omarsol commited on
Commit
53cdc7c
β€’
1 Parent(s): 8dc9a1e

Upload folder using huggingface_hub (#13)

Browse files

- e43dc86f22177911c7ed14bf5ccd8362495e7c603b751e6c8da4515727cbf14c (5b962207caf715a4f28aa9699e643cbcaee17d55)
- 866f914895d62abb7a8b0677ea47f2cef56460d295cdcc48e02e4a442023013f (1953bf5688b39097a5bcb0b55c41eb5cf18593d7)
- 0dd9e865f71b47952a3b2cdb125f6a3c1a51600caa92c71cc0d8345033143a8e (b0849d2975a61d3534e94f3dc1af71bbf5aabeaf)
- 93d25463f392e65503fe59a5dcf9b950d6b770b4340bd83c408776412899a0e5 (c6373ae65de466c89c9028f55fc7a95cd3ef3314)
- 1f803277624906823a8f168ca4d7418e6a3f9b099da046827adf584093bb3c0f (89f6e60c927e6132c9030903ff7e673234379f63)
- 8c9be11e3bec88c20cee865fdfde76c9db80fb3f7c6408cf9569e19be7a869e7 (83e14bfdc674b2f2e0089c9cb7c41fc4651ec67f)
- 38161e67e8a70b6f3c70e78bbd546520cdeea07c50814bfff0dcc805ffbc2fa1 (6bfc8836b82503ff67ce48e1d0a9341490a29a82)
- 7c8bf6b0dbf196d9e9d7adbe4fb603c98f1651ec4573c4c0b3c36b4ab02036c9 (1100aeb39bbd2a2f0f0633d64992ea4fa9a06e02)
- 049126a7d0bfdaa170dbee79db20fc54e0493cd438383c9eef685a2f4795bcd7 (721b7f9b97d2a5101eee591959a9552f89ecf68c)

This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. .DS_Store +0 -0
  2. {chroma-db-langchain β†’ chroma-db-all_sources}/chroma.sqlite3 +2 -2
  3. chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/data_level0.bin β†’ chroma-db-all_sources/document_dict_all_sources.pkl +2 -2
  4. {chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967 β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/data_level0.bin +2 -2
  5. {chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/header.bin +1 -1
  6. {chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967 β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/index_metadata.pickle +2 -2
  7. {chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967 β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/length.bin +2 -2
  8. {chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9 β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/link_lists.bin +2 -2
  9. chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/length.bin +0 -3
  10. chroma-db-langchain/document_dict_langchain.pkl +0 -3
  11. chroma-db-llama_index/chroma.sqlite3 +0 -3
  12. chroma-db-llama_index/document_dict_llama_index.pkl +0 -3
  13. chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/header.bin +0 -3
  14. chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/link_lists.bin +0 -3
  15. chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/data_level0.bin +0 -3
  16. chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/index_metadata.pickle +0 -3
  17. chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/length.bin +0 -3
  18. chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/link_lists.bin +0 -3
  19. chroma-db-openai_cookbooks/chroma.sqlite3 +0 -3
  20. chroma-db-openai_cookbooks/document_dict_openai_cookbooks.pkl +0 -3
  21. chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/data_level0.bin +0 -3
  22. chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/header.bin +0 -3
  23. chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/length.bin +0 -3
  24. chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/link_lists.bin +0 -0
  25. chroma-db-peft/chroma.sqlite3 +0 -3
  26. chroma-db-peft/document_dict_peft.pkl +0 -3
  27. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/data_level0.bin +0 -3
  28. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/header.bin +0 -3
  29. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/index_metadata.pickle +0 -3
  30. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/length.bin +0 -3
  31. chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/link_lists.bin +0 -3
  32. chroma-db-transformers/chroma.sqlite3 +0 -3
  33. chroma-db-transformers/document_dict_transformers.pkl +0 -3
  34. chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/data_level0.bin +0 -3
  35. chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/header.bin +0 -3
  36. chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/length.bin +0 -3
  37. chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/link_lists.bin +0 -0
  38. chroma-db-trl/chroma.sqlite3 +0 -3
  39. chroma-db-trl/document_dict_trl.pkl +0 -3
  40. chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/header.bin β†’ keyword_retriever_async.pkl +2 -2
  41. chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/index_metadata.pickle β†’ keyword_retriever_sync.pkl +2 -2
  42. langchain_md_files/_templates/integration.mdx +0 -60
  43. langchain_md_files/additional_resources/arxiv_references.mdx +0 -863
  44. langchain_md_files/additional_resources/dependents.mdx +0 -554
  45. langchain_md_files/additional_resources/tutorials.mdx +0 -51
  46. langchain_md_files/additional_resources/youtube.mdx +0 -63
  47. langchain_md_files/changes/changelog/core.mdx +0 -10
  48. langchain_md_files/changes/changelog/langchain.mdx +0 -93
  49. langchain_md_files/concepts.mdx +0 -0
  50. langchain_md_files/contributing/code/guidelines.mdx +0 -35
.DS_Store ADDED
Binary file (6.15 kB). View file
 
{chroma-db-langchain β†’ chroma-db-all_sources}/chroma.sqlite3 RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:24ae5c40f8e6c3af71641afb1a2471995bbbe4db718cd5b35df813db056657bd
3
- size 227315712
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fa4c8c3baa07aebe75e98b27653c2ee8364adab2d05cd59eb6c59db15f32b21
3
+ size 808640512
chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/data_level0.bin β†’ chroma-db-all_sources/document_dict_all_sources.pkl RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2421147aa5c23ec9529cef6949c4fc0418bcb13b4863e39493298f8950c41ba5
3
- size 74568000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee1075ea1f0dc8fae654fb8fdc2d12b2837932bff2986ecafb18f8f53bedc00c
3
+ size 80327711
{chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967 β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/data_level0.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9567febc769436955f0e69825fe8275d4745cd0cf0cc44caf8affea796cd014e
3
- size 86996000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31de8589e4732c48104a4df11ee9b0c0b02095d9067272a611613d352fa6b7af
3
+ size 122844000
{chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/header.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5adccd0a9e9b2c539168b73e6cc6ce867211ec92bdfbe077126f0620285ad69d
3
  size 100
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cccbc3245a5cc2d78cef91615e5cb8a1ed6e71feb8aea1b3cf323ea80f27ba6b
3
  size 100
{chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967 β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/index_metadata.pickle RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e98c3bbc30cae40677bf9d215340b169e9cdd61e1bb5bd5e71f7d9816330d757
3
- size 404132
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6803b25aabf97f6c7d3337fede7e0dc7f3e4ec5b4a9788c9648db4bf35f49c1
3
+ size 1680345
{chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967 β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/length.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eb8ddaa31f2796e89d98136036eaf4ced37ac942d9705ad6aba6e49276a3570d
3
- size 28000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6358caad0163b85e7f3953330383b87d1563c97c3ce387c0ced31d7c7e2a804
3
+ size 116000
{chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9 β†’ chroma-db-all_sources/ee81579b-2ecd-4828-a16e-80fe4cc3cf63}/link_lists.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9a7c30248d8a59a105fedb1798a5642cca01d772ddf4b06688c85979ed2b9248
3
- size 52152
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dde9ee1ee5c4e3bd08a5e505ac39f4834766327923cf5e12bf414873e12da62
3
+ size 251932
chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/length.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ddcd641da818ad91c965694eac10a44785d16a8668a438b66c8424cc778baef7
3
- size 24000
 
 
 
 
chroma-db-langchain/document_dict_langchain.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8c24b5de6a028f9823036b20962891c7287b01f804d62ce15dd508494bc89eb8
3
- size 9762214
 
 
 
 
chroma-db-llama_index/chroma.sqlite3 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c5e49109f87feb4a809ebdf8959a980422db67b0e0225b51ee0c23f2c9af3fcd
3
- size 235962368
 
 
 
 
chroma-db-llama_index/document_dict_llama_index.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5e59ccd849ee0500a175687c77597b5970170bc8d1afb26f82bb058df71150f2
3
- size 9655771
 
 
 
 
chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/header.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd7cfb541957dd514cb4cfdc247ec2c5d46c93bde9dd5f31ae24fdb456b9754b
3
- size 100
 
 
 
 
chroma-db-llama_index/e3589186-06b2-4509-91f3-2f04395c8967/link_lists.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8e6f7bb6981a5c9f962684dfb4eddc41c4ebcc7d51f4348e2ed76920e7d0d698
3
- size 61184
 
 
 
 
chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/data_level0.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:30530f5b774ce644134ff656ea0ad2a0cbe63f6eddc3226926c8a730d933746e
3
- size 24856000
 
 
 
 
chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/index_metadata.pickle DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:dcf2eabc3d876731469c40687897ca8c219e088189c29c4d1ef8ca2216e7b8be
3
- size 114057
 
 
 
 
chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/length.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d96a38e2a9ec1ca0e380b13a8bb9e2e29723e5b71e00e342fd4497a92e328a45
3
- size 8000
 
 
 
 
chroma-db-openai_cookbooks/83713cbb-2048-4fd9-8c69-6c57c3dd9e9a/link_lists.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4cd0071af97255b9180f3809b7f8d098eebed62956f5abcb6a5d115431dcee74
3
- size 17316
 
 
 
 
chroma-db-openai_cookbooks/chroma.sqlite3 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6b4648eaa8091fc2b033b5ac983b0f66c133aaece317ee4f6958322ad48ca3f3
3
- size 88666112
 
 
 
 
chroma-db-openai_cookbooks/document_dict_openai_cookbooks.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d1b61dcd793c1f5995a2182c9dbbe84759d42c1d0babb4e47f99bb4363293605
3
- size 3741933
 
 
 
 
chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/data_level0.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b8d4b3825a7c7a773e22fa3eeef0e7d15a695f5c4183aeff5beb07741a68679
3
- size 12428000
 
 
 
 
chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/header.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8a3ec48846fc6fdfaef19f5ed2508f0bf3da4a3c93b0f6b3dd21f0a22ec1026
3
- size 100
 
 
 
 
chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/length.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b573464ecbf09c406291e7c466209f06d69e272fd1b89f9fe800a34bdb91c226
3
- size 4000
 
 
 
 
chroma-db-peft/c252c979-f4d3-484c-8a24-f045681cfc3d/link_lists.bin DELETED
File without changes
chroma-db-peft/chroma.sqlite3 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b36f58ccee36a79e20176c908eda56d403115cc39f16671c5be3886f5f136b13
3
- size 5406720
 
 
 
 
chroma-db-peft/document_dict_peft.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:389c05ff699fcd247c93b2678791f9c9f7eec2901d887730e034dffb1c7038e8
3
- size 270073
 
 
 
 
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/data_level0.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4905080b3461da13555985ff85c5660019a389e56c813bd3af94b74b674c9350
3
- size 12428000
 
 
 
 
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/header.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:32b85e1f983554ee44ccfad97691e6a34167e44a21b142340c0d8d4b7e7b5615
3
- size 100
 
 
 
 
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/index_metadata.pickle DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ceef146ebe3c4f4cdf6847d3af12419fec68b99abf2ef6b60fd0daae667fb6a7
3
- size 56042
 
 
 
 
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/length.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0de8d2fac125632afe04d41917c53cea67281576d82a011ae7a778ef3cb2684
3
- size 4000
 
 
 
 
chroma-db-transformers/ae4313a8-a344-4a78-9635-059445504a74/link_lists.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5098cab52fc6f8df69adbe312a05d2df77efae77f3d769069da621c6b570a4d1
3
- size 8148
 
 
 
 
chroma-db-transformers/chroma.sqlite3 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:25c626cb3a2cd7286126cadb2e1148d1a05c363c34bb8e6b1694427564b7dddc
3
- size 65089536
 
 
 
 
chroma-db-transformers/document_dict_transformers.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:136c1342439595a6dfefb2fee5c32139fffeb22cd5351f67b600803580b60aae
3
- size 3255021
 
 
 
 
chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/data_level0.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b8d4b3825a7c7a773e22fa3eeef0e7d15a695f5c4183aeff5beb07741a68679
3
- size 12428000
 
 
 
 
chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/header.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8a3ec48846fc6fdfaef19f5ed2508f0bf3da4a3c93b0f6b3dd21f0a22ec1026
3
- size 100
 
 
 
 
chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/length.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:736e57c24fa009f96a9bd8ead552b4d3aa91ef5141de93d215f87dc0633a2f16
3
- size 4000
 
 
 
 
chroma-db-trl/4a557a8f-56f8-4209-85f5-5723a2b2dc4a/link_lists.bin DELETED
File without changes
chroma-db-trl/chroma.sqlite3 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f2f674cf5d0dff76e533a5e00159c74db7f503e9d03196269990f98989d1fe99
3
- size 5853184
 
 
 
 
chroma-db-trl/document_dict_trl.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d222b0677fed7d87f203b75dc8e8c607206ab246d3161bfabe1bd712ce8f09a6
3
- size 283631
 
 
 
