Datasets:
Tasks:
Object Detection
Formats:
webdataset
Languages:
English
Size:
< 1K
ArXiv:
Tags:
webdataset
License:
import faiss | |
import numpy as np | |
import torch | |
import os, glob | |
def get_results(features_path): | |
print(features_path) | |
embeddings_np = torch.load(features_path).numpy() | |
all_cow_ids = torch.load("../big_model_inference/all_cow_ids.pt").numpy() | |
mid_point = len(embeddings_np) // 2 | |
# print(f"mid_point : {mid_point}") | |
embeddings_np_first_half = embeddings_np[:mid_point] | |
embeddings_np_second_half = embeddings_np[mid_point:] | |
all_cow_ids_first_half = all_cow_ids[:mid_point] | |
all_cow_ids_second_half = all_cow_ids[mid_point:] | |
# # Assuming embeddings_np is your numpy array of shape (N, 512) and dtype=np.float32 | |
d = embeddings_np_first_half.shape[1] # Dimensionality (512) | |
nlist = 100 # Number of clusters (you can tune this parameter) | |
m = 8 # Number of subquantizers (must be a divisor of d) | |
nbits = 8 # Bits per subquantizer | |
flat_index = faiss.IndexFlatL2(d) | |
index_ivf = faiss.IndexIVFPQ(flat_index, d, nlist, m, nbits) | |
index_ivf.nprobe = 10 | |
index_ivf.train(embeddings_np_first_half) | |
index_ivf.add(embeddings_np_first_half) | |
# flat_index.add(embeddings_np_first_half) | |
k = 6 | |
distances, indices = index_ivf.search(embeddings_np_second_half, k) | |
# print("Nearest neighbors (indices) for the first 10 images:") | |
# print(indices[-10:]) | |
# print("Corresponding distances:") | |
# print(distances[-10:]) | |
# Calculate top-1 and top-5 accuracy | |
top1_correct = 0 | |
top5_correct = 0 | |
for i, indices_row in enumerate(indices): | |
query_id = all_cow_ids_second_half[i] | |
# Get cow IDs for the retrieved results | |
retrieved_ids = [all_cow_ids_first_half[idx] for idx in indices_row] | |
# Top-1: Check if the first result matches the query ID | |
if retrieved_ids[0] == query_id: | |
top1_correct += 1 | |
# Top-5: Check if any of the first 5 results match the query ID | |
if query_id in retrieved_ids[:5]: | |
top5_correct += 1 | |
# Calculate accuracy rates | |
top1_accuracy = top1_correct / len(embeddings_np_second_half) | |
top5_accuracy = top5_correct / len(embeddings_np_second_half) | |
print(f"Top-1 Accuracy: {top1_accuracy:.4f}") | |
print(f"Top-5 Accuracy: {top5_accuracy:.4f}") | |
directory = '../big_model_inference' # replace with your directory path | |
pattern = os.path.join(directory, '*.pt') | |
exclude_file = 'all_cow_ids.pt' | |
for features_path in glob.glob(pattern): | |
if os.path.basename(features_path) != exclude_file: | |
get_results(features_path) | |
# print(features_path) |