Upload folder using huggingface_hub (#13)
Browse files- e43dc86f22177911c7ed14bf5ccd8362495e7c603b751e6c8da4515727cbf14c (5b962207caf715a4f28aa9699e643cbcaee17d55)
- 866f914895d62abb7a8b0677ea47f2cef56460d295cdcc48e02e4a442023013f (1953bf5688b39097a5bcb0b55c41eb5cf18593d7)
- 0dd9e865f71b47952a3b2cdb125f6a3c1a51600caa92c71cc0d8345033143a8e (b0849d2975a61d3534e94f3dc1af71bbf5aabeaf)
- 93d25463f392e65503fe59a5dcf9b950d6b770b4340bd83c408776412899a0e5 (c6373ae65de466c89c9028f55fc7a95cd3ef3314)
- 1f803277624906823a8f168ca4d7418e6a3f9b099da046827adf584093bb3c0f (89f6e60c927e6132c9030903ff7e673234379f63)
- 8c9be11e3bec88c20cee865fdfde76c9db80fb3f7c6408cf9569e19be7a869e7 (83e14bfdc674b2f2e0089c9cb7c41fc4651ec67f)
- 38161e67e8a70b6f3c70e78bbd546520cdeea07c50814bfff0dcc805ffbc2fa1 (6bfc8836b82503ff67ce48e1d0a9341490a29a82)
- 7c8bf6b0dbf196d9e9d7adbe4fb603c98f1651ec4573c4c0b3c36b4ab02036c9 (1100aeb39bbd2a2f0f0633d64992ea4fa9a06e02)
- 049126a7d0bfdaa170dbee79db20fc54e0493cd438383c9eef685a2f4795bcd7 (721b7f9b97d2a5101eee591959a9552f89ecf68c)
- .DS_Store +0 -0
- {chroma-db-langchain β chroma-db-all_sources}/chroma.sqlite3 +2 -2
- chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/data_level0.bin β chroma-db-all_sources/document_dict_all_sources.pkl +2 -2
- {chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967 β chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/data_level0.bin +2 -2
- {chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a β chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/header.bin +1 -1
- {chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967 β chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/index_metadata.pickle +2 -2
- {chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967 β chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/length.bin +2 -2
- {chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9 β chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/link_lists.bin +2 -2
- chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/length.bin +0 -3
- chroma-db-langchain/document_dict_langchain.pkl +0 -3
- chroma-db-llama_index/chroma.sqlite3 +0 -3
- chroma-db-llama_index/document_dict_llama_index.pkl +0 -3
- chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/header.bin +0 -3
- chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/link_lists.bin +0 -3
- chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/data_level0.bin +0 -3
- chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/index_metadata.pickle +0 -3
- chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/length.bin +0 -3
- chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/link_lists.bin +0 -3
- chroma-db-openai_cookbooks/chroma.sqlite3 +0 -3
- chroma-db-openai_cookbooks/document_dict_openai_cookbooks.pkl +0 -3
- chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/data_level0.bin +0 -3
- chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/header.bin +0 -3
- chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/length.bin +0 -3
- chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/link_lists.bin +0 -0
- chroma-db-peft/chroma.sqlite3 +0 -3
- chroma-db-peft/document_dict_peft.pkl +0 -3
- chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/data_level0.bin +0 -3
- chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/header.bin +0 -3
- chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/index_metadata.pickle +0 -3
- chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/length.bin +0 -3
- chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/link_lists.bin +0 -3
- chroma-db-transformers/chroma.sqlite3 +0 -3
- chroma-db-transformers/document_dict_transformers.pkl +0 -3
- chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/data_level0.bin +0 -3
- chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/header.bin +0 -3
- chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/length.bin +0 -3
- chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/link_lists.bin +0 -0
- chroma-db-trl/chroma.sqlite3 +0 -3
- chroma-db-trl/document_dict_trl.pkl +0 -3
- chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/header.bin β keyword_retriever_async.pkl +2 -2
- chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/index_metadata.pickle β keyword_retriever_sync.pkl +2 -2
- langchain_md_files/_templates/integration.mdx +0 -60
- langchain_md_files/additional_resources/arxiv_references.mdx +0 -863
- langchain_md_files/additional_resources/dependents.mdx +0 -554
- langchain_md_files/additional_resources/tutorials.mdx +0 -51
- langchain_md_files/additional_resources/youtube.mdx +0 -63
- langchain_md_files/changes/changelog/core.mdx +0 -10
- langchain_md_files/changes/changelog/langchain.mdx +0 -93
- langchain_md_files/concepts.mdx +0 -0
- langchain_md_files/contributing/code/guidelines.mdx +0 -35
Binary file (6.15 kB). View file
|
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fa4c8c3baa07aebe75e98b27653c2ee8364adab2d05cd59eb6c59db15f32b21
|
3 |
+
size 808640512
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee1075ea1f0dc8fae654fb8fdc2d12b2837932bff2986ecafb18f8f53bedc00c
|
3 |
+
size 80327711
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31de8589e4732c48104a4df11ee9b0c0b02095d9067272a611613d352fa6b7af
|
3 |
+
size 122844000
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 100
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cccbc3245a5cc2d78cef91615e5cb8a1ed6e71feb8aea1b3cf323ea80f27ba6b
|
3 |
size 100
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6803b25aabf97f6c7d3337fede7e0dc7f3e4ec5b4a9788c9648db4bf35f49c1
|
3 |
+
size 1680345
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6358caad0163b85e7f3953330383b87d1563c97c3ce387c0ced31d7c7e2a804
|
3 |
+
size 116000
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dde9ee1ee5c4e3bd08a5e505ac39f4834766327923cf5e12bf414873e12da62
|
3 |
+
size 251932
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ddcd641da818ad91c965694eac10a44785d16a8668a438b66c8424cc778baef7
|
3 |
-
size 24000
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8c24b5de6a028f9823036b20962891c7287b01f804d62ce15dd508494bc89eb8
|
3 |
-
size 9762214
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c5e49109f87feb4a809ebdf8959a980422db67b0e0225b51ee0c23f2c9af3fcd
|
3 |
-
size 235962368
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5e59ccd849ee0500a175687c77597b5970170bc8d1afb26f82bb058df71150f2
|
3 |
-
size 9655771
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fd7cfb541957dd514cb4cfdc247ec2c5d46c93bde9dd5f31ae24fdb456b9754b
|
3 |
-
size 100
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8e6f7bb6981a5c9f962684dfb4eddc41c4ebcc7d51f4348e2ed76920e7d0d698
|
3 |
-
size 61184
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:30530f5b774ce644134ff656ea0ad2a0cbe63f6eddc3226926c8a730d933746e
|
3 |
-
size 24856000
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:dcf2eabc3d876731469c40687897ca8c219e088189c29c4d1ef8ca2216e7b8be
|
3 |
-
size 114057
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d96a38e2a9ec1ca0e380b13a8bb9e2e29723e5b71e00e342fd4497a92e328a45
|
3 |
-
size 8000
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4cd0071af97255b9180f3809b7f8d098eebed62956f5abcb6a5d115431dcee74
|
3 |
-
size 17316
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6b4648eaa8091fc2b033b5ac983b0f66c133aaece317ee4f6958322ad48ca3f3
|
3 |
-
size 88666112
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d1b61dcd793c1f5995a2182c9dbbe84759d42c1d0babb4e47f99bb4363293605
|
3 |
-
size 3741933
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5b8d4b3825a7c7a773e22fa3eeef0e7d15a695f5c4183aeff5beb07741a68679
|
3 |
-
size 12428000
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e8a3ec48846fc6fdfaef19f5ed2508f0bf3da4a3c93b0f6b3dd21f0a22ec1026
|
3 |
-
size 100
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b573464ecbf09c406291e7c466209f06d69e272fd1b89f9fe800a34bdb91c226
|
3 |
-
size 4000
|
|
|
|
|
|
|
|
File without changes
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b36f58ccee36a79e20176c908eda56d403115cc39f16671c5be3886f5f136b13
|
3 |
-
size 5406720
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:389c05ff699fcd247c93b2678791f9c9f7eec2901d887730e034dffb1c7038e8
|
3 |
-
size 270073
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4905080b3461da13555985ff85c5660019a389e56c813bd3af94b74b674c9350
|
3 |
-
size 12428000
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:32b85e1f983554ee44ccfad97691e6a34167e44a21b142340c0d8d4b7e7b5615
|
3 |
-
size 100
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ceef146ebe3c4f4cdf6847d3af12419fec68b99abf2ef6b60fd0daae667fb6a7
|
3 |
-
size 56042
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e0de8d2fac125632afe04d41917c53cea67281576d82a011ae7a778ef3cb2684
|
3 |
-
size 4000
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5098cab52fc6f8df69adbe312a05d2df77efae77f3d769069da621c6b570a4d1
|
3 |
-
size 8148
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:25c626cb3a2cd7286126cadb2e1148d1a05c363c34bb8e6b1694427564b7dddc
|
3 |
-
size 65089536
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:136c1342439595a6dfefb2fee5c32139fffeb22cd5351f67b600803580b60aae
|
3 |
-
size 3255021
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5b8d4b3825a7c7a773e22fa3eeef0e7d15a695f5c4183aeff5beb07741a68679
|
3 |
-
size 12428000
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e8a3ec48846fc6fdfaef19f5ed2508f0bf3da4a3c93b0f6b3dd21f0a22ec1026
|
3 |
-
size 100
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:736e57c24fa009f96a9bd8ead552b4d3aa91ef5141de93d215f87dc0633a2f16
|
3 |
-
size 4000
|
|
|
|
|
|
|
|
File without changes
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f2f674cf5d0dff76e533a5e00159c74db7f503e9d03196269990f98989d1fe99
|
3 |
-
size 5853184
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d222b0677fed7d87f203b75dc8e8c607206ab246d3161bfabe1bd712ce8f09a6
|
3 |
-
size 283631
|
|
|
|
|
|
|
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5433fdb94f4d69d5af105f7fe8e69c882d9d82dfc473717d30792a182642567
|
3 |
+
size 108476897
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adb751586db749e2b6059590bf6638fd77cbbdb7d14a807b6ea9ecd3b22e6993
|
3 |
+
size 108476933
|
@@ -1,60 +0,0 @@
|
|
1 |
-
[comment: Please, a reference example here "docs/integrations/arxiv.md"]::
|
2 |
-
[comment: Use this template to create a new .md file in "docs/integrations/"]::
|
3 |
-
|
4 |
-
# Title_REPLACE_ME
|
5 |
-
|
6 |
-
[comment: Only one Tile/H1 is allowed!]::
|
7 |
-
|
8 |
-
>
|
9 |
-
[comment: Description: After reading this description, a reader should decide if this integration is good enough to try/follow reading OR]::
|
10 |
-
[comment: go to read the next integration doc. ]::
|
11 |
-
[comment: Description should include a link to the source for follow reading.]::
|
12 |
-
|
13 |
-
## Installation and Setup
|
14 |
-
|
15 |
-
[comment: Installation and Setup: All necessary additional package installations and setups for Tokens, etc]::
|
16 |
-
|
17 |
-
```bash
|
18 |
-
pip install package_name_REPLACE_ME
|
19 |
-
```
|
20 |
-
|
21 |
-
[comment: OR this text:]::
|
22 |
-
|
23 |
-
There isn't any special setup for it.
|
24 |
-
|
25 |
-
[comment: The next H2/## sections with names of the integration modules, like "LLM", "Text Embedding Models", etc]::
|
26 |
-
[comment: see "Modules" in the "index.html" page]::
|
27 |
-
[comment: Each H2 section should include a link to an example(s) and a Python code with the import of the integration class]::
|
28 |
-
[comment: Below are several example sections. Remove all unnecessary sections. Add all necessary sections not provided here.]::
|
29 |
-
|
30 |
-
## LLM
|
31 |
-
|
32 |
-
See a [usage example](/docs/integrations/llms/INCLUDE_REAL_NAME).
|
33 |
-
|
34 |
-
```python
|
35 |
-
from langchain_community.llms import integration_class_REPLACE_ME
|
36 |
-
```
|
37 |
-
|
38 |
-
## Text Embedding Models
|
39 |
-
|
40 |
-
See a [usage example](/docs/integrations/text_embedding/INCLUDE_REAL_NAME).
|
41 |
-
|
42 |
-
```python
|
43 |
-
from langchain_community.embeddings import integration_class_REPLACE_ME
|
44 |
-
```
|
45 |
-
|
46 |
-
## Chat models
|
47 |
-
|
48 |
-
See a [usage example](/docs/integrations/chat/INCLUDE_REAL_NAME).
|
49 |
-
|
50 |
-
```python
|
51 |
-
from langchain_community.chat_models import integration_class_REPLACE_ME
|
52 |
-
```
|
53 |
-
|
54 |
-
## Document Loader
|
55 |
-
|
56 |
-
See a [usage example](/docs/integrations/document_loaders/INCLUDE_REAL_NAME).
|
57 |
-
|
58 |
-
```python
|
59 |
-
from langchain_community.document_loaders import integration_class_REPLACE_ME
|
60 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,863 +0,0 @@
|
|
1 |
-
# arXiv
|
2 |
-
|
3 |
-
LangChain implements the latest research in the field of Natural Language Processing.
|
4 |
-
This page contains `arXiv` papers referenced in the LangChain Documentation, API Reference,
|
5 |
-
Templates, and Cookbooks.
|
6 |
-
|
7 |
-
From the opposite direction, scientists use `LangChain` in research and reference it in the research papers.
|
8 |
-
Here you find papers that reference:
|
9 |
-
- [LangChain](https://arxiv.org/search/?query=langchain&searchtype=all&source=header)
|
10 |
-
- [LangGraph](https://arxiv.org/search/?query=langgraph&searchtype=all&source=header)
|
11 |
-
- [LangSmith](https://arxiv.org/search/?query=langsmith&searchtype=all&source=header)
|
12 |
-
|
13 |
-
## Summary
|
14 |
-
|
15 |
-
| arXiv id / Title | Authors | Published date π» | LangChain Documentation|
|
16 |
-
|------------------|---------|-------------------|------------------------|
|
17 |
-
| `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024-02-06 | `Cookbook:` [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
|
18 |
-
| `2401.18059v1` [RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval](http://arxiv.org/abs/2401.18059v1) | Parth Sarthi, Salman Abdullah, Aditi Tuli, et al. | 2024-01-31 | `Cookbook:` [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
|
19 |
-
| `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024-01-29 | `Cookbook:` [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
|
20 |
-
| `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024-01-08 | `Cookbook:` [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
|
21 |
-
| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023-12-11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
|
22 |
-
| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023-11-15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
|
23 |
-
| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023-10-17 | `Cookbook:` [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
|
24 |
-
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023-10-09 | `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
|
25 |
-
| `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023-07-18 | `Cookbook:` [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
|
26 |
-
| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023-05-23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
|
27 |
-
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023-05-15 | `API:` [langchain_experimental.tot](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.tot), `Cookbook:` [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
|
28 |
-
| `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023-05-06 | `Cookbook:` [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
|
29 |
-
| `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023-05-03 | `API:` [langchain...LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
|
30 |
-
| `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023-04-17 | `Cookbook:` [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
|
31 |
-
| `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023-04-07 | `Cookbook:` [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
|
32 |
-
| `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023-03-31 | `Cookbook:` [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
|
33 |
-
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023-03-30 | `API:` [langchain_experimental.autonomous_agents](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
|
34 |
-
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community...OCIModelDeploymentTGI](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
35 |
-
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `API:` [langchain...HypotheticalDocumentEmbedder](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
|
36 |
-
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022-12-12 | `API:` [langchain_experimental.fallacy_removal](https://python.langchain.com/v0.2/api_reference//arxiv/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
|
37 |
-
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022-11-25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
|
38 |
-
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022-11-18 | `API:` [langchain_experimental.pal_chain](https://python.langchain.com/v0.2/api_reference//python/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://python.langchain.com/v0.2/api_reference/experimental/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), `Cookbook:` [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
|
39 |
-
| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022-10-06 | `Docs:` [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), `API:` [langchain...TrajectoryEvalChain](https://python.langchain.com/v0.2/api_reference/langchain/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain), [langchain...create_react_agent](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent)
|
40 |
-
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022-09-22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
|
41 |
-
| `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022-05-26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
|
42 |
-
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Γelebi, Holger Schwenk | 2022-05-25 | `API:` [langchain_community...LaserEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
|
43 |
-
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `API:` [langchain_community...SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
|
44 |
-
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022-02-01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
45 |
-
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021-02-26 | `API:` [langchain_experimental.open_clip](https://python.langchain.com/v0.2/api_reference//arxiv/experimental_api_reference.html#module-langchain_experimental.open_clip)
|
46 |
-
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019-09-11 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
47 |
-
|
48 |
-
## Self-Discover: Large Language Models Self-Compose Reasoning Structures
|
49 |
-
|
50 |
-
- **arXiv id:** [2402.03620v1](http://arxiv.org/abs/2402.03620v1) **Published Date:** 2024-02-06
|
51 |
-
- **Title:** Self-Discover: Large Language Models Self-Compose Reasoning Structures
|
52 |
-
- **Authors:** Pei Zhou, Jay Pujara, Xiang Ren, et al.
|
53 |
-
- **LangChain:**
|
54 |
-
|
55 |
-
- **Cookbook:** [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
|
56 |
-
|
57 |
-
**Abstract:** We introduce SELF-DISCOVER, a general framework for LLMs to self-discover the
|
58 |
-
task-intrinsic reasoning structures to tackle complex reasoning problems that
|
59 |
-
are challenging for typical prompting methods. Core to the framework is a
|
60 |
-
self-discovery process where LLMs select multiple atomic reasoning modules such
|
61 |
-
as critical thinking and step-by-step thinking, and compose them into an
|
62 |
-
explicit reasoning structure for LLMs to follow during decoding. SELF-DISCOVER
|
63 |
-
substantially improves GPT-4 and PaLM 2's performance on challenging reasoning
|
64 |
-
benchmarks such as BigBench-Hard, grounded agent reasoning, and MATH, by as
|
65 |
-
much as 32% compared to Chain of Thought (CoT). Furthermore, SELF-DISCOVER
|
66 |
-
outperforms inference-intensive methods such as CoT-Self-Consistency by more
|
67 |
-
than 20%, while requiring 10-40x fewer inference compute. Finally, we show that
|
68 |
-
the self-discovered reasoning structures are universally applicable across
|
69 |
-
model families: from PaLM 2-L to GPT-4, and from GPT-4 to Llama2, and share
|
70 |
-
commonalities with human reasoning patterns.
|
71 |
-
|
72 |
-
## RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
|
73 |
-
|
74 |
-
- **arXiv id:** [2401.18059v1](http://arxiv.org/abs/2401.18059v1) **Published Date:** 2024-01-31
|
75 |
-
- **Title:** RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
|
76 |
-
- **Authors:** Parth Sarthi, Salman Abdullah, Aditi Tuli, et al.
|
77 |
-
- **LangChain:**
|
78 |
-
|
79 |
-
- **Cookbook:** [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
|
80 |
-
|
81 |
-
**Abstract:** Retrieval-augmented language models can better adapt to changes in world
|
82 |
-
state and incorporate long-tail knowledge. However, most existing methods
|
83 |
-
retrieve only short contiguous chunks from a retrieval corpus, limiting
|
84 |
-
holistic understanding of the overall document context. We introduce the novel
|
85 |
-
approach of recursively embedding, clustering, and summarizing chunks of text,
|
86 |
-
constructing a tree with differing levels of summarization from the bottom up.
|
87 |
-
At inference time, our RAPTOR model retrieves from this tree, integrating
|
88 |
-
information across lengthy documents at different levels of abstraction.
|
89 |
-
Controlled experiments show that retrieval with recursive summaries offers
|
90 |
-
significant improvements over traditional retrieval-augmented LMs on several
|
91 |
-
tasks. On question-answering tasks that involve complex, multi-step reasoning,
|
92 |
-
we show state-of-the-art results; for example, by coupling RAPTOR retrieval
|
93 |
-
with the use of GPT-4, we can improve the best performance on the QuALITY
|
94 |
-
benchmark by 20% in absolute accuracy.