 
chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/header.bin β†’ keyword_retriever_async.pkl RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:40519952e8bea509bb9519eebece9a9362e9e991fdad2e3226d0967f6c2442ec
3
- size 100
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5433fdb94f4d69d5af105f7fe8e69c882d9d82dfc473717d30792a182642567
3
+ size 108476897
chroma-db-langchain/191fd919-436d-4c2c-b784-ba68a1bb79b9/index_metadata.pickle β†’ keyword_retriever_sync.pkl RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a165ac942e6e706ef8893709883c5b76a02667d4352a39cedc99617be7cfb835
3
- size 346117
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adb751586db749e2b6059590bf6638fd77cbbdb7d14a807b6ea9ecd3b22e6993
3
+ size 108476933
langchain_md_files/_templates/integration.mdx DELETED
@@ -1,60 +0,0 @@
1
- [comment: Please, a reference example here "docs/integrations/arxiv.md"]::
2
- [comment: Use this template to create a new .md file in "docs/integrations/"]::
3
-
4
- # Title_REPLACE_ME
5
-
6
- [comment: Only one Tile/H1 is allowed!]::
7
-
8
- >
9
- [comment: Description: After reading this description, a reader should decide if this integration is good enough to try/follow reading OR]::
10
- [comment: go to read the next integration doc. ]::
11
- [comment: Description should include a link to the source for follow reading.]::
12
-
13
- ## Installation and Setup
14
-
15
- [comment: Installation and Setup: All necessary additional package installations and setups for Tokens, etc]::
16
-
17
- ```bash
18
- pip install package_name_REPLACE_ME
19
- ```
20
-
21
- [comment: OR this text:]::
22
-
23
- There isn't any special setup for it.
24
-
25
- [comment: The next H2/## sections with names of the integration modules, like "LLM", "Text Embedding Models", etc]::
26
- [comment: see "Modules" in the "index.html" page]::
27
- [comment: Each H2 section should include a link to an example(s) and a Python code with the import of the integration class]::
28
- [comment: Below are several example sections. Remove all unnecessary sections. Add all necessary sections not provided here.]::
29
-
30
- ## LLM
31
-
32
- See a [usage example](/docs/integrations/llms/INCLUDE_REAL_NAME).
33
-
34
- ```python
35
- from langchain_community.llms import integration_class_REPLACE_ME
36
- ```
37
-
38
- ## Text Embedding Models
39
-
40
- See a [usage example](/docs/integrations/text_embedding/INCLUDE_REAL_NAME).
41
-
42
- ```python
43
- from langchain_community.embeddings import integration_class_REPLACE_ME
44
- ```
45
-
46
- ## Chat models
47
-
48
- See a [usage example](/docs/integrations/chat/INCLUDE_REAL_NAME).
49
-
50
- ```python
51
- from langchain_community.chat_models import integration_class_REPLACE_ME
52
- ```
53
-
54
- ## Document Loader
55
-
56
- See a [usage example](/docs/integrations/document_loaders/INCLUDE_REAL_NAME).
57
-
58
- ```python
59
- from langchain_community.document_loaders import integration_class_REPLACE_ME
60
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
langchain_md_files/additional_resources/arxiv_references.mdx DELETED
@@ -1,863 +0,0 @@
1
- # arXiv
2
-
3
- LangChain implements the latest research in the field of Natural Language Processing.
4
- This page contains `arXiv` papers referenced in the LangChain Documentation, API Reference,
5
- Templates, and Cookbooks.
6
-
7
- From the opposite direction, scientists use `LangChain` in research and reference it in the research papers.
8
- Here you find papers that reference:
9
- - [LangChain](https://arxiv.org/search/?query=langchain&searchtype=all&source=header)
10
- - [LangGraph](https://arxiv.org/search/?query=langgraph&searchtype=all&source=header)
11
- - [LangSmith](https://arxiv.org/search/?query=langsmith&searchtype=all&source=header)
12
-
13
- ## Summary
14
-
15
- | arXiv id / Title | Authors | Published date πŸ”» | LangChain Documentation|
16
- |------------------|---------|-------------------|------------------------|
17
- | `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024-02-06 | `Cookbook:` [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
18
- | `2401.18059v1` [RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval](http://arxiv.org/abs/2401.18059v1) | Parth Sarthi, Salman Abdullah, Aditi Tuli, et al. | 2024-01-31 | `Cookbook:` [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
19
- | `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024-01-29 | `Cookbook:` [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
20
- | `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024-01-08 | `Cookbook:` [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
21
- | `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023-12-11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
22
- | `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023-11-15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
23
- | `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023-10-17 | `Cookbook:` [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
24
- | `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023-10-09 | `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
25
- | `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023-07-18 | `Cookbook:` [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
26
- | `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023-05-23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
27
- | `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023-05-15 | `API:` [langchain_experimental.tot](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.tot), `Cookbook:` [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
28
- | `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023-05-06 | `Cookbook:` [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
29
- | `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023-05-03 | `API:` [langchain...LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
30
- | `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023-04-17 | `Cookbook:` [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
31
- | `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023-04-07 | `Cookbook:` [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
32
- | `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023-03-31 | `Cookbook:` [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
33
- | `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023-03-30 | `API:` [langchain_experimental.autonomous_agents](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
34
- | `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community...OCIModelDeploymentTGI](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
35
- | `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `API:` [langchain...HypotheticalDocumentEmbedder](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
36
- | `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022-12-12 | `API:` [langchain_experimental.fallacy_removal](https://python.langchain.com/v0.2/api_reference//arxiv/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
37
- | `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022-11-25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
38
- | `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022-11-18 | `API:` [langchain_experimental.pal_chain](https://python.langchain.com/v0.2/api_reference//python/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://python.langchain.com/v0.2/api_reference/experimental/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), `Cookbook:` [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
39
- | `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022-10-06 | `Docs:` [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), `API:` [langchain...TrajectoryEvalChain](https://python.langchain.com/v0.2/api_reference/langchain/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain), [langchain...create_react_agent](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent)
40
- | `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022-09-22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
41
- | `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022-05-26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
42
- | `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Γ‡elebi, Holger Schwenk | 2022-05-25 | `API:` [langchain_community...LaserEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
43
- | `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `API:` [langchain_community...SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
44
- | `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022-02-01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
45
- | `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021-02-26 | `API:` [langchain_experimental.open_clip](https://python.langchain.com/v0.2/api_reference//arxiv/experimental_api_reference.html#module-langchain_experimental.open_clip)
46
- | `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019-09-11 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
47
-
48
- ## Self-Discover: Large Language Models Self-Compose Reasoning Structures
49
-
50
- - **arXiv id:** [2402.03620v1](http://arxiv.org/abs/2402.03620v1) **Published Date:** 2024-02-06
51
- - **Title:** Self-Discover: Large Language Models Self-Compose Reasoning Structures
52
- - **Authors:** Pei Zhou, Jay Pujara, Xiang Ren, et al.
53
- - **LangChain:**
54
-
55
- - **Cookbook:** [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
56
-
57
- **Abstract:** We introduce SELF-DISCOVER, a general framework for LLMs to self-discover the
58
- task-intrinsic reasoning structures to tackle complex reasoning problems that
59
- are challenging for typical prompting methods. Core to the framework is a
60
- self-discovery process where LLMs select multiple atomic reasoning modules such
61
- as critical thinking and step-by-step thinking, and compose them into an
62
- explicit reasoning structure for LLMs to follow during decoding. SELF-DISCOVER
63
- substantially improves GPT-4 and PaLM 2's performance on challenging reasoning
64
- benchmarks such as BigBench-Hard, grounded agent reasoning, and MATH, by as
65
- much as 32% compared to Chain of Thought (CoT). Furthermore, SELF-DISCOVER
66
- outperforms inference-intensive methods such as CoT-Self-Consistency by more
67
- than 20%, while requiring 10-40x fewer inference compute. Finally, we show that
68
- the self-discovered reasoning structures are universally applicable across
69
- model families: from PaLM 2-L to GPT-4, and from GPT-4 to Llama2, and share
70
- commonalities with human reasoning patterns.
71
-
72
- ## RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
73
-
74
- - **arXiv id:** [2401.18059v1](http://arxiv.org/abs/2401.18059v1) **Published Date:** 2024-01-31
75
- - **Title:** RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
76
- - **Authors:** Parth Sarthi, Salman Abdullah, Aditi Tuli, et al.
77
- - **LangChain:**
78
-
79
- - **Cookbook:** [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
80
-
81
- **Abstract:** Retrieval-augmented language models can better adapt to changes in world
82
- state and incorporate long-tail knowledge. However, most existing methods
83
- retrieve only short contiguous chunks from a retrieval corpus, limiting
84
- holistic understanding of the overall document context. We introduce the novel
85
- approach of recursively embedding, clustering, and summarizing chunks of text,
86
- constructing a tree with differing levels of summarization from the bottom up.
87
- At inference time, our RAPTOR model retrieves from this tree, integrating
88
- information across lengthy documents at different levels of abstraction.
89
- Controlled experiments show that retrieval with recursive summaries offers
90
- significant improvements over traditional retrieval-augmented LMs on several
91
- tasks. On question-answering tasks that involve complex, multi-step reasoning,
92
- we show state-of-the-art results; for example, by coupling RAPTOR retrieval
93
- with the use of GPT-4, we can improve the best performance on the QuALITY
94
- benchmark by 20% in absolute accuracy.
95
-
96
- ## Corrective Retrieval Augmented Generation
97
-
98
- - **arXiv id:** [2401.15884v2](http://arxiv.org/abs/2401.15884v2) **Published Date:** 2024-01-29
99
- - **Title:** Corrective Retrieval Augmented Generation
100
- - **Authors:** Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al.
101
- - **LangChain:**
102
-
103
- - **Cookbook:** [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
104
-
105
- **Abstract:** Large language models (LLMs) inevitably exhibit hallucinations since the
106
- accuracy of generated texts cannot be secured solely by the parametric
107
- knowledge they encapsulate. Although retrieval-augmented generation (RAG) is a
108
- practicable complement to LLMs, it relies heavily on the relevance of retrieved
109
- documents, raising concerns about how the model behaves if retrieval goes
110
- wrong. To this end, we propose the Corrective Retrieval Augmented Generation
111
- (CRAG) to improve the robustness of generation. Specifically, a lightweight
112
- retrieval evaluator is designed to assess the overall quality of retrieved
113
- documents for a query, returning a confidence degree based on which different
114
- knowledge retrieval actions can be triggered. Since retrieval from static and
115
- limited corpora can only return sub-optimal documents, large-scale web searches
116
- are utilized as an extension for augmenting the retrieval results. Besides, a
117
- decompose-then-recompose algorithm is designed for retrieved documents to
118
- selectively focus on key information and filter out irrelevant information in
119
- them. CRAG is plug-and-play and can be seamlessly coupled with various
120
- RAG-based approaches. Experiments on four datasets covering short- and
121
- long-form generation tasks show that CRAG can significantly improve the
122
- performance of RAG-based approaches.
123
-
124
- ## Mixtral of Experts
125
-
126
- - **arXiv id:** [2401.04088v1](http://arxiv.org/abs/2401.04088v1) **Published Date:** 2024-01-08
127
- - **Title:** Mixtral of Experts
128
- - **Authors:** Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al.
129
- - **LangChain:**
130
-
131
- - **Cookbook:** [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
132
-
133
- **Abstract:** We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model.
134
- Mixtral has the same architecture as Mistral 7B, with the difference that each
135
- layer is composed of 8 feedforward blocks (i.e. experts). For every token, at
136
- each layer, a router network selects two experts to process the current state
137
- and combine their outputs. Even though each token only sees two experts, the
138
- selected experts can be different at each timestep. As a result, each token has
139
- access to 47B parameters, but only uses 13B active parameters during inference.
140
- Mixtral was trained with a context size of 32k tokens and it outperforms or
141
- matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular,
142
- Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and
143
- multilingual benchmarks. We also provide a model fine-tuned to follow
144
- instructions, Mixtral 8x7B - Instruct, that surpasses GPT-3.5 Turbo,
145
- Claude-2.1, Gemini Pro, and Llama 2 70B - chat model on human benchmarks. Both
146
- the base and instruct models are released under the Apache 2.0 license.
147
-
148
- ## Dense X Retrieval: What Retrieval Granularity Should We Use?
149
-
150
- - **arXiv id:** [2312.06648v2](http://arxiv.org/abs/2312.06648v2) **Published Date:** 2023-12-11
151
- - **Title:** Dense X Retrieval: What Retrieval Granularity Should We Use?
152
- - **Authors:** Tong Chen, Hongwei Wang, Sihao Chen, et al.
153
- - **LangChain:**
154
-
155
- - **Template:** [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
156
-
157
- **Abstract:** Dense retrieval has become a prominent method to obtain relevant context or
158
- world knowledge in open-domain NLP tasks. When we use a learned dense retriever
159
- on a retrieval corpus at inference time, an often-overlooked design choice is
160
- the retrieval unit in which the corpus is indexed, e.g. document, passage, or
161
- sentence. We discover that the retrieval unit choice significantly impacts the
162
- performance of both retrieval and downstream tasks. Distinct from the typical
163
- approach of using passages or sentences, we introduce a novel retrieval unit,
164
- proposition, for dense retrieval. Propositions are defined as atomic
165
- expressions within text, each encapsulating a distinct factoid and presented in
166
- a concise, self-contained natural language format. We conduct an empirical
167
- comparison of different retrieval granularity. Our results reveal that
168
- proposition-based retrieval significantly outperforms traditional passage or
169
- sentence-based methods in dense retrieval. Moreover, retrieval by proposition
170
- also enhances the performance of downstream QA tasks, since the retrieved texts
171
- are more condensed with question-relevant information, reducing the need for
172
- lengthy input tokens and minimizing the inclusion of extraneous, irrelevant
173
- information.
174
-
175
- ## Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
176
-
177
- - **arXiv id:** [2311.09210v1](http://arxiv.org/abs/2311.09210v1) **Published Date:** 2023-11-15
178
- - **Title:** Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
179
- - **Authors:** Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al.
180
- - **LangChain:**
181
-
182
- - **Template:** [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
183
-
184
- **Abstract:** Retrieval-augmented language models (RALMs) represent a substantial
185
- advancement in the capabilities of large language models, notably in reducing
186
- factual hallucination by leveraging external knowledge sources. However, the
187
- reliability of the retrieved information is not always guaranteed. The
188
- retrieval of irrelevant data can lead to misguided responses, and potentially
189
- causing the model to overlook its inherent knowledge, even when it possesses
190
- adequate information to address the query. Moreover, standard RALMs often
191
- struggle to assess whether they possess adequate knowledge, both intrinsic and
192
