Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
init
Browse files- README.md +110 -0
- dataset/label.json +1 -0
- dataset/test.jsonl +0 -0
- dataset/train.json +0 -0
- dataset/valid.json +0 -0
- fin.py +81 -0
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license:
|
5 |
+
- other
|
6 |
+
multilinguality:
|
7 |
+
- monolingual
|
8 |
+
size_categories:
|
9 |
+
- 10K<n<100K
|
10 |
+
task_categories:
|
11 |
+
- token-classification
|
12 |
+
task_ids:
|
13 |
+
- named-entity-recognition
|
14 |
+
pretty_name: Ontonotes5
|
15 |
+
---
|
16 |
+
|
17 |
+
# Dataset Card for "tner/ontonotes5"
|
18 |
+
|
19 |
+
## Dataset Description
|
20 |
+
|
21 |
+
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
22 |
+
- **Paper:** [https://aclanthology.org/N06-2015/](https://aclanthology.org/N06-2015/)
|
23 |
+
- **Dataset:** Ontonotes5
|
24 |
+
- **Domain:** News
|
25 |
+
- **Number of Entity:** `8 (`CARDINAL`, `DATE`, `PERSON`, `NORP`, `GPE`, `LAW`, `PERCENT`, `ORDINAL`, `MONEY`, `WORK_OF_ART`, `FAC`, `TIME`, `QUANTITY`, `PRODUCT`, `LANGUAGE`, `ORG`, `LOC`, `EVENT`)
|
26 |
+
|
27 |
+
### Dataset Summary
|
28 |
+
Ontonotes5 NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
|
29 |
+
|
30 |
+
## Dataset Structure
|
31 |
+
|
32 |
+
### Data Instances
|
33 |
+
An example of `train` looks as follows.
|
34 |
+
|
35 |
+
```
|
36 |
+
{
|
37 |
+
'tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 11, 12, 12, 12, 12, 0, 0, 7, 0, 0, 0, 0, 0],
|
38 |
+
'tokens': ['``', 'It', "'s", 'very', 'costly', 'and', 'time', '-', 'consuming', ',', "''", 'says', 'Phil', 'Rosen', ',', 'a', 'partner', 'in', 'Fleet', '&', 'Leasing', 'Management', 'Inc.', ',', 'a', 'Boston', 'car', '-', 'leasing', 'company', '.']
|
39 |
+
}
|
40 |
+
```
|
41 |
+
|
42 |
+
### Label ID
|
43 |
+
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/onotonotes5/raw/main/dataset/label.json).
|
44 |
+
```python
|
45 |
+
{
|
46 |
+
"O": 0,
|
47 |
+
"B-CARDINAL": 1,
|
48 |
+
"B-DATE": 2,
|
49 |
+
"I-DATE": 3,
|
50 |
+
"B-PERSON": 4,
|
51 |
+
"I-PERSON": 5,
|
52 |
+
"B-NORP": 6,
|
53 |
+
"B-GPE": 7,
|
54 |
+
"I-GPE": 8,
|
55 |
+
"B-LAW": 9,
|
56 |
+
"I-LAW": 10,
|
57 |
+
"B-ORG": 11,
|
58 |
+
"I-ORG": 12,
|
59 |
+
"B-PERCENT": 13,
|
60 |
+
"I-PERCENT": 14,
|
61 |
+
"B-ORDINAL": 15,
|
62 |
+
"B-MONEY": 16,
|
63 |
+
"I-MONEY": 17,
|
64 |
+
"B-WORK_OF_ART": 18,
|
65 |
+
"I-WORK_OF_ART": 19,
|
66 |
+
"B-FAC": 20,
|
67 |
+
"B-TIME": 21,
|
68 |
+
"I-CARDINAL": 22,
|
69 |
+
"B-LOC": 23,
|
70 |
+
"B-QUANTITY": 24,
|
71 |
+
"I-QUANTITY": 25,
|
72 |
+
"I-NORP": 26,
|
73 |
+
"I-LOC": 27,
|
74 |
+
"B-PRODUCT": 28,
|
75 |
+
"I-TIME": 29,
|
76 |
+
"B-EVENT": 30,
|
77 |
+
"I-EVENT": 31,
|
78 |
+
"I-FAC": 32,
|
79 |
+
"B-LANGUAGE": 33,
|
80 |
+
"I-PRODUCT": 34,
|
81 |
+
"I-ORDINAL": 35,
|
82 |
+
"I-LANGUAGE": 36
|
83 |
+
}
|
84 |
+
```
|
85 |
+
|
86 |
+
### Data Splits
|
87 |
+
|
88 |
+
| name |train|validation|test|
|
89 |
+
|---------|----:|---------:|---:|
|
90 |
+
|ontonotes5|59924| 8528|8262|
|
91 |
+
|
92 |
+
### Citation Information
|
93 |
+
|
94 |
+
```
|
95 |
+
@inproceedings{hovy-etal-2006-ontonotes,
|
96 |
+
title = "{O}nto{N}otes: The 90{\%} Solution",
|
97 |
+
author = "Hovy, Eduard and
|
98 |
+
Marcus, Mitchell and
|
99 |
+
Palmer, Martha and
|
100 |
+
Ramshaw, Lance and
|
101 |
+
Weischedel, Ralph",
|
102 |
+
booktitle = "Proceedings of the Human Language Technology Conference of the {NAACL}, Companion Volume: Short Papers",
