|
# Dataset Usage |
|
|
|
## Description |
|
|
|
The Mimic-IV dataset generate data by executing the Pipeline available on https://github.com/healthylaife/MIMIC-IV-Data-Pipeline. |
|
## Function Signature |
|
|
|
```python |
|
load_dataset('thbndi/Mimic4Dataset', task, mimic_path=mimic_data, config_path=config_file, encoding=encod, generate_cohort=gen_cohort, val_size=size, cache_dir=cache) |
|
``` |
|
|
|
## Arguments |
|
|
|
1. `task` (string) : |
|
- Description: Specifies the task you want to perform with the dataset. |
|
- Default: "Mortality" |
|
- Note: Possible Values : 'Phenotype', 'Length of Stay', 'Readmission', 'Mortality' |
|
|
|
2. `mimic_path` (string) : |
|
- Description: Complete path to the Mimic-IV raw data on user's machine. |
|
- Note: You need to provide the appropriate path where the Mimic-IV data is stored. |
|
|
|
3. `config_path` (string) optionnal : |
|
- Description: Path to the configuration file for the cohort generation choices (more infos in '/config/readme.md'). |
|
- Default: Configuration file provided in the 'config' folder. |
|
|
|
4. `encoding` (string) optionnal : |
|
- Description: Data encoding option for the features. |
|
- Options: "concat", "aggreg", "tensor", "raw", "text" |
|
- Default: "concat" |
|
- Note: Choose one of the following options for data encoding: |
|
- "concat": Concatenates the one-hot encoded diagnoses, demographic data vector, and dynamic features at each measured time instant, resulting in a high-dimensional feature vector. |
|
- "aggreg": Concatenates the one-hot encoded diagnoses, demographic data vector, and dynamic features, where each item_id is replaced by the average of the measured time instants, resulting in a reduced-dimensional feature vector. |
|
- "tensor": Represents each feature as an 2D array. There are separate arrays for labels, demographic data ('DEMO'), diagnosis ('COND'), medications ('MEDS'), procedures ('PROC'), chart/lab events ('CHART/LAB'), and output events data ('OUT'). Dynamic features are represented as 2D arrays where each row contains values at a specific time instant. |
|
- "raw": Provide cohort from the pipeline without any encoding for custom data processing. |
|
- "text": Represents diagnoses as text suitable for BERT or other similar text-based models. |
|
|
|
5. `generate_cohort` (bool) optionnal : |
|
- Description: Determines whether to generate a new cohort from Mimic-IV data. |
|
- Default: True |
|
- Note: Set it to True to generate a cohort, or False to skip cohort generation. |
|
|
|
6. `val_size`, 'test_size' (float) optionnal : |
|
- Description: Proportion of the dataset used for validation during training. |
|
- Default: 0.1 for validation size and 0.2 for testing size. |
|
- Note: Can be set to 0. |
|
|
|
7. `cache_dir` (string) optionnal : |
|
- Description: Directory where the processed dataset will be cached. |
|
- Note: Providing a cache directory for each encoding type can avoid errors when changing the encoding type. |
|
|
|
## Example Usage |
|
|
|
```python |
|
import datasets |
|
from datasets import load_dataset |
|
|
|
# Example 1: Load dataset with default settings |
|
dataset = load_dataset('thbndi/Mimic4Dataset', task="Mortality", mimic_path="/path/to/mimic_data") |
|
|
|
# Example 2: Load dataset with custom settings |
|
dataset = load_dataset('thbndi/Mimic4Dataset', task="Phenotype", mimic_path="/path/to/mimic_data", config_path="/path/to/config_file", encoding="aggreg", generate_cohort=False, val_size=0.2, cache_dir="/path/to/cache_dir") |
|
``` |
|
|
|
Please note that the provided examples are for illustrative purposes only, and you should adjust the paths and settings based on your actual dataset and specific use case. |