint independently or combine them as needed for your specific types. Aside from the `:SingleEdge` hint, there is generally no requirement to modify the model code when a type hint is introduced to a type. The interface to Vahana remains consistent, with the restriction that certain functions may be unavailable. For instance, if the `:IgnoreFrom` hint is specified for an edge type, there is no [`edgestates`](@ref) method available for this type, as Vahana has not retained the identifiers of neighboring entities and, consequently, cannot retrieve their corresponding states. When implementing a model, it is a sensible approach to keep the assertions active and disregard hints. Upon completing the implementation, the next step should be to activated hints and evaluate their impact on performance. Subsequently, after selecting the best hint combination that does not trigger assertions, these can be deactivated as well. ### Agent Hints Vahana supports two hints for agent types: `:Immortal` and `:Independent`. When an agent type is marked as `:Immortal`, it indicates that agents of this type will never be removed from the simulation. By default, Vahana assumes that agents can be removed (by returning nothing in a transition function). The `:Immortal` hint allows Vahana to skip certain checks and operations related to agent removal, potentially improving performance. The :Independent hint indicates that agents of this type do not access the state of other agents of the same type during transition functions. This information allows Vahana to optimize memory usage and reduce unnecessary data copying. ### Edge Hints Almost all hints can be combined in any way you prefer. For example, the combination of `:IgnoreFrom` and `:Stateless` may seem useless at first because no concrete edge information will be stored when [`add_edge!`](@ref) is called. However, Vahana still keeps track of the number of edges that have the agent as the target node. This information alone, or combined with the `:SingleEdge` hint, can often be sufficient. You can refer to the `Die` or `Eat` edges in the [Predator example](predator.md) for an illustration. The only combination that is not allowed is `:SingleType` + `:SingleEdge`, unless you also set `:Stateless` and `:IgnoreFrom`. Vahana supports five hints for edge types, which can be specified as optional arguments in the [`register_edgetype!`](@ref) function: - `:IgnoreFrom`: Excludes storage of the source node's ID. - `:Stateless`: Stores only the source node's ID, omitting any additional state information. - `:SingleType`: Indicates that all target nodes are of the same type, while source nodes can vary. This hint requires setting the target keyword (explained below). - `:SingleEdge`: Specifies that each agent can be the target of at most one edge of this type. In the case that also the `:IgnoreFrom` and `:Stateless` hint are also set, multiple edges to an agent of this type can be created, but the only information available later is that at least one edge exists, as only the [has_edge](#Defined-Functions) is defined. - `:IgnoreSourceState`: Indicates that the source agent's ID is not used to access its state. This hint is particularly relevant for parallel simulations and is explained [here](./performance.md#:IgnoreSourceState). These hints can be combined flexibly to suit your model's needs. For instance, combining `:IgnoreFrom` and `:Stateless` might seem redundant as it stores no explicit edge information when add_edge! is called. However, Vahana still maintains a count of edges targeting each agent per type. E.g. the Die and Eat edges in the [Adding Spatial Information tutorial](performance.md) only needs the information that such an edge exists for an agent. Therefore for both types the `:IgnoreFrom`, `:Stateless` and `:SingleEdge` (or the [`:HasEdgeOnly`](#Special-Hint-Combinations)) hints could be set. Most hint combinations are permissible, with one exception: :SingleType and :SingleEdge cannot be used together unless :Stateless and :IgnoreFrom are also specified. #### :SingleType `target` keyword argument When the `:SingleType` hint is set, it is necessary to add the `target` keyword argument to the [`register_edgetype!`](@ref) function. The value of this argument should be the type of the target agents. #### Defined Functions The following functions can be used to access the graph within [`apply!`](@ref), but their availability depends on the edge type hints: | function | not available for edge type with the hint (combination) | |:------------------------------------------|:--------------------------------------------------------| | [`edges`](@ref) | `:IgnoreFrom` or `:Stateless` | | [`neighborids`](@ref) | `:IgnoreFrom` | | [`neighborstates`](@ref) | `:IgnoreFrom` | | [`edgestates`](@ref), [`mapreduce`](@ref) | `:Stateless` | | [`num_edges`](@ref) | `:SingleEdge` | | [`has_edge`](@ref) | always available | As mentioned earlier, the Vahana API differs slightly when the `:SingleEdge` hint is set. This specifically affects the functions listed here, with the exception of `num_edges`, `has_edges`, and `mapreduce`. Normally, these functions return a vector containing edges, IDs, or states (or `nothing`). However, when used in combination with the `:SingleEdge` hint, they return only a single edge, ID, or state (or `nothing`), as the hint implies that there can be at most one edge of that type. #### Special Hint Combinations Additionally, there are two property combinations that can be set in [`register_edgetype!`](@ref) using a single symbol, which directly expresses the intended combination: - `:NumEdgesOnly`: This corresponds to the combination of `:IgnoreFrom` and `:Stateless`. In this case, only the number of edges is counted, so only calls to [`num_edges`](@ref) and [`has_edge`](@ref) are possible. - `:HasEdgeOnly`: This corresponds to the combination of `:IgnoreFrom`, `:Stateless`, and `:SingleEdge`. In this case, only calls to [`has_edge`](@ref) are possible. ## Iterator Versions of Edge Functions Vahana offers iterator versions of several functions used to access edge and neighbor information, including [`neighborids_iter`](@ref), [`edgestates_iter`](@ref), [`neighborstates_iter`](@ref), and [`neighborstates_flexible_iter`](@ref). The iterator functions work similarly to their non-iterator counterparts but return an iterator instead of a vector. This approach can be more memory-efficient as it doesn't create a full vector in memory. Instead, values are computed on-demand, which can be faster if you don't need to process all elements. They work well with Julia's built-in functions like map, filter, and reduce, allowing for efficient chaining of operations.
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
214
```@meta CurrentModule = Vahana ``` # Plots Visualization is not the main focus of Vahana, but two rudimentary auxiliary functions exist for creating plots with Makie. ```@docs plot_globals create_graphplot ```
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
19963
```@meta EditURL = "../examples/predator.jl" ``` # Adding Spatial Information # Goal This example demonstrates how spatial information can be integrated into an agent-based model using Vahana. While Vahana's primary focus is on graph-based simulations, it support the inclusion of spatial information into models. It allows you to define a spatial grid, associate agents with specific locations, and implement interactions based on spatial proximity, even though the underlying implementation still operates on graph structures. It's worth noting that in its current version, Vahana may not be the optimal choice for models that primarily depend on frequent movement of agents across space. However, as this example will show, it is entirely possible to implement those models. It allows you to define a spatial grid, associate agents with specific locations, and implement interactions based on spatial proximity, all while leveraging Vahana's efficient graph-based computations. For the understanding of how Vahana handles spatial information and rasters, you may find it helpful to watch also the [corresponding section of the Vahana.jl Juliacon video](https://youtu.be/-318ec-kCBM?si=YNnWLrb-_7RPSEPB&t=1198). The video provides a visual explanation of how rasters are implemented within Vahana's graph-based framework and demonstrates some key concepts that we'll be applying in this tutorial. In this tutorial, we'll implement a predator-prey model with spatial components, showcasing how Vahana's raster functionality can be used to create a spatially-explicit ecological simulation. The model is based on the [Predator-Prey for High-Performance Computing](https://peerj.com/articles/cs-36/) (PPHPC) model. In PPHPC the agents move randomly, in our implementation the prey move to locations with grass (if one is in sight) and the predators move to locations with prey to demonstrate how features like this can be implemented in Vahana. # Agent and Edge Types ````@example predator using CairoMakie, Vahana, Random Random.seed!