|
95 |
-
|
96 |
-
## Corrective Retrieval Augmented Generation
|
97 |
-
|
98 |
-
- **arXiv id:** [2401.15884v2](http://arxiv.org/abs/2401.15884v2) **Published Date:** 2024-01-29
|
99 |
-
- **Title:** Corrective Retrieval Augmented Generation
|
100 |
-
- **Authors:** Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al.
|
101 |
-
- **LangChain:**
|
102 |
-
|
103 |
-
- **Cookbook:** [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
|
104 |
-
|
105 |
-
**Abstract:** Large language models (LLMs) inevitably exhibit hallucinations since the
|
106 |
-
accuracy of generated texts cannot be secured solely by the parametric
|
107 |
-
knowledge they encapsulate. Although retrieval-augmented generation (RAG) is a
|
108 |
-
practicable complement to LLMs, it relies heavily on the relevance of retrieved
|
109 |
-
documents, raising concerns about how the model behaves if retrieval goes
|
110 |
-
wrong. To this end, we propose the Corrective Retrieval Augmented Generation
|
111 |
-
(CRAG) to improve the robustness of generation. Specifically, a lightweight
|
112 |
-
retrieval evaluator is designed to assess the overall quality of retrieved
|
113 |
-
documents for a query, returning a confidence degree based on which different
|
114 |
-
knowledge retrieval actions can be triggered. Since retrieval from static and
|
115 |
-
limited corpora can only return sub-optimal documents, large-scale web searches
|
116 |
-
are utilized as an extension for augmenting the retrieval results. Besides, a
|
117 |
-
decompose-then-recompose algorithm is designed for retrieved documents to
|
118 |
-
selectively focus on key information and filter out irrelevant information in
|
119 |
-
them. CRAG is plug-and-play and can be seamlessly coupled with various
|
120 |
-
RAG-based approaches. Experiments on four datasets covering short- and
|
121 |
-
long-form generation tasks show that CRAG can significantly improve the
|
122 |
-
performance of RAG-based approaches.
|
123 |
-
|
124 |
-
## Mixtral of Experts
|
125 |
-
|
126 |
-
- **arXiv id:** [2401.04088v1](http://arxiv.org/abs/2401.04088v1) **Published Date:** 2024-01-08
|
127 |
-
- **Title:** Mixtral of Experts
|
128 |
-
- **Authors:** Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al.
|
129 |
-
- **LangChain:**
|
130 |
-
|
131 |
-
- **Cookbook:** [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
|
132 |
-
|
133 |
-
**Abstract:** We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model.
|
134 |
-
Mixtral has the same architecture as Mistral 7B, with the difference that each
|
135 |
-
layer is composed of 8 feedforward blocks (i.e. experts). For every token, at
|
136 |
-
each layer, a router network selects two experts to process the current state
|
137 |
-
and combine their outputs. Even though each token only sees two experts, the
|
138 |
-
selected experts can be different at each timestep. As a result, each token has
|
139 |
-
access to 47B parameters, but only uses 13B active parameters during inference.
|
140 |
-
Mixtral was trained with a context size of 32k tokens and it outperforms or
|
141 |
-
matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular,
|
142 |
-
Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and
|
143 |
-
multilingual benchmarks. We also provide a model fine-tuned to follow
|
144 |
-
instructions, Mixtral 8x7B - Instruct, that surpasses GPT-3.5 Turbo,
|
145 |
-
Claude-2.1, Gemini Pro, and Llama 2 70B - chat model on human benchmarks. Both
|
146 |
-
the base and instruct models are released under the Apache 2.0 license.
|
147 |
-
|
148 |
-
## Dense X Retrieval: What Retrieval Granularity Should We Use?
|
149 |
-
|
150 |
-
- **arXiv id:** [2312.06648v2](http://arxiv.org/abs/2312.06648v2) **Published Date:** 2023-12-11
|
151 |
-
- **Title:** Dense X Retrieval: What Retrieval Granularity Should We Use?
|
152 |
-
- **Authors:** Tong Chen, Hongwei Wang, Sihao Chen, et al.
|
153 |
-
- **LangChain:**
|
154 |
-
|
155 |
-
- **Template:** [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
|
156 |
-
|
157 |
-
**Abstract:** Dense retrieval has become a prominent method to obtain relevant context or
|
158 |
-
world knowledge in open-domain NLP tasks. When we use a learned dense retriever
|
159 |
-
on a retrieval corpus at inference time, an often-overlooked design choice is
|
160 |
-
the retrieval unit in which the corpus is indexed, e.g. document, passage, or
|
161 |
-
sentence. We discover that the retrieval unit choice significantly impacts the
|
162 |
-
performance of both retrieval and downstream tasks. Distinct from the typical
|
163 |
-
approach of using passages or sentences, we introduce a novel retrieval unit,
|
164 |
-
proposition, for dense retrieval. Propositions are defined as atomic
|
165 |
-
expressions within text, each encapsulating a distinct factoid and presented in
|
166 |
-
a concise, self-contained natural language format. We conduct an empirical
|
167 |
-
comparison of different retrieval granularity. Our results reveal that
|
168 |
-
proposition-based retrieval significantly outperforms traditional passage or
|
169 |
-
sentence-based methods in dense retrieval. Moreover, retrieval by proposition
|
170 |
-
also enhances the performance of downstream QA tasks, since the retrieved texts
|
171 |
-
are more condensed with question-relevant information, reducing the need for
|
172 |
-
lengthy input tokens and minimizing the inclusion of extraneous, irrelevant
|
173 |
-
information.
|
174 |
-
|
175 |
-
## Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
|
176 |
-
|
177 |
-
- **arXiv id:** [2311.09210v1](http://arxiv.org/abs/2311.09210v1) **Published Date:** 2023-11-15
|
178 |
-
- **Title:** Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
|
179 |
-
- **Authors:** Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al.
|
180 |
-
- **LangChain:**
|
181 |
-
|
182 |
-
- **Template:** [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
|
183 |
-
|
184 |
-
**Abstract:** Retrieval-augmented language models (RALMs) represent a substantial
|
185 |
-
advancement in the capabilities of large language models, notably in reducing
|
186 |
-
factual hallucination by leveraging external knowledge sources. However, the
|
187 |
-
reliability of the retrieved information is not always guaranteed. The
|
188 |
-
retrieval of irrelevant data can lead to misguided responses, and potentially
|
189 |
-
causing the model to overlook its inherent knowledge, even when it possesses
|
190 |
-
adequate information to address the query. Moreover, standard RALMs often
|
191 |
-
struggle to assess whether they possess adequate knowledge, both intrinsic and
|
192 |
-
retrieved, to provide an accurate answer. In situations where knowledge is
|
193 |
-
lacking, these systems should ideally respond with "unknown" when the answer is
|
194 |
-
unattainable. In response to these challenges, we introduces Chain-of-Noting
|
195 |
-
(CoN), a novel approach aimed at improving the robustness of RALMs in facing
|
196 |
-
noisy, irrelevant documents and in handling unknown scenarios. The core idea of
|
197 |
-
CoN is to generate sequential reading notes for retrieved documents, enabling a
|
198 |
-
thorough evaluation of their relevance to the given question and integrating
|
199 |
-
this information to formulate the final answer. We employed ChatGPT to create
|
200 |
-
training data for CoN, which was subsequently trained on an LLaMa-2 7B model.
|
201 |
-
Our experiments across four open-domain QA benchmarks show that RALMs equipped
|
202 |
-
with CoN significantly outperform standard RALMs. Notably, CoN achieves an
|
203 |
-
average improvement of +7.9 in EM score given entirely noisy retrieved
|
204 |
-
documents and +10.5 in rejection rates for real-time questions that fall
|
205 |
-
outside the pre-training knowledge scope.
|
206 |
-
|
207 |
-
## Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
|
208 |
-
|
209 |
-
- **arXiv id:** [2310.11511v1](http://arxiv.org/abs/2310.11511v1) **Published Date:** 2023-10-17
|
210 |
-
- **Title:** Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
|
211 |
-
- **Authors:** Akari Asai, Zeqiu Wu, Yizhong Wang, et al.
|
212 |
-
- **LangChain:**
|
213 |
-
|
214 |
-
- **Cookbook:** [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
|
215 |
-
|
216 |
-
**Abstract:** Despite their remarkable capabilities, large language models (LLMs) often
|
217 |
-
produce responses containing factual inaccuracies due to their sole reliance on
|
218 |
-
the parametric knowledge they encapsulate. Retrieval-Augmented Generation
|
219 |
-
(RAG), an ad hoc approach that augments LMs with retrieval of relevant
|
220 |
-
knowledge, decreases such issues. However, indiscriminately retrieving and
|
221 |
-
incorporating a fixed number of retrieved passages, regardless of whether
|
222 |
-
retrieval is necessary, or passages are relevant, diminishes LM versatility or
|
223 |
-
can lead to unhelpful response generation. We introduce a new framework called
|
224 |
-
Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's
|
225 |
-
quality and factuality through retrieval and self-reflection. Our framework
|
226 |
-
trains a single arbitrary LM that adaptively retrieves passages on-demand, and
|
227 |
-
generates and reflects on retrieved passages and its own generations using
|
228 |
-
special tokens, called reflection tokens. Generating reflection tokens makes
|
229 |
-
the LM controllable during the inference phase, enabling it to tailor its
|
230 |
-
behavior to diverse task requirements. Experiments show that Self-RAG (7B and
|
231 |
-
13B parameters) significantly outperforms state-of-the-art LLMs and
|
232 |
-
retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG
|
233 |
-
outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA,
|
234 |
-
reasoning and fact verification tasks, and it shows significant gains in
|
235 |
-
improving factuality and citation accuracy for long-form generations relative
|
236 |
-
to these models.
|
237 |
-
|
238 |
-
## Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
|
239 |
-
|
240 |
-
- **arXiv id:** [2310.06117v2](http://arxiv.org/abs/2310.06117v2) **Published Date:** 2023-10-09
|
241 |
-
- **Title:** Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
|
242 |
-
- **Authors:** Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al.
|
243 |
-
- **LangChain:**
|
244 |
-
|
245 |
-
- **Template:** [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting)
|
246 |
-
- **Cookbook:** [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
|
247 |
-
|
248 |
-
**Abstract:** We present Step-Back Prompting, a simple prompting technique that enables
|
249 |
-
LLMs to do abstractions to derive high-level concepts and first principles from
|
250 |
-
instances containing specific details. Using the concepts and principles to
|
251 |
-
guide reasoning, LLMs significantly improve their abilities in following a
|
252 |
-
correct reasoning path towards the solution. We conduct experiments of
|
253 |
-
Step-Back Prompting with PaLM-2L, GPT-4 and Llama2-70B models, and observe
|
254 |
-
substantial performance gains on various challenging reasoning-intensive tasks
|
255 |
-
including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back
|
256 |
-
Prompting improves PaLM-2L performance on MMLU (Physics and Chemistry) by 7%
|
257 |
-
and 11% respectively, TimeQA by 27%, and MuSiQue by 7%.
|
258 |
-
|
259 |
-
## Llama 2: Open Foundation and Fine-Tuned Chat Models
|
260 |
-
|
261 |
-
- **arXiv id:** [2307.09288v2](http://arxiv.org/abs/2307.09288v2) **Published Date:** 2023-07-18
|
262 |
-
- **Title:** Llama 2: Open Foundation and Fine-Tuned Chat Models
|
263 |
-
- **Authors:** Hugo Touvron, Louis Martin, Kevin Stone, et al.
|
264 |
-
- **LangChain:**
|
265 |
-
|
266 |
-
- **Cookbook:** [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
|
267 |
-
|
268 |
-
**Abstract:** In this work, we develop and release Llama 2, a collection of pretrained and
|
269 |
-
fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70
|
270 |
-
billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for
|
271 |
-
dialogue use cases. Our models outperform open-source chat models on most
|
272 |
-
benchmarks we tested, and based on our human evaluations for helpfulness and
|
273 |
-
safety, may be a suitable substitute for closed-source models. We provide a
|
274 |
-
detailed description of our approach to fine-tuning and safety improvements of
|
275 |
-
Llama 2-Chat in order to enable the community to build on our work and
|
276 |
-
contribute to the responsible development of LLMs.
|
277 |
-
|
278 |
-
## Query Rewriting for Retrieval-Augmented Large Language Models
|
279 |
-
|
280 |
-
- **arXiv id:** [2305.14283v3](http://arxiv.org/abs/2305.14283v3) **Published Date:** 2023-05-23
|
281 |
-
- **Title:** Query Rewriting for Retrieval-Augmented Large Language Models
|
282 |
-
- **Authors:** Xinbei Ma, Yeyun Gong, Pengcheng He, et al.
|
283 |
-
- **LangChain:**
|
284 |
-
|
285 |
-
- **Template:** [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read)
|
286 |
-
- **Cookbook:** [rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
|
287 |
-
|
288 |
-
**Abstract:** Large Language Models (LLMs) play powerful, black-box readers in the
|
289 |
-
retrieve-then-read pipeline, making remarkable progress in knowledge-intensive
|
290 |
-
tasks. This work introduces a new framework, Rewrite-Retrieve-Read instead of
|
291 |
-
the previous retrieve-then-read for the retrieval-augmented LLMs from the
|
292 |
-
perspective of the query rewriting. Unlike prior studies focusing on adapting
|
293 |
-
either the retriever or the reader, our approach pays attention to the
|
294 |
-
adaptation of the search query itself, for there is inevitably a gap between
|
295 |
-
the input text and the needed knowledge in retrieval. We first prompt an LLM to
|
296 |
-
generate the query, then use a web search engine to retrieve contexts.
|
297 |
-
Furthermore, to better align the query to the frozen modules, we propose a
|
298 |
-
trainable scheme for our pipeline. A small language model is adopted as a
|
299 |
-
trainable rewriter to cater to the black-box LLM reader. The rewriter is
|
300 |
-
trained using the feedback of the LLM reader by reinforcement learning.
|
301 |
-
Evaluation is conducted on downstream tasks, open-domain QA and multiple-choice
|
302 |
-
QA. Experiments results show consistent performance improvement, indicating
|
303 |
-
that our framework is proven effective and scalable, and brings a new framework
|
304 |
-
for retrieval-augmented LLM.
|
305 |
-
|
306 |
-
## Large Language Model Guided Tree-of-Thought
|
307 |
-
|
308 |
-
- **arXiv id:** [2305.08291v1](http://arxiv.org/abs/2305.08291v1) **Published Date:** 2023-05-15
|
309 |
-
- **Title:** Large Language Model Guided Tree-of-Thought
|
310 |
-
- **Authors:** Jieyi Long
|
311 |
-
- **LangChain:**
|
312 |
-
|
313 |
-
- **API Reference:** [langchain_experimental.tot](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.tot)
|
314 |
-
- **Cookbook:** [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
|
315 |
-
|
316 |
-
**Abstract:** In this paper, we introduce the Tree-of-Thought (ToT) framework, a novel
|
317 |
-
approach aimed at improving the problem-solving capabilities of auto-regressive
|
318 |
-
large language models (LLMs). The ToT technique is inspired by the human mind's
|
319 |
-
approach for solving complex reasoning tasks through trial and error. In this
|
320 |
-
process, the human mind explores the solution space through a tree-like thought
|
321 |
-
process, allowing for backtracking when necessary. To implement ToT as a
|
322 |
-
software system, we augment an LLM with additional modules including a prompter
|
323 |
-
agent, a checker module, a memory module, and a ToT controller. In order to
|
324 |
-
solve a given problem, these modules engage in a multi-round conversation with
|
325 |
-
the LLM. The memory module records the conversation and state history of the
|
326 |
-
problem solving process, which allows the system to backtrack to the previous
|
327 |
-
steps of the thought-process and explore other directions from there. To verify
|
328 |
-
the effectiveness of the proposed technique, we implemented a ToT-based solver
|
329 |
-
for the Sudoku Puzzle. Experimental results show that the ToT framework can
|
330 |
-
significantly increase the success rate of Sudoku puzzle solving. Our
|
331 |
-
implementation of the ToT-based Sudoku solver is available on GitHub:
|
332 |
-
\url{https://github.com/jieyilong/tree-of-thought-puzzle-solver}.
|
333 |
-
|
334 |
-
## Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
|
335 |
-
|
336 |
-
- **arXiv id:** [2305.04091v3](http://arxiv.org/abs/2305.04091v3) **Published Date:** 2023-05-06
|
337 |
-
- **Title:** Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
|
338 |
-
- **Authors:** Lei Wang, Wanyu Xu, Yihuai Lan, et al.
|
339 |
-
- **LangChain:**
|
340 |
-
|
341 |
-
- **Cookbook:** [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
|
342 |
-
|
343 |
-
**Abstract:** Large language models (LLMs) have recently been shown to deliver impressive
|
344 |
-
performance in various NLP tasks. To tackle multi-step reasoning tasks,
|
345 |
-
few-shot chain-of-thought (CoT) prompting includes a few manually crafted
|
346 |
-
step-by-step reasoning demonstrations which enable LLMs to explicitly generate
|
347 |
-
reasoning steps and improve their reasoning task accuracy. To eliminate the
|
348 |
-
manual effort, Zero-shot-CoT concatenates the target problem statement with
|
349 |
-
"Let's think step by step" as an input prompt to LLMs. Despite the success of
|
350 |
-
Zero-shot-CoT, it still suffers from three pitfalls: calculation errors,
|
351 |
-
missing-step errors, and semantic misunderstanding errors. To address the
|
352 |
-
missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of
|
353 |
-
two components: first, devising a plan to divide the entire task into smaller
|
354 |
-
subtasks, and then carrying out the subtasks according to the plan. To address
|
355 |
-
the calculation errors and improve the quality of generated reasoning steps, we
|
356 |
-
extend PS prompting with more detailed instructions and derive PS+ prompting.
|
357 |
-
We evaluate our proposed prompting strategy on ten datasets across three
|
358 |
-
reasoning problems. The experimental results over GPT-3 show that our proposed
|
359 |
-
zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets
|
360 |
-
by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought
|
361 |
-
Prompting, and has comparable performance with 8-shot CoT prompting on the math
|
362 |
-
reasoning problem. The code can be found at
|
363 |
-
https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
|
364 |
-
|
365 |
-
## Zero-Shot Listwise Document Reranking with a Large Language Model
|
366 |
-
|
367 |
-
- **arXiv id:** [2305.02156v1](http://arxiv.org/abs/2305.02156v1) **Published Date:** 2023-05-03
|
368 |
-
- **Title:** Zero-Shot Listwise Document Reranking with a Large Language Model
|
369 |
-
- **Authors:** Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al.
|
370 |
-
- **LangChain:**
|
371 |
-
|
372 |
-
- **API Reference:** [langchain...LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
|
373 |
-
|
374 |
-
**Abstract:** Supervised ranking methods based on bi-encoder or cross-encoder architectures
|
375 |
-
have shown success in multi-stage text ranking tasks, but they require large
|
376 |
-
amounts of relevance judgments as training data. In this work, we propose
|
377 |
-
Listwise Reranker with a Large Language Model (LRL), which achieves strong
|
378 |
-
reranking effectiveness without using any task-specific training data.
|
379 |
-
Different from the existing pointwise ranking methods, where documents are
|
380 |
-
scored independently and ranked according to the scores, LRL directly generates
|
381 |
-
a reordered list of document identifiers given the candidate documents.
|
382 |
-
Experiments on three TREC web search datasets demonstrate that LRL not only
|
383 |
-
outperforms zero-shot pointwise methods when reranking first-stage retrieval
|
384 |
-
results, but can also act as a final-stage reranker to improve the top-ranked
|
385 |
-
results of a pointwise method for improved efficiency. Additionally, we apply
|
386 |
-
our approach to subsets of MIRACL, a recent multilingual retrieval dataset,
|
387 |
-
with results showing its potential to generalize across different languages.
|
388 |
-
|
389 |
-
## Visual Instruction Tuning
|
390 |
-
|
391 |
-
- **arXiv id:** [2304.08485v2](http://arxiv.org/abs/2304.08485v2) **Published Date:** 2023-04-17
|
392 |
-
- **Title:** Visual Instruction Tuning
|
393 |
-
- **Authors:** Haotian Liu, Chunyuan Li, Qingyang Wu, et al.
