asahi417 commited on
Commit
696cc22
1 Parent(s): cbb7290

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -24
README.md CHANGED
@@ -12,28 +12,28 @@ language:
12
  multilinguality:
13
  - multilingual
14
  size_categories:
15
- - 10K<100k
16
  task_categories:
17
  - token-classification
18
  task_ids:
19
  - named-entity-recognition
20
- pretty_name: WikiNeural
21
  ---
22
 
23
- # Dataset Card for "tner/wikineural"
24
 
25
  ## Dataset Description
26
 
27
  - **Repository:** [T-NER](https://github.com/asahi417/tner)
28
- - **Paper:** [https://aclanthology.org/2021.findings-emnlp.215/](https://aclanthology.org/2021.findings-emnlp.215/)
29
- - **Dataset:** WikiNeural
30
- - **Domain:** Wikipedia
31
  - **Number of Entity:** 16
32
 
33
 
34
  ### Dataset Summary
35
- WikiAnn NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
36
- - Entity Types: `PER`, `LOC`, `ORG`, `ANIM`, `BIO`, `CEL`, `DIS`, `EVE`, `FOOD`, `INST`, `MEDIA`, `PLANT`, `MYTH`, `TIME`, `VEHI`, `MISC`
37
 
38
  ## Dataset Structure
39
 
@@ -48,7 +48,7 @@ An example of `train` looks as follows.
48
  ```
49
 
50
  ### Label ID
51
- The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wikineural/raw/main/dataset/label.json).
52
  ```python
53
  {
54
  "O": 0,
@@ -82,8 +82,10 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
82
  "I-TIME": 28,
83
  "B-VEHI": 29,
84
  "I-VEHI": 30,
85
- "B-MISC": 31,
86
- "I-MISC": 32
 
 
87
  }
88
  ```
89
 
@@ -104,21 +106,18 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
104
  ### Citation Information
105
 
106
  ```
107
- @inproceedings{tedeschi-etal-2021-wikineural-combined,
108
- title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
109
  author = "Tedeschi, Simone and
110
- Maiorca, Valentino and
111
- Campolungo, Niccol{\`o} and
112
- Cecconi, Francesco and
113
  Navigli, Roberto",
114
- booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
115
- month = nov,
116
- year = "2021",
117
- address = "Punta Cana, Dominican Republic",
118
  publisher = "Association for Computational Linguistics",
119
- url = "https://aclanthology.org/2021.findings-emnlp.215",
120
- doi = "10.18653/v1/2021.findings-emnlp.215",
121
- pages = "2521--2533",
122
- abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
123
  }
124
  ```
 
12
  multilinguality:
13
  - multilingual
14
  size_categories:
15
+ - <10K
16
  task_categories:
17
  - token-classification
18
  task_ids:
19
  - named-entity-recognition
20
+ pretty_name: MultiNERD
21
  ---
22
 
23
+ # Dataset Card for "tner/multinerd"
24
 
25
  ## Dataset Description
26
 
27
  - **Repository:** [T-NER](https://github.com/asahi417/tner)
28
+ - **Paper:** [https://aclanthology.org/2022.findings-naacl.60/](https://aclanthology.org/2022.findings-naacl.60/)
29
+ - **Dataset:** MultiNERD
30
+ - **Domain:** Wikipedia, WikiNews
31
  - **Number of Entity:** 16
32
 
33
 
34
  ### Dataset Summary
35
+ MultiNERD NER benchmark dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
36
+ - Entity Types: `PER`, `LOC`, `ORG`, `ANIM`, `BIO`, `CEL`, `DIS`, `EVE`, `FOOD`, `INST`, `MEDIA`, `PLANT`, `MYTH`, `TIME`, `VEHI`, `MISC`, `SUPER`, `PHY`
37
 
38
  ## Dataset Structure
39
 
 
48
  ```
49
 
50
  ### Label ID
51
+ The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/multinerd/raw/main/dataset/label.json).
52
  ```python
53
  {
54
  "O": 0,
 
82
  "I-TIME": 28,
83
  "B-VEHI": 29,
84
  "I-VEHI": 30,
85
+ "B-SUPER": 31,
86
+ "I-SUPER": 32,
87
+ "B-PHY": 33,
88
+ "I-PHY": 34
89
  }
90
  ```
91
 
 
106
  ### Citation Information
107
 
108
  ```
109
+ @inproceedings{tedeschi-navigli-2022-multinerd,
110
+ title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
111
  author = "Tedeschi, Simone and
 
 
 
112
  Navigli, Roberto",
113
+ booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
114
+ month = jul,
115
+ year = "2022",
116
+ address = "Seattle, United States",
117
  publisher = "Association for Computational Linguistics",
118
+ url = "https://aclanthology.org/2022.findings-naacl.60",
119
+ doi = "10.18653/v1/2022.findings-naacl.60",
120
+ pages = "801--812",
121
+ abstract = "Named Entity Recognition (NER) is the task of identifying named entities in texts and classifying them through specific semantic categories, a process which is crucial for a wide range of NLP applications. Current datasets for NER focus mainly on coarse-grained entity types, tend to consider a single textual genre and to cover a narrow set of languages, thus limiting the general applicability of NER systems.In this work, we design a new methodology for automatically producing NER annotations, and address the aforementioned limitations by introducing a novel dataset that covers 10 languages, 15 NER categories and 2 textual genres.We also introduce a manually-annotated test set, and extensively evaluate the quality of our novel dataset on both this new test set and standard benchmarks for NER.In addition, in our dataset, we include: i) disambiguation information to enable the development of multilingual entity linking systems, and ii) image URLs to encourage the creation of multimodal systems.We release our dataset at https://github.com/Babelscape/multinerd.",
122
  }
123
  ```