(1); #hide detect_stateless(true) #hide ```` In our spatial predator-prey model, we define separate structures for predators and prey, even though they share the same fields: ````@example predator struct Predator energy::Int64 pos::CartesianIndex{2} end struct Prey energy::Int64 pos::CartesianIndex{2} end ```` Despite their identical structure, we define them as separate types because Vahana uses these types as tags for differentiating between agent categories. In the following sections, we'll use "Species" as an umbrella term to refer to both Predator and Prey. Functions that are applicable to both types will take the type as a parameter, which we'll denote as Species in the function arguments. Aside from the predator and prey agents, the spatial environment is represented by grid cells, which are also implemented as agents and consequently function as nodes within the graph structure. ````@example predator struct Cell pos::CartesianIndex{2} countdown::Int64 end ```` All agents maintain their position as part of their internal state. However, a cell can only perceive the animals if they are directly connected to the cell through an edge. Vahana facilitates the establishment of such edges via the [`move_to!`](@ref) function. Edges represent connections from prey or predators to cells. We define Position as a parametric type, enabling cells to distinguish between prey and predators based on the type of the edges. ````@example predator struct Position{T} end ```` Views are also edges from the cells to the prey and predators respectively. These edges represent the cells that are visible to a prey or predator so that, for example, it is possible to check which cell in the visible area contains food. ````@example predator struct View{T} end ```` VisiblePrey edges represent connections from prey to predator. Currently, all edge types link animals to cells, and without an incoming edge from prey, a predator lacks awareness of prey positions. The VisiblePrey edges are generated by cells through the `find_prey` transition function, as cells possess knowledge of which Prey entities are directly located on the cell via the Position{Prey} edges, and consequently within the view of a predator via the View{Predator} edges. ````@example predator struct VisiblePrey end ```` The last two edge types are messages to inform the agents that they must die or find something to eat. ````@example predator struct Die end struct Eat end ```` # Params and Globals We follow the parameter structure from the PPHPC model, but use (besides the initial population) the same parameters for Prey and Predator for the example run. ````@example predator Base.@kwdef mutable struct SpeciesParams init_population::Int64 = 500 gain_from_food::Int64 = 5 loss_per_turn::Int64 = 1 repro_thres::Int64 = 5 repro_prob::Int64 = 20 end Base.@kwdef struct AllParams raster_size::Tuple{Int64, Int64} = (100, 100) restart::Int64 = 5 predator::SpeciesParams = SpeciesParams() prey::SpeciesParams = SpeciesParams() end; params = AllParams() params.prey.init_population = 2000; nothing #hide ```` We are creating timeseries (in the form of `Vector`s) for the predator and prey population, the number of cells with food, and the average energy of the predators and prey. ````@example predator Base.@kwdef mutable struct PPGlobals predator_pop = Vector{Int64}() prey_pop = Vector{Int64}() cells_with_food = Vector{Int64}() mean_predator_energy = Vector{Float64}() mean_prey_energy = Vector{Float64}() end; nothing #hide ```` ## Create the Simulation We have now defined all the Julia structs needed to create the model and a simulation. ````@example predator const ppsim = ModelTypes() |> register_agenttype!(Predator) |> register_agenttype!(Prey) |> register_agenttype!(Cell) |> register_edgetype!(Position{Predator}) |> register_edgetype!(Position{Prey}) |> register_edgetype!(View{Predator}) |> register_edgetype!(View{Prey}) |> register_edgetype!(VisiblePrey) |> register_edgetype!(Die) |> register_edgetype!(Eat) |> create_model("Predator Prey") |> create_simulation(params, PPGlobals()) ```` ## Initialization First we add the Cells to the Simulation. Therefore we define a constructor function for the cells. There is a 50% probability that a cell contains food (and in this case `countdown` is 0). ````@example predator init_cell(pos::CartesianIndex) = Cell(pos, rand() < 0.5 ? 0 : rand(1:param(ppsim, :restart))) add_raster!(ppsim, :raster, param(ppsim, :raster_size), init_cell); nothing #hide ```` We define a auxiliary functions to facilitate the relocation of an agent to a new position. These functions will add a single `Position` edge from the animal to the cell at the `newpos` position, and for all cells within a Manhattan distance of 1, `View` edges will be established from those cells to and from the animal, as well as to the cell itself. ````@example predator function move!(sim, id, newpos, Species) move_to!(sim, :raster, id, newpos, nothing, Position{Species}()) move_to!(sim, :raster, id, newpos, View{Species}(), View{Species}(); distance = 1, metric = :manhatten) end; nothing #hide ```` The add_animals function is a generic initializer for both predators and prey, taking species-specific parameters and the species type as arguments. It creates a specified number of agents, each with a random position on the raster and a random initial energy within a defined range, then adds them to the simulation and places them on the raster using the move! function. ````@example predator function add_animals(params, Species) energyrange = 1:(2*params.gain_from_food) foreach(1:params.init_population) do _ pos = random_pos(ppsim, :raster) id = add_agent!(ppsim, Species(rand(energyrange), pos)) move!(ppsim, id, pos, Species) end end add_animals(param(ppsim, :prey), Prey) add_animals(param(ppsim, :predator), Predator) ```` At the end of the initialization phase we have to call finish_init! ````@example predator finish_init!(ppsim) ```` ## Transition Functions As mentioned in the comment for the View type, the cells are responsible for connecting the Prey with the Predators. So each cell iterate over each prey on the cell and add edges to all predators that can view the cell. The underscore (_) as the first argument in the find_prey function signifies that we don't need to access the state of the cell itself. This is because the function only needs to check for the presence of edges and create new connections based on those edges, without using any information from the cell's internal state. As a result, when we call apply! for find_prey, we don't include Cell in the read argument. Consequently, Vahana passes Val(Cell) as the first argument to find_prey for multiple dispatch purposes, rather than the actual cell state. This approach optimizes performance by avoiding unnecessary data access and allows the function to operate solely on the graph structure of the simulation. ````@example predator function find_prey(_::Val{Cell}, id, sim) if has_edge(sim, id, Position{Prey}) && has_edge(sim, id, View{Predator}) for preyid in neighborids(sim, id, Position{Prey}) for predid in neighborids(sim, id, View{Predator}) add_edge!(sim, preyid, predid, VisiblePrey()) end end end end; nothing #hide ```` If a predator has enough energy left to move and there is a prey in the predator's field of view, a random prey is selected and its position is used as the new position. If no prey is visible, a random cell in the predator's field of view is selected as the new position. If there is not enough energy left, the transition function returns `nothing`, which means that the predator dies and is no longer part of the graph. ````@example predator function move(state::Predator, id, sim) e = state.energy - param(sim, :predator).loss_per_turn if e > 0 # we need to access the pos of the prey which is part of it's state prey = neighborstates(sim, id, VisiblePrey, Prey) newpos = if isnothing(prey) nextcellid = rand(neighborids(sim, id, View{Predator})) agentstate(sim, nextcellid, Cell).pos else rand(prey).pos end move!