Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K - 100K
License:
init
Browse files- README.md +0 -0
- conll2003.py +240 -0
- dataset/conll2003.data.test.json +0 -0
- dataset/conll2003.data.train.json +0 -0
- dataset/conll2003.data.valid.json +0 -0
- dataset/conll2003.label.json +1 -0
README.md
ADDED
File without changes
|
conll2003.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """
|
2 |
+
import json
|
3 |
+
from itertools import chain
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
_DESCRIPTION = """[CoNLL 2003 NER dataset](https://aclanthology.org/W03-0419/)"""
|
8 |
+
_URL = 'https://huggingface.co/datasets/tner/conll2003/raw/main/dataset'
|
9 |
+
_URLS = {
|
10 |
+
str(datasets.Split.TEST): [f'{_URL}/test{i:02d}.jsonl' for i in range(8)],
|
11 |
+
str(datasets.Split.TRAIN): [f'{_URL}/train{i:02d}.jsonl' for i in range(52)],
|
12 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/validation{i:02d}.jsonl' for i in range(8)],
|
13 |
+
}
|
14 |
+
|
15 |
+
import os
|
16 |
+
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
|
20 |
+
logger = datasets.logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
|
25 |
+
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
|
26 |
+
author = "Tjong Kim Sang, Erik F. and
|
27 |
+
De Meulder, Fien",
|
28 |
+
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
|
29 |
+
year = "2003",
|
30 |
+
url = "https://www.aclweb.org/anthology/W03-0419",
|
31 |
+
pages = "142--147",
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on
|
37 |
+
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do
|
38 |
+
not belong to the previous three groups.
|
39 |
+
|
40 |
+
The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on
|
41 |
+
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second
|
42 |
+
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags
|
43 |
+
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only
|
44 |
+
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag
|
45 |
+
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2
|
46 |
+
tagging scheme, whereas the original dataset uses IOB1.
|
47 |
+
|
48 |
+
For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419
|
49 |
+
"""
|
50 |
+
|
51 |
+
_URL = "https://data.deepai.org/conll2003.zip"
|
52 |
+
_TRAINING_FILE = "train.txt"
|
53 |
+
_DEV_FILE = "valid.txt"
|
54 |
+
_TEST_FILE = "test.txt"
|
55 |
+
|
56 |
+
|
57 |
+
class Conll2003Config(datasets.BuilderConfig):
|
58 |
+
"""BuilderConfig for Conll2003"""
|
59 |
+
|
60 |
+
def __init__(self, **kwargs):
|
61 |
+
"""BuilderConfig forConll2003.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
**kwargs: keyword arguments forwarded to super.
|
65 |
+
"""
|
66 |
+
super(Conll2003Config, self).__init__(**kwargs)
|
67 |
+
|
68 |
+
|
69 |
+
class Conll2003(datasets.GeneratorBasedBuilder):
|
70 |
+
"""Conll2003 dataset."""
|
71 |
+
|
72 |
+
BUILDER_CONFIGS = [
|
73 |
+
Conll2003Config(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"),
|
74 |
+
]
|
75 |
+
|
76 |
+
def _info(self):
|
77 |
+
return datasets.DatasetInfo(
|
78 |
+
description=_DESCRIPTION,
|
79 |
+
features=datasets.Features(
|
80 |
+
{
|
81 |
+
"id": datasets.Value("string"),
|
82 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
83 |
+
"pos_tags": datasets.Sequence(
|
84 |
+
datasets.features.ClassLabel(
|
85 |
+
names=[
|
86 |
+
'"',
|
87 |
+
"''",
|
88 |
+
"#",
|
89 |
+
"$",
|
90 |
+
"(",
|
91 |
+
")",
|
92 |
+
",",
|
93 |
+
".",
|
94 |
+
":",
|
95 |
+
"``",
|
96 |
+
"CC",
|
97 |
+
"CD",
|
98 |
+
"DT",
|
99 |
+
"EX",
|
100 |
+
"FW",
|
101 |
+
"IN",
|
102 |
+
"JJ",
|
103 |
+
"JJR",
|
104 |
+
"JJS",
|
105 |
+
"LS",
|
106 |
+
"MD",
|
107 |
+
"NN",
|
108 |
+
"NNP",
|
109 |
+