|
103 |
+
month = jun,
|
104 |
+
year = "2006",
|
105 |
+
address = "New York City, USA",
|
106 |
+
publisher = "Association for Computational Linguistics",
|
107 |
+
url = "https://aclanthology.org/N06-2015",
|
108 |
+
pages = "57--60",
|
109 |
+
}
|
110 |
+
```
|
dataset/label.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"O": 0, "I-ORG": 1, "I-LOC": 2, "I-PER": 3, "I-MISC": 4}
|
dataset/test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/train.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/valid.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fin.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """
|
2 |
+
import json
|
3 |
+
from itertools import chain
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
_DESCRIPTION = """[FIN NER dataset](https://aclanthology.org/U15-1010.pdf)"""
|
8 |
+
_NAME = "fin"
|
9 |
+
_VERSION = "1.0.0"
|
10 |
+
_CITATION = """
|
11 |
+
@inproceedings{salinas-alvarado-etal-2015-domain,
|
12 |
+
title = "Domain Adaption of Named Entity Recognition to Support Credit Risk Assessment",
|
13 |
+
author = "Salinas Alvarado, Julio Cesar and
|
14 |
+
Verspoor, Karin and
|
15 |
+
Baldwin, Timothy",
|
16 |
+
booktitle = "Proceedings of the Australasian Language Technology Association Workshop 2015",
|
17 |
+
month = dec,
|
18 |
+
year = "2015",
|
19 |
+
address = "Parramatta, Australia",
|
20 |
+
url = "https://aclanthology.org/U15-1010",
|
21 |
+
pages = "84--90",
|
22 |
+
}
|
23 |
+
"""
|
24 |
+
|
25 |
+
_HOME_PAGE = "https://github.com/asahi417/tner"
|
26 |
+
_URL = f'https://huggingface.co/datasets/tner/{_NAME}/raw/main/dataset'
|
27 |
+
_URLS = {
|
28 |
+
str(datasets.Split.TEST): [f'{_URL}/test.json'],
|
29 |
+
str(datasets.Split.TRAIN): [f'{_URL}/train.json'],
|
30 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/valid.json'],
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class FinConfig(datasets.BuilderConfig):
|
35 |
+
"""BuilderConfig"""
|
36 |
+
|
37 |
+
def __init__(self, **kwargs):
|
38 |
+
"""BuilderConfig.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
**kwargs: keyword arguments forwarded to super.
|
42 |
+
"""
|
43 |
+
super(FinConfig, self).__init__(**kwargs)
|
44 |
+
|
45 |
+
|
46 |
+
class Fin(datasets.GeneratorBasedBuilder):
|
47 |
+
"""Dataset."""
|
48 |
+
|
49 |
+
BUILDER_CONFIGS = [
|
50 |
+
FinConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
|
51 |
+
]
|
52 |
+
|
53 |
+
def _split_generators(self, dl_manager):
|
54 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
55 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
|
56 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
|
57 |
+
|
58 |
+
def _generate_examples(self, filepaths):
|
59 |
+
_key = 0
|
60 |
+
for filepath in filepaths:
|
61 |
+
logger.info(f"generating examples from = {filepath}")
|
62 |
+
with open(filepath, encoding="utf-8") as f:
|
63 |
+
_list = [i for i in f.read().split('\n') if len(i) > 0]
|
64 |
+
for i in _list:
|
65 |
+
data = json.loads(i)
|
66 |
+
yield _key, data
|
67 |
+
_key += 1
|
68 |
+
|
69 |
+
def _info(self):
|
70 |
+
return datasets.DatasetInfo(
|
71 |
+
description=_DESCRIPTION,
|
72 |
+
features=datasets.Features(
|
73 |
+
{
|
74 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
75 |
+
"tags": datasets.Sequence(datasets.Value("int32")),
|
76 |
+
}
|
77 |
+
),
|
78 |
+
supervised_keys=None,
|
79 |
+
homepage=_HOME_PAGE,
|
80 |
+
citation=_CITATION,
|
81 |
+
)
|