(sim, id, newpos, Predator) Predator(e, newpos) else nothing end end; nothing #hide ```` The movement logic for prey differs from that of predators in terms of their target. While predators seek cells containing prey, prey agents search for cells with available grass. In our implementation of the PPHPC (Predator-Prey for High-Performance Computing) model, grass availability is indicated by the countdown field of a cell. Specifically, grass is considered available for consumption when a cell's countdown value equals 0. ````@example predator function move(state::Prey, id, sim) e = state.energy - param(sim, :prey).loss_per_turn if e > 0 withgrass = filter(neighborids(sim, id, View{Prey})) do id agentstate(sim, id, Cell).countdown == 0 end nextcellid = if length(withgrass) == 0 rand(neighborids(sim, id, View{Prey})) else rand(withgrass) end newpos = agentstate(sim, nextcellid, Cell).pos move!(sim, id, newpos, Prey) Prey(e, newpos) else nothing end end; nothing #hide ```` If a cell has no grass and the countdown field is therefore > 0, the countdown is decreased by 1. ````@example predator function grow_food(state::Cell, _, _) Cell(state.pos, max(state.countdown - 1, 0)) end; nothing #hide ```` The try_eat transition function simulates the predator-prey interactions and feeding processes within each cell. When both predators and prey occupy the same cell, the function generates random predator-prey pairings, ensuring each prey is targeted at most once and each predator consumes no more than one prey. These interactions are represented by creating Die edges from the cell to the consumed prey and Eat edges from the cell to the successful predators. If any prey survive this process and the cell contains available grass (indicated by a countdown of 0), an Eat edge is established between the cell and a randomly selected surviving prey, simulating grazing behavior. ````@example predator function try_eat(state::Cell, id, sim) predators = neighborids(sim, id, Position{Predator}) prey = neighborids(sim, id, Position{Prey}) # first the predators eat the prey, in case that both are on the cell if ! isnothing(predators) && ! isnothing(prey) prey = Set(prey) for pred in shuffle(predators) if length(prey) > 0 p = rand(prey) add_edge!(sim, id, p, Die()) add_edge!(sim, id, pred, Eat()) delete!(prey, p) end end end # then check if there is prey left that can eat the grass if ! isnothing(prey) && length(prey) > 0 && state.countdown == 0 add_edge!(sim, id, rand(prey), Eat()) Cell(state.pos, param(sim, :restart)) else state end end; nothing #hide ```` The reproduction mechanism for both predators and prey follows a similar pattern, allowing us to define a generic function applicable to both species. This function first determines if the animal found something to eat by checking for the presence of an Eat edge targeting the animal, a result of previous transition functions. If such an edge exists, the animal's energy increases. The function then evaluates if the animal's energy exceeds a specified threshold parameter. When this condition is met, reproduction occurs: a new offspring is introduced to the simulation via the add_agent call, inheriting half of its parent's energy, and is positioned at the same location as its parent using the move! function. ````@example predator function try_reproduce_imp(state, id, sim, species_params, Species) if has_edge(sim, id, Eat) state = Species(state.energy + species_params.gain_from_food, state.pos) end if state.energy > species_params.repro_thres && rand() * 100 < species_params.repro_prob energy_offspring = Int64(round(state.energy / 2)) newid = add_agent!(sim, Species(energy_offspring, state.pos)) move!(sim, newid, state.pos, Species) Species(state.energy - energy_offspring, state.pos) else state end end; nothing #hide ```` For the Predator we can just call the reproduce function with the necessary arguments. ````@example predator try_reproduce(state::Predator, id, sim) = try_reproduce_imp(state, id, sim, param(sim, :predator), Predator) ```` The prey animal needs an extra step because it might have been eaten by a predator. So, we check if there is a `Die` edge leading to the prey animal, and if so, the prey animal is removed from the simulation (by returning nothing). Otherwise, we again just call the reproduce function defined above. ````@example predator function try_reproduce(state::Prey, id, sim) if has_edge(sim, id, Die) return nothing end try_reproduce_imp(state, id, sim, param(sim, :prey), Prey) end; nothing #hide ```` We update the global values and use the `mapreduce` method to count the population and the number of cells with food. Based on the values, we can then also calculate the mean energy values. ````@example predator function update_globals(sim) push_global!(sim, :predator_pop, mapreduce(sim, _ -> 1, +, Predator; init = 0)) push_global!(sim, :prey_pop, mapreduce(sim, _ -> 1, +, Prey; init = 0)) push_global!(sim, :cells_with_food, mapreduce(sim, c -> c.countdown == 0, +, Cell)) push_global!(sim, :mean_predator_energy, mapreduce(sim, p -> p.energy, +, Predator; init = 0) / last(get_global(sim, :predator_pop))) push_global!(sim, :mean_prey_energy, mapreduce(sim, p -> p.energy, +, Prey; init = 0) / last(get_global(sim, :prey_pop))) end; nothing #hide ```` We add to our time series also the values after the initialization. ````@example predator update_globals(ppsim); nothing #hide ```` And finally we define in which order our transitions functions are called. Worth mentioning here are the keyword arguments in `find_prey` and `try_reproduce`. The add_existing keyword in the try_reproduce transition function signify that the currently existing position and view edges should not be removed, and only additional edges should be added, in our case the position of the potential offspring. ````@example predator function step!(sim) apply!(sim, move, [ Prey ], [ Prey, View{Prey}, Cell ], [ Prey, View{Prey}, Position{Prey} ]) apply!(sim, find_prey, [ Cell ], [ Position{Prey}, View{Predator} ], [ VisiblePrey ]) apply!(sim, move, [ Predator ], [ Predator, View{Predator}, Cell, Prey, VisiblePrey ], [ Predator, View{Predator}, Position{Predator} ]) apply!(sim, grow_food, Cell, Cell, Cell) apply!(sim, try_eat, [ Cell ], [ Cell, Position{Predator}, Position{Prey} ], [ Cell, Die, Eat ]) apply!(sim, try_reproduce, [ Predator, Prey ], [ Predator, Prey, Die, Eat ], [ Predator, Prey, Position{Predator}, Position{Prey}, View{Predator}, View{Prey} ]; add_existing = [ Position{Predator}, Position{Prey}, View{Predator}, View{Prey} ]) update_globals(sim) end; nothing #hide ```` Now we can run the simulation ````@example predator for _ in 1:400 step!(ppsim) end ```` ## Plots To visualize the results we use the Makie package. ### Time series First, we will generate a line chart for the time series data stored in the global state. Vahana provides the `plot_globals` function for this purpose. This function not only returns the Makie Figure itself but also the Axis and Plots, allowing for further processing of the result. If you wish to display the default result, you can utilize the Julia `first` function to extract the figure from the returned tuple. ````@example predator plot_globals(ppsim, [ :predator_pop, :prey_pop, :cells_with_food ]) |> first ```` ### Spatial distribution To visualize the spatial information we can use `heatmap` in combination with the Vahana's `calc_raster` function. E.g. the number of Position{Prey} edges connected to a cell give us the number of Prey individuals currently on that cell. It would be nice to have a colorbar for the heatmaps so we define a small helper function that can be used in a pipe. ````@example predator function add_colorbar(hm) Makie.Colorbar(hm.figure[:,2], hm.plot) hm end; nothing #hide ```` #### Predators Positions ````@example predator calc_raster(ppsim, :raster, Int64, [ Position{Predator} ]) do id num_edges(ppsim, id, Position{Predator}) end |> heatmap |> add_colorbar ```` #### Prey Positions ````@example predator calc_raster(ppsim, :raster, Int64, [ Position{Prey} ]) do id num_edges(ppsim, id, Position{Prey}) end |> heatmap |> add_colorbar ```` #### Cells that contains food ````@example predator calc_raster(ppsim, :raster, Int64, [ Cell ]) do id agentstate(ppsim, id, Cell).countdown == 0 end |> heatmap |> add_colorbar ```` # Finish the Simulation As always, it is important to call `finish_simulation` at the end of the simulation to avoid memory leaks. ````@example predator finish_simulation!(ppsim); nothing #hide ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
1110
```@meta CurrentModule = Vahana ``` # Raster Spatial information can be added to the simulation in the form of one or more n-dimensional rasters. ```@docs add_raster! ``` Those rasters are implemented as part of the graph structure, with each cell represented as a node, so the cell types must be registered like the types of agents via `register_agenttype!`. To create edges between the cells, or between the cells and agents of other types via the following two helper functions. ```@docs connect_raster_neighbors! move_to! ``` The id of a cell for a given position can be archived via `cellid` ```@docs cellid ``` cellid id or position of a random cell can be drawn via: ```@docs random_pos random_cell ``` Such a raster is only a collection of nodes in the graph incl. an Vahana internal mapping from the cartesian coordinates to the cell IDs. Beside this mapping, cells are also just agents, but there are some Vahana functions that utilize the internal cartesian coordinates to create a n-dimensional representation of the state space. ```@docs calc_raster calc_rasterstate rastervalues ```
