Datasets:
metadata
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': AnnualCrop
'1': Forest
'2': HerbaceousVegetation
'3': Highway
'4': Industrial
'5': Pasture
'6': PermanentCrop
'7': Residential
'8': River
'9': SeaLake
- name: image_id
dtype: string
splits:
- name: train
num_bytes: 55332279
num_examples: 16200
- name: validation
num_bytes: 18472972.2
num_examples: 5400
- name: test
num_bytes: 18625106.4
num_examples: 5400
download_size: 92078756
dataset_size: 92430357.6
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: mit
size_categories:
- 10K<n<100K
task_categories:
- image-classification
EuroSat (RGB)
Description
A dataset based on Sentinel-2 satellite images covering 13 spectral bands and consisting of 10 classes with 27000 labeled and geo-referenced samples. This is the RGB version of the dataset with visible bands encoded as JPEG images.
The dataset does not have any default splits. Train, validation, and test splits were based on these definitions here https://github.com/google-research/google-research/blob/master/remote_sensing_representations/README.md#dataset-splits
- Website: https://github.com/phelber/eurosat
- Paper: https://arxiv.org/abs/1709.00029
Citation
@article{helber2019eurosat,
title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification},
author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
year={2019},
publisher={IEEE}
}