- retrieved, to provide an accurate answer. In situations where knowledge is
193
- lacking, these systems should ideally respond with "unknown" when the answer is
194
- unattainable. In response to these challenges, we introduces Chain-of-Noting
195
- (CoN), a novel approach aimed at improving the robustness of RALMs in facing
196
- noisy, irrelevant documents and in handling unknown scenarios. The core idea of
197
- CoN is to generate sequential reading notes for retrieved documents, enabling a
198
- thorough evaluation of their relevance to the given question and integrating
199
- this information to formulate the final answer. We employed ChatGPT to create
200
- training data for CoN, which was subsequently trained on an LLaMa-2 7B model.
201
- Our experiments across four open-domain QA benchmarks show that RALMs equipped
202
- with CoN significantly outperform standard RALMs. Notably, CoN achieves an
203
- average improvement of +7.9 in EM score given entirely noisy retrieved
204
- documents and +10.5 in rejection rates for real-time questions that fall
205
- outside the pre-training knowledge scope.
206
-
207
- ## Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
208
-
209
- - **arXiv id:** [2310.11511v1](http://arxiv.org/abs/2310.11511v1) **Published Date:** 2023-10-17
210
- - **Title:** Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
211
- - **Authors:** Akari Asai, Zeqiu Wu, Yizhong Wang, et al.
212
- - **LangChain:**
213
-
214
- - **Cookbook:** [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
215
-
216
- **Abstract:** Despite their remarkable capabilities, large language models (LLMs) often
217
- produce responses containing factual inaccuracies due to their sole reliance on
218
- the parametric knowledge they encapsulate. Retrieval-Augmented Generation
219
- (RAG), an ad hoc approach that augments LMs with retrieval of relevant
220
- knowledge, decreases such issues. However, indiscriminately retrieving and
221
- incorporating a fixed number of retrieved passages, regardless of whether
222
- retrieval is necessary, or passages are relevant, diminishes LM versatility or
223
- can lead to unhelpful response generation. We introduce a new framework called
224
- Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's
225
- quality and factuality through retrieval and self-reflection. Our framework
226
- trains a single arbitrary LM that adaptively retrieves passages on-demand, and
227
- generates and reflects on retrieved passages and its own generations using
228
- special tokens, called reflection tokens. Generating reflection tokens makes
229
- the LM controllable during the inference phase, enabling it to tailor its
230
- behavior to diverse task requirements. Experiments show that Self-RAG (7B and
231
- 13B parameters) significantly outperforms state-of-the-art LLMs and
232
- retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG
233
- outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA,
234
- reasoning and fact verification tasks, and it shows significant gains in
235
- improving factuality and citation accuracy for long-form generations relative
236
- to these models.
237
-
238
- ## Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
239
-
240
- - **arXiv id:** [2310.06117v2](http://arxiv.org/abs/2310.06117v2) **Published Date:** 2023-10-09
241
- - **Title:** Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
242
- - **Authors:** Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al.
243
- - **LangChain:**
244
-
245
- - **Template:** [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting)
246
- - **Cookbook:** [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
247
-
248
- **Abstract:** We present Step-Back Prompting, a simple prompting technique that enables
249
- LLMs to do abstractions to derive high-level concepts and first principles from
250
- instances containing specific details. Using the concepts and principles to
251
- guide reasoning, LLMs significantly improve their abilities in following a
252
- correct reasoning path towards the solution. We conduct experiments of
253
- Step-Back Prompting with PaLM-2L, GPT-4 and Llama2-70B models, and observe
254
- substantial performance gains on various challenging reasoning-intensive tasks
255
- including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back
256
- Prompting improves PaLM-2L performance on MMLU (Physics and Chemistry) by 7%
257
- and 11% respectively, TimeQA by 27%, and MuSiQue by 7%.
258
-
259
- ## Llama 2: Open Foundation and Fine-Tuned Chat Models
260
-
261
- - **arXiv id:** [2307.09288v2](http://arxiv.org/abs/2307.09288v2) **Published Date:** 2023-07-18
262
- - **Title:** Llama 2: Open Foundation and Fine-Tuned Chat Models
263
- - **Authors:** Hugo Touvron, Louis Martin, Kevin Stone, et al.
264
- - **LangChain:**
265
-
266
- - **Cookbook:** [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
267
-
268
- **Abstract:** In this work, we develop and release Llama 2, a collection of pretrained and
269
- fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70
270
- billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for
271
- dialogue use cases. Our models outperform open-source chat models on most
272
- benchmarks we tested, and based on our human evaluations for helpfulness and
273
- safety, may be a suitable substitute for closed-source models. We provide a
274
- detailed description of our approach to fine-tuning and safety improvements of
275
- Llama 2-Chat in order to enable the community to build on our work and
276
- contribute to the responsible development of LLMs.
277
-
278
- ## Query Rewriting for Retrieval-Augmented Large Language Models
279
-
280
- - **arXiv id:** [2305.14283v3](http://arxiv.org/abs/2305.14283v3) **Published Date:** 2023-05-23
281
- - **Title:** Query Rewriting for Retrieval-Augmented Large Language Models
282
- - **Authors:** Xinbei Ma, Yeyun Gong, Pengcheng He, et al.
283
- - **LangChain:**
284
-
285
- - **Template:** [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read)
286
- - **Cookbook:** [rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
287
-
288
- **Abstract:** Large Language Models (LLMs) play powerful, black-box readers in the
289
- retrieve-then-read pipeline, making remarkable progress in knowledge-intensive
290
- tasks. This work introduces a new framework, Rewrite-Retrieve-Read instead of
291
- the previous retrieve-then-read for the retrieval-augmented LLMs from the
292
- perspective of the query rewriting. Unlike prior studies focusing on adapting
293
- either the retriever or the reader, our approach pays attention to the
294
- adaptation of the search query itself, for there is inevitably a gap between
295
- the input text and the needed knowledge in retrieval. We first prompt an LLM to
296
- generate the query, then use a web search engine to retrieve contexts.
297
- Furthermore, to better align the query to the frozen modules, we propose a
298
- trainable scheme for our pipeline. A small language model is adopted as a
299
- trainable rewriter to cater to the black-box LLM reader. The rewriter is
300
- trained using the feedback of the LLM reader by reinforcement learning.
301
- Evaluation is conducted on downstream tasks, open-domain QA and multiple-choice
302
- QA. Experiments results show consistent performance improvement, indicating
303
- that our framework is proven effective and scalable, and brings a new framework
304
- for retrieval-augmented LLM.
305
-
306
- ## Large Language Model Guided Tree-of-Thought
307
-
308
- - **arXiv id:** [2305.08291v1](http://arxiv.org/abs/2305.08291v1) **Published Date:** 2023-05-15
309
- - **Title:** Large Language Model Guided Tree-of-Thought
310
- - **Authors:** Jieyi Long
311
- - **LangChain:**
312
-
313
- - **API Reference:** [langchain_experimental.tot](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.tot)
314
- - **Cookbook:** [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
315
-
316
- **Abstract:** In this paper, we introduce the Tree-of-Thought (ToT) framework, a novel
317
- approach aimed at improving the problem-solving capabilities of auto-regressive
318
- large language models (LLMs). The ToT technique is inspired by the human mind's
319
- approach for solving complex reasoning tasks through trial and error. In this
320
- process, the human mind explores the solution space through a tree-like thought
321
- process, allowing for backtracking when necessary. To implement ToT as a
322
- software system, we augment an LLM with additional modules including a prompter
323
- agent, a checker module, a memory module, and a ToT controller. In order to
324
- solve a given problem, these modules engage in a multi-round conversation with
325
- the LLM. The memory module records the conversation and state history of the
326
- problem solving process, which allows the system to backtrack to the previous
327
- steps of the thought-process and explore other directions from there. To verify
328
- the effectiveness of the proposed technique, we implemented a ToT-based solver
329
- for the Sudoku Puzzle. Experimental results show that the ToT framework can
330
- significantly increase the success rate of Sudoku puzzle solving. Our
331
- implementation of the ToT-based Sudoku solver is available on GitHub:
332
- \url{https://github.com/jieyilong/tree-of-thought-puzzle-solver}.
333
-
334
- ## Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
335
-
336
- - **arXiv id:** [2305.04091v3](http://arxiv.org/abs/2305.04091v3) **Published Date:** 2023-05-06
337
- - **Title:** Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
338
- - **Authors:** Lei Wang, Wanyu Xu, Yihuai Lan, et al.
339
- - **LangChain:**
340
-
341
- - **Cookbook:** [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
342
-
343
- **Abstract:** Large language models (LLMs) have recently been shown to deliver impressive
344
- performance in various NLP tasks. To tackle multi-step reasoning tasks,
345
- few-shot chain-of-thought (CoT) prompting includes a few manually crafted
346
- step-by-step reasoning demonstrations which enable LLMs to explicitly generate
347
- reasoning steps and improve their reasoning task accuracy. To eliminate the
348
- manual effort, Zero-shot-CoT concatenates the target problem statement with
349
- "Let's think step by step" as an input prompt to LLMs. Despite the success of
350
- Zero-shot-CoT, it still suffers from three pitfalls: calculation errors,
351
- missing-step errors, and semantic misunderstanding errors. To address the
352
- missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of
353
- two components: first, devising a plan to divide the entire task into smaller
354
- subtasks, and then carrying out the subtasks according to the plan. To address
355
- the calculation errors and improve the quality of generated reasoning steps, we
356
- extend PS prompting with more detailed instructions and derive PS+ prompting.
357
- We evaluate our proposed prompting strategy on ten datasets across three
358
- reasoning problems. The experimental results over GPT-3 show that our proposed
359
- zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets
360
- by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought
361
- Prompting, and has comparable performance with 8-shot CoT prompting on the math
362
- reasoning problem. The code can be found at
363
- https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
364
-
365
- ## Zero-Shot Listwise Document Reranking with a Large Language Model
366
-
367
- - **arXiv id:** [2305.02156v1](http://arxiv.org/abs/2305.02156v1) **Published Date:** 2023-05-03
368
- - **Title:** Zero-Shot Listwise Document Reranking with a Large Language Model
369
- - **Authors:** Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al.
370
- - **LangChain:**
371
-
372
- - **API Reference:** [langchain...LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
373
-
374
- **Abstract:** Supervised ranking methods based on bi-encoder or cross-encoder architectures
375
- have shown success in multi-stage text ranking tasks, but they require large
376
- amounts of relevance judgments as training data. In this work, we propose
377
- Listwise Reranker with a Large Language Model (LRL), which achieves strong
378
- reranking effectiveness without using any task-specific training data.
379
- Different from the existing pointwise ranking methods, where documents are
380
- scored independently and ranked according to the scores, LRL directly generates
381
- a reordered list of document identifiers given the candidate documents.
382
- Experiments on three TREC web search datasets demonstrate that LRL not only
383
- outperforms zero-shot pointwise methods when reranking first-stage retrieval
384
- results, but can also act as a final-stage reranker to improve the top-ranked
385
- results of a pointwise method for improved efficiency. Additionally, we apply
386
- our approach to subsets of MIRACL, a recent multilingual retrieval dataset,
387
- with results showing its potential to generalize across different languages.
388
-
389
- ## Visual Instruction Tuning
390
-
391
- - **arXiv id:** [2304.08485v2](http://arxiv.org/abs/2304.08485v2) **Published Date:** 2023-04-17
392
- - **Title:** Visual Instruction Tuning
393
- - **Authors:** Haotian Liu, Chunyuan Li, Qingyang Wu, et al.
394
- - **LangChain:**
395
-
396
- - **Cookbook:** [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
397
-
398
- **Abstract:** Instruction tuning large language models (LLMs) using machine-generated
399
- instruction-following data has improved zero-shot capabilities on new tasks,
400
- but the idea is less explored in the multimodal field. In this paper, we
401
- present the first attempt to use language-only GPT-4 to generate multimodal
402
- language-image instruction-following data. By instruction tuning on such
403
- generated data, we introduce LLaVA: Large Language and Vision Assistant, an
404
- end-to-end trained large multimodal model that connects a vision encoder and
405
- LLM for general-purpose visual and language understanding.Our early experiments
406
- show that LLaVA demonstrates impressive multimodel chat abilities, sometimes
407
- exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and
408
- yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal
409
- instruction-following dataset. When fine-tuned on Science QA, the synergy of
410
- LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We make
411
- GPT-4 generated visual instruction tuning data, our model and code base
412
- publicly available.
413
-
414
- ## Generative Agents: Interactive Simulacra of Human Behavior
415
-
416
- - **arXiv id:** [2304.03442v2](http://arxiv.org/abs/2304.03442v2) **Published Date:** 2023-04-07
417
- - **Title:** Generative Agents: Interactive Simulacra of Human Behavior
418
- - **Authors:** Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al.
419
- - **LangChain:**
420
-
421
- - **Cookbook:** [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
422
-
423
- **Abstract:** Believable proxies of human behavior can empower interactive applications
424
- ranging from immersive environments to rehearsal spaces for interpersonal
425
- communication to prototyping tools. In this paper, we introduce generative
426
- agents--computational software agents that simulate believable human behavior.
427
- Generative agents wake up, cook breakfast, and head to work; artists paint,
428
- while authors write; they form opinions, notice each other, and initiate
429
- conversations; they remember and reflect on days past as they plan the next
430
- day. To enable generative agents, we describe an architecture that extends a
431
- large language model to store a complete record of the agent's experiences
432
- using natural language, synthesize those memories over time into higher-level
433
- reflections, and retrieve them dynamically to plan behavior. We instantiate
434
- generative agents to populate an interactive sandbox environment inspired by
435
- The Sims, where end users can interact with a small town of twenty five agents
436
- using natural language. In an evaluation, these generative agents produce
437
- believable individual and emergent social behaviors: for example, starting with
438
- only a single user-specified notion that one agent wants to throw a Valentine's
439
- Day party, the agents autonomously spread invitations to the party over the
440
- next two days, make new acquaintances, ask each other out on dates to the
441
- party, and coordinate to show up for the party together at the right time. We
442
- demonstrate through ablation that the components of our agent
443
- architecture--observation, planning, and reflection--each contribute critically
444
- to the believability of agent behavior. By fusing large language models with
445
- computational, interactive agents, this work introduces architectural and
446
- interaction patterns for enabling believable simulations of human behavior.
447
-
448
- ## CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
449
-
450
- - **arXiv id:** [2303.17760v2](http://arxiv.org/abs/2303.17760v2) **Published Date:** 2023-03-31
451
- - **Title:** CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
452
- - **Authors:** Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al.
453
- - **LangChain:**
454
-
455
- - **Cookbook:** [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
456
-
457
- **Abstract:** The rapid advancement of chat-based language models has led to remarkable
458
- progress in complex task-solving. However, their success heavily relies on
459
- human input to guide the conversation, which can be challenging and
460
- time-consuming. This paper explores the potential of building scalable
461
- techniques to facilitate autonomous cooperation among communicative agents, and
462
- provides insight into their "cognitive" processes. To address the challenges of
463
- achieving autonomous cooperation, we propose a novel communicative agent
464
- framework named role-playing. Our approach involves using inception prompting
465
- to guide chat agents toward task completion while maintaining consistency with
466
- human intentions. We showcase how role-playing can be used to generate
467
- conversational data for studying the behaviors and capabilities of a society of
468
- agents, providing a valuable resource for investigating conversational language
469