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
1.2.0
7c9f6cde952f95ae2936cb3c8abe1989b59f2f6b
docs
2088
```@meta CurrentModule = Vahana ``` # Transition Function After the initialization, the state of the simulation is modified by so called transition functions. See [Defining Transition Functions](tutorial1.md#Defining-Transition-Functions) for details. ```@docs apply! apply ``` !!! tip The agent types must be immutable, but in many cases the agent returned by a transition function will have a different state than the agent specified as a parameter. If only one field is changed, we still need to copy all other fields. The Setfield.jl package can be very useful in this case. Inside a transition function the following functions can be used to access the state of the simulation: ## Globals and Parameters ```@docs param get_global ``` ## Get Agent(state) ```@docs agentstate agentstate_flexible ``` To retrieve the states of all agents connected to a target agent through edges of a specific type, the `neighborstates_iter` functions can be beneficial. These functions combine the capabilities of [`neighborids`](@ref) and [`agentstate`](@ref), allowing you to easy access the desired information. ```@docs neighborstates neighborstates_flexible neighborstates_iter neighborstates_flexible_iter ``` ## Get Edge(state) ```@docs edges edgestates edgestates_iter neighborids neighborids_iter num_edges(::Simulation, id::AgentID, edgetype::Type) has_edge ``` For all the function like [`edges`](@ref) that returns `nothing` in the case that there is no edge with the agent as target, it can be useful to increase the readability of the code by using the `checked` function to test for `nothing`. ```@docs checked ``` ## Add Agents/Edges The following functions from the [Initialization] section (initialization.md) that add new agents or edges to a simulation can also be used inside a transition function, namely: * [`add_agent!`](@ref) and [`add_agents!`](@ref) * [`add_edge!`](@ref) and [`add_edges!`](@ref) * [`connect_raster_neighbors!`](@ref) * [`move_to!`](@ref) ## Remove Edges Since v1.2 it's also possible to remove edges: ```@docs remove_edges! ```
Vahana
https://github.com/s-fuerst/Vahana.jl.git
[ "MIT" ]
0.4.0
72f9df4854d3ee73097ce9f89871557848692541
code
96
using Coverage cd(joinpath(@__DIR__, "..")) do Codecov.submit(Codecov.process_folder()) end
ReadDatastores
https://github.com/BioJulia/ReadDatastores.jl.git
[ "MIT" ]
0.4.0
72f9df4854d3ee73097ce9f89871557848692541
code
608
using Documenter, ReadDatastores makedocs( format = Documenter.HTML(), sitename = "ReadDatastores.jl", pages = [ "Home" => "index.md", "Datastore types" => "read-datastores.md", "Building & loading datastores" => "build-datastores.md", "Indexing & Iteration" => "indexing.md", "Additional Methods" => "additional-methods.md" ], authors = "Ben J. Ward, The BioJulia Organisation and other contributors." ) deploydocs( repo = "github.com/BioJulia/ReadDatastores.jl.git", deps = nothing, make = nothing, push_preview = true )
ReadDatastores
https://github.com/BioJulia/ReadDatastores.jl.git
[ "MIT" ]
0.4.0
72f9df4854d3ee73097ce9f89871557848692541
code
10812
module ReadDatastores export ReadDatastore, PairedReads, PairedReadOrientation, FwRv, RvFw, LongReads, LinkedReads, UCDavis10x, DatastoreBuffer, name, max_read_length, orientation, load_sequence!, buffer, read_tag, stream, @openreads, @reads_str using BioSequences, FASTX const ReadDatastoreMAGIC = 0x05D5 @enum Filetype::UInt16 begin PairedDS = 1 LongDS = 2 LinkedDS = 3 end ### ### Writing helpers ### @inline function writestring(fd::IO, s::AbstractString) write(fd, s) + write(fd, '\0') end @inline function write_flat_vector(fd::IO, v::Vector{T}) where {T} n = UInt64(length(v)) return write(fd, n) + write(fd, v) end @inline function read_flat_vector!(fd::IO, v::Vector{T}) where {T} n = read(fd, UInt64) v = resize!(n) unsafe_read(fd, pointer(v), n * sizeof(T)) return v end @inline function read_flat_vector(fd::IO, ::Type{T}) where {T} n = read(fd, UInt64) v = Vector{T}(undef, n) unsafe_read(fd, pointer(v), n * sizeof(T)) return v end ### ### Abstract ReadDatastore type ### abstract type ReadDatastore{S<:LongSequence} end ### ### ReadDatastore custom exceptions ### struct MissingMagicError <: Exception filename::String end function Base.showerror(io::IO, e::MissingMagicError) print(io, "MissingMagicError: the file ") print(io, e.filename) print(io, " does not appear to be a valid read datastore file") print(io, ", it does not begin with the expected magic bytes.") end struct DatastoreTypeError{D<:ReadDatastore} <: Exception filename::String dstype::Filetype end function Base.showerror(io::IO, e::DatastoreTypeError{D}) where {D} print(io, "DatastoreTypeError: ") print(io, e.filename) print(io, " contains a ") if e.dstype === PairedDS print(io, "paired read datastore") elseif e.dstype === LongDS print(io, "long read datastore") elseif e.dstype === LinkedDS print(io, "linked read datastore") else print(io, "unknown datastore type") end print(io, " and cannot be opened as a ") print(io, D) end struct DatastoreVersionError{D<:ReadDatastore} <: Exception version::Int end struct DatastoreEncodingError{D<:ReadDatastore} <: Exception filename::String bpe::Int end function Base.showerror(io::IO, e::DatastoreEncodingError{D}) where {D} print(io, "DatastoreEncodingError: ") print(io, e.filename) print(io, " encodes reads using ") print(io, e.bpe) print(io, " bits per element and cannot be opened as a ") print(io, D) end function __validate_datastore_header(io::IOStream, dstype::Type{D}) where {D<:ReadDatastore} magic = read(io, UInt16) dstype = reinterpret(Filetype, read(io, UInt16)) version = read(io, UInt16) if magic !== ReadDatastoreMAGIC throw(MissingMagicError(io.name)) end if dstype !== __ds_type_code(D) throw(DatastoreTypeError{D}(io.name, dstype)) end if version !== __ds_version_code(D) throw(DatastoreVersionError{D}(version)) end bps = read(io, UInt64) if bps != BioSequences.bits_per_symbol(Alphabet(eltype(D))) throw(DatastoreEncodingError{D}(io.name, bps)) end end ### ### Concrete ReadDatastore type definitions ### include("short-reads.jl") include("paired-reads.jl") include("long-reads.jl") include("linked-reads.jl") include("sequence-buffer.jl") function Base.showerror(io::IO, e::DatastoreVersionError{<:PairedReads}) print(io, "DatastoreVersionError: ") print(io, "file format version of paired read datastore file (v") print(io, Int(e.version)) print(io, ") is deprecated: this version of ReadDatastores.jl supports v") print(io, Int(PairedDS_Version)) end function Base.showerror(io::IO, e::DatastoreVersionError{<:LongReads}) print(io, "DatastoreVersionError: ") print(io, "file format version of long read datastore file (v") print(io, Int(e.version)) print(io, ") is deprecated: this version of ReadDatastores.jl supports v") print(io, Int(LongDS_Version)) end function Base.showerror(io::IO, e::DatastoreVersionError{<:LinkedReads}) print(io, "DatastoreVersionError: ") print(io, "file format version of linked read datastore file (v") print(io, Int(e.version)) print(io, ") is deprecated: this version of ReadDatastores.jl supports v") print(io, Int(LinkedDS_Version)) end ### ### ReadDatastore generics ### @inline buffer(ds::ReadDatastore, buffer_size = DEFAULT_BUF_SIZE) = DatastoreBuffer(ds, buffer_size) # TODO: Phase out #"Get the length of the longest sequence in the datastore" #@inline maxseqlen(ds::ReadDatastore) = ds.max_read_len "Get the name of the datastore" @inline name(ds::ReadDatastore) = ds.name "Get a reference to the underlying filestream the datastore is using" @inline stream(ds::ReadDatastore) = ds.stream @inline Base.firstindex(ds::ReadDatastore) = 1 @inline Base.lastindex(ds::ReadDatastore) = length(ds) @inline Base.eachindex(ds::ReadDatastore) = Base.OneTo(lastindex(ds)) @inline Base.IteratorSize(ds::ReadDatastore) = Base.HasLength() @inline Base.IteratorEltype(ds::ReadDatastore) = Base.HasEltype() @inline Base.eltype(::Type{<:ReadDatastore{T}}) where {T} = T @inline Base.close(ds::ReadDatastore) = close(stream(ds)) @inline function Base.checkbounds(ds::ReadDatastore, i::Integer) if firstindex(ds) ≤ i ≤ lastindex(ds) return true end throw(BoundsError(ds, i)) end @inline function Base.iterate(ds::ReadDatastore, state = 1) @inbounds if firstindex(ds) ≤ state ≤ lastindex(ds) return ds[state], state + 1 else return nothing end end function Base.open(f::Function, ::Type{T}, filepath::AbstractString) where {T<:ReadDatastore} ds = open(T, filepath) try f(ds) finally close(ds) end end """ _load_sequence_data!