Datasets:

Modalities:
Text
Formats:
csv
Libraries:
Datasets
pandas
License:
dardem's picture
Update README.md
4f67067 verified
metadata
license: cc-by-sa-4.0

Citation

@inproceedings{rydelek-etal-2023-adamr,
    title = "{A}dam{R} at {S}em{E}val-2023 Task 10: Solving the Class Imbalance Problem in Sexism Detection with Ensemble Learning",
    author = "Rydelek, Adam  and
      Dementieva, Daryna  and
      Groh, Georg",
    editor = {Ojha, Atul Kr.  and
      Do{\u{g}}ru{\"o}z, A. Seza  and
      Da San Martino, Giovanni  and
      Tayyar Madabushi, Harish  and
      Kumar, Ritesh  and
      Sartori, Elisa},
    booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.semeval-1.190",
    doi = "10.18653/v1/2023.semeval-1.190",
    pages = "1371--1381",
    abstract = "The Explainable Detection of Online Sexism task presents the problem of explainable sexism detection through fine-grained categorisation of sexist cases with three subtasks. Our team experimented with different ways to combat class imbalance throughout the tasks using data augmentation and loss alteration techniques. We tackled the challenge by utilising ensembles of Transformer models trained on different datasets, which are tested to find the balance between performance and interpretability. This solution ranked us in the top 40{\%} of teams for each of the tracks.",
}