- models. In particular, we conduct comprehensive studies on
470
- instruction-following cooperation in multi-agent settings. Our contributions
471
- include introducing a novel communicative agent framework, offering a scalable
472
- approach for studying the cooperative behaviors and capabilities of multi-agent
473
- systems, and open-sourcing our library to support research on communicative
474
- agents and beyond: https://github.com/camel-ai/camel.
475
-
476
- ## HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
477
-
478
- - **arXiv id:** [2303.17580v4](http://arxiv.org/abs/2303.17580v4) **Published Date:** 2023-03-30
479
- - **Title:** HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
480
- - **Authors:** Yongliang Shen, Kaitao Song, Xu Tan, et al.
481
- - **LangChain:**
482
-
483
- - **API Reference:** [langchain_experimental.autonomous_agents](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.autonomous_agents)
484
- - **Cookbook:** [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
485
-
486
- **Abstract:** Solving complicated AI tasks with different domains and modalities is a key
487
- step toward artificial general intelligence. While there are numerous AI models
488
- available for various domains and modalities, they cannot handle complicated AI
489
- tasks autonomously. Considering large language models (LLMs) have exhibited
490
- exceptional abilities in language understanding, generation, interaction, and
491
- reasoning, we advocate that LLMs could act as a controller to manage existing
492
- AI models to solve complicated AI tasks, with language serving as a generic
493
- interface to empower this. Based on this philosophy, we present HuggingGPT, an
494
- LLM-powered agent that leverages LLMs (e.g., ChatGPT) to connect various AI
495
- models in machine learning communities (e.g., Hugging Face) to solve AI tasks.
496
- Specifically, we use ChatGPT to conduct task planning when receiving a user
497
- request, select models according to their function descriptions available in
498
- Hugging Face, execute each subtask with the selected AI model, and summarize
499
- the response according to the execution results. By leveraging the strong
500
- language capability of ChatGPT and abundant AI models in Hugging Face,
501
- HuggingGPT can tackle a wide range of sophisticated AI tasks spanning different
502
- modalities and domains and achieve impressive results in language, vision,
503
- speech, and other challenging tasks, which paves a new way towards the
504
- realization of artificial general intelligence.
505
-
506
- ## A Watermark for Large Language Models
507
-
508
- - **arXiv id:** [2301.10226v4](http://arxiv.org/abs/2301.10226v4) **Published Date:** 2023-01-24
509
- - **Title:** A Watermark for Large Language Models
510
- - **Authors:** John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al.
511
- - **LangChain:**
512
-
513
- - **API Reference:** [langchain_community...OCIModelDeploymentTGI](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
514
-
515
- **Abstract:** Potential harms of large language models can be mitigated by watermarking
516
- model output, i.e., embedding signals into generated text that are invisible to
517
- humans but algorithmically detectable from a short span of tokens. We propose a
518
- watermarking framework for proprietary language models. The watermark can be
519
- embedded with negligible impact on text quality, and can be detected using an
520
- efficient open-source algorithm without access to the language model API or
521
- parameters. The watermark works by selecting a randomized set of "green" tokens
522
- before a word is generated, and then softly promoting use of green tokens
523
- during sampling. We propose a statistical test for detecting the watermark with
524
- interpretable p-values, and derive an information-theoretic framework for
525
- analyzing the sensitivity of the watermark. We test the watermark using a
526
- multi-billion parameter model from the Open Pretrained Transformer (OPT)
527
- family, and discuss robustness and security.
528
-
529
- ## Precise Zero-Shot Dense Retrieval without Relevance Labels
530
-
531
- - **arXiv id:** [2212.10496v1](http://arxiv.org/abs/2212.10496v1) **Published Date:** 2022-12-20
532
- - **Title:** Precise Zero-Shot Dense Retrieval without Relevance Labels
533
- - **Authors:** Luyu Gao, Xueguang Ma, Jimmy Lin, et al.
534
- - **LangChain:**
535
-
536
- - **API Reference:** [langchain...HypotheticalDocumentEmbedder](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
537
- - **Template:** [hyde](https://python.langchain.com/docs/templates/hyde)
538
- - **Cookbook:** [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
539
-
540
- **Abstract:** While dense retrieval has been shown effective and efficient across tasks and
541
- languages, it remains difficult to create effective fully zero-shot dense
542
- retrieval systems when no relevance label is available. In this paper, we
543
- recognize the difficulty of zero-shot learning and encoding relevance. Instead,
544
- we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a
545
- query, HyDE first zero-shot instructs an instruction-following language model
546
- (e.g. InstructGPT) to generate a hypothetical document. The document captures
547
- relevance patterns but is unreal and may contain false details. Then, an
548
- unsupervised contrastively learned encoder~(e.g. Contriever) encodes the
549
- document into an embedding vector. This vector identifies a neighborhood in the
550
- corpus embedding space, where similar real documents are retrieved based on
551
- vector similarity. This second step ground the generated document to the actual
552
- corpus, with the encoder's dense bottleneck filtering out the incorrect
553
- details. Our experiments show that HyDE significantly outperforms the
554
- state-of-the-art unsupervised dense retriever Contriever and shows strong
555
- performance comparable to fine-tuned retrievers, across various tasks (e.g. web
556
- search, QA, fact verification) and languages~(e.g. sw, ko, ja).
557
-
558
- ## Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
559
-
560
- - **arXiv id:** [2212.07425v3](http://arxiv.org/abs/2212.07425v3) **Published Date:** 2022-12-12
561
- - **Title:** Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
562
- - **Authors:** Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al.
563
- - **LangChain:**
564
-
565
- - **API Reference:** [langchain_experimental.fallacy_removal](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.fallacy_removal)
566
-
567
- **Abstract:** The spread of misinformation, propaganda, and flawed argumentation has been
568
- amplified in the Internet era. Given the volume of data and the subtlety of
569
- identifying violations of argumentation norms, supporting information analytics
570
- tasks, like content moderation, with trustworthy methods that can identify
571
- logical fallacies is essential. In this paper, we formalize prior theoretical
572
- work on logical fallacies into a comprehensive three-stage evaluation framework
573
- of detection, coarse-grained, and fine-grained classification. We adapt
574
- existing evaluation datasets for each stage of the evaluation. We employ three
575
- families of robust and explainable methods based on prototype reasoning,
576
- instance-based reasoning, and knowledge injection. The methods combine language
577
- models with background knowledge and explainable mechanisms. Moreover, we
578
- address data sparsity with strategies for data augmentation and curriculum
579
- learning. Our three-stage framework natively consolidates prior datasets and
580
- methods from existing tasks, like propaganda detection, serving as an
581
- overarching evaluation testbed. We extensively evaluate these methods on our
582
- datasets, focusing on their robustness and explainability. Our results provide
583
- insight into the strengths and weaknesses of the methods on different
584
- components and fallacy classes, indicating that fallacy identification is a
585
- challenging task that may require specialized forms of reasoning to capture
586
- various classes. We share our open-source code and data on GitHub to support
587
- further work on logical fallacy identification.
588
-
589
- ## Complementary Explanations for Effective In-Context Learning
590
-
591
- - **arXiv id:** [2211.13892v2](http://arxiv.org/abs/2211.13892v2) **Published Date:** 2022-11-25
592
- - **Title:** Complementary Explanations for Effective In-Context Learning
593
- - **Authors:** Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al.
594
- - **LangChain:**
595
-
596
- - **API Reference:** [langchain_core...MaxMarginalRelevanceExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
597
-
598
- **Abstract:** Large language models (LLMs) have exhibited remarkable capabilities in
599
- learning from explanations in prompts, but there has been limited understanding
600
- of exactly how these explanations function or why they are effective. This work
601
- aims to better understand the mechanisms by which explanations are used for
602
- in-context learning. We first study the impact of two different factors on the
603
- performance of prompts with explanations: the computation trace (the way the
604
- solution is decomposed) and the natural language used to express the prompt. By
605
- perturbing explanations on three controlled tasks, we show that both factors
606
- contribute to the effectiveness of explanations. We further study how to form
607
- maximally effective sets of explanations for solving a given test query. We
608
- find that LLMs can benefit from the complementarity of the explanation set:
609
- diverse reasoning skills shown by different exemplars can lead to better
610
- performance. Therefore, we propose a maximal marginal relevance-based exemplar
611
- selection approach for constructing exemplar sets that are both relevant as
612
- well as complementary, which successfully improves the in-context learning
613
- performance across three real-world tasks on multiple LLMs.
614
-
615
- ## PAL: Program-aided Language Models
616
-
617
- - **arXiv id:** [2211.10435v2](http://arxiv.org/abs/2211.10435v2) **Published Date:** 2022-11-18
618
- - **Title:** PAL: Program-aided Language Models
619
- - **Authors:** Luyu Gao, Aman Madaan, Shuyan Zhou, et al.
620
- - **LangChain:**
621
-
622
- - **API Reference:** [langchain_experimental.pal_chain](https://python.langchain.com/v0.2/api_reference//python/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://python.langchain.com/v0.2/api_reference/experimental/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain)
623
- - **Cookbook:** [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
624
-
625
- **Abstract:** Large language models (LLMs) have recently demonstrated an impressive ability
626
- to perform arithmetic and symbolic reasoning tasks, when provided with a few
627
- examples at test time ("few-shot prompting"). Much of this success can be
628
- attributed to prompting methods such as "chain-of-thought'', which employ LLMs
629
- for both understanding the problem description by decomposing it into steps, as
630
- well as solving each step of the problem. While LLMs seem to be adept at this
631
- sort of step-by-step decomposition, LLMs often make logical and arithmetic
632
- mistakes in the solution part, even when the problem is decomposed correctly.
633
- In this paper, we present Program-Aided Language models (PAL): a novel approach
634
- that uses the LLM to read natural language problems and generate programs as
635
- the intermediate reasoning steps, but offloads the solution step to a runtime
636
- such as a Python interpreter. With PAL, decomposing the natural language
637
- problem into runnable steps remains the only learning task for the LLM, while
638
- solving is delegated to the interpreter. We demonstrate this synergy between a
639
- neural LLM and a symbolic interpreter across 13 mathematical, symbolic, and
640
- algorithmic reasoning tasks from BIG-Bench Hard and other benchmarks. In all
641
- these natural language reasoning tasks, generating code using an LLM and
642
- reasoning using a Python interpreter leads to more accurate results than much
643
- larger models. For example, PAL using Codex achieves state-of-the-art few-shot
644
- accuracy on the GSM8K benchmark of math word problems, surpassing PaLM-540B
645
- which uses chain-of-thought by absolute 15% top-1. Our code and data are
646
- publicly available at http://reasonwithpal.com/ .
647
-
648
- ## ReAct: Synergizing Reasoning and Acting in Language Models
649
-
650
- - **arXiv id:** [2210.03629v3](http://arxiv.org/abs/2210.03629v3) **Published Date:** 2022-10-06
651
- - **Title:** ReAct: Synergizing Reasoning and Acting in Language Models
652
- - **Authors:** Shunyu Yao, Jeffrey Zhao, Dian Yu, et al.
653
- - **LangChain:**
654
-
655
- - **Documentation:** [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping)
656
- - **API Reference:** [langchain...TrajectoryEvalChain](https://python.langchain.com/v0.2/api_reference/langchain/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain), [langchain...create_react_agent](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent)
657
-
658
- **Abstract:** While large language models (LLMs) have demonstrated impressive capabilities
659
- across tasks in language understanding and interactive decision making, their
660
- abilities for reasoning (e.g. chain-of-thought prompting) and acting (e.g.
661
- action plan generation) have primarily been studied as separate topics. In this
662
- paper, we explore the use of LLMs to generate both reasoning traces and
663
- task-specific actions in an interleaved manner, allowing for greater synergy
664
- between the two: reasoning traces help the model induce, track, and update
665
- action plans as well as handle exceptions, while actions allow it to interface
666
- with external sources, such as knowledge bases or environments, to gather
667
- additional information. We apply our approach, named ReAct, to a diverse set of
668
- language and decision making tasks and demonstrate its effectiveness over
669
- state-of-the-art baselines, as well as improved human interpretability and
670
- trustworthiness over methods without reasoning or acting components.
671
- Concretely, on question answering (HotpotQA) and fact verification (Fever),
672
- ReAct overcomes issues of hallucination and error propagation prevalent in
673
- chain-of-thought reasoning by interacting with a simple Wikipedia API, and
674
- generates human-like task-solving trajectories that are more interpretable than
675
- baselines without reasoning traces. On two interactive decision making
676
- benchmarks (ALFWorld and WebShop), ReAct outperforms imitation and
677
- reinforcement learning methods by an absolute success rate of 34% and 10%
678
- respectively, while being prompted with only one or two in-context examples.
679
- Project site with code: https://react-lm.github.io
680
-
681
- ## Deep Lake: a Lakehouse for Deep Learning
682
-
683
- - **arXiv id:** [2209.10785v2](http://arxiv.org/abs/2209.10785v2) **Published Date:** 2022-09-22
684
- - **Title:** Deep Lake: a Lakehouse for Deep Learning
685
- - **Authors:** Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al.
686
- - **LangChain:**
687
-
688
- - **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
689
-
690
- **Abstract:** Traditional data lakes provide critical data infrastructure for analytical
691
- workloads by enabling time travel, running SQL queries, ingesting data with
692
- ACID transactions, and visualizing petabyte-scale datasets on cloud storage.
693
- They allow organizations to break down data silos, unlock data-driven
694
- decision-making, improve operational efficiency, and reduce costs. However, as
695
- deep learning usage increases, traditional data lakes are not well-designed for
696
- applications such as natural language processing (NLP), audio processing,
697
- computer vision, and applications involving non-tabular datasets. This paper
698
- presents Deep Lake, an open-source lakehouse for deep learning applications
699
- developed at Activeloop. Deep Lake maintains the benefits of a vanilla data
700
- lake with one key difference: it stores complex data, such as images, videos,
701
- annotations, as well as tabular data, in the form of tensors and rapidly
702
- streams the data over the network to (a) Tensor Query Language, (b) in-browser
703
- visualization engine, or (c) deep learning frameworks without sacrificing GPU
704
- utilization. Datasets stored in Deep Lake can be accessed from PyTorch,
705
- TensorFlow, JAX, and integrate with numerous MLOps tools.
706
-
707
- ## Matryoshka Representation Learning
708
-
709
- - **arXiv id:** [2205.13147v4](http://arxiv.org/abs/2205.13147v4) **Published Date:** 2022-05-26
710
- - **Title:** Matryoshka Representation Learning
711
- - **Authors:** Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al.
712
- - **LangChain:**
713
-
714
- - **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
715
-
716
- **Abstract:** Learned representations are a central component in modern ML systems, serving
717
- a multitude of downstream tasks. When training such representations, it is
718
- often the case that computational and statistical constraints for each
719
- downstream task are unknown. In this context rigid, fixed capacity
720
- representations can be either over or under-accommodating to the task at hand.
721
- This leads us to ask: can we design a flexible representation that can adapt to
722
- multiple downstream tasks with varying computational resources? Our main
723
- contribution is Matryoshka Representation Learning (MRL) which encodes
724
- information at different granularities and allows a single embedding to adapt
725
- to the computational constraints of downstream tasks. MRL minimally modifies
726
- existing representation learning pipelines and imposes no additional cost
727
- during inference and deployment. MRL learns coarse-to-fine representations that
728
- are at least as accurate and rich as independently trained low-dimensional
729
- representations. The flexibility within the learned Matryoshka Representations
730
- offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at
731
- the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale
732
- retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for
733
- long-tail few-shot classification, all while being as robust as the original
734
- representations. Finally, we show that MRL extends seamlessly to web-scale
735
- datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet),
736
- vision + language (ALIGN) and language (BERT). MRL code and pretrained models
737
- are open-sourced at https://github.com/RAIVNLab/MRL.
738
-
739
- ## Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
740
-
741
- - **arXiv id:** [2205.12654v1](http://arxiv.org/abs/2205.12654v1) **Published Date:** 2022-05-25
742
- - **Title:** Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
743
- - **Authors:** Kevin Heffernan, Onur Γ‡elebi, Holger Schwenk
744
- - **LangChain:**
745
-
746
- - **API Reference:** [langchain_community...LaserEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
747
-
748
- **Abstract:** Scaling multilingual representation learning beyond the hundred most frequent
749
- languages is challenging, in particular to cover the long tail of low-resource
750
- languages. A promising approach has been to train one-for-all multilingual
751
- models capable of cross-lingual transfer, but these models often suffer from
752
- insufficient capacity and interference between unrelated languages. Instead, we
753
- move away from this approach and focus on training multiple language (family)
754
- specific representations, but most prominently enable all languages to still be
755
- encoded in the same representational space. To achieve this, we focus on
756
- teacher-student training, allowing all encoders to be mutually compatible for
757
- bitext mining, and enabling fast learning of new languages. We introduce a new
758
- teacher-student training scheme which combines supervised and self-supervised
759
- training, allowing encoders to take advantage of monolingual training data,
760
- which is valuable in the low-resource setting.
761
- Our approach significantly outperforms the original LASER encoder. We study
762
- very low-resource languages and handle 50 African languages, many of which are
763
- not covered by any other model. For these languages, we train sentence
764
- encoders, mine bitexts, and validate the bitexts by training NMT systems.
765
-
766
- ## Evaluating the Text-to-SQL Capabilities of Large Language Models
767
-
768
- - **arXiv id:** [2204.00498v1](http://arxiv.org/abs/2204.00498v1) **Published Date:** 2022-03-15
769
- - **Title:** Evaluating the Text-to-SQL Capabilities of Large Language Models
770
- - **Authors:** Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau
771
- - **LangChain:**
772
-
773
- - **API Reference:** [langchain_community...SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
774
-
775
- **Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex
776
- language model. We find that, without any finetuning, Codex is a strong
777
- baseline on the Spider benchmark; we also analyze the failure modes of Codex in
778
- this setting. Furthermore, we demonstrate on the GeoQuery and Scholar
779
- benchmarks that a small number of in-domain examples provided in the prompt
780
- enables Codex to perform better than state-of-the-art models finetuned on such
781
- few-shot examples.
782
-
783
- ## Locally Typical Sampling
784
-
785
- - **arXiv id:** [2202.00666v5](http://arxiv.org/abs/2202.00666v5) **Published Date:** 2022-02-01
786
- - **Title:** Locally Typical Sampling
787
- - **Authors:** Clara Meister, Tiago Pimentel, Gian Wiher, et al.
788
- - **LangChain:**
789
-
790
- - **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
791
-
792
- **Abstract:** Today's probabilistic language generators fall short when it comes to
793
- producing coherent and fluent text despite the fact that the underlying models
794
- perform well under standard metrics, e.g., perplexity. This discrepancy has
795
- puzzled the language generation community for the last few years. In this work,
796
- we posit that the abstraction of natural language generation as a discrete
797
- stochastic process--which allows for an information-theoretic analysis--can
798
- provide new insights into the behavior of probabilistic language generators,
799
- e.g., why high-probability texts can be dull or repetitive. Humans use language
800
- as a means of communicating information, aiming to do so in a simultaneously
801
- efficient and error-minimizing manner; in fact, psycholinguistics research
802
- suggests humans choose each word in a string with this subconscious goal in
803
- mind. We formally define the set of strings that meet this criterion: those for
804
- which each word has an information content close to the expected information
805
- content, i.e., the conditional entropy of our model. We then propose a simple
806
- and efficient procedure for enforcing this criterion when generating from
807
- probabilistic models, which we call locally typical sampling. Automatic and
808
- human evaluations show that, in comparison to nucleus and top-k sampling,
809
- locally typical sampling offers competitive performance (in both abstractive
810
- summarization and story generation) in terms of quality while consistently
811
- reducing degenerate repetitions.
812
-
813
- ## Learning Transferable Visual Models From Natural Language Supervision
814
-
815
- - **arXiv id:** [2103.00020v1](http://arxiv.org/abs/2103.00020v1) **Published Date:** 2021-02-26
816
- - **Title:** Learning Transferable Visual Models From Natural Language Supervision
817
- - **Authors:** Alec Radford, Jong Wook Kim, Chris Hallacy, et al.
818
- - **LangChain:**
819
-
820
- - **API Reference:** [langchain_experimental.open_clip](https://python.langchain.com/v0.2/api_reference/experimental/index.html#module-langchain_experimental.open_clip)
821
-
822
- **Abstract:** State-of-the-art computer vision systems are trained to predict a fixed set
823
- of predetermined object categories. This restricted form of supervision limits
824
- their generality and usability since additional labeled data is needed to
825
- specify any other visual concept. Learning directly from raw text about images
826
- is a promising alternative which leverages a much broader source of
827
- supervision. We demonstrate that the simple pre-training task of predicting
828
- which caption goes with which image is an efficient and scalable way to learn
829
- SOTA image representations from scratch on a dataset of 400 million (image,
830
- text) pairs collected from the internet. After pre-training, natural language
831
- is used to reference learned visual concepts (or describe new ones) enabling
832
- zero-shot transfer of the model to downstream tasks. We study the performance
833
- of this approach by benchmarking on over 30 different existing computer vision
834
- datasets, spanning tasks such as OCR, action recognition in videos,
835
- geo-localization, and many types of fine-grained object classification. The
836
- model transfers non-trivially to most tasks and is often competitive with a
837
- fully supervised baseline without the need for any dataset specific training.
838
- For instance, we match the accuracy of the original ResNet-50 on ImageNet
839
- zero-shot without needing to use any of the 1.28 million training examples it
840
- was trained on. We release our code and pre-trained model weights at
841
- https://github.com/OpenAI/CLIP.
842
-
843
- ## CTRL: A Conditional Transformer Language Model for Controllable Generation
844
-
845
- - **arXiv id:** [1909.05858v2](http://arxiv.org/abs/1909.05858v2) **Published Date:** 2019-09-11
846
- - **Title:** CTRL: A Conditional Transformer Language Model for Controllable Generation
847
- - **Authors:** Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al.
848
- - **LangChain:**
849
-
850
- - **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceEndpoint](https://python.langchain.com/v0.2/api_reference/langchain_community/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
851
-
852
- **Abstract:** Large-scale language models show promising text generation capabilities, but
853
- users cannot easily control particular aspects of the generated text. We
854
- release CTRL, a 1.63 billion-parameter conditional transformer language model,
855
- trained to condition on control codes that govern style, content, and
856
- task-specific behavior. Control codes were derived from structure that
857
- naturally co-occurs with raw text, preserving the advantages of unsupervised
858
- learning while providing more explicit control over text generation. These
859
- codes also allow CTRL to predict which parts of the training data are most
860
- likely given a sequence. This provides a potential method for analyzing large
861
- amounts of data via model-based source attribution. We have released multiple
862
- full-sized, pretrained versions of CTRL at https://github.com/salesforce/ctrl.
863
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
langchain_md_files/additional_resources/dependents.mdx DELETED
@@ -1,554 +0,0 @@
1
- # Dependents
2
-
3
- Dependents stats for `langchain-ai/langchain`
4
-
5
- [![](https://img.shields.io/static/v1?label=Used%20by&message=41717&color=informational&logo=slickpic)](https://github.com/langchain-ai/langchain/network/dependents)
6
- [![](https://img.shields.io/static/v1?label=Used%20by%20(public)&message=538&color=informational&logo=slickpic)](https://github.com/langchain-ai/langchain/network/dependents)
7
- [![](https://img.shields.io/static/v1?label=Used%20by%20(private)&message=41179&color=informational&logo=slickpic)](https://github.com/langchain-ai/langchain/network/dependents)
8
-
9
-
10
- [update: `2023-12-08`; only dependent repositories with Stars > 100]
11
-
12
-
13
- | Repository | Stars |
14
- | :-------- | -----: |
15
- |[AntonOsika/gpt-engineer](https://github.com/AntonOsika/gpt-engineer) | 46514 |
16
- |[imartinez/privateGPT](https://github.com/imartinez/privateGPT) | 44439 |
17
- |[LAION-AI/Open-Assistant](https://github.com/LAION-AI/Open-Assistant) | 35906 |
18
- |[hpcaitech/ColossalAI](https://github.com/hpcaitech/ColossalAI) | 35528 |
19
- |[moymix/TaskMatrix](https://github.com/moymix/TaskMatrix) | 34342 |
20
- |[geekan/MetaGPT](https://github.com/geekan/MetaGPT) | 31126 |
21
- |[streamlit/streamlit](https://github.com/streamlit/streamlit) | 28911 |
22
- |[reworkd/AgentGPT](https://github.com/reworkd/AgentGPT) | 27833 |
23
- |[StanGirard/quivr](https://github.com/StanGirard/quivr) | 26032 |
24
- |[OpenBB-finance/OpenBBTerminal](https://github.com/OpenBB-finance/OpenBBTerminal) | 24946 |
25
- |[run-llama/llama_index](https://github.com/run-llama/llama_index) | 24859 |
26
- |[jmorganca/ollama](https://github.com/jmorganca/ollama) | 20849 |
27
- |[openai/chatgpt-retrieval-plugin](https://github.com/openai/chatgpt-retrieval-plugin) | 20249 |
28
- |[chatchat-space/Langchain-Chatchat](https://github.com/chatchat-space/Langchain-Chatchat) | 19305 |
29
- |[mindsdb/mindsdb](https://github.com/mindsdb/mindsdb) | 19172 |
30
- |[PromtEngineer/localGPT](https://github.com/PromtEngineer/localGPT) | 17528 |
31
- |[cube-js/cube](https://github.com/cube-js/cube) | 16575 |
32
- |[mlflow/mlflow](https://github.com/mlflow/mlflow) | 16000 |
33
- |[mudler/LocalAI](https://github.com/mudler/LocalAI) | 14067 |
34
- |[logspace-ai/langflow](https://github.com/logspace-ai/langflow) | 13679 |
35
- |[GaiZhenbiao/ChuanhuChatGPT](https://github.com/GaiZhenbiao/ChuanhuChatGPT) | 13648 |
36
- |[arc53/DocsGPT](https://github.com/arc53/DocsGPT) | 13423 |
37
- |[openai/evals](https://github.com/openai/evals) | 12649 |
38
- |[airbytehq/airbyte](https://github.com/airbytehq/airbyte) | 12460 |
39
- |[langgenius/dify](https://github.com/langgenius/dify) | 11859 |
40
- |[databrickslabs/dolly](https://github.com/databrickslabs/dolly) | 10672 |
41
- |[AIGC-Audio/AudioGPT](https://github.com/AIGC-Audio/AudioGPT) | 9437 |
42
- |[langchain-ai/langchainjs](https://github.com/langchain-ai/langchainjs) | 9227 |
43
- |[gventuri/pandas-ai](https://github.com/gventuri/pandas-ai) | 9203 |
44
- |[aws/amazon-sagemaker-examples](https://github.com/aws/amazon-sagemaker-examples) | 9079 |
45
- |[h2oai/h2ogpt](https://github.com/h2oai/h2ogpt) | 8945 |
46
- |[PipedreamHQ/pipedream](https://github.com/PipedreamHQ/pipedream) | 7550 |
47
- |[bentoml/OpenLLM](https://github.com/bentoml/OpenLLM) | 6957 |
48
- |[THUDM/ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6801 |
49
- |[microsoft/promptflow](https://github.com/microsoft/promptflow) | 6776 |
50
- |[cpacker/MemGPT](https://github.com/cpacker/MemGPT) | 6642 |
51
- |[joshpxyne/gpt-migrate](https://github.com/joshpxyne/gpt-migrate) | 6482 |
52
- |[zauberzeug/nicegui](https://github.com/zauberzeug/nicegui) | 6037 |
53
- |[embedchain/embedchain](https://github.com/embedchain/embedchain) | 6023 |
54
- |[mage-ai/mage-ai](https://github.com/mage-ai/mage-ai) | 6019 |
55
- |[assafelovic/gpt-researcher](https://github.com/assafelovic/gpt-researcher) | 5936 |
56
- |[sweepai/sweep](https://github.com/sweepai/sweep) | 5855 |
57
- |[wenda-LLM/wenda](https://github.com/wenda-LLM/wenda) | 5766 |
58
- |[zilliztech/GPTCache](https://github.com/zilliztech/GPTCache) | 5710 |
59
- |[pdm-project/pdm](https://github.com/pdm-project/pdm) | 5665 |
60
- |[GreyDGL/PentestGPT](https://github.com/GreyDGL/PentestGPT) | 5568 |
61
- |[gkamradt/langchain-tutorials](https://github.com/gkamradt/langchain-tutorials) | 5507 |
62
- |[Shaunwei/RealChar](https://github.com/Shaunwei/RealChar) | 5501 |
63
- |[facebookresearch/llama-recipes](https://github.com/facebookresearch/llama-recipes) | 5477 |
64
- |[serge-chat/serge](https://github.com/serge-chat/serge) | 5221 |
65
- |[run-llama/rags](https://github.com/run-llama/rags) | 4916 |
66
- |[openchatai/OpenChat](https://github.com/openchatai/OpenChat) | 4870 |
67
- |[danswer-ai/danswer](https://github.com/danswer-ai/danswer) | 4774 |
68
- |[langchain-ai/opengpts](https://github.com/langchain-ai/opengpts) | 4709 |
69
- |[postgresml/postgresml](https://github.com/postgresml/postgresml) | 4639 |
70
- |[MineDojo/Voyager](https://github.com/MineDojo/Voyager) | 4582 |
71
- |[intel-analytics/BigDL](https://github.com/intel-analytics/BigDL) | 4581 |
72
- |[yihong0618/xiaogpt](https://github.com/yihong0618/xiaogpt) | 4359 |
73
- |[RayVentura/ShortGPT](https://github.com/RayVentura/ShortGPT) | 4357 |
74
- |[Azure-Samples/azure-search-openai-demo](https://github.com/Azure-Samples/azure-search-openai-demo) | 4317 |
75
- |[madawei2699/myGPTReader](https://github.com/madawei2699/myGPTReader) | 4289 |
76
- |[apache/nifi](https://github.com/apache/nifi) | 4098 |
77
- |[langchain-ai/chat-langchain](https://github.com/langchain-ai/chat-langchain) | 4091 |
78
- |[aiwaves-cn/agents](https://github.com/aiwaves-cn/agents) | 4073 |
79
- |[krishnaik06/The-Grand-Complete-Data-Science-Materials](https://github.com/krishnaik06/The-Grand-Complete-Data-Science-Materials) | 4065 |
80
- |[khoj-ai/khoj](https://github.com/khoj-ai/khoj) | 4016 |
81
- |[Azure/azure-sdk-for-python](https://github.com/Azure/azure-sdk-for-python) | 3941 |
82
- |[PrefectHQ/marvin](https://github.com/PrefectHQ/marvin) | 3915 |
83
- |[OpenBMB/ToolBench](https://github.com/OpenBMB/ToolBench) | 3799 |
84
- |[marqo-ai/marqo](https://github.com/marqo-ai/marqo) | 3771 |
85
- |[kyegomez/tree-of-thoughts](https://github.com/kyegomez/tree-of-thoughts) | 3688 |
86
- |[Unstructured-IO/unstructured](https://github.com/Unstructured-IO/unstructured) | 3543 |
87
- |[llm-workflow-engine/llm-workflow-engine](https://github.com/llm-workflow-engine/llm-workflow-engine) | 3515 |
88
- |[shroominic/codeinterpreter-api](https://github.com/shroominic/codeinterpreter-api) | 3425 |
89
- |[openchatai/OpenCopilot](https://github.com/openchatai/OpenCopilot) | 3418 |
90
- |[josStorer/RWKV-Runner](https://github.com/josStorer/RWKV-Runner) | 3297 |
91
- |[whitead/paper-qa](https://github.com/whitead/paper-qa) | 3280 |
92
- |[homanp/superagent](https://github.com/homanp/superagent) | 3258 |
93
- |[ParisNeo/lollms-webui](https://github.com/ParisNeo/lollms-webui) | 3199 |
94
- |[OpenBMB/AgentVerse](https://github.com/OpenBMB/AgentVerse) | 3099 |
95
- |[project-baize/baize-chatbot](https://github.com/project-baize/baize-chatbot) | 3090 |
96
- |[OpenGVLab/InternGPT](https://github.com/OpenGVLab/InternGPT) | 2989 |
97
- |[xlang-ai/OpenAgents](https://github.com/xlang-ai/OpenAgents) | 2825 |
98
- |[dataelement/bisheng](https://github.com/dataelement/bisheng) | 2797 |
99
- |[Mintplex-Labs/anything-llm](https://github.com/Mintplex-Labs/anything-llm) | 2784 |
100
- |[OpenBMB/BMTools](https://github.com/OpenBMB/BMTools) | 2734 |
101
- |[run-llama/llama-hub](https://github.com/run-llama/llama-hub) | 2721 |
102
- |[SamurAIGPT/EmbedAI](https://github.com/SamurAIGPT/EmbedAI) | 2647 |
103
- |[NVIDIA/NeMo-Guardrails](https://github.com/NVIDIA/NeMo-Guardrails) | 2637 |
104
- |[X-D-Lab/LangChain-ChatGLM-Webui](https://github.com/X-D-Lab/LangChain-ChatGLM-Webui) | 2532 |
105
- |[GerevAI/gerev](https://github.com/GerevAI/gerev) | 2517 |
106
- |[keephq/keep](https://github.com/keephq/keep) | 2448 |
107
- |[yanqiangmiffy/Chinese-LangChain](https://github.com/yanqiangmiffy/Chinese-LangChain) | 2397 |
108
- |[OpenGVLab/Ask-Anything](https://github.com/OpenGVLab/Ask-Anything) | 2324 |
109
- |[IntelligenzaArtificiale/Free-Auto-GPT](https://github.com/IntelligenzaArtificiale/Free-Auto-GPT) | 2241 |
110
- |[YiVal/YiVal](https://github.com/YiVal/YiVal) | 2232 |
111
- |[jupyterlab/jupyter-ai](https://github.com/jupyterlab/jupyter-ai) | 2189 |
112
- |[Farama-Foundation/PettingZoo](https://github.com/Farama-Foundation/PettingZoo) | 2136 |
113
- |[microsoft/TaskWeaver](https://github.com/microsoft/TaskWeaver) | 2126 |
114
- |[hwchase17/notion-qa](https://github.com/hwchase17/notion-qa) | 2083 |
115
- |[FlagOpen/FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) | 2053 |
116
- |[paulpierre/RasaGPT](https://github.com/paulpierre/RasaGPT) | 1999 |
117
- |[hegelai/prompttools](https://github.com/hegelai/prompttools) | 1984 |
118
- |[mckinsey/vizro](https://github.com/mckinsey/vizro) | 1951 |
119
- |[vocodedev/vocode-python](https://github.com/vocodedev/vocode-python) | 1868 |
120
- |[dot-agent/openAMS](https://github.com/dot-agent/openAMS) | 1796 |
121
- |[explodinggradients/ragas](https://github.com/explodinggradients/ragas) | 1766 |
122