(prds::PairedReads, seq::LongSequence{DNAAlphabet{4}}) Reads the sequence data from the current position of a datastore's stream, into a destination sequence `seq`. This function knows how much data to read from the stream, based on the sequence's data blob (i.e. `sizeof(BioSequences.encoded_data(seq))`). !!! warning Uses `unsafe_read`, makes the following assumptions - does not check any of them. - The stream is at the correct position, such that an `unsafe_read` will read the entirety of the sequence before hitting the end of file. Hitting EOF should result in an error being thrown anyway so... - The destination sequence is currently the correct size and has been resized appropriately before this function has been called. - The data in the stream of the datastore is encoded appropriately for the sequence type. """ function _load_sequence_data!(ds::ReadDatastore{T}, seq::T) where {T<:LongSequence} seqdata = BioSequences.encoded_data(seq) GC.@preserve seqdata unsafe_read(stream(ds), pointer(seqdata), sizeof(seqdata)) return seq end function deduce_datastore_type(filename::String)::DataType open(filename, "r") do io seekstart(io) mn = read(io, UInt16) @assert mn === ReadDatastoreMAGIC tp = reinterpret(Filetype, read(io, UInt16)) vn = read(io, UInt16) bpn = Int64(read(io, UInt64)) if tp === PairedDS #@assert vn === PairedDS_Version if vn !== PairedDS_Version throw(DatastoreVersionError{PairedReads{DNAAlphabet{bpn}}}(vn)) end out = PairedReads{DNAAlphabet{bpn}} elseif tp === LongDS @assert vn === LongDS_Version out = LongReads{DNAAlphabet{bpn}} elseif tp === LinkedDS @assert vn === LinkedDS_Version out = LinkedReads{DNAAlphabet{bpn}} else error("Unrecognized datastore type") end return out end end """ @openreads filename::String A convenience macro for opening read datastores. The open method for ReadDatastores requires the specific type of the ReadDatastore as the first argument. This can be cumbersome as the specific type of the datastore may be forgotten or not known in the first place if the user recieved the datastore from a colleague. This macro allows you to open a datastore using only the filename. The macro opens the file, peeks at the header and deduces the type of datastore contained in the file. It then returns a complete and correctly formed `open` command for the datastore. This allows the user to forget about the specific datastore type whilst still maintaining type certainty. """ macro openreads(filename::String) dstype = deduce_datastore_type(filename) return :(open($dstype, $filename)) end """ @openreads filename::String name A convenience macro for opening read datastores and assigning it a name other than the datastore's default name. The open method for ReadDatastores requires the specific type of the ReadDatastore as the first argument. This can be cumbersome as the specific type of the datastore may be forgotten or not known in the first place if the user recieved the datastore from a colleague. This macro allows you to open a datastore using only the filename. The macro opens the file, peeks at the header and deduces the type of datastore contained in the file. It then returns a complete and correctly formed `open` command for the datastore. This allows the user to forget about the specific datastore type whilst still maintaining type certainty. """ macro openreads(filename::String, name::Symbol) dstype = deduce_datastore_type(filename) return :(open($dstype, $filename, $(QuoteNode(name)))) end macro openreads(filename::String, binding::Symbol, expression::Expr) dstype = deduce_datastore_type(filename) quote open($dstype, $filename) do $(esc(binding)) $(esc(expression)) end end end macro openreads(filename::String, name::Symbol, binding::Symbol, expression::Expr) dstype = deduce_datastore_type(filename) quote open($dstype, $filename, $(QuoteNode(name))) do $(esc(binding)) $(esc(expression)) end end end macro openreads(filename::String, name::Symbol, fn::Symbol) dstype = deduce_datastore_type(filename) return :(open($fn, $dstype, $filename, $(QuoteNode(name)))) end macro reads_str(filename::String) dstype = deduce_datastore_type(filename) return open(dstype, filename) end macro reads_str(filename::String, flag) dstype = deduce_datastore_type(filename) if flag === "s" return open(dstype, filename) elseif flag === "d" return :(open($dstype, $filename)) else error("Invalid flag option") end end end # module
ReadDatastores
https://github.com/BioJulia/ReadDatastores.jl.git
[ "MIT" ]
0.4.0
72f9df4854d3ee73097ce9f89871557848692541
code
10933
abstract type LinkedReadsFormat end struct UCDavisTenX <: LinkedReadsFormat end struct RawTenX <: LinkedReadsFormat end const UCDavis10x = UCDavisTenX() const Raw10x = RawTenX() const LinkedTag = UInt32 mutable struct LinkedReadData{A<:DNAAlphabet} seq1::LongSequence{A} seq2::LongSequence{A} seqlen1::UInt64 seqlen2::UInt64 tag::LinkedTag end Base.isless(a::LinkedReadData, b::LinkedReadData) = a.tag < b.tag LinkedReadData{A}(len) where {A<:DNAAlphabet} = LinkedReadData{A}(LongSequence{A}(len), LongSequence{A}(len), zero(UInt64), zero(UInt64), zero(LinkedTag)) const LinkedDS_Version = 0x0003 function _extract_tag_and_sequences!(current_data::LinkedReadData, fwrec::FASTQ.Record, rvrec::FASTQ.Record, max_read_len::UInt64, ::UCDavisTenX) fwid = FASTQ.identifier(fwrec) newtag = zero(UInt32) @inbounds for i in 1:16 newtag <<= 2 letter = fwid[i] if letter == 'C' newtag = newtag + 1 elseif letter == 'G' newtag = newtag + 2 elseif letter == 'T' newtag = newtag + 3 elseif letter != 'A' newtag = zero(UInt32) break end end current_data.tag = newtag current_data.seqlen1 = UInt64(min(max_read_len, FASTQ.seqlen(fwrec))) current_data.seqlen2 = UInt64(min(max_read_len, FASTQ.seqlen(rvrec))) copyto!(current_data.seq1, 1, fwrec, 1, current_data.seqlen1) copyto!(current_data.seq2, 1, rvrec, 1, current_data.seqlen2) end struct LinkedReads{A<:DNAAlphabet} <: ShortReads{A} filename::String # Filename datastore was opened from. name::Symbol # Name of the datastore. Useful for other applications. defaultname::Symbol # Default name, useful for other applications. max_read_len::UInt64 # Maximum size of any read in this datastore. chunksize::UInt64 readpos_offset::UInt64 # read_tags::Vector{UInt32} # stream::IO end __ds_type_code(::Type{<:LinkedReads}) = LinkedDS __ds_version_code(::Type{<:LinkedReads}) = LinkedDS_Version """ LinkedReads{A}(fwq::FASTQ.Reader, rvq::FASTQ.Reader, outfile::String, name::String, format::LinkedReadsFormat, max_read_len::Integer, chunksize::Int = 1000000) where {A<:DNAAlphabet} Construct a Linked Read Datastore from a pair of FASTQ file readers. Paired sequencing reads typically come in the form of two FASTQ files, often named according to a convention `*_R1.fastq` and `*_R2.fastq`. One file contains all the "left" sequences of each pair, and the other contains all the "right" sequences of each pair. The first read pair is made of the first record in each file. # Arguments - `rdrx::FASTQ.Reader`: The reader of the `*_R1.fastq` file. - `rdxy::FASTQ.Reader`: The reader of the `*_R2.fastq` file. - `outfile::String`: A prefix for the datastore's filename, the full filename will include a ".prseq" extension, which will be added automatically. - `name::String`: A string denoting a default name for your datastore. Naming datastores is useful for downstream applications. - `format::LinkedReadsFormat`: Specify the linked reads format of your fastq files. If you have plain 10x files, set format to `Raw10x`. If you have 10x reads output in the UCDavis format, set the format to `UCDavis10x`. - `chunksize::Int = 1000000`: How many read pairs to process per disk batch during the tag sorting step of construction. # Examples ```jldoctest julia> using FASTX, ReadDatastores julia> fqa = open(FASTQ.Reader, "test/10x_tester_R1.fastq") FASTX.FASTQ.Reader{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(BioGenerics.Automa.State{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}(<mode=idle>), 1, 1, false), nothing) julia> fqb = open(FASTQ.Reader, "test/10x_tester_R2.fastq") FASTX.FASTQ.Reader{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(BioGenerics.Automa.State{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}(<mode=idle>), 1, 1, false), nothing) julia> ds = LinkedReads{DNAAlphabet{2s}}(fqa, fqb, "10xtest", "ucdavis-test", UCDavis10x, 250) [ Info: Building tag sorted chunks of 1000000 pairs [ Info: Dumping 83 tag-sorted read pairs to chunk 0 [ Info: Dumped [ Info: Processed 83 read pairs so far [ Info: Finished