|
394 |
-
- **LangChain:**
|
395 |
-
|
396 |
-
- **Cookbook:** [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
|
397 |
-
|
398 |
-
**Abstract:** Instruction tuning large language models (LLMs) using machine-generated
|
399 |
-
instruction-following data has improved zero-shot capabilities on new tasks,
|
400 |
-
but the idea is less explored in the multimodal field. In this paper, we
|
401 |
-
present the first attempt to use language-only GPT-4 to generate multimodal
|
402 |
-
language-image instruction-following data. By instruction tuning on such
|
403 |
-
generated data, we introduce LLaVA: Large Language and Vision Assistant, an
|
404 |
-
end-to-end trained large multimodal model that connects a vision encoder and
|
405 |
-
LLM for general-purpose visual and language understanding.Our early experiments
|
406 |
-
show that LLaVA demonstrates impressive multimodel chat abilities, sometimes
|
407 |
-
exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and
|
408 |
-
yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal
|
409 |
-
instruction-following dataset. When fine-tuned on Science QA, the synergy of
|
410 |
-
LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We make
|
411 |
-
GPT-4 generated visual instruction tuning data, our model and code base
|
412 |
-
publicly available.
|
413 |
-
|
414 |
-
## Generative Agents: Interactive Simulacra of Human Behavior
|
415 |
-
|
416 |
-
- **arXiv id:** [2304.03442v2](http://arxiv.org/abs/2304.03442v2) **Published Date:** 2023-04-07
|
417 |
-
- **Title:** Generative Agents: Interactive Simulacra of Human Behavior
|
418 |
-
- **Authors:** Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al.
|
419 |
-
- **LangChain:**
|
420 |
-
|
421 |
-
- **Cookbook:** [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
|
422 |
-
|
423 |
-
**Abstract:** Believable proxies of human behavior can empower interactive applications
|
424 |
-
ranging from immersive environments to rehearsal spaces for interpersonal
|
425 |
-
communication to prototyping tools. In this paper, we introduce generative
|
426 |
-
agents--computational software agents that simulate believable human behavior.
|
427 |
-
Generative agents wake up, cook breakfast, and head to work; artists paint,
|
428 |
-
while authors write; they form opinions, notice each other, and initiate
|
429 |
-
conversations; they remember and reflect on days past as they plan the next
|
430 |
-
day. To enable generative agents, we describe an architecture that extends a
|
431 |
-
large language model to store a complete record of the agent's experiences
|
432 |
-
using natural language, synthesize those memories over time into higher-level
|
433 |
-
reflections, and retrieve them dynamically to plan behavior. We instantiate
|
434 |
-
generative agents to populate an interactive sandbox environment inspired by
|
435 |
-
The Sims, where end users can interact with a small town of twenty five agents
|
436 |
-
using natural language. In an evaluation, these generative agents produce
|
437 |
-
believable individual and emergent social behaviors: for example, starting with
|
438 |
-
only a single user-specified notion that one agent wants to throw a Valentine's
|
439 |
-
Day party, the agents autonomously spread invitations to the party over the
|
440 |
-
next two days, make new acquaintances, ask each other out on dates to the
|
441 |
-
party, and coordinate to show up for the party together at the right time. We
|
442 |
-
demonstrate through ablation that the components of our agent
|
443 |
-
architecture--observation, planning, and reflection--each contribute critically
|
444 |
-
to the believability of agent behavior. By fusing large language models with
|
445 |
-
computational, interactive agents, this work introduces architectural and
|
446 |
-
interaction patterns for enabling believable simulations of human behavior.
|
447 |
-
|
448 |
-
## CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
|
449 |
-
|
450 |
-
- **arXiv id:** [2303.17760v2](http://arxiv.org/abs/2303.17760v2) **Published Date:** 2023-03-31
|
451 |
-
- **Title:** CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
|
452 |
-
- **Authors:** Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al.
|
453 |
-
- **LangChain:**
|
454 |
-
|
455 |
-
- **Cookbook:** [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
|
456 |
-
|
457 |
-
**Abstract:** The rapid advancement of chat-based language models has led to remarkable
|
458 |
-
progress in complex task-solving. However, their success heavily relies on
|
459 |
-
human input to guide the conversation, which can be challenging and
|
460 |
-
time-consuming. This paper explores the potential of building scalable
|
461 |
-
techniques to facilitate autonomous cooperation among communicative agents, and
|
462 |
-
provides insight into their "cognitive" processes. To address the challenges of
|
463 |
-
achieving autonomous cooperation, we propose a novel communicative agent
|
464 |
-
framework named role-playing. Our approach involves using inception prompting
|
465 |
-
to guide chat agents toward task completion while maintaining consistency with
|
466 |
-
human intentions. We showcase how role-playing can be used to generate
|
467 |
-
conversational data for studying the behaviors and capabilities of a society of
|
468 |
-
agents, providing a valuable resource for investigating conversational language
|
469 |
-
models. In particular, we conduct comprehensive studies on
|
470 |
-
instruction-following cooperation in multi-agent settings. Our contributions
|
471 |
-
include introducing a novel communicative agent framework, offering a scalable
|
472 |
-
approach for studying the cooperative behaviors and capabilities of multi-agent
|
473 |
-
systems, and open-sourcing our library to support research on communicative
|
474 |
-
agents and beyond: https://github.com/camel-ai/camel.
|
475 |
-
|
476 |
-
## HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
|
477 |
-
|
478 |
-
- **arXiv id:** [2303.17580v4](http://arxiv.org/abs/2303.17580v4) **Published Date:** 2023-03-30
|
479 |
-
- **Title:** HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
|
480 |
-
- **Authors:** Yongliang Shen, Kaitao Song, Xu Tan, et al.
|
481 |
-
- **LangChain:**
|
482 |
-
|
483 |
-
- **API Reference:** [langchain_experimental.autonomous_agents](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.autonomous_agents)
|
484 |
-
- **Cookbook:** [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
|
485 |
-
|
486 |
-
**Abstract:** Solving complicated AI tasks with different domains and modalities is a key
|
487 |
-
step toward artificial general intelligence. While there are numerous AI models
|
488 |
-
available for various domains and modalities, they cannot handle complicated AI
|
489 |
-
tasks autonomously. Considering large language models (LLMs) have exhibited
|
490 |
-
exceptional abilities in language understanding, generation, interaction, and
|
491 |
-
reasoning, we advocate that LLMs could act as a controller to manage existing
|
492 |
-
AI models to solve complicated AI tasks, with language serving as a generic
|
493 |
-
interface to empower this. Based on this philosophy, we present HuggingGPT, an
|
494 |
-
LLM-powered agent that leverages LLMs (e.g., ChatGPT) to connect various AI
|
495 |
-
models in machine learning communities (e.g., Hugging Face) to solve AI tasks.
|
496 |
-
Specifically, we use ChatGPT to conduct task planning when receiving a user
|
497 |
-
request, select models according to their function descriptions available in
|
498 |
-
Hugging Face, execute each subtask with the selected AI model, and summarize
|
499 |
-
the response according to the execution results. By leveraging the strong
|
500 |
-
language capability of ChatGPT and abundant AI models in Hugging Face,
|
501 |
-
HuggingGPT can tackle a wide range of sophisticated AI tasks spanning different
|
502 |
-
modalities and domains and achieve impressive results in language, vision,
|
503 |
-
speech, and other challenging tasks, which paves a new way towards the
|
504 |
-
realization of artificial general intelligence.
|
505 |
-
|
506 |
-
## A Watermark for Large Language Models
|
507 |
-
|
508 |
-
- **arXiv id:** [2301.10226v4](http://arxiv.org/abs/2301.10226v4) **Published Date:** 2023-01-24
|
509 |
-
- **Title:** A Watermark for Large Language Models
|
510 |
-
- **Authors:** John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al.
|
511 |
-
- **LangChain:**
|
512 |
-
|
513 |
-
- **API Reference:** [langchain_community...OCIModelDeploymentTGI](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
514 |
-
|
515 |
-
**Abstract:** Potential harms of large language models can be mitigated by watermarking
|
516 |
-
model output, i.e., embedding signals into generated text that are invisible to
|
517 |
-
humans but algorithmically detectable from a short span of tokens. We propose a
|
518 |
-
watermarking framework for proprietary language models. The watermark can be
|
519 |
-
embedded with negligible impact on text quality, and can be detected using an
|
520 |
-
efficient open-source algorithm without access to the language model API or
|
521 |
-
parameters. The watermark works by selecting a randomized set of "green" tokens
|
522 |
-
before a word is generated, and then softly promoting use of green tokens
|
523 |
-
during sampling. We propose a statistical test for detecting the watermark with
|
524 |
-
interpretable p-values, and derive an information-theoretic framework for
|
525 |
-
analyzing the sensitivity of the watermark. We test the watermark using a
|
526 |
-
multi-billion parameter model from the Open Pretrained Transformer (OPT)
|
527 |
-
family, and discuss robustness and security.
|
528 |
-
|
529 |
-
## Precise Zero-Shot Dense Retrieval without Relevance Labels
|
530 |
-
|
531 |
-
- **arXiv id:** [2212.10496v1](http://arxiv.org/abs/2212.10496v1) **Published Date:** 2022-12-20
|
532 |
-
- **Title:** Precise Zero-Shot Dense Retrieval without Relevance Labels
|
533 |
-
- **Authors:** Luyu Gao, Xueguang Ma, Jimmy Lin, et al.
|
534 |
-
- **LangChain:**
|
535 |
-
|
536 |
-
- **API Reference:** [langchain...HypotheticalDocumentEmbedder](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
|
537 |
-
- **Template:** [hyde](https://python.langchain.com/docs/templates/hyde)
|
538 |
-
- **Cookbook:** [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
|
539 |
-
|
540 |
-
**Abstract:** While dense retrieval has been shown effective and efficient across tasks and
|
541 |
-
languages, it remains difficult to create effective fully zero-shot dense
|
542 |
-
retrieval systems when no relevance label is available. In this paper, we
|
543 |
-
recognize the difficulty of zero-shot learning and encoding relevance. Instead,
|
544 |
-
we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a
|
545 |
-
query, HyDE first zero-shot instructs an instruction-following language model
|
546 |
-
(e.g. InstructGPT) to generate a hypothetical document. The document captures
|
547 |
-
relevance patterns but is unreal and may contain false details. Then, an
|
548 |
-
unsupervised contrastively learned encoder~(e.g. Contriever) encodes the
|
549 |
-
document into an embedding vector. This vector identifies a neighborhood in the
|
550 |
-
corpus embedding space, where similar real documents are retrieved based on
|
551 |
-
vector similarity. This second step ground the generated document to the actual
|
552 |
-
corpus, with the encoder's dense bottleneck filtering out the incorrect
|
553 |
-
details. Our experiments show that HyDE significantly outperforms the
|
554 |
-
state-of-the-art unsupervised dense retriever Contriever and shows strong
|
555 |
-
performance comparable to fine-tuned retrievers, across various tasks (e.g. web
|
556 |
-
search, QA, fact verification) and languages~(e.g. sw, ko, ja).
|
557 |
-
|
558 |
-
## Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
|
559 |
-
|
560 |
-
- **arXiv id:** [2212.07425v3](http://arxiv.org/abs/2212.07425v3) **Published Date:** 2022-12-12
|
561 |
-
- **Title:** Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
|
562 |
-
- **Authors:** Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al.
|
563 |
-
- **LangChain:**
|
564 |
-
|
565 |
-
- **API Reference:** [langchain_experimental.fallacy_removal](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.fallacy_removal)
|
566 |
-
|
567 |
-
**Abstract:** The spread of misinformation, propaganda, and flawed argumentation has been
|
568 |
-
amplified in the Internet era. Given the volume of data and the subtlety of
|
569 |
-
identifying violations of argumentation norms, supporting information analytics
|
570 |
-
tasks, like content moderation, with trustworthy methods that can identify
|
571 |
-
logical fallacies is essential. In this paper, we formalize prior theoretical
|
572 |
-
work on logical fallacies into a comprehensive three-stage evaluation framework
|
573 |
-
of detection, coarse-grained, and fine-grained classification. We adapt
|
574 |
-
existing evaluation datasets for each stage of the evaluation. We employ three
|
575 |
-
families of robust and explainable methods based on prototype reasoning,
|
576 |
-
instance-based reasoning, and knowledge injection. The methods combine language
|
577 |
-
models with background knowledge and explainable mechanisms. Moreover, we
|
578 |
-
address data sparsity with strategies for data augmentation and curriculum
|
579 |
-
learning. Our three-stage framework natively consolidates prior datasets and
|
580 |
-
methods from existing tasks, like propaganda detection, serving as an
|
581 |
-
overarching evaluation testbed. We extensively evaluate these methods on our
|
582 |
-
datasets, focusing on their robustness and explainability. Our results provide
|
583 |
-
insight into the strengths and weaknesses of the methods on different
|
584 |
-
components and fallacy classes, indicating that fallacy identification is a
|
585 |
-
challenging task that may require specialized forms of reasoning to capture
|
586 |
-
various classes. We share our open-source code and data on GitHub to support
|
587 |
-
further work on logical fallacy identification.
|
588 |
-
|
589 |
-
## Complementary Explanations for Effective In-Context Learning
|
590 |
-
|
591 |
-
- **arXiv id:** [2211.13892v2](http://arxiv.org/abs/2211.13892v2) **Published Date:** 2022-11-25
|
592 |
-
- **Title:** Complementary Explanations for Effective In-Context Learning
|
593 |
-
- **Authors:** Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al.
|
594 |
-
- **LangChain:**
|
595 |
-
|
596 |
-
- **API Reference:** [langchain_core...MaxMarginalRelevanceExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
|
597 |
-
|
598 |
-
**Abstract:** Large language models (LLMs) have exhibited remarkable capabilities in
|
599 |
-
learning from explanations in prompts, but there has been limited understanding
|
600 |
-
of exactly how these explanations function or why they are effective. This work
|
601 |
-
aims to better understand the mechanisms by which explanations are used for
|
602 |
-
in-context learning. We first study the impact of two different factors on the
|
603 |
-
performance of prompts with explanations: the computation trace (the way the
|
604 |
-
solution is decomposed) and the natural language used to express the prompt. By
|
605 |
-
perturbing explanations on three controlled tasks, we show that both factors
|
606 |
-
contribute to the effectiveness of explanations. We further study how to form
|
607 |
-
maximally effective sets of explanations for solving a given test query. We
|
608 |
-
find that LLMs can benefit from the complementarity of the explanation set:
|
609 |
-
diverse reasoning skills shown by different exemplars can lead to better
|
610 |
-
performance. Therefore, we propose a maximal marginal relevance-based exemplar
|
611 |
-
selection approach for constructing exemplar sets that are both relevant as
|
612 |
-
well as complementary, which successfully improves the in-context learning
|
613 |
-
performance across three real-world tasks on multiple LLMs.
|
614 |
-
|
615 |
-
## PAL: Program-aided Language Models
|
616 |
-
|
617 |
-
- **arXiv id:** [2211.10435v2](http://arxiv.org/abs/2211.10435v2) **Published Date:** 2022-11-18
|
618 |
-
- **Title:** PAL: Program-aided Language Models
|
619 |
-
- **Authors:** Luyu Gao, Aman Madaan, Shuyan Zhou, et al.
|
620 |
-
- **LangChain:**
|
621 |
-
|
622 |
-
- **API Reference:** [langchain_experimental.pal_chain](https://python.langchain.com/v0.2/api_reference//python/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://python.langchain.com/v0.2/api_reference/experimental/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain)
|
623 |
-
- **Cookbook:** [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
|
624 |
-
|
625 |
-
**Abstract:** Large language models (LLMs) have recently demonstrated an impressive ability
|
626 |
-
to perform arithmetic and symbolic reasoning tasks, when provided with a few
|
627 |
-
examples at test time ("few-shot prompting"). Much of this success can be
|
628 |
-
attributed to prompting methods such as "chain-of-thought'', which employ LLMs
|
629 |
-
for both understanding the problem description by decomposing it into steps, as
|
630 |
-
well as solving each step of the problem. While LLMs seem to be adept at this
|
631 |
-
sort of step-by-step decomposition, LLMs often make logical and arithmetic
|
632 |
-
mistakes in the solution part, even when the problem is decomposed correctly.
|
633 |
-
In this paper, we present Program-Aided Language models (PAL): a novel approach
|
634 |
-
that uses the LLM to read natural language problems and generate programs as
|
635 |
-
the intermediate reasoning steps, but offloads the solution step to a runtime
|
636 |
-
such as a Python interpreter. With PAL, decomposing the natural language
|
637 |
-
problem into runnable steps remains the only learning task for the LLM, while
|
638 |
-
solving is delegated to the interpreter. We demonstrate this synergy between a
|
639 |
-
neural LLM and a symbolic interpreter across 13 mathematical, symbolic, and
|
640 |
-
algorithmic reasoning tasks from BIG-Bench Hard and other benchmarks. In all
|
641 |
-
these natural language reasoning tasks, generating code using an LLM and
|
642 |
-
reasoning using a Python interpreter leads to more accurate results than much
|
643 |
-
larger models. For example, PAL using Codex achieves state-of-the-art few-shot
|
644 |
-
accuracy on the GSM8K benchmark of math word problems, surpassing PaLM-540B
|
645 |
-
which uses chain-of-thought by absolute 15% top-1. Our code and data are
|
646 |
-
publicly available at http://reasonwithpal.com/ .
|
647 |
-
|
648 |
-
## ReAct: Synergizing Reasoning and Acting in Language Models
|
649 |
-
|
650 |
-
- **arXiv id:** [2210.03629v3](http://arxiv.org/abs/2210.03629v3) **Published Date:** 2022-10-06
|
651 |
-
- **Title:** ReAct: Synergizing Reasoning and Acting in Language Models
|
652 |
-
- **Authors:** Shunyu Yao, Jeffrey Zhao, Dian Yu, et al.
|
653 |
-
- **LangChain:**
|
654 |
-
|
655 |
-
- **Documentation:** [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping)
|
656 |
-
- **API Reference:** [langchain...TrajectoryEvalChain](https://python.langchain.com/v0.2/api_reference/langchain/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain), [langchain...create_react_agent](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent)
|
657 |
-
|
658 |
-
**Abstract:** While large language models (LLMs) have demonstrated impressive capabilities
|
659 |
-
across tasks in language understanding and interactive decision making, their
|
660 |
-
abilities for reasoning (e.g. chain-of-thought prompting) and acting (e.g.
|
661 |
-
action plan generation) have primarily been studied as separate topics. In this
|
662 |
-
paper, we explore the use of LLMs to generate both reasoning traces and
|
663 |
-
task-specific actions in an interleaved manner, allowing for greater synergy
|
664 |
-
between the two: reasoning traces help the model induce, track, and update
|
665 |
-
action plans as well as handle exceptions, while actions allow it to interface
|
666 |
-
with external sources, such as knowledge bases or environments, to gather
|
667 |
-
additional information. We apply our approach, named ReAct, to a diverse set of
|
668 |
-
language and decision making tasks and demonstrate its effectiveness over
|
669 |
-
state-of-the-art baselines, as well as improved human interpretability and
|
670 |
-
trustworthiness over methods without reasoning or acting components.
|
671 |
-
Concretely, on question answering (HotpotQA) and fact verification (Fever),
|
672 |
-
ReAct overcomes issues of hallucination and error propagation prevalent in
|
673 |
-
chain-of-thought reasoning by interacting with a simple Wikipedia API, and
|
674 |
-
generates human-like task-solving trajectories that are more interpretable than
|
675 |
-
baselines without reasoning traces. On two interactive decision making
|
676 |
-
benchmarks (ALFWorld and WebShop), ReAct outperforms imitation and
|
677 |
-
reinforcement learning methods by an absolute success rate of 34% and 10%
|
678 |
-
respectively, while being prompted with only one or two in-context examples.
|
679 |
-
Project site with code: https://react-lm.github.io
|
680 |
-
|
681 |
-
## Deep Lake: a Lakehouse for Deep Learning
|
682 |
-
|
683 |
-
- **arXiv id:** [2209.10785v2](http://arxiv.org/abs/2209.10785v2) **Published Date:** 2022-09-22
|
684 |
-
- **Title:** Deep Lake: a Lakehouse for Deep Learning
|
685 |
-
- **Authors:** Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al.
|
686 |
-
- **LangChain:**
|
687 |
-
|
688 |
-
- **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
|
689 |
-
|
690 |
-
**Abstract:** Traditional data lakes provide critical data infrastructure for analytical
|
691 |
-
workloads by enabling time travel, running SQL queries, ingesting data with
|
692 |
-
ACID transactions, and visualizing petabyte-scale datasets on cloud storage.