- |[AI-Citizen/SolidGPT](https://github.com/AI-Citizen/SolidGPT) | 1761 |
123
- |[Kav-K/GPTDiscord](https://github.com/Kav-K/GPTDiscord) | 1696 |
124
- |[run-llama/sec-insights](https://github.com/run-llama/sec-insights) | 1654 |
125
- |[avinashkranjan/Amazing-Python-Scripts](https://github.com/avinashkranjan/Amazing-Python-Scripts) | 1635 |
126
- |[microsoft/WhatTheHack](https://github.com/microsoft/WhatTheHack) | 1629 |
127
- |[noahshinn/reflexion](https://github.com/noahshinn/reflexion) | 1625 |
128
- |[psychic-api/psychic](https://github.com/psychic-api/psychic) | 1618 |
129
- |[Forethought-Technologies/AutoChain](https://github.com/Forethought-Technologies/AutoChain) | 1611 |
130
- |[pinterest/querybook](https://github.com/pinterest/querybook) | 1586 |
131
- |[refuel-ai/autolabel](https://github.com/refuel-ai/autolabel) | 1553 |
132
- |[jina-ai/langchain-serve](https://github.com/jina-ai/langchain-serve) | 1537 |
133
- |[jina-ai/dev-gpt](https://github.com/jina-ai/dev-gpt) | 1522 |
134
- |[agiresearch/OpenAGI](https://github.com/agiresearch/OpenAGI) | 1493 |
135
- |[ttengwang/Caption-Anything](https://github.com/ttengwang/Caption-Anything) | 1484 |
136
- |[greshake/llm-security](https://github.com/greshake/llm-security) | 1483 |
137
- |[promptfoo/promptfoo](https://github.com/promptfoo/promptfoo) | 1480 |
138
- |[milvus-io/bootcamp](https://github.com/milvus-io/bootcamp) | 1477 |
139
- |[richardyc/Chrome-GPT](https://github.com/richardyc/Chrome-GPT) | 1475 |
140
- |[melih-unsal/DemoGPT](https://github.com/melih-unsal/DemoGPT) | 1428 |
141
- |[YORG-AI/Open-Assistant](https://github.com/YORG-AI/Open-Assistant) | 1419 |
142
- |[101dotxyz/GPTeam](https://github.com/101dotxyz/GPTeam) | 1416 |
143
- |[jina-ai/thinkgpt](https://github.com/jina-ai/thinkgpt) | 1408 |
144
- |[mmz-001/knowledge_gpt](https://github.com/mmz-001/knowledge_gpt) | 1398 |
145
- |[intel/intel-extension-for-transformers](https://github.com/intel/intel-extension-for-transformers) | 1387 |
146
- |[Azure/azureml-examples](https://github.com/Azure/azureml-examples) | 1385 |
147
- |[lunasec-io/lunasec](https://github.com/lunasec-io/lunasec) | 1367 |
148
- |[eyurtsev/kor](https://github.com/eyurtsev/kor) | 1355 |
149
- |[xusenlinzy/api-for-open-llm](https://github.com/xusenlinzy/api-for-open-llm) | 1325 |
150
- |[griptape-ai/griptape](https://github.com/griptape-ai/griptape) | 1323 |
151
- |[SuperDuperDB/superduperdb](https://github.com/SuperDuperDB/superduperdb) | 1290 |
152
- |[cofactoryai/textbase](https://github.com/cofactoryai/textbase) | 1284 |
153
- |[psychic-api/rag-stack](https://github.com/psychic-api/rag-stack) | 1260 |
154
- |[filip-michalsky/SalesGPT](https://github.com/filip-michalsky/SalesGPT) | 1250 |
155
- |[nod-ai/SHARK](https://github.com/nod-ai/SHARK) | 1237 |
156
- |[pluralsh/plural](https://github.com/pluralsh/plural) | 1234 |
157
- |[cheshire-cat-ai/core](https://github.com/cheshire-cat-ai/core) | 1194 |
158
- |[LC1332/Chat-Haruhi-Suzumiya](https://github.com/LC1332/Chat-Haruhi-Suzumiya) | 1184 |
159
- |[poe-platform/server-bot-quick-start](https://github.com/poe-platform/server-bot-quick-start) | 1182 |
160
- |[microsoft/X-Decoder](https://github.com/microsoft/X-Decoder) | 1180 |
161
- |[juncongmoo/chatllama](https://github.com/juncongmoo/chatllama) | 1171 |
162
- |[visual-openllm/visual-openllm](https://github.com/visual-openllm/visual-openllm) | 1156 |
163
- |[alejandro-ao/ask-multiple-pdfs](https://github.com/alejandro-ao/ask-multiple-pdfs) | 1153 |
164
- |[ThousandBirdsInc/chidori](https://github.com/ThousandBirdsInc/chidori) | 1152 |
165
- |[irgolic/AutoPR](https://github.com/irgolic/AutoPR) | 1137 |
166
- |[SamurAIGPT/Camel-AutoGPT](https://github.com/SamurAIGPT/Camel-AutoGPT) | 1083 |
167
- |[ray-project/llm-applications](https://github.com/ray-project/llm-applications) | 1080 |
168
- |[run-llama/llama-lab](https://github.com/run-llama/llama-lab) | 1072 |
169
- |[jiran214/GPT-vup](https://github.com/jiran214/GPT-vup) | 1041 |
170
- |[MetaGLM/FinGLM](https://github.com/MetaGLM/FinGLM) | 1035 |
171
- |[peterw/Chat-with-Github-Repo](https://github.com/peterw/Chat-with-Github-Repo) | 1020 |
172
- |[Anil-matcha/ChatPDF](https://github.com/Anil-matcha/ChatPDF) | 991 |
173
- |[langchain-ai/langserve](https://github.com/langchain-ai/langserve) | 983 |
174
- |[THUDM/AgentTuning](https://github.com/THUDM/AgentTuning) | 976 |
175
- |[rlancemartin/auto-evaluator](https://github.com/rlancemartin/auto-evaluator) | 975 |
176
- |[codeacme17/examor](https://github.com/codeacme17/examor) | 964 |
177
- |[all-in-aigc/gpts-works](https://github.com/all-in-aigc/gpts-works) | 946 |
178
- |[Ikaros-521/AI-Vtuber](https://github.com/Ikaros-521/AI-Vtuber) | 946 |
179
- |[microsoft/Llama-2-Onnx](https://github.com/microsoft/Llama-2-Onnx) | 898 |
180
- |[cirediatpl/FigmaChain](https://github.com/cirediatpl/FigmaChain) | 895 |
181
- |[ricklamers/shell-ai](https://github.com/ricklamers/shell-ai) | 893 |
182
- |[modelscope/modelscope-agent](https://github.com/modelscope/modelscope-agent) | 893 |
183
- |[seanpixel/Teenage-AGI](https://github.com/seanpixel/Teenage-AGI) | 886 |
184
- |[ajndkr/lanarky](https://github.com/ajndkr/lanarky) | 880 |
185
- |[kennethleungty/Llama-2-Open-Source-LLM-CPU-Inference](https://github.com/kennethleungty/Llama-2-Open-Source-LLM-CPU-Inference) | 872 |
186
- |[corca-ai/EVAL](https://github.com/corca-ai/EVAL) | 846 |
187
- |[hwchase17/chat-your-data](https://github.com/hwchase17/chat-your-data) | 841 |
188
- |[kreneskyp/ix](https://github.com/kreneskyp/ix) | 821 |
189
- |[Link-AGI/AutoAgents](https://github.com/Link-AGI/AutoAgents) | 820 |
190
- |[truera/trulens](https://github.com/truera/trulens) | 794 |
191
- |[Dataherald/dataherald](https://github.com/Dataherald/dataherald) | 788 |
192
- |[sunlabuiuc/PyHealth](https://github.com/sunlabuiuc/PyHealth) | 783 |
193
- |[jondurbin/airoboros](https://github.com/jondurbin/airoboros) | 783 |
194
- |[pyspark-ai/pyspark-ai](https://github.com/pyspark-ai/pyspark-ai) | 782 |
195
- |[confident-ai/deepeval](https://github.com/confident-ai/deepeval) | 780 |
196
- |[billxbf/ReWOO](https://github.com/billxbf/ReWOO) | 777 |
197
- |[langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent) | 776 |
198
- |[akshata29/entaoai](https://github.com/akshata29/entaoai) | 771 |
199
- |[LambdaLabsML/examples](https://github.com/LambdaLabsML/examples) | 770 |
200
- |[getmetal/motorhead](https://github.com/getmetal/motorhead) | 768 |
201
- |[Dicklesworthstone/swiss_army_llama](https://github.com/Dicklesworthstone/swiss_army_llama) | 757 |
202
- |[ruoccofabrizio/azure-open-ai-embeddings-qna](https://github.com/ruoccofabrizio/azure-open-ai-embeddings-qna) | 757 |
203
- |[msoedov/langcorn](https://github.com/msoedov/langcorn) | 754 |
204
- |[e-johnstonn/BriefGPT](https://github.com/e-johnstonn/BriefGPT) | 753 |
205
- |[microsoft/sample-app-aoai-chatGPT](https://github.com/microsoft/sample-app-aoai-chatGPT) | 749 |
206
- |[explosion/spacy-llm](https://github.com/explosion/spacy-llm) | 731 |
207
- |[MiuLab/Taiwan-LLM](https://github.com/MiuLab/Taiwan-LLM) | 716 |
208
- |[whyiyhw/chatgpt-wechat](https://github.com/whyiyhw/chatgpt-wechat) | 702 |
209
- |[Azure-Samples/openai](https://github.com/Azure-Samples/openai) | 692 |
210
- |[iusztinpaul/hands-on-llms](https://github.com/iusztinpaul/hands-on-llms) | 687 |
211
- |[safevideo/autollm](https://github.com/safevideo/autollm) | 682 |
212
- |[OpenGenerativeAI/GenossGPT](https://github.com/OpenGenerativeAI/GenossGPT) | 669 |
213
- |[NoDataFound/hackGPT](https://github.com/NoDataFound/hackGPT) | 663 |
214
- |[AILab-CVC/GPT4Tools](https://github.com/AILab-CVC/GPT4Tools) | 662 |
215
- |[langchain-ai/auto-evaluator](https://github.com/langchain-ai/auto-evaluator) | 657 |
216
- |[yvann-ba/Robby-chatbot](https://github.com/yvann-ba/Robby-chatbot) | 639 |
217
- |[alexanderatallah/window.ai](https://github.com/alexanderatallah/window.ai) | 635 |
218
- |[amosjyng/langchain-visualizer](https://github.com/amosjyng/langchain-visualizer) | 630 |
219
- |[microsoft/PodcastCopilot](https://github.com/microsoft/PodcastCopilot) | 621 |
220
- |[aws-samples/aws-genai-llm-chatbot](https://github.com/aws-samples/aws-genai-llm-chatbot) | 616 |
221
- |[NeumTry/NeumAI](https://github.com/NeumTry/NeumAI) | 605 |
222
- |[namuan/dr-doc-search](https://github.com/namuan/dr-doc-search) | 599 |
223
- |[plastic-labs/tutor-gpt](https://github.com/plastic-labs/tutor-gpt) | 595 |
224
- |[marimo-team/marimo](https://github.com/marimo-team/marimo) | 591 |
225
- |[yakami129/VirtualWife](https://github.com/yakami129/VirtualWife) | 586 |
226
- |[xuwenhao/geektime-ai-course](https://github.com/xuwenhao/geektime-ai-course) | 584 |
227
- |[jonra1993/fastapi-alembic-sqlmodel-async](https://github.com/jonra1993/fastapi-alembic-sqlmodel-async) | 573 |
228
- |[dgarnitz/vectorflow](https://github.com/dgarnitz/vectorflow) | 568 |
229
- |[yeagerai/yeagerai-agent](https://github.com/yeagerai/yeagerai-agent) | 564 |
230
- |[daveebbelaar/langchain-experiments](https://github.com/daveebbelaar/langchain-experiments) | 563 |
231
- |[traceloop/openllmetry](https://github.com/traceloop/openllmetry) | 559 |
232
- |[Agenta-AI/agenta](https://github.com/Agenta-AI/agenta) | 546 |
233
- |[michaelthwan/searchGPT](https://github.com/michaelthwan/searchGPT) | 545 |
234
- |[jina-ai/agentchain](https://github.com/jina-ai/agentchain) | 544 |
235
- |[mckaywrigley/repo-chat](https://github.com/mckaywrigley/repo-chat) | 533 |
236
- |[marella/chatdocs](https://github.com/marella/chatdocs) | 532 |
237
- |[opentensor/bittensor](https://github.com/opentensor/bittensor) | 532 |
238
- |[DjangoPeng/openai-quickstart](https://github.com/DjangoPeng/openai-quickstart) | 527 |
239
- |[freddyaboulton/gradio-tools](https://github.com/freddyaboulton/gradio-tools) | 517 |
240
- |[sidhq/Multi-GPT](https://github.com/sidhq/Multi-GPT) | 515 |
241
- |[alejandro-ao/langchain-ask-pdf](https://github.com/alejandro-ao/langchain-ask-pdf) | 514 |
242
- |[sajjadium/ctf-archives](https://github.com/sajjadium/ctf-archives) | 507 |
243
- |[continuum-llms/chatgpt-memory](https://github.com/continuum-llms/chatgpt-memory) | 502 |
244
- |[steamship-core/steamship-langchain](https://github.com/steamship-core/steamship-langchain) | 494 |
245
- |[mpaepper/content-chatbot](https://github.com/mpaepper/content-chatbot) | 493 |
246
- |[langchain-ai/langchain-aiplugin](https://github.com/langchain-ai/langchain-aiplugin) | 492 |
247
- |[logan-markewich/llama_index_starter_pack](https://github.com/logan-markewich/llama_index_starter_pack) | 483 |
248
- |[datawhalechina/llm-universe](https://github.com/datawhalechina/llm-universe) | 475 |
249
- |[leondz/garak](https://github.com/leondz/garak) | 464 |
250
- |[RedisVentures/ArXivChatGuru](https://github.com/RedisVentures/ArXivChatGuru) | 461 |
251
- |[Anil-matcha/Chatbase](https://github.com/Anil-matcha/Chatbase) | 455 |
252
- |[Aiyu-awa/luna-ai](https://github.com/Aiyu-awa/luna-ai) | 450 |
253
- |[DataDog/dd-trace-py](https://github.com/DataDog/dd-trace-py) | 450 |
254
- |[Azure-Samples/miyagi](https://github.com/Azure-Samples/miyagi) | 449 |
255
- |[poe-platform/poe-protocol](https://github.com/poe-platform/poe-protocol) | 447 |
256
- |[onlyphantom/llm-python](https://github.com/onlyphantom/llm-python) | 446 |
257
- |[junruxiong/IncarnaMind](https://github.com/junruxiong/IncarnaMind) | 441 |
258
- |[CarperAI/OpenELM](https://github.com/CarperAI/OpenELM) | 441 |
259
- |[daodao97/chatdoc](https://github.com/daodao97/chatdoc) | 437 |
260
- |[showlab/VLog](https://github.com/showlab/VLog) | 436 |
261
- |[wandb/weave](https://github.com/wandb/weave) | 420 |
262
- |[QwenLM/Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) | 419 |
263
- |[huchenxucs/ChatDB](https://github.com/huchenxucs/ChatDB) | 416 |
264
- |[jerlendds/osintbuddy](https://github.com/jerlendds/osintbuddy) | 411 |
265
- |[monarch-initiative/ontogpt](https://github.com/monarch-initiative/ontogpt) | 408 |
266
- |[mallorbc/Finetune_LLMs](https://github.com/mallorbc/Finetune_LLMs) | 406 |
267
- |[JayZeeDesign/researcher-gpt](https://github.com/JayZeeDesign/researcher-gpt) | 405 |
268
- |[rsaryev/talk-codebase](https://github.com/rsaryev/talk-codebase) | 401 |
269
- |[langchain-ai/langsmith-cookbook](https://github.com/langchain-ai/langsmith-cookbook) | 398 |
270
- |[mtenenholtz/chat-twitter](https://github.com/mtenenholtz/chat-twitter) | 398 |
271
- |[morpheuslord/GPT_Vuln-analyzer](https://github.com/morpheuslord/GPT_Vuln-analyzer) | 391 |
272
- |[MagnivOrg/prompt-layer-library](https://github.com/MagnivOrg/prompt-layer-library) | 387 |
273
- |[JohnSnowLabs/langtest](https://github.com/JohnSnowLabs/langtest) | 384 |
274
- |[mrwadams/attackgen](https://github.com/mrwadams/attackgen) | 381 |
275
- |[codefuse-ai/Test-Agent](https://github.com/codefuse-ai/Test-Agent) | 380 |
276
- |[personoids/personoids-lite](https://github.com/personoids/personoids-lite) | 379 |
277
- |[mosaicml/examples](https://github.com/mosaicml/examples) | 378 |
278
- |[steamship-packages/langchain-production-starter](https://github.com/steamship-packages/langchain-production-starter) | 370 |
279
- |[FlagAI-Open/Aquila2](https://github.com/FlagAI-Open/Aquila2) | 365 |
280
- |[Mintplex-Labs/vector-admin](https://github.com/Mintplex-Labs/vector-admin) | 365 |
281
- |[NimbleBoxAI/ChainFury](https://github.com/NimbleBoxAI/ChainFury) | 357 |
282
- |[BlackHC/llm-strategy](https://github.com/BlackHC/llm-strategy) | 354 |
283
- |[lilacai/lilac](https://github.com/lilacai/lilac) | 352 |
284
- |[preset-io/promptimize](https://github.com/preset-io/promptimize) | 351 |
285
- |[yuanjie-ai/ChatLLM](https://github.com/yuanjie-ai/ChatLLM) | 347 |
286
- |[andylokandy/gpt-4-search](https://github.com/andylokandy/gpt-4-search) | 346 |
287
- |[zhoudaquan/ChatAnything](https://github.com/zhoudaquan/ChatAnything) | 343 |
288
- |[rgomezcasas/dotfiles](https://github.com/rgomezcasas/dotfiles) | 343 |
289
- |[tigerlab-ai/tiger](https://github.com/tigerlab-ai/tiger) | 342 |
290
- |[HumanSignal/label-studio-ml-backend](https://github.com/HumanSignal/label-studio-ml-backend) | 334 |
291
- |[nasa-petal/bidara](https://github.com/nasa-petal/bidara) | 334 |
292
- |[momegas/megabots](https://github.com/momegas/megabots) | 334 |
293
- |[Cheems-Seminar/grounded-segment-any-parts](https://github.com/Cheems-Seminar/grounded-segment-any-parts) | 330 |
294
- |[CambioML/pykoi](https://github.com/CambioML/pykoi) | 326 |
295
- |[Nuggt-dev/Nuggt](https://github.com/Nuggt-dev/Nuggt) | 326 |
296
- |[wandb/edu](https://github.com/wandb/edu) | 326 |
297
- |[Haste171/langchain-chatbot](https://github.com/Haste171/langchain-chatbot) | 324 |
298
- |[sugarforever/LangChain-Tutorials](https://github.com/sugarforever/LangChain-Tutorials) | 322 |
299
- |[liangwq/Chatglm_lora_multi-gpu](https://github.com/liangwq/Chatglm_lora_multi-gpu) | 321 |
300
- |[ur-whitelab/chemcrow-public](https://github.com/ur-whitelab/chemcrow-public) | 320 |
301
- |[itamargol/openai](https://github.com/itamargol/openai) | 318 |
302
- |[gia-guar/JARVIS-ChatGPT](https://github.com/gia-guar/JARVIS-ChatGPT) | 304 |
303
- |[SpecterOps/Nemesis](https://github.com/SpecterOps/Nemesis) | 302 |
304
- |[facebookresearch/personal-timeline](https://github.com/facebookresearch/personal-timeline) | 302 |
305
- |[hnawaz007/pythondataanalysis](https://github.com/hnawaz007/pythondataanalysis) | 301 |
306
- |[Chainlit/cookbook](https://github.com/Chainlit/cookbook) | 300 |
307
- |[airobotlab/KoChatGPT](https://github.com/airobotlab/KoChatGPT) | 300 |
308
- |[GPT-Fathom/GPT-Fathom](https://github.com/GPT-Fathom/GPT-Fathom) | 299 |
309
- |[kaarthik108/snowChat](https://github.com/kaarthik108/snowChat) | 299 |
310
- |[kyegomez/swarms](https://github.com/kyegomez/swarms) | 296 |
311
- |[LangStream/langstream](https://github.com/LangStream/langstream) | 295 |
312
- |[genia-dev/GeniA](https://github.com/genia-dev/GeniA) | 294 |
313
- |[shamspias/customizable-gpt-chatbot](https://github.com/shamspias/customizable-gpt-chatbot) | 291 |
314
- |[TsinghuaDatabaseGroup/DB-GPT](https://github.com/TsinghuaDatabaseGroup/DB-GPT) | 290 |
315
- |[conceptofmind/toolformer](https://github.com/conceptofmind/toolformer) | 283 |
316
- |[sullivan-sean/chat-langchainjs](https://github.com/sullivan-sean/chat-langchainjs) | 283 |
317
- |[AutoPackAI/beebot](https://github.com/AutoPackAI/beebot) | 282 |
318
- |[pablomarin/GPT-Azure-Search-Engine](https://github.com/pablomarin/GPT-Azure-Search-Engine) | 282 |
319
- |[gkamradt/LLMTest_NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack) | 280 |
320
- |[gustavz/DataChad](https://github.com/gustavz/DataChad) | 280 |
321
- |[Safiullah-Rahu/CSV-AI](https://github.com/Safiullah-Rahu/CSV-AI) | 278 |
322
- |[hwchase17/chroma-langchain](https://github.com/hwchase17/chroma-langchain) | 275 |
323
- |[AkshitIreddy/Interactive-LLM-Powered-NPCs](https://github.com/AkshitIreddy/Interactive-LLM-Powered-NPCs) | 268 |
324
- |[ennucore/clippinator](https://github.com/ennucore/clippinator) | 267 |
325
- |[artitw/text2text](https://github.com/artitw/text2text) | 264 |
326
- |[anarchy-ai/LLM-VM](https://github.com/anarchy-ai/LLM-VM) | 263 |
327
- |[wpydcr/LLM-Kit](https://github.com/wpydcr/LLM-Kit) | 262 |
328
- |[streamlit/llm-examples](https://github.com/streamlit/llm-examples) | 262 |
329
- |[paolorechia/learn-langchain](https://github.com/paolorechia/learn-langchain) | 262 |
330
- |[yym68686/ChatGPT-Telegram-Bot](https://github.com/yym68686/ChatGPT-Telegram-Bot) | 261 |
331
- |[PradipNichite/Youtube-Tutorials](https://github.com/PradipNichite/Youtube-Tutorials) | 259 |
332
- |[radi-cho/datasetGPT](https://github.com/radi-cho/datasetGPT) | 259 |
333
- |[ur-whitelab/exmol](https://github.com/ur-whitelab/exmol) | 259 |
334
- |[ml6team/fondant](https://github.com/ml6team/fondant) | 254 |
335
- |[bborn/howdoi.ai](https://github.com/bborn/howdoi.ai) | 254 |
336
- |[rahulnyk/knowledge_graph](https://github.com/rahulnyk/knowledge_graph) | 253 |
337
- |[recalign/RecAlign](https://github.com/recalign/RecAlign) | 248 |
338
- |[hwchase17/langchain-streamlit-template](https://github.com/hwchase17/langchain-streamlit-template) | 248 |
339
- |[fetchai/uAgents](https://github.com/fetchai/uAgents) | 247 |
340
- |[arthur-ai/bench](https://github.com/arthur-ai/bench) | 247 |
341
- |[miaoshouai/miaoshouai-assistant](https://github.com/miaoshouai/miaoshouai-assistant) | 246 |
342