building tag sorted chunks [ Info: Performing merge from disk [ Info: Leaving space for 83 read_tag entries [ Info: Chunk 0 is finished [ Info: Finished merge from disk [ Info: Writing 83 read tag entries [ Info: Created linked sequence datastore with 83 sequence pairs Linked Read Datastore 'ucdavis-test': 166 reads (83 pairs) ``` """ function LinkedReads{A}(fwq::FASTQ.Reader, rvq::FASTQ.Reader, outfile::String, name::Union{String,Symbol}, format::LinkedReadsFormat, max_read_len::Integer, chunksize::Int = 1000000) where {A<:DNAAlphabet} return LinkedReads{A}(fwq, rvq, outfile, name, format, convert(UInt64, max_read_len), chunksize) end function LinkedReads{A}(fwq::FASTQ.Reader, rvq::FASTQ.Reader, outfile::String, name::Union{String,Symbol}, format::LinkedReadsFormat, max_read_len::UInt64, chunksize::Int = 1000000) where {A<:DNAAlphabet} n_pairs = 0 chunk_files = String[] @info string("Building tag sorted chunks of ", chunksize, " pairs") fwrec = FASTQ.Record() rvrec = FASTQ.Record() chunk_data = [LinkedReadData{A}(max_read_len) for _ in 1:chunksize] datachunksize = length(BioSequences.encoded_data(first(chunk_data).seq1)) while !eof(fwq) && !eof(rvq) # Read in `chunksize` read pairs. chunkfill = 0 while !eof(fwq) && !eof(rvq) && chunkfill < chunksize try # TODO: Get to the bottom of why this is nessecery to fix Windows issues. read!(fwq, fwrec) read!(rvq, rvrec) catch ex if isa(ex, EOFError) break end rethrow() end cd_i = chunk_data[chunkfill + 1] _extract_tag_and_sequences!(cd_i, fwrec, rvrec, max_read_len, format) if cd_i.tag != zero(UInt32) chunkfill = chunkfill + 1 end end # Sort the linked reads by tag sort!(view(chunk_data, 1:chunkfill)) # Dump the data to a chunk dump chunk_fd = open(string("sorted_chunk_", length(chunk_files), ".data"), "w") @info string("Dumping ", chunkfill, " tag-sorted read pairs to chunk ", length(chunk_files)) for j in 1:chunkfill cd_j = chunk_data[j] write(chunk_fd, cd_j.tag) write(chunk_fd, cd_j.seqlen1) write(chunk_fd, BioSequences.encoded_data(cd_j.seq1)) write(chunk_fd, cd_j.seqlen2) write(chunk_fd, BioSequences.encoded_data(cd_j.seq2)) end close(chunk_fd) push!(chunk_files, string("sorted_chunk_", length(chunk_files), ".data")) @info "Dumped" n_pairs = n_pairs + chunkfill @info string("Processed ", n_pairs, " read pairs so far") end close(fwq) close(rvq) @info "Finished building tag sorted chunks" @info "Performing merge from disk" read_tag = zeros(UInt32, n_pairs) @info string("Leaving space for ", n_pairs, " read_tag entries") bps = UInt64(BioSequences.bits_per_symbol(A())) output = open(outfile * ".lrseq", "w") # Write magic no, datastore type, version number, and bits per symbol. write(output, ReadDatastoreMAGIC, LinkedDS, LinkedDS_Version, bps) # Write the default name of the datastore. writestring(output, String(name)) # Write the read size, chunk size. write(output, max_read_len, datachunksize) read_tag_offset = position(output) write_flat_vector(output, read_tag) # Multiway merge of chunks... chunk_fds = map(x -> open(x, "r"), chunk_files) openfiles = length(chunk_fds) next_tags = Vector{UInt32}(undef, openfiles) for i in eachindex(chunk_fds) next_tags[i] = read(chunk_fds[i], LinkedTag) end filebuffer = Vector{UInt8}(undef, 16(datachunksize + 1)) empty!(read_tag) while openfiles > 0 mintag = minimum(next_tags) # Copy from each file until then next tag is > mintag for i in eachindex(chunk_fds) fd = chunk_fds[i] while !eof(fd) && next_tags[i] == mintag # Read from chunk file, and write to final file. readbytes!(fd, filebuffer) write(output, filebuffer) push!(read_tag, mintag) if eof(fd) openfiles = openfiles - 1 next_tags[i] = typemax(LinkedTag) @info string("Chunk ", i - 1, " is finished") else next_tags[i] = read(fd, LinkedTag) end end end end @info "Finished merge from disk" seek(output, read_tag_offset) @info string("Writing ", n_pairs, " read tag entries") write_flat_vector(output, read_tag) readspos = position(output) close(output) for fd in chunk_fds close(fd) end for fname in chunk_files rm(fname) end @info string("Created linked sequence datastore with ", n_pairs, " sequence pairs") return LinkedReads{A}(outfile * ".lrseq", Symbol(name), Symbol(name), max_read_len, datachunksize, readspos, read_tag, open(outfile * ".lrseq", "r")) end function Base.open(::Type{LinkedReads{A}}, filename::String, name::Union{Symbol,String,Nothing} = nothing) where {A<:DNAAlphabet} fd = open(filename, "r") __validate_datastore_header(fd, LinkedReads{A}) default_name = Symbol(readuntil(fd, '\0')) max_read_len = read(fd, UInt64) chunksize = read(fd, UInt64) read_tags = read_flat_vector(fd, UInt32) return LinkedReads{A}(filename, name === nothing ? default_name : Symbol(name), default_name, max_read_len, chunksize, position(fd), read_tags, fd) end @inline _read_data_begin(prds::LinkedReads) = prds.readpos_offset @inline _bytes_per_read(prds::LinkedReads) = (prds.chunksize + 1) * sizeof(UInt64) @inline max_read_length(prds::LinkedReads) = prds.max_read_len @inline Base.length(lrds::LinkedReads) = length(lrds.read_tags) * 2 Base.summary(io::IO, lrds::LinkedReads) = print(io, "Linked Read Datastore '", lrds.name, "': ", length(lrds), " reads (", div(length(lrds), 2), " pairs)") @inline inbounds_read_tag(lrds::LinkedReads, idx::Integer) = @inbounds lrds.read_tags[div(idx + 1, 2)] """ read_tag(lr::LinkedReads, i::Integer) Get the tag for the i'th read """ function read_tag(lr::LinkedReads, i::Integer) checkbounds(lr, i) inbounds_readtag(lr, i) end
ReadDatastores
https://github.com/BioJulia/ReadDatastores.jl.git
[ "MIT" ]
0.4.0
72f9df4854d3ee73097ce9f89871557848692541
code
6924
struct ReadPosSize offset::UInt64 sequence_size::UInt64 end Base.:(==)(x::ReadPosSize, y::ReadPosSize) = x.offset == y.offset && x.sequence_size == y.sequence_size struct LongReads{A<:DNAAlphabet} <: ReadDatastore{LongSequence{A}} filename::String name::Symbol default_name::Symbol read_to_file_positions::Vector{ReadPosSize} stream::IO end index(lrds::LongReads) = lrds.read_to_file_positions "Get the length of the longest sequence in the datastore" function max_read_length(lrds::LongReads) max = zero(UInt64) @inbounds for i in index(lrds) ss = i.sequence_size if i.sequence_size > max max = i.sequence_size end end return max end const LongDS_Version = 0x0003 __ds_type_code(::Type{<:LongReads}) = LongDS __ds_version_code(::Type{<:LongReads}) = LongDS_Version ### ### LongReads Header ### # | Field | Value | Type | # |:-----------------------------:|:------:|:-----------:| # | Magic number | 0x05D5 | UInt16 | 2 # | Datastore type | 0x0002 | UInt16 | 2 # | Version number | 0x0001 | UInt16 | 2 # | Number of bits used per nuc | 2 or 4 | UInt64 | 8 # | Index position in file | N/A | UInt64 | 8 # | Default name of the datastore | N/A | String | N """ LongReads{A}(rdr::FASTQ.Reader, outfile::String, name::String, min_size::Integer) where {A<:DNAAlphabet} Construct a Long Read Datastore from a FASTQ file reader. # Arguments - `rdr::FASTQ.Reader`: The reader of the fastq formatted file. - `outfile::String`: A prefix for the datastore's filename, the full filename will include a ".loseq" extension, which will be added automatically. - `name::String`: A string denoting a default name for your datastore. Naming datastores is useful for downstream applications. - `min_size::Integer`: A minimum read length (in base pairs). When building the datastore, if any read sequence is shorter than this cutoff, then the read will be discarded. # Examples ```jldoctest julia> using FASTX, ReadDatastores julia> longrdr = open(FASTQ.Reader, "test/human_nanopore_tester_2D.fastq") FASTX.FASTQ.Reader{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(BioGenerics.Automa.State{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}(<mode=idle>), 1, 1, false), nothing) julia> ds = LongReads{DNAAlphabet{2}}(longrdr, "human-nanopore-tester", "nanopore-test", 0) [ Info: Building long read datastore from FASTQ file [ Info: Writing long reads to datastore [ Info: Done writing paired read sequences to datastore [ Info: 0 reads were discarded due to a too short sequence [ Info: Writing index to datastore [ Info: Built long read datastore with 10 reads Long Read Datastore 'nanopore-test': 10 reads ``` """ LongReads{A}(rdr::FASTQ.Reader, outfile::String, name::Union{String,Symbol}, min_size::Integer) where {A<:DNAAlphabet} = LongReads{A}(rdr, outfile, name, convert(UInt64, min_size)) function LongReads{A}(rdr::FASTQ.Reader, outfile::String, name::Union{String,Symbol}, min_size::UInt64) where {A<:DNAAlphabet} discarded = 0 read_to_file_position = Vector{ReadPosSize}() ofs = open(outfile * ".loseq", "w") bps = UInt64(BioSequences.bits_per_symbol(A())) write(ofs, ReadDatastoreMAGIC, LongDS, LongDS_Version, bps, zero(UInt64)) writestring(ofs, String(name)) record = FASTQ.Record() seq = LongSequence{A}(min_size) @info "Building long read datastore from FASTQ file" @info "Writing long reads to datastore" while !eof(rdr) try # TODO: Get to the bottom of why this is nessecery to fix Windows issues. read!