|
693 |
-
They allow organizations to break down data silos, unlock data-driven
|
694 |
-
decision-making, improve operational efficiency, and reduce costs. However, as
|
695 |
-
deep learning usage increases, traditional data lakes are not well-designed for
|
696 |
-
applications such as natural language processing (NLP), audio processing,
|
697 |
-
computer vision, and applications involving non-tabular datasets. This paper
|
698 |
-
presents Deep Lake, an open-source lakehouse for deep learning applications
|
699 |
-
developed at Activeloop. Deep Lake maintains the benefits of a vanilla data
|
700 |
-
lake with one key difference: it stores complex data, such as images, videos,
|
701 |
-
annotations, as well as tabular data, in the form of tensors and rapidly
|
702 |
-
streams the data over the network to (a) Tensor Query Language, (b) in-browser
|
703 |
-
visualization engine, or (c) deep learning frameworks without sacrificing GPU
|
704 |
-
utilization. Datasets stored in Deep Lake can be accessed from PyTorch,
|
705 |
-
TensorFlow, JAX, and integrate with numerous MLOps tools.
|
706 |
-
|
707 |
-
## Matryoshka Representation Learning
|
708 |
-
|
709 |
-
- **arXiv id:** [2205.13147v4](http://arxiv.org/abs/2205.13147v4) **Published Date:** 2022-05-26
|
710 |
-
- **Title:** Matryoshka Representation Learning
|
711 |
-
- **Authors:** Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al.
|
712 |
-
- **LangChain:**
|
713 |
-
|
714 |
-
- **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
|
715 |
-
|
716 |
-
**Abstract:** Learned representations are a central component in modern ML systems, serving
|
717 |
-
a multitude of downstream tasks. When training such representations, it is
|
718 |
-
often the case that computational and statistical constraints for each
|
719 |
-
downstream task are unknown. In this context rigid, fixed capacity
|
720 |
-
representations can be either over or under-accommodating to the task at hand.
|
721 |
-
This leads us to ask: can we design a flexible representation that can adapt to
|
722 |
-
multiple downstream tasks with varying computational resources? Our main
|
723 |
-
contribution is Matryoshka Representation Learning (MRL) which encodes
|
724 |
-
information at different granularities and allows a single embedding to adapt
|
725 |
-
to the computational constraints of downstream tasks. MRL minimally modifies
|
726 |
-
existing representation learning pipelines and imposes no additional cost
|
727 |
-
during inference and deployment. MRL learns coarse-to-fine representations that
|
728 |
-
are at least as accurate and rich as independently trained low-dimensional
|
729 |
-
representations. The flexibility within the learned Matryoshka Representations
|
730 |
-
offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at
|
731 |
-
the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale
|
732 |
-
retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for
|
733 |
-
long-tail few-shot classification, all while being as robust as the original
|
734 |
-
representations. Finally, we show that MRL extends seamlessly to web-scale
|
735 |
-
datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet),
|
736 |
-
vision + language (ALIGN) and language (BERT). MRL code and pretrained models
|
737 |
-
are open-sourced at https://github.com/RAIVNLab/MRL.
|
738 |
-
|
739 |
-
## Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
|
740 |
-
|
741 |
-
- **arXiv id:** [2205.12654v1](http://arxiv.org/abs/2205.12654v1) **Published Date:** 2022-05-25
|
742 |
-
- **Title:** Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
|
743 |
-
- **Authors:** Kevin Heffernan, Onur Γelebi, Holger Schwenk
|
744 |
-
- **LangChain:**
|
745 |
-
|
746 |
-
- **API Reference:** [langchain_community...LaserEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
|
747 |
-
|
748 |
-
**Abstract:** Scaling multilingual representation learning beyond the hundred most frequent
|
749 |
-
languages is challenging, in particular to cover the long tail of low-resource
|
750 |
-
languages. A promising approach has been to train one-for-all multilingual
|
751 |
-
models capable of cross-lingual transfer, but these models often suffer from
|
752 |
-
insufficient capacity and interference between unrelated languages. Instead, we
|
753 |
-
move away from this approach and focus on training multiple language (family)
|
754 |
-
specific representations, but most prominently enable all languages to still be
|
755 |
-
encoded in the same representational space. To achieve this, we focus on
|
756 |
-
teacher-student training, allowing all encoders to be mutually compatible for
|
757 |
-
bitext mining, and enabling fast learning of new languages. We introduce a new
|
758 |
-
teacher-student training scheme which combines supervised and self-supervised
|
759 |
-
training, allowing encoders to take advantage of monolingual training data,
|
760 |
-
which is valuable in the low-resource setting.
|
761 |
-
Our approach significantly outperforms the original LASER encoder. We study
|
762 |
-
very low-resource languages and handle 50 African languages, many of which are
|
763 |
-
not covered by any other model. For these languages, we train sentence
|
764 |
-
encoders, mine bitexts, and validate the bitexts by training NMT systems.
|
765 |
-
|
766 |
-
## Evaluating the Text-to-SQL Capabilities of Large Language Models
|
767 |
-
|
768 |
-
- **arXiv id:** [2204.00498v1](http://arxiv.org/abs/2204.00498v1) **Published Date:** 2022-03-15
|
769 |
-
- **Title:** Evaluating the Text-to-SQL Capabilities of Large Language Models
|
770 |
-
- **Authors:** Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau
|
771 |
-
- **LangChain:**
|
772 |
-
|
773 |
-
- **API Reference:** [langchain_community...SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
|
774 |
-
|
775 |
-
**Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex
|
776 |
-
language model. We find that, without any finetuning, Codex is a strong
|
777 |
-
baseline on the Spider benchmark; we also analyze the failure modes of Codex in
|
778 |
-
this setting. Furthermore, we demonstrate on the GeoQuery and Scholar
|
779 |
-
benchmarks that a small number of in-domain examples provided in the prompt
|
780 |
-
enables Codex to perform better than state-of-the-art models finetuned on such
|
781 |
-
few-shot examples.
|
782 |
-
|
783 |
-
## Locally Typical Sampling
|
784 |
-
|
785 |
-
- **arXiv id:** [2202.00666v5](http://arxiv.org/abs/2202.00666v5) **Published Date:** 2022-02-01
|
786 |
-
- **Title:** Locally Typical Sampling
|
787 |
-
- **Authors:** Clara Meister, Tiago Pimentel, Gian Wiher, et al.
|
788 |
-
- **LangChain:**
|
789 |
-
|
790 |
-
- **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
791 |
-
|
792 |
-
**Abstract:** Today's probabilistic language generators fall short when it comes to
|
793 |
-
producing coherent and fluent text despite the fact that the underlying models
|
794 |
-
perform well under standard metrics, e.g., perplexity. This discrepancy has
|
795 |
-
puzzled the language generation community for the last few years. In this work,
|
796 |
-
we posit that the abstraction of natural language generation as a discrete
|
797 |
-
stochastic process--which allows for an information-theoretic analysis--can
|
798 |
-
provide new insights into the behavior of probabilistic language generators,
|
799 |
-
e.g., why high-probability texts can be dull or repetitive. Humans use language
|
800 |
-
as a means of communicating information, aiming to do so in a simultaneously
|
801 |
-
efficient and error-minimizing manner; in fact, psycholinguistics research
|
802 |
-
suggests humans choose each word in a string with this subconscious goal in
|
803 |
-
mind. We formally define the set of strings that meet this criterion: those for
|
804 |
-
which each word has an information content close to the expected information
|
805 |
-
content, i.e., the conditional entropy of our model. We then propose a simple
|
806 |
-
and efficient procedure for enforcing this criterion when generating from
|
807 |
-
probabilistic models, which we call locally typical sampling. Automatic and
|
808 |
-
human evaluations show that, in comparison to nucleus and top-k sampling,
|
809 |
-
locally typical sampling offers competitive performance (in both abstractive
|
810 |
-
summarization and story generation) in terms of quality while consistently
|
811 |
-
reducing degenerate repetitions.
|
812 |
-
|
813 |
-
## Learning Transferable Visual Models From Natural Language Supervision
|
814 |
-
|
815 |
-
- **arXiv id:** [2103.00020v1](http://arxiv.org/abs/2103.00020v1) **Published Date:** 2021-02-26
|
816 |
-
- **Title:** Learning Transferable Visual Models From Natural Language Supervision
|
817 |
-
- **Authors:** Alec Radford, Jong Wook Kim, Chris Hallacy, et al.
|
818 |
-
- **LangChain:**
|
819 |
-
|
820 |
-
- **API Reference:** [langchain_experimental.open_clip](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.open_clip)
|
821 |
-
|
822 |
-
**Abstract:** State-of-the-art computer vision systems are trained to predict a fixed set
|
823 |
-
of predetermined object categories. This restricted form of supervision limits
|
824 |
-
their generality and usability since additional labeled data is needed to
|
825 |
-
specify any other visual concept. Learning directly from raw text about images
|
826 |
-
is a promising alternative which leverages a much broader source of
|
827 |
-
supervision. We demonstrate that the simple pre-training task of predicting
|
828 |
-
which caption goes with which image is an efficient and scalable way to learn
|
829 |
-
SOTA image representations from scratch on a dataset of 400 million (image,
|
830 |
-
text) pairs collected from the internet. After pre-training, natural language
|
831 |
-
is used to reference learned visual concepts (or describe new ones) enabling
|
832 |
-
zero-shot transfer of the model to downstream tasks. We study the performance
|
833 |
-
of this approach by benchmarking on over 30 different existing computer vision
|
834 |
-
datasets, spanning tasks such as OCR, action recognition in videos,
|
835 |
-
geo-localization, and many types of fine-grained object classification. The
|
836 |
-
model transfers non-trivially to most tasks and is often competitive with a
|
837 |
-
fully supervised baseline without the need for any dataset specific training.
|
838 |
-
For instance, we match the accuracy of the original ResNet-50 on ImageNet
|
839 |
-
zero-shot without needing to use any of the 1.28 million training examples it
|
840 |
-
was trained on. We release our code and pre-trained model weights at
|
841 |
-
https://github.com/OpenAI/CLIP.
|
842 |
-
|
843 |
-
## CTRL: A Conditional Transformer Language Model for Controllable Generation
|
844 |
-
|
845 |
-
- **arXiv id:** [1909.05858v2](http://arxiv.org/abs/1909.05858v2) **Published Date:** 2019-09-11
|
846 |
-
- **Title:** CTRL: A Conditional Transformer Language Model for Controllable Generation
|
847 |
-
- **Authors:** Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al.
|
848 |
-
- **LangChain:**
|
849 |
-
|
850 |
-
- **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
|
851 |
-
|
852 |
-
**Abstract:** Large-scale language models show promising text generation capabilities, but
|
853 |
-
users cannot easily control particular aspects of the generated text. We
|
854 |
-
release CTRL, a 1.63 billion-parameter conditional transformer language model,
|
855 |
-
trained to condition on control codes that govern style, content, and
|
856 |
-
task-specific behavior. Control codes were derived from structure that
|
857 |
-
naturally co-occurs with raw text, preserving the advantages of unsupervised
|
858 |
-
learning while providing more explicit control over text generation. These
|
859 |
-
codes also allow CTRL to predict which parts of the training data are most
|
860 |
-
likely given a sequence. This provides a potential method for analyzing large
|
861 |
-
amounts of data via model-based source attribution. We have released multiple
|
862 |
-
full-sized, pretrained versions of CTRL at https://github.com/salesforce/ctrl.
|
863 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,554 +0,0 @@
|
|
1 |
-
# Dependents
|
2 |
-
|
3 |
-
Dependents stats for `langchain-ai/langchain`
|
4 |
-
|
5 |
-
[![](https://img.shields.io/static/v1?label=Used%20by&message=41717&color=informational&logo=slickpic)](https://github.com/langchain-ai/langchain/network/dependents)
|
6 |
-
[![](https://img.shields.io/static/v1?label=Used%20by%20(public)&message=538&color=informational&logo=slickpic)](https://github.com/langchain-ai/langchain/network/dependents)
|
7 |
-
[![](https://img.shields.io/static/v1?label=Used%20by%20(private)&message=41179&color=informational&logo=slickpic)](https://github.com/langchain-ai/langchain/network/dependents)
|
8 |
-
|
9 |
-
|
10 |
-
[update: `2023-12-08`; only dependent repositories with Stars > 100]
|
11 |
-
|
12 |
-
|
13 |
-
| Repository | Stars |
|
14 |
-
| :-------- | -----: |
|
15 |
-
|[AntonOsika/gpt-engineer](https://github.com/AntonOsika/gpt-engineer) | 46514 |
|
16 |
-
|[imartinez/privateGPT](https://github.com/imartinez/privateGPT) | 44439 |
|
17 |
-
|[LAION-AI/Open-Assistant](https://github.com/LAION-AI/Open-Assistant) | 35906 |
|
18 |
-
|[hpcaitech/ColossalAI](https://github.com/hpcaitech/ColossalAI) | 35528 |
|
19 |
-
|[moymix/TaskMatrix](https://github.com/moymix/TaskMatrix) | 34342 |
|
20 |
-
|[geekan/MetaGPT](https://github.com/geekan/MetaGPT) | 31126 |
|
21 |
-
|[streamlit/streamlit](https://github.com/streamlit/streamlit) | 28911 |
|
22 |
-
|[reworkd/AgentGPT](https://github.com/reworkd/AgentGPT) | 27833 |
|
23 |
-
|[StanGirard/quivr](https://github.com/StanGirard/quivr) | 26032 |
|
24 |
-
|[OpenBB-finance/OpenBBTerminal](https://github.com/OpenBB-finance/OpenBBTerminal) | 24946 |
|
25 |
-
|[run-llama/llama_index](https://github.com/run-llama/llama_index) | 24859 |
|
26 |
-
|[jmorganca/ollama](https://github.com/jmorganca/ollama) | 20849 |
|
27 |
-
|[openai/chatgpt-retrieval-plugin](https://github.com/openai/chatgpt-retrieval-plugin) | 20249 |
|
28 |
-
|[chatchat-space/Langchain-Chatchat](https://github.com/chatchat-space/Langchain-Chatchat) | 19305 |
|
29 |
-
|[mindsdb/mindsdb](https://github.com/mindsdb/mindsdb) | 19172 |
|
30 |
-
|[PromtEngineer/localGPT](https://github.com/PromtEngineer/localGPT) | 17528 |
|
31 |
-
|[cube-js/cube](https://github.com/cube-js/cube) | 16575 |
|
32 |
-
|[mlflow/mlflow](https://github.com/mlflow/mlflow) | 16000 |
|
33 |
-
|[mudler/LocalAI](https://github.com/mudler/LocalAI) | 14067 |
|
34 |
-
|[logspace-ai/langflow](https://github.com/logspace-ai/langflow) | 13679 |
|
35 |
-
|[GaiZhenbiao/ChuanhuChatGPT](https://github.com/GaiZhenbiao/ChuanhuChatGPT) | 13648 |
|
36 |
-
|[arc53/DocsGPT](https://github.com/arc53/DocsGPT) | 13423 |
|
37 |
-
|[openai/evals](https://github.com/openai/evals) | 12649 |
|
38 |
-
|[airbytehq/airbyte](https://github.com/airbytehq/airbyte) | 12460 |
|
39 |
-
|[langgenius/dify](https://github.com/langgenius/dify) | 11859 |
|
40 |
-
|[databrickslabs/dolly](https://github.com/databrickslabs/dolly) | 10672 |
|
41 |
-
|[AIGC-Audio/AudioGPT](https://github.com/AIGC-Audio/AudioGPT) | 9437 |
|
42 |
-
|[langchain-ai/langchainjs](https://github.com/langchain-ai/langchainjs) | 9227 |
|
43 |
-
|[gventuri/pandas-ai](https://github.com/gventuri/pandas-ai) | 9203 |
|
44 |
-
|[aws/amazon-sagemaker-examples](https://github.com/aws/amazon-sagemaker-examples) | 9079 |
|
45 |
-
|[h2oai/h2ogpt](https://github.com/h2oai/h2ogpt) | 8945 |
|
46 |
-
|[PipedreamHQ/pipedream](https://github.com/PipedreamHQ/pipedream) | 7550 |
|
47 |
-
|[bentoml/OpenLLM](https://github.com/bentoml/OpenLLM) | 6957 |
|
48 |
-
|[THUDM/ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6801 |
|
49 |
-
|[microsoft/promptflow](https://github.com/microsoft/promptflow) | 6776 |
|
50 |
-
|[cpacker/MemGPT](https://github.com/cpacker/MemGPT) | 6642 |