- |[RoboCoachTechnologies/GPT-Synthesizer](https://github.com/RoboCoachTechnologies/GPT-Synthesizer) | 244 |
343
- |[langchain-ai/web-explorer](https://github.com/langchain-ai/web-explorer) | 242 |
344
- |[kaleido-lab/dolphin](https://github.com/kaleido-lab/dolphin) | 242 |
345
- |[PJLab-ADG/DriveLikeAHuman](https://github.com/PJLab-ADG/DriveLikeAHuman) | 241 |
346
- |[stepanogil/autonomous-hr-chatbot](https://github.com/stepanogil/autonomous-hr-chatbot) | 238 |
347
- |[WongSaang/chatgpt-ui-server](https://github.com/WongSaang/chatgpt-ui-server) | 236 |
348
- |[nexus-stc/stc](https://github.com/nexus-stc/stc) | 235 |
349
- |[yeagerai/genworlds](https://github.com/yeagerai/genworlds) | 235 |
350
- |[Gentopia-AI/Gentopia](https://github.com/Gentopia-AI/Gentopia) | 235 |
351
- |[alphasecio/langchain-examples](https://github.com/alphasecio/langchain-examples) | 235 |
352
- |[grumpyp/aixplora](https://github.com/grumpyp/aixplora) | 232 |
353
- |[shaman-ai/agent-actors](https://github.com/shaman-ai/agent-actors) | 232 |
354
- |[darrenburns/elia](https://github.com/darrenburns/elia) | 231 |
355
- |[orgexyz/BlockAGI](https://github.com/orgexyz/BlockAGI) | 231 |
356
- |[handrew/browserpilot](https://github.com/handrew/browserpilot) | 226 |
357
- |[su77ungr/CASALIOY](https://github.com/su77ungr/CASALIOY) | 225 |
358
- |[nicknochnack/LangchainDocuments](https://github.com/nicknochnack/LangchainDocuments) | 225 |
359
- |[dbpunk-labs/octogen](https://github.com/dbpunk-labs/octogen) | 224 |
360
- |[langchain-ai/weblangchain](https://github.com/langchain-ai/weblangchain) | 222 |
361
- |[CL-lau/SQL-GPT](https://github.com/CL-lau/SQL-GPT) | 222 |
362
- |[alvarosevilla95/autolang](https://github.com/alvarosevilla95/autolang) | 221 |
363
- |[showlab/UniVTG](https://github.com/showlab/UniVTG) | 220 |
364
- |[edreisMD/plugnplai](https://github.com/edreisMD/plugnplai) | 219 |
365
- |[hardbyte/qabot](https://github.com/hardbyte/qabot) | 216 |
366
- |[microsoft/azure-openai-in-a-day-workshop](https://github.com/microsoft/azure-openai-in-a-day-workshop) | 215 |
367
- |[Azure-Samples/chat-with-your-data-solution-accelerator](https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator) | 214 |
368
- |[amadad/agentcy](https://github.com/amadad/agentcy) | 213 |
369
- |[snexus/llm-search](https://github.com/snexus/llm-search) | 212 |
370
- |[afaqueumer/DocQA](https://github.com/afaqueumer/DocQA) | 206 |
371
- |[plchld/InsightFlow](https://github.com/plchld/InsightFlow) | 205 |
372
- |[yasyf/compress-gpt](https://github.com/yasyf/compress-gpt) | 205 |
373
- |[benthecoder/ClassGPT](https://github.com/benthecoder/ClassGPT) | 205 |
374
- |[voxel51/voxelgpt](https://github.com/voxel51/voxelgpt) | 204 |
375
- |[jbrukh/gpt-jargon](https://github.com/jbrukh/gpt-jargon) | 204 |
376
- |[emarco177/ice_breaker](https://github.com/emarco177/ice_breaker) | 204 |
377
- |[tencentmusic/supersonic](https://github.com/tencentmusic/supersonic) | 202 |
378
- |[Azure-Samples/azure-search-power-skills](https://github.com/Azure-Samples/azure-search-power-skills) | 202 |
379
- |[blob42/Instrukt](https://github.com/blob42/Instrukt) | 201 |
380
- |[langchain-ai/langsmith-sdk](https://github.com/langchain-ai/langsmith-sdk) | 200 |
381
- |[SamPink/dev-gpt](https://github.com/SamPink/dev-gpt) | 200 |
382
- |[ju-bezdek/langchain-decorators](https://github.com/ju-bezdek/langchain-decorators) | 198 |
383
- |[KMnO4-zx/huanhuan-chat](https://github.com/KMnO4-zx/huanhuan-chat) | 196 |
384
- |[Azure-Samples/jp-azureopenai-samples](https://github.com/Azure-Samples/jp-azureopenai-samples) | 192 |
385
- |[hongbo-miao/hongbomiao.com](https://github.com/hongbo-miao/hongbomiao.com) | 190 |
386
- |[CakeCrusher/openplugin](https://github.com/CakeCrusher/openplugin) | 190 |
387
- |[PaddlePaddle/ERNIE-Bot-SDK](https://github.com/PaddlePaddle/ERNIE-Bot-SDK) | 189 |
388
- |[retr0reg/Ret2GPT](https://github.com/retr0reg/Ret2GPT) | 189 |
389
- |[AmineDiro/cria](https://github.com/AmineDiro/cria) | 187 |
390
- |[lancedb/vectordb-recipes](https://github.com/lancedb/vectordb-recipes) | 186 |
391
- |[vaibkumr/prompt-optimizer](https://github.com/vaibkumr/prompt-optimizer) | 185 |
392
- |[aws-ia/ecs-blueprints](https://github.com/aws-ia/ecs-blueprints) | 184 |
393
- |[ethanyanjiali/minChatGPT](https://github.com/ethanyanjiali/minChatGPT) | 183 |
394
- |[MuhammadMoinFaisal/LargeLanguageModelsProjects](https://github.com/MuhammadMoinFaisal/LargeLanguageModelsProjects) | 182 |
395
- |[shauryr/S2QA](https://github.com/shauryr/S2QA) | 181 |
396
- |[summarizepaper/summarizepaper](https://github.com/summarizepaper/summarizepaper) | 180 |
397
- |[NomaDamas/RAGchain](https://github.com/NomaDamas/RAGchain) | 179 |
398
- |[pnkvalavala/repochat](https://github.com/pnkvalavala/repochat) | 179 |
399
- |[ibiscp/LLM-IMDB](https://github.com/ibiscp/LLM-IMDB) | 177 |
400
- |[fengyuli-dev/multimedia-gpt](https://github.com/fengyuli-dev/multimedia-gpt) | 177 |
401
- |[langchain-ai/text-split-explorer](https://github.com/langchain-ai/text-split-explorer) | 175 |
402
- |[iMagist486/ElasticSearch-Langchain-Chatglm2](https://github.com/iMagist486/ElasticSearch-Langchain-Chatglm2) | 175 |
403
- |[limaoyi1/Auto-PPT](https://github.com/limaoyi1/Auto-PPT) | 175 |
404
- |[Open-Swarm-Net/GPT-Swarm](https://github.com/Open-Swarm-Net/GPT-Swarm) | 175 |
405
- |[morpheuslord/HackBot](https://github.com/morpheuslord/HackBot) | 174 |
406
- |[v7labs/benchllm](https://github.com/v7labs/benchllm) | 174 |
407
- |[Coding-Crashkurse/Langchain-Full-Course](https://github.com/Coding-Crashkurse/Langchain-Full-Course) | 174 |
408
- |[dongyh20/Octopus](https://github.com/dongyh20/Octopus) | 173 |
409
- |[kimtth/azure-openai-llm-vector-langchain](https://github.com/kimtth/azure-openai-llm-vector-langchain) | 173 |
410
- |[mayooear/private-chatbot-mpt30b-langchain](https://github.com/mayooear/private-chatbot-mpt30b-langchain) | 173 |
411
- |[zilliztech/akcio](https://github.com/zilliztech/akcio) | 172 |
412
- |[jmpaz/promptlib](https://github.com/jmpaz/promptlib) | 172 |
413
- |[ccurme/yolopandas](https://github.com/ccurme/yolopandas) | 172 |
414
- |[joaomdmoura/CrewAI](https://github.com/joaomdmoura/CrewAI) | 170 |
415
- |[katanaml/llm-mistral-invoice-cpu](https://github.com/katanaml/llm-mistral-invoice-cpu) | 170 |
416
- |[chakkaradeep/pyCodeAGI](https://github.com/chakkaradeep/pyCodeAGI) | 170 |
417
- |[mudler/LocalAGI](https://github.com/mudler/LocalAGI) | 167 |
418
- |[dssjon/biblos](https://github.com/dssjon/biblos) | 165 |
419
- |[kjappelbaum/gptchem](https://github.com/kjappelbaum/gptchem) | 165 |
420
- |[xxw1995/chatglm3-finetune](https://github.com/xxw1995/chatglm3-finetune) | 164 |
421
- |[ArjanCodes/examples](https://github.com/ArjanCodes/examples) | 163 |
422
- |[AIAnytime/Llama2-Medical-Chatbot](https://github.com/AIAnytime/Llama2-Medical-Chatbot) | 163 |
423
- |[RCGAI/SimplyRetrieve](https://github.com/RCGAI/SimplyRetrieve) | 162 |
424
- |[langchain-ai/langchain-teacher](https://github.com/langchain-ai/langchain-teacher) | 162 |
425
- |[menloparklab/falcon-langchain](https://github.com/menloparklab/falcon-langchain) | 162 |
426
- |[flurb18/AgentOoba](https://github.com/flurb18/AgentOoba) | 162 |
427
- |[homanp/vercel-langchain](https://github.com/homanp/vercel-langchain) | 161 |
428
- |[jiran214/langup-ai](https://github.com/jiran214/langup-ai) | 160 |
429
- |[JorisdeJong123/7-Days-of-LangChain](https://github.com/JorisdeJong123/7-Days-of-LangChain) | 160 |
430
- |[GoogleCloudPlatform/data-analytics-golden-demo](https://github.com/GoogleCloudPlatform/data-analytics-golden-demo) | 159 |
431
- |[positive666/Prompt-Can-Anything](https://github.com/positive666/Prompt-Can-Anything) | 159 |
432
- |[luisroque/large_laguage_models](https://github.com/luisroque/large_laguage_models) | 159 |
433
- |[mlops-for-all/mlops-for-all.github.io](https://github.com/mlops-for-all/mlops-for-all.github.io) | 158 |
434
- |[wandb/wandbot](https://github.com/wandb/wandbot) | 158 |
435
- |[elastic/elasticsearch-labs](https://github.com/elastic/elasticsearch-labs) | 157 |
436
- |[shroominic/funcchain](https://github.com/shroominic/funcchain) | 157 |
437
- |[deeppavlov/dream](https://github.com/deeppavlov/dream) | 156 |
438
- |[mluogh/eastworld](https://github.com/mluogh/eastworld) | 154 |
439
- |[georgesung/llm_qlora](https://github.com/georgesung/llm_qlora) | 154 |
440
- |[RUC-GSAI/YuLan-Rec](https://github.com/RUC-GSAI/YuLan-Rec) | 153 |
441
- |[KylinC/ChatFinance](https://github.com/KylinC/ChatFinance) | 152 |
442
- |[Dicklesworthstone/llama2_aided_tesseract](https://github.com/Dicklesworthstone/llama2_aided_tesseract) | 152 |
443
- |[c0sogi/LLMChat](https://github.com/c0sogi/LLMChat) | 152 |
444
- |[eunomia-bpf/GPTtrace](https://github.com/eunomia-bpf/GPTtrace) | 152 |
445
- |[ErikBjare/gptme](https://github.com/ErikBjare/gptme) | 152 |
446
- |[Klingefjord/chatgpt-telegram](https://github.com/Klingefjord/chatgpt-telegram) | 152 |
447
- |[RoboCoachTechnologies/ROScribe](https://github.com/RoboCoachTechnologies/ROScribe) | 151 |
448
- |[Aggregate-Intellect/sherpa](https://github.com/Aggregate-Intellect/sherpa) | 151 |
449
- |[3Alan/DocsMind](https://github.com/3Alan/DocsMind) | 151 |
450
- |[tangqiaoyu/ToolAlpaca](https://github.com/tangqiaoyu/ToolAlpaca) | 150 |
451
- |[kulltc/chatgpt-sql](https://github.com/kulltc/chatgpt-sql) | 150 |
452
- |[mallahyari/drqa](https://github.com/mallahyari/drqa) | 150 |
453
- |[MedalCollector/Orator](https://github.com/MedalCollector/Orator) | 149 |
454
- |[Teahouse-Studios/akari-bot](https://github.com/Teahouse-Studios/akari-bot) | 149 |
455
- |[realminchoi/babyagi-ui](https://github.com/realminchoi/babyagi-ui) | 148 |
456
- |[ssheng/BentoChain](https://github.com/ssheng/BentoChain) | 148 |
457
- |[solana-labs/chatgpt-plugin](https://github.com/solana-labs/chatgpt-plugin) | 147 |
458
- |[aurelio-labs/arxiv-bot](https://github.com/aurelio-labs/arxiv-bot) | 147 |
459
- |[Jaseci-Labs/jaseci](https://github.com/Jaseci-Labs/jaseci) | 146 |
460
- |[menloparklab/langchain-cohere-qdrant-doc-retrieval](https://github.com/menloparklab/langchain-cohere-qdrant-doc-retrieval) | 146 |
461
- |[trancethehuman/entities-extraction-web-scraper](https://github.com/trancethehuman/entities-extraction-web-scraper) | 144 |
462
- |[peterw/StoryStorm](https://github.com/peterw/StoryStorm) | 144 |
463
- |[grumpyp/chroma-langchain-tutorial](https://github.com/grumpyp/chroma-langchain-tutorial) | 144 |
464
- |[gh18l/CrawlGPT](https://github.com/gh18l/CrawlGPT) | 142 |
465
- |[langchain-ai/langchain-aws-template](https://github.com/langchain-ai/langchain-aws-template) | 142 |
466
- |[yasyf/summ](https://github.com/yasyf/summ) | 141 |
467
- |[petehunt/langchain-github-bot](https://github.com/petehunt/langchain-github-bot) | 141 |
468
- |[hirokidaichi/wanna](https://github.com/hirokidaichi/wanna) | 140 |
469
- |[jina-ai/fastapi-serve](https://github.com/jina-ai/fastapi-serve) | 139 |
470
- |[zenml-io/zenml-projects](https://github.com/zenml-io/zenml-projects) | 139 |
471
- |[jlonge4/local_llama](https://github.com/jlonge4/local_llama) | 139 |
472
- |[smyja/blackmaria](https://github.com/smyja/blackmaria) | 138 |
473
- |[ChuloAI/BrainChulo](https://github.com/ChuloAI/BrainChulo) | 137 |
474
- |[log1stics/voice-generator-webui](https://github.com/log1stics/voice-generator-webui) | 137 |
475
- |[davila7/file-gpt](https://github.com/davila7/file-gpt) | 137 |
476
- |[dcaribou/transfermarkt-datasets](https://github.com/dcaribou/transfermarkt-datasets) | 136 |
477
- |[ciare-robotics/world-creator](https://github.com/ciare-robotics/world-creator) | 135 |
478
- |[Undertone0809/promptulate](https://github.com/Undertone0809/promptulate) | 134 |
479
- |[fixie-ai/fixie-examples](https://github.com/fixie-ai/fixie-examples) | 134 |
480
- |[run-llama/ai-engineer-workshop](https://github.com/run-llama/ai-engineer-workshop) | 133 |
481
- |[definitive-io/code-indexer-loop](https://github.com/definitive-io/code-indexer-loop) | 131 |
482
- |[mortium91/langchain-assistant](https://github.com/mortium91/langchain-assistant) | 131 |
483
- |[baidubce/bce-qianfan-sdk](https://github.com/baidubce/bce-qianfan-sdk) | 130 |
484
- |[Ngonie-x/langchain_csv](https://github.com/Ngonie-x/langchain_csv) | 130 |
485
- |[IvanIsCoding/ResuLLMe](https://github.com/IvanIsCoding/ResuLLMe) | 130 |
486
- |[AnchoringAI/anchoring-ai](https://github.com/AnchoringAI/anchoring-ai) | 129 |
487
- |[Azure/business-process-automation](https://github.com/Azure/business-process-automation) | 128 |
488
- |[athina-ai/athina-sdk](https://github.com/athina-ai/athina-sdk) | 126 |
489
- |[thunlp/ChatEval](https://github.com/thunlp/ChatEval) | 126 |
490
- |[prof-frink-lab/slangchain](https://github.com/prof-frink-lab/slangchain) | 126 |
491
- |[vietanhdev/pautobot](https://github.com/vietanhdev/pautobot) | 125 |
492
- |[awslabs/generative-ai-cdk-constructs](https://github.com/awslabs/generative-ai-cdk-constructs) | 124 |
493
- |[sdaaron/QueryGPT](https://github.com/sdaaron/QueryGPT) | 124 |
494
- |[rabbitmetrics/langchain-13-min](https://github.com/rabbitmetrics/langchain-13-min) | 124 |
495
- |[AutoLLM/AutoAgents](https://github.com/AutoLLM/AutoAgents) | 122 |
496
- |[nicknochnack/Nopenai](https://github.com/nicknochnack/Nopenai) | 122 |
497
- |[wombyz/HormoziGPT](https://github.com/wombyz/HormoziGPT) | 122 |
498
- |[dotvignesh/PDFChat](https://github.com/dotvignesh/PDFChat) | 122 |
499
- |[topoteretes/PromethAI-Backend](https://github.com/topoteretes/PromethAI-Backend) | 121 |
500
- |[nftblackmagic/flask-langchain](https://github.com/nftblackmagic/flask-langchain) | 121 |
501
- |[vishwasg217/finsight](https://github.com/vishwasg217/finsight) | 120 |
502
- |[snap-stanford/MLAgentBench](https://github.com/snap-stanford/MLAgentBench) | 120 |
503
- |[Azure/app-service-linux-docs](https://github.com/Azure/app-service-linux-docs) | 120 |
504
- |[nyanp/chat2plot](https://github.com/nyanp/chat2plot) | 120 |
505
- |[ant4g0nist/polar](https://github.com/ant4g0nist/polar) | 119 |
506
- |[aws-samples/cdk-eks-blueprints-patterns](https://github.com/aws-samples/cdk-eks-blueprints-patterns) | 119 |
507
- |[aws-samples/amazon-kendra-langchain-extensions](https://github.com/aws-samples/amazon-kendra-langchain-extensions) | 119 |
508
- |[Xueheng-Li/SynologyChatbotGPT](https://github.com/Xueheng-Li/SynologyChatbotGPT) | 119 |
509
- |[CodeAlchemyAI/ViLT-GPT](https://github.com/CodeAlchemyAI/ViLT-GPT) | 117 |
510
- |[Lin-jun-xiang/docGPT-langchain](https://github.com/Lin-jun-xiang/docGPT-langchain) | 117 |
511
- |[ademakdogan/ChatSQL](https://github.com/ademakdogan/ChatSQL) | 116 |
512
- |[aniketmaurya/llm-inference](https://github.com/aniketmaurya/llm-inference) | 115 |
513
- |[xuwenhao/mactalk-ai-course](https://github.com/xuwenhao/mactalk-ai-course) | 115 |
514
- |[cmooredev/RepoReader](https://github.com/cmooredev/RepoReader) | 115 |
515
- |[abi/autocommit](https://github.com/abi/autocommit) | 115 |
516
- |[MIDORIBIN/langchain-gpt4free](https://github.com/MIDORIBIN/langchain-gpt4free) | 114 |
517
- |[finaldie/auto-news](https://github.com/finaldie/auto-news) | 114 |
518
- |[Anil-matcha/Youtube-to-chatbot](https://github.com/Anil-matcha/Youtube-to-chatbot) | 114 |
519
- |[avrabyt/MemoryBot](https://github.com/avrabyt/MemoryBot) | 114 |
520
- |[Capsize-Games/airunner](https://github.com/Capsize-Games/airunner) | 113 |
521
- |[atisharma/llama_farm](https://github.com/atisharma/llama_farm) | 113 |
522
- |[mbchang/data-driven-characters](https://github.com/mbchang/data-driven-characters) | 112 |
523
- |[fiddler-labs/fiddler-auditor](https://github.com/fiddler-labs/fiddler-auditor) | 112 |
524
- |[dirkjbreeuwer/gpt-automated-web-scraper](https://github.com/dirkjbreeuwer/gpt-automated-web-scraper) | 111 |
525
- |[Appointat/Chat-with-Document-s-using-ChatGPT-API-and-Text-Embedding](https://github.com/Appointat/Chat-with-Document-s-using-ChatGPT-API-and-Text-Embedding) | 111 |
526
- |[hwchase17/langchain-gradio-template](https://github.com/hwchase17/langchain-gradio-template) | 111 |
527
- |[artas728/spelltest](https://github.com/artas728/spelltest) | 110 |
528
- |[NVIDIA/GenerativeAIExamples](https://github.com/NVIDIA/GenerativeAIExamples) | 109 |
529
- |[Azure/aistudio-copilot-sample](https://github.com/Azure/aistudio-copilot-sample) | 108 |
530
- |[codefuse-ai/codefuse-chatbot](https://github.com/codefuse-ai/codefuse-chatbot) | 108 |
531
- |[apirrone/Memento](https://github.com/apirrone/Memento) | 108 |
532
- |[e-johnstonn/GPT-Doc-Summarizer](https://github.com/e-johnstonn/GPT-Doc-Summarizer) | 108 |
533
- |[salesforce/BOLAA](https://github.com/salesforce/BOLAA) | 107 |
534
- |[Erol444/gpt4-openai-api](https://github.com/Erol444/gpt4-openai-api) | 106 |
535
- |[linjungz/chat-with-your-doc](https://github.com/linjungz/chat-with-your-doc) | 106 |
536
- |[crosleythomas/MirrorGPT](https://github.com/crosleythomas/MirrorGPT) | 106 |
537
- |[panaverse/learn-generative-ai](https://github.com/panaverse/learn-generative-ai) | 105 |
538
- |[Azure/azure-sdk-tools](https://github.com/Azure/azure-sdk-tools) | 105 |
539
- |[malywut/gpt_examples](https://github.com/malywut/gpt_examples) | 105 |
540
- |[ritun16/chain-of-verification](https://github.com/ritun16/chain-of-verification) | 104 |
541
- |[langchain-ai/langchain-benchmarks](https://github.com/langchain-ai/langchain-benchmarks) | 104 |
542
- |[lightninglabs/LangChainBitcoin](https://github.com/lightninglabs/LangChainBitcoin) | 104 |
543
- |[flepied/second-brain-agent](https://github.com/flepied/second-brain-agent) | 103 |
544
- |[llmapp/openai.mini](https://github.com/llmapp/openai.mini) | 102 |
545
- |[gimlet-ai/tddGPT](https://github.com/gimlet-ai/tddGPT) | 102 |
546
- |[jlonge4/gpt_chatwithPDF](https://github.com/jlonge4/gpt_chatwithPDF) | 102 |
547
- |[agentification/RAFA_code](https://github.com/agentification/RAFA_code) | 101 |
548
- |[pacman100/DHS-LLM-Workshop](https://github.com/pacman100/DHS-LLM-Workshop) | 101 |
549
- |[aws-samples/private-llm-qa-bot](https://github.com/aws-samples/private-llm-qa-bot) | 101 |
550
-
551
-
552
- _Generated by [github-dependents-info](https://github.com/nvuillam/github-dependents-info)_
553
-
554
- `github-dependents-info --repo "langchain-ai/langchain" --markdownfile dependents.md --minstars 100 --sort stars`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
langchain_md_files/additional_resources/tutorials.mdx DELETED
@@ -1,51 +0,0 @@
1
- # 3rd Party Tutorials
2
-
