Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -12,28 +12,28 @@ language:
|
|
12 |
multilinguality:
|
13 |
- multilingual
|
14 |
size_categories:
|
15 |
-
- 10K
|
16 |
task_categories:
|
17 |
- token-classification
|
18 |
task_ids:
|
19 |
- named-entity-recognition
|
20 |
-
pretty_name:
|
21 |
---
|
22 |
|
23 |
-
# Dataset Card for "tner/
|
24 |
|
25 |
## Dataset Description
|
26 |
|
27 |
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
28 |
-
- **Paper:** [https://aclanthology.org/
|
29 |
-
- **Dataset:**
|
30 |
-
- **Domain:** Wikipedia
|
31 |
- **Number of Entity:** 16
|
32 |
|
33 |
|
34 |
### Dataset Summary
|
35 |
-
|
36 |
-
- Entity Types: `PER`, `LOC`, `ORG`, `ANIM`, `BIO`, `CEL`, `DIS`, `EVE`, `FOOD`, `INST`, `MEDIA`, `PLANT`, `MYTH`, `TIME`, `VEHI`, `MISC`
|
37 |
|
38 |
## Dataset Structure
|
39 |
|
@@ -48,7 +48,7 @@ An example of `train` looks as follows.
|
|
48 |
```
|
49 |
|
50 |
### Label ID
|
51 |
-
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/
|
52 |
```python
|
53 |
{
|
54 |
"O": 0,
|
@@ -82,8 +82,10 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
|
|
82 |
"I-TIME": 28,
|
83 |
"B-VEHI": 29,
|
84 |
"I-VEHI": 30,
|
85 |
-
"B-
|
86 |
-
"I-
|
|
|
|
|
87 |
}
|
88 |
```
|
89 |
|
@@ -104,21 +106,18 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
|
|
104 |
### Citation Information
|
105 |
|
106 |
```
|
107 |
-
@inproceedings{tedeschi-
|
108 |
-
title = "{
|
109 |
author = "Tedeschi, Simone and
|
110 |
-
Maiorca, Valentino and
|
111 |
-
Campolungo, Niccol{\`o} and
|
112 |
-
Cecconi, Francesco and
|
113 |
Navigli, Roberto",
|
114 |
-
booktitle = "Findings of the Association for Computational Linguistics:
|
115 |
-
month =
|
116 |
-
year = "
|
117 |
-
address = "
|
118 |
publisher = "Association for Computational Linguistics",
|
119 |
-
url = "https://aclanthology.org/
|
120 |
-
doi = "10.18653/v1/
|
121 |
-
pages = "
|
122 |
-
abstract = "
|
123 |
}
|
124 |
```
|
|
|
12 |
multilinguality:
|
13 |
- multilingual
|
14 |
size_categories:
|
15 |
+
- <10K
|
16 |
task_categories:
|
17 |
- token-classification
|
18 |
task_ids:
|
19 |
- named-entity-recognition
|
20 |
+
pretty_name: MultiNERD
|
21 |
---
|
22 |
|
23 |
+
# Dataset Card for "tner/multinerd"
|
24 |
|
25 |
## Dataset Description
|
26 |
|
27 |
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
28 |
+
- **Paper:** [https://aclanthology.org/2022.findings-naacl.60/](https://aclanthology.org/2022.findings-naacl.60/)
|
29 |
+
- **Dataset:** MultiNERD
|
30 |
+
- **Domain:** Wikipedia, WikiNews
|
31 |
- **Number of Entity:** 16
|
32 |
|
33 |
|
34 |
### Dataset Summary
|
35 |
+
MultiNERD NER benchmark dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
|
36 |
+
- Entity Types: `PER`, `LOC`, `ORG`, `ANIM`, `BIO`, `CEL`, `DIS`, `EVE`, `FOOD`, `INST`, `MEDIA`, `PLANT`, `MYTH`, `TIME`, `VEHI`, `MISC`, `SUPER`, `PHY`
|
37 |
|
38 |
## Dataset Structure
|
39 |
|
|
|
48 |
```
|
49 |
|
50 |
### Label ID
|
51 |
+
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/multinerd/raw/main/dataset/label.json).
|
52 |
```python
|
53 |
{
|
54 |
"O": 0,
|
|
|
82 |
"I-TIME": 28,
|
83 |
"B-VEHI": 29,
|
84 |
"I-VEHI": 30,
|
85 |
+
"B-SUPER": 31,
|
86 |
+
"I-SUPER": 32,
|
87 |
+
"B-PHY": 33,
|
88 |
+
"I-PHY": 34
|
89 |
}
|
90 |
```
|
91 |
|
|
|
106 |
### Citation Information
|
107 |
|
108 |
```
|
109 |
+
@inproceedings{tedeschi-navigli-2022-multinerd,
|
110 |
+
title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
|
111 |
author = "Tedeschi, Simone and
|
|
|
|
|
|
|
112 |
Navigli, Roberto",
|
113 |
+
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
|
114 |
+
month = jul,
|
115 |
+
year = "2022",
|
116 |
+
address = "Seattle, United States",
|
117 |
publisher = "Association for Computational Linguistics",
|
118 |
+
url = "https://aclanthology.org/2022.findings-naacl.60",
|
119 |
+
doi = "10.18653/v1/2022.findings-naacl.60",
|
120 |
+
pages = "801--812",
|
121 |
+
abstract = "Named Entity Recognition (NER) is the task of identifying named entities in texts and classifying them through specific semantic categories, a process which is crucial for a wide range of NLP applications. Current datasets for NER focus mainly on coarse-grained entity types, tend to consider a single textual genre and to cover a narrow set of languages, thus limiting the general applicability of NER systems.In this work, we design a new methodology for automatically producing NER annotations, and address the aforementioned limitations by introducing a novel dataset that covers 10 languages, 15 NER categories and 2 textual genres.We also introduce a manually-annotated test set, and extensively evaluate the quality of our novel dataset on both this new test set and standard benchmarks for NER.In addition, in our dataset, we include: i) disambiguation information to enable the development of multilingual entity linking systems, and ii) image URLs to encourage the creation of multimodal systems.We release our dataset at https://github.com/Babelscape/multinerd.",
|
122 |
}
|
123 |
```
|