|
51 |
-
|[joshpxyne/gpt-migrate](https://github.com/joshpxyne/gpt-migrate) | 6482 |
|
52 |
-
|[zauberzeug/nicegui](https://github.com/zauberzeug/nicegui) | 6037 |
|
53 |
-
|[embedchain/embedchain](https://github.com/embedchain/embedchain) | 6023 |
|
54 |
-
|[mage-ai/mage-ai](https://github.com/mage-ai/mage-ai) | 6019 |
|
55 |
-
|[assafelovic/gpt-researcher](https://github.com/assafelovic/gpt-researcher) | 5936 |
|
56 |
-
|[sweepai/sweep](https://github.com/sweepai/sweep) | 5855 |
|
57 |
-
|[wenda-LLM/wenda](https://github.com/wenda-LLM/wenda) | 5766 |
|
58 |
-
|[zilliztech/GPTCache](https://github.com/zilliztech/GPTCache) | 5710 |
|
59 |
-
|[pdm-project/pdm](https://github.com/pdm-project/pdm) | 5665 |
|
60 |
-
|[GreyDGL/PentestGPT](https://github.com/GreyDGL/PentestGPT) | 5568 |
|
61 |
-
|[gkamradt/langchain-tutorials](https://github.com/gkamradt/langchain-tutorials) | 5507 |
|
62 |
-
|[Shaunwei/RealChar](https://github.com/Shaunwei/RealChar) | 5501 |
|
63 |
-
|[facebookresearch/llama-recipes](https://github.com/facebookresearch/llama-recipes) | 5477 |
|
64 |
-
|[serge-chat/serge](https://github.com/serge-chat/serge) | 5221 |
|
65 |
-
|[run-llama/rags](https://github.com/run-llama/rags) | 4916 |
|
66 |
-
|[openchatai/OpenChat](https://github.com/openchatai/OpenChat) | 4870 |
|
67 |
-
|[danswer-ai/danswer](https://github.com/danswer-ai/danswer) | 4774 |
|
68 |
-
|[langchain-ai/opengpts](https://github.com/langchain-ai/opengpts) | 4709 |
|
69 |
-
|[postgresml/postgresml](https://github.com/postgresml/postgresml) | 4639 |
|
70 |
-
|[MineDojo/Voyager](https://github.com/MineDojo/Voyager) | 4582 |
|
71 |
-
|[intel-analytics/BigDL](https://github.com/intel-analytics/BigDL) | 4581 |
|
72 |
-
|[yihong0618/xiaogpt](https://github.com/yihong0618/xiaogpt) | 4359 |
|
73 |
-
|[RayVentura/ShortGPT](https://github.com/RayVentura/ShortGPT) | 4357 |
|
74 |
-
|[Azure-Samples/azure-search-openai-demo](https://github.com/Azure-Samples/azure-search-openai-demo) | 4317 |
|
75 |
-
|[madawei2699/myGPTReader](https://github.com/madawei2699/myGPTReader) | 4289 |
|
76 |
-
|[apache/nifi](https://github.com/apache/nifi) | 4098 |
|
77 |
-
|[langchain-ai/chat-langchain](https://github.com/langchain-ai/chat-langchain) | 4091 |
|
78 |
-
|[aiwaves-cn/agents](https://github.com/aiwaves-cn/agents) | 4073 |
|
79 |
-
|[krishnaik06/The-Grand-Complete-Data-Science-Materials](https://github.com/krishnaik06/The-Grand-Complete-Data-Science-Materials) | 4065 |
|
80 |
-
|[khoj-ai/khoj](https://github.com/khoj-ai/khoj) | 4016 |
|
81 |
-
|[Azure/azure-sdk-for-python](https://github.com/Azure/azure-sdk-for-python) | 3941 |
|
82 |
-
|[PrefectHQ/marvin](https://github.com/PrefectHQ/marvin) | 3915 |
|
83 |
-
|[OpenBMB/ToolBench](https://github.com/OpenBMB/ToolBench) | 3799 |
|
84 |
-
|[marqo-ai/marqo](https://github.com/marqo-ai/marqo) | 3771 |
|
85 |
-
|[kyegomez/tree-of-thoughts](https://github.com/kyegomez/tree-of-thoughts) | 3688 |
|
86 |
-
|[Unstructured-IO/unstructured](https://github.com/Unstructured-IO/unstructured) | 3543 |
|
87 |
-
|[llm-workflow-engine/llm-workflow-engine](https://github.com/llm-workflow-engine/llm-workflow-engine) | 3515 |
|
88 |
-
|[shroominic/codeinterpreter-api](https://github.com/shroominic/codeinterpreter-api) | 3425 |
|
89 |
-
|[openchatai/OpenCopilot](https://github.com/openchatai/OpenCopilot) | 3418 |
|
90 |
-
|[josStorer/RWKV-Runner](https://github.com/josStorer/RWKV-Runner) | 3297 |
|
91 |
-
|[whitead/paper-qa](https://github.com/whitead/paper-qa) | 3280 |
|
92 |
-
|[homanp/superagent](https://github.com/homanp/superagent) | 3258 |
|
93 |
-
|[ParisNeo/lollms-webui](https://github.com/ParisNeo/lollms-webui) | 3199 |
|
94 |
-
|[OpenBMB/AgentVerse](https://github.com/OpenBMB/AgentVerse) | 3099 |
|
95 |
-
|[project-baize/baize-chatbot](https://github.com/project-baize/baize-chatbot) | 3090 |
|
96 |
-
|[OpenGVLab/InternGPT](https://github.com/OpenGVLab/InternGPT) | 2989 |
|
97 |
-
|[xlang-ai/OpenAgents](https://github.com/xlang-ai/OpenAgents) | 2825 |
|
98 |
-
|[dataelement/bisheng](https://github.com/dataelement/bisheng) | 2797 |
|
99 |
-
|[Mintplex-Labs/anything-llm](https://github.com/Mintplex-Labs/anything-llm) | 2784 |
|
100 |
-
|[OpenBMB/BMTools](https://github.com/OpenBMB/BMTools) | 2734 |
|
101 |
-
|[run-llama/llama-hub](https://github.com/run-llama/llama-hub) | 2721 |
|
102 |
-
|[SamurAIGPT/EmbedAI](https://github.com/SamurAIGPT/EmbedAI) | 2647 |
|
103 |
-
|[NVIDIA/NeMo-Guardrails](https://github.com/NVIDIA/NeMo-Guardrails) | 2637 |
|
104 |
-
|[X-D-Lab/LangChain-ChatGLM-Webui](https://github.com/X-D-Lab/LangChain-ChatGLM-Webui) | 2532 |
|
105 |
-
|[GerevAI/gerev](https://github.com/GerevAI/gerev) | 2517 |
|
106 |
-
|[keephq/keep](https://github.com/keephq/keep) | 2448 |
|
107 |
-
|[yanqiangmiffy/Chinese-LangChain](https://github.com/yanqiangmiffy/Chinese-LangChain) | 2397 |
|
108 |
-
|[OpenGVLab/Ask-Anything](https://github.com/OpenGVLab/Ask-Anything) | 2324 |
|
109 |
-
|[IntelligenzaArtificiale/Free-Auto-GPT](https://github.com/IntelligenzaArtificiale/Free-Auto-GPT) | 2241 |
|
110 |
-
|[YiVal/YiVal](https://github.com/YiVal/YiVal) | 2232 |
|
111 |
-
|[jupyterlab/jupyter-ai](https://github.com/jupyterlab/jupyter-ai) | 2189 |
|
112 |
-
|[Farama-Foundation/PettingZoo](https://github.com/Farama-Foundation/PettingZoo) | 2136 |
|
113 |
-
|[microsoft/TaskWeaver](https://github.com/microsoft/TaskWeaver) | 2126 |
|
114 |
-
|[hwchase17/notion-qa](https://github.com/hwchase17/notion-qa) | 2083 |
|
115 |
-
|[FlagOpen/FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) | 2053 |
|
116 |
-
|[paulpierre/RasaGPT](https://github.com/paulpierre/RasaGPT) | 1999 |
|
117 |
-
|[hegelai/prompttools](https://github.com/hegelai/prompttools) | 1984 |
|
118 |
-
|[mckinsey/vizro](https://github.com/mckinsey/vizro) | 1951 |
|
119 |
-
|[vocodedev/vocode-python](https://github.com/vocodedev/vocode-python) | 1868 |
|
120 |
-
|[dot-agent/openAMS](https://github.com/dot-agent/openAMS) | 1796 |
|
121 |
-
|[explodinggradients/ragas](https://github.com/explodinggradients/ragas) | 1766 |
|
122 |
-
|[AI-Citizen/SolidGPT](https://github.com/AI-Citizen/SolidGPT) | 1761 |
|
123 |
-
|[Kav-K/GPTDiscord](https://github.com/Kav-K/GPTDiscord) | 1696 |
|
124 |
-
|[run-llama/sec-insights](https://github.com/run-llama/sec-insights) | 1654 |
|
125 |
-
|[avinashkranjan/Amazing-Python-Scripts](https://github.com/avinashkranjan/Amazing-Python-Scripts) | 1635 |
|
126 |
-
|[microsoft/WhatTheHack](https://github.com/microsoft/WhatTheHack) | 1629 |
|
127 |
-
|[noahshinn/reflexion](https://github.com/noahshinn/reflexion) | 1625 |
|
128 |
-
|[psychic-api/psychic](https://github.com/psychic-api/psychic) | 1618 |
|
129 |
-
|[Forethought-Technologies/AutoChain](https://github.com/Forethought-Technologies/AutoChain) | 1611 |
|
130 |
-
|[pinterest/querybook](https://github.com/pinterest/querybook) | 1586 |
|
131 |
-
|[refuel-ai/autolabel](https://github.com/refuel-ai/autolabel) | 1553 |
|
132 |
-
|[jina-ai/langchain-serve](https://github.com/jina-ai/langchain-serve) | 1537 |
|
133 |
-
|[jina-ai/dev-gpt](https://github.com/jina-ai/dev-gpt) | 1522 |
|
134 |
-
|[agiresearch/OpenAGI](https://github.com/agiresearch/OpenAGI) | 1493 |
|
135 |
-
|[ttengwang/Caption-Anything](https://github.com/ttengwang/Caption-Anything) | 1484 |
|
136 |
-
|[greshake/llm-security](https://github.com/greshake/llm-security) | 1483 |
|
137 |
-
|[promptfoo/promptfoo](https://github.com/promptfoo/promptfoo) | 1480 |
|
138 |
-
|[milvus-io/bootcamp](https://github.com/milvus-io/bootcamp) | 1477 |
|
139 |
-
|[richardyc/Chrome-GPT](https://github.com/richardyc/Chrome-GPT) | 1475 |
|
140 |
-
|[melih-unsal/DemoGPT](https://github.com/melih-unsal/DemoGPT) | 1428 |
|
141 |
-
|[YORG-AI/Open-Assistant](https://github.com/YORG-AI/Open-Assistant) | 1419 |
|
142 |
-
|[101dotxyz/GPTeam](https://github.com/101dotxyz/GPTeam) | 1416 |
|
143 |
-
|[jina-ai/thinkgpt](https://github.com/jina-ai/thinkgpt) | 1408 |
|
144 |
-
|[mmz-001/knowledge_gpt](https://github.com/mmz-001/knowledge_gpt) | 1398 |
|
145 |
-
|[intel/intel-extension-for-transformers](https://github.com/intel/intel-extension-for-transformers) | 1387 |
|
146 |
-
|[Azure/azureml-examples](https://github.com/Azure/azureml-examples) | 1385 |
|
147 |
-
|[lunasec-io/lunasec](https://github.com/lunasec-io/lunasec) | 1367 |
|
148 |
-
|[eyurtsev/kor](https://github.com/eyurtsev/kor) | 1355 |
|
149 |
-
|[xusenlinzy/api-for-open-llm](https://github.com/xusenlinzy/api-for-open-llm) | 1325 |
|
150 |
-
|[griptape-ai/griptape](https://github.com/griptape-ai/griptape) | 1323 |
|
151 |
-
|[SuperDuperDB/superduperdb](https://github.com/SuperDuperDB/superduperdb) | 1290 |
|
152 |
-
|[cofactoryai/textbase](https://github.com/cofactoryai/textbase) | 1284 |
|
153 |
-
|[psychic-api/rag-stack](https://github.com/psychic-api/rag-stack) | 1260 |
|
154 |
-
|[filip-michalsky/SalesGPT](https://github.com/filip-michalsky/SalesGPT) | 1250 |
|
155 |
-
|[nod-ai/SHARK](https://github.com/nod-ai/SHARK) | 1237 |
|
156 |
-
|[pluralsh/plural](https://github.com/pluralsh/plural) | 1234 |
|
157 |
-
|[cheshire-cat-ai/core](https://github.com/cheshire-cat-ai/core) | 1194 |
|
158 |
-
|[LC1332/Chat-Haruhi-Suzumiya](https://github.com/LC1332/Chat-Haruhi-Suzumiya) | 1184 |
|
159 |
-
|[poe-platform/server-bot-quick-start](https://github.com/poe-platform/server-bot-quick-start) | 1182 |
|
160 |
-
|[microsoft/X-Decoder](https://github.com/microsoft/X-Decoder) | 1180 |
|
161 |
-
|[juncongmoo/chatllama](https://github.com/juncongmoo/chatllama) | 1171 |
|
162 |
-
|[visual-openllm/visual-openllm](https://github.com/visual-openllm/visual-openllm) | 1156 |
|
163 |
-
|[alejandro-ao/ask-multiple-pdfs](https://github.com/alejandro-ao/ask-multiple-pdfs) | 1153 |
|
164 |
-
|[ThousandBirdsInc/chidori](https://github.com/ThousandBirdsInc/chidori) | 1152 |
|
165 |
-
|[irgolic/AutoPR](https://github.com/irgolic/AutoPR) | 1137 |
|
166 |
-
|[SamurAIGPT/Camel-AutoGPT](https://github.com/SamurAIGPT/Camel-AutoGPT) | 1083 |
|
167 |
-
|[ray-project/llm-applications](https://github.com/ray-project/llm-applications) | 1080 |
|
168 |
-
|[run-llama/llama-lab](https://github.com/run-llama/llama-lab) | 1072 |
|
169 |
-
|[jiran214/GPT-vup](https://github.com/jiran214/GPT-vup) | 1041 |
|
170 |
-
|[MetaGLM/FinGLM](https://github.com/MetaGLM/FinGLM) | 1035 |
|
171 |
-
|[peterw/Chat-with-Github-Repo](https://github.com/peterw/Chat-with-Github-Repo) | 1020 |
|
172 |
-
|[Anil-matcha/ChatPDF](https://github.com/Anil-matcha/ChatPDF) | 991 |
|
173 |
-
|[langchain-ai/langserve](https://github.com/langchain-ai/langserve) | 983 |
|
174 |
-
|[THUDM/AgentTuning](https://github.com/THUDM/AgentTuning) | 976 |
|
175 |
-
|[rlancemartin/auto-evaluator](https://github.com/rlancemartin/auto-evaluator) | 975 |
|
176 |
-
|[codeacme17/examor](https://github.com/codeacme17/examor) | 964 |
|
177 |
-
|[all-in-aigc/gpts-works](https://github.com/all-in-aigc/gpts-works) | 946 |
|
178 |
-
|[Ikaros-521/AI-Vtuber](https://github.com/Ikaros-521/AI-Vtuber) | 946 |
|
179 |
-
|[microsoft/Llama-2-Onnx](https://github.com/microsoft/Llama-2-Onnx) | 898 |
|
180 |
-
|[cirediatpl/FigmaChain](https://github.com/cirediatpl/FigmaChain) | 895 |
|
181 |
-
|[ricklamers/shell-ai](https://github.com/ricklamers/shell-ai) | 893 |
|
182 |
-
|[modelscope/modelscope-agent](https://github.com/modelscope/modelscope-agent) | 893 |
|
183 |
-
|[seanpixel/Teenage-AGI](https://github.com/seanpixel/Teenage-AGI) | 886 |
|
184 |
-
|[ajndkr/lanarky](https://github.com/ajndkr/lanarky) | 880 |
|
185 |
-
|[kennethleungty/Llama-2-Open-Source-LLM-CPU-Inference](https://github.com/kennethleungty/Llama-2-Open-Source-LLM-CPU-Inference) | 872 |
|
186 |
-
|[corca-ai/EVAL](https://github.com/corca-ai/EVAL) | 846 |
|
187 |
-
|[hwchase17/chat-your-data](https://github.com/hwchase17/chat-your-data) | 841 |
|
188 |
-
|[kreneskyp/ix](https://github.com/kreneskyp/ix) | 821 |
|
189 |
-
|[Link-AGI/AutoAgents](https://github.com/Link-AGI/AutoAgents) | 820 |
|
190 |
-
|[truera/trulens](https://github.com/truera/trulens) | 794 |
|
191 |
-
|[Dataherald/dataherald](https://github.com/Dataherald/dataherald) | 788 |
|
192 |
-
|[sunlabuiuc/PyHealth](https://github.com/sunlabuiuc/PyHealth) | 783 |
|
193 |
-
|[jondurbin/airoboros](https://github.com/jondurbin/airoboros) | 783 |
|
194 |
-
|[pyspark-ai/pyspark-ai](https://github.com/pyspark-ai/pyspark-ai) | 782 |
|
195 |
-
|[confident-ai/deepeval](https://github.com/confident-ai/deepeval) | 780 |
|
196 |
-
|[billxbf/ReWOO](https://github.com/billxbf/ReWOO) | 777 |
|
197 |
-
|[langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent) | 776 |
|
198 |
-
|[akshata29/entaoai](https://github.com/akshata29/entaoai) | 771 |
|
199 |
-
|[LambdaLabsML/examples](https://github.com/LambdaLabsML/examples) | 770 |
|
200 |
-
|[getmetal/motorhead](https://github.com/getmetal/motorhead) | 768 |
|
201 |
-
|[Dicklesworthstone/swiss_army_llama](https://github.com/Dicklesworthstone/swiss_army_llama) | 757 |
|
202 |
-
|[ruoccofabrizio/azure-open-ai-embeddings-qna](https://github.com/ruoccofabrizio/azure-open-ai-embeddings-qna) | 757 |
|
203 |
-
|[msoedov/langcorn](https://github.com/msoedov/langcorn) | 754 |
|
204 |
-
|[e-johnstonn/BriefGPT](https://github.com/e-johnstonn/BriefGPT) | 753 |
|
205 |
-
|[microsoft/sample-app-aoai-chatGPT](https://github.com/microsoft/sample-app-aoai-chatGPT) | 749 |
|
206 |
-
|[explosion/spacy-llm](https://github.com/explosion/spacy-llm) | 731 |
|
207 |
-
|[MiuLab/Taiwan-LLM](https://github.com/MiuLab/Taiwan-LLM) | 716 |
|
208 |
-
|[whyiyhw/chatgpt-wechat](https://github.com/whyiyhw/chatgpt-wechat) | 702 |
|
209 |
-
|[Azure-Samples/openai](https://github.com/Azure-Samples/openai) | 692 |
|
210 |
-
|[iusztinpaul/hands-on-llms](https://github.com/iusztinpaul/hands-on-llms) | 687 |
|
211 |
-
|[safevideo/autollm](https://github.com/safevideo/autollm) | 682 |
|
212 |
-
|[OpenGenerativeAI/GenossGPT](https://github.com/OpenGenerativeAI/GenossGPT) | 669 |
|
213 |
-
|[NoDataFound/hackGPT](https://github.com/NoDataFound/hackGPT) | 663 |
|
214 |
-
|[AILab-CVC/GPT4Tools](https://github.com/AILab-CVC/GPT4Tools) | 662 |
|
215 |
-
|[langchain-ai/auto-evaluator](https://github.com/langchain-ai/auto-evaluator) | 657 |
|
216 |
-
|[yvann-ba/Robby-chatbot](https://github.com/yvann-ba/Robby-chatbot) | 639 |
|
217 |
-
|[alexanderatallah/window.ai](https://github.com/alexanderatallah/window.ai) | 635 |
|
218 |
-
|[amosjyng/langchain-visualizer](https://github.com/amosjyng/langchain-visualizer) | 630 |
|
219 |
-
|[microsoft/PodcastCopilot](https://github.com/microsoft/PodcastCopilot) | 621 |
|
220 |
-
|[aws-samples/aws-genai-llm-chatbot](https://github.com/aws-samples/aws-genai-llm-chatbot) | 616 |
|
221 |
-
|[NeumTry/NeumAI](https://github.com/NeumTry/NeumAI) | 605 |
|
222 |
-
|[namuan/dr-doc-search](https://github.com/namuan/dr-doc-search) | 599 |
|
223 |
-
|[plastic-labs/tutor-gpt](https://github.com/plastic-labs/tutor-gpt) | 595 |
|
224 |
-
|[marimo-team/marimo](https://github.com/marimo-team/marimo) | 591 |
|
225 |
-
|[yakami129/VirtualWife](https://github.com/yakami129/VirtualWife) | 586 |
|
226 |
-
|[xuwenhao/geektime-ai-course](https://github.com/xuwenhao/geektime-ai-course) | 584 |
|
227 |
-
|[jonra1993/fastapi-alembic-sqlmodel-async](https://github.com/jonra1993/fastapi-alembic-sqlmodel-async) | 573 |
|
228 |
-
|[dgarnitz/vectorflow](https://github.com/dgarnitz/vectorflow) | 568 |
|
229 |
-
|[yeagerai/yeagerai-agent](https://github.com/yeagerai/yeagerai-agent) | 564 |
|
230 |
-
|[daveebbelaar/langchain-experiments](https://github.com/daveebbelaar/langchain-experiments) | 563 |
|
231 |
-
|[traceloop/openllmetry](https://github.com/traceloop/openllmetry) | 559 |
|
232 |
-
|[Agenta-AI/agenta](https://github.com/Agenta-AI/agenta) | 546 |
|
233 |
-
|[michaelthwan/searchGPT](https://github.com/michaelthwan/searchGPT) | 545 |
|
234 |
-
|[jina-ai/agentchain](https://github.com/jina-ai/agentchain) | 544 |
|
235 |
-
|[mckaywrigley/repo-chat](https://github.com/mckaywrigley/repo-chat) | 533 |