(rdr, record) catch ex if isa(ex, EOFError) break end rethrow() end seq_len = FASTQ.seqlen(record) if seq_len < min_size discarded = discarded + 1 continue end offset = position(ofs) resize!(seq, seq_len) copyto!(seq, record) push!(read_to_file_position, ReadPosSize(offset, seq_len)) write(ofs, seq.data) end @info "Done writing long read sequences to datastore" @info string(discarded, " reads were discarded due to a too short sequence") fpos = UInt64(position(ofs)) @info "Writing index to datastore" write_flat_vector(ofs, read_to_file_position) # Go to the top and dump the number of reads and the position of the index. seek(ofs, sizeof(ReadDatastoreMAGIC) + sizeof(Filetype) + sizeof(LongDS_Version) + sizeof(bps)) write(ofs, fpos) close(ofs) @info string("Built long read datastore with ", length(read_to_file_position), " reads") stream = open(outfile * ".loseq", "r+") return LongReads{A}(outfile * ".loseq", Symbol(name), Symbol(name), read_to_file_position, stream) end function Base.open(::Type{LongReads{A}}, filename::String, name::Union{String,Symbol,Nothing} = nothing) where {A<:DNAAlphabet} fd = open(filename, "r") __validate_datastore_header(fd, LongReads{A}) fpos = read(fd, UInt64) default_name = Symbol(readuntil(fd, '\0')) seek(fd, fpos) read_to_file_position = read_flat_vector(fd, ReadPosSize) return LongReads{A}(filename, name === nothing ? default_name : Symbol(name), default_name, read_to_file_position, fd) end ### ### Getting a sequence ### Base.length(lrds::LongReads) = length(lrds.read_to_file_positions) Base.summary(io::IO, lrds::LongReads) = print(io, "Long Read Datastore '", lrds.name, "': ", length(lrds), " reads") function Base.show(io::IO, lrds::LongReads) summary(io, lrds) end @inline _inbounds_index_of_sequence(lrds::LongReads, idx::Integer) = @inbounds lrds.read_to_file_positions[idx] @inline function inbounds_load_sequence!(lrds::LongReads{A}, pos::ReadPosSize, seq::LongSequence{A}) where {A<:DNAAlphabet} seek(stream(lrds), pos.offset) resize!(seq, pos.sequence_size) return _load_sequence_data!(lrds, seq) end @inline function inbounds_load_sequence!(lrds::LongReads{A}, idx::Integer, seq::LongSequence{A}) where {A<:DNAAlphabet} pos_size = _inbounds_index_of_sequence(lrds, idx) return inbounds_load_sequence!(lrds, pos_size, seq) end @inline function load_sequence!(lrds::LongReads{A}, idx::Integer, seq::LongSequence{A}) where {A<:DNAAlphabet} checkbounds(lrds, idx) return inbounds_load_sequence!(lrds, idx, seq) end @inline function Base.getindex(lrds::LongReads, idx::Integer) @boundscheck checkbounds(lrds, idx) pos_size = _inbounds_index_of_sequence(lrds, idx) seq = eltype(lrds)(pos_size.sequence_size) return inbounds_load_sequence!(lrds, pos_size, seq) end
ReadDatastores
https://github.com/BioJulia/ReadDatastores.jl.git
[ "MIT" ]
0.4.0
72f9df4854d3ee73097ce9f89871557848692541
code
9719
@enum PairedReadOrientation::UInt64 FwRv=1 RvFw=2 struct PairedReads{A<:DNAAlphabet} <: ShortReads{A} filename::String # Filename datastore was opened from. name::Symbol # Name of the datastore. Useful for other applications. defaultname::Symbol # Default name, useful for other applications. max_read_len::UInt64 # Maximum size of any read in this datastore. chunksize::UInt64 # Number of chunks (UInt64) of sequence data per read. fragsize::UInt64 # Fragment size of library. readpos_offset::UInt64 size::UInt64 orientation::PairedReadOrientation stream::IOStream end "Get the orientation of the read pairs" @inline orientation(prds::PairedReads) = prds.orientation # TODO: Phase out. #@inline BioSequences.bits_per_symbol(prds::PairedReads{A}) where {A<:DNAAlphabet} = BioSequences.bits_per_symbol(A()) ### ### PairedReads Header format on disk. ### # | Field | Value | Type | # |:-----------------:|:------:|:-----------:| # | Magic number | 0x05D5 | UInt16 | 2 0 # | Datastore type | 0x0001 | UInt16 | 2 2 # | Version number | 0x0001 | UInt16 | 2 4 # | Bits Per Nuc | N/A | UInt64 | 8 6 # | Default name | N/A | String | 7 # | Maximum read size | N/A | UInt64 | 8 # | Chunk size | N/A | UInt64 | 8 # | Fragment size | N/A | UInt64 | 8 # | Orientation | N/A | Orientation | 8 # | Number of Reads | N/A | UInt64 | 8 const PairedDS_Version = 0x0003 __ds_type_code(::Type{<:PairedReads}) = PairedDS __ds_version_code(::Type{<:PairedReads}) = PairedDS_Version """ PairedReads{A}(rdrx::FASTQ.Reader, rdry::FASTQ.Reader, outfile::String, name::Union{String,Symbol}, minsize::Integer, maxsize::Integer, fragsize::Integer, orientation::PairedReadOrientation) where {A<:DNAAlphabet} Construct a Paired Read Datastore from a pair of FASTQ file readers. Paired-end sequencing reads typically come in the form of two FASTQ files, often named according to a convention `*_R1.fastq` and `*_R2.fastq`. One file contains all the "left" sequences of each pair, and the other contains all the "right" sequences of each pair. The first read pair is made of the first record in each file. # Arguments - `rdrx::FASTQ.Reader`: The reader of the `*_R1.fastq` file. - `rdxy::FASTQ.Reader`: The reader of the `*_R2.fastq` file. - `outfile::String`: A prefix for the datastore's filename, the full filename will include a ".prseq" extension, which will be added automatically. - `name::String`: A string denoting a default name for your datastore. Naming datastores is useful for downstream applications. - `minsize::Integer`: A minimum read length (in base pairs). When building the datastore, if any pair of reads has one or both reads shorter than this cutoff, then the pair will be discarded. - `maxsize::Integer`: A maximum read length (in base pairs). When building the datastore, if any read has a greater length, it will be resized to this maximum length and added to the datastore. - `fragsize::Integer`: The average fragment length of the paired end library that was sequenced. This value is entirely optional, but may be important for downstream applications. - `orientation::PairedReadOrientation`: The orientation of the reads. Set it to `FwRv` for building a datastore from a sequenced paired end library, and set it to `RvFw` if you are building the datastore from reads sequenced from a long mate pair library. # Examples ```jldoctest julia> using FASTX, ReadDatastores julia> fwq = open(FASTQ.Reader, "test/ecoli_tester_R1.fastq") FASTX.FASTQ.Reader{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(BioGenerics.Automa.State{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}(<mode=idle>), 1, 1, false), nothing) julia> rvq = open(FASTQ.Reader, "test/ecoli_tester_R2.fastq") FASTX.FASTQ.Reader{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(BioGenerics.Automa.State{TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}}(TranscodingStreams.TranscodingStream{TranscodingStreams.Noop,IOStream}(<mode=idle>), 1, 1, false), nothing) julia> ds = PairedReads{DNAAlphabet{2}}(fwq, rvq, "ecoli-test-paired", "my-ecoli-test", 250, 300, 0, FwRv) [ Info: Building paired read datastore from FASTQ files [ Info: Writing paired reads to datastore [ Info: Done writing paired read sequences to datastore [ Info: 0 read pairs were discarded due to a too short sequence [ Info: 14 reads were truncated to 300 base pairs [ Info: Created paired sequence datastore with 10 sequence pairs Paired Read Datastore 'my-ecoli-test': 20 reads (10 pairs) ``` """ function PairedReads{A}(rdrx::FASTQ.Reader, rdry::FASTQ.Reader, outfile::String, name::Union{String,Symbol}, minsize::Integer, maxsize::Integer, fragsize::Integer, orientation::PairedReadOrientation) where {A<:DNAAlphabet} return PairedReads{A}(rdrx, rdry, outfile, name, convert(UInt64, minsize), convert(UInt64, maxsize), convert(UInt64, fragsize), orientation) end function PairedReads{A}(rdrx::FASTQ.Reader, rdry::FASTQ.Reader, outfile::String, name::Union{Symbol,String}, minsize::UInt64, maxsize::UInt64, fragsize::UInt64, orientation::PairedReadOrientation) where {A<:DNAAlphabet} # Create and allocate the sequence and record objects. lread = FASTQ.Record() rread = FASTQ.Record() lseq = LongSequence{A}(maxsize) rseq = LongSequence{A}(maxsize) #chunksize::UInt64 = BioSequences.seq_data_len(DNAAlphabet{4}, maxsize) chunksize::UInt64 = length(BioSequences.encoded_data(lseq)) bps = UInt64(BioSequences.bits_per_symbol(A())) fd = open(outfile * ".prseq", "w") # Write magic no, datastore type, version number. sizepos = write(fd, ReadDatastoreMAGIC, PairedDS, PairedDS_Version, bps) + # Write the default name of the datastore. writestring(fd, String(name)) + # Write the read size, and chunk size. write(fd, maxsize, chunksize, fragsize, orientation) # Write space for size variable (or number of read pairs). readpos = write(fd, UInt64(0)) + sizepos pairs = discarded = truncated = 0 p = 1 @info "Building paired read datastore from FASTQ files" @info "Writing paired reads to datastore" while !eof(rdrx) && !eof(rdry) # Read in the two records. try # TODO: Get to the bottom of why this is nessecery to fix Windows issues. read!