"NNPS",
|
110 |
+
"NNS",
|
111 |
+
"NN|SYM",
|
112 |
+
"PDT",
|
113 |
+
"POS",
|
114 |
+
"PRP",
|
115 |
+
"PRP$",
|
116 |
+
"RB",
|
117 |
+
"RBR",
|
118 |
+
"RBS",
|
119 |
+
"RP",
|
120 |
+
"SYM",
|
121 |
+
"TO",
|
122 |
+
"UH",
|
123 |
+
"VB",
|
124 |
+
"VBD",
|
125 |
+
"VBG",
|
126 |
+
"VBN",
|
127 |
+
"VBP",
|
128 |
+
"VBZ",
|
129 |
+
"WDT",
|
130 |
+
"WP",
|
131 |
+
"WP$",
|
132 |
+
"WRB",
|
133 |
+
]
|
134 |
+
)
|
135 |
+
),
|
136 |
+
"chunk_tags": datasets.Sequence(
|
137 |
+
datasets.features.ClassLabel(
|
138 |
+
names=[
|
139 |
+
"O",
|
140 |
+
"B-ADJP",
|
141 |
+
"I-ADJP",
|
142 |
+
"B-ADVP",
|
143 |
+
"I-ADVP",
|
144 |
+
"B-CONJP",
|
145 |
+
"I-CONJP",
|
146 |
+
"B-INTJ",
|
147 |
+
"I-INTJ",
|
148 |
+
"B-LST",
|
149 |
+
"I-LST",
|
150 |
+
"B-NP",
|
151 |
+
"I-NP",
|
152 |
+
"B-PP",
|
153 |
+
"I-PP",
|
154 |
+
"B-PRT",
|
155 |
+
"I-PRT",
|
156 |
+
"B-SBAR",
|
157 |
+
"I-SBAR",
|
158 |
+
"B-UCP",
|
159 |
+
"I-UCP",
|
160 |
+
"B-VP",
|
161 |
+
"I-VP",
|
162 |
+
]
|
163 |
+
)
|
164 |
+
),
|
165 |
+
"ner_tags": datasets.Sequence(
|
166 |
+
datasets.features.ClassLabel(
|
167 |
+
names=[
|
168 |
+
"O",
|
169 |
+
"B-PER",
|
170 |
+
"I-PER",
|
171 |
+
"B-ORG",
|
172 |
+
"I-ORG",
|
173 |
+
"B-LOC",
|
174 |
+
"I-LOC",
|
175 |
+
"B-MISC",
|
176 |
+
"I-MISC",
|
177 |
+
]
|
178 |
+
)
|
179 |
+
),
|
180 |
+
}
|
181 |
+
),
|
182 |
+
supervised_keys=None,
|
183 |
+
homepage="https://www.aclweb.org/anthology/W03-0419/",
|
184 |
+
citation=_CITATION,
|
185 |
+
)
|
186 |
+
|
187 |
+
def _split_generators(self, dl_manager):
|
188 |
+
"""Returns SplitGenerators."""
|
189 |
+
downloaded_file = dl_manager.download_and_extract(_URL)
|
190 |
+
data_files = {
|
191 |
+
"train": os.path.join(downloaded_file, _TRAINING_FILE),
|
192 |
+
"dev": os.path.join(downloaded_file, _DEV_FILE),
|
193 |
+
"test": os.path.join(downloaded_file, _TEST_FILE),
|
194 |
+
}
|
195 |
+
|
196 |
+
return [
|
197 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
|
198 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
|
199 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
|
200 |
+
]
|
201 |
+
|
202 |
+
def _generate_examples(self, filepath):
|
203 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
204 |
+
with open(filepath, encoding="utf-8") as f:
|
205 |
+
guid = 0
|
206 |
+
tokens = []
|
207 |
+
pos_tags = []
|
208 |
+
chunk_tags = []
|
209 |
+
ner_tags = []
|
210 |
+
for line in f:
|
211 |
+
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
212 |
+
if tokens:
|
213 |
+
yield guid, {
|
214 |
+
"id": str(guid),
|
215 |
+
"tokens": tokens,
|
216 |
+
"pos_tags": pos_tags,
|
217 |
+
"chunk_tags": chunk_tags,
|
218 |
+
"ner_tags": ner_tags,
|
219 |
+
}
|
220 |
+
guid += 1
|
221 |
+
tokens = []
|
222 |
+
pos_tags = []
|
223 |
+
chunk_tags = []
|
224 |
+
ner_tags = []
|
225 |
+
else:
|
226 |
+
# conll2003 tokens are space separated
|
227 |
+
splits = line.split(" ")
|
228 |
+
tokens.append(splits[0])
|
229 |
+
pos_tags.append(splits[1])
|
230 |
+
chunk_tags.append(splits[2])
|
231 |
+
ner_tags.append(splits[3].rstrip())
|
232 |
+
# last example
|
233 |
+
if tokens:
|
234 |
+
yield guid, {
|
235 |
+
"id": str(guid),
|
236 |
+
"tokens": tokens,
|
237 |
+
"pos_tags": pos_tags,
|
238 |
+
"chunk_tags": chunk_tags,
|
239 |
+
"ner_tags": ner_tags,
|
240 |
+
}
|
dataset/conll2003.data.test.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/conll2003.data.train.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/conll2003.data.valid.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/conll2003.label.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"O": 0, "B-ORG": 1, "B-MISC": 2, "B-PER": 3, "I-PER": 4, "B-LOC": 5, "I-ORG": 6, "I-MISC": 7, "I-LOC": 8}
|