Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
100K - 1M
ArXiv:
License:
import json | |
import os | |
import requests | |
import pandas as pd | |
dataset_link = "[`tweetner7`](https://huggingface.co/datasets/tner/tweetner7)" | |
metric_dir = 'metric_files' | |
os.makedirs(metric_dir, exist_ok=True) | |
def lm_link(_model): return f"[`{_model}`](https://huggingface.co/{_model})" | |
def model_link(_model, _type): return f"[`tner/{_model}-tweetner7-{_type}`](https://huggingface.co/tner/{_model}-tweetner7-{_type})" | |
def download(_model, _type): | |
url = f"https://huggingface.co/tner/{_model}-tweetner7-{_type}/raw/main/eval" | |
filename = f"{metric_dir}/{_model}-{_type}.json" | |
print(url, filename) | |
try: | |
with open(filename) as f: | |
return json.load(f) | |
except Exception: | |
tmp = {} | |
for metric in ["metric.test_2021", "metric.test_2020", "metric_span.test_2021", "metric_span.test_2020"]: | |
year = metric[-4:] | |
if metric not in tmp: | |
_metric = json.loads(requests.get(f"{url}/{metric}.json").content) | |
if '_span' in metric: | |
tmp[f"Entity-Span F1 ({year})"] = round(100 * _metric["micro/f1"], 2) | |
else: | |
tmp[f"Micro F1 ({year})"] = round(100 * _metric["micro/f1"], 2) | |
tmp[f"Macro F1 ({year})"] = round(100 * _metric["macro/f1"], 2) | |
tmp.update({f"F1 ({year})/{k}": round(100 * v['f1'], 2) for k, v in _metric["per_entity_metric"].items()}) | |
with open(filename, "w") as f: | |
json.dump(tmp, f) | |
return tmp | |
lms = [ | |
"roberta-large", | |
"roberta-base", | |
"cardiffnlp/twitter-roberta-base-2019-90m", | |
"cardiffnlp/twitter-roberta-base-dec2020", | |
"cardiffnlp/twitter-roberta-base-dec2021" | |
"vinai/bertweet-large", | |
"vinai/bertweet-base", | |
"bert-large", | |
"bert-base" | |
] | |
types = [ | |
["all", "continuous", "2021", "2020"], | |
["random"], | |
[ | |
"selflabel2020", | |
"selflabel2021", | |
"2020-selflabel2020-all", | |
"2020-selflabel2021-all", | |
"selflabel2020-continuous", | |
"selflabel2021-continuous" | |
] | |
] | |
for tt in types: | |
metrics = [] | |
for t in tt: | |
for lm in lms: | |
if 'selflabel' in t and lm != "roberta-large": | |
continue | |
_lm_link = lm_link(lm) | |
lm = os.path.basename(lm) | |
_model_link = model_link(lm, t) | |
__metric = { | |
"Model (link)": model_link(lm, t), | |
"Data": dataset_link, | |
"Language Model": _lm_link | |
} | |
__metric.update(download(lm, t)) | |
metrics.append(__metric) | |
df = pd.DataFrame(metrics) | |
print(tt) | |
print(df.to_markdown(index=False)) | |
print() | |