(rdrx, lread) read!(rdry, rread) catch ex if isa(ex, EOFError) break end rethrow() end llen = UInt64(FASTQ.seqlen(lread)) rlen = UInt64(FASTQ.seqlen(rread)) # If either read is too short, discard them both. if llen < minsize || rlen < minsize discarded += 1 continue end if llen > maxsize truncated += 1 ln = maxsize else ln = llen end if rlen > maxsize truncated += 1 rn = maxsize else rn = rlen end pairs += 1 # Copy FASTQ records to sequence variables, thus encoding # them in 2 bit format. copyto!(lseq, 1, lread, 1, ln) copyto!(rseq, 1, rread, 1, rn) # Write the two sizes reads one after the other: # For each sequence, write the size, and then the datachunk. write(fd, ln) write(fd, lseq.data) write(fd, rn) write(fd, rseq.data) end nreads::UInt64 = pairs * 2 seek(fd, sizepos) write(fd, nreads) flush(fd) close(fd) @info "Done writing paired read sequences to datastore" @info string(discarded, " read pairs were discarded due to a too short sequence") @info string(truncated, " reads were truncated to ", maxsize, " base pairs") @info string("Created paired sequence datastore with ", pairs, " sequence pairs") stream = open(outfile * ".prseq", "r+") return PairedReads{A}(outfile * ".prseq", Symbol(name), Symbol(name), maxsize, chunksize, fragsize, readpos, nreads, orientation, stream) end function Base.open(::Type{PairedReads{A}}, filename::String, name::Union{String,Symbol,Nothing} = nothing) where {A<:DNAAlphabet} fd = open(filename, "r") __validate_datastore_header(fd, PairedReads{A}) default_name = Symbol(readuntil(fd, '\0')) max_read_len = read(fd, UInt64) chunksize = read(fd, UInt64) fragsize = read(fd, UInt64) orientation = reinterpret(PairedReadOrientation, read(fd, UInt64)) nreads = read(fd, UInt64) readpos_offset = position(fd) return PairedReads{A}(filename, name === nothing ? default_name : Symbol(name), default_name, max_read_len, chunksize, fragsize, readpos_offset, nreads, orientation, fd) end @inline Base.length(prds::PairedReads) = prds.size Base.summary(io::IO, prds::PairedReads) = print(io, "Paired Read Datastore '", prds.name, "': ", length(prds), " reads (", div(length(prds), 2), " pairs)") @inline _read_data_begin(prds::PairedReads) = prds.readpos_offset @inline _bytes_per_read(prds::PairedReads) = (prds.chunksize + 1) * sizeof(UInt64) @inline max_read_length(prds::PairedReads) = prds.max_read_len
ReadDatastores
https://github.com/BioJulia/ReadDatastores.jl.git
[ "MIT" ]
0.4.0
72f9df4854d3ee73097ce9f89871557848692541
code
6252
const DEFAULT_BUF_SIZE = UInt64(1024 * 1024 * 30) @inline megabytes(n::T) where {T<:Unsigned} = (T(1024) * T(1024)) * n @inline megabytes(n::Signed) = megabytes(unsigned(n)) @inline gigabytes(n::T) where {T<:Unsigned} = (T(1024) * T(1024) * T(1024)) * n @inline gigabytes(n::Signed) = gigabytes(unsigned(n)) mutable struct DatastoreBuffer{T<:ReadDatastore} data_store::T bufferdata::Vector{UInt8} buffer_position::Int end function DatastoreBuffer(ds::T, buffer_size = DEFAULT_BUF_SIZE) where {T<:ReadDatastore} return DatastoreBuffer{T}(ds, Vector{UInt8}(undef, buffer_size), typemax(Int)) end function DatastoreBuffer(ds::ShortReads, buffer_size = DEFAULT_BUF_SIZE) if _bytes_per_read(ds) > buffer_size error("Desired buffer size is too small") end return DatastoreBuffer{typeof(ds)}(ds, Vector{UInt8}(undef, buffer_size), typemax(Int)) end @inline buffer_len(sb::DatastoreBuffer) = length(buffer_array(sb)) @inline buffer_position(sb::DatastoreBuffer) = sb.buffer_position @inline bufferpos!(sb::DatastoreBuffer, pos) = sb.buffer_position = pos @inline datastore(sb::DatastoreBuffer) = sb.data_store @inline stream(sb::DatastoreBuffer) = stream(datastore(sb)) @inline buffer_array(sb::DatastoreBuffer) = sb.bufferdata @inline Base.eltype(sb::DatastoreBuffer) = Base.eltype(datastore(sb)) @inline Base.firstindex(sb::DatastoreBuffer) = firstindex(datastore(sb)) @inline Base.lastindex(sb::DatastoreBuffer) = lastindex(datastore(sb)) @inline Base.length(sb::DatastoreBuffer) = length(datastore(sb)) @inline Base.eachindex(sb::DatastoreBuffer) = eachindex(datastore(sb)) @inline Base.IteratorSize(sb::DatastoreBuffer) = Base.IteratorSize(datastore(sb)) @inline Base.IteratorEltype(sb::DatastoreBuffer) = Base.IteratorEltype(datastore(sb)) @inline Base.checkbounds(sb::DatastoreBuffer, i) = Base.checkbounds(datastore(sb), i) @inline function _load_sequence_data!(seq::LongSequence{A}, sb::DatastoreBuffer, offset::Integer) where {A<:DNAAlphabet} bufdata = buffer_array(sb) seqdata = BioSequences.encoded_data(seq) GC.@preserve bufdata begin for i in eachindex(seqdata) seqdata[i] = unsafe_load(convert(Ptr{UInt64}, pointer(bufdata, offset + 1))) offset = offset + sizeof(UInt64) end end return seq end # Short Reads specific buffering. @inline function _check_for_buffer_refresh!(sb::DatastoreBuffer{<:ShortReads{<:DNAAlphabet}}, file_offset::Integer) # IF the desired data is contained in the buffer, there's no need to refresh. # Otherwise, there is! buf_start = buffer_position(sb) buf_size = buffer_len(sb) file_end = file_offset + _bytes_per_read(datastore(sb)) if file_offset < buf_start || file_end > buf_start + buf_size bufferpos!(sb, file_offset) seek(stream(sb), file_offset) readbytes!(stream(sb), buffer_array(sb), buf_size) end end @inline function Base.getindex(sb::DatastoreBuffer{<:ShortReads{<:DNAAlphabet}}, idx::Integer) @boundscheck checkbounds(sb, idx) file_offset = _offset_of_sequence(datastore(sb), idx) _check_for_buffer_refresh!(sb, file_offset) buffer_offset = file_offset - buffer_position(sb) sequence_length = unsafe_load(convert(Ptr{UInt64}, pointer(buffer_array(sb), buffer_offset + 1))) buffer_offset = buffer_offset + sizeof(UInt64) seq = eltype(sb)(sequence_length) return _load_sequence_data!(seq, sb, buffer_offset) end @inline function inbounds_load_sequence!(sb::DatastoreBuffer{<:ShortReads{A}}, i::Integer, seq::LongSequence{A}) where {A<:DNAAlphabet} file_offset = _offset_of_sequence(datastore(sb), i) _check_for_buffer_refresh!(sb, file_offset) buffer_offset = file_offset - buffer_position(sb) sequence_length = unsafe_load(convert(Ptr{UInt64}, pointer(buffer_array(sb), buffer_offset + 1))) buffer_offset = buffer_offset + sizeof(UInt64) resize!(seq, sequence_length) return _load_sequence_data!(seq, sb, buffer_offset) end # Long reads specific buffering @inline function _check_for_buffer_refresh!(sb::DatastoreBuffer{LongReads{A}}, filepos::ReadPosSize) where {A<:DNAAlphabet} # If the buffer is too small to even fit the sequence. It will need to be # resized to be made bigger. n_bytes_req = cld(filepos.sequence_size, div(8, BioSequences.bits_per_symbol(A()))) buf_start = buffer_position(sb) buf_size = buffer_len(sb) if buf_size < n_bytes_req @info "Resizing buffer!" resize!(sb.bufferdata, n_bytes_req) buf_size = n_bytes_req end file_start = filepos.offset file_end = file_start + n_bytes_req if file_start < buf_start || file_end > buf_start + buf_size bufferpos!(sb, file_start) seek(stream(sb), file_start) readbytes!(stream(sb), buffer_array(sb), buf_size) end end @inline function inbounds_load_sequence!(sb::DatastoreBuffer{LongReads{A}}, i::Integer, seq::LongSequence{A}) where {A<:DNAAlphabet} file_index = _inbounds_index_of_sequence(datastore(sb), i) _check_for_buffer_refresh!(sb, file_index) resize!(seq, file_index.sequence_size) buffer_offset = file_index.offset - buffer_position(sb) return _load_sequence_data!(seq, sb, buffer_offset) end @inline function Base.getindex(sb::DatastoreBuffer{LongReads{A}}, idx::Integer) where {A<:DNAAlphabet} @boundscheck checkbounds(sb, idx) file_index = _inbounds_index_of_sequence(datastore(sb), idx) _check_for_buffer_refresh!(sb, file_index) seq = eltype(sb)(file_index.sequence_size) buffer_offset = file_index.offset - buffer_position(sb) return _load_sequence_data!(seq, sb, buffer_offset) end @inline function load_sequence!(sb::DatastoreBuffer{DS}, i::Integer, seq::T) where {T<:LongSequence,DS<:ReadDatastore{T}} checkbounds(sb, i) return inbounds_load_sequence!(sb, i, seq) end @inline function Base.iterate(sb::DatastoreBuffer, state = 1) @inbounds if firstindex(sb) ≤ state ≤ lastindex(sb) return sb[state], state + 1 else return nothing end end @inline Base.summary(io::IO, sb::DatastoreBuffer) = print(io, "Buffered ", summary(datastore(sb))) @inline Base.show(io::IO, sb::DatastoreBuffer) = summary(io, sb)
ReadDatastores
https://github.com/BioJulia/ReadDatastores.jl.git