|
236 |
-
|[marella/chatdocs](https://github.com/marella/chatdocs) | 532 |
|
237 |
-
|[opentensor/bittensor](https://github.com/opentensor/bittensor) | 532 |
|
238 |
-
|[DjangoPeng/openai-quickstart](https://github.com/DjangoPeng/openai-quickstart) | 527 |
|
239 |
-
|[freddyaboulton/gradio-tools](https://github.com/freddyaboulton/gradio-tools) | 517 |
|
240 |
-
|[sidhq/Multi-GPT](https://github.com/sidhq/Multi-GPT) | 515 |
|
241 |
-
|[alejandro-ao/langchain-ask-pdf](https://github.com/alejandro-ao/langchain-ask-pdf) | 514 |
|
242 |
-
|[sajjadium/ctf-archives](https://github.com/sajjadium/ctf-archives) | 507 |
|
243 |
-
|[continuum-llms/chatgpt-memory](https://github.com/continuum-llms/chatgpt-memory) | 502 |
|
244 |
-
|[steamship-core/steamship-langchain](https://github.com/steamship-core/steamship-langchain) | 494 |
|
245 |
-
|[mpaepper/content-chatbot](https://github.com/mpaepper/content-chatbot) | 493 |
|
246 |
-
|[langchain-ai/langchain-aiplugin](https://github.com/langchain-ai/langchain-aiplugin) | 492 |
|
247 |
-
|[logan-markewich/llama_index_starter_pack](https://github.com/logan-markewich/llama_index_starter_pack) | 483 |
|
248 |
-
|[datawhalechina/llm-universe](https://github.com/datawhalechina/llm-universe) | 475 |
|
249 |
-
|[leondz/garak](https://github.com/leondz/garak) | 464 |
|
250 |
-
|[RedisVentures/ArXivChatGuru](https://github.com/RedisVentures/ArXivChatGuru) | 461 |
|
251 |
-
|[Anil-matcha/Chatbase](https://github.com/Anil-matcha/Chatbase) | 455 |
|
252 |
-
|[Aiyu-awa/luna-ai](https://github.com/Aiyu-awa/luna-ai) | 450 |
|
253 |
-
|[DataDog/dd-trace-py](https://github.com/DataDog/dd-trace-py) | 450 |
|
254 |
-
|[Azure-Samples/miyagi](https://github.com/Azure-Samples/miyagi) | 449 |
|
255 |
-
|[poe-platform/poe-protocol](https://github.com/poe-platform/poe-protocol) | 447 |
|
256 |
-
|[onlyphantom/llm-python](https://github.com/onlyphantom/llm-python) | 446 |
|
257 |
-
|[junruxiong/IncarnaMind](https://github.com/junruxiong/IncarnaMind) | 441 |
|
258 |
-
|[CarperAI/OpenELM](https://github.com/CarperAI/OpenELM) | 441 |
|
259 |
-
|[daodao97/chatdoc](https://github.com/daodao97/chatdoc) | 437 |
|
260 |
-
|[showlab/VLog](https://github.com/showlab/VLog) | 436 |
|
261 |
-
|[wandb/weave](https://github.com/wandb/weave) | 420 |
|
262 |
-
|[QwenLM/Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) | 419 |
|
263 |
-
|[huchenxucs/ChatDB](https://github.com/huchenxucs/ChatDB) | 416 |
|
264 |
-
|[jerlendds/osintbuddy](https://github.com/jerlendds/osintbuddy) | 411 |
|
265 |
-
|[monarch-initiative/ontogpt](https://github.com/monarch-initiative/ontogpt) | 408 |
|
266 |
-
|[mallorbc/Finetune_LLMs](https://github.com/mallorbc/Finetune_LLMs) | 406 |
|
267 |
-
|[JayZeeDesign/researcher-gpt](https://github.com/JayZeeDesign/researcher-gpt) | 405 |
|
268 |
-
|[rsaryev/talk-codebase](https://github.com/rsaryev/talk-codebase) | 401 |
|
269 |
-
|[langchain-ai/langsmith-cookbook](https://github.com/langchain-ai/langsmith-cookbook) | 398 |
|
270 |
-
|[mtenenholtz/chat-twitter](https://github.com/mtenenholtz/chat-twitter) | 398 |
|
271 |
-
|[morpheuslord/GPT_Vuln-analyzer](https://github.com/morpheuslord/GPT_Vuln-analyzer) | 391 |
|
272 |
-
|[MagnivOrg/prompt-layer-library](https://github.com/MagnivOrg/prompt-layer-library) | 387 |
|
273 |
-
|[JohnSnowLabs/langtest](https://github.com/JohnSnowLabs/langtest) | 384 |
|
274 |
-
|[mrwadams/attackgen](https://github.com/mrwadams/attackgen) | 381 |
|
275 |
-
|[codefuse-ai/Test-Agent](https://github.com/codefuse-ai/Test-Agent) | 380 |
|
276 |
-
|[personoids/personoids-lite](https://github.com/personoids/personoids-lite) | 379 |
|
277 |
-
|[mosaicml/examples](https://github.com/mosaicml/examples) | 378 |
|
278 |
-
|[steamship-packages/langchain-production-starter](https://github.com/steamship-packages/langchain-production-starter) | 370 |
|
279 |
-
|[FlagAI-Open/Aquila2](https://github.com/FlagAI-Open/Aquila2) | 365 |
|
280 |
-
|[Mintplex-Labs/vector-admin](https://github.com/Mintplex-Labs/vector-admin) | 365 |
|
281 |
-
|[NimbleBoxAI/ChainFury](https://github.com/NimbleBoxAI/ChainFury) | 357 |
|
282 |
-
|[BlackHC/llm-strategy](https://github.com/BlackHC/llm-strategy) | 354 |
|
283 |
-
|[lilacai/lilac](https://github.com/lilacai/lilac) | 352 |
|
284 |
-
|[preset-io/promptimize](https://github.com/preset-io/promptimize) | 351 |
|
285 |
-
|[yuanjie-ai/ChatLLM](https://github.com/yuanjie-ai/ChatLLM) | 347 |
|
286 |
-
|[andylokandy/gpt-4-search](https://github.com/andylokandy/gpt-4-search) | 346 |
|
287 |
-
|[zhoudaquan/ChatAnything](https://github.com/zhoudaquan/ChatAnything) | 343 |
|
288 |
-
|[rgomezcasas/dotfiles](https://github.com/rgomezcasas/dotfiles) | 343 |
|
289 |
-
|[tigerlab-ai/tiger](https://github.com/tigerlab-ai/tiger) | 342 |
|
290 |
-
|[HumanSignal/label-studio-ml-backend](https://github.com/HumanSignal/label-studio-ml-backend) | 334 |
|
291 |
-
|[nasa-petal/bidara](https://github.com/nasa-petal/bidara) | 334 |
|
292 |
-
|[momegas/megabots](https://github.com/momegas/megabots) | 334 |
|
293 |
-
|[Cheems-Seminar/grounded-segment-any-parts](https://github.com/Cheems-Seminar/grounded-segment-any-parts) | 330 |
|
294 |
-
|[CambioML/pykoi](https://github.com/CambioML/pykoi) | 326 |
|
295 |
-
|[Nuggt-dev/Nuggt](https://github.com/Nuggt-dev/Nuggt) | 326 |
|
296 |
-
|[wandb/edu](https://github.com/wandb/edu) | 326 |
|
297 |
-
|[Haste171/langchain-chatbot](https://github.com/Haste171/langchain-chatbot) | 324 |
|
298 |
-
|[sugarforever/LangChain-Tutorials](https://github.com/sugarforever/LangChain-Tutorials) | 322 |
|
299 |
-
|[liangwq/Chatglm_lora_multi-gpu](https://github.com/liangwq/Chatglm_lora_multi-gpu) | 321 |
|
300 |
-
|[ur-whitelab/chemcrow-public](https://github.com/ur-whitelab/chemcrow-public) | 320 |
|
301 |
-
|[itamargol/openai](https://github.com/itamargol/openai) | 318 |
|
302 |
-
|[gia-guar/JARVIS-ChatGPT](https://github.com/gia-guar/JARVIS-ChatGPT) | 304 |
|
303 |
-
|[SpecterOps/Nemesis](https://github.com/SpecterOps/Nemesis) | 302 |
|
304 |
-
|[facebookresearch/personal-timeline](https://github.com/facebookresearch/personal-timeline) | 302 |
|
305 |
-
|[hnawaz007/pythondataanalysis](https://github.com/hnawaz007/pythondataanalysis) | 301 |
|
306 |
-
|[Chainlit/cookbook](https://github.com/Chainlit/cookbook) | 300 |
|
307 |
-
|[airobotlab/KoChatGPT](https://github.com/airobotlab/KoChatGPT) | 300 |
|
308 |
-
|[GPT-Fathom/GPT-Fathom](https://github.com/GPT-Fathom/GPT-Fathom) | 299 |
|
309 |
-
|[kaarthik108/snowChat](https://github.com/kaarthik108/snowChat) | 299 |
|
310 |
-
|[kyegomez/swarms](https://github.com/kyegomez/swarms) | 296 |
|
311 |
-
|[LangStream/langstream](https://github.com/LangStream/langstream) | 295 |
|
312 |
-
|[genia-dev/GeniA](https://github.com/genia-dev/GeniA) | 294 |
|
313 |
-
|[shamspias/customizable-gpt-chatbot](https://github.com/shamspias/customizable-gpt-chatbot) | 291 |
|
314 |
-
|[TsinghuaDatabaseGroup/DB-GPT](https://github.com/TsinghuaDatabaseGroup/DB-GPT) | 290 |
|
315 |
-
|[conceptofmind/toolformer](https://github.com/conceptofmind/toolformer) | 283 |
|
316 |
-
|[sullivan-sean/chat-langchainjs](https://github.com/sullivan-sean/chat-langchainjs) | 283 |
|
317 |
-
|[AutoPackAI/beebot](https://github.com/AutoPackAI/beebot) | 282 |
|
318 |
-
|[pablomarin/GPT-Azure-Search-Engine](https://github.com/pablomarin/GPT-Azure-Search-Engine) | 282 |
|
319 |
-
|[gkamradt/LLMTest_NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack) | 280 |
|
320 |
-
|[gustavz/DataChad](https://github.com/gustavz/DataChad) | 280 |
|
321 |
-
|[Safiullah-Rahu/CSV-AI](https://github.com/Safiullah-Rahu/CSV-AI) | 278 |
|
322 |
-
|[hwchase17/chroma-langchain](https://github.com/hwchase17/chroma-langchain) | 275 |
|
323 |
-
|[AkshitIreddy/Interactive-LLM-Powered-NPCs](https://github.com/AkshitIreddy/Interactive-LLM-Powered-NPCs) | 268 |
|
324 |
-
|[ennucore/clippinator](https://github.com/ennucore/clippinator) | 267 |
|
325 |
-
|[artitw/text2text](https://github.com/artitw/text2text) | 264 |
|
326 |
-
|[anarchy-ai/LLM-VM](https://github.com/anarchy-ai/LLM-VM) | 263 |
|
327 |
-
|[wpydcr/LLM-Kit](https://github.com/wpydcr/LLM-Kit) | 262 |
|
328 |
-
|[streamlit/llm-examples](https://github.com/streamlit/llm-examples) | 262 |
|
329 |
-
|[paolorechia/learn-langchain](https://github.com/paolorechia/learn-langchain) | 262 |
|
330 |
-
|[yym68686/ChatGPT-Telegram-Bot](https://github.com/yym68686/ChatGPT-Telegram-Bot) | 261 |
|
331 |
-
|[PradipNichite/Youtube-Tutorials](https://github.com/PradipNichite/Youtube-Tutorials) | 259 |
|
332 |
-
|[radi-cho/datasetGPT](https://github.com/radi-cho/datasetGPT) | 259 |
|
333 |
-
|[ur-whitelab/exmol](https://github.com/ur-whitelab/exmol) | 259 |
|
334 |
-
|[ml6team/fondant](https://github.com/ml6team/fondant) | 254 |
|
335 |
-
|[bborn/howdoi.ai](https://github.com/bborn/howdoi.ai) | 254 |
|
336 |
-
|[rahulnyk/knowledge_graph](https://github.com/rahulnyk/knowledge_graph) | 253 |
|
337 |
-
|[recalign/RecAlign](https://github.com/recalign/RecAlign) | 248 |
|
338 |
-
|[hwchase17/langchain-streamlit-template](https://github.com/hwchase17/langchain-streamlit-template) | 248 |
|
339 |
-
|[fetchai/uAgents](https://github.com/fetchai/uAgents) | 247 |
|
340 |
-
|[arthur-ai/bench](https://github.com/arthur-ai/bench) | 247 |
|
341 |
-
|[miaoshouai/miaoshouai-assistant](https://github.com/miaoshouai/miaoshouai-assistant) | 246 |
|
342 |
-
|[RoboCoachTechnologies/GPT-Synthesizer](https://github.com/RoboCoachTechnologies/GPT-Synthesizer) | 244 |
|
343 |
-
|[langchain-ai/web-explorer](https://github.com/langchain-ai/web-explorer) | 242 |
|
344 |
-
|[kaleido-lab/dolphin](https://github.com/kaleido-lab/dolphin) | 242 |
|
345 |
-
|[PJLab-ADG/DriveLikeAHuman](https://github.com/PJLab-ADG/DriveLikeAHuman) | 241 |
|
346 |
-
|[stepanogil/autonomous-hr-chatbot](https://github.com/stepanogil/autonomous-hr-chatbot) | 238 |
|
347 |
-
|[WongSaang/chatgpt-ui-server](https://github.com/WongSaang/chatgpt-ui-server) | 236 |
|
348 |
-
|[nexus-stc/stc](https://github.com/nexus-stc/stc) | 235 |
|
349 |
-
|[yeagerai/genworlds](https://github.com/yeagerai/genworlds) | 235 |
|
350 |
-
|[Gentopia-AI/Gentopia](https://github.com/Gentopia-AI/Gentopia) | 235 |
|
351 |
-
|[alphasecio/langchain-examples](https://github.com/alphasecio/langchain-examples) | 235 |
|
352 |
-
|[grumpyp/aixplora](https://github.com/grumpyp/aixplora) | 232 |
|
353 |
-
|[shaman-ai/agent-actors](https://github.com/shaman-ai/agent-actors) | 232 |
|
354 |
-
|[darrenburns/elia](https://github.com/darrenburns/elia) | 231 |
|
355 |
-
|[orgexyz/BlockAGI](https://github.com/orgexyz/BlockAGI) | 231 |
|
356 |
-
|[handrew/browserpilot](https://github.com/handrew/browserpilot) | 226 |
|
357 |
-
|[su77ungr/CASALIOY](https://github.com/su77ungr/CASALIOY) | 225 |
|
358 |
-
|[nicknochnack/LangchainDocuments](https://github.com/nicknochnack/LangchainDocuments) | 225 |
|
359 |
-
|[dbpunk-labs/octogen](https://github.com/dbpunk-labs/octogen) | 224 |
|
360 |
-
|[langchain-ai/weblangchain](https://github.com/langchain-ai/weblangchain) | 222 |
|
361 |
-
|[CL-lau/SQL-GPT](https://github.com/CL-lau/SQL-GPT) | 222 |
|
362 |
-
|[alvarosevilla95/autolang](https://github.com/alvarosevilla95/autolang) | 221 |
|
363 |
-
|[showlab/UniVTG](https://github.com/showlab/UniVTG) | 220 |
|
364 |
-
|[edreisMD/plugnplai](https://github.com/edreisMD/plugnplai) | 219 |
|
365 |
-
|[hardbyte/qabot](https://github.com/hardbyte/qabot) | 216 |
|
366 |
-
|[microsoft/azure-openai-in-a-day-workshop](https://github.com/microsoft/azure-openai-in-a-day-workshop) | 215 |
|
367 |
-
|[Azure-Samples/chat-with-your-data-solution-accelerator](https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator) | 214 |
|
368 |
-
|[amadad/agentcy](https://github.com/amadad/agentcy) | 213 |
|
369 |
-
|[snexus/llm-search](https://github.com/snexus/llm-search) | 212 |
|
370 |
-
|[afaqueumer/DocQA](https://github.com/afaqueumer/DocQA) | 206 |
|
371 |
-
|[plchld/InsightFlow](https://github.com/plchld/InsightFlow) | 205 |
|
372 |
-
|[yasyf/compress-gpt](https://github.com/yasyf/compress-gpt) | 205 |
|
373 |
-
|[benthecoder/ClassGPT](https://github.com/benthecoder/ClassGPT) | 205 |
|
374 |
-
|[voxel51/voxelgpt](https://github.com/voxel51/voxelgpt) | 204 |
|
375 |
-
|[jbrukh/gpt-jargon](https://github.com/jbrukh/gpt-jargon) | 204 |
|
376 |
-
|[emarco177/ice_breaker](https://github.com/emarco177/ice_breaker) | 204 |
|
377 |
-
|[tencentmusic/supersonic](https://github.com/tencentmusic/supersonic) | 202 |
|
378 |
-
|[Azure-Samples/azure-search-power-skills](https://github.com/Azure-Samples/azure-search-power-skills) | 202 |
|
379 |
-
|[blob42/Instrukt](https://github.com/blob42/Instrukt) | 201 |
|
380 |
-
|[langchain-ai/langsmith-sdk](https://github.com/langchain-ai/langsmith-sdk) | 200 |
|
381 |
-
|[SamPink/dev-gpt](https://github.com/SamPink/dev-gpt) | 200 |
|
382 |
-
|[ju-bezdek/langchain-decorators](https://github.com/ju-bezdek/langchain-decorators) | 198 |
|
383 |
-
|[KMnO4-zx/huanhuan-chat](https://github.com/KMnO4-zx/huanhuan-chat) | 196 |
|
384 |
-
|[Azure-Samples/jp-azureopenai-samples](https://github.com/Azure-Samples/jp-azureopenai-samples) | 192 |
|
385 |
-
|[hongbo-miao/hongbomiao.com](https://github.com/hongbo-miao/hongbomiao.com) | 190 |
|
386 |
-
|[CakeCrusher/openplugin](https://github.com/CakeCrusher/openplugin) | 190 |
|
387 |
-
|[PaddlePaddle/ERNIE-Bot-SDK](https://github.com/PaddlePaddle/ERNIE-Bot-SDK) | 189 |
|
388 |
-
|[retr0reg/Ret2GPT](https://github.com/retr0reg/Ret2GPT) | 189 |
|
389 |
-
|[AmineDiro/cria](https://github.com/AmineDiro/cria) | 187 |
|
390 |
-
|[lancedb/vectordb-recipes](https://github.com/lancedb/vectordb-recipes) | 186 |
|
391 |
-
|[vaibkumr/prompt-optimizer](https://github.com/vaibkumr/prompt-optimizer) | 185 |
|
392 |
-
|[aws-ia/ecs-blueprints](https://github.com/aws-ia/ecs-blueprints) | 184 |
|
393 |
-
|[ethanyanjiali/minChatGPT](https://github.com/ethanyanjiali/minChatGPT) | 183 |
|
394 |
-
|[MuhammadMoinFaisal/LargeLanguageModelsProjects](https://github.com/MuhammadMoinFaisal/LargeLanguageModelsProjects) | 182 |
|
395 |
-
|[shauryr/S2QA](https://github.com/shauryr/S2QA) | 181 |
|
396 |
-
|[summarizepaper/summarizepaper](https://github.com/summarizepaper/summarizepaper) | 180 |
|
397 |
-
|[NomaDamas/RAGchain](https://github.com/NomaDamas/RAGchain) | 179 |
|
398 |
-
|[pnkvalavala/repochat](https://github.com/pnkvalavala/repochat) | 179 |
|
399 |
-
|[ibiscp/LLM-IMDB](https://github.com/ibiscp/LLM-IMDB) | 177 |
|
400 |
-
|[fengyuli-dev/multimedia-gpt](https://github.com/fengyuli-dev/multimedia-gpt) | 177 |
|
401 |
-
|[langchain-ai/text-split-explorer](https://github.com/langchain-ai/text-split-explorer) | 175 |
|
402 |
-
|[iMagist486/ElasticSearch-Langchain-Chatglm2](https://github.com/iMagist486/ElasticSearch-Langchain-Chatglm2) | 175 |
|
403 |
-
|[limaoyi1/Auto-PPT](https://github.com/limaoyi1/Auto-PPT) | 175 |
|
404 |
-
|[Open-Swarm-Net/GPT-Swarm](https://github.com/Open-Swarm-Net/GPT-Swarm) | 175 |
|
405 |
-
|[morpheuslord/HackBot](https://github.com/morpheuslord/HackBot) | 174 |
|
406 |
-
|[v7labs/benchllm](https://github.com/v7labs/benchllm) | 174 |
|
407 |
-
|[Coding-Crashkurse/Langchain-Full-Course](https://github.com/Coding-Crashkurse/Langchain-Full-Course) | 174 |
|
408 |
-
|[dongyh20/Octopus](https://github.com/dongyh20/Octopus) | 173 |
|
409 |
-
|[kimtth/azure-openai-llm-vector-langchain](https://github.com/kimtth/azure-openai-llm-vector-langchain) | 173 |
|
410 |
-
|[mayooear/private-chatbot-mpt30b-langchain](https://github.com/mayooear/private-chatbot-mpt30b-langchain) | 173 |
|
411 |
-
|[zilliztech/akcio](https://github.com/zilliztech/akcio) | 172 |
|
412 |
-
|[jmpaz/promptlib](https://github.com/jmpaz/promptlib) | 172 |
|
413 |
-
|[ccurme/yolopandas](https://github.com/ccurme/yolopandas) | 172 |
|
414 |
-
|[joaomdmoura/CrewAI](https://github.com/joaomdmoura/CrewAI) | 170 |
|
415 |
-
|[katanaml/llm-mistral-invoice-cpu](https://github.com/katanaml/llm-mistral-invoice-cpu) | 170 |
