|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CrowdSpeech: Benchmark Dataset for Crowdsourced Audio Transcription.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets.tasks import Summarization |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
CrowdSpeech is a publicly available large-scale dataset of crowdsourced audio transcriptions. \ |
|
It contains annotations for more than 50 hours of English speech transcriptions from more \ |
|
than 1,000 crowd workers. |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/pilot7747/VoxDIY/main/data/huggingface/" |
|
_URLS = { |
|
"train-clean": _URL + "train-clean.json", |
|
"dev-clean": _URL + "dev-clean.json", |
|
"dev-other": _URL + "dev-other.json", |
|
"test-clean": _URL + "test-clean.json", |
|
"test-other": _URL + "test-other.json", |
|
} |
|
|
|
|
|
class CrowdSpeechConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CrowdSpeech.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for CrowdSpeech. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(CrowdSpeechConfig, self).__init__(**kwargs) |
|
|
|
|
|
class CrowdSpeech(datasets.GeneratorBasedBuilder): |
|
"""CrowdSpeech: Benchmark Dataset for Crowdsourced Audio Transcription.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
CrowdSpeechConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"task": datasets.Value("string"), |
|
"transcriptions": datasets.Value("string"), |
|
"performers": datasets.Value("string"), |
|
"gt": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/pilot7747/VoxDIY/", |
|
|
|
task_templates=[ |
|
Summarization( |
|
text_column="transcriptions", summary_column="gt" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train-clean"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test-clean"]}), |
|
datasets.SplitGenerator(name='test.other', gen_kwargs={"filepath": downloaded_files["test-other"]}), |
|
datasets.SplitGenerator(name='dev.clean', gen_kwargs={"filepath": downloaded_files["dev-clean"]}), |
|
datasets.SplitGenerator(name='dev.other', gen_kwargs={"filepath": downloaded_files["dev-clean"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
crowdspeech = json.load(f) |
|
for audio in crowdspeech["data"]: |
|
task = audio.get("task", "") |
|
transcriptions = audio.get("transcriptions", "") |
|
performers = audio.get("performers", "") |
|
gt = audio.get("gt", "") |
|
|
|
yield task, { |
|
"task": task, |
|
"transcriptions": transcriptions, |
|
"performers": performers, |
|
"gt": gt, |
|
} |
|
|