3
- ## Tutorials
4
-
5
- ### [LangChain v 0.1 by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae0gBSJ9T0w7cu7iJZbH3T31)
6
- ### [Build with Langchain - Advanced by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae06tclDATrMYY0idsTdLg9v)
7
- ### [LangGraph by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae16n2TWUkKq5PgJ0w6Pkwtg)
8
- ### [by Greg Kamradt](https://www.youtube.com/playlist?list=PLqZXAkvF1bPNQER9mLmDbntNfSpzdDIU5)
9
- ### [by Sam Witteveen](https://www.youtube.com/playlist?list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ)
10
- ### [by James Briggs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F)
11
- ### [by Prompt Engineering](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr)
12
- ### [by Mayo Oshin](https://www.youtube.com/@chatwithdata/search?query=langchain)
13
- ### [by 1 little Coder](https://www.youtube.com/playlist?list=PLpdmBGJ6ELUK-v0MK-t4wZmVEbxM5xk6L)
14
- ### [by BobLin (Chinese language)](https://www.youtube.com/playlist?list=PLbd7ntv6PxC3QMFQvtWfk55p-Op_syO1C)
15
-
16
- ## Courses
17
-
18
- ### Featured courses on Deeplearning.AI
19
-
20
- - [LangChain for LLM Application Development](https://www.deeplearning.ai/short-courses/langchain-for-llm-application-development/)
21
- - [LangChain Chat with Your Data](https://www.deeplearning.ai/short-courses/langchain-chat-with-your-data/)
22
- - [Functions, Tools and Agents with LangChain](https://www.deeplearning.ai/short-courses/functions-tools-agents-langchain/)
23
- - [Build LLM Apps with LangChain.js](https://www.deeplearning.ai/short-courses/build-llm-apps-with-langchain-js/)
24
-
25
- ### Online courses
26
-
27
- - [Udemy](https://www.udemy.com/courses/search/?q=langchain)
28
- - [DataCamp](https://www.datacamp.com/courses/developing-llm-applications-with-langchain)
29
- - [Pluralsight](https://www.pluralsight.com/search?q=langchain)
30
- - [Coursera](https://www.coursera.org/search?query=langchain)
31
- - [Maven](https://maven.com/courses?query=langchain)
32
- - [Udacity](https://www.udacity.com/catalog/all/any-price/any-school/any-skill/any-difficulty/any-duration/any-type/relevance/page-1?searchValue=langchain)
33
- - [LinkedIn Learning](https://www.linkedin.com/search/results/learning/?keywords=langchain)
34
- - [edX](https://www.edx.org/search?q=langchain)
35
- - [freeCodeCamp](https://www.youtube.com/@freecodecamp/search?query=langchain)
36
-
37
- ## Short Tutorials
38
-
39
- - [by Nicholas Renotte](https://youtu.be/MlK6SIjcjE8)
40
- - [by Patrick Loeber](https://youtu.be/LbT1yp6quS8)
41
- - [by Rabbitmetrics](https://youtu.be/aywZrzNaKjs)
42
- - [by Ivan Reznikov](https://medium.com/@ivanreznikov/langchain-101-course-updated-668f7b41d6cb)
43
-
44
- ## Books and Handbooks
45
-
46
- - [Generative AI with LangChain](https://www.amazon.com/Generative-AI-LangChain-language-ChatGPT/dp/1835083463/ref=sr_1_1?crid=1GMOMH0G7GLR&keywords=generative+ai+with+langchain&qid=1703247181&sprefix=%2Caps%2C298&sr=8-1) by [Ben Auffrath](https://www.amazon.com/stores/Ben-Auffarth/author/B08JQKSZ7D?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true), ©️ 2023 Packt Publishing
47
- - [LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
48
- - [LangChain Cheatsheet](https://pub.towardsai.net/langchain-cheatsheet-all-secrets-on-a-single-page-8be26b721cde) by **Ivan Reznikov**
49
- - [Dive into Langchain (Chinese language)](https://langchain.boblin.app/)
50
-
51
- ---------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
langchain_md_files/additional_resources/youtube.mdx DELETED
@@ -1,63 +0,0 @@
1
- # YouTube videos
2
-
3
- [Updated 2024-05-16]
4
-
5
- ### [Official LangChain YouTube channel](https://www.youtube.com/@LangChain)
6
-
7
- ### [Tutorials on YouTube](/docs/additional_resources/tutorials/#tutorials)
8
-
9
- ## Videos (sorted by views)
10
-
11
- Only videos with 40K+ views:
12
-
13
- - [Using `ChatGPT` with YOUR OWN Data. This is magical. (LangChain `OpenAI API`)](https://youtu.be/9AXP7tCI9PI)
14
- - [Chat with Multiple `PDFs` | LangChain App Tutorial in Python (Free LLMs and Embeddings)](https://youtu.be/dXxQ0LR-3Hg?si=pjXKhsHRzn10vOqX)
15
- - [`Hugging Face` + Langchain in 5 mins | Access 200k+ FREE AI models for your AI apps](https://youtu.be/_j7JEDWuqLE?si=psimQscN3qo2dOa9)
16
- - [LangChain Crash Course For Beginners | LangChain Tutorial](https://youtu.be/nAmC7SoVLd8?si=qJdvyG5-rnjqfdj1)
17
- - [Vector Embeddings Tutorial – Code Your Own AI Assistant with GPT-4 API + LangChain + NLP](https://youtu.be/yfHHvmaMkcA?si=UBP3yw50cLm3a2nj)
18
- - [Development with Large Language Models Tutorial – `OpenAI`, Langchain, Agents, `Chroma`](https://youtu.be/xZDB1naRUlk?si=v8J1q6oFHRyTkf7Y)
19
- - [Langchain: `PDF` Chat App (GUI) | ChatGPT for Your PDF FILES | Step-by-Step Tutorial](https://youtu.be/RIWbalZ7sTo?si=LbKsCcuyv0BtnrTY)
20
- - [Vector Search `RAG` Tutorial – Combine Your Data with LLMs with Advanced Search](https://youtu.be/JEBDfGqrAUA?si=pD7oxpfwWeJCxfBt)
21
- - [LangChain Crash Course for Beginners](https://youtu.be/lG7Uxts9SXs?si=Yte4S5afN7KNCw0F)
22
- - [Learn `RAG` From Scratch – Python AI Tutorial from a LangChain Engineer](https://youtu.be/sVcwVQRHIc8?si=_LN4g0vOgSdtlB3S)
23
- - [`Llama 2` in LangChain β€” FIRST Open Source Conversational Agent!](https://youtu.be/6iHVJyX2e50?si=rtq1maPrzWKHbwVV)
24
- - [LangChain Tutorial for Beginners | Generative AI Series](https://youtu.be/cQUUkZnyoD0?si=KYz-bvcocdqGh9f_)
25
- - [Chatbots with `RAG`: LangChain Full Walkthrough](https://youtu.be/LhnCsygAvzY?si=yS7T98VLfcWdkDek)
26
- - [LangChain Explained In 15 Minutes - A MUST Learn For Python Programmers](https://youtu.be/mrjq3lFz23s?si=wkQGcSKUJjuiiEPf)
27
- - [LLM Project | End to End LLM Project Using Langchain, `OpenAI` in Finance Domain](https://youtu.be/MoqgmWV1fm8?si=oVl-5kJVgd3a07Y_)
28
- - [What is LangChain?](https://youtu.be/1bUy-1hGZpI?si=NZ0D51VM5y-DhjGe)
29
- - [`RAG` + Langchain Python Project: Easy AI/Chat For Your Doc](https://youtu.be/tcqEUSNCn8I?si=RLcWPBVLIErRqdmU)
30
- - [Getting Started With LangChain In 20 Minutes- Build Celebrity Search Application](https://youtu.be/_FpT1cwcSLg?si=X9qVazlXYucN_JBP)
31
- - [LangChain GEN AI Tutorial – 6 End-to-End Projects using OpenAI, Google `Gemini Pro`, `LLAMA2`](https://youtu.be/x0AnCE9SE4A?si=_92gJYm7kb-V2bi0)
32
- - [Complete Langchain GEN AI Crash Course With 6 End To End LLM Projects With OPENAI, `LLAMA2`, `Gemini Pro`](https://youtu.be/aWKrL4z5H6w?si=NVLi7Yiq0ccE7xXE)
33
- - [AI Leader Reveals The Future of AI AGENTS (LangChain CEO)](https://youtu.be/9ZhbA0FHZYc?si=1r4P6kRvKVvEhRgE)
34
- - [Learn How To Query Pdf using Langchain Open AI in 5 min](https://youtu.be/5Ghv-F1wF_0?si=ZZRjrWfeiFOVrcvu)
35
- - [Reliable, fully local RAG agents with `LLaMA3`](https://youtu.be/-ROS6gfYIts?si=75CXA8W_BbnkIxcV)
36
- - [Learn `LangChain.js` - Build LLM apps with JavaScript and `OpenAI`](https://youtu.be/HSZ_uaif57o?si=Icj-RAhwMT-vHaYA)
37
- - [LLM Project | End to End LLM Project Using LangChain, Google Palm In Ed-Tech Industry](https://youtu.be/AjQPRomyd-k?si=eC3NT6kn02Lhpz-_)
38
- - [Chatbot Answering from Your Own Knowledge Base: Langchain, `ChatGPT`, `Pinecone`, and `Streamlit`: | Code](https://youtu.be/nAKhxQ3hcMA?si=9Zd_Nd_jiYhtml5w)
39
- - [LangChain is AMAZING | Quick Python Tutorial](https://youtu.be/I4mFqyqFkxg?si=aJ66qh558OfNAczD)
40
- - [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw?si=kZR-lnJwixeVrjmh)
41
- - [Using NEW `MPT-7B` in `Hugging Face` and LangChain](https://youtu.be/DXpk9K7DgMo?si=99JDpV_ueimwJhMi)
42
- - [LangChain - COMPLETE TUTORIAL - Basics to advanced concept!](https://youtu.be/a89vqgK-Qcs?si=0aVO2EOqsw7GE5e3)
43
- - [LangChain Agents: Simply Explained!](https://youtu.be/Xi9Ui-9qcPw?si=DCuG7nGx8dxcfhkx)
44
- - [Chat With Multiple `PDF` Documents With Langchain And Google `Gemini Pro`](https://youtu.be/uus5eLz6smA?si=YUwvHtaZsGeIl0WD)
45
- - [LLM Project | End to end LLM project Using Langchain, `Google Palm` in Retail Industry](https://youtu.be/4wtrl4hnPT8?si=_eOKPpdLfWu5UXMQ)
46
- - [Tutorial | Chat with any Website using Python and Langchain](https://youtu.be/bupx08ZgSFg?si=KRrjYZFnuLsstGwW)
47
- - [Prompt Engineering And LLM's With LangChain In One Shot-Generative AI](https://youtu.be/t2bSApmPzU4?si=87vPQQtYEWTyu2Kx)
48
- - [Build a Custom Chatbot with `OpenAI`: `GPT-Index` & LangChain | Step-by-Step Tutorial](https://youtu.be/FIDv6nc4CgU?si=gR1u3DUG9lvzBIKK)
49
- - [Search Your `PDF` App using Langchain, `ChromaDB`, and Open Source LLM: No OpenAI API (Runs on CPU)](https://youtu.be/rIV1EseKwU4?si=UxZEoXSiPai8fXgl)
50
- - [Building a `RAG` application from scratch using Python, LangChain, and the `OpenAI API`](https://youtu.be/BrsocJb-fAo?si=hvkh9iTGzJ-LnsX-)
51
- - [Function Calling via `ChatGPT API` - First Look With LangChain](https://youtu.be/0-zlUy7VUjg?si=Vc6LFseckEc6qvuk)
52
- - [Private GPT, free deployment! Langchain-Chachat helps you easily play with major mainstream AI models! | Zero Degree Commentary](https://youtu.be/3LLUyaHP-3I?si=AZumEeFXsvqaLl0f)
53
- - [Create a ChatGPT clone using `Streamlit` and LangChain](https://youtu.be/IaTiyQ2oYUQ?si=WbgsYmqPDnMidSUK)
54
- - [What's next for AI agents ft. LangChain's Harrison Chase](https://youtu.be/pBBe1pk8hf4?si=H4vdBF9nmkNZxiHt)
55
- - [`LangFlow`: Build Chatbots without Writing Code - LangChain](https://youtu.be/KJ-ux3hre4s?si=TJuDu4bAlva1myNL)
56
- - [Building a LangChain Custom Medical Agent with Memory](https://youtu.be/6UFtRwWnHws?si=wymYad26VgigRkHy)
57
- - [`Ollama` meets LangChain](https://youtu.be/k_1pOF1mj8k?si=RlBiCrmaR3s7SnMK)
58
- - [End To End LLM Langchain Project using `Pinecone` Vector Database](https://youtu.be/erUfLIi9OFM?si=aHpuHXdIEmAfS4eF)
59
- - [`LLaMA2` with LangChain - Basics | LangChain TUTORIAL](https://youtu.be/cIRzwSXB4Rc?si=FUs0OLVJpzKhut0h)
60
- - [Understanding `ReACT` with LangChain](https://youtu.be/Eug2clsLtFs?si=imgj534ggxlypS0d)
61
-
62
- ---------------------
63
- [Updated 2024-05-16]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
langchain_md_files/changes/changelog/core.mdx DELETED
@@ -1,10 +0,0 @@
1
- # langchain-core
2
-
3
- ## 0.1.x
4
-
5
- #### Deprecated
6
-
7
- - `BaseChatModel` methods `__call__`, `call_as_llm`, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.invoke` instead.
8
- - `BaseChatModel` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.ainvoke` instead.
9
- - `BaseLLM` methods `__call__, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseLLM.invoke` instead.
10
- - `BaseLLM` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseLLM.ainvoke` instead.
 
 
 
 
 
 
 
 
 
 
 
langchain_md_files/changes/changelog/langchain.mdx DELETED
@@ -1,93 +0,0 @@
1
- # langchain
2
-
3
- ## 0.2.0
4
-
5
- ### Deleted
6
-
7
- As of release 0.2.0, `langchain` is required to be integration-agnostic. This means that code in `langchain` should not by default instantiate any specific chat models, llms, embedding models, vectorstores etc; instead, the user will be required to specify those explicitly.
8
-
9
- The following functions and classes require an explicit LLM to be passed as an argument:
10
-
11
- - `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit`
12
- - `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit`
13
- - `langchain.chains.openai_functions.get_openapi_chain`
14
- - `langchain.chains.router.MultiRetrievalQAChain.from_retrievers`
15
- - `langchain.indexes.VectorStoreIndexWrapper.query`
16
- - `langchain.indexes.VectorStoreIndexWrapper.query_with_sources`
17
- - `langchain.indexes.VectorStoreIndexWrapper.aquery_with_sources`
18
- - `langchain.chains.flare.FlareChain`
19
-
20
- The following classes now require passing an explicit Embedding model as an argument:
21
-
22
- - `langchain.indexes.VectostoreIndexCreator`
23
-
24
- The following code has been removed:
25
-
26
- - `langchain.natbot.NatBotChain.from_default` removed in favor of the `from_llm` class method.
27
-
28
- ### Deprecated
29
-
30
- We have two main types of deprecations:
31
-
32
- 1. Code that was moved from `langchain` into another package (e.g, `langchain-community`)
33
-
34
- If you try to import it from `langchain`, the import will keep on working, but will raise a deprecation warning. The warning will provide a replacement import statement.
35
-
36
- ```python
37
- python -c "from langchain.document_loaders.markdown import UnstructuredMarkdownLoader"
38
-
39
- ```
40
-
41
- ```python
42
- LangChainDeprecationWarning: Importing UnstructuredMarkdownLoader from langchain.document_loaders is deprecated. Please replace deprecated imports:
43
-
44
- >> from langchain.document_loaders import UnstructuredMarkdownLoader
45
-
46
- with new imports of:
47
-
48
- >> from langchain_community.document_loaders import UnstructuredMarkdownLoader
49
- ```
50
-
51
- We will continue supporting the imports in `langchain` until release 0.4 as long as the relevant package where the code lives is installed. (e.g., as long as `langchain_community` is installed.)
52
-
53
- However, we advise for users to not rely on these imports and instead migrate to the new imports. To help with this process, we’re releasing a migration script via the LangChain CLI. See further instructions in migration guide.
54
-
55
- 1. Code that has better alternatives available and will eventually be removed, so there’s only a single way to do things. (e.g., `predict_messages` method in ChatModels has been deprecated in favor of `invoke`).
56
-
57
- Many of these were marked for removal in 0.2. We have bumped the removal to 0.3.
58
-
59
-
60
- ## 0.1.0 (Jan 5, 2024)
61
-
62
- ### Deleted
63
-
64
- No deletions.
65
-
66
- ### Deprecated
67
-
68
- Deprecated classes and methods will be removed in 0.2.0
69
-
70
- | Deprecated | Alternative | Reason |
71
- |---------------------------------|-----------------------------------|------------------------------------------------|
72
- | ChatVectorDBChain | ConversationalRetrievalChain | More general to all retrievers |
73
- | create_ernie_fn_chain | create_ernie_fn_runnable | Use LCEL under the hood |
74
- | created_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
75
- | NatBotChain | | Not used |
76
- | create_openai_fn_chain | create_openai_fn_runnable | Use LCEL under the hood |
77
- | create_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
78
- | load_query_constructor_chain | load_query_constructor_runnable | Use LCEL under the hood |
79
- | VectorDBQA | RetrievalQA | More general to all retrievers |
80
- | Sequential Chain | LCEL | Obviated by LCEL |
81
- | SimpleSequentialChain | LCEL | Obviated by LCEL |
82
- | TransformChain | LCEL/RunnableLambda | Obviated by LCEL |
83
- | create_tagging_chain | create_structured_output_runnable | Use LCEL under the hood |
84
- | ChatAgent | create_react_agent | Use LCEL builder over a class |
85
- | ConversationalAgent | create_react_agent | Use LCEL builder over a class |
86
- | ConversationalChatAgent | create_json_chat_agent | Use LCEL builder over a class |
87
- | initialize_agent | Individual create agent methods | Individual create agent methods are more clear |
88
- | ZeroShotAgent | create_react_agent | Use LCEL builder over a class |
89
- | OpenAIFunctionsAgent | create_openai_functions_agent | Use LCEL builder over a class |
90
- | OpenAIMultiFunctionsAgent | create_openai_tools_agent | Use LCEL builder over a class |
91
- | SelfAskWithSearchAgent | create_self_ask_with_search | Use LCEL builder over a class |
92
- | StructuredChatAgent | create_structured_chat_agent | Use LCEL builder over a class |
93
- | XMLAgent | create_xml_agent | Use LCEL builder over a class |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
langchain_md_files/concepts.mdx DELETED
The diff for this file is too large to render. See raw diff
 
langchain_md_files/contributing/code/guidelines.mdx DELETED
@@ -1,35 +0,0 @@
1
- # General guidelines
2
-
3
- Here are some things to keep in mind for all types of contributions:
4
-
5
- - Follow the ["fork and pull request"](https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project) workflow.
6
- - Fill out the checked-in pull request template when opening pull requests. Note related issues and tag relevant maintainers.
7
- - Ensure your PR passes formatting, linting, and testing checks before requesting a review.
8
- - If you would like comments or feedback on your current progress, please open an issue or discussion and tag a maintainer.
9
- - See the sections on [Testing](/docs/contributing/code/setup#testing) and [Formatting and Linting](/docs/contributing/code/setup#formatting-and-linting) for how to run these checks locally.
10
- - Backwards compatibility is key. Your changes must not be breaking, except in case of critical bug and security fixes.
11
- - Look for duplicate PRs or issues that have already been opened before opening a new one.
12
- - Keep scope as isolated as possible. As a general rule, your changes should not affect more than one package at a time.
13
-
14
- ## Bugfixes
15
-
16
- We encourage and appreciate bugfixes. We ask that you:
17
-
18
- - Explain the bug in enough detail for maintainers to be able to reproduce it.
19
- - If an accompanying issue exists, link to it. Prefix with `Fixes` so that the issue will close automatically when the PR is merged.
20
- - Avoid breaking changes if possible.
21
- - Include unit tests that fail without the bugfix.
22
-
23
- If you come across a bug and don't know how to fix it, we ask that you open an issue for it describing in detail the environment in which you encountered the bug.
24
-
25
- ## New features
26
-
27
- We aim to keep the bar high for new features. We generally don't accept new core abstractions, changes to infra, changes to dependencies,
28
- or new agents/chains from outside contributors without an existing GitHub discussion or issue that demonstrates an acute need for them.
29
-
30
- - New features must come with docs, unit tests, and (if appropriate) integration tests.
31
- - New integrations must come with docs, unit tests, and (if appropriate) integration tests.
32
- - See [this page](/docs/contributing/integrations) for more details on contributing new integrations.
33
- - New functionality should not inherit from or use deprecated methods or classes.
34
- - We will reject features that are likely to lead to security vulnerabilities or reports.
35
- - Do not add any hard dependencies. Integrations may add optional dependencies.