|
416 |
-
|[chakkaradeep/pyCodeAGI](https://github.com/chakkaradeep/pyCodeAGI) | 170 |
|
417 |
-
|[mudler/LocalAGI](https://github.com/mudler/LocalAGI) | 167 |
|
418 |
-
|[dssjon/biblos](https://github.com/dssjon/biblos) | 165 |
|
419 |
-
|[kjappelbaum/gptchem](https://github.com/kjappelbaum/gptchem) | 165 |
|
420 |
-
|[xxw1995/chatglm3-finetune](https://github.com/xxw1995/chatglm3-finetune) | 164 |
|
421 |
-
|[ArjanCodes/examples](https://github.com/ArjanCodes/examples) | 163 |
|
422 |
-
|[AIAnytime/Llama2-Medical-Chatbot](https://github.com/AIAnytime/Llama2-Medical-Chatbot) | 163 |
|
423 |
-
|[RCGAI/SimplyRetrieve](https://github.com/RCGAI/SimplyRetrieve) | 162 |
|
424 |
-
|[langchain-ai/langchain-teacher](https://github.com/langchain-ai/langchain-teacher) | 162 |
|
425 |
-
|[menloparklab/falcon-langchain](https://github.com/menloparklab/falcon-langchain) | 162 |
|
426 |
-
|[flurb18/AgentOoba](https://github.com/flurb18/AgentOoba) | 162 |
|
427 |
-
|[homanp/vercel-langchain](https://github.com/homanp/vercel-langchain) | 161 |
|
428 |
-
|[jiran214/langup-ai](https://github.com/jiran214/langup-ai) | 160 |
|
429 |
-
|[JorisdeJong123/7-Days-of-LangChain](https://github.com/JorisdeJong123/7-Days-of-LangChain) | 160 |
|
430 |
-
|[GoogleCloudPlatform/data-analytics-golden-demo](https://github.com/GoogleCloudPlatform/data-analytics-golden-demo) | 159 |
|
431 |
-
|[positive666/Prompt-Can-Anything](https://github.com/positive666/Prompt-Can-Anything) | 159 |
|
432 |
-
|[luisroque/large_laguage_models](https://github.com/luisroque/large_laguage_models) | 159 |
|
433 |
-
|[mlops-for-all/mlops-for-all.github.io](https://github.com/mlops-for-all/mlops-for-all.github.io) | 158 |
|
434 |
-
|[wandb/wandbot](https://github.com/wandb/wandbot) | 158 |
|
435 |
-
|[elastic/elasticsearch-labs](https://github.com/elastic/elasticsearch-labs) | 157 |
|
436 |
-
|[shroominic/funcchain](https://github.com/shroominic/funcchain) | 157 |
|
437 |
-
|[deeppavlov/dream](https://github.com/deeppavlov/dream) | 156 |
|
438 |
-
|[mluogh/eastworld](https://github.com/mluogh/eastworld) | 154 |
|
439 |
-
|[georgesung/llm_qlora](https://github.com/georgesung/llm_qlora) | 154 |
|
440 |
-
|[RUC-GSAI/YuLan-Rec](https://github.com/RUC-GSAI/YuLan-Rec) | 153 |
|
441 |
-
|[KylinC/ChatFinance](https://github.com/KylinC/ChatFinance) | 152 |
|
442 |
-
|[Dicklesworthstone/llama2_aided_tesseract](https://github.com/Dicklesworthstone/llama2_aided_tesseract) | 152 |
|
443 |
-
|[c0sogi/LLMChat](https://github.com/c0sogi/LLMChat) | 152 |
|
444 |
-
|[eunomia-bpf/GPTtrace](https://github.com/eunomia-bpf/GPTtrace) | 152 |
|
445 |
-
|[ErikBjare/gptme](https://github.com/ErikBjare/gptme) | 152 |
|
446 |
-
|[Klingefjord/chatgpt-telegram](https://github.com/Klingefjord/chatgpt-telegram) | 152 |
|
447 |
-
|[RoboCoachTechnologies/ROScribe](https://github.com/RoboCoachTechnologies/ROScribe) | 151 |
|
448 |
-
|[Aggregate-Intellect/sherpa](https://github.com/Aggregate-Intellect/sherpa) | 151 |
|
449 |
-
|[3Alan/DocsMind](https://github.com/3Alan/DocsMind) | 151 |
|
450 |
-
|[tangqiaoyu/ToolAlpaca](https://github.com/tangqiaoyu/ToolAlpaca) | 150 |
|
451 |
-
|[kulltc/chatgpt-sql](https://github.com/kulltc/chatgpt-sql) | 150 |
|
452 |
-
|[mallahyari/drqa](https://github.com/mallahyari/drqa) | 150 |
|
453 |
-
|[MedalCollector/Orator](https://github.com/MedalCollector/Orator) | 149 |
|
454 |
-
|[Teahouse-Studios/akari-bot](https://github.com/Teahouse-Studios/akari-bot) | 149 |
|
455 |
-
|[realminchoi/babyagi-ui](https://github.com/realminchoi/babyagi-ui) | 148 |
|
456 |
-
|[ssheng/BentoChain](https://github.com/ssheng/BentoChain) | 148 |
|
457 |
-
|[solana-labs/chatgpt-plugin](https://github.com/solana-labs/chatgpt-plugin) | 147 |
|
458 |
-
|[aurelio-labs/arxiv-bot](https://github.com/aurelio-labs/arxiv-bot) | 147 |
|
459 |
-
|[Jaseci-Labs/jaseci](https://github.com/Jaseci-Labs/jaseci) | 146 |
|
460 |
-
|[menloparklab/langchain-cohere-qdrant-doc-retrieval](https://github.com/menloparklab/langchain-cohere-qdrant-doc-retrieval) | 146 |
|
461 |
-
|[trancethehuman/entities-extraction-web-scraper](https://github.com/trancethehuman/entities-extraction-web-scraper) | 144 |
|
462 |
-
|[peterw/StoryStorm](https://github.com/peterw/StoryStorm) | 144 |
|
463 |
-
|[grumpyp/chroma-langchain-tutorial](https://github.com/grumpyp/chroma-langchain-tutorial) | 144 |
|
464 |
-
|[gh18l/CrawlGPT](https://github.com/gh18l/CrawlGPT) | 142 |
|
465 |
-
|[langchain-ai/langchain-aws-template](https://github.com/langchain-ai/langchain-aws-template) | 142 |
|
466 |
-
|[yasyf/summ](https://github.com/yasyf/summ) | 141 |
|
467 |
-
|[petehunt/langchain-github-bot](https://github.com/petehunt/langchain-github-bot) | 141 |
|
468 |
-
|[hirokidaichi/wanna](https://github.com/hirokidaichi/wanna) | 140 |
|
469 |
-
|[jina-ai/fastapi-serve](https://github.com/jina-ai/fastapi-serve) | 139 |
|
470 |
-
|[zenml-io/zenml-projects](https://github.com/zenml-io/zenml-projects) | 139 |
|
471 |
-
|[jlonge4/local_llama](https://github.com/jlonge4/local_llama) | 139 |
|
472 |
-
|[smyja/blackmaria](https://github.com/smyja/blackmaria) | 138 |
|
473 |
-
|[ChuloAI/BrainChulo](https://github.com/ChuloAI/BrainChulo) | 137 |
|
474 |
-
|[log1stics/voice-generator-webui](https://github.com/log1stics/voice-generator-webui) | 137 |
|
475 |
-
|[davila7/file-gpt](https://github.com/davila7/file-gpt) | 137 |
|
476 |
-
|[dcaribou/transfermarkt-datasets](https://github.com/dcaribou/transfermarkt-datasets) | 136 |
|
477 |
-
|[ciare-robotics/world-creator](https://github.com/ciare-robotics/world-creator) | 135 |
|
478 |
-
|[Undertone0809/promptulate](https://github.com/Undertone0809/promptulate) | 134 |
|
479 |
-
|[fixie-ai/fixie-examples](https://github.com/fixie-ai/fixie-examples) | 134 |
|
480 |
-
|[run-llama/ai-engineer-workshop](https://github.com/run-llama/ai-engineer-workshop) | 133 |
|
481 |
-
|[definitive-io/code-indexer-loop](https://github.com/definitive-io/code-indexer-loop) | 131 |
|
482 |
-
|[mortium91/langchain-assistant](https://github.com/mortium91/langchain-assistant) | 131 |
|
483 |
-
|[baidubce/bce-qianfan-sdk](https://github.com/baidubce/bce-qianfan-sdk) | 130 |
|
484 |
-
|[Ngonie-x/langchain_csv](https://github.com/Ngonie-x/langchain_csv) | 130 |
|
485 |
-
|[IvanIsCoding/ResuLLMe](https://github.com/IvanIsCoding/ResuLLMe) | 130 |
|
486 |
-
|[AnchoringAI/anchoring-ai](https://github.com/AnchoringAI/anchoring-ai) | 129 |
|
487 |
-
|[Azure/business-process-automation](https://github.com/Azure/business-process-automation) | 128 |
|
488 |
-
|[athina-ai/athina-sdk](https://github.com/athina-ai/athina-sdk) | 126 |
|
489 |
-
|[thunlp/ChatEval](https://github.com/thunlp/ChatEval) | 126 |
|
490 |
-
|[prof-frink-lab/slangchain](https://github.com/prof-frink-lab/slangchain) | 126 |
|
491 |
-
|[vietanhdev/pautobot](https://github.com/vietanhdev/pautobot) | 125 |
|
492 |
-
|[awslabs/generative-ai-cdk-constructs](https://github.com/awslabs/generative-ai-cdk-constructs) | 124 |
|
493 |
-
|[sdaaron/QueryGPT](https://github.com/sdaaron/QueryGPT) | 124 |
|
494 |
-
|[rabbitmetrics/langchain-13-min](https://github.com/rabbitmetrics/langchain-13-min) | 124 |
|
495 |
-
|[AutoLLM/AutoAgents](https://github.com/AutoLLM/AutoAgents) | 122 |
|
496 |
-
|[nicknochnack/Nopenai](https://github.com/nicknochnack/Nopenai) | 122 |
|
497 |
-
|[wombyz/HormoziGPT](https://github.com/wombyz/HormoziGPT) | 122 |
|
498 |
-
|[dotvignesh/PDFChat](https://github.com/dotvignesh/PDFChat) | 122 |
|
499 |
-
|[topoteretes/PromethAI-Backend](https://github.com/topoteretes/PromethAI-Backend) | 121 |
|
500 |
-
|[nftblackmagic/flask-langchain](https://github.com/nftblackmagic/flask-langchain) | 121 |
|
501 |
-
|[vishwasg217/finsight](https://github.com/vishwasg217/finsight) | 120 |
|
502 |
-
|[snap-stanford/MLAgentBench](https://github.com/snap-stanford/MLAgentBench) | 120 |
|
503 |
-
|[Azure/app-service-linux-docs](https://github.com/Azure/app-service-linux-docs) | 120 |
|
504 |
-
|[nyanp/chat2plot](https://github.com/nyanp/chat2plot) | 120 |
|
505 |
-
|[ant4g0nist/polar](https://github.com/ant4g0nist/polar) | 119 |
|
506 |
-
|[aws-samples/cdk-eks-blueprints-patterns](https://github.com/aws-samples/cdk-eks-blueprints-patterns) | 119 |
|
507 |
-
|[aws-samples/amazon-kendra-langchain-extensions](https://github.com/aws-samples/amazon-kendra-langchain-extensions) | 119 |
|
508 |
-
|[Xueheng-Li/SynologyChatbotGPT](https://github.com/Xueheng-Li/SynologyChatbotGPT) | 119 |
|
509 |
-
|[CodeAlchemyAI/ViLT-GPT](https://github.com/CodeAlchemyAI/ViLT-GPT) | 117 |
|
510 |
-
|[Lin-jun-xiang/docGPT-langchain](https://github.com/Lin-jun-xiang/docGPT-langchain) | 117 |
|
511 |
-
|[ademakdogan/ChatSQL](https://github.com/ademakdogan/ChatSQL) | 116 |
|
512 |
-
|[aniketmaurya/llm-inference](https://github.com/aniketmaurya/llm-inference) | 115 |
|
513 |
-
|[xuwenhao/mactalk-ai-course](https://github.com/xuwenhao/mactalk-ai-course) | 115 |
|
514 |
-
|[cmooredev/RepoReader](https://github.com/cmooredev/RepoReader) | 115 |
|
515 |
-
|[abi/autocommit](https://github.com/abi/autocommit) | 115 |
|
516 |
-
|[MIDORIBIN/langchain-gpt4free](https://github.com/MIDORIBIN/langchain-gpt4free) | 114 |
|
517 |
-
|[finaldie/auto-news](https://github.com/finaldie/auto-news) | 114 |
|
518 |
-
|[Anil-matcha/Youtube-to-chatbot](https://github.com/Anil-matcha/Youtube-to-chatbot) | 114 |
|
519 |
-
|[avrabyt/MemoryBot](https://github.com/avrabyt/MemoryBot) | 114 |
|
520 |
-
|[Capsize-Games/airunner](https://github.com/Capsize-Games/airunner) | 113 |
|
521 |
-
|[atisharma/llama_farm](https://github.com/atisharma/llama_farm) | 113 |
|
522 |
-
|[mbchang/data-driven-characters](https://github.com/mbchang/data-driven-characters) | 112 |
|
523 |
-
|[fiddler-labs/fiddler-auditor](https://github.com/fiddler-labs/fiddler-auditor) | 112 |
|
524 |
-
|[dirkjbreeuwer/gpt-automated-web-scraper](https://github.com/dirkjbreeuwer/gpt-automated-web-scraper) | 111 |
|
525 |
-
|[Appointat/Chat-with-Document-s-using-ChatGPT-API-and-Text-Embedding](https://github.com/Appointat/Chat-with-Document-s-using-ChatGPT-API-and-Text-Embedding) | 111 |
|
526 |
-
|[hwchase17/langchain-gradio-template](https://github.com/hwchase17/langchain-gradio-template) | 111 |
|
527 |
-
|[artas728/spelltest](https://github.com/artas728/spelltest) | 110 |
|
528 |
-
|[NVIDIA/GenerativeAIExamples](https://github.com/NVIDIA/GenerativeAIExamples) | 109 |
|
529 |
-
|[Azure/aistudio-copilot-sample](https://github.com/Azure/aistudio-copilot-sample) | 108 |
|
530 |
-
|[codefuse-ai/codefuse-chatbot](https://github.com/codefuse-ai/codefuse-chatbot) | 108 |
|
531 |
-
|[apirrone/Memento](https://github.com/apirrone/Memento) | 108 |
|
532 |
-
|[e-johnstonn/GPT-Doc-Summarizer](https://github.com/e-johnstonn/GPT-Doc-Summarizer) | 108 |
|
533 |
-
|[salesforce/BOLAA](https://github.com/salesforce/BOLAA) | 107 |
|
534 |
-
|[Erol444/gpt4-openai-api](https://github.com/Erol444/gpt4-openai-api) | 106 |
|
535 |
-
|[linjungz/chat-with-your-doc](https://github.com/linjungz/chat-with-your-doc) | 106 |
|
536 |
-
|[crosleythomas/MirrorGPT](https://github.com/crosleythomas/MirrorGPT) | 106 |
|
537 |
-
|[panaverse/learn-generative-ai](https://github.com/panaverse/learn-generative-ai) | 105 |
|
538 |
-
|[Azure/azure-sdk-tools](https://github.com/Azure/azure-sdk-tools) | 105 |
|
539 |
-
|[malywut/gpt_examples](https://github.com/malywut/gpt_examples) | 105 |
|
540 |
-
|[ritun16/chain-of-verification](https://github.com/ritun16/chain-of-verification) | 104 |
|
541 |
-
|[langchain-ai/langchain-benchmarks](https://github.com/langchain-ai/langchain-benchmarks) | 104 |
|
542 |
-
|[lightninglabs/LangChainBitcoin](https://github.com/lightninglabs/LangChainBitcoin) | 104 |
|
543 |
-
|[flepied/second-brain-agent](https://github.com/flepied/second-brain-agent) | 103 |
|
544 |
-
|[llmapp/openai.mini](https://github.com/llmapp/openai.mini) | 102 |
|
545 |
-
|[gimlet-ai/tddGPT](https://github.com/gimlet-ai/tddGPT) | 102 |
|
546 |
-
|[jlonge4/gpt_chatwithPDF](https://github.com/jlonge4/gpt_chatwithPDF) | 102 |
|
547 |
-
|[agentification/RAFA_code](https://github.com/agentification/RAFA_code) | 101 |
|
548 |
-
|[pacman100/DHS-LLM-Workshop](https://github.com/pacman100/DHS-LLM-Workshop) | 101 |
|
549 |
-
|[aws-samples/private-llm-qa-bot](https://github.com/aws-samples/private-llm-qa-bot) | 101 |
|
550 |
-
|
551 |
-
|
552 |
-
_Generated by [github-dependents-info](https://github.com/nvuillam/github-dependents-info)_
|
553 |
-
|
554 |
-
`github-dependents-info --repo "langchain-ai/langchain" --markdownfile dependents.md --minstars 100 --sort stars`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,51 +0,0 @@
|
|
1 |
-
# 3rd Party Tutorials
|
2 |
-
|
3 |
-
## Tutorials
|
4 |
-
|
5 |
-
### [LangChain v 0.1 by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae0gBSJ9T0w7cu7iJZbH3T31)
|
6 |
-
### [Build with Langchain - Advanced by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae06tclDATrMYY0idsTdLg9v)
|
7 |
-
### [LangGraph by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae16n2TWUkKq5PgJ0w6Pkwtg)
|
8 |
-
### [by Greg Kamradt](https://www.youtube.com/playlist?list=PLqZXAkvF1bPNQER9mLmDbntNfSpzdDIU5)
|
9 |
-
### [by Sam Witteveen](https://www.youtube.com/playlist?list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ)
|
10 |
-
### [by James Briggs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F)
|
11 |
-
### [by Prompt Engineering](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr)
|
12 |
-
### [by Mayo Oshin](https://www.youtube.com/@chatwithdata/search?query=langchain)
|
13 |
-
### [by 1 little Coder](https://www.youtube.com/playlist?list=PLpdmBGJ6ELUK-v0MK-t4wZmVEbxM5xk6L)
|
14 |
-
### [by BobLin (Chinese language)](https://www.youtube.com/playlist?list=PLbd7ntv6PxC3QMFQvtWfk55p-Op_syO1C)
|
15 |
-
|
16 |
-
## Courses
|
17 |
-
|
18 |
-
### Featured courses on Deeplearning.AI
|
19 |
-
|
20 |
-
- [LangChain for LLM Application Development](https://www.deeplearning.ai/short-courses/langchain-for-llm-application-development/)
|
21 |
-
- [LangChain Chat with Your Data](https://www.deeplearning.ai/short-courses/langchain-chat-with-your-data/)
|
22 |
-
- [Functions, Tools and Agents with LangChain](https://www.deeplearning.ai/short-courses/functions-tools-agents-langchain/)
|
23 |
-
- [Build LLM Apps with LangChain.js](https://www.deeplearning.ai/short-courses/build-llm-apps-with-langchain-js/)
|
24 |
-
|
25 |
-
### Online courses
|
26 |
-
|
27 |
-
- [Udemy](https://www.udemy.com/courses/search/?q=langchain)
|
28 |
-
- [DataCamp](https://www.datacamp.com/courses/developing-llm-applications-with-langchain)
|
29 |
-
- [Pluralsight](https://www.pluralsight.com/search?q=langchain)
|
30 |
-
- [Coursera](https://www.coursera.org/search?query=langchain)
|
31 |
-
- [Maven](https://maven.com/courses?query=langchain)
|
32 |
-
- [Udacity](https://www.udacity.com/catalog/all/any-price/any-school/any-skill/any-difficulty/any-duration/any-type/relevance/page-1?searchValue=langchain)
|
33 |
-
- [LinkedIn Learning](https://www.linkedin.com/search/results/learning/?keywords=langchain)
|
34 |
-
- [edX](https://www.edx.org/search?q=langchain)
|
35 |
-
- [freeCodeCamp](https://www.youtube.com/@freecodecamp/search?query=langchain)
|
36 |
-
|
37 |
-
## Short Tutorials
|
38 |
-
|
39 |
-
- [by Nicholas Renotte](https://youtu.be/MlK6SIjcjE8)
|
40 |
-
- [by Patrick Loeber](https://youtu.be/LbT1yp6quS8)
|
41 |
-
- [by Rabbitmetrics](https://youtu.be/aywZrzNaKjs)
|
42 |
-
- [by Ivan Reznikov](https://medium.com/@ivanreznikov/langchain-101-course-updated-668f7b41d6cb)
|
43 |
-
|
44 |
-
## Books and Handbooks
|
45 |
-
|
46 |
-
- [Generative AI with LangChain](https://www.amazon.com/Generative-AI-LangChain-language-ChatGPT/dp/1835083463/ref=sr_1_1?crid=1GMOMH0G7GLR&keywords=generative+ai+with+langchain&qid=1703247181&sprefix=%2Caps%2C298&sr=8-1) by [Ben Auffrath](https://www.amazon.com/stores/Ben-Auffarth/author/B08JQKSZ7D?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true), Β©οΈ 2023 Packt Publishing
|
47 |
-
- [LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
|
48 |
-
- [LangChain Cheatsheet](https://pub.towardsai.net/langchain-cheatsheet-all-secrets-on-a-single-page-8be26b721cde) by **Ivan Reznikov**
|
49 |
-
- [Dive into Langchain (Chinese language)](https://langchain.boblin.app/)
|
50 |
-
|
51 |
-
---------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,63 +0,0 @@
|
|
1 |
-
# YouTube videos
|
2 |
-
|
3 |
-
[Updated 2024-05-16]
|
4 |
-
|
5 |
-
### [Official LangChain YouTube channel](https://www.youtube.com/@LangChain)
|
6 |
-
|
7 |
-
### [Tutorials on YouTube](/docs/additional_resources/tutorials/#tutorials)
|
8 |
-
|
9 |
-
## Videos (sorted by views)
|
10 |
-
|
11 |
-
Only videos with 40K+ views:
|
12 |
-
|
13 |
-
- [Using `ChatGPT` with YOUR OWN Data. This is magical. (LangChain `OpenAI API`)](https://youtu.be/9AXP7tCI9PI)
|
14 |
-
- [Chat with Multiple `PDFs` | LangChain App Tutorial in Python (Free LLMs and Embeddings)](https://youtu.be/dXxQ0LR-3Hg?si=pjXKhsHRzn10vOqX)
|
15 |
-
- [`Hugging Face` + Langchain in 5 mins | Access 200k+ FREE AI models for your AI apps](https://youtu.be/_j7JEDWuqLE?si=psimQscN3qo2dOa9)
|
16 |
-
- [LangChain Crash Course For Beginners | LangChain Tutorial](https://youtu.be/nAmC7SoVLd8?si=qJdvyG5-rnjqfdj1)
|
17 |
-
- [Vector Embeddings Tutorial β Code Your Own AI Assistant with GPT-4 API + LangChain + NLP](https://youtu.be/yfHHvmaMkcA?si=UBP3yw50cLm3a2nj)
|
18 |
-
- [Development with Large Language Models Tutorial β `OpenAI`, Langchain, Agents, `Chroma`](https://youtu.be/xZDB1naRUlk?si=v8J1q6oFHRyTkf7Y)
|
19 |
-
- [Langchain: `PDF` Chat App (GUI) | ChatGPT for Your PDF FILES | Step-by-Step Tutorial](https://youtu.be/RIWbalZ7sTo?si=LbKsCcuyv0BtnrTY)
|
20 |
-
- [Vector Search `RAG` Tutorial β Combine Your Data with LLMs with Advanced Search](https://youtu.be/JEBDfGqrAUA?si=pD7oxpfwWeJCxfBt)
|
21 |
-
- [LangChain Crash Course for Beginners](https://youtu.be/lG7Uxts9SXs?si=Yte4S5afN7KNCw0F)
|
22 |
-
- [Learn `RAG` From Scratch β Python AI Tutorial from a LangChain Engineer](https://youtu.be/sVcwVQRHIc8?si=_LN4g0vOgSdtlB3S)
|
23 |
-
- [`Llama 2` in LangChain β FIRST Open Source Conversational Agent!](https://youtu.be/6iHVJyX2e50?si=rtq1maPrzWKHbwVV)
|
24 |
-
- [LangChain Tutorial for Beginners | Generative AI Series](https://youtu.be/cQUUkZnyoD0?si=KYz-bvcocdqGh9f_)
|
25 |
-
- [Chatbots with `RAG`: LangChain Full Walkthrough](https://youtu.be/LhnCsygAvzY?si=yS7T98VLfcWdkDek)
|
26 |
-
- [LangChain Explained In 15 Minutes - A MUST Learn For Python Programmers](https://youtu.be/mrjq3lFz23s?si=wkQGcSKUJjuiiEPf)
|
27 |
-
- [LLM Project | End to End LLM Project Using Langchain, `OpenAI` in Finance Domain](https://youtu.be/MoqgmWV1fm8?si=oVl-5kJVgd3a07Y_)
|
28 |
-
- [What is LangChain?](https://youtu.be/1bUy-1hGZpI?si=NZ0D51VM5y-DhjGe)
|
29 |
-
- [`RAG` + Langchain Python Project: Easy AI/Chat For Your Doc](https://youtu.be/tcqEUSNCn8I?si=RLcWPBVLIErRqdmU)
|
30 |
-
- [Getting Started With LangChain In 20 Minutes- Build Celebrity Search Application](https://youtu.be/_FpT1cwcSLg?si=X9qVazlXYucN_JBP)
|
31 |
-
- [LangChain GEN AI Tutorial β 6 End-to-End Projects using OpenAI, Google `Gemini Pro`, `LLAMA2`](https://youtu.be/x0AnCE9SE4A?si=_92gJYm7kb-V2bi0)
|
32 |
-
- [Complete Langchain GEN AI Crash Course With 6 End To End LLM Projects With OPENAI, `LLAMA2`, `Gemini Pro`](https://youtu.be/aWKrL4z5H6w?si=NVLi7Yiq0ccE7xXE)
|
33 |
-
- [AI Leader Reveals The Future of AI AGENTS (LangChain CEO)](https://youtu.be/9ZhbA0FHZYc?si=1r4P6kRvKVvEhRgE)
|
34 |
-
- [Learn How To Query Pdf using Langchain Open AI in 5 min](https://youtu.be/5Ghv-F1wF_0?si=ZZRjrWfeiFOVrcvu)
|
35 |
-
- [Reliable, fully local RAG agents with `LLaMA3`](https://youtu.be/-ROS6gfYIts?si=75CXA8W_BbnkIxcV)
|
36 |
-
- [Learn `LangChain.js` - Build LLM apps with JavaScript and `OpenAI`](https://youtu.be/HSZ_uaif57o?si=Icj-RAhwMT-vHaYA)
|
37 |
-
- [LLM Project | End to End LLM Project Using LangChain, Google Palm In Ed-Tech Industry](https://youtu.be/AjQPRomyd-k?si=eC3NT6kn02Lhpz-_)
|
38 |
-
- [Chatbot Answering from Your Own Knowledge Base: Langchain, `ChatGPT`, `Pinecone`, and `Streamlit`: | Code](https://youtu.be/nAKhxQ3hcMA?si=9Zd_Nd_jiYhtml5w)
|
39 |
-
- [LangChain is AMAZING | Quick Python Tutorial](https://youtu.be/I4mFqyqFkxg?si=aJ66qh558OfNAczD)
|
40 |
-
- [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw?si=kZR-lnJwixeVrjmh)
|
41 |
-
- [Using NEW `MPT-7B` in `Hugging Face` and LangChain](https://youtu.be/DXpk9K7DgMo?si=99JDpV_ueimwJhMi)
|
42 |
-
- [LangChain - COMPLETE TUTORIAL - Basics to advanced concept!](https://youtu.be/a89vqgK-Qcs?si=0aVO2EOqsw7GE5e3)
|
43 |
-
- [LangChain Agents: Simply Explained!](https://youtu.be/Xi9Ui-9qcPw?si=DCuG7nGx8dxcfhkx)
|
44 |
-
- [Chat With Multiple `PDF` Documents With Langchain And Google `Gemini Pro`](https://youtu.be/uus5eLz6smA?si=YUwvHtaZsGeIl0WD)
|
45 |
-
- [LLM Project | End to end LLM project Using Langchain, `Google Palm` in Retail Industry](https://youtu.be/4wtrl4hnPT8?si=_eOKPpdLfWu5UXMQ)
|
46 |
-
- [Tutorial | Chat with any Website using Python and Langchain](https://youtu.be/bupx08ZgSFg?si=KRrjYZFnuLsstGwW)
|
47 |
-
- [Prompt Engineering And LLM's With LangChain In One Shot-Generative AI](https://youtu.be/t2bSApmPzU4?si=87vPQQtYEWTyu2Kx)
|
48 |
-
- [Build a Custom Chatbot with `OpenAI`: `GPT-Index` & LangChain | Step-by-Step Tutorial](https://youtu.be/FIDv6nc4CgU?si=gR1u3DUG9lvzBIKK)
|
49 |
-
- [Search Your `PDF` App using Langchain, `ChromaDB`, and Open Source LLM: No OpenAI API (Runs on CPU)](https://youtu.be/rIV1EseKwU4?si=UxZEoXSiPai8fXgl)
|
50 |
-
- [Building a `RAG` application from scratch using Python, LangChain, and the `OpenAI API`](https://youtu.be/BrsocJb-fAo?si=hvkh9iTGzJ-LnsX-)
|
51 |
-
- [Function Calling via `ChatGPT API` - First Look With LangChain](https://youtu.be/0-zlUy7VUjg?si=Vc6LFseckEc6qvuk)
|
52 |
-
- [Private GPT, free deployment! Langchain-Chachat helps you easily play with major mainstream AI models! | Zero Degree Commentary](https://youtu.be/3LLUyaHP-3I?si=AZumEeFXsvqaLl0f)
|
53 |
-
- [Create a ChatGPT clone using `Streamlit` and LangChain](https://youtu.be/IaTiyQ2oYUQ?si=WbgsYmqPDnMidSUK)
|
54 |
-
- [What's next for AI agents ft. LangChain's Harrison Chase](https://youtu.be/pBBe1pk8hf4?si=H4vdBF9nmkNZxiHt)
|
55 |
-
- [`LangFlow`: Build Chatbots without Writing Code - LangChain](https://youtu.be/KJ-ux3hre4s?si=TJuDu4bAlva1myNL)
|
56 |
-
- [Building a LangChain Custom Medical Agent with Memory](https://youtu.be/6UFtRwWnHws?si=wymYad26VgigRkHy)
|
57 |
-
- [`Ollama` meets LangChain](https://youtu.be/k_1pOF1mj8k?si=RlBiCrmaR3s7SnMK)
|
58 |
-
- [End To End LLM Langchain Project using `Pinecone` Vector Database](https://youtu.be/erUfLIi9OFM?si=aHpuHXdIEmAfS4eF)
|
59 |
-
- [`LLaMA2` with LangChain - Basics | LangChain TUTORIAL](https://youtu.be/cIRzwSXB4Rc?si=FUs0OLVJpzKhut0h)
|
60 |
-
- [Understanding `ReACT` with LangChain](https://youtu.be/Eug2clsLtFs?si=imgj534ggxlypS0d)
|
61 |
-
|
62 |
-
---------------------
|
63 |
-
[Updated 2024-05-16]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,10 +0,0 @@
|
|
1 |
-
# langchain-core
|
2 |
-
|
3 |
-
## 0.1.x
|
4 |
-
|
5 |
-
#### Deprecated
|
6 |
-
|
7 |
-
- `BaseChatModel` methods `__call__`, `call_as_llm`, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.invoke` instead.
|
8 |
-
- `BaseChatModel` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.ainvoke` instead.
|
9 |
-
- `BaseLLM` methods `__call__, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseLLM.invoke` instead.
|
10 |
-
- `BaseLLM` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseLLM.ainvoke` instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,93 +0,0 @@
|
|
1 |
-
# langchain
|
2 |
-
|
3 |
-
## 0.2.0
|
4 |
-
|
5 |
-
### Deleted
|
6 |
-
|
7 |
-
As of release 0.2.0, `langchain` is required to be integration-agnostic. This means that code in `langchain` should not by default instantiate any specific chat models, llms, embedding models, vectorstores etc; instead, the user will be required to specify those explicitly.
|
8 |
-
|
9 |
-
The following functions and classes require an explicit LLM to be passed as an argument:
|
10 |
-
|
11 |
-
- `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit`
|
12 |
-
- `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit`
|
13 |
-
- `langchain.chains.openai_functions.get_openapi_chain`
|
14 |
-
- `langchain.chains.router.MultiRetrievalQAChain.from_retrievers`
|
15 |
-
- `langchain.indexes.VectorStoreIndexWrapper.query`
|
16 |
-
- `langchain.indexes.VectorStoreIndexWrapper.query_with_sources`
|
17 |
-
- `langchain.indexes.VectorStoreIndexWrapper.aquery_with_sources`
|
18 |
-
- `langchain.chains.flare.FlareChain`
|
19 |
-
|
20 |
-
The following classes now require passing an explicit Embedding model as an argument:
|
21 |
-
|
22 |
-
- `langchain.indexes.VectostoreIndexCreator`
|
23 |
-
|
24 |
-
The following code has been removed:
|
25 |
-
|
26 |
-
- `langchain.natbot.NatBotChain.from_default` removed in favor of the `from_llm` class method.
|
27 |
-
|
28 |
-
### Deprecated
|
29 |
-
|
30 |
-
We have two main types of deprecations:
|
31 |
-
|
32 |
-
1. Code that was moved from `langchain` into another package (e.g, `langchain-community`)
|
33 |
-
|
34 |
-
If you try to import it from `langchain`, the import will keep on working, but will raise a deprecation warning. The warning will provide a replacement import statement.
|
35 |
-
|
36 |
-
```python
|
37 |
-
python -c "from langchain.document_loaders.markdown import UnstructuredMarkdownLoader"
|
38 |
-
|
39 |
-
```
|
40 |
-
|
41 |
-
```python
|
42 |
-
LangChainDeprecationWarning: Importing UnstructuredMarkdownLoader from langchain.document_loaders is deprecated. Please replace deprecated imports:
|
43 |
-
|
44 |
-
>> from langchain.document_loaders import UnstructuredMarkdownLoader
|
45 |
-
|
46 |
-
with new imports of:
|
47 |
-
|
48 |
-
>> from langchain_community.document_loaders import UnstructuredMarkdownLoader
|
49 |
-
```
|
50 |
-
|
51 |
-
We will continue supporting the imports in `langchain` until release 0.4 as long as the relevant package where the code lives is installed. (e.g., as long as `langchain_community` is installed.)
|
52 |
-
|
53 |
-
However, we advise for users to not rely on these imports and instead migrate to the new imports. To help with this process, weβre releasing a migration script via the LangChain CLI. See further instructions in migration guide.
|
54 |
-
|
55 |
-
1. Code that has better alternatives available and will eventually be removed, so thereβs only a single way to do things. (e.g., `predict_messages` method in ChatModels has been deprecated in favor of `invoke`).
|
56 |
-
|
57 |
-
Many of these were marked for removal in 0.2. We have bumped the removal to 0.3.
|
58 |
-
|
59 |
-
|
60 |
-
## 0.1.0 (Jan 5, 2024)
|
61 |
-
|
62 |
-
### Deleted
|
63 |
-
|
64 |
-
No deletions.
|
65 |
-
|
66 |
-
### Deprecated
|
67 |
-
|
68 |
-
Deprecated classes and methods will be removed in 0.2.0
|
69 |
-
|
70 |
-
| Deprecated | Alternative | Reason |
|
71 |
-
|---------------------------------|-----------------------------------|------------------------------------------------|
|
72 |
-
| ChatVectorDBChain | ConversationalRetrievalChain | More general to all retrievers |
|
73 |
-
| create_ernie_fn_chain | create_ernie_fn_runnable | Use LCEL under the hood |
|
74 |
-
| created_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
|
75 |
-
| NatBotChain | | Not used |
|
76 |
-
| create_openai_fn_chain | create_openai_fn_runnable | Use LCEL under the hood |
|
77 |
-
| create_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
|
78 |
-
| load_query_constructor_chain | load_query_constructor_runnable | Use LCEL under the hood |
|
79 |
-
| VectorDBQA | RetrievalQA | More general to all retrievers |
|
80 |
-
| Sequential Chain | LCEL | Obviated by LCEL |
|
81 |
-
| SimpleSequentialChain | LCEL | Obviated by LCEL |
|
82 |
-
| TransformChain | LCEL/RunnableLambda | Obviated by LCEL |
|
83 |
-
| create_tagging_chain | create_structured_output_runnable | Use LCEL under the hood |
|
84 |
-
| ChatAgent | create_react_agent | Use LCEL builder over a class |
|
85 |
-
| ConversationalAgent | create_react_agent | Use LCEL builder over a class |
|
86 |
-
| ConversationalChatAgent | create_json_chat_agent | Use LCEL builder over a class |
|
87 |
-
| initialize_agent | Individual create agent methods | Individual create agent methods are more clear |
|
88 |
-
| ZeroShotAgent | create_react_agent | Use LCEL builder over a class |
|
89 |
-
| OpenAIFunctionsAgent | create_openai_functions_agent | Use LCEL builder over a class |
|
90 |
-
| OpenAIMultiFunctionsAgent | create_openai_tools_agent | Use LCEL builder over a class |
|
91 |
-
| SelfAskWithSearchAgent | create_self_ask_with_search | Use LCEL builder over a class |
|
92 |
-
| StructuredChatAgent | create_structured_chat_agent | Use LCEL builder over a class |
|
93 |
-
| XMLAgent | create_xml_agent | Use LCEL builder over a class |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The diff for this file is too large to render.
See raw diff
|
|
@@ -1,35 +0,0 @@
|
|
1 |
-
# General guidelines
|
2 |
-
|
3 |
-
Here are some things to keep in mind for all types of contributions:
|
4 |
-
|
5 |
-
- Follow the ["fork and pull request"](https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project) workflow.
|
6 |
-
- Fill out the checked-in pull request template when opening pull requests. Note related issues and tag relevant maintainers.
|
7 |
-
- Ensure your PR passes formatting, linting, and testing checks before requesting a review.
|
8 |
-
- If you would like comments or feedback on your current progress, please open an issue or discussion and tag a maintainer.
|
9 |
-
- See the sections on [Testing](/docs/contributing/code/setup#testing) and [Formatting and Linting](/docs/contributing/code/setup#formatting-and-linting) for how to run these checks locally.
|
10 |
-
- Backwards compatibility is key. Your changes must not be breaking, except in case of critical bug and security fixes.
|
11 |
-
- Look for duplicate PRs or issues that have already been opened before opening a new one.
|
12 |
-
- Keep scope as isolated as possible. As a general rule, your changes should not affect more than one package at a time.
|
13 |
-
|
14 |
-
## Bugfixes
|
15 |
-
|
16 |
-
We encourage and appreciate bugfixes. We ask that you:
|
17 |
-
|
18 |
-
- Explain the bug in enough detail for maintainers to be able to reproduce it.
|
19 |
-
- If an accompanying issue exists, link to it. Prefix with `Fixes` so that the issue will close automatically when the PR is merged.
|
20 |
-
- Avoid breaking changes if possible.
|
21 |
-
- Include unit tests that fail without the bugfix.
|
22 |
-
|
23 |
-
If you come across a bug and don't know how to fix it, we ask that you open an issue for it describing in detail the environment in which you encountered the bug.
|
24 |
-
|
25 |
-
## New features
|
26 |
-
|
27 |
-
We aim to keep the bar high for new features. We generally don't accept new core abstractions, changes to infra, changes to dependencies,
|
28 |
-
or new agents/chains from outside contributors without an existing GitHub discussion or issue that demonstrates an acute need for them.
|
29 |
-
|
30 |
-
- New features must come with docs, unit tests, and (if appropriate) integration tests.
|
31 |
-
- New integrations must come with docs, unit tests, and (if appropriate) integration tests.
|
32 |
-
- See [this page](/docs/contributing/integrations) for more details on contributing new integrations.
|
33 |
-
- New functionality should not inherit from or use deprecated methods or classes.
|
34 |
-
- We will reject features that are likely to lead to security vulnerabilities or reports.
|
35 |
-
- Do not add any hard dependencies. Integrations may add optional dependencies.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|